
68-S-24-84-1.011.0 Text Processing System

IMPORT ANT NOI'E ABOUT INSTALLATION

TEXT PROCESSING SYSTEM
XENIX3.0fmtheApple·J')ILisa2J')I

May24,1984

These notes contain information about installing the optional XENIX Text Processing
System. If you wish to install the Text Processing System at the same time as installing
the XENIX Operating System, please refer to the Installation Gui� in the binder
maited Installation Guide/Operations Guide/User's Guide. When installing the
XENIX Text Processing System after you •ve already installed the XENIX Operating
System, refertothesenotes.

READ THE INSTALLATION NOTES INTHElRENflRETY AND MARK SURE
YOU COMPLETELY UNDERSTAND THE INSTALLATION PROCESS
BEFORE INSTALUNGTHE PRODUCI'. Note that you need theXENIX Operating
System in order to use the Text Processing System, so you must install the XENIX
Operating System first.

Hyw have already installed theXENIX Operating System, and wish to install the Text
Processing System Package separately, follow this procedure:

1. Login as root (super-user).

2. The floppies are mnnbered (beginning with 1) am must be installed in
sequential numeric mder. Insert the first Text Processing System floppy
intothefloppydriveandenterthecommand:

/etc/install

3. Theinstallutilitywillprompt:

First floppy (y/n)

Enter'y' andJKSSRETURN.

4. The program will prompt you for each floppy. Remove the previous floppy
from the floppy drive and insert the next Text Processing Sytem floppy.
Enter'y' inresponsetotheprcmpt(#).

S. When you have installed the final Text Processing System floppy, enter 'n'
inresponsetotheprompt.

Note that some files may extend from one floppy to the next. In this case, the tar utility
will prompt you in a slightly different fashion than the /etc/install program. Insert the
next floppy and press RETURN when the floppy is properly insertedandthefloppydoor
latch is closed.

The Santa Cruz Operation XENIX for the Apple Lisa 2

The XENIX™

Text Processing System

Text Processing Guide

TM

for the Apple Lisa 2

The Santa Cruz Operation, Inc.

Information in this document is subject to change without notice and
does not represent a commitment on the part of The Santa Cruz
Operation, Inc. and Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only· in accordance
with the terms of the agreement.

@The Santa Cruz Operation, Inc., 1984
@Microsoft Corporation, 1983

The Santa Crua Operation, Ine.
500 Chestnut Street
P.O. Box 1900
Santa Cruz, California 95061
(408) 425-7222 ·TWX: 910-598-4510 SCO SACZ

UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft Corporation
Apple, Lisa 2, and ProFile are trademarks of Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

Contents

1 TextProcessingOveniew

1.1 Introduction 1-1

1. 2 Basic Concepts i -3

1.3 FormattingDocuments 1-7

1.4 ASampleProject 1-9

I . 5 Managing Writing Projects 1-I I
1 .6 Summary 1-15

2 TooJsForWritingaDdEditing

2.1 Introduction 2-1

2.2 XENIXCommandsfm-TextProcessing 2-2

2.3 WritingTools 2-8

2.4 Usingspell 2-9

2.5 Usingstyleanddiction 2-10

3 UsingthemmMacros

3.1 Getting Started withmm 3-1

3.2 BasicFormattingMacros 3-3

3.3 Usingnroff/troffCom.mands 3-8

3.4 Checkingmminput Withmmcheck 3-9

4 mmReference

4.1 Introduction 4-1

4.2 lnvokingtheMacros 4-3

4.3 FonnattingConcepts 4-7

4.4 ParagraphsandH eadings 4-10

4.5 Lists 4-18

4.6 Displays 4-25

4.7 Footnotes 4-31

4.8 PageHeadersandFooters 4-34

4.9 TableofContents 4-38

4.10 References 4-40

4.11 MiscellaneoosFeatures 4-41

4.12 MemorandumandReleasedPaper Styles 4-46

4.13 Reserved Names 4-54

4.14 Errors 4-56

4.15 SummaryofMacros, Strings, and Number Registers 4�62

5 An nrofl'ltrofJ'Tutorial

5.1 Introduction 5-1

5.2 Inserting Commands 5-2

5.3 Point SizesandLine Spacing 5-2

5.4 Fonts and Special Characters 5-4

5.5 lndentsandLineLengths 5-7

5.6 Tabs 5-8

5. 7 Drawing Lines and Characters 5-9

5.8 Strings 5.;_ 12

5.9 Macros 5-12

5.10 TitlestPagesandNumbering 5-14

5.11 NumberRegistersandArithmetic 5-16

5.12 Macros withArguments 5-17

5.13 Conditionals 5-19
5.14 Environments 5-21

5.14 Diversions 5-21

6 nrofl'ltrofJ'Reference

6.1 Introduction 6-1

6.2 BasicFormattingRequests 6-5

6.3 Character Translations, Overstrike,andLocalMotions 6-13

6.4 ProcessingControlFacilities 6-17

6.5 OutputandEITOI'Messages 6-24

6.6 SummaryofEscape Sequences aDJNumberRegisters 6-26

7 FormattingTables

7.1 Introduction 7-1

7.2 Input Format 7-2

7.3 lnvokingtbl 7-9

7.4 Examples 7-11

7.5 Summary 7-18

8 FormattingMatbematics

8.1 Introduction 8-1

8.2 DisplayedEquations 8-2

8.3 BasicMathematicaiConstructions 8-3

8.4 ComplexMathematicalConstructions 8-7

8.5 LayoutandDesignofMathematicalText 8-10

8.6 ln-LineEquations 8-15

8. 7 Definitions 8-16

8.8 lnvokingeqn 8-17

8.9 SampleEquation 8-18

8.10 ErrorMessages 8-18
8.11 SummaryofKeywordsandPrecedences 8-19

Appendix A Editing With sed anclawk

A.l Introduction A -1
A.2 EditingWithsed A-1
A.3 PatternMatchingWithawk A-1

Chapter 1

Text Processing Overview

1.1 Introduction 1-1

1.1.1 BeforeYouBegin 1-2

1.1.2 Reading This Manual 1-2

· 1.2 Basic Concepts 1-3

1. 2.1 Writing Tasks 1-4

1.2.2 Anatomy of a Document 1-4

1.2.3 Formatting Characteristics 1-5

1.2.4 An Inventory of Tools 1-6

1.3 Formatting Documents 1-7

1.3.1 The mm Macros 1-7

1.3.2 Supporting Tools 1-8

1.3.3 Order of lnvoking Programs 1-8

1.4 A Sample Project 1-9

1.4.1 Entering Text and Formatting Commands 1-9

1.4.2 Formatting Text 1-10

1.4.3 Printing the Document 1-11

1.5 Managing Writing Projects 1-11

1.5.1 The Life Cycle of aDocument 1-12

1.5.2 Organizing Your Project 1-12

1.5.3 Shortcuts: Boilerplates and Cut and Paste 1-14

1.6 Summary 1-15

1.1 Introduction

The XENIX Text Processing System is a. collection of powerful tools for
enhancing writing productivity and making the process of document
preparation more efficient. To create documents with the XENIX system, you
will be using special XENIX text processing programs, including text editors and
text formatters. You will also be relying on XENIX system features and utilities
with which you may already be familiar. Whether you have used other text
processing programs or not, this manual provides you with a practical
orientation toward text processing and describes the XENIX tools in detail,
along with examples that illustrate their applications to your writing tasks.
Where possible, strategies are offered for using the XENIX system to best
advantage in your own environment.

This manual emphasizes the interrelationship or tools and techniques into a
"text processing system". Understanding the relationship between these
programs discussed here is as important as learning to use each individual
program. Think of the XE�1X system as a "writing environment". How you
organize this environment is up to you. Once you learn to use your XENIX tools
selectively, and make the right decisions in planning your writing projects
before you begin them, the XENIX system is ultimately more powerful and
flexible than any of the "word processing packages" with which you may be
familiar.

This introduction provides you with an overview of text processing with the
XENIX System, including:

• The text processing concepts and terms you will need to understand

• The editing and formatting tools you will be using

• The steps in the process of creating a finished document

• The strategies for managing writing projects

As you read the XENIX Tezt Proceuing Guide remember that the XENIX
system has been evolving over a. number of years and that it offers an enormous
range of programs and utilities. Many of the tools introduced here were not
originally designed for text processing-they are general-purpose utilities upon
which all XENIX users depend heavily. Programmers, for example, use the
same text editors and file comparison utilities discussed here to write and revise
programs. Those programs intended solely for text processing applications,
including the formatters and style analysis programs, have developed
independently or each other. You will often find that their capabilities overlap.
A large part of learning to use your XENIX system successfully is deciding how
to make the various programs and utilities work together.

Do not expect to sit down and learn the XENIX Text Processing System in a
single afternoon. This manual is designed to help you approach a wide range or

t.:.l

XENIX Text Processing

editing and formatting tools gradually. There are many programs described
here for which you may not have an immediate application, and some you may
never need at all. You need not learn all the material introduced here to
produce professional-quality manuscripts. Choose the tools that will work best
for your-projects.

1 .1.1 Before You Begin

Before you can begin to use your XENIX system effectively as a text·processing
environment, you should already be familiar with the material covered in the
XENIX U8er'1 Guide, particularly:

• The most common XENIX commands

• The XENIX hierarchical file structure

• The XENIX shell programming language

• At least one of the XENIX text editors

'Equally important, however, is making use of the power of XENIX as an
operating system by using its features to your advantage. In particular, as you
begin working with XENIX Text Processing, consider how your work can be
made easier by utilizing the XENIX hierarchical file structure to organize files
efficiently. Make use of the XENIX shell to "pipe" one process to another and
run several processes concurrently. Use the XENIX shell programming
language to create "scripts" for automating your text processing work.
Develop strategies for managing your writing projects beyond merely learning
a collection of commands.

Most importantly, before you begin working with the XENIX Text Processing
System, learn one of the XENIX text editors well enough to feel comfortable
entering and revising document text.

Because there is so much .to learn about text processing with the XENIX system,
the best approach is to read through this volume first and decide which editors,
utilities, and formatters best suit your needs. Then learn selectively, but
thoroughly, those tools which are most appropriate. As you become more
experienced, you will develop a feel· for which functions work best in which
situations, and you will find new ways to make the writing process more
efficient. You will be continually amazed at how powerful the editors and
related tools can be.

1 .1.2 Reading This Manual

This manual contains the following chapters:

1-2

Text Processing Overview

1. Text Processing Overview
The chapter you are now reading provides you with a general
overview ofXENIX text processing: how it works and what kinds or
tasks it can do. The XENIX tools and how they fit into each phase of
document production are described.

2. Writing and Editing Tools
This chapter introduces several XENIX programs which can help
you search for recurring patterns, compare files, and make global
revisions to large files and groups of files. It also introduces three
special writing tools for locating spelling errors and awkward
diction, as well as assessing the readability of a document.

3. Using mm
This chapter introduces mm, a package or document formatting
requests which simplifies the task or formatting documents.

4. Mm Reference
This chapter is a comprehensive guide to mm.

5. NrofJ/TrofJTutorial
This chapter introduces the two XENIX text formatters, nrofr and
trofr.

6. Nroff/TrofJReference
This chapter is a comprehensive guide to the nroff and troft'
formatting programs.

1. Formatting Tables
This chapter describes the specialized formatter, . tbl, which
produces effective tables in documents.

8. Formatting Mathematical Equations
This chapter describes the eqn program which rormats
mathematical symbols and equations.

Appendix A: Editing With sed and awk
This appendix describes how to use the two batch editing programs
sed andawk.

1.2 Basic Concepts

This �ection reviews some general text processing terms and concepts,
including the:

Types ot writing tasks which can be done with XENIX text processing

Parts of a document

XENIX Text Processing

Design characteristics or a forma.tted document

TypesofXENIX tools which you will be using

1 .2.1 Writing Tasks

You can write, edit, and typeset any· manuscript on the XENIX system­
whether a memo, business letter, novel, academic dissertation, feature article
or manual. In some respects this manual relies more heavily on examples
relevant to technical documentation, because· these projects require the
application of the greatest number of XENIX tools, and demand the most
careful planning and strategy in their construction.

1 .2.2 Anatomy of a Document

To fully determine the scope of your formatting needs, let's look at the parts of
a typical document. Unless you are using your XENIX text processing system to
write memos and letters, you may have some or all of the following in your
documents:

Front Matter

Title page

Copyright notice or document number

Table of contents

List of tables or illustrations

Foreword

Preface

Acknowledgements

BodyofText

Chapters or sections

Figures a.nd display

Tables and equations

Footnotes

Running headers and footers

1·4

Text Processing Overview

Back Matter

Appendices

Notes

Glossary

Bibliography

Index

Your XENIX tools will help you automatically generate many parts of your
document. For example, you will be able to create lists or figures and tables,
and a table or contents as part or the formatting process. You can crea.te and
store in advance a standard copyright notice page (often called a. "boilerplate")
and change only that information specific to the document.

Even in those sections of your document that must be written from scratch you
can do much to standardize the "look" of a preface page, the pagination of an
appendix, or the section numbering and format or a chapter. Once you have
developed specifications, you can achieve consistency in the production of a '
long and complex document, and even produce many documents with the same
specifications, without going through the definition process again. A rurther
advantage is that you can change your specifications at any time, often without
re-editing the text and formatting commands themselves. Then, you need only
reformat your document and print it.

1 .2.3 Formatting Characteristics

There are many characteristics of your finished text that can be controlled with
XENIX formatting tools. Keep in mind, however, that the appearance of your
finished document depends largely on the capabilities of your output device.
To determine the format or your text you will insert commands in your text file
as you write and edit. These commands will be identical, whether you are
planning to produce your document on a lineprinter using the XENIX formatter
nroff', or whether you are sending your document directly to a phototypesetter
using troft'. Because a lineprinter cannot do variable spacing, or change the
point size or font or your text, nroft' will ignore commands to change point size,
round the parameters ofspacing commands to the nearest line unit, and replace
italics with underlining.

You will alsci notice qualitative differences in the output. For example, the
justification of text-the spacing of text across the line to preserve a margin-is
considerably less subtle in lineprinter output. Some of the characteristics you
can control with the nroft'/troffprograms are:

Text filling, centering, and justification

XENIX Text Processing

Multi column output, margin, and gutter width

Vertical spacing, line length, page length, and indentation

·Font type and point size

Style of page headers and tooters

Page and section numbering

Layout ot mathematical equations and tables

1 .2.4 An Inventory or Tools

When you approach any writing project, you should examine the whole range
ot XENIX tools to find those that will work best, just as you might look inside a
toolbox. Although you can often do a job in several ways, there is frequently a
tool, or a combination or tools, designed especially tor· that job.

Feel free to experiment in using the various editors, utilities, and formatters. It
you are cautious about making copies of your files and backing up your XENIX
system· regularly, you can do little irreversible damage. As you work, you will
gain more confidence and find new solutions.

While it is a good idea to learn to use a few ot the XENIX tools skillfully, you
should also work consciously to learn new tools and methods, rather than
depending on a few procedures which you feel you know well. Some XENIX
tools, like the screen editor vi, offer many more commands and functions than
you can comfortably learn at one sitting. You may find yourselt relying on a
limited number or commands quite heavily. To prevent this, periodically
review the documentation and force yourself to try new commands.

In this manual we will be looking at XENIX "tools'' which tall into a few basic
categories:

System features

Utilities

Aspects or the XENIX operating system that can be used to enhance
the text processing environment, ·such as multitasking and the
hierarchical file structure.

These include the XENIX text editors (such as vi) and other utilities
that are used for both software development and text processing
(such as sort, diff, grep, or awk).

Text Processing Overview

Text Processing Tools

These include speeia.li�ed programs designed solely for text
formatting tasks, including mm, eqn, and tbl and the formatters
nroft' and troft'. Also in�luded are the special writing tools, spell,
style, and diction, whieh help youedit whatyou write.

1.3 Formatting Document•

In this section you will be introdqeed to nroft' and troft', the two XENIX
formatting programs. By inserting a e�eries of commands in your text files you
will be able to produce text with Ju$tified right margins, automatic page
numbering and titling, automatic hyphenation, and many other special
features. Nroft' (pronounced '1en·roff") is designed to produce output on
terminals and lineprinters. Trofl' (pronounced "tee·roff") uses identical
commands to drive a phototypesetter. The two programs are completely
compatible, but because or the limitations or ordinary lineprinters, troft'
output can be made considerably more sophisticated. With troft', for example,
you can specify italic font, variable spaeing, and point size. Iryou format the
text using the same macros with nroff, italicized text will be underlined, the
spacing will be approximated, and the text will be printed in whatever size type
the lineprinter offers.

1.3.1 The mm Macros

To use nroff and trofl', you must insert a fairly complicated series of
commands directly into your text. These "formatting commands" specify in
detail how the final output will look. Because nrofl' and trofl' are relatively
hard to learn to use effectively, XENIX also offers a package of canned
formatting requests called the mm macros. With mm you can specify the style
of paragraph•, titles, footnotes, multi column output, lists and so on, with less
effort and without learning nrofl' and trofr themselves. The mm program
reads the commands from the text, and translates them into nrofr/trofl'
specification1. Mm is described in detail in the next two chapters. It is
recommended that you learn mrn fir�t, and use it for most of your formatting

·needs. It you need to fine-tune your QYtput, you can add nrofr/trofr requests
to the text as necessary.

To produce a document with mm, use the command

nroff -mm filename

to view the output on your termipal screen. To store the output of nroff in a
file, use the command line:

nroff -mm filename>outfile

where outfile is the name of the file you wish to designate for the stored output.

XENIX Text Processing

It is suggested that you give consistent extensions to your input and output
filenames. You might use ".s" for "source" as the extension for all input
filenames, and ".mm" as the extension for the names of files which are the
outputofmm. For example,

nroff -mm l.intro.s>intro.mm&

Note that the ampersand is used to process the file in the background.

1 .3.2 Supporting Tools

In addition to the nroff and troff formatting programs, and the mm
formatting package, there are also formatting programs to meet some
specialized needs. The eqn program, for example, formats complicated
mathematical symbols and equations. A version of eqn called neqn outputs the
same mathematical text for the more limited capabilities of lineprinter. Eqn is
a preprocessor. That is, you run eqn first, before n roff / troff, to translate the
commands of the eqn "language" into ordinary nroff/troffrequests. The eqn
commands resemble English words (e.g., over, lineup, bold, union), and the
format is specified much as you might try to describe an equation in
conversation. It is recommended that you delay learning about eqn in detail
until you actually need to use it.

The tbl program is also a preprocessor: tbl commands are translated into
nroff/troff commands to prepare complex tables. Tbl gives a you· a high
degree of control over material which must appear in tabular form, by doing all
the computations necessary to align complicated columns with elements of

. varying widths. Like eqn, it requires. that you learn another group of
commands, and process your files through another program before using
nroff/troff.

1.3.3 Order or Invoking Programs

After you have inserted all your formatting commands into the text, you are
ready to process your files, using the XENIX formatting programs. Please note
that it is extremely important to use the various macro packages and
formatters in the correct order. However, you may invoke all these programs
with a single command line; using the XENIX pipe facility. As noted above, you
can invoke the mm macro package along with nroff/troff using a command
such as:

nroff -mm intro.s>intro.mm

However, if you are using several specialized formatters along with
nroff/troff, the command becomes more complex. You must invoke eqn
before nroff/troff and mm, in order to translate the eqn commands into
nroff/troffspecifications before the files are formatted, as in the following:

Text Processing Overview

neqn intro.s 1 nrotJ -mm > intro.mm

It you are using both eqn and tbl, the tbl program should be called first:

tbl intro.s I neqnlnrofJ -mm>intro.mm

If you are formatting multi column material or tables with nroff you must use
the col (tor "column") program. Col processes your text into the necessary
columns, after formatting, as in:

nrofJ -mm intro.s I col>intro.mm

1.4 A Sample Project

The preparation of every document has several phases: entering and editing
text, checking your draft for spelling errors and style quality, formatting the
finished version, and printing it on a printer or typesetter. To illustn.te the
process of producing a finished document with the XENIX Text Processing
System, let's look at the steps for creating a simple document one by one.

1.4 .1 Entering Text and Formatting Commands

First you must write the text or the document. To do this, you will invoke one
or the XENIX text editors and type the text on the screen. For example, to
produce a memo informing the members or your department that you will be
holding a seminar on the XENIX Text Processing System, you might begin by
typing the following command line:

vi memo.s

You will probably use your editor's special functions to correct errors and make
revisions as you write, such as deleting words or lines, globally substituting one
word tor another, or moving whole paragraphs and sections around in the
document.

If you have used a dedicated word processing system or a microcomputer word
processing program before, note that the XENIX Text Processing System works
somewhat differently. Formatting or text takes place in a "batch" rather than
an "interactiYe" mode. That is, instead of using special function keys to format
your text on the screen as you work, you will be interspersing commands with
ordinary text in your file. Most of these are two-letter commands preceded by a
dot (.), that appear at the beginning of text lines. These will be lowercase
letters, if you are using either o!theXENIX text formatters, nroft', or troff'.

In addition to these two programs, there is another program called mm which
we recommend you use, especially it you are new to text processing. Mm
commands are called "macros''. These macros, which are generally two upper

XENIX Text Processing

or lowercase letters preceded by a dot (.), replace whole sequences or nroff and
troff commands, and allow you to reduce the number and complexity or the
commands necessary to format a document. You can use the mm macros
wherever possible and add extra nroff or trofl commands, as necessary, for
fine-tuning the format of your document.

Let's look at the beginning of a file called memo.e:

. ce

.BMEMO

.sp 2

.P
A seminar has been scheduled for Thursday, September 15,
to introduce users to the XENIX Text Processing System.
It is is intended for all department members
planning to use XENIX for writing or preparing documentation ..
. P
The seminar will include the following topics:
.AL 1
.LI
Reviewing the XENIX file structure and basic commands .
. LI
Using the vi text editor .
. LI
Formatting documents with mm .
. LE
.P
The seminar will begin at 9 A.M. and will last approximately
two hours ...

In the input file above, each paragraph of text begins with the mm paragraph
macro, .P. In the final document, the word "MEMO" will appear centered on
the page and in boldface. The nroff/troff command . ce means "center" and
the mm macro .B means "boldface". The nroff/troff command .sp 2 below
:MEMO means "2"spaces

Note the three m m macros .AL, .LI, and .LE. These will turn the text following
the words ''following topics" into an automatically numbered list.

1.4 .2 Formatting Text

Now, let's format the finished memo into the file called memo.mm using the
following command line:

nroff -mm memo.s> memo.mm&

1·10

Text Processing Overview

This command invokes the nroff formatter using the mm macro package to
format the file memo. e. When rormatted, the memo will be stored in an output
file called memo.mm. If you do not specify an output file, the formatted text
will simply roll across your screen and be lost. Note that the command line ends
with an ampersand (& }, an instruction to put the formatting or this file "in the
background". It is generally a good idea to put formatting jobs in the
background because they will orten take several minutes, especially if the file is
long and the formatting relatively complex. If you put the formatting job in the
background, your terminal will remain free for you to do other work on the
system.

1 .4.3 Printing the Document

When you are ready to print the memo, use the command

lpr text.memo.mm

The finished memo looks like this:

MEMO

A seminar has been scheduled for Thursday, September 15,
to introduce users to the XENIX Text Processing System.
It is intended for all department members planning
to use XENIX for writing or preparing documentation.

The seminar will include the following topics:

1. Reviewing the XENIX file structure and
basic commands.

2. Using the vi text editor.

3. Formatting documents with mm.

The seminar will begin at 9 A.M and will last
approximately two hours . . .

1 .5 Managing Writing Projects

Once you have mastered one or more of your text editors, and are ready to do

1-11

XENIX Text Processing

extensive writing, revision, and text processing with the XENIX system, it is
time to consider the overall organization of your writing projects. This section
offers some common-sense suggestions for managing and standardizing your
text files to make processing more efficient. Not · all of the suggestions and
writing aids discussed here will be equally appropriate in all situations. The
larger. and more complex the writing project, however, the more time and
confusion can be saved by their implementation.

1 .5.1 The Life Cycle ofa Document

Before you can begin to work successfully with XENIX text processing tools, you
need to determine which tools are appropriate for each phase of a project. This
section discusses the application or XENIX tools to each step in the life cycle of a.
document from the first notes you take and outlines you develop, to the
archiving and management of multiple versions and updates.

Every document goes through several phases before it is complete. First, you
must enter the body or the text, using one of the XENIX text editors. As you
write, you will insert formatting commands, or "macros," which specify in
detail to the formatting programs how the final output should look. In addition
to checking your work for mistakes and spelling errors, you may need to go
through an extensive revision process-the global substitution of one name or
term for another, for instance, or the reorganization of your manuscript using a
"cut and paste" technique.

Depending on the size and scope of your project, you may need to compare text
variants and maintain several versions of your documents. Finally, you will be
producing formatted output, whether it is a one-page business letter produced

, on an ordinary lineprinter or a book-length manuscript communicated directly
to a phototypesetter. XENIX provides all the necessary tools for every phase of
document preparation, and in many cases offers several approaches to each
task.

1 .5.2 Organizing Your Project

Organization is a key element of writing projects, especially if you are working
on a large document, or attempting to control many short ones. Text
processing can greatly simplify any writing project if you use common sense in
adapting the wide range of XENlX tools to your work. If you work with many
short memos, letters, and documents that are similar in content but require
constant revision, or if you are involved with the production of book-length
manuscripts, you can easily find yourself swamped by huge files containing
innumerable text variations and fragments. These can become difficult to
control and process. Time you spend defining the scope of your project in
advance is be well rewarded. Decide which files and versions you need to
maintain, and which formatting and error-checking programs you need to use.
Determine in advance, if possible, the style and format of your text.

1-12

Text Processing Overview

Since most documents go through several revisions before they are finished, a
few simple measures make the work of repeated revision considerably easier. Ir
you are like most people, you rewrite phrases and add, delete, or rearrange
sentences. Subsequent editing of your text will be easier if every sentence starts
on a new line, and if each line is short and breaks at a natural place, such as after
a semicolon or comma.

As you are editing, you can insert markers in your text, so that you can return
to them later; use an unlikely string as a marker that you can search for easily
using the grep command or your text editor to do a global search. Ir, for
example, you are unsure or which term to use, or how you want the final text to
look, use a given word, or text formatting macro provisionally, but
eon1i1tentl71. In this way, a global substitution can be made easily.

You may find that certain global definitions, like the choice of a font for a given
header level, or a commonly used string, may be created at the last minute and
placed at the beginning of your text file. When you are experienced in the use or
macros, you may want to create "template" definitions which you use
repeatedly. You can even place your definitions in a separate file to be called
every time you invoke a script you have prewritten for processing your
documents. This will facilitate consistency in your documents and allow
greater flexibility if changes are required. In many cases, you will find that you
can delay your formatting decisions until the document is to be printed or
typeset.

Long documents should be broken down into individual files of reasonable
length, perhaps ten to fifteen thousand characters. Operations on larger files
are considerably slower, and the accidental loss of a small file is less
catastrophic. If possible, each file should represent a natural boundary in a
document, such as a chapter or section. Develop naming conventions to make
your filenames consistent and self-explanatory, such as:

l.intro.s 2.basic.s 3.adv.s

This allows files to be processed in groups with global commands, editing and
shell scripts. You will also be able to see the contents or files and directories at a.
glance, and if someone else needs to access your files, they will not be confronted
with files named "aardvark", "katmandu", or "fred".

You should also use the XENIX hierarchical file structure to your advantage in
organizing your work, by creating different directories for special purposes.
For example, you may wish to have your source text files in a different directory
from your formatted output files, or you may find it handy to have "rough" and
"final" draft directories. Ir your projects grow and change over time, you may
need to maintain several versions or a document at once.

Unless your project is truly unwieldy, the creation or parallel directories should
provide sufficient organization Cor storing multiple versions of a document:

t.-13

XENIX Text Processing

/usr / docwriter
I

I I
version I version2 version3

I I
I I

rough final
I

l .intro.s
2.basic.s
3.adv.s

I
nroff
I
l.intro.n
2.basic.n
3.adv.n

Ir you have created definition files and scripts, such as shell programs for
processing text or sed scripts for making uniform changes (see Appendix A),
place them in yet another directory. This might also be a. good place to add
some "help" files, which explain which versions of a. document are contained in
the directory or explain formatting procedures.

There are no rules to apply in deciding which procedures will produce
documentation with the least effort and the fewest errors. How elaborate you
make your procedures depends on the quantity and complexity or the text you
need to process and maintain. The essential point here is the theme or this
entire volume: select the XENIX tools which seem most appropriate and adapt
them to your own specific needs. The more organized and consistent your work
is, the more powerful your use of these tools will become.

1 .5.3 Shortcuts: Boilerplates and Cut and Paste

You will almost always find several approaches to any writing or revision you
do with the XENIX system. Begin each writing project by reviewing these
alternatives, and determine which solution requires the least repetitive human
effort and leaves the least room for error. You can increase your productivity,
whether you are writing technical papers, documentation, or many. memos
with similar content, by focusing on writing clearly and concisely, rather than
wasting time on needless duplication of effort. Ir you proceed in an organized,
consistent way, as outlined in the previous section, you will quickly find that
XENIX offers you many shortcuts. One of these is the concept of the "editing
script". Either or the line editors, ed or ex, can be used to perform a
complicated sequence or editing operations on a large group or files
simultaneously. These can often be a substitute for the use or a batch editing
facility like sed, or a wk.

For example, to change every "Xenix" to "XENIX" in all your files, create a
script file with the following lines:

1·14

Text Processing Overview

gfX.enix/s/ {XENTX/g
w
q

Now,you can use the command

ed filename <script

to make this change to any given file. The editor will take its commands from
the prepared script. You can further automate procedures by using the XENIX
shell language to write a shell procedure. For example, you can write a script
which asks XENIX to make the above changes, reformat the entire text, and
print the results. It is even possible to put this procedure in a file to be read by
the at command to do your processing at some other time.

Iryou must produce many similar documents, or long documents which contain
repeated material, the concept of the "boilerplate" may already be familiar to
you. Often, information which must be presented in a standardized way can be
stored in a separate file which can be reused as necessary. Not only is this a
valuable shortcut to rewriting, it may be the preferred approach if a complex
display or an example of program text must be reproduced. Using boilerplates
assures consistency and makes subsequent changes to all recurrences of the
copied material much simpler.

1 .6 Summary

Here are some hints for making your XENIX Text Processing System work for
you:

Make your filenames ea.sy to understand, and use a naming
convention that allows you to take advantage of wildcard characters.

Create text files of manageable length which represent chapters or
logical divisions in the document; arrange files into directories which
represent major documents or versions so that they can be easily
identified.

Create "help" or "README" files in each directory which explain
your text--what version you are writing, what scripts, processors,
and files are needed to successfully produce the document. Use
comment lines in your text to explain organizational details of your
project or any special macros you have created.

Control parallel versions and updates carefully, especially if you are
working on a large project. Use conditional processing in your text
files, copies of text in different directories, and file linking where
appropriate. Iryou are in doubt about versions of text in different files
use diffto compare text.

1-15

XENIX Text Processing

1-16

When using vi or another text editor to write text, start each sentence
or clause on a new line.

Identify text and formats which recur in a document or several
documents, and create boilerplates or templates to save work.

Make full use of"cut and paste" techniques to rearrange material in a
file, move text between files, or use the same text repeatedly in several
places.

Use batch processes like sed, awk, or an ed script to make consistent
changes to a large number of files.

Use spell, style, and diction regularly to reduce the number of
editorial corrections.

Try to define your production specifications and style conventions in
advance; prepare editing scripts to reduce the number of changes you
need to make individually.

Always use the simplest possible technique to achieve your results.
Use the mm macros where possible, reserving nroff/troff
commands for "fine-tuning" or creating an effect impossible with
mm. Iryou define a new macro, explain it in a comment line so it can
be readily understood.

Avoid running too many formatting processes simultaneously. Ir
necessary, use the at command to process files at a time when the
system is not busy.

Protect yourself by backing up your system and user files regularly.
Make copies or files if you are in doubt about whether your procedures
will damage them.

Chapter 2

Tools For Writing and Editing

2.1 Introduction 2-1

2.2 XENIX Commands for Text Processing 2-2

2.2.1 Pattern Recognition: The grep Commands 2-2

2.2.2 File Comparison: difr, diff3, and comm 2-3

2.2.3 Other Useful Commands 2-6

2.3 Writing Tools 2-8

2.4 Using Spell 2-9

2.5 Using Style and Diction 2-10

2.5.1 Style 2-11

2.5.2 Diction 2-18

2.1 In troduction

This chapter introduces you to some XENIX system utilities that can simplify
document editing and revision. It also discusses three special XENIX writing
tools for improving writing style and locating typographical errors in
documents.

Although this chapter focuses on how the XENIX tools are used to accomplish
some common text processing tasks, keep in mind that these tools are XENIX
utilities which are also used by programmers for searching and editing data and
program text. The emphasis here is on XENIX commands and utilities that can
help you simplify complicated editing procedures, and allow you to work with
many files at once. As you read, it will become apparent that several of the
programs introduced here can be used interchangeably, and that many ofthese
tasks can also be performed with your text editor. You may also find the two
additional XENIX programs, sed and awk, helpful for making complex changes
to text files. (See Appendix A, "Editing With sed and awk".)

There are several revision tasks common to all text processing projects. The
larger your project, the more complex these tasks become. For example, you
may often need to change a key term, name, or phrase everywhere it appears,
or locate references to items you need to change or delete. You may need to
compare and contrast multiple versions of your text in order to locate
variations. You may also find that you need to alter some aspect of the text
format to suit production requirements. To do this, you must locate a string-a
word, a phrase, a text formatting macro or any repeated set of characters­
and, if necessary, change it everywhere it appears. Using the XENIX system
tools discussed in this chapter, these changes can be made very rapidly and
consistently.

The first half of this chapter discusses several extremely useful and easy to
learn XENIX commands. If you have read the XENIX U1er·'1 Guide, you may
already be familiar with several of them. More detailed information about
these commands is provided in the XENIX Reference Manual. They include:

The commands of the grep family print lines that match a single
specified pattern. When combined with other commands in a shell
procedure and used to process many files at once, the grep commands
become extremely powerful for locating text in large files. Two
variants of grep are also introduced here: egrep, and tgrep.

The XENIX file comparison utilities, dift', diff3, and comm. These
utilities compare two or more files and output those lines which are
different. In text processing applications these programs can be
extremely useful for locating variations between several versions of
documents quickly.

Additional XENIX commands, including sort, which alphabetizes
lines in your text files, we, which counts lines, words, and characters

2-1

XENIX .Text Pro cessing

in your text, and cut and paste, commands that duplicate "cut and
paste" editing operations.

2.2 XENIX Commands for Text P rocessing

Ir you have been working with the XENIX system for a. while, you recognize
many of the basic XENIX commands discussed in this section. Since these
commands have a. wide range of applications for both programmers and text
processing users, you should learn to use them, whatever work you normally do
on your XENIX system.

2 .2.1 Pattern Recognition: The grep Commands

Because of its power to search for patterns in many files a.t once, grep and its
variants are among the most useful XENIX commands. The members of the
grep family, like the awk program and the batch editor, sed have as their
basis the same principle of pattern recognition as the text editors, ed and vi,
the concept of the regular expression. Each of these programs searches for the
occurrence of a. given pattern-a. character or group of characters, a. word or
word string-and generates a. list of those lines containing the same pattern.
Finding all occurrences of some word or pattern in a. group of files is a. common
text processing task. You can easily write a. shell script using the grep
command or one of its variants, egrep and fgrep, and quickly search multiple
files. grep searches for the same regular expressions recognized by ed. The
word "grep" stands for

g/re/p

that is, " globally" locate and print a. regular expression. It does exactly this.
grep searches every line in a. set of files for all occurrences of the specified
regular expression. Thus,

grep thing filel file2 file3

finds the pattern " thing" wherever it occurs in any of the files you name (e.g.
file I, file2, file3. Iryou use the -n option with grep, it will indicate not only the
file in which the line was found but also the line number, so that you can locate
and edit it later. By combining the use of grep with other commands to
generate a. shell program that reads and transforms input, large quantities or
text can be processed through multiple searching or editing procedures quickly.

The commands grep, egrep, and fgrep all search one or more files tor a.
specified pattern. They appear on the command line in the following form:

grep (option) expression filename

Commands of the grep family search the files you specify, or the standard
input if you do not specify any files, for lines matching a. pattern. Each line is

2-2

Tools For Writing and Editing

copied to the standard output (your terminal screen) , but if you are processing
great quantities or. text you should specify a filename in which to store the
results of the gre p search.

For example, the command:

grep -n 'system utility' chap•.s>util

requests that grep command search Cor the phrase "system utility" in every
file that begins with the letters " chap" and ends with "s", and store the
resulting list, with line numbers, in a. file called util. Unless the -h option is
used, the filename is given if there is more than one input file.

The difference betwaen the three grep variants is that grep patterns are
limited regular expressions in the style or ed. Egrep patterns are run regular
expressions; it is normally Caster, but requires more space. Fgrep only
recognizes fixed strings, rather than regular expressions. See grep{C) ror
details.

2.2.2 File Comparison : diff, dift'3, and comm

In addition to locating occurrences of particular strings or regular expressions
in your text, you may often find it useful to compare and contrast two or more
similar text files for variations which are not immediately apparent. You can
also use diff to store file versions more compactly. This is accomplished by
storing the output or diff, which would be the differences in that file version,
rather than the file itself. The -e option collects a script or those ed commands
(such a.s append, change, and delete) which would be necessary to recreate the
revised file from the original.

Another comparison tool, com m, is discussed in this section. Comm is useful
primarily for comparing the output or two sorted lists.

Diff

To use the diff command to compare two files, use the form:

diff -option filet filee

Diff reports which lines must be changed in two files to bring them into
agreement .. Ir you use a dash (-) instead of the first filename, diff will read from
the ''standard input". Ir either file is actually a directory, then whatever file in
that directory which has the same name as the first file named is used. The
normal output contains lines in this format, where n is the linenumber or the
text file:

XENIX Text Processing

nl a n3,n4
nl ,n2 d n3
nl ,n2 c n3,n4

These lines resemble the ed commands which would be necessary to convert
filel into file2. The letters a , J, and c are ed commands for appending,
deleting, and changing, respectively. The numbers after the letters refer to
file2. By exchanging an "a" command for a "d" command and reading
backward you can conYertfile2back into filet. In those cases where nl = n2 or
n3 = n4, the pairs are abbreviated as a single num her. Following each of these
lines are printed all the lines that are affected in the first file, flagged by a less­
than sign (<) , then all the lines that are affected in the second file , flagged by a
greater-than sign (>).

For example, you might want t.o compare two text files, fruit and fJegiee . The
contents of the file called fruit are the lines:

apples
bananas
cherries
tomatoes

The contents of the file called vegiee are the lines:

asparagus
beans
cauliflower
tomatoes

If you used the command line

cliff fruit vegies> diffile&

the file diffile will contain the list of differences between fruit and tJegiee which
are the output of the diffprogra.m:

1 ,3c l ,3
< apples
<bananas
< cherries

> asparagus
>beans
> cauliflower

In this case, all the lines in the file fJegiee are different from the lines in the file
fruit, except line 4, for which no differences are reported. See diff(C) for
options.

Tools For Writing and Editing

Using D iff3

Dift'3 works like diff, except that it compares three files. It has the form:

diff3 -option filet file2 file3

Diff3 reports disagreeing ranges of text flagged with the following codes:

=====
all three files differ

filet is different

=======
file2 is different

==========
file3 is different

The change which has occurred in converting a given range of lines in a given
file to some other is reported.

For example, the message

filet : nl a

means text is to be appended after line number n l in filefilel. The message:

filet : nl , n2 c

means that the text to be changed is in the range of lines nl to line n2. If nl =
n2, the range may be abbreviated to nl.

The original contents of the range follows immediately after a "c" indication.
When the contents of two files are identical, the contents of the lower­
numbered file is suppressed.

As in the case of d iff, diff3 used with the -e option prints a script for ed that
will incorporate into file1 all changes between file2 fileS. In other words, it
records the changes that normally would be flagged ==== and ====2.

Comm

The comm program selects or rejects lines common to two sorted files. I t has
the form:

comm [-option) file l file2

Comm reads file1 and filet, and produces a three-column output: lines only in

2-5

XENIX Text Processing

file1, lines only in file2, and lines in both files. Ordinarily, the lines should be
sorted in ASCII collating sequence, a process which can be carried out using the
sort program before using eomm. As in diff and its variants, if you type a
dash (-) instead of a filename, eomm will read either file1 or file£ from the
standard input.

The possible options with eomm are the flags 1, 2, or 3, which suppress
printing of the corresponding column. Thus eomm with -12 prints only the
lines common to the two files; eomm -23 prints only lines in the first file but not
in the second. The command eomm with the options -123 would print no lines.

2.2.3 Other Useful Commands

In this section a group or XENIX commands that are helpful in text
manipulations are summarized. In each case you may find it helpful to refer to
theXENIX Reference Manual ror more information.

Sort

It you have been using your XENIX system for a while, you may have already
learned the sort command. Because or its capacity to alphabetize a list or
items, it can be extremely useful in a variety of text processing situations (e.g. ,
alphabetizing the names on a mailing list or the entries in an index) . To use
sort, simply type the command

sort filename> list.out

The output file liet. out will contain the sorted list.

Like some other XENIX commands, if you use "-" instead or a filename, sort
will read from the standard input, and unless you direct the output to another
file, the sorted list will appear on your screen. Sort will, · by default, sort an
entire line in ascending ASCII collating sequence, including letters, numbers,
and special characters. See 1ort(C) for a list of available options.

It you need to do repeated sorts by field, you may find it easier to prepare a
simple awk script, as described in "Appendix A".

Note that if you invoke one or more of the sort options, or use position names,
you must use the following syntax:

sort (-optione] (poll] (poe2] (-o output] [filenamee]

we

The XENIX command we counts words, characters, or line.s in your files. If, for
example, you are submitting a manuscript to a publisher, an exact word count
may be necessary, or you may want to estimate the number of lines in your file
before you make some critical formatting decision. To use we, type

2-6

Tools For Writing and Editing

we filename

It you give no options, we a.utoma.tica.lly counts lines, words, and characters in
the named files, or in the standard input if you do not specify any filenames. It
keeps a total count for all named files, and the filenames will also be printed
along with the counts. The option -1 for "lines," option -w for "words" and
option -c for "characters" can be also be used in any combination, iryou do not
want all three statistics printed. Remember, when doing a. word count, that we
will automatically treat as a word any string or characters delimited by spaces,
tabs, or new lines.

Cut and Paste

Ir you work with large text files, you may find the two XENIX commands, cut
and paste extremely useful. There are, of course, several other ways to
approach "cut and paste" operations with the XENIX system. By now you
should feel fairly confident using one of the XENIX text editors to move blocks of
text, write parts of files to new files, and rearrange lines. Using sort to
alphabetically sort fields within lines, or the awk program to change the order
of fields in a. text file are two special cases or cut and paste operations. The two
commands, cut and paste offer a powerful way to rearrange text blocks in a
document.

Cut is a. useful shortcut for extracting columns or fields of inrorma.tion from a.
file, or for rearranging columns in lines. To invoke cut in its simplest form,
type:

cut (options) file

The cut command will cut out columns from each line or a file. The columns can
be specified as fields separated by a named delimiter or by character positions.
The following options are available:

-clist

-nist

-debar

-s

A list of numbers following -c specifies character positions or
ranges.

A list of numbers following -f is a. list of fields, delimited by a
character specified after the -d option.

A character following the -d option is read as the field delimiter .
The default is the tab character. Spaces or other characters with
special meanings must be surrounded with single quotation marks
(') .

This option suppresses lines which do not contain the delimiter
character' if the -r option is invoked.

Either the .,...c or -f option must be invoked when using cut . Cut is a. useful
shortcut for extracting columns or fields of information from a file or re­
arranging columns.

XENIX Text Processing

The paste command performs the reverse operation: it can be used to merge
lines in one or several files. To use paste in its simplest form, type

paste file 1 file2

Paste will concatenate file1 and file e., treating each file as a. column or columns
or a table and pasting them together horizontally . AB with the cut command,
you can also specify a. delimiter character to replace the default tab. You can
even use paste to merge material in columns into lines in a single file.

The following options are available:

-d The -d option suppresses the tab which automatically replaces the
newline character in the old file. It can be followed by one or more
characters which act as delimiters.

list The list or characters which follow the -d option.

-s The -s option merges subsequent lines, rather than one from each
input file. The tab is the default character, unless a. list is specified
with the -d option.

The dash can be used in place or any filename, to read a line from
the standard input.

2 .3 Writing Tools

In the previous sections you were introduced to some common XENIX utilities
that are used both by programmers and text processing users: programs can be
used to search for patterns, do batch editing, or compare two or more files.
These files can contain anything-data, programs, or text. This section
introduces t.hree XENIX programs which have been designed solely for writing
and editing documents:

spell, a. program that checks for spelling and typographical errors in
your text files.

style, a. program that analyzes the readability or your writing style,
ba.se·d on statistical measures ofsentence length and type.

diction, a program that searches for awkward, ambiguous, and
redundant phrases and suggests alternatives.

Think of these programs as "tools" in the same way as the system utilities
discussed earlier in the chapter. The XENIX system will not do your writing for
you, but it will help you rewrite and polish your work efficiently. AB you read
about these programs, keep in mind that they are not intended to substitute for
careful reviewing, editing, and proofreading by a human being. Use spell,
style, and diction early in the editing process as a. preliminary check on your

Tools For \\'riting and Editing

work. You will get some interesting feedback on your writing and uncover
recurrent patterns in your word usage and sentence construction, as well as
locate your common spelling errors . .AiJ you are preparing your final draft, you
may find it helpful to use spell again to locate any last-minute typographical
errors.

2 .4 Using Spell

You can save a lot of time and grief in proofreading your documents by using
spell. Although not totally infallible, the spell program will find most of your
spelling and typographical errors with a minimum of effort and processing
time. The spell program compares all the words in the text files you specify
with the correctly spelled words in a pre-existing XENIX dictionary file. Words
which neither appear in this dictionary, nor can be derived by the application
of ordinary English prefixes, suff"IXes, or inflections are printed out as spelling
errors. You can either specify an output file in which to store the list or
misspelled words, or allow them to appear on your screen. For example, to find
the spelling errors in a. file named 1. intro.•, type

spell l .intro.s

and a list of possible misspelled words will appear on your screen. You can also
use a command line like

spell •.s>errors&

to check all your files with names ending in ".s" at once and output the possible
misspellings into a single file named error•.

Spell ignores the common formatting requests macros from nrofl', trofl', tbl,
and eqn . It automatically invokes a program called derofl' to remove all
formatting commands from the copy of your text file it examines for spelling
errors.

Several options are available. With "spell -v", words not literally in the
dictionary are also printed, along with plausible derivations from dictionary
words. The -b option checks British spelling. This option prefers British
spelling variants such as: centre, colour, speciality, and travelled, and insists on
the use of "-ise" in words like "standardise".

The XENIX dictionary is derived from many sources, and while it recognizes
many proper names and popular technical terms, it does not include an
extensive specialized vocabulary in biology, medicine, or chemistry. The
XENIX dictionary will not recognize your friends' names, your company's
acronyms, and many esoteric words. You will have to examine your list of
spelling "errors" critically in this light, then search your text for those words
which really are misspelled. In practice, you may discover that it is difficult to
predict in advance which technical terms, names, and acronyms spell will
uncover in your documents. You may wish to run spell on your files first, then

XENIX Text Processing

edit the output list, deleting those words which are allowable, before correcting
your errors.

2 .5 Using Sty le and Diction

This section describes two programs, style and diction. Although these two
programs attempt to critique your writing style, keep in mind that the qualities
which distinguish good writing from bad are not entirely quantifiable. Taste in
writing remains subjective, and different stylistic qualities may be appropriate
to different writing situations. XE1'.11X is neither a. literary critic nor your
sophomore English teacher. These tools are best used to eliminate errors and
give you some preliminary assessment of a document's readability. They are
not intended to substitute for human editing, so be sure to evaluate the results
cautiously.

Both style and d iction are based on statistical measures of writing
characteristics-characteristics that can be counted and summarized on your
computer. With a large number of documents stored on computers it is has
become feasible to study the recurrent features of writing style in a. great many
documents. The programs described here use the results or such studies to help
you write in a more readable style, by producing a stylistic profile of writing,
including:

A measurement of readability, determined on the basis of sentence
and word length, sentence type, word usage, and sentence openers.

A listing of awkward, ambiguous, redundant and ungrammatical
phrases found in the document.

This will help you evaluate overall document style, and correct or eliminate
poor word choices or awkward sentences. As you work with these programs,
you can accumulate data to provide you with a profile of your writing style
based on all your documents.

Because the style and diction programs can only produce a statistical
evaluation of words and sentences, the term "style" is defined here in a rather
narrow way: the results of a writer's particular word and sentence choices.
Although many stylistic judgements are subjective, particularly those
involving word choice, these programs make use of some relatively objective
measures developed by experts.

Three programs have been written to measure some of the objectively definable
characteristics of writing style and to identify some commonly misused or
unnecessary phrases. Although a document that conforms to these stylistic

' rules is not guaranteed to be coherent and readable, one that violates all of the
rules will almost certainly be difficult or tedious to read. These programs are:

2-10

1 . Style, which calculates readability, sentence length variability,
sentence type, word usage and sentence openers. It assumes that the

Tools For Writing and Editing

sentences are well-formed, i.e. that each sentence has a verb and that
the subject and verb agree in number.

2. Diction , which identifies phrases that reflect dubious usage or seem
unnecessarily awkward.

These programs are described in detail in the following sections.

2.5.1 Style

Style reads a document and prints a summary of sentence length and type,
word usage, sentence openers and "readability indices." The reada.bility
indices are tradition school grade levels assigned to a document, based on four
different studies of what makes one style more readable than another. You can
also use the style program t.o locate all sentences in a. document longer than a
given length, those containing passive verb forms, those beginning with
expletives, or those with readability indices higher than a specified number.

Style, in turn, is based on a system for determining English word classes or
parts of speech called parts . Parts is a set of programs that uses a limited
dictionary of about 350 words a.nd some suffix rules to partially assign word
classes to English text. It then uses experimentally derived rules of word order
to assign word classes to all words in the text. Parts uses a small dictiona.ry
and general rules, and can be used for any subject text with an accuracy rate of
approximately Q5%. Style measures have been built into the output phase of
the programs that make up parts. Some of the measures are simple counters of
the word classes found by parts; many are more complicated. For exa.mple,
the verb count is the total number of verb phrases. This includes phrases l ike:

has been going
was only going
to go

Each of these phrases counts as one verb.

\Vhat is a Sentence!

A human reader has little trouble deciding where a sentence begins and ends.
Computers, however, are confused by different uses of the period character (.)
in constructions like 1 .25, A. J. Jones, Ph.d., i.e., or etc. Before attempting to
count the words in a sentence, the text is stripped of potentially misleading
formatting macros. Then style defines a sentence as a string of words ending in
one or the punctuation marks:

The end marker "/."may be used to indicate an imperative sentence.
Imperative sentences not marked in this way are not identified. Style
recognizes numbers with embedded decimal points and commas, strings of
letters and numbers with embedded decimal points used in computer filenames,
and a list of commonly used abbreviations. Numbers that end sentences cause a

2- 11

XENIX Text Processin g

sentence break if the next word begins with a capital letter. Initials followed by
periods are only assumed to be at the end or the sentence it the next word begins
with a capital and is round in the dictionary or function words used by parts.
As a result, the periods in the string

J. D. Jones

are not read as the ends oC sentences, but the period in the following string:

... system H. The . . .

is assumed to end a sentence. With these rules most sentences are correctly
identified, although occasionally either two sentences are counted as one or a
rragment is identified as a sentence.

The results or running style are reported in five parts. A typical output might
have values that look like this:

readability grades
(Kincaid) 12.3 (auto) l2.8 (Coleman-Liau) 1 1.8 (Flesch) 13.5 (46.3)

sentence into
no. sent 335 no. wds 7419 av sent leng 22. 1 av word leng 4.9 1 no.
questions 0 no. imperatives 0 no. nonfunc wds 4362 58;8% av leng
6.38 short sent (<11) 35% (1 18) long sent (>32) 16% (55) longest
sent 82 wds at sent 174; shortest sent 1 wds at sent 1 17

sentence types

word usage

simple 34% (1 14) complex 32% (108) compound 12% (41)
compound-complex 21% (72)

verb types as % or total verbs tobe 45% (373) aux 16% (133) inf
14% (1 14) passives as % or non-inC verbs 20% (144) types as % of
total prep 10.8% (804) conj 3.5% (262) adv 4.8% (354) noun 26.7%
{1983) adj 18.7% (1388) pron5.3% (393) nominalizations 2 % (155)

sentence beginnings
subject opener: noun (63) pron (43) pos (0) adj (58) art (62) tot 67%
prep 12% (39) adv 9% (31) verb 0% (1) sub_conj 6% (20) conj
1% (5) expletives 4% { 13)

Readability Grades

The style program uses tour separate readability indices. Generally, a
readability index is used to estimate the grade level or the reading skills needed
by the reader to understand a document. The readability indices reported by
style are based on measures or sentence and word lengths. Although the

2- 12

Tools For Writing and Editing

indices themselves do not measure whether the document is coherent and well
organized, high indices correlate with stylistic difficulty. Documents with short
sentences and short words have low scores; those with long sentences and many
polysyllablic words have high scores. Four sets of results computed by four
commonly used readability formulae are reported: the Kincaid Formula, the
Automated Readability Index, the Coleman-Liau Formula, and a version orthe
Flesch Reading Ease Score. Because each of these indices was experimentally
derived from different text and subject results, the results may vary. They are
summarized here .

Kincaid Formula

The formula is: Reading Grade==1 1.8 • syllables per word + .39 •
words per sentence - 15.59

The Kincaid formula is based on Navy training manuals ranging in
difficulty from 5.5 to 16.3 in grade level. The score reported by this
formula tends to be in the mid-range or the four scores. Because it is
based on adult training manuals rather than schoolbook text, this
formula is probably the best one to apply to technical documents.

Automated Readability Index (ARI)

The formula is: Reading Grade==4.71 •letters per word +.5 * words
per sentence -21.43

The Automated Readability Index is based on text from grades 0 to
7, and intended for easy automation. ARI tends to produce scores
that are higher than Kincaid and Coleman-Liau but are usually
slightly lower than Flesch.

Coleman-Liau Formula

The formula is: Reading Grade == 5.89 • letters per word - .3 •
sentences per 100 words - 15.8

This is based on text ranging in difficulty from .4 to 16.3. This
formula usually yields the lowest grade when applied to technical
documents.

Flesch Reading Ease Score

The formula. is: Reading Score = 206.835 - 84.6 • syllables per word
- 1.015 • words per sentence.

This formula is based on grade school text covering grades 3 to 12.
It is usually reported in the range 0 (very difficult) to 100 (very
easy).

2-13

XENIX Text Processing

The score reported by style is scaled to be comparable to the other formulas,
except that the maximum grade level reported is set to 17. On the whole, the
Kincaid formula is the best predictor for technical documents; the Flesch score
will generally be the highest for technical documents. Both ARI and Flesch
tend to overestimate text difficulty; Coleman-Liau tends to underestimate. On
text in the range of grades 7 to 9 the four formulas tend to be about the same.
For easy text, use the Coleman-Liau formula since it is reasonably accurate at
the lower grades.

It is generally safer to present text that is too easy than too hard. If a document
has particularly difficult technical content, especially if it includes a lot or
mathematics, it is probably best to make the text very easy to read. You can
lower the readability index by shortening the sentences and words, so that the
reader can concentrate on the technical content and not the long sentences.
Remember, however, that these indices produce only rough estimates; the
results should not be taken as absolute. If you invoke style with the -r option,
followed by a num her, all sentences with an Automated Readability Index
equal to or greater than the number specified will be printed.

Sentence length and structure

Most authorities on effective writing style emphasize variety in sentence
length, as well as overall sentence structure. Three simple rules for writing
sentences are:

1 . Avoid the overuse of short simple sentences.

2. Avoid the overuse oflong compound sentences.

3. Use various sentence structures to avoid monotony and increase
effectiveness.

Although experts agree that these rules are important, not all writers follow
them in practice. Technical documents often contain sentences that vary little
in length or type. A typical document may have 90% of its sentences about the
same length as the average, or be made up almost, entirely of simple sentences.

The output sections labeled "sentence info" and "sentence types" give both
length and structure measures. Style reports on the number and average
length of both sentences and words. It also reports the number of questions and
imperative sentences. The content words in the document are taken to be the
nonfunetion words, that is, all the nouns, adjectives, adverbs, and nonauxiliary
verbs. Function words are prepositions, conjunctions, articles, and auxiliary
verbs.

Since most function words are short, they tend to lower the average word
length. The average length of nonfunction words, therefore, is a more useful
measure for comparing word choice of different writers than the total average
word length. The percentages of short and long sentences measure sentence
length variability. Short sentences are those at least five words less than the

2- 14

Tools For Writing and Editing

average. Long sentences are those at least ten words longer than the average.
Finally, the length and location or the longest and shortest sentences is
reported in the "sentence information" section. Ir the flag -I number is used,
style will print all sentences longer than the specified number.

Style applies the following rules to the definition or sentence types:

1. A simple sentence has one verb and no dependent clause.

2. A complex sentence has one independent clause and one dependent
clause, each with one verb. Complex sentences are found by
identifying sentences that contain either a subordinate conjunction
or a clause beginning with a word like "that" or "who". The
preceding sentence has such a clause.

3. A compound sentence has more than one verb and no dependent
clause. Sentences joined by a semi-colon (;) are also counted as
compound.

4. A compound-complex sentence has either several dependent clauses
or one dependent clause and a compound verb in either the dependent
or independent clause.

Word Usage

The word usage measurements used by style attempt to identify other features
of writing constructions. In English, there are many alternative ways to say the
same thing. For example, the following sentences all convey approximately the
same meaning but differ in word usage:

The cxio program is used to perform all communication between the
systems.

The cxio program performs all communications between the systems.

The cxio program is used to communicate between the systems.

The cxio program communicates between the systems.

All communication between the systems is performed by the cxio
program.

The distribution or the parts of speech and verb constructions in a document
helps the writer identify the overuse or particular construction. For each
category, style reports a percentage and a raw count or the parts or speech
used. Although these measures are somewhat crude, they demonstrate
excessive repetition or sentence constructions. In addition to looking at
percentages, it is useful to compare the raw count with the number of
sentences. Ir, for example, the number or infinitives is almost equal to the
number or sentences, then an unusual number or sentences in the document

2-15

XENIX Text Processing

must contain infinitives, like the first and third sentences in the example above.
You may want to change some or these sentences for greater variety.

Verbs

To determine the predominant verb constructions in a document, Verb
frequency is measured in several ways. Technical writing, for example, tends
toward passive verb constructions and other usages of the verb "to be". The
category or verbs labeled "to"be measures both passives and sentences or the
form:

subject tobe predicate

Whole verb phrases are · counted as a. single verb. Verb phrases containing
auxiliary verbs are counted in a.n "aux" category, including verb phrases whose
tense is not simple present or simple past. Infinitives are listed as "inr." The
percentages reported for these three categories a.re based on the total number
of verb phrases found. These categories are not mutually exclusive; some
constructions may be in more than one category. For example, "to be going"
counts as both "to be" and "inr'. Use or these three types of verb constructions
varies significantly among different writers.

Style reports passive verbs as a percentage or the finite verbs in the document.
Because sentences with active verbs are easier to comprehend than those with
passive verbs, you should avoid the overuse of passive verbs. Although the
inverted object-subject order of the passive voice seems to emphasize the
object, studies show that comprehension is not significantly affected by word
position. Furthermore, a. reader will retain the direct object of an active verb
better than the subject of a passive verb. The -p option causes style to print
all sentences containing passive verbs.

Pronouns

Pronouns can add cohesiveness and connectivity to a document by acting as a
shorthand notation for something previously mentioned. They connect the
sentence containing the pronoun with the word to which the pronoun refers.
Although there a.re other ways to connect ideas, documents with no pronouns
tend to be verbose and to have little connectivity.

Adverbs

Adverbs provide transitions between sentences and order in time and space.
Like pronouns, adverbs provide connectivity and cohesiveness.

Conjunctions

Conjunctions proYide logical parallelism between ideas by connecting two or
more equal units. These units ma.y be whole sentences, verb phrases, nouns,
adjectives, or prepositional phrases. The compound a.nd compound-complex
sentences reported under sentence type are parallel structures. Other uses of

2· 16

Tools For Writing and Editing

parallel structures are indicated by the degree that the number of conjunctions
reported under word usage exceeds the compound sentence measures.

Nouns and Adjectives

Some writers qualify almost every noun with one or more adjectives. It the
ratio of nouns to adjectives in your text approaches one, it is probable that you
using too many adjectives. Multiple qualifiers in phrases like "simple linear

, single-link network model" often lend more obscurity than precision to a text.

Nominalizations

Nominalizations are verbs transformed into nouns by the addition of a suffix
like: "ment", "ance", "ence", or "ion". Examples are accomplishment,
admittance, adherence, and abbreviation. When a writer transforms a
nominalized sentence to a non-nominalized sentence, it becomes more effective.
The noun becomes an active verb and frequently one complicated clause
becomes two shorter clauses. For example

Their inclusion of this provision is admission of the
importance or the system.

could be changed to:

When they included this provision, they admitted the

The transformed sentences are easier to comprehend, even if. they are slightly
longer, provided the transformation breaks one clause into two. Ir your
document contains many nominalizations, you may want to transform some of
the sentences to use active verbs.

Sentence Openers

Another principle or style is the desirability or varied sentence openers.
Because style determines the type of sentence opener by looking at the part of
speech of the first word in the sentence, the sentences counted under the
heading "subject opener" may not all really begin with the subject. However, a
large total percentage in this category suggests a lack of variety in sentence
openers. Other sentence opener measurements help determine if there are
transitions between sentences and where subordination occurs. Adverbs and
conjunctions at the beginning of sentences are mechanisms for the transition
between sentences. A pronoun at the beginning of a sentence shows a link to
something previously mentioned and indicates connectivity.

The loc·ation of subordination can be determined by comparing the number of
sentences that begin with a subordinator with the number of sentences with
complex clauses. Ir few sentences start with subordinate conjunctions then the
subordination is embedded or at the end of the complex sentences. For greater
variety, transform some sentences so that they have leading subordination.

2-17

XENIX Text Processing

The last category of openers, expletives, is commonly overworked in technical
writing. Expletives are the words "it" and "there", generally used with the
verb "to be" in constructions where the subject follows the verb. For example,

There are three streets used by the traffic.
There are too many users on this system.

This construction t-ends to emphasize the object rather than the subject of the
sentence. The -e option will cause style to print all sentences that begin with
an expletive.

2.5.2 Diction

The diction program prints all sentences in a document containing phrases
that are either frequently misused or indicate wordiness. Diction uses fgrep
to match a file or phrases or patterns to a file containing the text or the
document to be searched. A data base of about 450 phrases has been compiled
as a default pattern file for diction . To facilitate the matching process,
diction changes uppercase letters to lowercase and substitutes blanks for
punctuation before beginning the search for matching patterns. Since sentence
boundaries are less critical in diction than in style, abbreviations and other
uses of the period character (.) are not treated specially. d iction marks all
pattern matches in a sentence with brackets ([)). Although many ofthe phrases
in the default data base may be correct in some contexts, they generally
indicate an awkward or verbose construction. Some examples of the phrases
and suggested alternatives are:

Phrase:

a large number or
arrive at a decision
collect together
for this reason
pertaining to
through the use or
utilize
with the exception or

Alternative:

many
decide
collect
so
about
by or with
use
except

All of the following examples contain the repetitious and awkward phrase "the
fact:"

2- 18

Phrase:

accounted for by the fact that
an example or this is the fa.ct tha.t
based on the fact tha.t
despite the raet that
due to the fact that
in light or the fact t.ha.t
in view of the fact tha.t
notwithstandin�t the fact that

Tools For Writing and Editing

Alternative:

caused by
thus
because
although
because
because
since
althou�th

Iryou have some phrases that you particularly dislike, or feel you use too often,
you may create your own file of patterns. Then, you can invoke the diction
program with the -r

diction -r patternfile

The default pattern file for the diction program will be loaded first, followed
by your pattern file. In this way, you can either suppress patterns contained in
the default file or include your own favorites in addition to those in the default
file. You can also use the -n option to exclude the default file altogether.

In constructing a pattern file, spaces should be used before and after each
phrase to avoid matching substrings in words. For example, to find all
occurrences of the word "the", use leading and trailing spaces, so that only the
word "the" is matched and not the string "the" in words like there, other, and
therefore. Note however, that one side effect of surrounding the words with
spaces is that when two phrases occur without intervening words, only the first
will be matched.

2-19

Chapter 3

Using the MM Macros

3.1 Getting Started with mm 3-1

3.1.1 Inserting mm Macros 3-1

3.1.2 Invoking mm 3-2

3.2 Basic Formatting Macros 3-3

3.2.1 Paragraphs and Headings 3-3

3.2.2 Lists 3-5.

3.2.3 Font Changes and Underlining 3-6

3.2.4 Footnotes 3-7

3.2.5 Displays and Tables 3-7
3.2.6 Memos 3-8

3.2.7 Multicolumn Formats 3-8

3.3 Using Nroff/TroffCommands 3-8

3.4 Checking mm Input with mmcheck 3-9

3 . 1 Getting Started with mm

This chapter provides a simple introduction to m m , a macro package which
you can use on your XENIX System with either of the two XENIX formatting
programs, nroft' or troft', to produce formatted text for the lineprinter or
typesetter, respectively. The features of mm are described comprehensively in
the next chapter, "mm Reference". You can learn to use the mm macros
quickly and format text immediately, without learning the more complicated
or oft' or troft' formatting commands.

The mm program reads the commands you have inserted in your text and
"translates" them into nroft' or troft' commands at the time your text file is
processed. With mm you can specify the style of paragraphs, section headers,
lists, page numbering, titles, and footnotes. You can also produce cover pages,
abstracts, and tables of contents, as well as control font changes and
multicolumn output, and, if you are using mm along with troft' to outputyour
text to a phototypesetter, you can specify variable spacing and the size of your
type.

Although using nroft' or troft' directly offers you a much wider range of
commands and options, we definitely recommend that you learn and use m m
for most o f your formatting needs. Use the nroft' and troft' requests discussed
in Chapter 5, "The Nroff/Troff Tutorial" and Chapter 6, "Nroff/Troff
Reference" only when necessary.

3 .1.1 Inserting m m Macros

To use the mm macros to format a document, type in your text normally,
interspersed with formatting commands. Most of these commands consist of
two uppercase letters preceded by a dot (.) and appearing at the beginning or a
line. Instead of indenting for paragraphs, for example, you use the .P macro
before each paragraph, to produce indenting and extra space:

.P
To meet the objectives proposed at the meeting . ..

A single mm macro can often perform a number of formatting functions at
once. In a long document, you might have several sections, each beginning with
a n urn bered heading, like this

1.0 Saltwater Fishing in the Pacific Northwest

To create this header, you would enter:

.H 1 " Saltwater Fishing in the Pacific Northwest"

Not only will mm create a bold heading and leave a space between the heading
and the text which follows, it will also automatically number all the headings in

XENIX Text Processing

the document sequentially. Furthermore, iC you use the table or contents
macro (.TC) at the end or the document, mm will create a. table of contents,
listing all the numbered headings and the pages where they occur.

The mm macros also provide a convenient facility for creating a consistent
format for such document elements as lists and displays. For example, if you
wanted a. " bullet list" to look like this:

• Convenience

• Ease of use

• Portability

you would enter the following text and macros:

.BL

.LI
Convenience
.LI
Ease or use
.LI
Portability
.LE

mm will provide the current indents, spacing, and bullets.

Note that you you must always begin a. document to be formatted with mm
with some macro, rather than an ordinary line or text. You might just start
with a .P command, for example, to begin your document with an ordinary
paragraph. This tells m m to begin a new page.

3 .1.2 Invoking mm

Mter you have created a. file containing text and mm macros, you can format it
with the following command:

nroff -mm filename>filename.mm&

This command line tells the XENIX system that you want to format the
document, using the mm macro package and the nroffformattingprogram, in
order to prepare it for a letter-quality printer or lineprinter. Once the
document is formatted, it will be stored in filencme.mm or whatever file you
name. You can then send it to the printer with the command:

lpr filename.mm

Iryou are formatting documents for printing on a typesetter, you would need to
use the m m macros with the troff program instead:

3-2

Using the MM Macros

troff -mm filename>filename.t

If you have somewhat more complex formatting, such as two-column text,
formatted with the two-column (.2C) macro, or if you have used the table start
(.TS) and table end (.TE) macros to produce multicolumn tabular material,
you must remember to pipe the output through the preprocessor col, in order
to prepare the columns of text. Your command line might look like this:

nrofl' -mm filename I col>filename.mm

If you are using the tbl or eqn programs to produce tables and mathematical
equations, you must also process the files through these programs first, using
tbl before eqn, as in the following:

tbl filename lneqn lnroff -mm >filename.mm

3 .2 Basic Formatting Macros

The following sections describe the most commonly used mm macros,
including macros to define paragraphs, headings, lists, font changes, displays,
and tables. For more detailed information about each of these macros, read
Chapter 4, "mm Reference' ' .

3.2.1 Paragraphs and Headings

With mm, it is easy to specify paragraph and heading style. For example, look
at the following passage:

3-3

XENIX Text Processing

1 .0 Paragraphs and Head ings

This section describes the types or paragraphs and the
kinds or headings that are available.

1 . 1 P aragraphs

Paragraphs are specified with the .P macro. Usually, they are
flush left.

1 .2 Headings

Nu mbered Headings
There are seven levels of numbered headings. Level l is the
highest; level 7 is the lowest.

Headings are specified with the .H macro, whose first argument is
the level or heading (1 through 7).

Unn umbered Headings
The macro .HU is a special case of .H which creates a heading
with no heading number.

To create this heading format, you would insert the following in a text file:

.H 2 "Paragraphs and Headings"
This section describes the types of paragraphs and the
kinds or headings that are available .
. H 3 "Paragraphs"
Paragraphs are specified with the .P macro. Usually, they
are flush left .
. H 3 "Headings"
.HU " Numbered Headings"
There are seven levels of numbered headings. Level 1 is the
highest; level 7, the lowest .
. P
Headings are specified with the .H macro, whose first argument
is the level of heading {1 through 7) .
. HU "Unnumbered Headings"
The macro .HU is a. special case of .H which creates a. heading
with no heading number.

mm produces these headings in default styles which can be redefined, if
necessary. This is described in detail in Chapter 4, "mm Reference". The
headings are automatically numbered and are used to print a table of contents,
if the table of contents (.TC) macro is used. The numbers may be altered or
reset with the number register (.nr) request. To restart the numbering of a

3-4

Using the MM Macros

second level heading at 1, you would insert the following command:

.nr H2 1

3.2.2 Lists

All list formats in mm have a list-begin macro, one or more list items, each
consisting or a .LI macro followed by the list item text, and the list-end macro
(.LE). In addition t.o the bullet list demonstrated at the beginning of this
chapter, there is also the dash list, using the list begin macro (.DL) to create a
list format like the bullet list except marked with dashes rather than bullets. A
mark list (.ML) is also available, to mark list items with the character of your
choice.

The automatic list (.AL) macro automatically numbers list items in one or
several ways. When specified alone, or followed by "1" , the .AL macro numbers
the list items with Arabic numbers. The macro .ALA specifies a list ordered A,
B, C, etc. The macro .AL followed by a lowercase a (.AL a), specifies a, b, c, etc.
The macro .AL I numbers list items with Roman numerals . . AL i numbers a list
with lowercase Roman numerals (i, ii , iii, etc.)

Numbered lists may be nested to produce outlines and other formats. For
example:

I. Inc an Archaeological Sites

A. Peru

1. Macchu Picchu

2. Pisac

B._ Ecuador

This is produced with:

XENIX Text Processing

.AL I

.LI
lncan Archaeological Sites
.AL A
.LI
Peru
.AL 1
.LI
Macchu Picchu
.LI
Pisac
.LE
.LI
Ecuador
.LE
.LE

In addition to the numbered and marked lists, mm offers a variable list (.VL)
macro, which is useful for producing two-column lists with indents. The .VL
macro is described in detail in Chapter 4, "mm Reference".

3 .2.3 Font Changes and Underlining

To produce italics on the typesetter, precede the text to be italicized with the
sequence \fi and follow it with \rR. For example:

\flas much text as you want
can be typed here\rR

Italics are represented on lineprinters and letter-quality printers by
underlining. The \rR command restores the normal, usually Roman ront.

Ir only one word is to be italicized, it may be typed alone on a line after a .I
command:

.I word

In this case no .R is needed to restore the previous font. The derault font is
automatically restored on the next line.

Similarly boldface can be produced by typing:

.B .
Text to be set in boldface
goes here
.R

& with the .I macro, a single word can be placed in boldface by placing it alone
on the same line with a .B command.

3-6

Using the MM Macros

3 .2 .4 Footnotes

Material placed between lines with the footnote start (.FS) and footnote end
(.FE) macros will be collected, and placed at the bottom or the current page.
The footnotes are automatically numbered, or an optional footnote mark may
be used. This mark follows the .FS macro. For example:

Without further research
.FS
As demonstrated by Tiger and Leopard (1975) .
. FE
the claim could not be substantiated.
However, other studies
.FS *
For example, Panther and Lion (1981) .
. FE
indicated that the correlation was significant.

produces one numbered footnote:

1. As demonstrated by Tiger and Leopard (1975).

and one marked footnote:

* For example, Panther and Lion (1981) .

3 .2.5 Displays and Tables

To prepare displays of lines, such as tables, which are to be set off from the
running text, enclose them in the commands .DS and .DE. For example:

.DS
text goes here
.DE

By default, lines between .DS and .DE are left-adjusted. Lines between .DS L
and .DE are also left-adjusted. To get an indented display, use .DS I. You can
also create centered tables with .DS C. For example:

This is a centered display preceded by
a .DS C and followed by a .DE command

or:

This is a left-adjusted display
preceded by a .DS L command
and followed by a .DE command.

3-7

XENIX Text Processing

Note that the .DS C macro centers each line. You can also use .DS B to make the
display into a left-adjusted block or text and then center that entire block.
Normally a display is kept together on one page. Text within display is
produced in "nofill" mode, that it lines ortext are not rearranged.

3 .2.6 Memos

Iryou need to produce many memos in a standardized format, you may find the
memorandum (.MT) type macros useful for creating titling information. Be
warned, however, that because these memorandum types were originally
developed inside Bell Laboratories, some of the possible parameters to this

• macro automatically print the string "Bell Laboratories" on the memo. To
suppress this, be sure to use the "affiliation" (. .AF) macro after an .MT macro,
as follows:

.AF " "

or, if you wish to have your own company or organization name appear
automatically, use:

.AF "Widgets, Ltd."

There are a number or parameters which substantially change the format and
content or memoranda output and it is critical that you insert the macros in the
correct order. Therefore, it is important that you read the section on
"Memorandum Type" in Chapter 4, "mm Reference" before inserting these
macros in memos. Once you have chosen the appropriate type, you should be
able to reuse these macros for all your memos to produce a standard style.

3.2.7 Multicolumn Formats

Ir you place the command .2C in your document, the document will be printed
in double column format beginning at that point. This feature is generally not
accommodated by ordinary lineprinter facilities, but is often desirable on the
typesetter. The command . lC stops two-column output and returns to one­
column output.

3.3 Using Nroff/Troff Commands

Ir you want to format text using m m without learning the other formatting
programs, you should become familiar with at least a few simple nrotT/troff
commands, which you will probably need to supplement the mm macros.
These work with both typesetter and lineprinter or terminal output:

.bp begin new page.

3-8

Using the MM Macros

.br "break", that is stop running text from line to line .

. sp n insert n blank lines.

3 .4 Checking mm Inp ut with mmcheck

The program mmcheck can be used to check the accuracy of your input to
mm, without actually formatting a document. If you use mmcheck regularly,
you will save a great deal or processing time, because you will be able to
"'debug" your input file quickly, without running the nroff and troff
programs. To invoke mmcheck, use the command line:

mmcheck filena.me

The output of mmcheck goes to the standard output (the terminal screen) by
default. mmcheck checks for correct pairing of macros, including .DS/.DE,
.TS/.TE, and .EQ/.EN. It also looks for list specification format, making sure
that every list has a list begin macro (.AL, .DL, .BL, .ML, VL, etc.) and a list end
macro (.LE). Normally , mmcheck prints a list of errors and the lines where
they occurred. For example :

chapl .s:
Extra .DE at line 7 4
539 lines done.

Note, however, that the location of an error may occasionally be obscured. In
the example above, the "extra" .DE could actually be caused by a missing .DS.

3-9

Chapter 4
MM Reference

4.1 Introduction 4-1

4.1.1 Why Use tvfM? 4-1

4.1.2 Organization and Conventions 4-1

4 .1.3 Structure of a Document 4-2

4.1.4 Definitions 4-2

4.2 Invoking the Macros 4-3

4.2.1 The MM Command 4-3

4.2.2 The -em or -mm Flags . 4-4

4.2.3 Typical Command Lines 4-4

4.2. 4 Command Line Parameters 4-4

4.2.5 Omission of -em or -mm 4-6

4.3 Formatting Concepts 4-7

4.3.1 Arguments and Quoting 4-7

4 .3.2 Unpaddable Spaces 4-8

4.3.3 Hyphenation 4-8

4 .3.4 Tabs 4-9

4.3.5 Bullets 4-9

4 . 3.6 Dashes, �fin us Signs, and Hyphens 4-10

4.3.7 Trademark String 4-10

4.4 Paragraphs and Headings 4-10

4.4.1 Paragraphs 4-10

4.4.2 Numbered Headings 4-12

4 . 4.3 Appearance of Headings 4-12

4.4.4 Bold, Italic, and Underlined Headings 4- 14

4.4.5 Heading Point Sizes 4-14

4.4.6 Marking Styles 4-15

4 .4.7 Unnumbered Headings 4-16

4.4. 8 Headings and the Table of Contents 4-16

4.4.9 First-Level Headings and the Page Numbering
Style 4-16

4.4.10 User Exit Macros 4-17

4.5 Lists
4 .5.1

4 .5.2

4.5.3

4 .5.4

4 . 5.5

4.5.6

4. 5.7

4.5.8

4 .5.9

4 .5.10

4-18

Sample Nested List 4-19

List Item 4-20

List End 4-21

Initializing Automatically Numbered or
Alphabetized Lists 4-21

Bullet List 4-22

Dash List 4-22

Marked List 4-23

Reference List 4..;23

Variable-Item List 4-23
List-Begin Macro and Customized Lists 4-25

4.6 Displays 4-26

4 .6.1 Static Displays 4-26

4.6.2 FloatingDisplays 4-27

4.6.3 Tables 4-29
4.6.4 Equations 4-30

4 .6. 5 Figure, Table, Equation , and Exhibit
Captions 4-31

4. 6.6 List of Figures, Tables , Equations, and
Exhibits 4-31

4.7 Footnotes 4-32

4.7.1 Format ofFootnote Text 4-33

4.8 Page Headers and Footers 4-34

4 .8.1 Default Headers and Footers 4-34

4 .8.2 Page Header 4-35

4 .8.3 Even-Page Header 4-35

4 .8.4 Odd-Page Header 4-35

4 .8.5 Page Footer 4-36

4.8.6 Even-Page Footer 4-36

4.8. 7 Odd-Page Footer 4-36

4 .8.8 Footer on the FirstPage 4-36

4.8.9 Default Header and Footer With Section-Page
Numbering 4-36

4 .8.10 Strings and Registers in Header and Footer
Macros 4-37

4.8.11 Header and Footer Example 4-37

4.8.12 Generalized Top-of-Page Processing 4-37

4.8. 13 Generalized Bottom-of-Page Processing 4-38
4.8. 14 Top and Bottom �fargins 4-38

4 .9 Table of Contents 4-39

4 . 10 References 4-40
4 . 10 .1 Automatic Numbering ofReferences 4-40
4 . 10.2 Delimiting Reference Text 4-40
4 . 10.3 Subsequent References 4-41
4. 10.4 Reference Page 4-41

4 . 1 1 Miscellaneous Features 4-41
4 . 1 1 . 1 Bold, Italic, and Roman Fonts 4-42
4 . 1 1 . 2 Right Margin Justification 4-43
4. 1 1 .3 SCCS Release Identification 4-43
4. 1 1 .4 Tw�Column Output 4-43
4 . 1 1 .5 Vertical Spacing 4-44
4 . 1 1 .6 Skipping Pages 4-45
4 . 1 1 .7 Forcing an Odd Page 4-45
4 . 1 1 .8 Setting Point Size and Vertical Spacing 4-45
4. 1 1 .9 Inserting Text Interactively 4-46

4 .12 Memorandum and Released Paper Styles 4-47
4. 12. 1 Title 4-47
4. 12.2 Authors 4-47
4. 12.3 Technical �femorandum Numbers 4-48
4. 12.4 Abstract 4-48
4 . 12.5 Other Keywords 4-49
4. 12.6 Memorandum Types 4-49
4 . 12.7 Date and Format Changes 4-50
4. 12.8 Alternate First-Page Format 4-50
4 . 12.9 Released-Paper Style 4-51
4. 12 .10 Order or invocation of Beginning Macros 4-51
4 . 12 . 1 1 Macros for the End of a Memorandum 4-52
4 . 12. 12 Copy to and Other Notations 4-53
4. 12 .13 Approval S ignature Line 4-54
4 . 12 .14 Forcing a One-Page Letter 4-54
4 . 12 . 15 Cover Sheet 4-54

4 .13 Reserved Names 4-54
4 . 13.1 Names Used by Formatters 4-55

4 . 13.2 Names Used by �� 4-55
4 . 13.3 Names Used by eqnfneqn and tbl 4-56
4 . 13.4 User-Definable Names 4-56
4 . 13.5 Sample Extension 4-56

4 . 14 Errors 4-56
4 . 14 . 1 Disappearance of Output 4-57
4 . 14.2 :MMError Messages 4-57
4 . 14.3 Formatter Error Messages 4-60

4 . 15 Summary or:Macros, Strings, and Number
Registers 4-62
4 . 15 .1 Strings 4-67
4 . 15.2 Number Registers 4-68

MM Reference

4.1 Introduction

This chapter is the reference guide for the �1M Memorandum Macros. MM
provides a unified, consistent., and flexible tool for producing many common
types or documents, often eliminating the need for working directly with nroff
or troff commands. MM is the standard, general-purpose macro package for
most documents.

Using the MM macros, you can produce letters, reports, technical memoranda,
papers, manuals, and books. Documents may range in length from single-page
letters to documents that are hundreds or pages long.

4 .1.1 Why Use M}.1!

There are several reasons why we recommend using MM instead of working
with the formatting programs nroff and troff directly. These include:

You need not be an expert to use MM successfully. It your input is
incorrect, the macros attempt to interpret it, or a message describing
the error is output.

Reasonable default values are provided so that simple documents can
be prepared without complex sequences of commands.

Parameters are provided to allow for individual preferences and
requirements in document styling.

The capability exists for expert users to extend the �!M macros by
adding new macros or redefining existing ones.

The output of MM is device independent, allowing the use of
terminals, lineprinters, and phototypesetters with no change to the
macros.

The need for repetitious input is minimized by allowing the user to
specify parameters once at the beginning or a document.

Output style can be modified without making changes to the
document input.

4 .1 .2 Organization and Conventions

Each section of this chapter explains a feature orMM, with the more commonly
used features explained first. You may find you have no need for the
information in the later sections, or for some or the options and parameters
which accompany even common features. This reference guide is organized so
that you can skim a section to obtain formatting information you need, and

4- 1

XENIX Text Processing

skip features for which you have no use.

4 .1.3 Structure or a Document

Input for a document to be formatted with MM contains four major parts, any
of which is optional. Ir present, they must occur in the following order:

l . Parameter-setting. This segment determines the general style and
appearance or a document, including page width, margin
justification, numbering styles for headings and lists, page headers
and footers, and other properties. In this segment, macros can be
added or redefined. Ir omitted, MM will produce output in a default
format; this segment produces no actual output, but performs the
setup for the rest of the document.

2. Beginning. This segment includes those items that occur only once, at
the beginning of a document (e.g. , title, author's name, date).

3. Body. This segment contains the actual text of the document. It may
be as small as a single paragraph, or as large as hundreds of pages. It
may include hierarchically-ordered beadings or up to seven levels,
which may be automatically numbered and saved to generate the
table of contents. Also available are list formats with up to five levels
of subordination, which may have automatic numbering, alphabetic
sequencing, and marking. The body may contain various types of
displays, tables, figures, references, and footnotes.

4. Ending. This segment contains those items that occur only once at
the end of a document. Included here are signature(s) and lists of
notations (e.g. , "copy to" lists). In this segment, macros may be
invoked to print information that is wholly or partially derived from
the rest or the document, such as the table or contents or the cover
sheet.

The size or existence of any of these segments depends on the type and length of
the document. Although a. specific item (such as date, title, author's name) may
be printed in several different ways depending on the document type, it will
always be entered in the same form.

4 .1.4 Definitions

The following terms are used throughout
.
this chapter:

Formatter Refers to either of the text-formatting programsnrotr or t.rotr.

Requests Built-in commands recognized by the formatters. Although it
may not be necessary to use these requests directly, they are

4-2

Macros

Strings

MM Reference

referred to in this chapter.

Named collections of requests. Each macro is an abbreviation Cor
a collection of requests that would otherwise require repetition.
MM supplies many predefined macros, and you may defi·ne
additional macros as necessary. Macros and requests share the
same set of names and are used in the same way.

Provide character variables, each of which names a string of
characters. Strings are often used in page headers, page footers,
and lists. They use the same names as requests and macros. A
string can be defined with the define string (.ds) request, and then
referred to by its name, preceded by \ • Cor a one-character name
or \•(for a two-character name.

Number registers
Integer variables used for flags, arithmetic, and automatic
numbering. A register can be given a value using a number
register (.nr) request, and can be referenced by preceding its
name by \n for one-character names or \n(for two-character
names.

4:.2 Invoking the Macros

This section describes the command lines necessary to MM, with different
options on various output devices.

4 .2 .1 The MM Command

The MM command is used to print documents using nrofl' and MM. This
command is equivalent to invoking nroff with the -mm flag. Options are
available to specify preprocessing by tbl and/or by eqn/neqn, and for
postprocessing by various output filters, such as col. Any arguments or flags
not recognized by M:M are passed to nroff. The following options can occur in
any order before the filenames:

-e Invokes neqn.

-t lnvokes tbl.

-c Invokes col.

-E Invokes the "-e" option ofnroff.

-y Invokes -mm (uncompacted macros) instead of -em (See Section
4.2.2 of this manual).

XENIX Text Processing

- 12 Invokes 12-pitch mode (The pitch switch on the terminal must be
set to 12).

4 .2.2 The -em or -mm Flags

The MM package can also be invoked by including the -em or -mm flag as an
argument to the formatter, as in:

nrofl' -mm file

4 .2.3 Typical Command Lines

The prototype command lines are as follows:

Text without tables or equations:

mm (options) filent�.me
nroff (options) filen4me
troff (options) filen4me

Text with tables:

mm -t (options) file name
tbl filen4me lnroff [options) -mm
tbl filen4me trofl' (options) -mm

Text with equations:

mm -e (options] filename
neqn filent�.melnroff (options] -mm
eqn filenomeltroff [options) -mm

Text with both tables and equations:

mm -t -e (options] filent�.me
tbl filenome lneqnlnroff (options) ·rnm
tbl filenomeleqnltroff [options) -mm

Ir two-column processing is used with nrofl', either the -c option must be
specified to �{M or the nrofl' output must be postprocessed by col.

4 .2 .4 Command Line Parameters

Number registers hold parameter values that control various aspects of output
style. Many of these can be changed within the text files with number register
(.nr) requests. In addition, some of these registers can be set from the command

4-4

M�f Reference

line itself, a useful feature for those parameters that should not be permanently
embedded within the input text itself. If used, these registers must be set on the
command line or before the MM macro definitions are processed. These are:

-rAn For n = 1, this has the effect of invoking the .AF macro without an
argument.

-rCn N sets the type of copy (e.g., DRAFT) to be printed at the bottom of
each page:

n == 1 For OFFICIAL FILE COPY

n = 2 For DATEFILE COPY

n = 3 For DRAFT with single-spacing and default paragraph
style

n == 4 For DRAFT with double-spacing and 10-space
paragraph indent

-rDl Sets "debug mode". This flag requests the formatter to continue
processing even if MM detects errors that would otherwise cause
termination. It also includes some debugging information in the
default page header.

-rEn Controls the font of the Subject/Date/From fields. Ir n = 0 these
fields are bold (default for troff) and if n = 1 they are regular text
(default for nroff).

-rLk Sets the length of the physical page to k lines. For nroff, k is an
unsealed number representing lines or character positions; for
troff, k must be scaled. The default value is 56 lines per page.

-rNn Specifies the page numbering style. When n = 0 (default), all pages
get the (prevailing) header. When n = 1, the page header replaces
the footer on page 1 only. When n = 2, the page header is omitted
from page 1. When n = 3, section-page numbering occurs. When n
= 4, the default page header is suppressed, but user-specified
headers are not affected. When n =5, section-page and section­
figure numbering occurs.

The contents of the prevailing header and footer do not depend on
the value of the number register N; N only controls whether and
where the header (and, for N =3 or 5, the footer) is printed, as well
as the page numbering style. In particular, if the header and footer
values are null, the value of N is irrelevant.

-rOk Offsets output k spaces to the right. For nroff, these values are
unsealed numbers representing lines or character positions. For
troff, these values must be scaled. This register is helpful for

4-"5

XENIX Text Pro cessing

adjusting output positioning on some terminals. It this register is
not set on the command line the default offset is . 75 inches. NOTE:
The register name is the capital letter (0), not the digit zero (0).

-rPn Specifies that the pages of the document are to be numbered
starting with n. This register may also be set via a .nr request in the
input text.

-rSn Sets the point size and vertical spacing. The default n is 10, i.e. , tO­
point type on 12-point leading (vertical spacing), giving G lines per
inch. This parameter applies to troffonly.

-rTn Provides register settings for certain devices. If n =1, then the line
length and page offset are set to 80 and 3, respectively. Setting n to
2 changes the page length to 84 lines per page and inhibits
underlining. The default value for n is 0. This parameter applies to
nroffonly.

-rUl Controls underlining of section headings. This flag causes only
letters and digits to be underlined. Otherwise, all characters
(including spaces) are underlined. This parameter applies to n roff
only.

-rW k Sets page width (i.e., line length and title length) to /c. For nroff, lc is
an unsealed number representing lines or character positions; for
troff, k must be scaled. This register can be used to change the page
width from the default value of 6.0 inches (60 characters in 10 pitch
or 72 characters in 12 pitch).

4 .2.5 Omission or -em or -mm

If many arguments are required on the command line, it may be convenient to
set up the first (or only) input file of a document as follows:

.ss 18
.so /usr /lib/tmac/tmac.m
.ss 12
remainder or text

In this case, do not use the -em or -mm flags (or the MM or mmt commands);
the .so request has the equivalent effect. The registers must be initialized before
the .so request, because their values are meaningful only if set before the macro
definitions are processed. When using this method, it is best to put into the
input file only those parameters that are �eldom changed. For example:

4-6

.nr W 80

.nr 0 10

.nr N 3

.so /usr /lib/tmac/tmac.m

.H 1 " INTRODUCTION"

MM Reference

specifies, ror nroft', a line length or 80, a page offset or 10, and section-page
numbering.

4.3 Formatting Concepts

The normal action or the formatters is to fill output lines from one or more
input lines. The output lines may be justified so that both the left and right
margins are aligned. As the lines are being filled, words may also be hyphenated
as necessary. It is possible to turn any or these modes on and oft'. Turning off fill
mode also turns oft' justification and hyphenation.

Certain formatting commands (both request-s and macros) cause the filling or
the current output line to cease. Printing or a partially filled output line is
known as a "break". A few formatter requests and most or the MM macros
cause a break.

While rormatter requests can be used with MM, they occasionally have
unpredicted consequences. There should be little need to use formatter
requests. The macros described in this section should be used in most cases
because you will be able to control and change the overall style or the document
easily and specify complex features, such as footnotes or tables or contents,
without using intricate rorma.tting requests. A good rule is to use direct nroft'
and troft'requests only when absolutely necessary.

To make ruture revision easier, input lines should be kept short and should be
broken at the end or clauses; each new run sentence should begin on a new line.

4 .3 .1 Arguments and Quoting

For any macro, a "null argument" is an argument whose width is zero. Such an
argument often has a special meaning; the preferred rorm for a null argument is
double quotation marks ("). Omitting an argument is not the same as
supplying a null argument. Furthermore, omitted arguments can occur only at
the end or an argument list, while null arguments can occur anywhere.

Any macro argument containing ordinary (paddable) spaces must be enclosed
in double quotation marks, (' " '). Otherwise, it will be treated as several
separate arguments. A double quotation mark (") is a single character that
must not be confused with two apostrophes or acute accents (' ') , or with two
grave accents (' ').

XENIX Text Process ing

Double quotation marks (") are not permitted as part of the value of a macro
argument or of a string that is to be used as a macro argument. If you must, use
two grave accents (' ') and/or two acute accents (' ') instead. This restriction is
necessary because many macro arguments are processed (interpreted) several
times. For example, headings are first printed in the text and may be reprinted
in the table of contents.

4 .3.2 Unpaddable Spaces

When output lines are justified to give an even right margin, existing spaces in a
line may have additional spaces appended to them. This may affect the desired
alignment of text. To avoid this problem, it is necessary to be able to specify a
space that cannot be expanded during justification, i.e., an "unpaddable
space". There are several ways to do this. First, you may type a backslash (\)
followed by a space. This pa.ir of characters generates an unpaddable space.
Second, you may sacrifice some seldom-used character to be translated into a
space upon output. Because this translation occurs after justification, the
chosen character may be used anywhere an unpaddable space is desired. The
tilde (·) is often used for this purpose. To use it in this way, insert the following
line at the beginning of the document:

.tr

Ir a tilde must actually appear in the output, it can be temporarily recovered by
inserting

.tr - -

before the place where it is needed. Its previous usage is restored by repeating
the .tr -, but only after a break or after the line containing the tilde has been
forced out. Use of the tilde in this wa.y is not recommended for documents in
which the tilde is used within equations.

4 .3.3 Hyphenation

The formatters do not perform hyphenation unless the user requests it.
Hyphenation can be turned on in the body of the text by specifying

.nr Hy 1

at the beginning or the document. Ir hyphenation is requested, the formatters
will automatically hyphenate words as needed. However, you may specify the
hyphenation points · for a. specific occurrence of any word by using a special
character known as a "hyphenation indicator" (initialy, the two-character
sequence \ %), or you may specify hyphenation points for a small list of words
(about 128 characters).

4-8

MM Reference

Irthe hyphenation indicator (initially, the two-character sequence\%) appears
at the beginning of a. word, the word is not hyphenated. It can also be used to
indicate legal hyphenation point(s) inside a. word. In any ease, all occurrences
of the hyphenation indicator disappear on output.

The user may specify a. different hyphenation indicator with the command:

.HC [hyphenation-indicator)

The caret ("') is often used for this purpose; this is done by inserting the
following at the beginning of a. document:

.HC "'

Note that any word containing hyphens or dashes-also known as em
dashes-will be broken immediately after a. hyphen or dash if it is necessary to
hyphenate the word, even if the formatter hyphenation function is turned off.

Using the .hw request, you may supply a. small list of words with the proper
hyphenation points indicated. For example, to indicate the proper
hyphenation or the word "printout"' you may specify:

.hw print-out

4 .3.4 Tabs

The macros .MT, .TC, and .CS use the .ta. request to set tab stops, and then
restore the default values of tab settings. Setting tabs to other than the default
values is the user's responsibility.

Note that a. tab character is always interpreted with respect to its position on
the input line, rather than its position on the output line. In general, tab
characters should appear only on lines processed in no-fill mode. The tbl
program changes tab stops but does not restore the default tab settings.

4 .3.5 Bullets

A bullet (•) is often obtained on a typewriter terminal by using the letter o
overstruck by a. + . For compatibility with troff, a. bullet string is provided by
MM. Rather than overstriking, use the sequence:

* (BU

wherever a bullet is desired. Note that the bullet list (.BL) macro uses this
string to automatically generate bullets for the list items.

XENIX Text Processing

4 .3.6 Dashes, Minus Signs, and Hyphens

Troff has distinct graphics Cor a. dash, a minus sign, and a. hyphen, while nroff
does not. If you in tend to use nroff only, you can use the minus sign (-) for all
three.

Ir you plan to use both formatters, you must be careful in preparing text.
Unfortunately, these characters cannot be represented in a. way that is both
compatible and convenient. Try the following:

Dash Use \ •(EM for each text dash Cor both nroff and troff. This string
generates an em dash (-) in troff and two dashes (--) in nroff.
Note that the dash list (.DL) macro automatically generates the em
dashes Cor the list items.

Hyphen Use the hyphen character (-) Cor both formatters. Nroffwill print
it as is, and troffwill print a true hyphen.

Minus Use \- for a. true minus sign, regardless or formatter. Nroff will
ignore the \, while troffwill print a true minus sign.

4 .3.7 Trademark String

The trademark string \ *(Tm places the letters TM one half-line above the text
that it follows. For example, the input:

The XENIX\ •(Tm System Reference Manual.

yields:

The XENIX™ System Reference Manual.

4.4 Paragraphs and Headings

This section describes simple paragraphs and section headings.

4 .4 � 1 Paragraphs

The paragraph macro is used to begin two kinds of paragraphs:

.P (type]
one or more lines or text.

In a "left-justified" paragraph, the first line begins at the left margin, while in
an "indented" paragraph, it is indented five spaces.

4- 10

MM Reference

A document has a default paragraph style obtained by specifying .P before each
paragraph that does not follow a heading. The default style is controlled by the
number register Pt. The initial value or Pt is 0, which always provides left­
justified paragraphs. All paragraphs can be forced to be indented by inserting
the following at the beginning or the document:

.nr Pt 1

All paragraphs will be indented except after headings, lists, and displays if the
following:

.nr Pt 2

is inserted at the beginning or the document.

The amount a paragraph is indented is contained in the register Pi, whose
default value is 5. To indent paragraphs by 10 spaces, for example, insert:

.nr Pi 10

at the beginning or the document. Both the Pi and Pt register values must be
greater than zero for any paragraphs to be indented.

The number register Ps controls the amount or spacing between paragraphs.
By default, the Ps register is set to 1, yielding one blank space (1/2 vertical
space). Values that specify indentation must be unsealed and are treated as
"character" positions, i.e. , as a number or ens. In trofl', an en is the number of
points (1 point - 1/72-inch) equal to half the current point size. In nroff, an en
is equal to the width or a character.

Regardless or the value ofPt, an individual paragraph can be forced to be left­
justified or indented. .P always forces left justification; .P 1 always causes
indentation by the amount specified by the register Pi. If .P occurs inside a list,
the indent (if any) of the paragraph is added to the current list indent.

Numbered paragraphs may be produced by setting the register Np to 1. This
produces paragraphs numbered within first level headings, e.g. , 1.01, 1.02, 1 .03,
2.01 .

A different style of numbered paragraphs is obtained by using the

.nP

macro rather than the .P macro for paragraphs. This produces paragraphs
that are numbered within second level headings and contain a double-line
indent in which the text or the second line is indented to be aligned with the text
or the first line so that the number stands out. For example:

4- 1 1

XENIX Text Processing

.H 1 "FIRST HEADING"

.H 2 " Second Heading"

.nP
one or more lines of text

4 .4 .2 Numbered Headings

The heading macro ha.s the form:

.H level [heading-text] (heading-suffix)
zero or more lines of text

The .H macro provides seven levels of numbered headings. Level 1 is the
highest; level 7 the lowest. The ht4tling-suffiz is appended to the het�tliag-tezt
and may be used for footnote marks which should not appear with the heading
text in the table of contents. You will not need to insert a. .P macro after a .H or
.HU macro, because the .H macro also performs the function of the .P macro. If
a. .P follows a. .H, the .P is ignored.

The effect of .H varies according to the level argument. First-level headings are
preceded by two blank lines (one vertical space); all others are preceded by one
blank line .

. H 1 heading-tezt
Gives a. bold heading followed by a. single blank line. The following
text begins on a. new line and is indented according to the current
paragraph type. Full capital letters should normally be used to
make the heading stand out .

. H 2 he4tling-tezt
Yields a. bold heading followed by a. single blank line. The following
text begins on a. new line and is indented according to the current
paragraph type. Normally, initial capitals are used .

. H n he4ding-tezt
Where n is a. number greater than 3 and less than 7, produces a.n
underlined (italic) heading followed by two spaces. The following
text appears on the same line.

Appropriate numbering and spacing (horizontal and vertical) occur even if the
heading text is omitted from a.n .H macro.

4 .4.3 Appearance of Headings

You can modify the appearance of headings quite easily by setting certain
registers and strings at the beginning of the document. In this way you can
quickly alter a document's style because the style control information . is

4-12

MM Reference

concentrated in a few lines, rather than distributed throughout the document.

A first-level heading normally has two blank lines (one vertical space)
preceding it, and all others have one blank line. If a multiline heading splits
across pages, it is automatically moved to the top of the next page. Every first­
level heading may be forced to the top of a new page by inserting

.nr Ej 1

at the beginning of the document. Long documents may be made more
manageable if each section starts on a new page. Setting Ej to a higher value
has the same effect for headings up to that level; i.e., a page eject occurs if the
heading level is less than or equal to Ej.

Three registers control the appearance of text immediately following an .H
macro. They are heading break level (Hb), heading space level (Hs), and post­
heading indent (Hi).

Ir the heading level is less than or equal to Hb, a break occurs after the heading.
Ir the heading level is less than or equal to Hs, a blank line is inserted after the
heading. Defaults for Hb and Hs are 2. It a heading level is greater than Hb and
also greater than Hs, then the heading (if any) is run into the following text.
With these registers, you can separate headings from text consistently
throughout the document, and allow for easy alteration of whitespace and
header emphasis.

For any stand-alone heading, i .e. , a heading not run into the following text, the
alignment of the next line of output is controlled by the register Hi. It Hi is 0,
text is left-justified. If Hi is 1 (the default value), the text is indented according
to the paragraph type as specified by the register Pt. Finally, if Hi is 2, text is
indented to line up with the first word of the heading itself, so that the heading
number stands out more clearly.

For example, to cause a blank line to appear after the first three heading levels,
to have no run-in headings, and to force the text following all headings to be
left-justified (regardless of the value of Pt), the following lines should appear at
the top of the document:

.nr Hs 3

.nr Hb 7

.nr Hi 0

The register He can be used to obtain centered headings. A heading is centered
if its level is less than or equal to He, and if it is stand-alone. He is 0 by default
(no centered headings).

4-13

XENIX Text Processing

4 .4.4 Bold , Italic, and Underlined Headings

Any heading that is underlined by nroft' is made italic by troft'. The stringHF
(heading font) contains seven codes that specify the fonts for heading levels 1-7.

Levels 1 and 2 are bold; levels 3 through 7 are underlined in nrofl' and italic in
troft'. The user may reset HF a.s desired. Any value omitted from the right end
ot the list is taken to be 1 . For example, the following would result in five bold
levels and two non underlined (Roman) levels:

·

.ds HF 3 3 3 3 3

Nrofl' can underline in two ways. The underline (.ul) request underlines only
letters and digits. The continuous style (.cu) request underlines all characters,
including spaces. By default, MM attempts to use the continuous style on any
heading that is to be underlined and is short enough to fit on a single line. It a
heading is too long, only letters and digits are underlined.

Using the -rUl ftag when invoking nroft' forces the underlining of. only letters
and digits in all headings.

4 .4.5 Heading Point Sizes

Ir you are using troff, you may specify the desired point size for each heading
level with the HP string, as follows:

.ds HP (psi) (ps2) (ps3) (ps4) (ps5) (ps6) (ps7)

By default, the text of headings (.H and .IRJ) is printed in the same point size as
the body except that bold stand-alone headings are printed in a size one point
smaller than the body. The string HP, similar to the string HF, can be specified
to contain up to seven values, corresponding to the seven levels of headings.
For example:

.ds HP 12 12 11 10 10 10 10

prints the first two heading levels in 12-point type, the third heading level in
1 1-point type, and the remainder in 10-point type. The specified values may
also be relative point-size changes, e.g.:

.ds HP +2 +2 ·1 ·1

Ir absolute point sizes are specified, those sizes will be used regardless of the
point size of the body of the document. It relative point sizes are specified, then
the point sizes for the headings will be relative to the point size otthe body, even
if the point size of the body is changed. Omitted or zero values imply that the
default point size will be used for the corresponding heading level.

4- 14

MM Rererenee

Note

When you change the point size or headings, vertical spacing remains
unchanged. Therefore, if you specify a large point size for a heading,
you must also increase vertical spacing (with .HX and/or .HZ) to
prevent overprinting.

4 .4 .6 Marking Styles

The heading mark macro has the form:

.liM (argl) . . . (arg7)

to change the heading mark style or a heading. The registers named Hl
through H7 are used as counters for the seven levels or headings. Their values
are normally printed using Arabic numerals. The heading mark style (.HM)
macro allows this choice to be overridden. This macro can have up to seven
arguments; each argument is a string indicating the type or marking to be used.
Omitt.ed values are interpreted as l; illegal values have no effect. The values
available are:

Value

l
0001
A
a
I

Interpretation

Arabic (default for all levels)
Arabic with enough leading zeroes to get specified digits
Uppercase alphabetic
Lowercase alphabetic
Uppercase Roman
Lowercase Roman

By default, the complete heading mark for a given level is built by
concatenating the mark for that level to the right or all marks for all levels or
higher value. To inhibit the printing of successive heading level marks, i.e., to
obtain just the current level mark followed by a period, set the heading-mark
type (Ht) register to 1 .

For example, a commonly used outline style i s obtained by:

.HM I A l a i

.nr Ht l

4- 16

XENIX Text Processing

4 .4.7 Unnumbered Headings

The unnumbered heading macro has the form:

.HU heading-text

It produces unnumbered heads . . HU is a special case of .H; · it is handled in the
same way as .H, except that no heading mark is printed. In order to preserve
the hierarchical structure of headings when .H and .HU macros are intermixed,
each .HU heading is considered to exist at the level given by register Hu, whose
initial value is 2. Thus, in the normal case, the only difference between:

.HU heading-text

and

.H 2 heading-text

is the printing of the heading mark for the latter. Both have the effect of
incrementing the numbering counter for level 2, and resetting to zero the
counters for levels 3 through 7. Typically, the value ofHu should be set to make
unnumbered headings (if any) be the lowest-level headings in a document . . HU
can be especially helpful in setting up appendices and other sections that may
not fit well into the numbering schemeofthe main body of a document.

4 .4.8 Headings and the Table of Contents

The text of headings and their corresponding page numbers can be
automatically collected for a table of contents. This is accomplished by
specifying in the register Cl what level headings are to be saved, then invoking
the . TC macro at the end of the document.

.

Any heading whose level is less than or equal to the value or the contents level
(CL) register is saved and printed in the table of contents. The default value for
Cl is 2; i.e. , the first two levels of headings are saved.

Because of the way the headings are saved, it is possible to exceed the
formatter's storage capacity, particularly when saving many levels of many
headings while also processing displays and footnotes. If this happens, an "Out
of temp file space" message will occur; the only remedy is to save fewer levels or
to have fewer words in the heading text.

4.4.0 First-Level Headings and th� Page Numbering Style

By default, pages are numbered sequentially at the top of the page. For large
documents, it may be desirable to use section-page numbering where the
section is the number or the current first-level heading. This page numbering

4- 16

MM Reference

style can be achieved by specifying the -rN3 or -rN5 flag on the command line .
.A$ a side effect, this also sets Ej to 1 , so that each section begins on a new page.
The page number is printed at the bottom of the page, so that the correct
section number is printed.

4 .4 .10 User Exit Macros

This section is intended only for users who are accustomed to writing formatter
macros. With .HX, .HY and .HZ you can obtain control over the previously
described heading macros. You must define these macros yourselr and use them
in the form:

.HX dlevel rlevel heading-text

.HY dlevel rlevel heading-text

.HZ dlevel rlevel heading-text

The .H macro invokes .HX shortly before the actual heading text is printed; it
calls .HZ as its last action. Arter .HX is invoked, the size or the heading is
calculated. This processing causes certain features that may have been
included in .HX, such as .ti Cor temporary indent, to be lost. Arter the size
calculation, .HY is invoked so that you may specify these features again. All the
default actions occur if these macros are not defined. If you define .HX, .HY, or
.HZ, your definition is interpreted at the appropriate point. These macros can
therefore influence the handling of all headings, because the .HU macro is
actually a special case of the .H macro.

If the user originally invoked the .H macro, then the derived level tlle11el and the
real level rlet1el are both equal to the level given in the .H invocation. Ir you
originally invoked the .HU macro, tllet1el is equal to the contents ofregister Hu ,
and rlevel is 0. In both cases, he ading-te:rt is the text of the original invocation.

By the time .H calls .HX, it has already incremented the heading counter of the
specified level, produced a blank line (vertical space) to precede the heading,
and accumulated the heading mark, i.e., the string of digits, letters, and periods
needed Cor a numbered heading. When .HX is called, all user-accessible
registers and strings can be referenced as well as the following:

string }0

register ;0

string }2

IC rle vel i s nonzero, this string contains the heading mark. If rlet�el is
0, this string is null.

This register indicates the type of spacing that is to follow the
heading. A value of 0 means that the heading is run-in. A value of 1
means a break (but no blank line) is to follow the heading. A value of
2 means that a blank line is to follow the heading.

Ir register ;0 is 0, this string contains two unpaddable spaces that will

.f..l7

XENIX Text Processing

be used to separate the heading from the following text. lhegister ;0
is nonzero, this string is null.

register ;3
This register contains an adjustment factor for an .ne request issued
before the heading is actually printed. On entry to .HX, it has the
value 3 if dle t�el equals 1, and 1 otherwise. The .ne request is for the
following number or lines: the contents or the register ;0 taken as
blank lines (halves or vertical space), plus the contents of register ;3
as blank lines (halves or vertical space) plus the number oflines or the
heading.

The user may alter the values or }0, }2 , and ;3 within .HX as desired. Iryou use
temporary string or macro names within .HX, choose them carefully .

. HY is called after the .ne is issued. Certain features requested in JIX must be
repeated. For example:

.de HY

.ir \ \S1-3 .ti 5n
.P

.HZ is called at the end or .H to permit user-controlled actions after the heading
is produced. For example, · in a large document, sections may correspond to
chapters or a book, and you may want to change a page header or footer. For
example:

.de HZ

.ir \ \Sl=l .PF" "Section \ \$2 ""

.P

4:.5 Lists

This section describes the kinds or lists. which can be obtained with the MM
macros, including automatically numbered and alphabetized lists, bullet lists,
dash lists, lists with arbitrary marks, and lists starting with arbitrary strings
(e.g., with terms or phrases to be defined).

In order to avoid repetitive typing or arguments to describe the appearance or
items in a list, MM . provides a convenient way to specify lists. All lists are
composed ofthe following parts:

4-18

A "list-initialization" macro that controls the appearance of the list
(e.g. line spacing, indentation, marking with special symbols, and
numbering or alphabetizing).

MM Reference

One or more "list item" macros, each followed by the actual text or
the corresponding list item.

The "list end" macro that terminates the list and restores the
previous indentation.

Lists may be nested up to five levels. The list-item (.LI) macro saves the
previous list status (e.g., indentation, marking style, etc.) ; the list-end (.LE)
macro restores it. The format or a list is specified only once at the beginning or
list. You may also create your own customized sets or list macros with
relatively little effort.

4 .5.1 Sample Nested List

The input for several lists and the corresponding output are shown below. The
.AL and .DL macros are examples or the "list-initialization" macros. Here is
some sample input text:

.AL A
.LI
This is an alphabetized item.
This text shows the alignment or the second line or the item.
The quick brown fox jumped over the lazy dog's back .
. AL
.LI
This is a numbered item.
This text shows the alignment or the second line or the item.
The quick brown fox jumped over the lazy dog's back .
. DL
.LI
This is a dash item.
This text shows the alignment or the second line or the item.
The quick brown fox jumped over the lazy dog's back .
. LI + 1
This is a dash item with a plus as prefix.
This text shows the alignment or the second line or the item.
The quick brown fox jumped over the lazy dog's back .
. LE
.LI
This is numbered item 2 .
. LE
.LI
This is another alphabetized item, B.
This text shows the alignment or the second line of the item.
The quick brown fox jumped over the lazy dog's back .
. LE
.P
This paragraph appears at the lett margin.

4-19

XENIX Text Processing

The output looks like this:

A. This is an alphabetized item. This text shows the alignment of the
second line of the item. The quick brown fox jumped over the lazy
dog's back.

1. This is a numbered item. This text shows the alignment of
the second line of the item. The quick brown fox jumped
over the lazy dog's back.

This is a dash item. This text shows the alignment
of the second line or the item. The quick brown fox .
jumped over the lazy dog's back.

+ - This is a dash item with a plus as prefix. This text
shows the alignment or the second line or the item.
The quick brown fox jumped over the lazy dog's
back.

2. This is numbered item 2.

B. This is another alphabetized item, B. This text shows the alignment
of the second line of the item. The quick brown fox jumped over the
lazy dog's back.

This paragraph appears at the left margin.

4 .5.2 List Item

The list item macro has the form:

.LI (mark) [1)
one or more lines or text that make up the list item.

The .LI macro is used with all lists. It normally causes the output of a single
blank line before its item, although this may be suppressed. It no arguments are
given, it labels its item with the "current mark" which is specified by the most
recent lis�initialization macro. It a single argument is given to .LI, that
argument is output instead or the current mark. It two arguments are given,
the first argument becomes a prefix to the current mark, thus allowingyou to
emphasize one or more items in a list. One unpaddable space is inserted
between the prefix and the mark. For example:

4-20

.BL

.LI
This is a simple bullet item .
. LI +
This replaces the bullet with a plus .
. LI + 1
But this uses plus as prefix to the bullet .
. LE

This yields:

• This is a simple bullet item.

+ This replaces the bullet with a plus.

+ • But this uses plus as prefix to the bullet.

MM- Reference

Note that the mark must not contain ordinary (paddable) spaces, because
alignment or items will be lost ir the right margin is justified. Ir the "current
mark" in the current list is a null string, and the first argument or .LI is omitted
or null, the resulting effect is that or a "hanging indent", i.e., the first line ofthe
rollowing text is outdented, starting at the same place where the mark would
have started.

4 .5.3 List End

The list end macro has the rorm:

.LE (1)

The list end macro restores the state or the list to that existing just berore the
most recent list-initialization macro call. Ir the optional argument is given, the
.LE outputs a blank line. You should use this option only when the .LE is
rollowed by running text, but not when rollowed by a macro that produces
blank lines or its own, such as .P, .H, or .LI.

.H and .HU automatically clear all list inrormation, so you may omit the .LE(s)
that would normally occur just berore either or these macros. This is not
recommended, however, because errors will occur ir the list text is separated
rrom the heading at some later time (e.g., by insertion or text).

4 .5.4 Initializing Automatically Numbered or Alphabetized Lists

The list initialization macro ror numbered lists has the rorm:

.AL (type) [text-indent) [1)

4-21

xENJX Text Processing

The .AL macro is used to begin sequentially numbered or alphabetized lists. If
there are no arguments, the list is numbered and text is indented by Li, initially
6 spaces from the indent in force when the .AL is called, thus leaving room for a
space, two digits, a period, and two spaces before the text. Values that specify
indentation must be unsealed and are treated as character positions, i.e ., as the
number or ens in troff.

Spacing at the beginning of the list and between the items can be suppressed by
setting the list space (Ls)register. Ls is set to the innermost list level ror which
spacing is done. For example:

.nr Ls 0

specifies that no spacing will occur around any list items. The default value for
Ls is 6 (which is the maximum list nesting level).

The type argument may be given to obtain a different type or sequencing, and
its value should indicate the first element in the sequence desired, (i.e., it must
be 1, A, a, I, or i). Note that the 0001 format is not permitted. It type is omitted
or null, then 1 is assumed. It tezt-inde nt is non-null, it is used as the number or
spaces from the current indent to the text, it is used instead of Li for this list

· only. Ir tezt-indent is null, then the value ofLi will be used.

Ir the third argument is given, a blank line will not separate the items in the list.
A blank line will occur before the first item, however.

4 .5.5 Bullet List

The list-initialization macro for a bullet list has the form:

.BL (text-indent) (1]

.BL begins a bullet list, in which each item is marked by a bullet (•) followed by
one space. Ir tezt-indent is non-null, it overrides the default indentation--the
amount or paragraph indentation as given in the register Pi. In the default case,
the text or bullet and dash lists lines up with the first line of indented
paragraphs. Ir a second argument is specified, no blank lines will separate the
items in the list.

4 .5.6 Dash List

The list-initialization macro for dash lists has the form:

.DL (text-indent) (1)

.DL is identical to .BL, except that a dash is used instead of a bullet.

4-22

MM Reference

4 .5 . 7 Marked List

The form of the list-initialization macro for a marked list is:

.ML mark (text-indent) [1]

.ML is much like .BL and .DL, except that it requires an arbitrary mark, which
may consist of more than a single character. Text is indented te:rt-irule ntspaces
if the second argument is not null; otherwise, the text is indented one more
space than the width of the mark. Ir the third argument is specified, no blank
lines will separate the items in the list. Note that the mark must not contain
ordinary {paddable) spaces, because alignment or items will be lost if the right
margin is justified.

4 .5.8 Reference List

The list-initialization macro for a. reference list has the form:

.RL [text-indent) [1]

A .RL macro begins an automatically numbered list in which the numbers are
enclosed by square brackets ([]). The te:rt-indent may be supplied, as for .AL. If
omitted or null, it is assumed to be 6, a. convenient value for lists numbered up
to 99. If the second argument is specified, no blank lines will separate the items
in the list.

·

4 . 5.Q Variable-Ite m List

The list-initialization macro for a. variable-item list is:

.VL text-indent [mark-indent) [1)

\Vhen a list begins with a .VL, there is effectively no current mark; it is expected
that each .LI provides its own mark. This form is typically used to display
definitions of terms or phrases. Mark-inde nt gives the number of spaces from
the current indent to the beginning of the mark, and it defaults to 0 if omitted
or null. Te:et-indent gives the distance from the current indent to the beginning
of the text. If the third argument is specified, no blank lines will separate the
items in the list. Here is an example of .VL usage:

.f..23

XENlX Text Processing

.tr -

.VL 20 2

.LI mark - 1
Here is a description of mark 1 ;
mark 1 of the .LI line contains a tilde translated
to an unpaddable space in order to avoid extra spaces
between the mark and 1 .
. LI second-mark
This is the second mark, also using a tilde translated
to an unpaddable space .
. LI third -mark -longer -than -indent:
This item shows the effect or a long mark; one space separates the mark
from the text .
. LI -
This item has no mark because the
tilde following the .LI is translated into a space .
. LE

This yields:

Here is a description of mark 1; mark 1 of the .LI line
contains a tilde translated to an unpaddable space in
order to avoid extra spaces between the mark and 1.

second-mark This is the second mark, also using a tilde translated to
an unpaddable space.

third -mark-longer-than -indent This item shows the effect of a long mark;
one space separates the mark from the text.

This item has no mark because the tilde following the
.LI is translated into a space.

The tilde argument on the last .LI above is required; otherwise a hanging indent
would have been produced. A hanging indent is produced by using �VL and
calling .LI with no arguments or with a null first argument. For example:

.VL 10

.LI
Here is some text to show a hanging indent.
The first line of text is at the left margin.
The second is indented 10 spaces .
. LE

yields:

4-24

Here is some text to show a hanging indent. The first line or text is at
the left margin. The second is indented 10 spaces.

MM Reference

Note that the mark must not contain ordinary (paddable) spaces, because
alignment of items will be lost if the right margin is justified .

.f.o.lO List-Begin Macro and Customized Lists

The list-begin macro has the form:

.LB text-indent mark-indent pad type [mark) [LI-space) [LB-space)

The list-initialization macros should be adequate for most cases. However, if
necessary, you may obtain more control over list layouts by using the basic
list-begin macro .LB.

A tezt-indent argument gives the number of spaces that the text is to be
indented from the current indent. Normally, this value is taken from the
register Li for automatic lists and from the register Pi for bullet and dash lists.
The combination or mark-indent and pad determines the placement of the
mark. The mark is placed within an area (called "mark area") that starts
mark-indent spaces to the right or the current indent, and ends where the text
begins tezt-indent spaces to the right of the current indent. The mark-indent
argument is typically 0. Within the mark area, the mark is left-justified if pad
is 0. If pad is greater than 0, then n blanks are appended to the mark; the
mark-indent value is ignored. The resulting string immediately precedes the
text. That is, the mark is effectively right-justified pad spaces immediately to
the left or the text.

Trpe and mark interact to control the type of marking used. If trpe is 0, simple
marking is performed using the mark character(s) found in the mark
argument. Ir trpe is greater than 0, automatic numbering or alphabetizing is
done, and mark is then interpreted as the first item in the sequence to be used
for numbering or alphabetizing (i.e., it is chosen from the set l ,A, a, I, i).

Each nonzero value of type from 1 to 6 selects a different way of displaying the
items. The following table shows the output appearance for each value of type:

Type
1
2
3
4
s
6

Appearance
x.
x)
(x)
[x)
<x>
{x}

The mark must not contain ordinary (paddable) spaces, because alignment of
items will be lost if the right margin is justified.

Ll-1pace gives the number of blank lines (halves or a vertical space) that should
be output by each .LI macro in the list. If omitted, Ll-1pace defaults to 1; the
value 0 can be used to obtain compact lists. If Ll-1pac e is greater than 0, the .LI

XENIX Text Processing

macro issues a .ne request for two lines just before printing the mark. LB­
tpace , the number of blank lines to be output by .LB itself, defaults to 0 if
omitted.

There are three reasonable combinations of Ll-space and LB-space. The
normal case is to set LI-space to 1 and LB-space to 0, yielding one blank line
before each item in the list; such a list is usually terminated with a .LE 1 to end
the list with a blank line. For a more compact l ist, set Ll-space to 0 a.nd LB­
space to 1, and, again, use .LE 1 at the end of the list. The result is a list with one
blank line before and after it. Ir you set both Ll-space and LB-space to 0, and
use .LE to end the list, a list without any blank lines will result.

4.6 Displays

Displays are blocks of text that are to be· kept together rather than split across
pages. MM provides two styles of displays: a "static" (.DS) style and a
"floating" (.DF) style. In the static style, the display appears in the same
relative position in the output text as it does in the input text. Irthe display will
not fit in the space remaining on a page, it will be shifted to the top of the next
page. This may result in extra whitespace at the bottom of some pages. In the
floating style, the display floats through the input text to the top or the next
page if there is not enough room for it on the current page; thus the input text
that follows a floating display may precede it in the output text. A queue of
floating displays is maintained so that their relative order is not disturbed.

By default, a display is processed in no-fill mode, with singlespacing, and is not
indented from the existing margins. You can specify indentation or centering,
as well as fill-mode processing.

Displays and footnotes can never be nested in any combination. Although lists
and paragraphs are permitted, no headings (.H or .HU) can occur within
displays or footnotes.

4.6.1 Static Displays

A static display macro has the form:

.DS (format) . (fill) [rindent)
one or more lines of text
.DE

A static display is started by the .DS macro and terminated by the .DE macro.
With no arguments, .DS will accept the lines of text exactly as they are typed
(no-fill mode) and will not indent them from the prevailing left margin
indentation or from the right margin. The rindent argument is the number of
characters that the line length should be decreased, i.e., an indentation from
the right margin. This number must be unsealed in nroff and is treated as ens.
It may be scaled in trofr or else it defaults to ems.

4-26

MM Reference

The format argument to .DS is an integer or letter used to control the left
margin indentation and centering. The format argument can have the
following meanings:

Code
" "
0 or L
1 or I
2 or C
3 or CB

Meaning
No indent
No indent
Indent by standard amount
Center each line
Center as a block

The fill argument is also an integer or letter and can have the following
meanings:

Code
'" '

0 or N
1 or F

Meaning
-fill mode
No-fill mode
Fill mode

Omitted arguments are interpreted as zero.

The standard indentation is taken from the Si register which is initially set at 5.
Thus, by default, the text of an indented display aligns with the first line of
indented paragraphs, whose indent is contained in the Pi register. Even though
their initial v alues are the same, these two registers are independent of one
another.

The display format value 3 (CB) centers the entire display as a block (as
opposed to .DS 2 and .DF 2, which center each line individually). That is, all the
collected lines are left-justified, and the display is centered based on the width
of the longest line. This format must be used in order for the eqn/neqn mark
and lineup feature to work with centered equations.

By default, a blank line is placed before and after displays. The blank lines
before and after static displays can be inhibited by setting the register Ds to 0.

4 .6.2 Floating D ispl ays

The floating display macro has the form:

.DF (format] [fill) [rindent)
one or more lines of text
.DE

A floating display is started by the .DF macro and terminated by the .DE
macro. The arguments have the same meanings as for .DS (see Section 4.6. 1 ,
"Static Displays"), except that for floating displays, indent, no indent, and
centering are always calculated with respect to the initial left margin, because
the prevailing indent may change between the time when the formatter first

4-27

XENIX Text Processing

reads the floating display and the time that the display is printed. One blank
line always occurs both before and after a floating display.

You may control output positioning of floating displays through two number
registers, De and Dr. When a floating display is encountered by nroff or troff,
it is processed and placed into a queue or displays waiting tQ be output.
Displays are removed from the queue and printed in the order that they were
entered in the queue, which is the order that they appear in the input file. Jr a
new floating display is encountered and the queue or displays is empty, the new
display is a candidate for immediate output on the current page. Immediate
output is governed by the size or the display and the setting' or the Dr register.
The De register controls whether or not text will appear on the current page
after a floating display has been produced.

The settings for the De register are as follows:

0 Default: No special action occurs.

A page eject wHI always rollow the output or each floating display,
so only one floating display will appear on a page and no text will
follow it.

The settings Cor the Dr register are as follows:

0 Floating displays will not be output until end or section (when using
section-page numbering) or end or document.

1 Outputs the new floating display on the current page if there is
room, otherwise hold it until the end of the section or document.

2 Outputs exactly one floating display Crom the queue at the top or a
new page or column (when in two-column mode).

3 Outputs one floating display on current page if there is room.
Outputs exactly one floating display at the top or a new page or
column.

4 Outputs as. many displays as will fit (at least one), starting at the
top or a new page or column. Note that ihegister De is set to 1, each
display will be followed by a page eject, causing a new top of page to
be reached, where at least one more display will be output.

5 Default. Outputs a new floating display on the current page if there
is room. Outputs as many displays as will fit starting at the top or a
new page or column. Note that if register De is set to 1, each display
will be rollowed by a page eject, causing a new top or page to be
reached, where at least one more display will be output.

Note: any value greater than 5 is treated as the value 5.

4-28

MM Reference

The .WC macro may also be used to control handling o r displays i n double­
column mode and to control the break in the text before floating displays.

As long as the queue contains one or more displays, new displays will be
automatically added to the queue, rather than be output. When a new page is
started (or when at the top of the second column in two-column mode}, the next
display from the queue will be output if the or register has specified top-of-page
output. When a display is output it is removed from the queue.

When the end or a section (when using section-page !)Umbering) or the end or a
document is reached, all displays are automatically output and removed from
the queue. This will occur before an .SG, .CS, or .TC macro is processed.

A display fits on the current page if there is enough room to contain the entire
display on the page, or if the display is longer than one page in length and less
than half or the current page has been used. Wide (full page width) dispb.y will
never fit in the second column or a two-column document.

·

4 .6.3 Tables

The table macro has the Corm:

.TS (H)
global options;
column descriptors.
title lines
[.TH [N))
data within the table .
. TE

The table start (. TS) and table end (. TE) macros allow use or the tbl processor.
They are used to delimit the text to be examined by the tbl program as well as
to set proper spacing around the table. The display function and the tbl
delimiting function are independent or one another, however. In order to keep
together blocks that contain any mixture of tables, equations, filled and unfilled
text, and caption lines, the .TS-.TE block should be enclosed within a display
(.DS-.DE), as each display is always treated as a unit. Floating tables may be
enclosed inside floating displays (.DF-.DE). (For more information on displays,
see Section 4.6, "Displays" .)

The macros .TS and .TE also permit processing or tables that extend over
several pages. Ir a table heading is needed for each page of a multipage table,
use the argument H with the .TS macro (as above). Following the options and
format information, the table heading is typed on as many lines as required and
followed by the .TH (table header) macro. The .TH macro must occur when
.TS H is used. Note that this is not a feature or tbl, but rather or MM macro
definitions.

4-29

XENIX Text Processing

The table header macro .TH may take as an argument the letter N. This
argument causes the table header to be printed only if it is the first table header
on the page. This option is used when it is necessary to build long tables from
smaller .TS H-.TEsegments. For example:

.TS H _ ,, -
global options;
column descriptors.
Title lines
.TH
data
.TE
.TS H
global options;
column descriptors.
Title lines
.TH N
data
.TE

This causes the table heading to appear at the top ofthe first table segment, and
no heading to appear at the top of the second segment when both appear on the
same page. However, the heading will still appear at the top of each page that
the table continues onto. This feature is used when a single table must be
broken into segments because of table complexity (for example, too many
blocks of filled text). If each segment had its own .TS H·TH sequence, each
segment would have its own header. However, if each table segment after the
first uses . TS H. TH N then the table header will only appear at the beginning of
the table and the top of each new page or column that the table contill'bes onto.

4 .6.4 Equations

The equation macro has the form:

.DS I

.EQ [label}
equation(s)
.EN
.DE

The equation formatters eqn and neqn use the the equation start (.EQ) and
equation end (.EN) macros as delimitersjn the same way that tbl uses .TS and
.TE; however, .EQ and .EN must occur inside a .DS- .DE pair. There is an
exception to this rule: if .EQ arid .EN are used only to specify the delimiters for
in-line equations or to specify eqn/neqn "defines", .DS and .DE must not be
used; otherwise, extra blank lines will appear in the output.

The .EQ macro takes an argument that will be used as a label for the equation.
By default, the label appears at the right margin in the vertical center of the

4-30

MM Reference

general equation. The Eq register may be set to 1 to set the label at the left
margin. The equation is centered for centered displays; otherwise, the e quation
is adjusted to the opposite margin from the label.

4.6.5 Figure, Table, Equation, and Exhibit Captions

The macros for captions have the form:

.FG (title) (override) (flag)

:i� j:!:;:l l��:��i�:, ,�::j
.EX title override flag

The figure title (.FG), table title (.TB), equation caption (.EC), and exhibit
caption (.EX) macros are normally used inside .DS..DE pairs to automatically
number and title figures, tables, and equations. They use registers Fg, Tb, Ec,
and Ex, respectively . As an example, the macro:

.FG " This is an illustration"

yields:

Figure 1 . This is an illustration

Instead of "Figure" TB prints "TABLE"; .EC prints "Equation", and .EX
prints "Exhibit". Output is centered if it can fit on a single line; otherwise, all
lines but the first are indented to line up with the first character or the table
title. The format of the numbers ma.y be changed using the .ar request or the
formatter. The format of the caption may be changed from "Figure 1. Title" to
"Figure 1 - Title" by setting the Ofregister to 1 .

The o11erritle string is used to modify the normal numbering. It flag is omitted
or 0, override is used as a prefix to the number; if flag is 1, override is used as a
sufflx; and if flag is 2, override replaces the number. If the -r N5 flag is given,
section-figure numbering is set automatically and the override string is
ignored.

As a matter of style, table headings are usually placed ahead of the text of the
tables, while figure, equation, and exhibit captions usually occur after the
corresponding figures and equations.

4.6.6 List of Figures, Tables, Equations, and Exhibits

Lists of Figures, Tables, Equations, and Exhibits may be obtained. They will be
printed after the Table of Contents is printed if the number registers Lf, Lt, Lx,
and Le are set to 1. Lf, Lt, and Lx are 1 by default; Le is 0 by default.

4-31

XE NIX Text Processing

The titles of these lists may be changed by redefining the following strings
which are shown here with their default values:

.ds Lf LIST OF FIGURES

.ds Lt LIST OF TABLES

.ds Lx LIST OF EXIDBITS

.ds Le LIST OF EQUATIONS

4.7 Footnotes

There are two macros that delimit the text of footnotes, a string used to
automatically number the footnotes, and a macro that specifies the style of the
footnote text. Like displays, footnotes are processed differently from the body
of the text.

Footnotes may be automatically numbered by typing the three characters
"\•F" immediately after the text to be footnoted, without any intervening
spaces. This will place the next sequentia.Uootnote number (in a smaller point
size) a. halt-line above the text to be footnoted.

There are two macros that delimit the text of each footnote:

.FS [label]
one or more lines of footnote text
.FE

The footnote start (.FS) macro marks the beginning of the text of the footnote,
and the footnote end (.FE) macro marks its end. The label on .FS, if present,
will be used to mark the footnote text. Otherwise, the number retrieved from
the \•F will be used. Automatically numbered and user-labeled footnotes may
be intermixed. If a footnote is labeled .FS the text to be footnoted must be
followed by "label," rather than by \•F. The text between .FS and .FE is
processed in fill mode. Another .FS, a .DS, or a .DF are not permitted between
the .FS and .FE macros. Automatically numbered footnotes may not be used
for information, such as the title and abstract, to be placed on the cover sheet,
but labeled footnotes are allowed. Similarly, only labeled footnotes may be
used with tables. Here are two examples:

4-32

1. Automatically numbered footnote:

This is the line containing the word \•F
.FS
This is the text of the footnote .
. FE
to be footnoted.

MM Rererence

2. Labeled footnote:

This is a labeled*
.FS *
The footnote is labeled with an asterisk .
. FE
footnote.

The text of the footnote (enclosed within the .FS-.FE pair) should immediately
follow the word to be footnoted in the input text, so that \ *F or ltJbel occurs at
the end or a line or input and the next line is the .FS macro call. It is also good
practice to append an unpaddable space to "label" when it follows an end-of­
sentence punctuation mark (i.e., period, question mark, exclamation point).

4 .7 . 1 Format or Footnote Text

The footnote format macro has the form:

.FD (arg) [1]

Within the footnote text, you can control the formatting style by specifying
text hyphenation, right margin justification, and text indentation, as well as
left- or right-justification of the label when text indenting is used. The .FD
macro is invoked to select the appropriate style. The first argument should be a
number from the left column of the following table. The formatting style for
each number is given by the remaining four columns. For further explanation
or the first two or these columns, see the definitions or the .ad, .hy, .na, and .nh
requests.

ARGUMENT FORMATTING STYLE
0 .nh .ad text indent label left-justified
1 .hy .ad text indent label left-justified
2 .nh .na text indent label left-justified
3 .hy .na text indent label left-justified
4 .nh .ad no indent label left-justified
5 .hy .ad no indent label left-justified
6 .nh .na no indent label left-justified
7 .hy .na no indent label left-justified
8 .nh .ad text indent label right-justified
9 .hy .ad text indent label right-justified
10 .nh .na text indent label right-justified
l l .hy .na text indent label right-justified

If the first argument to .FD is out of range, the effect is as if .FD 0 were specified.
If the first argument is omitted or null, the effect is equivalent to .FD 10 in nroff
and to .FD 0 in troff; these are also the respective initial defaults.

�33

XENIX Text Processing

Ir a second argument is specified, then whenever a first-level heading is
encountered, automatically-numbered footnotes begin again with 1. This is
most useful with the section-page page numbering scheme. As an example, the
input line:

.FD "" 1

maintains the default formatting style and causes footnotes to be numbered
beginning with 1 after each first-level heading.

For long footnotes that continue onto the following page, it is possible that, if
hyphenation is permitted, the last line of the footnote on the current page will
be hyphenated. Except for this case (which you can change by specifying an
even-numbered argument to .FD) , hyphenation across pages is inhibited by
MM.

Footnotes are separated from the body of the text by a short rule. Footnotes
that continue to the next page are separated from the body of the text by a full­
width rule. In troff, footnotes are set in type that is two points smaller than the
point size used in the body of the text.

Normally, one blank line (a three-point vertical space) separates the footnotes
when more than one occurs on a page. To change this spacing, set the register
Fs to the desired value. For example:

.nr Fs 2

will cause two blank lines (a six-point vertical space) to occur between
footnotes.

4.8 Page Headers and Footers

Text that occurs at the top of each page is known as the "page header". Text
printed at the bottom of each page is called the "page footer". There can be up
to three lines of text associated with the header: every page, even page only, and
odd page only. Thus the page header may have up to two lines of text: the line
that occurs at the top of every page and the line for the even- or odd-numbered
page. The same is true for the page footer. When not qualified by "even" or
"odd", "header" and "footer" will mean those headers and footers that occur
on every page. The default appearance of page headers and page footers is
described here, followed by the methods for changing them.

4 .8 . 1 Default Headers and Footers

By default, each page has a centered page number as the header. There is no
default footer and no even/odd default headers or footers, except with section­
page numbering.

4-34

MM Reference

In a memorandum or a released paper, the page header on the first p age is
automatically suppressed, if a break does not occur before .MT is called. Since
they do not cause a break, the header and footer macros are permitted before
the .MT macro call.

4 .8.2 P age Header

The page header macro has the form:

.PH [arg)

For this and for the .EH, . OH, .PF, .EF, and .OF macros, the argument is or the
form:

" 'left-part'center-part'right-part'"

Ir it is inconvenient to use the apostrophe (') as the delimiter (because it occurs
within one of the parts), it may be replaced uniformly by any other cha.racter.
On output, the parts are left-justified, centered, and right-justified,
respectively.

The .PH macro specifies the header that is to appear at the top of every page.
The initial value is the default centered page number enclosed by hyphens. The
page number contained in the P register is an Arabic number. The format of
the number may be changed by the .af request.

Ir "debug mode" is set using the flag -rDl on the command line, additional
information, printed at the top left or each page, is included in the default
header.

4 .8.3 Even-Page Header

The even-page header macro has the form:

.EH [arg)

The .EH macro supplies a line to be printed at the top of each even-numbered
page, immediately following the header. The initial value is a blank line.

4 .8.4 Odd-Page Header

The odd-page header macro has the form:

.OH [arg)

This macro is the same as .EH, except that it applies to odd-numbered pages.

XENIX Text Process ing

4 .8.S Page Footer

The Corm or the page Cooter macro is:

.PF (a.rg)

The .PF macro specifies the line that is to appear at the bottom or each page. Its
initial value is a. blank line . Ir the -rCn flag is specified on the command line, the
type or copy follows the rooter on a. separate line. In particular, ir�rC3 or -rC4
(DRAFT) is specified, then the rooter is initialized to contain the date, instead
or being a. blank line.

4 .8.6 Even-Page Footer

The even-page rooter macro has the Corm:

.EF (a.rg)

The .EF macro supplies a. line to be printed at the bottom or each even­
numbered page, immediately preceding the rooter. The initial value is a blank
line.

4 .8.7 Odd-Page Footer

The odd-page rooter macro has the Corm:

.OF (a.rg)

This macro is the same as .EF (described in Section 4.8.6), except that it applies
to odd-numbered pages.

4 .8.8 Footer on the First Page

By dera.ult, the rooter on the first page is a. blank line. Ir, in the input text, you
specify .PF and/or .OF before the end or the first page or the document, then
these lines will appear at the bottom or the first page. The header (whatever its
contents) replaces the rooter on the first page only if the-rNl flag is specified on
the command line.

4 .8 .0 Default Header and Footer With Section-Page Numbering

Pages can be numbered sequentially within sections. To obtain this numbering
style, speciCy -rN3 or -rN5 on the command line. In this case, the dera.ult rooter
is a. centered section-page number (e.g. , 7-2) .and the dera.ult page header is
blank.

4-36

A-IM Reference

4 .8.10 Strings and Registers in Header and Footer Macros

String and register names may be placed in the arguments to the header and
footer macros. Ir the value of the string or register is to be computed when the
respective header or footer is printed, the invocation must be escaped by four
backslashes. This is because the string or register invocation is actually
processed three times: as the argumerit to the header or footer macro; in a
formatting request within the header or footer macro; and in a . tl request
during header or footer processing.

For example, the page number register P must be escaped with four
backslashes in order to specify a header in which the page number is to be
printed at the right margin:

.PH " " 'Page \\\ \nP'"

This creates a rightrjustified header containing the word "Page" followed by
the page number.

4 .8. 1 1 Header and Footer Example

The following sequence specifies blank lines for the header and footer lines, page
numbers on the outside edge of each page (i.e. , top left margin of even pages and
top right margin of odd pages), and "Revision 3" on the top inside margin of
each page:

.PH " "

.PF " "

.EH " '\ \\ \nP"Revision 3'"

.OH " 'Revision 3"\ \\ \nP'"

4 .8 .12 Generalized Top-of-Page Processing

This section and the next are intended only for users accustomed to writing
formatter macros. During header processing, MM invokes two user-definable
macros. One, the .TP macro, is invoked in the environment of the header. The
.PX macro may be used to provide text that is to appear at the top of each page
after the normal header and that may have tab stops to align it with columns of
text in the body of the document.

The effective initial definition of . TP (after the first page of a document) is:
.

4-37

XENIX Text Processing

.de TP
.sp 3
.tl \ \•(• } t
.ir e 'tl
.ir o 'tl
.sp 2

The string }t contains the header, the string }e contains the even-page header,
and the string }o contains the odd-page header, as defined by the .PH, .EH, and
.OH macros, respectively. To obtain more specialized page titles, you may
redefine the .TP macro to cause any desired header processing. Note that
formatting done within the .TP macro is processed in an environment different
from that or the body.

For example, to obtain a page header that includes three centered lines of data,
say, a document's number, issue date, and revision date, you could define .TP
as follows:

.de TP

.sp

.ce 3
777-888-999
Iss. 2, AUG 1977
Rev. 7, SEP 1977
.sp

4 .8.13 Generalized Bottom-or-Page Processing

The bottom start macro has the form:

.BS
zero or more lines of text
.BE

Lines or text that are specified between the bottom-block start (.BS) and
bottom-block end (.BE) macros will be printed at the bottom of each page after
the footnotes (if any), but before the page footer. This block of text is removed
by specifying an empty block, i.e.:

.BS

.BE

4 .8 .14 Top and Bottom Margins

The vertical margin macro has the form:

4-38

MM Reference

.VM (top) (bottom)

The vertical margin (.VM) macro allows you to specify extra space at the top
and bottom of the page. This space precedes the page header and follows the
page footer. The .VM macro takes two unsealed arguments that are treated as
v's. For example:

.VM 10 15

adds 10 blank lines to the default top of page margin, and 15 blank lines to the
default bottom of page margin. Both arguments must be positive (default
spacing at the top of the page may be decreased by redefining . TP).

4 .9 Ta.ble of Contents

The table of contents for a document is produced by invoking the table of
contents (.TC) macro. The table of contents is produced at the end of the
writing process because the entire document must be processed before the table
of contents can be generated. The table of contents macro has the form:

.TC (slevel) (spacing) (tlevel) (tab) (headl) ... (head7)

The .TC macro generates a table of contents containing the headings that were
saved for the table of contents as determined by the value of the Cl register.
The arguments to .TC control the spacing before each entry, the placement of
the associated page num her, and additional text on the first page of the table of
. contents before the word "CONTENTS".

Spacing before each entry is controlled by the first two arguments; headings
whose level is less than or equal to 1let�el will have 1pacing blank lines (halves of
a vertical space) before them. Both 1le vel and 1pacing default to 1. This means
that first-level headings are preceded by one blank line. Note that 1level does
not control what levels of heading have been saved; that is controlled by the
setting of the Cl register.

The third and fourth arguments control the placement of the page number for
each heading. The page numbers can be justified at the right margin with
either blanks or leader dots separating the heading text from the page number,
or the page numbers can follow the heading text. For headings whose level is
less than or equal to tle vel (default 2) , the page numbers are justified at the right
margin. In this ease, the value of tab determines the character used to separate
the heading text from the page number. If tab is 0 (the default value), dots (i.e. ,
leaders) are used; if tab is greater than 0, spaces are used. For headings whose
level is greater than tlevel, the page numbers are separated from the heading
text by two spaces (i.e. , they are ragged right).

All additional arguments (e.g. , head1, head2), if any, are horizontally centered
on the page, and precede the actual table or contents itself.

4-39

XENIX Text Processing

If the . TC macro is invoked with a.t most four arguments, then the user-exit
macro . TX is invoked (without arguments) before the word "CONTENTS" is
printed; or the. user-exit macro . TY is invoked and the word "CONTENTS" is
not printed. By defining .TX or .TY and invoking .TC with a.t most four
arguments, you can specify what needs to be done at the top of the (first) page of
the table of contents.

By default, the first level headings will appear in the table of contents at the left
margin. Subsequent levels will be aligned with the text of headings at the
preceding level. These indentations may be changed by defining the Ci string
which takes a maximum of seven arguments corresponding to the heading
levels. It must be given at least as many arguments as are set by the Cl register.
The arguments must be scaled. For example, with Cl ==5,

.ds Ci .25i .5i .75i 1i li

or

.ds Ci 0 2n 4n 6n 8n

Two other registers are available to modify the format of the table of contents,
Oc and Cp. By default, table of contents pages will have lowercase Roman
numeral page numbering. If the Oc register is set to 1, the .TC macro will not
print any page number but will instead reset the P register to 1. It is your
responsibility to give an appropriate page footer to place the page number.
Ordinarily the same .PF used in the body of the document and exhibits will be
adequate. The List of Figures and List of Tables will be produced separately
unless Cp is set to 1 which causes these lists to appear on the same page as the
table of contents.

4.10 References

There are two macros that delimit the text of references, a string used to
automatically number the references, and an optional macro that produces
reference pages within the document.

4 . 10 .1 Automatic Numbering of References

Automatically numbered references may be obtained by typing \•(Rf
immediately after the text to be referenced. This plaees the next sequential
reference number (in a. smaller point size) enclosed in brackets a half-line above
the text to be referenced.

4 . 10.2 Delimiting Reference Text

The .RS and .RF macros are used to delimit text for each reference. They have
the following form:

4-40

A line of text to be referenced.\•(Rf
.RS [string-name)
reference text
.RF

4 .10 .3 Subsequent References

.RS takes one argument, a "string-name". For example:

.RS AA
reference text
.RF

MM Reference

The string AA is assigned the current reference number. It may be used later in
the document, as the string call \ • (AA to reference text which must be labeled
with a prior reference number. The reference is output enclosed in brackets a
half-line above the text to be referenced. No .RS or RF is needed for subsequent
references.

4 .10.4 Reference Page

An automatically generated reference page is produced at the end or the
document before the table of contents and the cover sheet are output. ·The
reference page is entitled "References". This page contains the reference text
(RS/RF). The user may change the reference page title by defining the Rp
·string. For example,

.ds Rp " New Title"

The optional reference page (.RP) macro may be used to produce reference
pages anywhere within a document (i.e., within heading sections) .

. RP [arg1) [arg2)

These arguments allow the user to control resetting of reference numbering
and page skipping. The first argument with a value of 0 indicates that the
reference counter is to be reset; this is the default. A value of 1 indicates that
the counter will not be reset. In the second argument, a value of 0 causes a
following .SK; a value of 1 does not cause an .SK . . RP need not be used unless
you want to produce reference pages elsewhere in the document.

4.11 Miscellaneous Featu res

In this section a number of MM features to control font, spacing, justification,
multiple-column output and page skipping are discussed.

4-41

XENIX Text Processing

4 .1 1 .1 Bold , Italic, and Roman Fonts

Font changes are obtained with the following macros:

.B (bold-argJ (previous-font-arg] . . .

.I [italic-arg) (previous-font-arg) . . .

. R

When called without arguments, .B changes the font to bold and .I changes to
italic (troff) or underlining (nroff). This condition continues until the
occurrence of a .R, when the regular Roman font is restored. Thus,

.I
here is some text .
. R

yields:

here i1 1o me tezt.

Ir .B or .I is called with one argument, that argument is printed in the
appropriate font (underlined in n rofffor .1). Then the previous font is restored
(underlining is turned off in nroff). If two or more arguments (maximum 6) are
given to a .B or .1, the second argument is then concatenated to the first with no
intervening space (1/12-space if the first font is italic), but is printed in the
previous font; and the remaining pairs or arguments are similarly alternated.
For example:

.I italic " text " right -justified

produces:

italic text right-justified

These macros alternate with the prevailing font at the time they are invoked.
To alternate specific pairs of fonts, the following macros are available:

.m

.BI

.m

.RI

.RB

.BR

Each takes a maximum or 6 arguments and alternates the arguments between
the specified fonts. Note that font chang�s in headings are handled separately.

4-42

MM Reference

4 . 1 1 .2 Right �{argin Justification

The justification macro has the form:

.SA (arg)

The .SA macro is used to set right-margin justification for the main body of
text. Two justification flags are used: "current" and "default" . . SAO sets both
flags to no justification (i.e., it acts like the .na request) . . SA 1 is the inverse: it
sets both flags to cause justification, just like the .ad request. However, calling
.SA without an argument causes the current flag to be copied from the default
flag, thus performing either an .na or .ad, depending on what the default is.
Initially, both flags are set for no justification in nroff and for justification in
troff.

In generai, the request .na can be used to ensure that justification is turned off,
but .SA should be used to restore justification, rather than the .ad request. In
this way, justification or lack thereof for the remainder of the text is specified
by inserting .SA O or .SA 1 once at the beginning of the document.

4 .1 1 .3 SCCS Release Iden tification

The string .ft 1 E contains the SCCS Release and Level or the current version
of MM. For example, typing:

This is version \ *(RE or the macros.

produces:

This is version 15. 1 10 or the macros.

This information is useful in analyzing suspected bugs in MM. The easiest way
to have this number appear in your output is to specify -rDl on the command
line, which causes the string RE to be output as part of the page header.

4 .11 .4 Two-Column Output

MM can print two columns on a page:

.2C
text and formatting requests (except another .2C)
. IC

The .2C macro begins two-column processing which continues until a . 1C
macro is encountered. In two-column processing, each physical page i s thought
of as containing two columnar pages of equal (but smaller) page width. Page
headers and footers are not affected by two-column processing. The .2C macro

4-43

XENIX Text Processing

does not balance two-column output.

It is possible to have full page width footnotes and displays when in two column
mode, although the default action is for footnotes and displays to be narrow in
two column mode and wide in one column mode. Footnote and display width is
controlled by the width control (.We) macro, which takes the following
arguments:

N Normal default mode

WF Wide footnotes always (even in two-column mode)

-WF Default: turns off WF (Cootnotes follow column mode, wide in te
mode, narrow in 2e mode, unlessFF i s set)

FF First footnote; all footnotes have the same width as the first
footnote encountered for that page

-FF Default: turns off FF (footnote style follows the settings or WF or
-WF)

WD Wide displays always (even in two column mode)

-WD Default: Displays follow whichever column mode is in effect when
the display is encountered

For example: . we WD FF will cause all displays to be wide, and all footnotes on
a page to be the same width, while .We N will reinstate the default actions. Ir
conflicting settings are given to .We the last one is used. That is, .We WF-WF
has the effect or . We -WF .

4 .11 .5 Vertical Spacing

The vertical space macro has the form:

.SP (lines)

The .SP macro avoids the accumulation or vertical space by successive macro
calls. Several .SP calls in a row produce not the sum or their arguments, but
their maximum; i.e., the following produces only 3 blank lines:

.SP 2

.SP 3

.SP

There are several ways or obtaining vertical spacing, all with different effects.
The .sp request spaces the number or lines specified, unless no-space (.ns) mode
is on, in which case the request is ignored. The .ns mode is typically set at the
end or a page header in order to eliminate spacing by a .sp or .bp request that

4-44

MM Reference

just happens to occur at the top or a page. The .ns mode can be turned off with
the restore spacing (.rs) request.

Many MM macros utilize .SP for spacing. For example, .LE 1 immediately
followed by .P produces only a single blank line between the end of the list and
the following paragraph. An omitted argument defaults to one blank line (one
vertical space). Negative arguments are not permitted. The argument must be
unsealed but fractional amounts are permitted. Like .sp, .SP is also inhibited
by the .ns request.

4 .1 1 .6 Skipping Pages

The skip page macro has the form:

.SK (pages)

The .SK macro skips pages, but retains the usual header and footer processing.
If page• is omitted, · null, or 0, .SK skips to the top of the next page unless it is
currently at the top of a page, in which case it does nothing . . SK n skips n pages.
That is, .SK always positions the text that follows it at the top of a page, while
.SK 1 always leaves one page that is blank except for the header and footer .

4 .1 1 .7 Forcing an Odd Page

The odd page macro has the form:

.OP

This macro is used to ensure that the following text begins at the top of an odd­
numbered page. If currently at the top of an odd page, no motion takes place. Ir
currently on an even page, text resumes printing at the top or the next page. If
currently on an odd page (but not at the top of the page) one blank page is
produced, and printing resumes on the page after that.

4 . 11 .8 Setting Point Size and Vertical Spacing

In troff, the default point size (obtained from the register S) is 10, with a
vertical spacing of 12 points. The prevailing point size and vertical spacing
may be changed by invoking the .S macro:

.S (point size) (vertical spacing)

The mnemonics, D for default value, C for current value, and P for previous
value, rnay be used for both point size and vertical spacing arguments.

Arguments may be signed or unsigned. If an argument is negative, the current
value is decremented by the specified amount. Ir the argument is positive, the

XENIX Text Processing

current value is incremented by the specified amount. If an argument is
unsigned, it is used as the new value. ;8 without arguments defaults to previbus
(P). If the first argument is specified but the second argument (vertical spacing)
is not then the default (D) value is used. The default value for vertical spacing is
always 2 points greater than the current point size value selected. Footnotes
are printed in a size 2 points smaller than the point size of the body, with an
additional vertical spacing or 3 points between footnotes. A null (" ") argument
for either the first or second argument defaults to the current (C) value.

4 .11.0 Inserting Text Interactively

The read insertion macro has the form:

.RD (prompt] (diversion] (string]

The read insertion macro (.RD) allows you to stop the standard output or a
document and to read text from the standard input until two · consecutive
newlines are found. When the newlines are encountered, normal output is
resumed .

. RD follows the formatting conventions already in effect. Thus, the examples
below assume that the .RD is invoked in no fill mode (.nr). The first argument is
a prompt which will · be printed at the terminal. If no prompt is given, .RD
signals the user with a bell on terminal output.

The second argument, a dit�ersion. name, allows the user to save all the entered
text typed after the prompt. The third argument, a 1trin.g name, allows the
user to save for later reference the first line following the prompt. For example:

.RD Name aa bb

produces

Name: C. R. Jones
16 Densmore St,
Kensington

The diversion a a contains:

C. R. Jones
16 Densmore St,
Kensington

The string bb contains C.R. Jon.e1.

A newline followed by a CNTRL-D (ASCll end-of-file) also allows you to
resume normal output.

4-46

MM Reterence

4.12 Memorandum and Released Paper Styles

MM lets you specify a style ror a memorandum or technical paper with a macro
that controls the layout or heading inrormation (e.g. title, author' date, etc.) on
the first page or cover sheet. The inrormation is entered in the same way for
both styles; an argument indicates which style is being used. The macros used
to specify paper style are described in this section.

Note that it is critical to enter the macros in the order prescribed here. Ir
neither the memorandum nor released-paper style is desired, the macros
described below should be omitted rrom the input text. If these macros are
omitted, the first page will simply have the page header followed by the body or
the document.

4 .12 .1 Title

The title macro has the form:

.TL
one or more lines or title text

The title of the memorandum or paper follows the .TL macro and is processed
in fill mode. On output, the title appears arter the word "subject" in the
memorandum style. In the released-paper style, the title is centered and bold.

4,.12 .2 Authors

The author macro has the form:

.AU name (initials)

.AT (title) ...

A separate .AU macro is required for each author named.

The .AT macro is used to specify the author's title. Up to nine arguments may
be given. Each will appear in the Signature Block for memorandum style on a
separate line following the signer's name. The .AT must immediately follow
the .AU for the given author. For example:

.AU " C. R. Jones" (initials) [loc) (dept] (ext) (room)

.AT "Editor-in-chief"

In the "from" portion for the memorandum style, the author's name is followed
by location and department number on one line and by room number and
extension number on the next. The x for the extension is added automatically.
The printing of the location, department number, extension number, and room
number may be suppressed on the first page of a memorandum by setting the

4-47

XENIX Text Processing

register Au to 0; the default value for Au is 1. Arguments 7 through 9 ofthe .AU
macro, if present, will follow this "normal" author information in the "from"
portion, each on a separate line. Ir your organization has a numbering scheme
for memoranda, engineer's notes, etc., these numbers are printed after the
author's name. This can be done by providing extra arguments to the .AU
macro.

The name, initials, location, and department are also used in the Signature
Block described below. The author information in the from portion, as well as
the names and initials in the Signature Block will appear in the same order as
the .AU macros.

The names or the authors in the released-paper style are centered below the
title.

4 .12 .3 Technical :Memorandum Numbers

The technical memorandum macro has the form:

.TM [number) . . .

Ir the memorandum is a Technical Memorandum, the TM numbers are
supplied via the .TM macro. Up to nine numbers may be specified. For
example:

·™ 7654321 77777777

Ir present, this macro will be ignored in papers assigned the released-paper or
external-letter sty les.

4 .12.4 Abstract

The abstract macro has the form:

.AS (arg) [indent)
text or the abstract
.AE

Three styles of cover sheet are available: Technical Memorandum,
Memorandum for File, and released-paper. On the cover sheet, the text of the
abstract follows the author information and is preceded by the centered and
underlined (italic) word "ABSTRACT".

The abstract start (.AS) and abstract end (.AE) macros bracket the abstract.
The abstract is optional except that for the Memorandum for File style no
cover sheet will be produced unless an abstract is given.

4-48

MM Reference

A combination of the first argument to .AS and the use of the .CS macro (see
Section 4. 12.15) controls the production of the cover sheet. Ir the first
argument is 2, a Memorandum for File cover sheet is generated automatically.
An.y other value for the first argument causes the text of the abstract to be
saved until the .CS macro is invoked, then the appropriate cover sheet (either
Technical Memorandum or released paper depending on the .MT type) is
generated. Thus, .CS is not needed for Memorandum for File cover sheets.
Notations, such as a copy to list, are allowed on Memorandum for File cover
sheets. The .NS and .NE macros are given following the .AS 2 and .AE.

The abstract is printed with ordinary text margins. An. indentation to be used
for both margins can be specified as the second argument for .AS. Values that
specify indentation must be unsealed and are treated as character positions,
i.e., as the number of ens. Headings and displays are not permitted within an
abstract.

4 .12.5 Other Keywords

The keyword macro has the form:

.OK (keyword} ...

Topical keywords should be specified on a Technical Memorandum cover sheet.
Up to nine such keywords or keyword phrases may be specified as arguments to
the .OK macro; if any keyword contains spaces, it must be enclosed within
double quotation marks.

4 .12 .6 Memorandum Types

The memorandum type macro has the form:

.MT (type} (addressee)

The .MT macro controls the format of the top part of the first page of a
memorandum or or a released paper, as well as the format of the cover sheets.
Legal codes for type and the corresponding values are:

Code
.MT " "
.MT O
.MT
.MT 1
.MT 2
.MT 3
.MT 4
.MT 5
.MT " string"

Value
No memorandum type is printed
No memorandum type is printed
MEMORANDUM FOR FaE
MEMORANDUM FOR FaE
PROGRAMMER'S NOTES
ENGINEER'S NOTES
Released-paper style
External-letter style
String

XENIX Text Processing

Ir type indicates a memorandum style, then the value will be printed after the
last line or author information. If type is longer than one character, then the
string itselC will be printed. For example:

.MT "Technical Note #5"

A simple letter is produced by calling . .MT with a null (but not omitted!) or zero
argument.

The second argument to .MT is used to give the name or the addressee or a
letter. The name and page number will be used to replace the ordinary page
header on the second and following pages of the letter. For example,

.MT 1 " Charles Jones"

produces

Charles Jones - 2

as the header on the second page.

This second argument may not be used if the first argument is 4 (the released­
paper style).

In the external-letter style (.MT 5), only the title (without the word "subject:")
is printed in the upper left and right corners, respectively, on the first page.
You would normally use this style with preprinted stationery that has the
company name and address already printed on it.

4 .12 .7 Date and Format Changes

By default, the current date appears in the date part or a memorandum. This
can be overridden by using:

.ND new-date

The .ND macro alters the value or the string DT, which is initially set to the
current date.

4 .1 2 .8 Alternate First-Page Format

You can specify that the words "subject", "date" , and "from" be omitted in
the memorandum style by using the alternat.e format (.AF) macro. Unless you
use the .AF macro, with your own company name as an argument, "Bell
Laboratories" will automatically be printed as the company name on any
papers which begin with .MT macros. Therefore, you will always want to use:

4-50

�fM Reference

.AF (company-name]

Ir an argument is given, it replaces "Bell Laboratories" without affecting the
other headings. The .AF with no argument suppresses "Bell Laboratories" as
well as the "subject", "date" , and "Crom" headings. The use or .AF with no
arguments is equivalent to the use or-r AI on the command line, except that the
latter must be used iCit is necessary to change the line length and/or page offset
(which deCault to 5.8i and l i, respectively, Cor preprinted Corms). The
command line options -rOk and -rWk are not effective with .AF.

The only .AF option appropriate Cor troff is to speciCy an argument to replace
"Bell Laboratories" with another name.

4 .12 .0 Released-Paper Style

The released-paper style is obtained by speciCying:

.MT 4 (1]

This results in a centered, bold title Collowed by centered names or authors.
The location or the last author is used as the location Collowing "Bell
Laboratories" unless .AF is used to speciCy a different company. Ir the optional
second argument to .MT 4 is given, Then the name or each author is followed by
the respective company name and location. Inrormation necessary lor the
memorandum style but not Cor the released-paper style is ignored. The
Signature Block macros and their associated lines of input are also ignored
when the released-paper style is specified.

In addition to using the .AF macro to speciCy your company name, you can
define a string with a two-character name for your address beCore each .AU.
For example:

.TL
A Learned Treatise
.AF " Getem, Inc."
.ds XX " 22 Maple Avenue, Sometown ogggg"
.AU "F. Swatter" "" XX
.AF "Profit Associates"
.AU " Sam P. Lename" " " CB
.MT 4 1

4 .12.10 Order or Invocation or Beginning Macros

The macros described in this section must be given in the Collowing order if they
are used to define document style:

4-51

XENIX Text Processing

.ND new-date

.TL
one or more lines or text
.AF [company-name)
.AU name [initials) (loc) (dept) (ext) (room) (arg] [arg] (arg]
.AT [title] ...
. TM [number] . . .
.AS [arg) [indent)
one or more lines or text
.AE
.NS [arg)
one or more lines or text
.NE
.OK [keyword] ...
. MT [type) [addressee)

The only required macros for a memorandum or a released paper are .TL, .AU,
and .MT; all the others (and their associated input lines) may be omitted ir the
features they provide are not needed. Once .MT has been invoked, none of the
above macros (except .NS and . NE) can be reinvoked because they are removed
from the table or defined macros to save space.

4.12 .11 Macros (or the End or a Memorandum

At the end of a memorandum (but not or a released paper), the signaturesotthe
authors and a list of notations can be requested. The following macros and
their input are ignored if the released-paper style is selected. A signature block
macro is provided in the form:

.FC [closing)

.SG (a.rg] (1]

.FC prints "Yours very truly" as a formal closing. It must be given before the

.SG which prints the signer's name. A different closing may be specified as an
argument to .FC . . SG prints the author name(s) after the formal closing (or the
last line or text). Each name begins a.t the center or the page. Three blank lines
are left above each name for the actual signature. Ir no argument is given, the
line of reference data (e.g., location code, department number, author's initials,
and typist's initials) will not appear following the last line.

A first argument is treated as the typist's initials, and is appended to the
reference data. A null argument prints reference data. with neither the typist's
initials nor the preceding hyphen.

Ir there are several authors and if the · second argument is given, then the
reference data is placed on the same line as the name of the first author, rather
than on the lin·e that has the name or the last author.

4-52

MM Reference

The reference data contains only the location and department number or the
first author. Thus, if there are authors from different departments or from
different locations, the reference data should be supplied manually after the
invocation (without arguments) ofthe .SG macro.

4 .12 .12 Copy to and Other Notations

The notation macro has the form:

.NS (arg) .
zero or more lines or the notation
.NE

After the signature and reference data, many types or notations may follow,
such as a list or attachments or copy to lists. The various notations are
obtained through the .NS macro, which provides for the proper spacing and for
breaking the notations across pages, if necessary.

The codes for arg and the corresponding notations are:

Code
.NS " "
.NS O
.NS
.NS 1
.NS 2
.NS 3
. NS 4
. NS 5
.NS 6
.NS 7
.NS 8
.NS 9
.NS " string"

Notations
Copy to
Copy to
Copy to
Copy (with att.) to
Copy (without att.) to
Att .
Atts.
En c •
Encs.
Under Separate Cover
Letter to
Memorandum to
Copy (string) to

Ir arg consists or more than one character, it is placed within parentheses
between the words "Copy" and "to". For example:

.NS " with att. 1 only"

generates "Copy (with att. 1 only) to" as the notation. More than one notation
may be specified before the .NE occurs, because a .NS macro terminates the
preceding notation, if any.

The .NS and .NE macros may also be used at the beginning following AS and
.AE to place the notation list on the Memorandum for File cover sheet. Ir
notations are given at the beginning without .AS 2, they will be saved and
output at the end ofthe document.

XENIX Text Processing

4 . 1 2 . 1 3 Approval Signature Line

The approval signature macro has the form:

.AV " Jane Doe"

It can be used to provide a space for an approval signature next to the printed
name.

4 . 1 2 . 1 4 Forcing a One-Page Letter

At times it is useful to get a bit more space on the page, by forcing the signature
or items within notations onto the bottom of the page, so that the letter or
memo is just one page in length. This can be accomplished by increasing the
page length through the -rLn option, e.g. -rLgo. This has the effect of making
the formatter believe that the page is go lines long and therefore giving it more
room than usual to place the signature or the notations. This will only work for
a single-page letter or memo.

4 . 1 2 . 1 5 Cover Sheet

The cover sheet macro has the form:

.CS {pages) {other) [total) {figs) [tbls] [refs)

The .CS macro generates a cover sheet in either the Technical Memorandum
(TM) or released-paper style. All of the other information for the cover sheet is
obtained from the data given before the .MT macro call. Ir a TM style is used,
the .CS macro generates the "Cover Sheet for Technical Memorandum". The
data that appears in the lower left corner of the TM cover sheet (the number of
pages or text, the number or other pages, the total number of pages, the number
of figures, the number of tables, and the number of references) is generated
automatically. These values may be changed by supplying the appropriate
arguments to the .CS macro. Any values that are omitted will be calculated
automatically (0 is used for other pages). Ir the released-paper style is used, all
arguments to .CS are ignored.

4.13 Reserved Names

Ir you are extending, changing, or redefining existing MM macros, use the legal
names listed in this section. The following conventions are used in this section
to describe legal names:

4-54

MM Reterence

n
a
A
X
s

Digit
Lowercase letter
Uppercase letter
Any letter or digit (any alphanumeric character)
Special character (any nonalphanumeric character)

All other characters are literals (i.e., stand for themselves).

Note that "request", "macro", and "string" names are kept by the formatters
in a single internal table, so that there must be no duplication among such
names. "Number register" names are kept in a separate table.

4 .13.1 Names Used by Formatters

These are the names of the registers and requests used by nroff and troif.

Requests

Registers

aa. (most common)
an (only one, currently: .c2)

aa (normal}
.x (normal}
.s (only one, currently: .$)
% (page number)

4 .13.2 Names Used by MM

These are the names ofthe macros, strings, and registers used by MM.

Macros

Strings

AA (most common, accessible to user)
A (less common, accessible to user)
)x (internal, constant)
>x (internal, dynamic)

AA(most common, accessible to user)
A (less common, accessible to user)
)x (internal, usually alloca

.
ted to specific functions throughout)

}x (internal, more dynamic usage)

Registers Aa (most common, accessible to users)
An (common, accessible to user)
A (accessible, set on command line)
:x (mostly internal, rarely accessible, usually dedicated)
;x (internal, dynamic, temporaries)

4-55

XENIX Text Processing

4 .13 .3 Names Used by eqn/neqn and tbl

The equation preprocessors, eqn and neqn, use registers and string names ot
the Corm nn. The table preprocessor, tbl, uses the following names:

a- a+ a I nn #a ## #- # " " a T& TW

4 .13 .4 User-Definable Names

None or the above may be used to define your own extensions. To avoid
problems, use names that consist either or a. single lowercase letter, or or a
lowercase letter followed by anything other than a lowercase letter. The
following is a sample naming convention, where 4 can be any letter:

For macros

For strings

For registers

use a lowercase letter, followed by an uppercase letter (aA),
or an uppercase letter followed by a lowercase letter (Aa).

use a, followed by a parenthesis ()), a bracket ()) , or a brace
(}) .

use a lowercase letter followed by an uppercase letter (aA).

4 .13 .5 Sample Extension

The following is an example of how MM macro definitions may be extended.
This sequence generates and numbers the pages of appendices:

.nr Hu 1

.nr a 0

.de aH

.nr a +1
.nr P 0
.PH " ' "Appendix \ \na - \\\\\\\ \nP "'
.SK
.HU "\\S1"

Arter the above initialization and definition, each call or the form .a.H "title"
begins a new page (with the page header changed to "Appendix a -n ") and
generates an unnumbered heading or "title," which, if desired, can be saved for
the table of contents. Those who wish Appendix titles to be centered must, in
addition, set the register He to 1.

4:.14: Errors

When a macro discovers an error, a break occurs in processing. To avoid

4-56

MM Reference

confusion regarding the location of the error, the formatter output buffer
(which may contain some text) is printed and a short message is printed giving
the name or the macro that round the error, the type or error, and the
approximate line number (in the current input file) or the last processed input
line. Processing terminates, unless the register D has a. positive value. In the
latter case, processing continues even though the output is guaranteed to be
deranged from that point on.

Note that the error message is printed by writing it directly to the user's
terminal. Ir either tbl or eqnfneqn, or both are being used, and if the -olist
option or the formatter causes the last page or the document not to be printed, a.
harmless "broken pipe" message results.

4.14 .1 Disappearance of Output

This usually occurs because of an unclosed diversion {e.g., a missing .FE or
.DE). Fortunately, the macros that use diversions are careful about it, and they
check to make sure that illegal nestings do not occur. Ir any message is issued
about a missing .DE or .FE, the appropriate action is to search backwards from
the termination point looking for the corresponding .DS, .DF, or .FS.

The following command:

grep -n "\. [EDFT}[EFNQS)" files .. .

prints all the .DS, .DF, .DE, .FS, .FE, .TS, .TE, .EQ, and .EN macros found in
the files, each preceded by its filename and line number in that file. This listing
can be used to check for illegal nesting and/or omission of tbese macros.

4 .14.2 MM Error Messages

Each MM er-ror message consists of a standard part followed by a variable part.
The standard part is of the form:

ERROR:input line n

The variable part consists of a descriptive message, usually beginning with a
macro name. The variable parts are listed below in alphabetical order by
macro name, each with a more complete explanation:

Check TL, AU, AS, AE, MT sequence

These macros for the beginning or a memorandum are out of sequence.

AL:bad arg:value

The argument to the .AL macro is not one of 1, A, a., I, or i. The incorrect
argument is shown as value .

4-57

XENIX Text Processing

CS: cover sheet too long

The text or the cover sheet is too long to fit on one page. The abstract
should be reduced or the indent or the abstract should be decreased.

DS:too many displays

More than 26 floating displays are active at once, i.e . , have been
accumulated but not yet output.

DS:missing FE

A display starts inside a. footnote. The likely cause is the omission (or
misspelling) or a. .FE to end a. previous footnote.

DS:missing DE

.DS or .DF occurs within a. display, i.e. , a. .DE has been omitted or
mistyped.

DE: no DS or DF active

.DE has been encountered but there has not been a. previous .DS or .DF to
match it.

FE:no FS

.FE has been encountered with no previous .FS to match it.

FS:missing FE

A previous .FS was not matched by a. closing .FE, i.e. , an attempt is being
made to begin a footnote inside another one.

FS:missing DE

A footnote starts inside a. display, i.e., a. .DS or .DF occurs without a.
matching .DE.

H:bad a.rg:va.lue

The first argument to .H must be a. single digit from 1 to 7, but fltUUe has
been supplied instead.

H:missing FE

A heading macro (.H or .HU) occurs inside a. footnote.

H:missing DE

4-58

MM Rererence

A heading macro (.H or .HU) occurs inside a display.

H:missirig arg

.H needs at least 1 argument.

HU:missing arg

.HU needs 1 argument.

LB:missing arg(s)

.LB requires at least 4 arguments.

LB:too many nested lists

Another list was started when there were already 6 active lists.

LE:mismatched

.LE has occurred without a previous .LB or other list-initialization
macro. Although this is not a fatal error, the message is issued because
there almost certainly exists some problem in the preceding text.

Ll:no lists active

.LI occurs without a preceding list-initialization macro. The latter has
probably been omitted, or has been separated from the .LI by an
intervening .H or .IW.

ML:missing arg

.ML requires at least 1 argument.

ND:missing arg

.ND requires 1 argument.

SA: bad arg:value

The argument to .SA (if any) must be either 0 or 1. The incorrect
argument is shown as t�alue.

SG:missing DE

.SG occurs inside a display.

SO: missing FE

.SG occurs inside a footnote.

4-59

XENIX Text Processing

SG:no- authors

.SG occurs without any previous .AU macro(s).

VL:missing arg

.VL requires at least 1 argument.

4 . 14 .3 Formatter Error Messages

Most messages issued by the formatter are self-explanatory. Those error
messages over which the user has some control are listed below.

Cannot do ev

Caused by setting a page width that is negative or extremely short,
setting a page length that is negative or extremely short, reprocessing a
macro package (e.g. performing a a macro package that was requested
from the command line) , or requesting the -sl option to troff on a
document that is longer than ten pages.

Cannot execute filename

Given by the .! request if it cannot find the filename.

Cannot open filename

Issued if one or the files in the list or files to be processed cannot be opened.

Exception word list full

Too many words have been specified in the hyphenation exception list
(via .hw requests).

Line overflow

The output line being generated was too long for the formatter's line
buffer. The excess was discarded. See the "Word overflow" message
below.

Nonexistent font type

A request has been made to mount an unknown font.

Nonexistent macro file

The requested macro package does not exist.

4-60

MM Reference

Nonexistent terminal type

The terminal options refers to an unknown terminal type.

Out or temp file space

Additional temporary space for macro definitions, diversions, etc. cannot
be allocated. This message often occurs because or unclosed diversions
(missing .FE or .DE), unclosed macro definitions (e.g., missing " .. ") , or a
huge table or contents.

Too many page numbers

The list or pages specified to the formatter -o option is too long.

Too many string/macro names

The pool or string and macro names is full. Unneeded strings and macros
can be deleted using the .rm request.

Too many number registers

The pool or number register names is full. Unneeded registers can be
deleted by using the .rr request.

Word overflow

A word being generated exceeded the formatter's word buffer. The excess
characters were discarded. A likely cause for this and for the "Line
overflow" message above are very long lines or words generated through
the misuse of\c or or the .cu request, or very long equations produced by
eqn or neqn .

4-61

XENIX Text Processing

4:.15 Summary of Macros, Strings, and Nu mber
Registers · .

The following is an alphabetical list of macro names used by MM. The first line
of each item gives the name of the macro and a. brier description. The second
line shows the Corm in which the macro is called. Macros marked with an
asterisk are not, in general, invoked directly by the user. They are "user exits"
called rrom inside header, rooter ' or other macros.

1 C One-column processing
. 1C

2C Two-column processing
.2C

AE Abstra.ct end
.AE

AF Alternate format of "Subject/Date/From" block
.AF [company-name)

AL Automatically-incremented list start
.AL [type) [text-indent) [1]

AS Abstract start
.AS [arg) (indent)

AT Author's title
.AT [title) . . .

AU Author information
.AU name (initials) [Joe) (dept) [ext) [room) [a.rg) (arg) (a.rg)

AV Approval signature
.AV [name)

B Bold
.B (bold-a.rg) (previous-font-arg) (bold) (prev) (bold) (prev)

BE Bottom end
.BE

BI Bold/Italic
.BI [bold-a.rg) (ita.lic-a.rg) (bold) [italic) (bold) [italic)

BL Bullet list start
.BL (text-indent) [1]

4-62

�tM Reference

BR Bold/Roman
.BR (bold-arg) (Roman-arg) (bold} (Roman) (bold) (Roman)

BS Bottom start
.BS

CS Cover sheet
.CS (pages) (other) [total) (figs) (tbls) (refs)

DE Display end
.DE

DF Display floating start
.DF (rormat] (fill) [right-indent)

DL Dash list start
.DL (text-indent) (I]

DS Display static start
.DS [format) (fill} [right-indent)

EC Equation caption
.EC (title) (override) (flag)

EF Even-page rooter
.EF [arg)

EH Even-page header
.EH [arg)

EN End equation display
.EN

EQ Equation display start
.EQ (label)

EX Exhibit caption
.EX (title) (override) [flag)

FC Formal closing
.FC [dosing)

FD Footnote default Cor mat
.FD (arg) [1)

FE Footnote end
.FE

FG Figure title
.FG [title) [override) (flag)

4-83

XENIX Text Processing

FS Footnote start
.FS [labelJ

H Heading-numbered
.H level [heading-text) [heading-suffix}

HC Hyphenation character
.HC [hyphenation-indicator)

HM Heading mark style (Arabic or Roman numerals, or letters)
.HM [argl) . . . [arg7J

HU Heading-unnumbered
.HU heading-text

HX Heading user exit X (before printing heading)
.HX dlevel rlevel heading-text

HY Heading user exit Y (before printing heading)
.HY dlevel rlevel heading-text

HZ Heading user exit Z (after printing heading)
.HZ dlevel rlevel heading-text

I Italic (underline in nroftj
.I [italic-arg) (previous-font-argl[italic) (prev) [italic) fprev}

m Italic/Bold
.m [italic-arg) (bold-arg) (italic) (bold) [italic) (bold)

IR Italic/Roman
.m [italic-arg) [Roman-arg) [italic) (Roman) [italic) [Roman)

LB List begin
.LB text-indent mark-indent pad type [mark] (LI-sp ace) (LB-space]

LC List-status clear
.LC [list-level)

LE List end
.LE (1)

LI List item
.LI [mark) [1]

ML �farked list start

4-64

.ML mark [text-indent) (1]

MT Memorandum type
.MT (type) (addressee)
or .MT (4) (1]

ND New date
.ND new-date

NE Notation end
.NE

NS Notation start
.NS [arg)

nP Double-line indented paragraphs
.nP

OF Odd-page footer
.OF (arg)

OH Odd-page header
.OH (arg)

OK Other keywords for TM cover sheet
.OK (keyword) ...

. op Odd page
.OP

P Paragraph
.P [type)

PF Page footer
.PF [arg)

PH Page header
.PH [arg)

PX Page-header user exit
.PX

�fM Reference

R Return to regular (Roman) font (end underlining in nrotr)
.R

RB Roman/Bold
.RB (Roman-arg) (bold-arg) [Roman) [bold) (Roman) (bold)

RD Read insertion from terminal
.RD (prompt) (diversion) [string)

XENIX Text Processing

RF Reference end
.RF

RI Roman/Italic
.RI [Roman-arg) (italic-arg) [Roman) (italic) (Roman) [itaJic)

RL Reference list start
.RL (text-indent) [1]

RP Produce reference page
.RP (arg) [arg)

RS Reference start
.RS [string-name)

S Set troffpoint size and vertical spacing
.S (size) (spacing)

SA Set adjustment (right margin justification) default
.SA [arg)

SG Signature line
.SG [arg) [1]

SK Skip pages
.SK (pages}

SP Space-,-vertically
.SP (lines)

TB Table title
.TB (title) (override] (flag)

TC Table of contents
.TC (slevel) (spacing] [tlevel) (tab) (headl) (head2) [head3) [head4) (headS)

TE Table end
.TE

TH Table header
.TH (N)

TL Title of memorandum
.TL (charging-case) (filing-case)

TM Technical Memorandum number(s)
.TM (number) .. .

TP Top-of-page macro
.TP

4-66

MM Reference

TS Table start
.TS (H)

TX Table-of-contents user exit
.TX

TY Table-of-contents user exit (suppresses "CONTENTS")
.TY

VL Variable-item list start
.VL text-indent (mark-indent) (1)

VM Vertical margins
.VM (top) (bottom)

WC Width control
.we (format]

4 .15.1 Strings

The following is an alphabetic list of string names used by MM, giving for each a
brief description and an initial default value.

Ci Contents indent up to seven arguments for heading levels.

F Footnote numberer.
In nrofr: \u\ \n+(:p\d
In trofr: \v'-.4m'\s-3\ \n+9:p\s0\v'.4m'

DT Date. The current date, unless overridden.

EM Em dash string. Used by both nrofr and trofr

HF Heading font list, up to seven codes for heading levels 1 through 7
3 3 2 2 2 2 2 (levels 1 and 2 bold, 3-7 underlined in nrofr, italic in
trofr)

HP Heading point size list, up to seven codes for heading levels 1
through 7

Le Title for LIST OF EQUATIONS

Lf Title for LIST OF FIGURES

Lt Title for LIST OF TABLES

Lx Title for LIST OF EXHIBITS

4-67

XENIX Text Processing

RE SCCS Relea.se and MM
Release Level

Rf Reference numberer

Rp Title for References

Tm Trademark string places the letters "TM" hair a line above the text
that it follows

4 . 16 .2 Number Registers

This section provides an alphabetical list of register names, giving for each a
brief description, initial (default) value, and the legal range or values (where
[m:n) means values from m to n inclusive).

Any register having a single-character name can be set from the command line.
An a.st.erisk attached to a register name indicates that that register can be set
only from the command line or before the MM macro definitions are read by the
formatter.

A Handles preprinted forms
0, (0:2)

Au Inhibits printing of author's location, department, room, and extension
in the from portion of a memorandum
1, (0: 1)

C Copy type (Original, DRAFT, etc.)
0 (Original) , (0:4)

Cl Contents level (i.e ., level of headings saved for table of contents)
2, (0:7)

Cp Placement of List of Figures, etc.
1 (on separate pages), (0: 1}

D Debug flag
0, (0: 1]

De Display eject register for floating displays
0, (0: 1}

Dr Display format register for floating displays
6, (0:6)

Ds Static display pre- and post-space
1, (0: 1)

4-68

Ec Equation counter, used by .EC macro
0, (0:!), incremented by 1 for each .EC call.

Ej Page-ejection flag for headings
0 (no eject), (0:7)

Eq Equation label placement
0 (right-adjusted}, (0: 1)

Ex Exhibit counter, used by .EX macro
0, (0:!), incremented by 1 for each .EX call.

Fg Figure counter, used by .FG macro
0, (0:!), incremented by 1 for each .FG call.

Fs Footnote space (i.e., spacing between footnotes)
1 , (0:!)

H1-H7 Heading counters for levels 1-7

MM Reference

0, (0:!), incremented by .H or corresponding level or .IRJ if at level given
by register Hu. H2-H7 are reset to 0 by any heading at a lower-numbered
level.

Hb Heading break level (after .Hand .HU)
2, (0:7)

He Heading centering level (for .H and .HU)
0 (no centered headings), (0:7) .

Hi Heading temporary indent (after .H and .IRJ)
1 (indent as paragraph}, (0:2)

Hs Heading space leve I (after .H and .HU)
2 (space only after .H 1 and .H 2}; (0:7)

Ht Heading type (for .H: single or concatenated numbers)
0 (concatenated numbers: 1 . 1 . 1 , etc.) , [0: 1]

Hu Heading level (for unnumbered heading .HU)
2 (.HU at the same level as .H 2), (0:7)

Hy Hyphenation control for body or document
0 (automatic hyphenation off}, (0: 1)

L Length of page
66, [20:!) { I I i, (2i:!) in troffthese values must be scaled.

Le List ofEquations
0 (list not produced) (0: 1]

4-69

XENIX Text Processing

Lf List of Figures
1 (list produced) [0: 1]

Li List indent
6, [0:?]

Ls List spacing between items by level
5 (spacing between all levels)

Lt List of Tables
1 (list produced) (0: 1]

Lx List of Exhibits
1 (list produced) (0: 1]

N Numbering style
0, (0:5)

Np Numbering style for paragraphs
0 (unnumbered) (0: 1]

0 Offset of page
.75i, [0:?) (0.5i, [Oi:?) in troff

Oc Table ofContents page numbering style
0 (lowercase Roman), (0: 1]

or Figure caption style
0 (period separator), [0: 1)

P Page number, managed by MM.
0, [0:?)

Pi Paragraph indent
5, {0:?]

Ps Paragraph spacing
1 (one blank space between paragraphs), [0:?)

Pt Paragraph type
0 (paragraphs always left-justified), (0:2)

S Point size
10, [6:36)

Si Standard indent for displays
5, (0:?)

T Type of nroff output device
0, [0:2)

4-70

Tb Table counter
0, (0:!), incremented by 1 ror each . TB call.

U Underlining style ror .H and .HU
O (continuous underline when possible), (0: 1)

W \\'idth of page (line and title length)
6i, (10: 1365) (6i, (2i:7.54i) in troff

MM Rererenee

4-11

Chapter 5

Using Nroff/Troff

5 .1 Introduction 5-1

5.2 Inserting Commands 5-2

5.3 Point Sizes and Line Spacing 5-2

5.4 Fonts and Special Characters 5-4

5.5 Indents and Line Lengths 5-6

5.6 Tabs 5-8

5.7 Drawing Lines and Characters 5-9

5.8 Strings 5-11

5 .9 Macros 5-12

5.10 Titles , Pages and Numbering 5-14

5 . 1 1 Number Registers and Arithmetic 5-15

5. 1 2 Macros with Arguments 5-17

5.13 Conditionals 5-19

5 . 14 Environments 5-20

5 .15 Diversions 5-21

Using Nroff/Troff

5 . 1 Introduction

Nroff and troff are the XENIX text formatting programs for producing high­
quality printed output on the lineprinter and phototypesetter, respectively.
Commands in the two formatting programs nroff and troff are identical,
although those specifications which are impossible to achieve on a
lineprinter-like changes in point size, font, or variable spacing-are either
approximated or ignored by nroff. The output of n roff and troff may look
dramatically different, but this is largely the result or the limitations or
conventional lineprinters. In this chapter, the two programs will be treated
together; the names nroff and troff are used synonymously. Commands not
recognized by nroff or which result in significantly different output will be
noted.

Wherever possible, you should avoid using n roff or troff directly. In many
ways, nroff and troff resemble computer assembly languages: they are
powerful and flexible, but they require that many operations must be specified
at a level of detail and complexity too difficult for most people to use effectively.
That is why it is suggested that you use the MM macro package instead. If you
must deal with specialized text, you can use the eqn macros for typesetting
mathematics and the tbl program for producing complex tables. Eqn and tbl
are discussed in Chapters 10 and 11 of this manual.

For producing running text, whether or not it contains mathematics or tables,
you will ordinarily want to use the MM macro package, described in Chapter 3,
"Using the MM Macros' ' and Chapter 4, ' 'MMReference' ' .

All these macro packages offer the capability or meeting most formatting
requirements. You may find you have little or no need to use nroff/troff
directly. The macros define formatting rules and operations for specific styles
of documents. The definitions are concise: in most cases two-letter commands.
In those cases where an existing macro will not do the job , the solution is not to
write an entirely new set of nroff/troff instructions from scratch, but to make
small adaptations to macros you are already using.

This chapter is meant to introduce you to the formatting possibilities or
nroff/trofl'. It does not discuss every command or operation in detail. The
emphasis is on demonstrating simple and commonly used specifications, with
examples of some of the variations you may need to create.

The following topics are introduced in this tutorial:

Specifying point size, fonts, and special characters

Determining line spacing, line lengths, indents, and tabs

Using string definitions and macros

5-;1

XENIX Text Processing

Specifying title and pagination styles

Specifying conditionals, environments, and diversions

S.2 Inserting Com mands

To use nroff or troff you intersperse formatting commands with the actual
text you want printed, just as you did with MM commands described in the la.st
chapter. You will notice that nroff and troff commands are in lowercase, so
you will not confuse them with the MM macros. Most nroff and troff
commands are placed on a line separate from the text itself, beginning with a
period, one command per line. For example, if you had a file that contained the
following lines:

Some text .
. ps 14
Some more text.

the .ps command would instruct troff to change the point size, that is, the size
of the letters being printed, to 14 point (one point is 1/72-inch). Your output
would look like this:

Some text. Some more text .

Ir you were to use nroff to output this same file to the lineprinter, nroff would
ignore the .ps command and you would see no difference in the size of your
letters.

Some nroff/troff commands do occur in the middle of a line. To produce

This line contains font and point size changes.

you have to type

This \ffiline\rR contains \fifont and \s+2point size\s-2 changes.

The backslash character "\" is used to introduce nroff/troff commands and
special characters within a line or text.

5 .3 Point Sizes and Line Spacing

As we just saw, point size and vertical spacing are not normally controllable in
nroff (lineprinter) output. In troff, the command .ps sets the point size. One
point is 1/72-inch, so 6-point characters are at most 1/12-inch high, and 36-
point characters are 1/2-inch. There are 15 point sizes available, a.s illustrated:

5-2

Using Nroff/Troff

& point: In Xanadu did Kubhb Khan ...
7 point: In Xa.n.a.du did Kubhla. Khan. • •
8 point: In Xanadu did Kubhla. Khan . . .

g point: In Xanadu did Kubhla Khan . . .
10 point: In Xanadu did Kubhla Khan . . .
1 1 point: In Xanadu did K ubhla Khan . . .
12 point: ln Xa.nadu did Kubhla Khan . . .
1 4 poin t : In Xanadu did Kubhla Khan . . .

1 6 point 1 8 point 20 point

22 24 28 36
Ir the number after .ps is not one or these legal sizes, it is rounded up to the next
valid value, to a maximum of 36. Ir no number follows .ps, troff reverts to its
previous size. Troff begins with a default point size or 10.

Point size can also be changed in the middle or a line or even a word with the in-
line command "\s". To produce

·

The XENIX system is derived from the UNIX system.

type

The \s12XENIX\s8 system is derived from the \s12UNIX\s8 system.

The \s should be followed by a legal point size. An \sO causes the size to revert
to its previous value. An \s101 1 means "size 10, followed by an 1 1".

Relative size changes are possible. The following

The \s+2XENIX\s-2 system

increases the point size by two points, then restores it. The amount or the
relative change is limited to a single digit.

Another feature to consider is the spacing between lines, which is set
independently or the point size. Vertical spacing is measured from the bottom
or one line to the bottom or the next. The command to control vertical spacing
is .vs. For running text, it is usually best to set the vertical spacing about 20%
bigger than the point size.

For example, to use what typesetters call "9 on 1 1 ", that is, a point size of9 with
a vertical spacing or 1 1 , you would insert the following commands:

XENIX Text Processing

.ps g

.vs l lp

If you do not specify a. point size or vertical spacing, troff a.utomatica.lly uses 10
on 12.

Point size and vertical spacing make a substantial
difference in the amount of text per square inch. (This is 12
on 14.)
Poim siu and vertical spacing make a substantial difference in the amount of ten per � inc:b. For example, 10 on
12 uses about twice � muc:b space � 7 on 8. 1bis is &on 7, whic:b is even smaller, and packs ala$ more words per line.

When you use the commands .ps and .vs without numbers, troff reverts to the
previous size and vertical spacing.

The .sp command can be used to get vertical space . Without a number, it gives
you one blank line (one unit of whatever .vs has been set to). The .sp can be
followed by a. unit specification:

.sp 2i

means "two inches ofverticalspace". The command:

.sp 2p

means "two points of vertical space". The command:

.sp 2

means "two vertical spaces" of whatever size .vs is set to. Be careful to specify
the correct unit of space.

TrotT also understands decimal fractions in most commands, so

.sp 1 .5i

is a space of 1 .5 inches. Scaling (designating a unit of measure su.ch as inches,
points, or picas) can also be used after .vs to define line spacing, and in fact after
most commands that deal with physical dimensions.

5 .4: Fonts and Special Characters

The phototypesetter is limited to four different fonts at any one time.
Normally three fonts (Roman, italic and bold) and one collection or special
characters are permanently mounted. What these fonts will actually look like
depends on your own typesetting equipment. Here are the Roman, italic, and
bold character sets:

5-4

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGlllJKLMNOPQRSTlNWXYZ
abc defghi'jklmnopqr�tuvw:zyz 0129456789
ABGDEFGHIJKLMNOPQRSTUVWXYZ
abcderghij klmnopqrstuvwxyz 0 1 234 5678Q
ABCDEFG HIJKLMNOPQRSTUVWXYZ

Using Nroff/Troff

Troff prints in Roman by default, unless instructed otherwise. To switch into
bold, use the . ft (font) command

.rt B

and for italics,

.rt I

· To return to roman, use .rt R; to return to the previous font, whatever it was,
use either .ft P or just Jt. The underline command .ul causes the next input line
to print in italics. The .ul can be followed by a count to indicate that more than
one line is to be italicized.

Fonts can also be changed within a. line or word with the in-line command "\r'.
The words

boldface text

are produced with

\ffibold\riface\ffi text

There are other fonts available besides the standard set, although only four can
be mounted a.t any given time. The command . fp tells troff what fonts are
physically mounted on the typesetter:

.fp 3 H

says that the Helvetica font is mounted on pos1t10n 3. Appropriate .fp
commands should appear a.t the beginning or your document if you do not use
the standard fonts.

It is possible to print a document by using font numbers instead or names. For
example, \f3 and . rt 3 mean "whatever font is mounted at position 3". Normal
settings are Roman font on 1, italic on 2, bold on 3, and special on .f. An
approximation of bold font can also be created by overstriking letters with a.
slight offset. This is done with the command .bd.

Special characters have four-character names beginning with "\(" , and they
may be inserted anywhere. In particular, Greek letters are all of the form
"\(•-", where "-" is an uppercase or lowercase Roman letter similar to the
Greek. To get

5-S

XENIX Text Processing

E(a x t9) - oo

in troff we have to type

\(•S(\(•a\(mu\(•b) \(\(- > \(if

which is a series or special characters:

\(•S
(
\(•a
\(mu
\(•b
)
\(->
\(if

E
(
0'
X
t9
)
-
00

You could also use the mathematical typesetting program eqn to achieve the
same effect:

SIGMA (alpha. times beta) -> inr

Whether you choose to use eqn or the troff special character set should depend
on how often you use Greek or other special characters.

Nroff and troff treat each four-character name as a single character. Some
characters are automatically translated into others: grave and acute accents
(apostrophes) become open and close single quotation marks ("); the
combination or single quotation marks is generally preferable to the double
quotation mark character. (") . A typed minus sign becomes a. hyphen -. To
print an explicit minus sign, use "\- ' ' . To print a backslash, use "\e".

5 .5 In dents and Line Lengths

Troff starts with a default line length or 6.5 inches. To reset the line length, use
the .II (line length) command, as in

.11 6i

to indicate a. line length or 6 inches. The length can be specified in the same
ways as the space (.sp) command, in inches, fractions or inches, or points.

The maximum line length provided by the typesetter is 7.5 inches. To use the
full width, however, you will have to reset the default physical left margin,
which is normally slightly less than one inch from the left edge or the paper.
This is done with the page offset (. po) command:

.po 0

5-6

Using Nroff/Troff

This sets the offset as far to the left as it will go.

The indent (. in) command causes the left margin to b� indented by a specified
amount from the page offset. If we use . in to move the left margin in , and .II to
move the right margin to the left, we can make offset blocks of text. For
example,

.in 0.6i

.ll -0.6i
text to be set in to a. block
.11 +0. 6i
.in -0.6i

will create a block that looks like this:

Pater noster qui est in caelis sanctificetur nomen tuum;
advenia.t regnum tuum; fiat voluntas tua, sicut in caelo, et in
terra ... Ainen.

Notice the use or+ and - to specify the amount or change. These change the previous
setting by the specified amount, rather than just overriding it. The distinction is
quite important: . 11 + li makes lines one inch longer than current setting; .ll l i makes
them one inch long. If no argument is specified with . in, .11, and .po, troft' reverts to
the previous value.

To indent a single line, use the temporary indent (.ti) command. The default unit for
.ti, as for most horizontally oriented commands such as .11, .in, .po, is an em. An em is
roughly the width of the letter m in the current point size . Although inches may seem
a more intuitive measure to nontypesetters, ems are a measure or size that is
proportional to the current point size. It you want to make text that keeps its
proportions regardless or point size, you should use ems for all dimensions. Ems can
be specified in the same way as points or inches:

.ti 2.5m

Lines can also be indented negatively if the indent is already positive:

ti -0.3i

causes the next line to be moved back three tenths or an inch. You can make a
decorative initial capital, indent a whole paragraph, and move the initial letter back
with a . ti command:

P ater noster qui est in caelis sanctificetur nomen tuum;
adveniat regnum tuum;

fiat voluntas tua., sicut in caelo, et in terra.. . . . Amen.

This is achieved with the following:

XENIX Text Processing

. I I -0.3i

.fi

.in +3i

.ti -0.3i

The P is made bigger with a "\s36P\s0". It also has been moved down from its
normal position with a local motion, as described in Section 5.7, "Drawing Lines and
Characters".

5 .6 Tabs

Tabs can be used to produce output in columns, or to set the horizontal position or
output. Typically, tabs are used only in unfilled text. Tab stops are set by default
every 1/2-inch from the current indent, but can be changed with the .ta command.
To set stops every inch, for example, use:

.ta 1i 2i 3i 4i 5i 6i

The stops are left-justified, as they are on a typewriter, so lining up columns or right­
justified numbers can be painful. Ir you have many numbers, or if you need more
complicated table layout, don't attempt to use nroff or troff commands; Use the tbl
program instead. (See Chapter 7, "Formatting Tables".)

For a handful or numeric columns, you can precede every number by enough blanks
to make it line up when typed:

.nr

.ta 1i 2i 3i
1 tab 2 tab 3

40 tab 50 tab 60
700 tab 800 tab 900
.fi

Then change each leading blank into the string "\0". This is a character tha:t does
not print, but that has the same width as a digit. When printed, this will produce

1
40

700

2
50

800

3
60

900

It is also possible to fill up tabbed-over space with a character other than a space by
setting the "tab replacement character" with the tab character (.tc) command:

.ta 1.5i 2.5i

.tc \(ru
Name tab Age tab

produces

5-8

Using N roff JTroff

Name ________ Age -----

To reset the tab replacement character to a blank, use .tc with no argument. Lines
can also be drawn with the \1 command, described below.

5 .7 Drawing Lines and Ch aracters

Troff prov�des a way to place cha.racters of any size at any place, as in the examples
Area = 1rr and the big P in the Paternoster (See Section 5.5). Commands can be
used to draw special characters or to give your output a particular appearance. Most
of these commands are reasonably straightforward, but look rather complicated.

For example, without eqn, subscripts and superscripts are most easily done with the
half-line local motions \u and \d. To go back up the page hair a point-size, insert a \u
at the desired place; to go down, insert a \d. Thus

Area = \(•pr\u2\d

produces

Area = 1rr2

To make the 2 smaller, bracket it with

\s-2 . . . \sO

Since \u and \d are relative to the current point size, be sure to put them either both
inside or both outside the size changes, or the results will be unbalanced.

Ir the space given by \u and \d doesn't look right, the \v command can be used to
request an ar hi trary amount of vertical motion. The in-line command

\v'(amount)'

causes motion up or down the page by the specified amount. For example, to move
the P in Pater, the following is required:

.ta 1i

.in +0.6i \" move paragraph in

.11 -0.3i \" shorten lines

.ti -0.3i \" move P back
\v' l '\s36P\s0\v'\- l ' ater noster qui est
in caelis ...

The backslash \" is a troff command that causes the rest of the line to be ignored. It
is useful for adding comments to the macro definition.

XENIX Text Processing

A minus sign, after "\ v ' " causes upward motion, while no sign or a plus sign causes
downward motion. Thus "\ v' -11 " causes an upward vertical motion of one line
space.

There are many other ways to specify the amount of motion:

\v'0. 1 i'
\v'3p'
\v'-0.5m'

and so on are all legal. Notice that the specifiers, i for inches, p for points or m for
ems, go inside the quotat.ion marks. Any character can be used in place of the
quotation marks, as well as in any troff commands described in this section.

Since troff does not take within-the-line vertical motions into account when figuring
out where it is on the page, output lines can have unexpected positi9ns if the left and
right ends aren't at the same vertical position. Thus \v, like \u and \d, should always
balance upward vertical motion in a line with the same amount in the downward
direction.

Arbitrary horizontal motions are also available: \h is quite analogous to \v, except
that its default scale is ems instead of line spaces. The specification \h'-0. 1i' causes a
backwards motion or a 1/10-inch.

Frequently \h is used with the width function \ w to generate motions equal to the
width of some character string. The construction

\w'thing'

is a number equal to the width or thing in machine units (1/432-inch). All troff
computations are actually done in these units. To move horizontally the width of an
x, you can use:

\h'\w'x'u'

� we mentioned above, the default scale factor for all horizontal dimensions is m for
ems, so here u for machine units must be specified, or the motion produced will be far
too large. Nested quotation marks are acceptable to troff; be careful to supply the
right number.

There are also several special-purpose troff commands for local motion. We have
already seen \0, which is an unpaddable whitespace of the same width as a digit.
Unpaddable means that it will never be widened or split across a line by line
justification and filling. There is also \(space), which is an unpaddable character the
width or a space, \1, which is half that width, \ A I which is one quarter of the width ora
space, and \&, which has zero width. This last one is useful, for example, when
entering a text line which would otherwise begin with a dot (.) .

The command "\o", used like

5-.10

Using Nroff/Troff

\o'set or characters'

causes up to g characters to be overstruck, centered on the widest. This can be used
for accents, as in:

syst\o" e\(ga�me t\o" e\(aa" 1\o"e\(aa"phonique

which makes:

systeme telephonique

The accents are treated by troff as single characters.

You can make your own overstrikes with another special convention, \z, the zero­
motion command, which suppresses the normal horizontal motion after printing the
single character x, so another character can be laid on top of it. Although sizes can be
changed within \o, it centers the characters on the widest, and there can be no
horizontal or vertical motions, so \z may be the only way to get what you want.

You can create rather ornate overstrikes with the bracketing function \ b, which piles
up characters vertically, centered on the current baseline. Thus you can get big
brackets by constructing them with piled-up smaller pieces:

{ [X] }
by typing in this:

\b'\(lt\(lk\(lb'\b'\(lc\(Ir x \b'\(rc\(rf\b'\(rt\(rk\(rb'

Troff also provides a convenient facility for drawing horizontal and vertical lines of
arbitrary length with arbitrary characters. \1' li' draws a line one inch long, like
this: . The length can be rollowed by the character to use if the _
isn't appropriate. For example, \1' 0.5i.' draws a hair- inch line or dots:
The construction \L is entirely analogous, except that it draws a vertical line instead
of horizon tal.

5 .8 Strings

Obviously, if a paper contains a large number of occurrences of an acute accent over a
letter e, typing \o" e \' " for each occurrence would be a great nuisance. Fortunately,
nroff and troff provide a facility for storing any string of text in a string definition.
Strings are among the n roff and troff mechanisms that allow you to type a
document with less effort and organize it so that extensive format changes can be
made with few editing changes. Strings are defined with the define (.ds) command.
Thereafter, whenever you need to use the string, you can replace it with the
shorthand you have defined. For example, the line:

5-1 1

XENIX Text Processing

.ds e \o" e\' "

defines the string e to have the value e.

String names may be either one or two characters long. To distinguish them from
normal text, single-character strings must be preceded by "*" and double­
character strings by "\ * (". Thus, to use the definition of the string e a.s above, we can
say t\ *el\ *ephone. Ir a. string must begin with blanks, define it by using a. double
quotation mark to signal the beginning of the definition. For example,

.ds xx " text

defines the string "xx" as the word " text" preceded by several blanks. There is no
trailing quote; the end of the line terminates the string.

A string may actually be several lines long; if troff encounters a. \ at the end of any
line, it is thrown away and the next line added to the current one. So you can make a.
long string simply by ending each line but the last with a ba.ckslash:

.ds xx this is a. very long string\
continuing on the next line\
and on to the next

Strings may be defined in terms of other strings, or even in terms of themselves.

5 .9 Macros

In its simplest form, a macro is just a shorthand notation-somewhat like a string.
For example, suppose we want every paragraph in a document to start with a space
and a. temporary indent oftwo ems: · ·

.sp

.ti +2m

To save typing, we could translate these commands into one macro:

.P

which troffwould interpret exactly a.s

.sp

.ti +2m

If you first define it with the . de command, the macro .P can replace the longer
specification:

5-12

.de P

.sp

.ti +2m

Using Nroff/Troff

The first line nat:nes the macro, in this case .P for paragraph; it is in uppercase to
avoid conflict with any existing nroft' or troft' command. The last line marks the end
of the definition. In between is the text, which is simply inserted whenever troft'sees
the command or macro call .P. A macro can contain any mixture of text and
formatting commands. The definition or .P naturally has to precede its first use.
Names are restricted to one or two characters.

Using macros for commonly occurring sequences of commands not only saves typing,
but it makes later changes much easier. Suppose we decide that the paragraph
indent is too small, the vertical space is much too big, and roman font should be
forced. Instead or changing the whole document, we need only change the definition
or .P to something like

.de P

.sp 2p

.ti +3m

.ft R

\" paragraph macro

and the change takes effect everywhere the .P macro is invoked.

As another example or a macro definition, consider these two which start and end a
block or offset, unfilled text:

.de BS

.sp

.nr

.in +0.3i

.de BE

.sp

.fi

.in \(mi0.3i

\" start indented block

\" end indented block

Now we can surround text with the commands .BS and .BE to create indented blocks.
Uses of..BS and .BE can be nested to get blocks within blocks. To change the indent,
it is only necessary to change the definitions of .BS and .BE, not every occurrence or
the indent in the ent.ire document.

The macro package MM, as well as the two specialized macro packages, tbl and eqn,
are simply very large collections or macro definitions which replace more
cumbersome arrays of nroft' and troff commands. One thing to keep in mind when
you consider defining a new macro, is that unless you are doing something quite
unusual, an MM macro probably already exists for that purpose. So check your
documentation carefully before reinventing the wheel.

5-i3

XENIX Text Processing

5 .10 Titles, Pages and Nu mbering

None of the features described in this section are automatic. You may wish to copy
these specifications literally until you feel more comfortable with these commands.
For example, suppose you want to have a title at the top of each page. You have to
give the actual title, along with instructions about when to print it, and directions for
its appearance. First, a new page (.NP) macro can be created to process titles and the
like at the end of one page and the beginning of the next:

.de NP
'bp
'sp 0.5i
.tl ' left top'center top'right top'
'sp 0.3i

To start at the top of a page, a begin page (. bp) command should be included, which
causes a skip to the top of the next page. Then we space down hair an inch, use the
title (. tl) command to print the title and space another 0.3 inches.

To ask for .NP at the bottom of each page, we need to specify that the processing for a
new page should start when the text is within an inch of the bottom of the page. This
is done with a when (. wh) command:

.wh \- l i NP

(Note that no dot is used before NP; this is simply the name of a macro, not a macro
call.) The minus sign means "measure up from the bottom of the page," so -li means
one inch from the bottom.

The . wh command appears in the input outside the definition of .NP; typically the
input would be

.de NP
macro defined here

.wh -li NP

As text is actually being output, nroff/troff keeps track of its vertical position on
the page, and after a line is printed within one inch of the bottom, the .NP macro is
activated. The .NP macro causes a skip to the top of the next page, then prints the

· title with the appropriate margins. All the input text collected but not yet printed is
flushed out as soon as possible, and the next input line is guaranteed to start a new
line of output; a break is caused in the middle of the current output line when a new
page is started. The leftover part of that line is printed at the top of the page,
followed by the next input line on a new output line. Using \(fm instead of dot (.) for a
command tells nroff and troff that no break is to take place; the output line
currently being filled should not be forced out before the space or new page. For
example, \(fmbp and \(fmsp are used here instead of .bp and .sp.

5-14

Using Nroff/Troff

The list or commands that cause a. break is short:

.bp .br . ce .fi .nr .sp .in .ti

All others cause no break, regardless or whether you use a. period (.) or a. '. Ir you
really need a brea�, add a. .br command at the appropriate place.

Ir you change fonts or point sizes frequently , you may find that if you cross a page
boundary in an unexpected font or size, your titles come out in that size and font
instead or what you intended. Furthermore, the length or a. title is independent of the
current line length, so titles will come out at the default length of 6.5 inches unless
you change it, which is done with the .It command. There are several ways to correct
point sizes and fonts in titles. The simplest way is to change .NP to set the proper size
and font for the title, then restore the previous values, like this:

.ta .8i

.de NP
' bp
'sp 0.5i
.rt R \" set title font to Roman
.ps 10 \" and size to 10 point
.It 6i \" and length to 6 inches
.tl 'left'center'right'
.ps
.rt P
'sp 0.3i

\" revert to previous size
\" and to previous font

This version of .NP does not work if the fields in the .tl command contain size or font
changes.

To get a. footer at the bottom of a. page, you can modify .NP so it does some processing
before the ' bp command, or split the job into a. footer macro invoked at the bottom
margin and a. header macro invoked at the top or the page.

Output page numbers are computed automatically starting at 1, but no numbers are
printed unless you ask for them. To get page numbers printed, include the character
"%" in the . ti line at the position where you want the number to appear. For example

.tl ,_ % _,

centers. the page number inside hyphens. You can set the page number at any time
with either .bp n, which immediately starts a. new page numbered n, or with .pn n,
which sets the page number for the next page but doesn't cause a skip to the new
page.

5 .11 Nu mber Registers and Arith metic

TrotT uses number registers for doing arithmetic and defining and using variables.
Number registers, like strings and macros, are useful for setting up a. document so it

5-15

XENIX Text Processing

is easy to change later, as well as for doing any sort of arithmetic computation. Like
strings, number registers have one- or two-character names. They are set by the .nr
command, and are referenced by \nz (one-character name) or \n(zy (two-character
name) .

There are quite a few pre-defined number registers maintained by troff, among them
% for the current page number, .nl for the current vertical position on the page; .dy,
.mo and .yr for the current day, month and year; and .s and .Uor the current point
size and font. Any of these can be used in computations like any other register , but
some, like .s and .f, cannot be arbitrarily changed with an .nr command.

In MM, most significant parameters are defined in terms of the values of a handful of
number registers. These include the point size for text, the vertical spacing, and the
line and title lengths. To set the point size and vertical spacing for the following
paragraphs, for example, you could say

.nr PS 9

.nr VS 1 1

This would set the point size to 9 and the vertical spacing to 1 1 points.

The paragraph macro .P is defined as follows:

.ta l i
.de.P
.ps \ \n(PS
.vs \\n(VSp
.rt R
.sp 0.5v
.ti +3m

\" reset size
\" spacing
\" font
\" half a line

This sets the font to Roman and the point size and line spacing to whatever values are
stored in the number registersPS and VS.

Two backslashes are required to quote a quote. That is, when nroff or troff
originally read the macro definition, they peel off one backsla.sh to see what is coming
next. To ensure that another is left in the definition when the macro is actually used,
we have to put two backslashes in the definition. Ir only one backslash is used, point
size and vertical spacing will be frozen at the time the macro is defined, not when it is
used.

Protection with extra. backslashes is only �eeded for \n, \•, \S, and \ itself.
Commands like \s, \(, \h, \ v, and so on do not need an extra backslash, since they are
converted by nroffand troffto an internal code when they are read.

Arithmetic expressions can appear anywhere that a number is expected. For
example,

.nr PS \ \n(PS-2

5- 16

Using Nroff/Troff

decrements PS by 2. Expressions can use the arithmetic operators +, -, *, /, %
(mod), the relational operators > , > = , < , < = , = , and != (not equal), and
parentheses.

There are a few things to consider in using number register arithmetic. First,
number registers hold only integers. Nroff/troff arithmetic uses truncating integer
division. Second, . in the absence or parentheses, evaluation is done left-to-right
without any operator precedence, including relational operators. Thus

becomes "-1". Number registers can occur anywhere in an expression, and so can
scale indicators like p, i, m, and so on. Although integer division causes truncation,
each number and its scale indicator is converted to machine units (1/432-inch) before

' any arithmetic is done, so 1i/2u evaluates to O.Si correctly.

The scale indicator u (for " units") often has to appear when you wouldn't expect it-­
in particular, when arithmetic is being done in a context that implies horizontal or
vertical dimensions. For example,

.II 7i/2u

A safe rule is to attach a scale indicator to every number, even constants.

For arithmetic done within a .nr command, there is no implication or horizontal or
vertical dimension, so the default units are units, and 7i/2 and 7i/2u mean the same
thing. Thus

.nr 11 7i/2

.11 Ou

is sufficiently explicit as long as you use u with the . 11 command.

5 .12 Macros with Arguments

You can define macros that can change from one use to the next according to
parameters supplied as arguments. To make this work, you need two things: first,
when you define the macro, you must indicate that some parts of it will be provided as
arguments when the macro is called. Second, when the macro is called you must
provide actual arguments to be plugged into the definition.

To illustrate, let's define a macro .SM: that will print its argument two points smaller
than the surrounding text. The definition or .SM is

.de SM
\s-2\ \Sl\s+2

Within a macro definition, the symbol \ \Sn refers to the nth argument that the
macro was called with. Thus \ \$1 is the string to be placed in a smaller point size

5-l7

XENIX Text Process ing

when .SM is called .

. The following definition or .SM permits optional second and third arguments that
will be printed in the normal size:

.de SM
\ \$3\s-2\ \Sl\s+2\ \$2

Arguments not provided when the macro is called are treated as empty. It is
convenient to reverse the order of arguments because trailing punctuation is much
more common than leading. The number or arguments that a macro was called with
is available in number register $.

For example, let's define a macro .BD to create a bold Roman ror troff command
names in text. It combines horizontal motions, width computations, and argument
rearrangement .

. de BD
\&\ \$3\fl \ \Sl \h'\-\ w'\ \Sl 'u+ 1 u'\ \Sl \f'P\ \$2

The \h and \ w commands need no extra backslash, a.s we discussed earlier in this
section. The \& is there in case the argument begins with a period.

Two backslashes are needed with the \ \Sn commands to protect one or them when
the macro is being defined. Consider a. macro called .SH which produces section
headings rather like those in this paper, with the sections numbered automatically,
and the title in bold in a smaller size. You would use it in this form:

.SH " Section title . . . "

Ir the argument to a macro is to contain spaces, then it must be surrounded by double
quotation marks.

Here is the definition or the .SH macro:

.ta .75i 1 . 15i

.nr SH 0

.de SH

.sp 0.3i
.rt B
.nr SH \ \n(SH+l
.ps \ \n(PS-1
\ \n(SH. \ \Sl
.ps \ \n(PS
.sp 0.3i
.rt R

\" initialize section number

\" increment number
\" decrease PS
\" number. title
\" restore · PS

The section number is kept in number register SH, which is incremented each time

5-18

Using Nroff/Troff

just before it is used. Note that a number register may have the same name as a
macro without conflict, but a string may not.

We used \ \n(SH instead of\n(SH and \ \n(PS instead of\n(PS. Uwe had used \n(SH,
we would get the value or the register at the time the macro was defined, not at the
time it was used. Similarly, by using \ \n(PS, we get the point size at the time the
macro is called. ·

As an example that does not involve numbers, recall the .NP macro which had a

.tl 'left'center'right'

We could make these into parameters by using instead

.tl '\ \•(LT'\ \•(CT'\ \•(RT'

so the title comes from three strings called LT, CT and RT. Ir these are empty, then
the title will be a blank line. Normally CT would be set with something like

.ds CT - % -

but you can also supply private definitions for any or the strings.

5 . 13 Conditionals

To cause the .SH macro to leave two extra inches or space just before section 1, but
nowhere else, you can put a test inside the .SH macro to determine whether the
section number is 1, and add some space if it is. The . ir command provides a
conditional test just before the heading line is output:

.if \ \n(SH= 1 .sp 2i \" first section only

The condition after the .if can be any arithmetic or logical expression. Ir the
condition is logically true, or arithmetically greater than zero, the rest or the line is
treated as if it were text. Ir the condition is false, or zero or negative, the rest of the
line is skipped. It is possible to do more than one command if a condition is true.
Suppose several operations are to be done before section 1. One possibility is to define
a macro .S1 and invoke it if we are about to do section 1, as determined by an .if: .

. de S1
--- processing for section 1 ---

.de SH

.if \ \n(SH=1 "S1

S- 19

XENIX Text Processing

An alternate way is to use the extended form of the .if, like this: ·

.if \ \n(SH-1 \ { --- processing
for section 1 ----\}

The braces \ { and \} must occur in the positions shown or you will get unexpected
extra lines in your output.

NrofJ' and trofJ' also provide an if-else construction. A condition can be negated by
preceding it with ! ; we get the same effect a.s above by using

.if !\ \n(SH> 1 .S1

There are a. handful of other conditions that can be tested with .if. For example, you
may need to determine if the current page is even or odd. The following conditionals
give Ca.cing pages different titles when used inside an appropriate new J?S.ge macro .

.if e .tl "even page title"

.if o .tl "odd page title"

Two other conditions, which you will find useful when you need to process text for
both lineprinter and typesetter, are n and t. These can be used to indicate conditions
dependent on whether trofJ' or nrofJ' are being invoked .

. if t troff input .. .

. if n nroff input .. .

Finally, string comparisons may be made in an .if statement. The following
comparison does "input" if string 1 is the same a.s string 2:

e&.if 'string1 'string2' input

The character separating the strings can be anything reasonable that is not
contained in either string. The strings themselves can reference strings with \ *,
arguments with \$, and so on.

5 . 14 Environments

In an earlier section, the potential problem of going across a page boundary was
mentioned: parameters like size and font for a page title may be different from those
in effect in the text when the page boundary occurs. NrofJ'/trofJ' provides a way to
deal with this and similar situations. There are three environments that have
independently controUable versions of many of the parameters associated with
processing, including size, font, line and title lengths, fill or no-fill mode, tab stops,
and even partially collected lines. Thus the titling problem may be solved by
processing the main text in one environment and titles in a separate environment
with its own suitable parameters.

5-20

Using Nroff/Troff

The environment command .ev n shifts to environment n; n must be 0, 1 or 2. The
command .ev with no argument returns to the previous environment. Environment
names are maintained in a stack, so calls for different environments may be nested
and called in order. If, for example, the main text is processed in environment 0,
which is where troff begins by default, we can modify the new page macro .NP to
process titles in en:vironment 1 like this:

.de NP

.ev 1

.It 6i

.rt R

.ps 10

. . . any other processing ...

.ev

\" shift to new environment
\" set parameters here

\" return to previous environment

It is also possible to initialize the parameters for an environment outside the .NP
macro, but the version shown keeps all the processing in one place to make it easier to
understand and change.

5 .16 Diversions

In page layout there are numerous occasions when it is necessary to store some text
for a period or time without actually printing it. Footnotes are the most obvious
example: the text or the footnote usually appears in the input long before the place on
the page where it is to be printed is reached. In fact, the place where it is output
normally depends on how big it is. The footnote text must be preprocessed at least to
the extent that its size is determined.

Nroff and troff provide a. mechanism called a diversion for doing this processing.
Any part or the output may be diverted into a macro instead or being printed, and
then at some convenient time the macro may be put back into the input. The
command .di z11 begins a diversion. All subsequent output is collected into the macro
Z1/ until the command .di with no arguments is encountered. This terminates the
diversion. The processed text is available at any time thereafter, simply by giving
the command:

.xy

The vertical size or the last finished diversion is contained in the built-in number
register dn.

For example, suppose we want to implement a. keep-release operation, so that text
(such as a figure or table) between the commands .KS and .K.E will not be split across
a page boundary. Clearly, when a .KS is encountered, we have to begin diverting the
output so we can find out how big it is. Then when a. .K.E is seen, we decide whether
the diverted text will fit on the current page, and print it either there if it fits, or at the
top or the next page if it doesn't. We could use the following to define .KS and .KE:

5-21

XENIX Text Processing

.de KS

.br

.ev 1

.fi

.di XX

.de KE

.br

.di

.ir \ \n(dn> =\ \n(.t .bp

.nr
.XX
.ev

\" start keep
\" start fresh line
\" collect in new environment
\" make it filled text
\" collect in XX

\" end keep
\" get last partial line
\" end diversion
\" bp ir doesn't fit
\" bring it back in no-fill
\" text
\" return to normal environment

Recall that number register nl is the current position on the output page. Since
output was being diverted, this remains at its value when the diversion started. The
amount or text in the diversion is stored in dn. Another built-in register, .t is the
distance to the next trap, which we assume is at the bottom margin or the page. Ir the
diversion is large enough to go past the trap, the .if is satisfied, and a .bp is issued
automatically. In either case, the diverted output is then brought back with .XX. It
is essential to bring it back in no-fill mode so nroff/troff will do no further
processing on it.

The definition or .KS and .KE is only intended as an example to demonstrate the
power or diversions. You will find the .KS and .KE macros already defined in the MM
macro package.

b-22

Chapter 6

Nroff/Troff Reference

6.1 Introduction 6-1
6. 1 . 1 lnvoking nrofJ' and troff 6-1
6. 1 .2 Technical InC ormation 6-2

6.2 Basic Formatting Requests 6-5
6.2.1 Font and Character Size Control 6-5
6.2.2 Page Control 6-6
6.2.3 Text Filling, Adjusting, and Centering 6-7
6.2.4 Vertical Spacing 6-9
6.2.5 Line Length and Indenting 6-10
6.2.6 Tabs, Leaders, and Fields 6-11
6.2.7 Hyphenation 6-12
6.2.8 Three Part Titles 6-12
6.2.9 Output Line Numbering 6-13

6.3 Character Translations, Overstrike, and Local ?\fotions -
6-13
6.3.1 Input/Output Conventions and Character

Translations 6-13
6.3.2 Local Motions and the \\;'idth Function 6-15
6.3.3 Overstrike, Bracket, Line-drawing, and Zero-width

Functions 6-16

6.4 Processing Control Facilities 6-17
6.4 .1 Macros, Strings, Diversions, and Position Traps -

6-17
6.4.2 Number Registers 6-21
6.4.3 Conditional Acceptance of lnput 6-22
6.4.4 Environment Switching 6-23
6.4.5 Insertions From the Standard Input 6-23
6.4.6 Input/Output File Switching 6-24
6.4.7 Miscellaneous Requests 6-24

6.5 Output and Error �fessages 6-24

6;6 Summary of Escape Sequences and Number Registers �
6-26
6.6.1 Escape Se-quences for Characters, Indicators, and

Functions 6-26
6.6.2 Predefined General Number Regist�rs 6-28
6.6.3 Predefined Read-Only Number Registers 6-28

6 . 1 Introduction

N rofl' and troff are the XENIX text processing formatting programs. N rofl' can
be used to output text to terminals, lineprinters, and letter-quality printers.
Trofl' can be used to output text to a number or phototypesetters and laser
printers. Both programs use identical commands, which are interspersed with
lines or text. The· commands used by both programs allow you to control the
style or headers and footers, footnotes, paragraphs, and sections. You may
specify font and point size, spacing, multiple column output, and local motions
to create overstriking and line drawing effects.

Because nrofl' and trofl' are highly compatible with each other, it is almost
always possible to prepare input acceptable to both. By using conditional
input, you may add commands which are specific to either program.

6 .1.1 Invoking nrofl' and trofl'

The general form of invoking the formatters on the command line is:

nroff options files

or

troff options files

where optione represents any or a number or option arguments and file�
represents a list or files containing the document to be formatted. An argument
consisting or a single minus sign (-) is taken to be a filename corresponding to
the standard input. Ir no filenames are given, input is taken from the standard
input. The options may appear in any order so long as they appear before the
filenames. They are:

-olist Prints only pages whose page numbers appear in liet, which consists
of comma-separated numbers and number ranges. A number range
has the Corm N-M and means pages N through M; an initial -N
means from the beginning to page N, and a final N- means from N
to the end.

-nN Numbers first generated page N.

-sN Stops every N pa.ges. Nrofl'will halt prior to every N pages (default
N = 1) to allow paper loading or changing, and resume upon receipt
or a newline. Trofl' will stop the phototypesetter every N pages,
produce a trailer to allow changing cassettes, and will resume after
the phototypesetter "start" button is pressed.

-m name Prepends the macro file / uer/lib/tmac. name to the input files.

XENIX Text Processing Guide

-mcname Same as above, but uses a compacted form or /u3r/lib/tmae .name
for efficiency.

-raN Register a is set to N.

-i Reads the standard input after the input files are exhausted.

-q Invokes the simultaneous input-output mode orthe rd request.

The following options are recognized by nroff only:

-Tname Specifies the name or the output terminal type.

-e Produces equally-spaced words in adjusted lines, using full
terminal resolution.

The following options are recognized by troff only:

-t Directs output to the standard output instead of the
phototypesetter.

-f Refrains from feeding out paper and stopping phototypesetter at
the end of the run.

-w Waits until phototypesetter is available, if currently busy.

-b Reports whether the phototypesetter is busy or available. No text
processing is done.

-a Sends a printable ASCll approximation of the results to the
standard output.

-pN Prints all characters in point size N while retaining all prescribed
spacings and motions, to reduce phototypesetter elapsed time.

Note that each option must be invoked as a separate argument.

6 .1 .2 Technical Information

The input to the formatters consists of text lines interspersed with control lines
that set parameters or otherwise control later processing. Control lines begin
with a "control character", usually a period (.) or a single quotation mark (') ,
followed by a one- or two-character name that specifies a basic "request" or the
substitution or a user-:-defined �'macro" in place or the control line. The single
quotation mark control character (') suppresses the "break function," which is
the forced output of a partially filled line caused by certain requests. The
control character may be separated from the request or macro name by
whitespace (spaces and/or tabs) for esthetic reasons. Names must be followed
by either a space or a newline. Control lines with unrecognized names are

6-2

Nroff/Troft' Reference

ignored.

Various special functions may be introduced anywhere in the input by means of
an "escape" character, normally the backslash (\). For example, the function
\nR causes the interpolation of the contents of the number register R in place of
the function; here R is either a single character name as in \nx, or a left­
parenthesis-introduced, two-character name as in \n(xx.

Troff uses 432 units to the inch, corresponding to the Wang Laboratories
phototypesetter which has a horizontal resolution of 1/432-inch and a vertical
resolution of 1/144-inch. Nroft' uses 240 units to the inch internally,
corresponding to the least common multiple of the horizontal and vertical
resolutions of various typewriter-like output devices. Troft' rounds horizontal
and vertical numerical parameter input to the actual horizontal and vertical
resolution of the typesetter. Nroft' similarly rounds numerical input to the
actual resolution of the output device indicated by the -T option.

Both Nroft' and troff accept numerical input with the appended scale
indicators shown in the following table, where S is the current type size in
points, V is the current vertical line spacing in basic units, and C is a nominal
character width in basic units, as shown below:

Scale Number of basic units
Indicator Meaning Troft' Nroft'

i Inch 432 240
c Centimeter 432x50/127 240x50/127
p Pica = 1/16 inch 72 240/6
m Em = S points 6xS c
n En = Em/2 3xS C, same as Em
p Point = 1/72 inch 6 240/72
u Basic unit 1 1
v Vertical line space v v

none Default

In nroff, both the em and the en are taken to be equal to the C, which is output­
device dependent; common values are 1/10- and 1/12-inch. Actual character
widths in nroffneed not be all the same and constructed characters such as ->
(-) are often extra wide. The default scaling is ems for the horizontally­
oriented requests and functions, including:

.ll .in .ti .ta .It .po .me \h \I;

Vs is the scaling for the vertically-oriented requests and the following
functions:

.pl .wh .ch .dt .sp .sv .ne .rt .ev \v \x \L

p is the scale for the .vs request; and u is the scale for the requests .nr, .if, and .ie.
All other requests ignore any scale indicators. When a number register

6-3

XENIX Text Processing Guide

containing an already appropriately scaled number is interpolated to provide
numerical input, the unit scale indicator u may need to be appended to prevent
an additional inappropriate default scaling. The number N, may be specified in
decimal· fraction form but the parameter finally stored is rounded to an integer
number of basic units.

The "absolute"position indicator (I) may be prepended to a number N to
generate the distance to the vertical or horizontal place N. For vertically
oriented requests and functions, IN becomes the distance in basic units from the
current vertical place on the page or in a "diversion" to the vertical place N.
For all other requests and functions, IN becomes the distance from the current
horizontal place on the input line to the horizontal place N.

For example,

.sp f3.2c

will space in the required direction to 3.2 centimeters from the top or the page.
Wherever numerical input is expected an expression involving parentheses, the
arithmetic operators (+, -, /, *, %) and the logical operators (<, >, <=,

· > = , =, = = , & (and), : (or)) may be used. Except where controlled by
parentheses, evaluation or expressions is left.to.right; there is no operator
precedence. In the case or certain requests, an initial + or - is stripped and
interpreted as an increment or decrement indicator respectively.

For example, if the number register x contains 2 and the current point size is 10,
then

.II (4.25i+2P+3)/2u

sets the line length to 1/2 the sum or 4.25 inches + 2 picas + 30 points.

Note: numerical parameters are indicated here in two ways. ±N means that
the argument may take the forms N, +N, or -N and that the corresponding
effect is to set the affected parameter to N, to increment it by N, or to decrement
it by N respectively. Plain N means that an initial algebraic sign is not an
increment indicator, but merely the sign or N. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For
example, most requests expect to set parameters to non·negative values;
exceptions are .sp, .wh, .ch, .nr, and .ir. The requests .ps, .rt, .po, .vs, .Is, . 11, .in
and . It restore the previous parameter value in the absence or an argument.

Single-character arguments are indicated by single lowercase letters, and one­
or two·character arguments are indicated by a pair or lowercase letters.
Character string arguments are indicated by multicharacter mnemonics.

6-4

Nroft'/Troft' Rererence

6 .2 Basic Form atting Requests

The following sections describe the commonly used nroff and troft' formatting
requests.

6 .2 .1 Font and Character Size Control

The troft' character set includes a regular character set plus a Special
Mathematical Font character set-each having 102 characters. All ASCII
characters are included, with some on the Special Font. With three exceptions,
the ASCII characters are input as themselves, and non-ASCII characters are
input in the form \(xx where xx is a two-character name. The three ASCII
exceptions are mapped as follows:

ASCII Input
Character

Printed by troft'
Name
acute accent
grave accent
minus

The characters ', ', and - may be input as \' , \' , and \- respectively or by their
names. The ASCII characters @, #, " , ' , ', < , > , , { , } , , A ' and _exist only on
the Special Font and are printed as a 1-em space if that font is not mounted.
N roff understands the entire troff character set, but can in general print only
ASCII characters, such characters as can be constructed by overstriking or
other combinations, and those that can reasonably be mapped into other
printable characters. The exact behavior is determined by a driving table
prepared for each device. The characters ', ', and -print as themselves. The
default mounted fonts are Roman (R), italic (1), bold (B), and the Special
Mathematical Font (S) on physical typesetter positions 1, 2, 3, and 4
respectively.

The current font, initially Roman, may be changed (among the mounted fonts)
by use of the .rt request, or by imbedding at any desired point either \fx,\f(xx,
or \fN where x and xx are the name or a mounted font and N is a numerical font
position. It is not necessary to change to the Special font; characters on that
font are handled automatically. A request for a named but unmounted font is
ignored. Troft' can be informed that any particular font is mounted by use or
the .fp request. The list or known fonts is installation-dependent. Nroft'
understands font control and normally underlines Italic characters.

Character point sizes are typically in the range 6-36 (1/12- to 1/2-inch}. The .ps
request is used to change or restore the point size. Alternatively the point size
may be changed between any two characters by imbedding a \sN at the desired
point to set the size to N, or a \s±N (1 SN �9} to increment/decrement the size
by N; \sO restores the previous size. Requested point size values that are
between two valid sizes yield the larger or the two. The current size is available
in the .s register. Nroft'ignores typesize control.

6-5

XENIX Text Processing Guide

.ps Has an initial value or 10. Point size set to ±N. Alternatively imbed
\sN or \s±N. Any positive size value may be requested; if invalid,
the next larger valid size will result, with a maximum of 36. A
paired sequence +N, -N will work because the previous requested
value is also remembered. Ignored in nroff. Ir no argument is
given, .ps ha.s the previous value .

. ss N Has an initial value of 12/36 em. Space-character size is set to N/36
ems. This size is the minimum word spacing in adjusted text.
Ignored in nroff. It no argument is specified, the requestis ignored .

. cs F N M Initially off. Constant character space (width) mode is set on for
font F (if mounted); the width of every character will be taken to be
N/36 ems. IrM is absent, the em is that or the character's point size;
if M is given, the em is M points. All affected characters are
centered in this space, including those with an actual width larger
than this space. Special Font characters occurring while the
current font is F are also so treated. Ir N is absent, the mode is
turned off. The mode must be in effect when the characters are
physically printed. Ignored in nroff .

. bd F N Initially off. The characters in font F will be artificially emboldened
by printing each one twice, separated by N-1 basic units. A
reasonable value for N is 3 when the character size is in the vicinity
of 10 points. If N is missing the embolden mode is turned off. The
mode must be in effect when the characters are physically printed.
Ignored in nroff .

. bd S F N Initially off. The characters in the Special Font will be emboldened
whenever the current font is F. The mode must be in effect when the
characters are physically printed .

. rt F Initially Roman. Font changed to F. Alternatively, imbed \f'F. The
font name P is reserved to mean the previous font. If no argument is
specified, previous font is assumed .

. fp N F Initially R, I, B, S. Font position. This is a. statement that a. font
named F is mounted on position N (1-4). It is a fatal error ifF is not
known. The phototypesetter has four fonts physically mounted.
Each font consists of a film strip which can be mounted on a
numbered quadrant of a wheel. This request is ignored if no
arguments are given.

6.2.2 P age Control

Top and bottom margins are not automatically provided. It is standard
procedure to define two macros and set traps for them at vertical positions 0
(top) and -N (N from the bottom). A pseudo-page transition onto the first page
occurs either when the first break occurs or when the first nondiverted text

6-6

N roff/Troff Reterence

processing occurs. Arrangements for a trap to occur at the top of the first page
must be completed before this transition.

.pl±N

.bp±N

.pn±N

.po±N

.ne N

.mk R

.rt±N

Page length set to ±N, initially 11 inches. The internal limitation is
about 75 inches in troffand about 136 inches in nroff. The current
page length is available in the . p register. The default scale
indicator is v. Uno argument is given, 1 1 inches is assumed.

Begin page, initially N=l. The current page is ejected and a new
page is begun. If ±N is given, the new page number will be ±N. The
default scale indicator is v.

Page number, initially N=l. The next page (when it occurs) will
have the page number ±N. A .pn must occur before the initial
pseudo-page transition to effect the page number or the first page.
The current page num her is in the % register.

Page offset, initially 0. The current left margin is set to ±N. The
troff initial value provides about 1 inch or paper margin including
the physical typesetter margin of 1/27-inch. In troffthe maximum
line-length + page-offset is about 7.54 inches. The current page
offset is available in the .o register.

Need N vertical space. If the distance D to the next trap position is
less than N, a. forward vertical space of size D occurs, which will
spring the trap. If there are no remaining traps on the page, D is the
distance to the bottom of the page. IrD<V, another line could still
be output and spring the trap. In a diversion, D is the distance to
the diversion trap, if any, or is very large. If no argument is
specified, N=1V.

Marks the current vertical place in an internal register (both
associated with the current diversion level), or in register R, if
given.

Returns upward only to a marked vertical place in the current
diversion. If ::1: N is given, the place is ±N from the top of the page or
diversion or, if N is absent, to a place marked by a previous .mk.
Note that the .sp request may be used in all cases instead or .rt by
spacing to the absolute place stored in an explicit register.

6 .2.3 Text Filling, Adjusting, and Centering

Normally, words are collected from input text lines and assembled into an
output text line until some word doesn't fit. An attempt is then made to the
hyphenate the word in an effort to place a part of it onto the output line. The ' spaces between the words on the output line are then increased to spread out
the line to the current line length minus any current indent. A word is any
string of characters delimited by the space character or the beginning or end of

6-7

XENIX Text Processing Guide

the input line. Any adjacent pair of words that must be kept together (neither
split across output lines nor spread apart in the adjustment process) can be tied
together using the unpaddable space character {backslash-space). The
adjusted word spacings are uniform in troff and the minimum interword
spacing can be controlled with the .ss request. In nrofr, they are normally
nonuniform because of quantization to character-size spaces; the command line
option -e causes uniform spacing with full output device resolution. Filling,
adjustment, and hyphenation can all be prevented or controlled. The text
length on the last line output is available in the .n register, and text baseline
position on the page for this line is in the .nl register. The text baseline high­
water mark (lowest place) on the current page is in the .h register.

An input text line ending with ., ?, or ! is taken to be the end of a sentence, and
an additional space character is automatically provided during filling. Multiple
interword space characters found in the input are retained, except for trailing
spaces; initial spaces also cause a break. When filling is in effect a \p may be
embedded or attached to a word to cause a. break at the end of the word and
have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be printed
as a text line by prefacing it with the nonprinting, zerO-width filler character
\&. Another method is to specify output translation of some convenient
character into the control character using .tr.

The copying of an input line in no-fill mode can be interrupted by terminating
the partial line with a \c. The next encountered input text line will be
considered to be a. continuation of the same line of input text. Similarly, a word
within filled text may be interrupted by terminating the word and line with \e;
the next encountered text will be taken as a continuation of the interrupted
word. If the intervening control lines cause a break, any partial line will be
forced out along with any partial word .

. br Break. The filling of the line currently being collected is stopped
and the line is output without adjustment. Text lines beginning
with space characters and empty text lines (blank lines) also cause a
break .

. fi Fill subsequent output lines. Initially fill is on. The register .u is 1 in
fill mode and 0 in nofill mode .

. nf Nofill. Initially, fill is on. Subsequent output lines are neither filled
nor adjusted. Input text lines are copied directly to output lines
without regard for the current line lengt.h .

. ad c Line adjustment is begun. If fill mode is not on, adjustment will be
deferred until fill mode is back on. If the type indicator c is present,
the adjustment type is changed in the following ways: I to adjust
left-margin only, r to adjust right margin only, c to center, b or n to
adjust both margins. If c is absent the line remains unchanged. ·

6-8

Nroff/Troff Reference

.na Noadjust. Initially, set to adjust. Adjustment is turned off; the
right margin will be ragged. The adjustment type Cor .ad is
unchanged. Output line filling still occurs ir fill mode is on .

. ce N Initially off. Center the next N input text lines within the current
line-length minus indent. Ir N=O, any residual count is cleared. A
break occurs after each or the N input lines. Ir the input line is too
long, it will be left-adjusted.

6 .2.4 Vertical Spacing

The vertical spacing (V) between the baselines or successive output lines c an be
set using the .vs request with a resolution or 1/144-inch = 1/2 point in troff,
and to the output device resolutipn in nroff. V must be large enough to
accommodate the character sizes on the affected output lines. For the common
type sizes (Q-12 points), usual typesetting practice is to set V to 2 points greater
than the point size; troff default is 10-point type on a 12-point spacing. The
current V is available in the . v register. Multiple-V line separation (e.g. double
spacing) may be requested with . Is.

Ir a word contains a vertically tall construct reqmrmg the output line
containing it to have extra vertical space before and or after it, the extra line
space function \x'N' can be imbedded in or attached to that word. In this and
other functions having a. pair or delimiters around their parameter, the
delimiter choice is arbitrary, except that it can't look like the continuation or a
number expression for N. If N is negative, the output line containing the word
will be preceded by N extra vertical space; if N is positive, the output line
containing the word will be followed by N extra vertical space. Ir successive
requests for extra space apply to the same line, the maximum values are used.
The most recently utilized post-line extra line space is available in the .a
register.

A block of vertical space is ordinarily requested using .sp, which honors the no­
space mode and which does not space past a. trap. A contiguous block of vertical
space may be reserved using .sv. The following requests control vertical
spacing:

.vs N Initially 1/6-inch or 12 points. Set vertical baseline spacing size V.
Transient extra vertical space available with \x'N' .

.Is N Initially N=l. Line spacing set to ±N. Vs {blank lines) are
appended to each output text line. Appended blank lines are
omitted, if the text or previous appended blank line r eached a trap
position. Space vertically in either direction. Ir N is negative, the
motion is backward (upward) and is limited to the distance to the
top of the page. Forward (downward) motion is truncated to the
distance to the nearest trap.

6-Q

XENIX Text Processing Guide

.sp N Space vertically in either direction. It N is negative, the motion is
backward (upward) and is limited to the distance to the top of the
page. Forward (downward) motion is truncated to the distance to
the nearest trap. It no-space mode is on, no spacing occurs .

. sv N Save a contiguous vertical block of size N. It the distance to the next
trap is greater than N, N vertical space is output. No-space mode
has no effect. It this distance is less than N, no vertical space is
immediately output, but N is remembered Cor later output.
Subsequent . sv requests will overwrite any still remembered N .

. os Output saved vertical space. No-space mode has no effect. Used to
finally output a block of vertical space requested by an earlier .sv
request .

. ns No-space mode turned on. When on, the no-space mode inhibits .sp
requests and .bp requests without a next page number . The no­
space mode is turned off when a line of output occurs, or with .rs .

. rs Restore spacing. The no-space mode is turned off.

blank line Causes a break and output of a blank line exactly like .sp 1.

6 .2.5 Line Length and Indenting

The maximum line length for fill mode may be set with .II. The indent may be
set with .in; an indent applicable to only the next output line may be set with .ti.
The line length includes indent space but not page offset space. The line length
minus the indent is the basis for centering with .ce. The effect of .11, .in, or .ti is
delayed if a partially collected line exists, until after that line is output. In fill
mode the length of text on an output line is less than or equal to the line length
minus the indent. The current line length and indent are available in registers . I
and .i respectively. The length or three-part titles produced by .tl is
independently set by .It.

.ll:J:N

in:J:N

.ti:J:N

6-10

Initially 6.5 inches. Line length is set to :J:N. In troft'the maximum
line-length + page-offset is about 7.54 inches. Without an
argument, this means the previous line length.

Initially N=O. Indent is set to :J:N. The indent is prepended to each
output line. Without an argument, this means the previous indent.

Temporary indent, The next output text line will be indented a
distance :J:N with respect to the current indent. The resulting total
indent may not be negative. The current indent is not changed.
Without an argument, the request is ignored.

Nroff/Troff Reference

6 .2.6 Tabs, Leaders, and Fields

The ASCD horizontal tab character and the ASCfi SOH (leader) character can
both be used to generate either horizontal motion or a. string or repeated
characters. The length of the generated entity is governed by internal tab stops
specifiable with .ta. The default difference is that tabs generate motion and
leaders generate a string of . periods; .tc and .lc offer the choice of repeated
character or motion. There are three types of internal tab stops: lett adjusting,
right adjusting, and centering. In the following table D is the distance from the
current position on the input line (where a tab or leader was round) to the next
tab stop; the next string consists or the input characters following the tab (or
leader) up to the next tab (or leader) or. end of line; and W is the width or next­
string.

Tab Length of motion or Location of
type repeated characters next string
Left D FollowingD

Right D-W Right adjusted within D
Centered D-W/2 Centered on right end ofD

The length of generated motion can be negative, but the length or a repeated
character string cannot be. Repeated character strings contain an integer
number of characters, and any residual distance is prepended as motion. Tabs
or leaders found after t.he last tab stop are ignored, but may be used as next­
string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a
noninterpreted tab and leader respectively, and are equivalent to actual tabs
and leaders in copy mode.

A field is contained between a pair of field delimiter characters, and consists of
substrings separated by padding indicator characters. The field length is the
distance on the input line from the position where the field begins to the next
tab stop. The difference between the total length or all the substrings and the
field length is incorporated as horizontal padding space that is divided among
the indicated padding places. The incorporated padding is allowed to be
negative. For example, ir the field delimiter is f and the padding indicator is " ,
f '"xxx ... rightf specifies a right-adjusted string with the string zzz centered in
the remaining space. The following requests are recognized:

.ta Nt . . . Sets tab stops and types. t-= R, right adjusting; t==C, centering; t
absent is left-adjusting. Trofftab stops are preset every 0.5 inches,
nroff every 0.8 inches. The stop values are separated by spaces,
and a value preceded by + is treated as an increment to the
previous stop value .

. tc c The tab repetition character becomes c, or is removed specifying
motion.

6-U

XENIX Text Processins Guide

.lc c

.rc a b

The leader repetition character becomes c, or is removed specifying
motion.

The · field delimiter is set to a; the padding indicator is set to the
space character or to b, if given. In the absence of arguments the
field mechanism is turned off.

6.2.7 Hyphenation

Automatic hyphenation can be switched off and on. When switched on with
.hy, several variants may be set. A hyphenation indicator character may be
imbedded in a word to specify desired hyphenation points, or may be
prepended to suppress hyphenation. � addition, th� user may specify a small
exception word list.

Only words that consist of a central alphabetic string surrounded by (usually
null) nonalphabetic strings ar.e considered candidates . for automatic
hyphenation. WQrds that were input containing hyphens (minus), em-dashes
(\(em), or hyphenation indicator characters -such as mother-in-law-are
always subject to splittins after those characters, whether automatic
hyphenation is on or off.

. nh

.hy N

. he e

Initially hyphenation is on. Automatic hyphenation is turned off .

Automatic hyphenation is turned on for N�l, or off for N-=0. Ir
N=2, last lines (ones that will cause a trap) are not hyphenated.
For N •4 and 8, the last and first two characters respectively of a
word are not split off. These values are additive; i.e. , N =14 will
invoke all three restrictions.

Hyphenation indicator character is set to c or to the default \& .
The indicator does not appear in the output .

. hw word1 ... Specify hyphenation points in words with imbedded minus signs.
Versions or a word with various endings are implied.

6 .2.8 Three Part Titles

The titling function . tl provides for automatic placement or three fields at the
left, center, and right of a line with a title-length specifiable with .It . . tl may be
used anywhere, and is independent or the normal text collecting process. A
common use is in header and foQter macros.

.tl'left'eenter'right'

6-12

The strings left, center, and right are respectively left-adjusted,
centered, and right,.adjusted in the current title length. Any or the
strings may be empty, and overlapping is permitted. Ir the page­
number character {initially %) is found within any of the fields it is

.pc c

. lt:t:N

Nroff/Troff Reference

replaced by the current page number having the format assigned to
the register % . Any character may be used a.s the string delimiter.

The page number character is set to c, or removed. The page­
number register remains %.

Initially 6.5 inches. Length of title set to :t:N. The line length and
the title length are independent. Indents do not apply to titles; page
offsets do.

6 .2.0 Output Line Nu mbering

Automatic sequence numbering of output lines may be requested with .nm.
When in effect, a three-digit Arabic number plus a digitrspace is prepended to
output text lines. The text lines are thus offset by four digitrspaees, and
otherwise retain their line length; a reduction in line length may be desired to
keep the right margin aligned with an earlier margin. Blank lines, other
vertical spaces, and lines generated by .tl are not numbered. Numbering can be
temporarily suspended with .nn, or with an .nm followed by a later .nm+O. In
addition, a line number indent I, and the number-text separation S may be
specified in digit-spaces. Further, it can be specified that only those line
numbers that are multiples of some number M are to be printed (the others will
appear a.s blank number fields).

.nm:t:N

. nn N

Line number mode. If :t:N is given, line numberingis turned on, and
the next output line numbered is numbered :t:N. Default values are
M=l, S-.=R, and 1==0. Parameters corresponding to missing
arguments are unaffected; a non-numeric argument is considered
missing. In the absence of all arguments, numbering is turned off;
the next line number is preserved for possible further use in number
register ln.

The next N text output lines are not numbered .

8.3 Char•eter Translations, Overstrike, and Loeal
Motions

The troff functions described in the following sections apply to the processing
of specialized text, including special characters and lines of variable length.
Also described are methods for producing special effects in text, by changing
the position or text relative to lines and using offsets to create bold effects.

6.3.1 Input/Output Conventions and Character Translations

The newline delimits input lines. In addition, the ASCU characters STX, ETX,
ENQ, ACK, and BEL characters are accepted; and may be used.a.s delimiters or
translated into a graphic with �tr. All others are ignored.

6-13

:XENIX Text Processing Guide

The trofr escape character backsla.sh (\) introduces escape sequences- causes
the following character to mean another character, or to indicate some
function, The backsla.sh · (\) should not be confu�ed with the ASCU control
character ESC of the same name. The escape character \ can be input with the
sequence \\. The escape character can be changed with .ec, and all that has
been said about the default \ becomes true for the new escape character. The
sequence \e can be used to print whatever the current escape character is. It
necessary or convenient, the escape mechanism may be turned off with .eo, and
restored with .ec .

. ec c Sets escape character to \, or to c, if given .

. eo Turns the escape mechanism off.

Five ligatures are available in the current trofr character set: fi, ft, ff, Fi, and m.
They may be input in nrofrwith \(fi, \(8,-\(ft, \(Fi, and \(Fl respectively.

The ligature mode is normally on in trofr, and automatically invokes ligatures
during input. The ligature request is:

.lg Ligature mode is turned on if N is absent or nonzero, and turned off
if N-o� IrN-2, only the two-charjt.cter ligatures are automatically
invoked. Ligature mode is inhibited for request, macro, string,
register, or filenames, and in copy mode. No effect in nrofr.

Unless in copy mode, the ASCU backspace character is. rep laced by a backward
horizontal motion having the width of the space character. Nroft
automatically underlines characters in the underline font, specifiable with uf,
normally on font position 2. In addition to .ft and \rF, the underline font may
be selected by .ul and .cu. Underlining is restricted · to an output-device­
dependent subset of reasonable characters.

.ul N

.cu N

.ur F

Initially off. Underlines in nrofr(italicizes in troft) the next N input
text lines. Actually, switches to underline font, saving the current
font for later restoration; other font changes within the span ora .ul
will take effect, but the restoration will und.o the last change.
Output generated by .tl is affected by the font change, but does not
decrement N. Ir N> 1, there is the risk that a trap interpolated
macro may provide text lines within the span; environment
switching can prevent this.

Initially off. A variant of .ul that causes every . character to be
underlined in nrofr. Identical to .ul in trofr.

Initially italic. Underline font set to F. In nrofr, F may not be on
position 1. · ·

Both the control character dot (.) and the no-break control character ('J may be
changed, if desired. Such a change must be compatible with the design of any
macros used in the span of the · change, and particularly of any trap-invoked

6-14

macros.

. . ce e

.c2 c

Nroff/Troff Reference

The basic control character is set to c, or reset to dot (.) .

The nobreak control character is set to c, or reset to single
quotation mark (').

One character can be made to stand in for another character using .tr. All text
processing (e.g., character comparisons) takes place with the input (stand-in)
character, which appears to have the width of the final character. The graphic
translation occurs at the moment or output (including diversion) .

. tr abed.. Translates a to b, c to d, etc. Ir an odd number of characters is
given, the last one will be mapped into the space character. To be
consistent, a particular translation must stay in effect from input to
output time.

An input line beginning with a\! is read in copy mode and transparently output
(without the initial \!); the text processor is otherwise unaware or the line's
presence. This mechanism may be used to pass control information to a post­
processor or to imbed control lines in a macro created by a diversion.

Comments and concealed new lines may appear in text. An uncomfortably long
input line that must stay one line (e.g., a string definition, or nofilled text) can
be split into many physical lines by ending all but the last one with the escape \.
The sequence \(newline) is always ignored-except in a comment. Comments
may be imbedded at the end of any line by prefacing them with \" . The newline
at the end or a comment cannot be concealed. A line beginning with \" will
appear as a blank line and behave like .sp 1; a comment can be on a line by itself
it the line begins with . \" .

6.3.2 Local Motions and the Width Function

The functions \v'N' and \h'N' can be used for local vertical and horizontal
motion respectively. The distance N may be negative; the positive directions
are rightward and downward. A local motion is one contained within a line.
and otherwise within a line balance to zero. The vertical motions are:

\v'N'

\u

\d

\r

Move distance N

1/2-em up in troff; 1/2-line up in nroff

1/2-em down in troff; 1/2-line down in nroff

1 em up in troff; 1 line up in nroff

The horizontal motions are:

6-15

· XENIX Text Processing Guide

\h'N'

\space

\0

\ I
\"

Move distance N

Unpaddable space-size space

Digit-sized space

1/6-em space in troff; ignored in nroff

1/12-em space in troff; ignored in nroff

The width function \ w'string' generates the numerical width of etring (in basic
units). Size and font changes may be safely imbedded in etring, and will not
affect the current environment. For example, .ti-w'l. 'u could be used to
temporarily indent leftward a distance equal to the size or the string " 1 ."

The width function also sets three number registers. The registers st and sb are
set to the highest and lowest extent or string relative to the baseline; then, for
example, the total height or etring is \n(stu-\n(sbu. In troff the number
register ct is set to a value between 0 and 3: 0 means that_all of the characters in
string were short lowercase characters without descenders (e.g. , e); 1 means
that at least one character has a descender (e.g., y); 2 means that at least one
character is tall (e.g. , H); and 3 means that both tall characters and characters
with descenders are present. The escape sequence \kx will cause the current
horizontal position in the input line to be stored in register x.

6.3.3 Overstrike, Bracket, Line-drawing, and Zero-width
Functions

Automatically centered overstriking of up to nine characters is provided by the
overstrike function \o'string' . The characters in ltring are overprinted with
centers aligned; the total width is that of the widest character. String should
not contain local vertical motion. The function \zc will outp�t c without
spacing over it, and can be used to produce left-aligned overstruck
combinations.

The Special Mathematical Font contains a number of bracket construction
pieces (I t) , { I I LJ n) that can be combined into various bracket styles. The
function \b' string' may be used to pile the characters in etring vertically (the
first character on top and the last at the bottom); the characters are vertically
separated by 1 em and the total pile is centered 1/2-em above the current
baseline.

The function \l'Nc' will draw a string of repeated c's towards the right for a
distance N. (\1 is \lowercase L). Ir c looks like a continuation or an expression
for N, it may be insulated from N with a \&. Ir c is not specified, the _ (baseline
rule) is used (underline character in nroft'). Ir N is negative, a backward
horizontal motion of size N is made before drawing the string. Any space
resulting from N /(size of c) having a remainder is put at the beginning (left end)
of the string. In the case of charact-ers that are designed to be connected such as

6-16

Nroff/Troff Reference

baseline-rule (_), underrule (_), and root-en n, the remaining space is covered
by overlapping. If N is less than the width or c, a single c is centered on a
distance N.

The function \L'Nc' will draw a vertical line consisting or the (optional)
character c stacked vertically apart 1 em (1 line in nroff) with the first two
characters overlapped, it necessary, to form a continuous line. The default
character is the box rule (\(br); the other suitable character is the bold vertical
(\(bv). The line is begun without any initial motion relative to the current base
line. A positive N specifies a line drawn downward and a negative N specifies a
line drawn upward. Arter the line is drawn no compensating motions are made;
the instantaneous baseline is at the end of the line. The horizontal and vertical
line drawing functions may be used in combination to produce large boxes. The
zero-width box-rule and the 1/2-em wide underrule were designed to form
corners when using 1 em vertical spacings.

6 .4: Processing Control Facilities

The following sections describe nroff and troff requests and racilities Cor
con trolling the processing or text.

6.4.1 Macros, Strings, Diversions, and Position Traps

A "macro" is a named set or arbitrary lines that may be invoked by name or
with a trap. A "string" is a named string or characters, not including a newline
character, that may be interpolated by name at any point. Request, macro,
and string names share the same name list. Macro and string names may be one
or two characters long . and may usurp previously defined request, macro, or
string names. Any or these may be renamed with . rn or removed with .rm.
Macros are created by .de and .di, and appended to by .am and .da; .di and .da
cause normal output to be stored in a macro. Strings are created by .ds and
appended to by .as. A macro is invoked in the same way as a request; a control
line beginning with .xx will interpolate the contents or macro xx. The
remainder or the line may contain up to nine arguments. The strings x and xx
are interpolated at nay desired point with \•x and \•(xx respectively . String
references and macro invocations may be nested.

During the definition and extension of strings and macros (not by diversion) the
input is read in copy mode. The input is copied without interpretation except
that:

The contents of number registers indicated by \n are interpolated.

Strings indicated by \• are interpolated.

Arguments indicated by \S are interpolated.

6- 17

XENIX Text Processing Guide

Concealed new lines indicated by \newline are eliminated.

Comments indicated by \" are eliminated.

\t and \a are interpreted as ASCll horizontal tab and SOH
respectively�

\\ is interpreted as \.

\. is interpreted as dot (.) .

These interpretations can be suppressed by prepending a\. For example, since
\\ ma.ps into a \, \ \n will copy as \n; this will be interpreted as a number
register indicator when the macro or string is reread.

When a macro is invoked by name, the remainder of the line is taken to contain
up to nine arguments. The argument separator is the space character, and
a.rguments may be surrounded by quotation marks to permit imbedded space
characters. Pairs or double quotation marks may be imbedded in double­
quoted arguments to represent a single quotation mark. Ir the desired
arguments won't fit on a line, a concealed newline may be used to continue on
the next line.

When a macro is invoked the input level is pushed down and any arguments
available at the previous level become unavailable until the macro is
completely read and the previous level is restored. A macro's own arguments
can be interpolated at any point within the macro with \SN, which interpolates
the Nth argument (lSNSQ). Ir an invoked argument doesn't exist, a null
string results. For example, the macro xx might be defined as

.de xx \" begin definition
Today is \ \$1 the \ \$2.

\" end definition

and called with

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the \$ was concealed in the definition with a prepended \. The
number or currently available arguments is in the .$ register.

No arguments are available at the top (nonmacro) level in this implementation.
Because string referencing is implemented as an input-level push down, no
arguments are available from within a string. No arguments are available
within a trap-invoked macro.

6- 18

Nroff/Troff Reference

Arguments are copied in copy mode onto a. stack where they are available for
reference. The mechanism does not allow an . argument to contain a direct
reference to a. long string (interpolated at copy time) and it is advisable to
conceal string references (with an extra. \) to delay interpolation until
argument reference time.

Processed output may be diverted into a. macro for purposes such as footnote
processing or determining the horizontal and vertical size of some text for
conditional changing of pages or columns. A single diversion trap may be set at
a specified vertical position. The number registers .dn and .dl respectively
contain the vertical and horizontal size of the most recently ended diversion.
Processed text that is diverted into a. macro retains the vertical size of each or
its lines when reread in no-fill mode, regardless of the current value of V.
Constant-spaced (.cs) or emboldened (.bd) text that is diverted can be reread
correctly only if these modes are again or still in effect at reread time.

Diversions may be nested and certain parameters and registers are associated
with the current diversion level (the top nondiversion level may be thought of
as the Oth diversion level). These are the diversion trap and associated macro,
the no-space mode, the internally saved marked place (see .mk and .rt), the
current vertical place (.d register), the current high-water text baseline (.h
register), and the current diversion name (. z register).

Three types or trap mechanisms are available-page traps, a diversion trap,
and an input line count trap. Macro invocation traps may be planted using . wh
at any page position including the top. This trap position may be changed using
.ch. Trap positions at or below the bottom of the page have no effect unless or
until moved to within the page or rendered effective by an increase in page
length. Two traps may be planted at the same position only by first planting
them at different positions and then moving one or the traps; the first planted
trap will conceal the second unless and until the first one is moved. It the first
one is moved back, it again conceals the second trap. The macro associated
with a. page trap is automatically invoked when a line or text is output whose
vertical size reaches or sweeps past the trap position. Reaching the bottom of a
page springs the top-of-page trap, if any, provided there is a next page. The
distance to the next trap position is available in the .t register; if there are no
traps between the current position and the bottom of the page, the distance
returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted
using .dt. The .t register works in a diversion; if there is no subsequent trap a
large distance is returned. For a description or input line count traps, see .it
below .

. de zz 1111 Define or redefine the macro zz. The contents of the macro begin on
the next input line. Input lines are copied in copy mode until the
definition is terminated by a line beginning with · 1111, whereupon the
macro 1111 is called. In the absence of 1111, the definition is terminated
by a line beginning with two dots (..). A macro may contain .de
requests provided the terminating macros differ or the contained

6-19

XENIX Text Processing Guide

definition terminator is concealed. The dots can be concealed as
\\ . . which will copy as \ .. and be reread as dots (..) .

. am zz 1111 Append to macro .

. ds zz string Define a string xx containing string. Any initial double quotation
mark in string is stripped off to permit initial blanks .

. as zz string Append string to string zz .

. rm zz Remove request, macro, or string. The name xx is removed from
the name list and any related storage space is freed. Subsequent
references will have no effect .

. rn zz 1111 Rename request, macro, or string zz to 1111· If yy exists, it is first
removed .

. di zz Divert output to macro xx. Normal text processing occurs during
diversion except that page offsetting is not done. The diversion ends
when the request .di or .da is encountered without an argument;
extraneous requests or this type should not appear when nested
diversions are being used .

. da zz Divert, appending to zz .

. wh N zz Install a trap to invoke zz at page position N; a negative N will be
interpreted with respect to the page bottom. Any macro previously
planted at N is replaced by zz. A zero N refers to the top or a page.
In the absence of zz, the first found trap at N, if any, is removed .

. ch zz N Change the trap position for macro xx to N. In the absence ofN, the
trap is removed .

. dt N zz Install a diversion trap at position N in the current diversion to
invoke macro zz� Another .dt will redefine the diversion trap. Ir no
arguments are given, the diversion trap is removed .

. it N zz Set an input line count trap to invoke the macro xx after N lines of
text input have been read (control or request lines don't count).
The text may be in-line text or text interpolated by in-line or trap­
invoked macros .

. em zz The macro zzwill be invoked when all input has ended. The effect is
the same as if the contents of XX had been at the end of the last file
processed.

6-20

Nroff/Troff Rererence

6 .4 .2 Number Registers

A variety of parameters are available to the user as predefined, named number
registers. In addition, the user may define his own named registers. Register
names are one or two characters long and do not conflict with request, macro,
or string names. Except for certain predefined rea.d-only registers, a number
register ca.n be read, written, automatically incremented or decremented, and
interpolated into the input in a. variety of formats. One common use of user­
defined registers is to automatically number sections, paragraphs, lines, etc. A
number register may be used a.ny time numerical input is expected or desired
and may be used in numerical expressions.

Number registers a.re created a.nd modified using .nr, which specifies the name,
numerical value, and the auto-increment size. Registers are also modified, if
accessed with a.n auto-incrementing sequence. Ir the registers x and xx both
contain N a.nd ha.ve the auto-increment size M, the following access sequences
have the effect shown:

Effect on Value
SeQuence Re,;ister Interpolated
\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n+(xx xx incremented by M N+M
\n-{xx xx decremented by M N-M

When interpolated, a number register is converted to decimal (default),
decimal with leading zeros, lowercase Roman, uppercase Roman, lowercase
sequential alphabetic, or uppercase sequential alphabetic according to the
format specified by .ar .

. nr R±N M The number register R is assigned the value ±N with respect to the
previous value, it any. The increment for auto-incrementing is set
to M.

.arR c Assign format c to register R. The available formats are:

Numbering
Format Sequence

1 0,1 ,2,3,4,5, ...
001 000,001 ,002,003,004,005, . . .

i O;i, ii,iii,iv ,v , . ..
I O,I,U,m,IV,V, . . .
a 0, a, b, e , . . . ,z ,aa,ab , . .. , zz, aaa., . . .
A O,A B.C • . . . • Z.AA.AB ZZ.AAA .. .'

An Arabic format having N digits specifies a. field width of N digits.
The read-only registers and the width function are always Arabic.

6-21

XENIX Text Processing Guide

.rr R Remove register R. Ir many registers are being created
dynamically, it may become necessary to remove no longer used
registers to recapture internal storage space for newer registers.

6.4:.3 Conditional Acceptance or Input

In the following, c is a one-character, built-in condition name, ! signifies not, N
is a numerical expression, string! and string2 are strings delimited by any
nonblank, non-numeric character notin the strings, and tezt represents what is
conditionally accepted .

. if c. tezt

. if!c te:rt

. ifN tezt

. if !N tezt

If condition c is true, process te:rt as input; in multiline ease, use
\{text\} .

It condition c is false, process te:rt .

It expression N >O, process tezt •

It expression N <O, process te:rt •

. if 'string I 'string2' tezt
It string I identical to string2, process tezt .

. it!'stringl 'string2' tezt
Ir string 1 not identical to string2, process tezt .

. ie c te:rt
"Ir' portion otif-else; all above forms (like if) .

. el te:rt
"Else" portion of if-else.

There are several built-in condition names:

o Current page number is odd

e Current page number is even

t Formatter is troff

n Formatter is nroff

It condition c is true, or if the number N is greater t.han zero, or if the strings
compare identically (including motions and character size and font), tezt is
accepted as input. If a ! precedes the condition, number, or string comparison,

6-22

NrofF/TrofF Reference

the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of tezt are skipped over.
The tezt can be either a single input line (text, macro, or whatever) or a number
of input lines. In the multiline case, the first line must begin with a left delimiter
\ { and the last line must end with a right delimiter\}.

The request .ie (if-else) is identical to . if except that the acceptance state is
remembered. A subsequent and matching .el (else) ' request then uses the
reverse sense of that state . . ie-.el pairs may be nested.

6.4.4 Environment Switching

A number of the parameters that. control text processing are gathered together
into an environment, which can be switched by the user. Partially collected
lines and words are in the environment. Everything else is global; examples are
page-oriented parameters, diversion-oriented parameters, number registers,
and macro and string definitions. All environments are initialized with default
parameter values .

. ev N Initially N =0. Environment switched to environment where N is in
the range 0-2. Switching is done in push-down fashion so that
restoring a previous environment must be done with .ev with no
parameters rather than a specific numeric reference.

6 .4.5 Insertions From the Standard Input

The input can be temporarily switched to the system standard input with .rd,
which will switch back when two newlines in a row are found (the extra blank
line is not used}. This mechanism is intended for insertions in documentation
containing standard formats. The standard input can be the terminal, a pipe,
or a file .

. rd prompt Reads insertion from the standard input until two new lines in a row
are found. Irthe standard input is the user's keyboard, a prompt (or
a BEL) is written onto the terminal. The .rd request behaves like a.
macro, and arguments may be placed after the prompt .

. ex Exit from either nroft' or trofF. Text processing is terminated
exactly as ifall inputhad ended.

If insertions are to be taken from the terminal keyboard while output is being
printed on the terminal, the command line option -q will turn off the echoing of
keyboard input and prompt only with BEL. The regular input and insertion
input cannot simultaneously come from the standard input.

6-23

XENIX Text Processing Guide

6.4.6 Input/Output File Switching

The following requests control the switching or input and output files:

.so filename
Switch source file. The top input (file reading) level is switched to
filename. The effect of a .so encountered in a. macro is not felt until
the input level returns to the file level. When the new file ends,
input is again taken from the original file . . so's may be nested .

. nx filename

. pi program

Next file is filename. The current file is considered ended, and the
input is immediately switched to filename .

Pipe output to program in nroff only. This request must occur
before any printing occurs. No arguments are transmitted to
program.

6.4 .7 Miscellaneous Requests

.mc c N Specifies that a. margin character c appear a. distance N to the right
of the right margin after each nonempty text line (except those
produced by .tl). · It the output line is too long, the character will be
appended to the line. It N is not given, the previous N is used; the
initial N is 0.2 inches in nroff, and 1 em in troff .

. tm 1tring Arter skipping initial blanks, 1tring (rest of line) is read in copy
mode and written on the user's terminal .

.ig yy Ignores input lines. The .ig request behaves exactly like .de except
that the input is discarded. The input is read in copy mode, and any
auto-incremented registers will be affected .

. pm t Prints macros. The names and sizes of all ofthe defined macros and
strings are printed on the user's terminal; if t is given, only the total
of the sizes is printed. The sizes are given in blocks of 128
characters .

• ft Flushes output buffer. Used in interactive debugging to force
output.

6 .5 Output and Error Messages

The output from .tm, .pm, and the prompt from .rd, as well as various error
messages are written onto the standard message output. The latter is different

6-24

Nroff/Troff Rererenc:e

from the standard output, where nroff formatted output goes. By default,
both are written onto the user's terminal, but they can be independently
redirected.

Various error conditions may occur during the operation or nroff and troff.
Certain less serious errors having only local impact do not cause processing to
terminate. Two examples are word overflow, caused by a word that is too large
to fit into the word buffer (in fill mode), and line overflow, caused by an output
line that grew too large to fit in the line buffer; in both cases, a message is
printed, the offending excess is discarded, and the affected word or line is
marked at the point or truncation with a • in nroff and a • in troff. The
program continues processing, if possible, on the grounds that output useful for
debugging may be produced. Ir a serious error occurs, processing terminates,
and an appropriate message is printed. Examples are the inability to create,
read, or write files, and the exceeding of certain internal limits that make future

6-2S

XENIX Text Processing Guide

output unlikely to be userul.

6.6 Summary of Escape Sequences and Nu mber
Registers

6 .6�1 Escape Sequences tor Characters, Indicators, and Functions

6-26

Sequence
\\
\e
\'
\'
\-

. \.
\(space
\0
\I
\ "
\&
\!
\"
\SN
\%
\(xx
\a
\b'abc ... '
\c
\d
\(x,\((xx,\rN
\h'N'
\kx
\l'Nc'
\L'Nc'
\nx,\n{xx
\o'abc . . . '

\P
\r
\sN, \s±N
\t
\u
\v'N'
\w'string'
\x'N'
\zc
\{
\}
\(newline)
\X

Nroff/TrofT Reference

Meaning
\(to prevent or delay the interpretation of\)
Printable version or the current escape character
Acute accent ('); equivalent to \(aa
Grave accent ('); equivalent to \(ga
Minus sign (-) in the current font
Period (.)
Unpadda.ble space-size space character
Digit width space
1/6-em narrow space character (zero width in nrofl)
1/12-em halt-narrow space character (zero width in nrofJ)
Non printing, zero-width character
Transparent line indicator
Beginning of comment
Interpolate argument (1 �N �9)
Default optional hyphenation character
Character named xx
Noninterpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2 em vertical motion (1/2 line in nroft)
Change to font named x or xx, or position N
Local horizontal motion; move right N (negative left)
Mark horizontal input place in register x
Horizontal line drawing function (optionally with c)
Vertical line drawing function (optionally with c)
Interpolate number register x or xx
Overstrike characters a, b, c
Break and spread output line
Reverse l em vertical motion (reverse line in nroft)
Point size change function
Noninterpreted horizontal tab
Reverse 1/2-em vertical motion (1/2-line in nrofl)
Local vertical motion; move down N (negative up)
Interpolate width of string
Extra line space function (negative before, positive after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed above

6-27

· XENIX Text Processing Guide

6 .6.2 Predefined General Number Registers

% Currentpage number
et Character type (set by width function}
dl \Vidth (maximum) of last completed diversion
dn Height (vertical size) orlast completed diversion
dw Current day ofthe week (1-7)
dy Current day or the month (1-31)
hp Current horizontal place on input line
In Output line number
mo Current month (1- 12)
nl Vertical position of la.st printed text baseline
sb Depth ofsing below base line (generated by width function)
st Height ofstring above ba..�e line (generated by width function)
yr Last two digits of current year

6 .6.3 Predefined Read-Only Number Registers

.& Num her or arguments available at the current macro level
.A Set to 1 in troff, if -a option used; I in nroff
.H Available in horizontal resolution in basic units
. T Set to 1 in nroff, if-T option used; always 0 in troff
.V Available vertical resolution in basic units
.a Post-line extra. line space most recently utilized using \x'N'
.c Number or lines read from current input file
.d Current vertical place in current diversion; equal to nl, if no diversion
.f Current font as physical quadrant
.h Text baseline high-water mark on current page or diversion
.i Current indent
.I Current line length
.n Length of text portion on previous output line
.o Current page offset
.p Current page length
.s Current point size
.t Distance to the next trap
.u Equal to 1 in fill mode and 0 in no-fill mode
.v Current vertical line spacing
. w Width of previous character
.x Reserved version-dependent register
.y Reserved version-dependent register
.z Name of current diversion

6-28

Chapter 7

Forinatting Tables

7 . 1 Introduction 7-1

7.2 lnput Format 7-2
7.2. 1 Options 7-3
7.2 .2 Format 7-3
7.2.3 Additional Features 7-5
7.2.4 Data 7-7
7.2.5 Additional Command Lines 7-9

7.3 Invoking Tbl 7-10

7.4 Examples 7-11

7.5 Summary of tbl Commands 7-18

Formatting Tables

7 . 1 Introduction

By now, you have a firm grasp of most of the principles and techniques of using
XENIX text processing successfully . By using the mm macro package, along
with nrofr/trofr commands, you should be able to achieve precise control of
almost any formatting task. However, there are two formatting needs which
may be best met with two specialized XENIX formatting programs:

• Formatting tables or other complicated multicolumn material

• Setting mathematical equations

In this chapter , the program tbl, the table formatting program, is introduced.
Eqn, the mathematics formatting program, is discussed in Chapter 8. Unless
you anticipate using tables or equations fairly extensively in your work, you
may wish to postpone or skip reading about tbl and eqn. Although both
programs use commands which are easy to learn and use, you should expect to
spend several hours on each program-reading these instructions, learning the
commands, and testing them out with your output device. Iryou need to create
tables or equations in your documents, the effort of learning tbl and eqn will be
well rewarded. You will soon be able to produce high-quality, consistent output
with relatively little work.

Both tbl and eqn are "preprocessors" -that is, you insert commands into your
text as you are preparing it, just as you would if you were using mm. These
commands are translated by the tbl and eqn programs into sequences of
nrofr/trofr commands, without altering either the body of your text or other
formatting commands. Your file is then processed through the nrofr or troff
programs themselves.

You will find tbl especially useful in preparing charts, multicolumn list
summaries, and other tabular material. It will give you a high degree of control
over complicated column alignment, and it will calculate the necessary widths
of columns, when the elements are of varying lengths. Tbl also allows you to
draw horizontal lines, vertical lines and boxes in order to highlight your
material. Although the effects will be somewhat limited if you are working with
an ordinary lineprinter or similar device, you will obtain extremely high quality
results when outputting tables to phototypesetter.

Because the tbl program works by isolating the tabular material from the rest
of the file, and then creating the necessary nrofr or trofr commands, the rest of
the file is left intact for other programs to format. Thus you can use tbl along
with the equation formatting program eqn or various layout macro packages
like mm, without duplicating their functions. You need only be careful to
invoke .the various programs in the correct order.

The latter part or this chapter is devoted to some examples-in each case, the
text input is paired with the resulting output. You may find that at first you
learn the features of tbl best by examining these examples and copying those

XENIX Text Processing

formatting instructions for examples which resemble your own tables.
However, first read the rules for preparing tbl input, so you have a general idea
or how to invoke the tbl program, and an overview or the possible options and
formats.

7 .2 Input Format

The input to tbl is text for a document, with tables preceded by a .TS (table
start) command and followed by a .TE (table end) command. Tbl processes
the text and formatting commands within these two commands, generating
nroff/troff formatting commands. The .TS and .TE lines are also copied so
that nroff and troff page layout macros can use these lines to delimit and place
tables as necessary. In particular, any arguments on the .TS or .TE lines are
copied but otherwise ignored, and may be used by document layout macro
commands.

The format ofthe input is:

text
.TS
table
.TE
text
.TS
table
.TE
text

Each table will contain text, options, and formatting specifications:

.TS
options;
format.
data
.TE

Each table is independent, and must contain formatting information followed
by the data to be entered in the table. The formatting information, which
describes the individual columns and rows or the table, may be preceded by
options that affect the entire table.

Each table may contain global options, a format section describing the layout
of individual table entries, and then the text to be printed. The format and data
are always required, but not the options. The various parts or a table are
described in the following sections.

7-2

Formatting Tables

7 .2 .1 Options

There may be a single line of options which affects the whole table . If present,
this line must immediately follow the .TS line and must contain a list of option
names separated by spaces, tabs, or commas, and must be terminated by a
semicolon. The allowable options are:

center
Centers the table (default is left-adjust)

expand
Makes the table as wide as the current line length

box
Encloses the table in a box

all box
Encloses each item in the table in a box

double box
Encloses the table in two boxes

tab (x)
Usesx instead of tab to separate data. items

linesize (n)
Sets lines or rules in n point type

delim (zy)
Recognizes z and y as the eqn delimiters.

The tbl program tries to keep boxed tables on one page by issuing appropriate
.ne commands. These requests are calculated from the number or lines in the
tables, and if there are spacing commands embedded in the input, these
requests may be inaccurate. To ensure the correct format on one page, you can
surround the table with the display macros .DS and .DE.

7 .2.2 Format

The format section of the table specifies the layout of the columns. Each line in
this section corresponds to one line of the table. The last format line applies to
all the remaining lines in the table. Each line contains a keyletter for each
column of the table. It is good practice to separate the key letters for each
column by spaces or tabs. The keyletters, which may be either uppercase or
lowercase, are:

L or i
Indicates a left-adjusted column entry

XENIX Text Processing

R or r

C or e

N or n

Aor a

S or s

Indicates a right-adjusted column entry

Indicates a centered column entry

Indicates a numerical column entry, to be aligned with other
numerical entries so that the units digits of numbers line up

Indicates an alphabetic column; all corresponding entries are aligned
on the left, and positioned so that the widest is centered within the
column

Indicates a spanned heading, i.e. , the entry from the previous column
continues across this column

Indicates a vertically spanned heading, i.e., the entry from the
previous row continues down through this row. (Not allowed for the
first row of the table.)

When you are aligning numerical information, a location for the decimal point
is sought. The rightmost dot adjacent to a digit is used as a decimal point; if
there is no dot adjoining a digit, the rightmost digit is used for the units; if no
alignment is indicated, the item is centered in the column. However, the special
nonprinting character string "\&" may be used to override dots and digits, or
to align alphabetic data; this string lines up where a dot normally would, and
then disappears from the final output. In the example below, the items shown
at the left will be aligned (in a numerical column) as shown on the right:

i nput

13
4.2
26. 12
abc
abc\&
43\&3.22
749.12

tbl tormat

13
4.2

26. 12
abc

abc
433.22

749.12

Note that if numerical text is u�d in the same column with wider lef�adjusted
{L) or right-adjusted (R) type table entries, the widest number is centered
relative to the wider left-adjusted or right-adjusted items {L is used instead of 1
for readability; they have the same meaning as key letters). Alignment within
the numerical items is preserved, in the same way as using the A format.
However, alphabetic subcolumns requested by the key letter are always slightly
indent-ed relative to L items; if necessary, the column width is increased to force

7-4

Formatting Tables

this. This is not true for n type entries. Do not put N and A type entries in the
same column.

To make your table formatting information more readable, you should
separate the keyletters describing each column with spaces. The layout of the
key letters in the format section resembles the layout or the actual data in the
table. The end of the format section of the table specification is indicated by a
period. For example, a simple format might look like this:

c s s
1 n n .

This specifies a table of three columns. The first line of the table contains a
heading centered across all three columns; each remaining line contains a left­
adjusted item in the first column followed by two columns of numerical data.

Here is a sample table in this format:

Overall title
Item-a 34.22 9 . 1
ltem-b 12.65 .02
Items: c, d,e 23 5.8
Total 69.87 14.92

Note that instead of listing the format of successive lines of a table on
consecutive lines of the format section, successive line formats may be given on
the same line, separated by commas. In the example above, the format might
have been written:

c s s, l n n.

7 .2 .3 Additional Features

There are some additional features of the key letter system:

Horizontal Lines

A keyletter may be replaced by an underscore (_) to indicate a
horizontal line in place of the corresponding column entry, or by an
equal sign (=) to indicate a double horizontal line. IC an adjacent
column contains a horizontal line, or if there are vertical lines
adjoining this column, this horizontal line is extended to meet the
nearby lines. If any data entry is provided for this column, it is
ignored and a warning message is printed.

Vertical Lines

A vertical bar (I) may be placed between column keyletters. This

XENIX Text Processing

will cause a vertical line between the corresponding columns or the
table. A vertical bar to the left of the first key letter or to the right
or the last one produces a line at the edge or the table. Ir two vertical
bars appear between key letters, a double vertical line is drawn.

Space Between Columns

A number may follow the keyletter. This indicates the amount or
separation between this column and the next column. The number
normally specifies the separation in ens (one en is about the width or
the letter n) , or more precisely, an en is a number or points (1 point
= 1/72-inch) equal to hair the current type size. Ir the "expand"
option is used, then these numbers are multiplied by a constant so
that the table is as wide as the current line length. The default
column separation number is 3. Ir the separation is changed, the
largest space requested prevails.

Vertical Spanning

Normally, vertically spanned items extending over severalrows of
the table are centered in their vertical range. Ir a keyletter is
followed by t or T, any corresponding vertically spanned item will
begin at the top line of its range.

Font Changes

A key letter may be followed by a string containing a font name or
number preceded by the letter f or F. This indicates that the
corresponding column should be in a different font from the default
font (usually Roman) . All font names are one or two letters; a one­
letter font name should be separated from whatever follows by a
space or tab. Font change commands given with the table entries
will override these specifications�

Point Size Changes

A keyletter may be followed by the letter p or P and a number to
indicate the point size or the corresponding table entries. The
number may be a signed digit, in which case it is taken as an
increment or decrement from the current point size. It both a point
size and a column separation value are given, one or more blanks
must separate them.

Vertical Spacing Changes

7-6

A keyletter may be followed by the letter v or V and a number to
indicate the vertical Jine spacing to be used within a multiline
corresponding table entry. The number may be a signed digit, in
which case it is taken as an increment or decrement from the
current vertical spacing. A column separation value must be

Formatting Tables

separated by blanks or some other specification from a vertical
spacing request. This request has no effect unless the corresponding
table entry is a text block.

Column Width Indication

A key letter may be followed by the letter w or W and a width value
in parentheses. This width is used as a minimum column width. Ir
the largest element in the column is not as wide as the width value
given, the largest element is assumed to be that wide. Ir the largest
element in the column is wider than the specified value, its width is
used. The width is also used as a default line length for included
text blocks. Normal troff units can be used to scale the width
value; the default is ens. Ir the width specification is a unitless
integer the parentheses may be omitted. Ir the width value is
changed in a column, the last value given controls.

Equal Width Columns

A key letter may be followed by the letter e or E to indicate equal
width columns. All columns whose key letters are followed by e or E
are made the same width. This allows you to get a group of
regularly spaced columns.

The order of the above features is immaterial; they need not be separated by
spaces, except as indicated above to avoid point size and font change
ambiguities. Thus a numerical column entry in italic font and 12-point type
with a minimum width of 2.5 inches and separated by 6 ens from the next
column could be specified as

npl2w(2.5i)ri 6

Note the following format defaults: Column descriptors missing from the end of
a format line are assumed to be L. The longest line in the format section,
however, defines the number or columns in the table; extra columns in the data
are ignored silently.

7 .2.4 Data

The text for the table is typed after the format specification. Normally, each
table line is typed as one line of data. Very long input lines can be broken: any
line whose last character is a backslash (\) is combined with the following line
(and the backslash vanishes). The data for different columns (the table entries)
are separated by tabs, or by whatever character has been specified in the tabs
option. There are a few special cases:

TrofT commands within tables

An input line beginning with a dot (.) followed by anything but a

7�7

XENIX Text Processing

number is assumed to be a command to troff and is passed through
unchanged, retaining its position in the table. For example, space
within a table may be produced by .sp commands in the data.

Full Width Horizontal Lines

An input line containing only the underscore (j or equal sign (=) is
taken to be a single or double line, respectively ' extending the run
width or the table.

Single Column Horizontal Lines

An input table entry containing only the underscore or equal sign
character is taken to be a single or double line extending the run
width or the column. Such lines are extended to meet horizontal or
vertical lines adjoining this column. To obtain these characters
explicitly in a column, either precede them by "\&" or follow them
by a space before the usual tab or newline.

Short Horizontal Lines

An input table entry containing only the string "_" is taken to be a
single line a.s wide as the contents or the column. It is not extended
to meet adjoining lines.

Vertically Spanned Items

Text blocks

7-8

An input table entry containing only the character string "\ .. ,
indicates that the table entry immediately above spans downward
over this row. It is equivalent to the table format keyletter.

In order to include a block or text as a table entry, precede it by T {
and follow it by T}. Thus the sequence

. . . T{
block or
text
T} . . .

is the way to enter, as a single entry in the table, something that
cannot conveniently be typed as a simple string between tabs. Note
that the T} end delimiter must begin a line; additional columns of
data may follow arter a tab on the same line. Ir more than twenty
text blocks are used in a table, various limits in the troft' program
are likely to be exceeded, producing diagnostics such a.s "too many
string/macro names" or "too many number registers."

Formatting Tables

Text blocks are pulled out from the table, processed separately by
troff, and replaced in the table as a solid block. If no line length is
specified in the block of text itself, or in the table format, the
default is to use S L times 0 / (N+l) S where L is the current line
length, Cis the number or table columns spanned by the text, and N
is the total number of columns in the table. The other parameters
used in setting the block of text are those in effect at the beginning
or the table. These include the effect of the .TS macro and any table
format specifications of size, spacing and font, using the p, v and r
modifiers to the column keyletters. Commands within the text
block itself are also recognized. However, troff commands within
the table data but not within the text block do not affect that block.

Note the following limitations. Although any number oflines may be present in
a table, only the first 200 lines are used in calculating the widths of the various
columns. A multipage table may be arranged as several single-page tables if
this proves to be a problem. Other difficulties with formatting may arise
because in the calculation of column widths all table entries are assumed to be
in the font and size being used when the . TS command was encountered. Not
included in the calculation are font and size changes indicated in the table
format section and within the table data. Therefore, although arbitrary troff
requests may be sprinkled in a. table, care must be taken to avoid confusing the
width calculations; use requests such as . ps with care.

7 .2.S Additional Command Lines

If the format of a table must be changed after many similar lines, as with sub­
headings or summarizations, the . T & (table continue) command can be used to
change column parameters. The outline of such a table input is:

.TS
options ;
format .
data

.T&
format .
data.
.T&
format .
data
.TE

Using this procedure, each table line can be close to its corresponding format
line. It is not possible to change the number or columns, the space between
columns, the global options such as box, or the selection of columns to be made
equal width.

XENIX Text Processing

7 .3 Invoking Tbl

You can run tbl on a simple table with the command

tbl input-file I troff

but for more complicated use , where there are several input files, and they
contain equations and mm commands as well as tables, the normal command
would be

tbl file-1 file -2 . . . I eqn I troff -mm

The usual options may be used on the troff and eqn commands. The usage for
nroff is similar to that for troff.

For the convenience of users employing line printers without adequate driving
tables or post-filters, there is a special -TX command line option to tbl which
produces output that does not have fractional line motions in it. The only other
command line option recognized by tbl is - m m which fetches the mm macro
packages.

When you are using both eqn and tbl on the same file, tbl should be used first.
Ir there are no equations within tables either order works, but it is usually faster
to run tbl first, since eqn normally produces a larger expansion of the input
than t bl . However, if there are equations within tables (e.g. when you are using
the eqn delim command), tbl must be first or the output will be scrambled.
(See Chapter 8, "Formatting Mathematics.") You must also be cautious of
using equations in n-style columns; this is nearly always wrong, since tbl
attempts to split numerical format items into two parts and this is not possible
with equations. Give the delim(xx) tbl option instead; this prevents splitting or
numerical columns within the delimiters. For example, if the eqn delimiters
are $$, giving delim($$) a numerical column such as " 1245 S+- 16S" will be
divided after 1245, not after 1 6.

Tbl limits tables to twenty columns; however, use of more than 16 numerical
columns may fail because of limits in troff, producing the ' 'too many number
registers' ' message. Troff num her registers used by tbl must be avoided by the
user within tables; these include two-digit names from 31 to 99, and names of
the forms :f/:x, x+, xl , �x, and x-, where x is any lowercase letter . The names
:f/:1, #-, and � � are also used in certain circumstances. To conserve number
register names, the n and a formats share a register; hence the restriction that
they may not be used in the same column.

For aid in writing macros, tbl defines a number register TW which is the table
width; it is defined by the time that the .TE macro is invoked and may be used
in the expansion of that macro. To assist in laying out multipage boxed tables
the macro T# is defined to produce the bottom lines and side lines of a boxed
table, and then invoked at the of the table. By using this macro in the page
footer a multipage table can be boxed. In particular, the mm macros can be

7-10

Formatting Tables

used to print a multipage boxed table with a repeated heading by giving the
argument H to the . TS macro. Ir the table start macro is written

.TS H

a line or the form

.TH

must be given in th� table after any table heading (or at the start if none) .
Material up to the . TH is placed at the top of each page of table; the remaining
lines in the table are placed on several pages as required.

7·.4 Examples

Here are some examples illustrating features of tbl. The symbol() in the input
represents a tab character.

Input:

.TS
box;
c c c
l l 1.
Language()Author�Runs on

FortrarOMany(}Almost anything
PL/1(}IDM(}360/370
C0BTL(}1 1/45,H6000,370
BLIS!()Carnegie-Mellon(}PDP- 10, 1 1
ID�Honeywell(}H6000
Pascal(}Stanfor d(}370
.TE

Output:

Language Authors Runs on

Fortran
PL/1
c
BLISS
IDS
Pascal

Many
mM

Almost anything
360/370

BTL
Carnegie-Mellon
Honeywell
Stanford

1 1/ 45,H6000,370
PDP-10, 1 1
H6000
370

7- 1 1

XENIX Text Processing

Input:

.TS
all box;
c s s
c c c
n n n.
AT&T Common Stock
Year(}PricEODividend
1971�41-54()$260
!041-540'270
:046-55(}287
�40-5:0324
5Gl45-52(}340
f05t-5Q(}Q5•
.TE
* (first quarter only)

Output:

AT&T Common Stock
Year Price Dividend
1971 41-54 $2.60

2 4 1-54 2.70
3 46-55 2.87
4 40-53 3.24
5 45-52 3.40
6 51-59 .95•

* (first quarter only)

7-12

Input:

.TS
box;
c s s
c 1 c 1 c
I I I I n.
Major New York Bridges

Bridge(}Designer(}Length

Brooklyn()J A Roebling(}1595
Manhattan(}G Lindentha01470
Williamsburg(}L L Buck()1600

Queensborough(}Palmer &()1 182
(} Horn hostel

001380
Triborough(}O H Ammann()_
00383

Bronx \\7hitestone00 H Arnmann(}2300
Throgs Neck(}<) H Ammann(}1800

George Wa.shington(}O H Amma.nn(}3500
.TE

Output:

Maior New York Brid�es
Bridge Designer

Brooklyn J. A. Roebling
Manhattan G. Lindentha.l
Williamsburg L. L. Buck
Queensborough Palmer &

Hornbostel

Triborough 0. H. Ammann

Bronx Whitestone 0. H. Ammann
Thro_gs Neck 0. H. Ammann
George Washington 0 . H. Ammann

Formatting Tables

Length
1595
1470
1600
1 182

1380

383
2300
1800
3500

7-13

XENIX Text Processing

Input:

.TS
c c
np-2 j n I .
(}Stack
(}_
1(}46
(}_
2(}23
(}_
3(}15
(}_
4(}65
(}_
5(}21
(}_
.TE

Output:

Stack
1 46
2 23
3 15
4 6.5
6 2. 1

7-14

Input:

.TS
box;
L L L
L L _
L L I LB
L L _
L L L.
january(}rebruary(}march
apriOmay
j une(}j uly()Months
augusOseptember
october(}nov em ber(}de cern her
.TE

Output:

january
april
june
august
october

february march
may

I july l Months
september ..__ ___ -i
november december

Formatting Tables

7-i&

XENIX Text Processing

Input:

.TS
box;
em s s s.
Composition or Foods
-
.T&
c 1 c s s
c 1 c s s
c 1 c 1 c I c.
Food(}Percent by Weight
\A(}_
\AOProteinOFat.OCarbo­
\ A�\AC)\A(}hydrate

.T&
I I n I n I n.
Applef(}.4(}.5()I3.0
Halibut()IS.-65.2(} . . .
Lima bean5()7.5().8(}22.0
Milk�3.3(}4.0(}5.0
Mushroom�.5(}.4()6.0
Rye breac09.0(}.6(}52. 7
.TE

Output:

Com position or Foods
Percent by Weight

Food Protein Fat Carbo-
hydrate

Apples .4 .5 13.0
Halibut 18.4 5.2 . . .
Lima beans 7.5 .8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 .4 6.0
Rye bread 9.0 .6 52.7

7-16

Formatting Tables

Input:

.TS
all box;
en s s
c cw(1 i) cw(1i)
lp9 lp9 lp9.
New York Area Rocks
Era(}Formation()Age (years)
Precambrian(}Reading Prong()> 1 billion
Paleozoic()Manhattan Prong()400 million
Mesozoic()T {
.na
Newark Basin, incl.
Stockton , Lockatong, and Brunswick
rormations; also Watchungs
and Palisades.
T }(}200 million
Cenozoic()Coastal Plain(}T{
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation .
. ad
T}
.TE

Output:

Era
Precambrian
Paleozoic
Mesozoic

Cenozoic

N�v: York Ar�c Roekl
Formation

Reading Prong
Manhat tan Prong;
Newark Basin, incl.
Stockton, Lockatong, and Brunswick
rormations; also Watchungs
and Palisades.
Coastal Plain

Ar,e (years)
> 1 bill ion
400 mil lion
200 million

On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation.

XENIX Text Processing

7 .5 Summary of tbl Comm an ds

Command Meaning

a A Alphabetic subcolumn
all box Draws bo� around all items
b B Boldface item
box Draws box around table
c C Cent.ered column
center Centers table in par:e
double box Doubled box around table
e E Equal width columns
exoand Makes table full line width
r F Font chanr:e
i I Italic item
l L Left adiusted column
n N Numerical column
nnn Column separation

_p P Point size chan.ce
r R Rir:ht adjusted column
s S Spanned item
t T Vertical sp_annin.c at top
tab (z) Chanr:e data separator character
$fat roman "T{" - - fat roman " T}" � Text block
v V Vertical soacinJ: ehan�te
w W Minimum width vaJue
.zz Included troff command
I Vertical line
II Double vertical line
.... Vertical soan
, Vertical span
= Double horizontal line
$fat " " $ Horizontal line
$fat " \-"$ Short horizontal line

7- 18

Chapter 8

Formatting Mathematics

8.1 Introduction 8-1

8.2 Displayed Equations 8-2

8.3 Basic Mathematical Constructions 8-3
8.3. 1 Subscripts and Superscripts 8-3
8.3.2 Braces for Grouping 8-4
8.3.3 Fractions 8-5
8.3.4 Square Roots 8-6
8.3.5 Summation and Integrals 8-7

8.4 Complex Mathematical Constructions
8. 4. 1 Big Brackets, Parentheses, and Bars
8.4.2 Piles 8-8
8.4.3 :Matrices 8-9
8.4.4 Lining Up Equations 8-10

8-7
8-7

8.5 Layout and Design of Mathematical Text 8-1 1
8.5. 1 Input Spaces 8-1 1
8.5.2 Output Spaces 8-1 1
8.5.3 Spaces Between Special Sequences 8-1 1
8.5.4 Symbols, Special Names, and Greek Characters -

8-12
8.5 .5 Size and Font Changes 8-12
8.5.6 Diacritical Marks 8-14
8.5.7 Quoted Text 8-14
8.5.8 Local Motions 8- 15

8.6 In-line Equations 8-15

8.7 Definitions 8- 16

8.8 lnvoking eqn 8-18

8.9 Sample Equation 8-18

8. 10 Error Messages 8-19

8. 1 1 Summary oCKeywords and Precedences 8-20

8 . 1 Introduction

In the previous chapter you were introduced to the tbl program, a special
preprocessing formatting program which helps you design and create
professional-looking tables in documents. This chapter describes another
preprocessor: eqn, a. program that simplifies the task of formatting complex
mathematical equations and printing special symbols. Once again, unless you
need to use mathematical equations or special symbols in your documents, you
can postpone or skip reading about eqn.

Like tbl, eqn is a. "preprocessor" -that is, you must embed commands in the
text as you are preparing it, along with mm macros and nroff/troff
commands. The eqn macros are then translated by the eqn program into
nroff'/troff commands, without altering either the body of the text or other
formatting commands. The file is processed through the nroff or troff'
programs themselves to produce final output.

The uses of eqn are fairly specialized-you may simply not need to rormat
equations. However, eqn offers you precise control over line spacing, which is
suitable to formulas and subscripting, necessary for documents in such fields as
chemistry and physics. You also have such special character sets as the Greek
alphabet available to you.

The design or the eqn program makes it relatively easy to learn. Wherever
possible, the formatting commands resemble ordinary English words (e.g. over,
lineup, bold, union) , and the format is specified much as you might try to
describe an equation in conversation. Ir you are faced with the ta.sk of
typesetting equations, you will soon appreciate how quickly you can specify
even complicated equations requiring unusual line motions, such as arrays,

Mathematical equations are notoriously difficult to format by conventional
typesetting methods. With the help of the XENIX program eqn , however, you
will quickly learn to use troff to typeset mathematical equations directly to a
phototypesetter. Eqn employs a. language which is quite easy to use, even if
you have know little about either mathematics or typesetting. In a half hour or
so, you should be able to learn enough or the language to set equations like
lim (tan z)8in2% = 1 or equations like: %-'lf/2

XENIX Text Processing

The same commands may also be used with the XENIX formatter nroff to
format mathematical expressions for lineprinters. To do this, invoke the
program neqn instead of eqn . The same limitations (inability to change font
and point size, and do variable spacing, etc.) apply to any text output to a
lineprinter. The resulting output from neqn, however, is usually adequate for
proofreading.

As you work ·with eqn, remember that the eqn program itselrknows relatively
little about mathematics. In particular, mathematical symbols like +, -, X ,
and parentheses have no special meanings. Eqn will set anything that looks
like an equation, regardless of whether it makes sense mathematically.

To use eqn on your XENIX system, type

eqn file I troff -mm

This command line processes file with eqn, then pipes the resulting output file
to the troff program.

8 .2 Displayed Equations

To tell eqn where a mathematical expression begins and ends, surround it with
the commands .EQ and .EN. Thus, if you type the lines

.EQ
x==y+z
.EN

your output will look like:

z= y+ z

The .EQ and .EN are not processed by eqn . It you want to specify centering,
numbering, or other formatting features for your mathematical text, you will
need to enter the appropr iate formatting commands in your text. It you want,
you can add nroft'/troft' commands, but it is far simpler to use m m. m m
provides commands which allow you to center, indent, left-justify and number
equations.

You can give the .EQ command an argument that is treated as an arbitrary
equation number which will be placed in the right margin. For example, the
input

.EQ 7
x = f(y/2) + y/2
.EN

produces the output

8-2

Formatting Mathematics

x=J(y/2)+y/2 7

Note that .EQ is an mm macro. In other computer systems' macro packages it
may haYe a different meaning.

8.3 Basic Mathem atical Constructions

This section describes how eqn can be used to handle the following frequently
used mathematical constructions:

subscripts and superscripts

grouping

fractions

square roots

summation and integrals

8.3.1 Subscripts and Superscripts

To get subscripts and superscripts into mathematical text, use sub and sup.
For example, the following

x sup 2 + y sub k

produces

z2+Yt
Eqn supplies all the commands for size changes and vertical motions to make
the output look right. The words sub and sup must be surrounded by spaces.
For example:

x sub2

will give you xsub2 instead or �· Furthermore, don't forget to leave a space or
a tilde to mark the end or a subscript or superscript. Note that if you use an
expression like

y = (x sup 2)+1

you will get

instead of

8-3

XENIX Text Processing

Subscripted subscripts and superscripted superscripts can also be created. The
following

x sub i sub 1

produces

A subscript and superscript on the same object are printed one above the other
it the subscript comes first. For example,

x sub i sup 2

produces

Other than in this special ease, sub and sup group to the right, so x sup y sub z
means l•, not :t'1 zo

8 .3.2 Braces tor Grouping

Normally, the end of a subscript or superscript is marked simply by a blank,
tab, or tilde. If you need to produce a subscript or superscript with blanks in it,
you can use braces ({}) to mark the beginning and end of the subscript or
superscript. For example:

e sup {i omega t}

produces:

Braces can always be used to force eqn to treat an expression as a unit, or just
to make your intention perfectly clear. When you use braces:

x sub {i sub 1} sup 2

produces

�1
The same text without braces:

8-4

Formatting Mathematics

x sub i sub 1 sup 2

produces

Braces can occur within braces if necessary:

e sup {i pi sup {rho +1 } }

results in

The general rule is that anywhere you could use a single item like x, you could
also use any complicated expression, if you enclose it in braces. Positioning and
size will be taken care or by eqn.

You will need to make sure you have the right number or braces. It for some
reason you need to print braces, enclose them in double quotations ("), like " {" .

8 .3.3 Fractions

To make a fraction, use the word "over." For example:

a + b over 2c = 1

produces

b
a+-=1

2c

The line is made the right length and positioned automatically. You ca.n use
braces to make clear what goes over what:

{alpha + beta} over {sin(x)}

is

It you have both a.n over and a sup in the same expression, eqn does the sup
before the over� so

-b sup 2 over pi

8-5

XENIX Text Processing

is

instead of

2

-b 1r

The rules of precedence that -control which operation will be done first are
summarized at the end or this chapter. Iryou are in doubt, however, use braces
to make clear what you mean.

8 .3.4 Square Roots

To draw a square root, use "sqrt". For example

sqrt a+b + 1 over sqrt {ax sup 2 +bx+e}

produces

You should note, however, that the square roots of tall quantities often do not
look good. A square root· big enough to cover the quantity is too dark and
heavy. For example

sqrt {a. sup 2 over b sub 2}

produces

You are better off writing big square roots as the power 1/2. For example, you
could use

(a. sup 2 /b sub 2) sup half

to produce

8-6

Formatting Mathematics

8 .3.5 Summation and Integrals

Summations, integrals, and similar constructions can be produced with eqn.
For example

sum from i=O to { i= inC} x sup i

produces

Braces are used here to indicate where the upper part i-oo begins and ends.
No braces were necessary for the lower part i=O, because it contained no
blanks. Braces never hurt, and if the from and to parts contain any blanks, you
must use braces around them. The from and to parts are optional, but if both
are used, they have to occur in that order.

Other useful characters can replace the sum, including:

int prod union inter

These become, respectively ,

I II u n
The expression before the "from" can be anything, including an expression in
braces. The from-to expression can often be used in unexpected ways. For
example

lim from { n - > inC} x sub n ==0

. produces

8 .4 Complex Mathematical Constructions

This section describes how to use eqn to produce more complicated
mathematical constructions, including piles and matrices, often surrounded by
brackets, parentheses or bars.

8 .4 . 1 Big Brackets , Parentheses, and Bars

XENIX Text Processin g

To get big brackets ([J), braces ({ }) , parentheses (()) , and bars (If) around
things, use the left and r ight commands. For example

left { a over b + 1 right }
�= � left (c over d right)
+ left (e right]

produces

The resulting brackets are big enough to cover whatever they enclose. Other
characters can be used besides these, but they probably won't look very good.
One exception is the floor and ceiling characters. For example

left floor x over y right floor
< = left ceiling a over b right ceiling

produces

Please note that braces are typically bigger than brackets and parentheses,
because the number of pieces is incremented by two (three, five, seven, etc.)
while the num her of pieces in a. bracket is incremented by one (two, three, etc.) .
Also, big left and right parentheses often look poor, because of character set
limitations.

The right part may be omitted: a left expression need not have a corresponding
right expression. If the right part is omitted, put braces around the thing you
want the left bracket to encompass. Otherwise the resulting brackets may be
too large. Ir you want to omit the left part, things are more complicated,
because technically you can't have a. right without a corresponding left.
Instead you have to say

left " " right)

The left " " means a "left nothing". This satisfies the rules without affecting
your output.

8 .4 .2 P iles

There is a. facility for making vertical piles of things with several variants. For
example:

Formatting Mathematics

A �=� left (
pile { a above b above c }
� � pile { x above y above z }

right]

will produce

You can have as many elements in a pile as you want. They will be centered one
above another, at the right height for most purposes. The keyword above is
used to separate the pieces; braces are used around the entire list. The elements

. ot a pile can be as complicated as needed, and may even contain more piles.

Three other forms of pile exist: "lpile" makes a pile with the elements left­
justified; "rpile" makes a right-justified pile; and "cpile" makes a centered pile,
just like pile. The vertical spacing between the pieces is somewhat larger for 1- ,
r- and cpiles than it is for ordinary piles. For example

roman sign (xr = �
left {

lpile { 1 above 0 above - 1 }
� � lpile
{ if�x>O above if�x=O above irx<O}

creates the pile

{1 if z>O
sign(z) = 0 if z=O

-1 if z<O

Note that the left brace has no matching right one.

8 .4 .3 Matrices

It is also possible to make matrices. For example, to make a neat array like

use

8-9

XENIX Text Processing

matrix {

}

ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

This produces a matrix with two centered columns. The elements of the
columns are then listed just as for a pile, each element separated by the word
above. You can also use lcol or reel to left or right adjust columns. Each
column can be separately adjusted, and there can be as many columns as you
like.

The reason for using a matrix instead of two adjacent piles is that if the
elements of the piles do not all have the same height, they will not line up
properly . A matrix forces them to line up, because it looks at the entire
structure before deciding what spacing to use. A word of warning about
matrices: each column must have the same number of elements in it.

8 .4 .4 Lining Up Equations

Sometimes it is necessary to line up a series of equations at some horizontal
position, such as at an equal sign. This is done with two operations called
"mark"and "lineup." The word mark may appear once at any place in ail
equation. It remembers the horizontal position where it appeared. Successive
equations can contain one occurrence of the word lineup. The place where
lineup appears is made to line up with t.he place marked by the previous mark if
at all possible. Thus, for example, you can say

.EQ
x+y mark == z
.EN
.EQ
x lineup == 1
.EN

to produce

z+y=z
z=l

Note that mark does not look ahead, so

x mark == 1

x+y lineup ==z

will not work, because there is not room for the x+y part after the mark
remembers where thex is.

8-10

Formatting Mathematics

8 .5 Layout and Design or 1\fathem atical Text

The rollowing sections describe the format and layout control features or eqn.

8 .o.l Input Spaces

Eqn ignores spaces and newlines within a.n expression. If you have any of the
following equations between .EQ and .EN commands,

or

or

x=y+z

X = y + Z

X = y
+ z

they will all produce the same output:

Thererore, use spaces and newlines Creely to make your input equations
readable and easy to edit.

8 .o.2 Output Spaces

To get extra. spaces into the your output, use a tilde C) for each space you want:

This produces

z = y + z

You can also use a caret C), which produces a space ha.IC the width or a. tilde.
Tabs may be used to position pieces of an expression, but the tab stops must be
set with the trofftab (. ta) command.

8 .5.3 Spaces Between Special Sequences

Ir you need to separate a special sequence or characters, you will have to make
this clear to eqn. You can either surround a. special sequence with ordinary
spaces, tabs, or newlines, or make special words stand out by surrounding them

8- 1 1

XENIX Text Processing

with til des or carets, as in the following:

The tildes not only separate the words sin, omega, etc., but also add · extra
spaces, one space per tilde:

z = 2 1r J sin (w t) dt

Special words can also be separated by braces ({ }) and double quotation marks
(") .

8.5.4 Symbols, Special Names, and Greek Characters

Eqn knows some mathematical symbols, some mathematical names, and the
Greek alphabet. For example,

x=2 pi int sin (omega t)dt

produces

z=27r J sin (wt) dt

Here you need input spaces to tell eqn that int, pi, sin and omega are separate
entities that should get special treatment. The sin, digit 2, and parentheses are
set in Roman type instead or italic; pi and omega are translated into Greek; int
becomes the integral sign.

When in doubt, leave spaces around separate parts or the input. A common
error is to type f(pi) without leaving spaces on both sides or the pi. It you do
this, eqn does not recognize pi as a special word, and it appears asl{pi) instead
or .I(1r). A complete list or eqn names appears at the end of this chapter. You
can also use troffnames for anything eqn doesn't know about.

8 .5.5 Size and Font Changes

By default, equations are set in 10-point type; standard mathematical
conventions determine which characters are in Roman and which are in italic.
Ir you are dissatisfied with the default sizes and fonts, you can change them
using the commands size n and roman, italic, bold and fat. Like sub and sup,
size and font changes affect only what follows immediately and then revert to
the default. Thus

bold x y

is

8-12

and

xy

size 14 bold x == y +
size 14 {alpha + beta}

gives

Formatting :Mathematics

You can use braces if you want to apply a change to something more
complicated than a single letter. For example, you can change the size of an
entire equation with

size 12 { . . . }

Legal sizes are: 6, 7, 8, 9, 10, 1 1 , 12, 14, 16, 18, 20, 22, 24, 28, and 36. You can also
change the size by a given amount; For example, you can say

size+2

to make the size two points bigger, or

size...,.3

to make it three points smaller. The advantage of this method is that you do
not need to know what the current size is.

If you are using fonts other than Roman, italic and bold, you can say font X
where X is a one character trofl' name or num her for the font. However, since
eqn is designed for Roman, italic and bold, other fonts may not give quite as
good an appearance.

The fat operation takes the current font and widens it by over striking: fat grad
is V and fat {x sub i} is Z;.

If an entire document is to be in a nonstandard size or font, you need not write
out a size and font change for each equation. Instead, you can set a "global" size
or font which thereafter affects all equations. At the beginning of any equation,
you might say, for instance,

.EQ
gsize 1 6
gfont R

.EN

to set the size to 16 points and the font to Roman. In place ofR,you can use any

8- 13

XENIX Text Processing

trofffont name. The size after gsize can be a relat.ive change with + or -.

Generally, gsize and gfont will appear at the beginning of a document but they
can also appear throughout a document: the global font and size can be changed
as often as needed. For example, in a footnote you will typically want the size of
equations to match the size of the footnote text, which is two points smaller
than the main text. Don't forget to reset the global size at the end of the
footnote.

8 .5.6 Diacritical Marks

There are several words that produce diacritical marks on top ofletters:

x dot z
x dotdot z
x hat x
x tilde z
x vee z
x dyad z
x bar z
x under �

The diacritical mark is automatically placed at the correct height. The "bar"
and "under" are made the right length for the entire construct, as in z:::FY-FZ;
other marks are centered.

8 .5.7 Quoted Text

Any input entirely within quotes (" . . . ") is not subject to any of the font changes
and spacing adjustments normally done by the equation setter. This provides a
way to do your own spacing and adjusting if needed. For example

italic " sin(x)" + sin (x)

produces

sin(z)+sin(z)

Quotation marks are also used to get braces and other eqn keywords printed.
For example

" { size alpha } "

produces

{ size alpha }

Similarly

8- 1 4

Formatting Mathematics

roman " { size alpha }"

produces

{ size alpha }

The construction " " can be used as a place-holder when eqn synta.x requires
something, but you don't actually want anything in your output. For example,
to make

you can't just type

sup 2 roman He

because a sup has to be a superscript on something. Thus you must say

" " sup 2 roman He

' To get a literal quotation mark, use the sequence \" .

8 .5 .8 Local �1otions

Although eqn tries to get most things at the right place on the paper, it isn't
perfect, and occasionally you will need to tune the output to make it just right.
Small extra horizontal spaces can be obtained with tildes C) and caretsr). You
can also say "back n" and "fwd n" tc move small distances horizontally. The n
is the distance to be moved in 1/100 em units (an em is about the width of the
letter m) . Thus "back 50" moves back about hair the width of an m. Similarly
you can move things up or down with "up n" and "down n." As with sub or sup,
the local motions affect the next thing in the input. This can be a complex
expression, as long as it is enclosed in braces.

8 .6 In-line Equ ations

In a mathematical document it is often necessary to follow mathematical
conventions in the body of the text, as well as in display equations. For
example, you may need to make variable names like z italic. Although this
could be done by surrounding the appropriate parts with .EQ and .EN, the
continual repetition of .EQ and .EN is a nuisance. Furthermore, this implies a
displayed equation.

Eqn provides a shorthand for short in-line expressions. You can define two
characters to mark the left and right ends of an in-line equation, and then type
expressions right in the middle of text lines. To set both the left and right
characters to percent signs, for example, add to the beginning of your
document the three lines

8-15

XENIX Text Processing

.EQ
delim %%
.EN

Having done this, you create text like

Let %alpha. sub i% be the primary variable, and let %beta% be zero.
Then we can show that %x sub 1% is %> =0%.

This produces:

Let a1 be the primary variable, and let /3 be zero. Then we can show
that z1 is �0.

This works as you might expect: spaces, newlines, and so on are significant in
the text, but not in the equation part itself. Multiple e quations can occur in a
single input line.

Enough room is left before and after a line that contains in-line expressions that
71

something like E z, does not inter Cere with the lines surrounding it.
,:::1

To turn off the delimiters, use:

.EQ
delim off
.EN

Do not use braces, tildes, carets, or double quotation marks as delimiters; these
have special meanings.

8 .7 Definitions

Eqn allows you to give a frequently used string or characters a name, and
thereafter just type the name instead of the whole string. For example, if the
sequence

x sub i sub 1 + y sub i sub 1

appears repeatedly throughout a paper, you can save retyping it each time by
defining it like this:

.EQ
define xy 'x sub i sub 1 + y sub i sub 1 '
.EN

This makes xy a shorthand for whatever characters occur between the single
quotation marks in the definition. You can use any character instead of

8-16

Formatting Mathematics

quotation marks to indicate the ends of the definition, so long as that character
does not appear inside the definition.

You can use xy like this:

.EQ
r(x) = xy . . .
. EN

Each occurrence or xy will exp&.nd into the string of characters you defined. Be
careful to leave spaces or their equivalent around the name when you actually
use it, so eqn will be able to identify it as special.

There are several things to watch out for. First, although definitions ca.n use
previous definitions, as in:

.EQ
define xi ' x sub i '
define xil ' xi sub 1 '
.EN

don't define something in terms of itself. You cannot use

define X ' roman X '

because this defines X in terms of itself. Iryou say

define X ' roman "X" '

however, the quotation marks protect the second X, and everything works fine.

Eqn keywords can be also be redefined. You can make I mean over by saying

define I ' over '

· or redefine over as I with

define over ' I '

Ir you need to print a symbol one way on a terminal and another way on the
typesetter, it is sometimes worth defining a symbol differently for neqn and
eqn. This can be done with "ndefine" and "tdefine." A definition made with
ndefine only takes effect if you are running neqn. If you use tdefine, the
definition only applies for eqn. Names defined with "define" apply to both eqn
and neqn.

8- 17

XENIX Text Processing

8.8 Invoking eqn

To print a document t.hat contains mathematics on the typesetter, use

eqn files I troff

Ir there are any troff options, place them after the troff part or the command.
For example,

eqn files I troff -mm files

To print equations on a lineprinter or similar device, use

neqn files I nroff -mm files

The language Cor equations recognized by neqn is identical to that or eqn,
although or course the output is more restricted.

Eqn and neqn can be used with the t bl program for setting tables that contain
mathematics. Use tbl before eqn like this:

tbl files I eqn I troff -mm
tbl files I neqn I nroff -mm

. 8 .9 Sample Equation

Now that you are familiar with the features of eqn, here is the complete input
text for the three display equations at the beginning or this chapter:

8- 18

Formatting Mathematics

.EQ
G(zrma.rk ==� e sup { In � G (z) }
�-= � exp left (
sum from k>=-1 {S sub k z sup k} over k right)
� = � prod from k>==1 e sup {S sub k z sup k /k}
.EN
.EQ
lineup = left (1 + S sub 1 z +
{ S sub 1 sup 2 z sup 2 } over 2! + ... right)
left (1+ { S sub 2 z sup 2 } over 2
+ { S sub 2 sup 2 z sup 4 } over { 2 sup 2 edot 2! }
+ ... right) . . .
. EN
.EQ
lineup = sum from m > ==0 left (
sum from
pile { k sub 1 ,k sub 2 , ... , k sub m > ==0
above
k sub 1 +2k sub 2 + ... +mk sub m =m}
{ S sub 1 sup {k sub 1 } } over { 1 sup k sub 1 k sub 1 ! } �
{ S sub 2 sup {k sub 2} } over {2 sup k sub 2 k sub 2 ! } �
{ S sub m sup {k sub m} } over {m sup k sub m k sub m ! }
right) z sup m
.EN

8 .10 Error Messages

Ir you make a mistake in an equation, such as leaving out a brace or having one
too many braces or having a. sup with nothing before it, eqn will respond with
the message

syntax error between lines x and y, file

where x and y are the lines between which the trouble occurred, and file is the
name of the file in question. The line numbers are only approximate, so cheek
nearby lines as well. You will receive self-explanatory messages if you leave out
a. quotation mark or try to run eqn on a nonexistent file.

If you want to checka. document before actually printing it try:

eqn files >/dev/null

This will throw. away the output but print the error messages.

If you use something like dollar signs as delimiters, it is easy to leave one out.
The program eqncheck cheeks for misplaced or missing dollar signs and
similar errors.

8-19

XENIX Text Processing

In-line equations are limited in size because or an internal buffer in trofr. Iryou
get the message "word overflow", you have exceeded this limit. Iryou print the
equation a.s a display this message will usually go away. The message
"line"overftow indicates you have exceeded an even bigger buffer. The only
cure Cor this is to break the equation into two separate ones.

Also, eqn does not break equations by itself; you must split long equations up
across multiple lines by · yourself, marking each by a separate .EQ EN
sequence. Eqn warns about equations that are too long to fit on one line.

8.1 1 Summary of Keywords and Precedences

Ir you don't use braces around expressions, eqn will do operations in the order
shown in this list.

dyad vee under bar tilde hat dot dotdot
fwd back down up
rat roman italic bold size
sub sup sqrt over
from to

These operations group to the lett:

over sqrt lett right

All others group to the right.

Digits, parentheses, brackets, punctuation marks, and these mathematical
words are converted to Roman font when encountered:

sin cos
max min
Re Im

tan sinh
lim log
and if

cosh tanh arc
In exp
for det

These character sequences are recognized and translated as shown.

> == >
< == �
==·== -
!== #:
+- ±
-> -+

<- +-
< < <<
> > >>
inr 00
partial lJ
hair
prime

8-20

Formatting �fathematics

approx �
nothing
cdot
times X
del v
grad v

, . . . ,
t• • J sum

int f
prod II
union H inter

To obtain Greek letters, simply spell them out in whatever case you want:

DELTA A iota
GAMMA r kappa IC
LAMBDA A lambda }..
o:MEGA n mu ll
Pill 4> nu v
PI n omega w
PSI 'il omicron 0
SIGMA E phi t/>
THETA e pi 1r
UPSILON T psi 1/J
XI E rho p
alpha a sigma (1
beta. {3 tau T
chi X theta (}
delta 6 upsilon tJ
epsilon t xi e
eta '1 zeta. r
gamma 'Y

These are all the words known to eqn except for characters with names:

8-21

XENIX Text Processing

above dotdot italic rcol to
back down I col right under
bar dyad Jert roman up
bold rat lineup rpile vee
ceo! ront lpile size '
col rrom mark sqrt { }
epile rwd matrix sub \" ... \"
define g(ont ndefine sup
de lim gsize over tdefine
dot hat pile tilde

8-22

Appendix A
Editing with Sed and Awk

A.1 Introduction A-1

A.2 Editing With sed A-1
A.2.1 Overall Operation A-2
A.2.2 Addresses A-3
A.2.3 Functions A-5

A.3 Pattern Matching With awk A-12
A.3. 1 lnvoking awk A-13
A.3.2 Program Structure A-13
A.3.3 Records and Fields A-13
A.3.4 Printing A-14
A.3.5 Patterns A-15
A.3.6 Actions A-17

A. l Introduction

This appendix describes two XENIX utilities that allow you to perform large­
seale , noninteraetive editing tasks:

Sed, a noninteraetive, or "batch", editor which is useful if you must
work with large files or run a complicated sequence of editing
commands on a file or group of files.

Awk, which searches numerics, logical relations, variables, and
particular fields within lines or text.

Although you can perform many of the same tasks with grep, sort, and the
variants or diff, you will find that these two programs offer an added facility for
the processing or complicated changes to large files, or many files at once. Sed is
very handy for large batch editing jobs, but if you choose not to learn it, many
of the same tasks can be performed with ed scripts. The awk program offers
several features not available with the other tools described in this chapter, but
it is somewhat more complicated to learn and use.

A.2 Editing With sed

The sed program is a noninteractive editor which is especially useful when the
files to be edited are either too large, or the sequence of editing commands too
complex, to be executed interactively. sed works on only a few lines or input at
a time and does not use temporary files, so the only limit on the size or the files
you can process is that both the input and output must be able to fit
simultaneously on your disk. You can apply multiple " global" editing functions
to your text in one pass. Since you can create complicated editing scripts and
submit them to sed as a command file, you can save yourself considerable
retyping and the possibility of making errors. You can also save and reuse sed
command files which perform editing operations you need to repeat frequently.

Processing files with sed command files is more efficient than using ed, even if
you prepare a prewritten script. Note, however, that sed lacks relative
addressing heeauses it processes a file one line at a time. Also, sed gives you no
immediate verification that a command has altered your text in the way you
actually intended. Check your output carefully.

The sed program is derived from ed , although there are considerable
differences between the two, resulting from the different characteristics or
interactive and batch operation. You will notice a striking resemblance in the
class of regular expressions they recognize; the code for matching patterns is
nearly identical for ed and sed.

A-1

XENIX Text Processing

A.2.1 Overall Operation

By default, sed copies the standard input to the standard output, performing
one or more editing commands on each line before writing it to the output.
Typically, you will need to specify the file or files you are processing, along with
the name or the command file which contains your editing script, as in the
following:

sed -f script filename

The flags are optional. The -n flag tells sed to copy only those lines specified by
-p functions or -p flags after -s functions. The -e flag tells sed to take the next
argument as an editing command, and the -t flag tells sed to take the next
argument as a filename. (This file must contain editing commands, one to a
line.)

The general format of a sed editing command is:

address! ,address2 function arguments

In any command, one or both addresses may be omitted. A function is always
required, but an argument is optional for some functions. Any number of
blanks or tabs may separate the addresses .from the function, and tab
characters and spaces at the beginning or lines are ignored.

Three flags are recognized on the command line:

-n Directs sed to copy only those lines specified by p functions or p
flags after s functions.

-e Indicates that the next argument is an editing command.

-t Indicates that the next argument is the name of the file which
contains editing commands, typed one to a line.

Sed commands are applied one at a time, generally in the order they are
encountered, unless you change this order with one of the "flow-of-control"

· functions discussed below. Sed works in two phases, compiling the editing
commands in the order they are given, then executing the commands one by
one to each line of the input file.

The input to each command is the output of all preceding commands. Even if
you change this default order of applying commands with one of the two flow­
of-control commands, t and b, the input line to any command is still the output
of any previously applied command.

You should also note that the range or pattern match is normally one line or
input text. This range is called the "pattern space." More than one line can be
read into the pattern space by using the N command described below in

A. l Introduction

This appendix describes two XENIX utilities that allow you to perform large­
scale, noninteractive editing tasks:

Sed , a noninteractive, or "batch", editor which is useful if you must
work with large files or run a complicated sequence of editing
commands on a file or group of files.

Awk, which searches numerics, logical relations, variables, and
particular fields within lines or text.

Although you can perform many of the same tasks with grep, sort, and the
variants or diff, you will find that these two programs offer an added facility for
the processing of complicated changes to large files, or many files at once. Sed is
very handy for large batch editing jobs, but if you choose not to learn it, many
of the same tasks can be performed with ed scripts. The awk program offers
several features not available with the other tools described in this chapter, but
it is somewhat more complicated to learn and use.

A.2 Editing With sed

The sed program is a noninteractive editor which is especially useful when the
files to be edited are either too large, or the sequence of editing commands too
complex, to be executed interactively. sed works on only a few lines of input at
a time and does not use temporary files, so the only limit on the size of the files
you can process is that both the input and output must be able to fit
simultaneously on your disk. You can apply multiple " global" editing functions
to your text in one pass. Since you can create complicated editing scripts and
submit them to sed as a command file, you can save yourself considerable
retyping and the possibility of making errors. You can also save and reuse sed
command files which perform editing operations you need to repeat frequently.

Processing files with sed command files is more efficient than using ed, even if
you prepare a. prewritten script. Note, however, that sed lacks relative
addressing becauses it processes a file one line at a time. Also, sed gives you no
immediate verification that a command has altered your text in the way you
actually intended. Check your output carefully.

The sed program is derived from ed, although there are considerable
differences between the two, resulting from the different characteristics or
interactive and batch operation. You will notice a striking resemblance in the
class of regular expressions they recognize; the code for matching patterns is
nearly identical for ed and sed.

A-1

XENIX Text Processing

A.2.1 OveralJ Operation

By default, sed copies the standard input to the standard output, performing
one or more editing commands on each line before writing it to the output.
Typically, you will need to specify the file or files you are processing, along with
the name of the command file which contains your editing script, as in the
following:

sed -r script filename

The flags are optional. The -n flag tells sed to copy only those lines specified by
;;_p functions or -p flags after -s functions. The -e flag tells sed to take the next
argument as an editing command, and the -r flag tells sed to take the next
argument as a filename. (This file must contain editing commands, one to a
line.)

Tne general format ot a sed editing command is:

addressl ,address2 function arguments

In any command, one or both addresses may be omitted. A function is always
required, but an argument is optional for some functions. Any number ot
blanks or tabs may separate the addresses from the function, and tab
characters and spaces at the beginning or lines are ignored.

Three flags are recognized oil the command line:

-n Directs sed to copy only those lines specified by p function, or p
flags after s functions.

-e Indicates that the next argument is an editing command.

-t Indicates that the next argument is the name of the file which
contains editing commands, typed one' to a line.

Sed commands are applied one at a time, generally in the order they are
encountered, unless you change this order with one or the "flow-of-control"

· functions discussed below. - Sed works in two phases, compiling the editing
commands in the order they are given, then executing the commands one by
one to each line ofthe inputfile.

The input to each command is the output of all preceding commands. Even it
you change this default order or applying commands with one or the two flow­
of• control commands, t and b, the input line to any command is still the output
of any previously applied command.

You should also note that the range of pattern match is normally one line of
input text. This range is called the "pattern space." More than one line can be
read into the pattern space by using the N command described below in

A-2

Edit ing with Sed and Awk

"Multiple Input-Line Functions".

The rest of this section discusses the principles of sed addressing, followed by a
description of sed functions. All the examples here are based on the following
lines from Samuel Taylor Coleridge's poem, "Kubla Khan":

In Xa.nadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to llian
Down to a sunless sea.

For example, the command

2q

will quit after copying the first two lines of the input. Using the sample text, the
result will be:

In Xa.nadu did Kubla Khan
A stately pleasure dome decree:

A.2.2 Addresses

The following rules apply to addressing in sed. There are two ways to select the
lines in the input file to which editing commands are to be applied: with line
numbers or with "context addresses". Context addresses correspond to
regular expressions. The application of a group of commands can be controlled
by one address or an address pair, by grouping the commands with curly braces
({ }) . There may be 0, 1, or 2 addresses specified, depending on the command.
The maximum number of addresses possible for each command is indicated.

A line number is a decimal integer. As each line is read from the input file, a line
number counter is incremented. A line number address matches the input line,
causing the internal counter to equal the address line-number. The counter
runs cumulatively through multiple input files; it is not reset when a new input
file is opened. A special case is the dollar sign character ($) which matches the
last line of the last input file.

Context addresses are enclosed in slashes (/). They include all the regular
expressions common to both ed and sed:

1. An ordinary character is a regular expression and matches itself.

2. A caret (") at the beginning of a regular expression matches the n�ll
character at the beginning of a line.

A-3

XENIX Text Processing

3. A dollar sign ($) at the end or a regular expression matches the null
character at the end or a line.

4. The characters \n match an embedded newline character, but not the
newline at the end or a pattern space.

5. A period (.) matches any character except the terminal newline of the
pattern space.

6� A regular expression followed by a star (*) matches any number,
including 0, or adjacent occurrences or the regular expression it
follows.

7. A string of characters in square brackets ([]) matches any character in
the string, and no others. It, however' the first character or the string
is a caret (") , the regular expression matches any character except the
characters in the string and the terminal newline or the pattern space.

8. A concatenation of regular expressions is a regular expression which
matches the concatenation of strings matched by the components of
the regular expression.

9. A regular expression between the sequences "\(" and "\)" is identical
in effect to itself, but has side-effects with the s command. Note the
following specification.

10. The expression \d means the same string of characters matched by an
expression enclosed in \(and \) earlier in the same pattern. Here " d"
is a single digit; the string specified is that beginning with the "dth"
occurrence of \(counting from the left. For example, the expression
"\(.•\)\1 matches a line beginning with two repeated occurrences of
the same string.

1 1. The null regular expression standing alone is equivalent to the last
regular expression compiled.

For a context address to "match" the input, the whole pattern within the
ad dress must match some portion of the pattern space. Ir you want to use one of
the special characters literally, · that is, to match an occurrence or itself in the
input file, precede the character with a. backslash (\) in the command.

Each sed command can have 0, 1, or 2 addresses. The maximum number or
allowed addresses is included. A command with no addresses specified is
applied to every line in the input. Ir a. command has one address, it is applied to
all lines which match that address. On the other hand, if two addresses are
specified, the command is applied to the first line which matches the first
address, and to all subsequent lines until and including the first subsequent line
which matches the second address. An attempt is made on subsequent lines to
again match the first address, and the process is repeated. Two addresses are
separated by a comma. Here are some examples:

A-4

Editing with Sed and Awk

/an/
fan.• an/
(an/
f./
/r•an/

Matches lines 1, 3, 4 in our sample text
Matches line 1
Matches no lines
Matches all lines
Matches lines 1 ,3, 4 (number = zero!)

A.2 .3 Functions

All sed functions are named by a single character. They are of the following
types:

Whole-line oriented functions add, delete, and change whole text
lines.

Substitute functions search and substitute regular expressions within
a line.

Input-output functions read and write lines and/or files.

Multiple input-line functions match patterns that extend across line
boundaries.

Hold and get functions save and retrieve input text for later use.

Flow-of-control functions control the order of application of
functions.

Miscellaneous functions.

\\'hole-Line Oriented Functions

d Deletes from the file all lines matched by its addresses. No further
commands will be executed on a deleted line. As soon as the d
function is executed, a new line is read from the input, and the list of
editing commands is restarted from the beginning on the new line.
The maximum number of addresses is two.

n Reads and replaces the current line from the input, writing the
current line to the output if specified. The list of editing commands
is continued following the n command. The maximum number of
addresses is two.

a Causes the text to be written to the output after the line matched
by its address. The a command is inherently multiline; The a
command must appear at the end of a line. The text may contain
any number of lines. The interior newlines must be hidden by a.
backslash character (\) immediately preceding each newline. The
text argument is terminated by the first unbidden newline, the first
one not immediately preceded by ba.ckslash. Once an a function is

A-S

XENIX Text Processing

successfully executed, the text will be written to the output
regardless or what later commands do to the line which triggered it,
even if the line is subsequently deleted. The text is not scanned for
address matches, and no editing commands are attempted on it,
nor does it cause any change in the line-number counter. Only one
address is possible.

When followed by a. text argument it is the same as the a function,
except that the text is written to. the output before the matched
line. It has only one possibl� address.

c The c function deletes the lines selected by its addresses, and
replaces them with the lines in the text. Like the a and i commands,
c must be followed by a. newline hidden with a. ba.ckslash; interior
newlines in the text must be hidden by backslashes. The c
command may have two addresses, and therefore select a. range of
lines. Ir it does, all the lines in the range are deleted, but only one
copy of the text is written to the output, not one copy per line
deleted. As in the case of a and i, the text is not scanned for address
matches, and no editing commands are attempted on it. It does not
change the line-number counter. Arter a line has been deleted by a
c function, no further commands are attempted on it. If text is
appended after a line by a or r functions, and the line is
subsequently changed, the text inserted by the c function will be
placed before the text or the a or r functions.

Note that when you insert text in the output with these functions, leading
blanks and tabs will disappear in all sed commands. To get leading blanks and
tabs into the output, precede the first desired blank or tab by a ba.ckslash; the
backslash will not appear in the output.

For example, the list or editing commands:

n
a\
xxxx
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
xxxx
Where Alph, the sacred river, ran
xxxx
Down to a sunless sea.

In this particular case, the same effect would be produced by either or the two
following command lists:

A-6

or

n
i\
xxxx
d

n
c\
xxxx

Editing with Sed and Awk

Substitute Functions The substitute function(s} changes parts or lines
selected by a context search within the line, as in:

(2}s pattern replac ement jlag1 substitute

The s function replaces part or a line selected by the designated pattern with
the replacement pattern. The pattern argument contains a pattern, exactly
like the patterns in addresses. The only difference between a. pattern and a.
context address is that a pattern argument may be delimited by any character
other than space or newline. By default, only the first string matched by the
pattern is replaced, except when the -g option is used.

The replacement argument begins immediately after the second delimiting
character or the pattern, and must be followed immediately by another
instance of the delimiting character. The replacement is not a pattern, and the
characters which a.re special in patterns do not have special meaning in
replacement. Instead, the following characters are special:

\d

Is replaced by the string matched by the pattern.

d is a. single digit which is replaced by the dth substring matched by
parts of the pattern enclosed in \(and \). Ir nested substrings occur
in the pattern, the dth substring is determined by counting opening
delimiters .

As in patterns, special characters may be made literal by preceding them with a.
backslash (\).

A flag ar gum en t may contain the following:

g Substitutes the replacement for all nonoverlapping instances of the
pattern in the line. After a successful substitution, the scan for the
next instance of the pattern begins just after the end ofthe inserted
characters; characters put into the line from the replacement are
not'rescanned.

p Prints the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a
substitution was actually made by the s function. Notice that if

A-7

XENIX Text Processing

w file

several s functions, each followed by a p flag, successfully
substitute in the same input line, multiple copies or the line will be
written to the output: one for each successful substitution.

Writes the line to a file if a successful replacement was done. The
-w option causes lines which are actually substituted by the s
function to be written to the named file. If the filename existed
before sed is run, it is overwritten; if not, the file is created. A single
space must separate -w and the filename. The possibilities of
multiple, somewhat different copies or one input line being written
are the same as for the -p option. A combined maximum or ten
different filenames may be mentioned aCter w flags and w functions.

Here are some examples. When applied to our standard input, the following
command:

s/to/by /w changes

produces, on the standard output:

In Xa.nadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and on the file ckangu:

Through caverns measureless by man
Down by a sunless sea.

The command

s/f. , ;? :)/•P&•/gp

produces:

A stately pleasure dome decree•P:•
Where Alph•P, • the sacred river•P,• ran
Down to a sunless sea•P.•

With the g flag, the command

/X/s/an/AN/p

produces:

InJ{ANadu did Kubhla Khan

and the command

Editing with Sed and Awk

fX/s/an/AN/gp

produces:

In XANadu did Kubhla KhAN

Input-Ou tput Functions

p The print function writes the addressed lines to the standard
output file at the time the p function is encountered, regardless of
what succeeding editing commands may do to the lines. The
maximum number of possible addresses is two.

w The write function writes the addressed lines to filencme. Ir the file
previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is
encountered for each line, regardless of what subsequent editing
commands may do to them. Exactly one space must separate the w
command and the filename. The combined number of write
functions and w flags may not exceed 10.

r The read function reads the contents of the named file, and appends
them after the line matched by the address. The file is read and
appended regardless of what subsequent editing commands do to
the line which matched its address. Ir r and a functions are
executed on the same line, the text from the a functions and the r
functions is written to the output in the order that the functions are
executed. Exactly one space must separate the r and the filename.
One address is possible. If a file mentioned by an r function cannot
be opened, it is considered a null file rather than an error, and no
diagnostic is given.

Note that since there is a limit to the number of files that can be opened
simultaneously, be sure that no more than ten files are mentioned in functions
or flags; that number is reduced by one if any r functions are present. Only one
read file is open at one time.

Here are some examples. Assume that the file note 1 has the following contents:

Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

The following c?mmand:

fKubla/r notel

produces:

A-9

XENIX Text Processing

In Xa.nadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor or Genghiz (Chingiz) Khan, and
founder or the Mongol dynasty in China.

A stately pleasure dome decree:
Where AJph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Multiple Input-Line Functions Three functions, all spelled with upper
case letters, deal specially with pattern spaces containing embedded newlines.
They are intended principally to provide pattern matches across lines in the
input.

N Appends the next input line to the current line in the pattern space;
the two input lines are separated by an embedded newline. Pattern
matches may extend across the embedded newline(s). There is a
maximum of two addresses.

D Deletes up to .and including the first newline character in the
current pattern space. Ir the pattern space becomes empty (the
only newline was the terminal newline), another line is read from
the . input. In any case, begin the list or editing commands again
from its beginning. The maximum number or addresses is two.

P Prints up to and including the first newline in the pattern space.
The maximum number or addresses is two.

The P and D functions are equivalent to their lowercase counterparts if there
are no em bedded new lines in the pattern space.

Hold and Get Functions These functions save and retrieve part orthe input
for possible later use:

h The h function copies the contents or the pattern space into a
holding area, destroying any previous contents or the holding area.
The maximum number of addresses is two.

H The H function appends the contents or the pattern space to the
contents or the holding area. The former and new contents are
separated by a newline.

g The g function copies the contents or the holding area into the
pattern space, destroying the previous contents or the pattern
space.

G The G function appends the contents or the holding area to the
contents or the pattern space. The former and new contents are
separated by a newline. The maximum number of addresses is two.

X

Editing with Sed and Awk

The exchange command interchanges the contents of the pattern
space and the holding area. The maximum number of addresses is
two.

For example, the commands

lh
Is/ did. •/ /
lx
G
s/\n/ :/

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

Flow-of-Control Functions These functions do no editing on the input
lines, but control the application or functions to the lines selected by the
address part.

{

:label

blabel

This command causes the next command written on the same line
to be applied to only those input lines not selected by the address
part. There are two possible addresses.

This command causes the next set of commands to be applied or not
applied as a block to the input lines selected by the addresses or the
grouping command. The first of the commands under control of
the grouping command may appear on the same line as the { or on
the next line. The group of commands is terminated by a. matching
} on a line by itself. Groups can be nested and may have two
addresses.

The label function marks a place in the list of editing commands
which may be referred to by b and t functions. The label may be
any sequence of eight or fewer characters; if two different colon
functions have identical labels, an error message will be generated,
and no execution attempted.

The branch function causes the sequence of editing commands
being applied to the current input line to be restarted immediately
after encountering a colon function with the same label. If no colon
fun'etion with the same label can be found after all the editing
commands have been compiled, an error message is produced, and
no execution is attempted. A b function with noJabel is interpreted
as a branch to the end of the list of editing commands. Whatever
should be done with the current input line is done, and another

A-ll

XENIX Text Processing

input line is read; the list of editing commands is restarted from the
beginning on the new line. Two addresses are possible.

tlabelfR The t function tests whether any successful substitutions have been
made on the current input line. Ir so, it branches to the label; if not,
it does nothing. The flag which indicates that a successful
substitution has been executed is reset either by reading a new
input line, or executing a t function.

Miscellaneous Functions There are two other functions of sed not
discussed above.

q

The == function writes to the standard output the line number or
the line matched by its address. One address is possible.

The q function causes the current line to be written to the output (if
it should be), any appended or read text to be written, and
execution to be terminated. One address is possible.

· A.3 Pattern Matching With awk

By now you have been introduced to several tools for locating patterns and
strings in one or more text files, including grep and its variants. You should
also be familiar with using the various text editors to do global searching. Awk
offers another · approach to many of these same tasks. Awk is actually a
programming language designed ·to make many common search and text
manipulation tasks easy to state and to perform. It offers several key features
not available with grep or sed: numeric processing, the handling of variables,
general selection, and flow-of-control in commands. Awk is also uniquely
suited to operations on fields within lines.

In practice, awk is used in two ways for report generation, procesing input to
extract counts, sums, subtotals, etc.; and to transform data from the form
produced by one program into that expected by another. Awk searches input
lines consecutively for a match of patterns which you designate. For each
pattern, an action can be specified; this action will be performed on each line
that matches the pattern. A wk allows you to perform more complex actions
than merely printing a. matching line. For example, the awk program:

{print $3, $2}

prints the third and second columns of a table in that order. The program

$2 /AlBIC/

prints all input lines with anA, B, or C in the second field, where the second field
is text separated by whitespace. The program

A-12

Editing with Sed and Awk

$1 != prev { print; prev = Sl }

prints all lines in which the first field is different from what was previously the
first field.

A.3.1 Invoking awk

The command in the following form:

awk program filename

executes the awk commands written into the named program on the set of
named files, or on the standard input if no files are named. The statements can
also be placed in a file pfile , and executed by the command:

awk -r pfile filename

A.3.2 Program Structure

An a wk program is a sequence or statements, each in the form:

pattern { action }

Each line of input is matched in turn against each of the specified patterns. For
each pattern matched, the associated action is executed. When all the patterns
have been tested, the next line is read and the matching process repeated.
Either the pattern or the action may be omitted, but not both. Ir there is no
action for a pattern, the matching line is simply copied to the output. Thus a
line which matches several patterns can be printed several times. Ir there is no
pattern for an action, then the action is p�rformed for every input line. A line
which matches no pattern is ignored. Since patterns and actions are both

' optional, -actions must be enclosed in braces to distinguish them from patterns.

A.3 .3 Records and Fields

Awk input is divided into "records" which are terminated by a record
separator. Because the default record separator is a newline, awk processes its
input one line at a time. The number of the current record is available in a
predefined variable named NR, for "number register".

·

Each input record is divi<ied into "fields". Fields are normally separated by
whitespace, either blanks or tabs, but the input field separator can be changed.
Fields are referred to as Sl, $2, and so forth, where SI is the first field, and SO is
the whole input record itself. Assignments may be made to fields. The number
of fields in the current record is available in another predefined variable named
NF, for "number fields".

A-13

XENIX Text Processing

The variables FS and RS refer to the input field and record separators; they
may be changed at any time to any single character. The optional command­
line argument -Fc may also be used to set FS to the character "c". Irthe record
separator is empty, an empty input line is taken as the record separator, and
blanks, tabs and newlines are treated as field separators. The variable
FILENAME contains the name or the current input file.

A.3.4 Printing

Ir an action has no pattern, the action is executed for all lines. The simplest
action is to print some or all or a record, using the awk command print. This
command prints each record, copying the input to the output intact. A field or
group of fields may be printed from each record. For instance,

print S2, Sl

prints the first two fields in reverse order. Items separated by a comma in the
print statement will be separated by the current output field separator when
output. Items not separated by commas will be concatenated, so

print Sl $2

runs the first and second fields together.

The predefined variables NF and NR can be used. For example,

{ print NR, NF, $0 }

, prints each record preceded by the record number and the number or fields.
Also, output may be diverted to multiple files. For example, the program

{ print Sl >" list1" ; print $2 >" list2" }

writes the first field, $1 , on the tile lietl , and the second field on tile liete. The
"> > " notation can also be used. For example,

print $1 > >" list"

appends the output to the file liBt. In each case, the output files are created ir
necessary. The filename can be a variable or a field as well as a constant. For
example,

print $1 >S2

uses the contents of field 2 as a filename. There is a limit of ten possible output
files. Output can also be piped into another process. For instance,

print I " mail fredm"

Editing with Sed and Awk

mails the output to fredm 's mailbox.

The variables OFS and ORS may be used to change the current output field
separator and output record separator. The output record separator is
appended to the output of the print statement. Awk also provides the prin tr
statement for output formatting.

printf format, expr, expr, . . .

formats the expressions in the list according to the specification in the file
format and prints them. For example,

printf " %8.2f %10ld\n" , $1 , $2

prints $1 as a floating point number 8 digits wide, with two digits after the
decimal point, and $2 as a 10.digit decimal number, followed by a newline. No
output separators are produced automatically; they must be added, as in the
above example .

A.3.S Patterns

You may specify a pattern before an action to act as a selector for determining
whether the action is to be executed. A variety of expressions may be used as
patterns: regular expressions, arithmetic relational expressions, string-valued
expressions, and arbitrary Boolean combina.tions or these.

The special pattern BEGIN matches the beginning of the input, before the first
record is read. The pattern END matches the end of the input, after the last
record has been processed. BEGIN and END thus provide a way to gain control
before and after processing, so you can initialize and terminate the program
normally.

For example, the field separator can be set to a. colon with:

BEGIN { FS = " :" }

Or the input lines may be counted by:

END { print NR }

If BEGIN is present, it must be the first pattern; END must be the last.

Regular Expressions The simplest regular expression is a. literal string of
charactersencl?sed in slashes, such as:

/smith/

This is actually a. eomplete awk program which prints all lines eonta.ining any
occurrence of the name "smith". If a line contains "smith" as part of a. larger

A-15

· XENIX Text Processing

word, it will also be printed, as in

blacksmithing

The list or regular expressions recognized by awk includes the regular
expressions recognized by ed , sed , and the grep command. In addition, awk
allows parentheses for grouping, the pipe (I) for alternatives, the plus (+) for
"one or more", and the question mark (?) for "zero or one' '. Character classes
may be abbreviated: [a-zA-Z0-9) is the set or all letters and digits. For
example, the awk program

/[Aa)p plesi[Bb) ananas I [C c)herries/

prints all lines which contain any or the words "apples", "bananas", or
"cherries," whether they begin with an uppercase letter or not.

Regular expressions must be enclosed in slashes, just as in ed and sed. Within a
regular expression, blanks and the regular expression metacharacters are
significant. To turn off the special meaning of one or the regular expression
metacharacters, precede it with a backslash.

For example, the pattern

1\1·*\/1
matches any string or characters enclosed in slashes. You can also specify that
any field or v ariable matches a regular expression (or does not match it) with
the operators tilde (�) and exclamation point tilde (t �). The program

$1 � /[jJ)ohn/

prints all lines where the first field matches "john" or " John". Notice that this
will also match "Johnson", "St. Johnsbury", and so on. To restrict the match
to exactly "John" or "john", use

$1 � / "UJ)ohn$/

The caret (..) refers to the beginning of a line or field; the dollar sign ($) refers to
the end.

Relational Expressions An awk pattern can be a relational expression
involving the operators <, < =, ==, !=, > =, and >. For example,

$2 > $1 + 100

selects lines where the second field is at least 100 greater than the first field.
Similarly,

NF % 2 == 0

A-16

Edi t ing with Sed and Awk

prints all lines with an even number of fields.

In relational tests, if neither operand is numeric, a string comparison is made;
otherwise it is numeric. Thus,

$1 > = "s"

selects lines that begin with "s", "t", "u", etc. In the absence of other
information, fields are treated a.s strings, so the program

$1 > $2

will perform a. string comparison.

Combinations or Patterns A pattern can be any Boolean combination of
patterns, using the operators I I (or), && (and), and ! (not). For example,

$1 >= " s" " & $1 < " t" && $1 != " smith"

selects lines where the first field begins with "s" , but is not "smith". The
operators && and I I guarantee that their operands will be evaluated from left
to right; evaluation stops a.s soon :a.s their truth or falsehood is determined.

The pattern that selects an action may also consist or two patterns separated
by a comma, a.s in

patl, pat2 { .. . }

In this ca.se, the action is performed for each line between an occurrence of pat1
and the next occurrence of pa.t2(inclusive). For example,

/start/, /stop/

prints all lines between "start" and "stop", while

NR == 100, NR == 200 { . .. }

does the action for lines 100 through 200 ofthe input.

A.3.6 Actions

In addition to the patterns described above, the awk program offers a set or
possible actions. An a wk action is a sequence of action statements terminated
by newlines or semicolons. These action s�atements can do a variety of
bookkeeping a.nd string manipulating ta.sks. The possible actions are: built-in
functions, the assignment of variables and strings, the use of field variables,
string concatenation statements, arrays, and flow-of-control statements.

A- 17

XENIX Text Processing

Built-in Functions Awk provides a. "length" function to compute the
length of a string or characters. This program prints each record, preceded by
its length:

{print length, $0}

The length by itseir is a "pseudo-variable" which yields the length of the
current record; length(argument) is a function which yields the length of its
argument, as in the equivalent:

{print length($0), $0}

The argument may be any expression.

Awk also provides the arithmetic functions sqrt, log, exp, and int, for square
root, logarithm, exponential, and integer parts of their respective arguments.
The name or one or these built-in functions, without argument or parentheses,
stands for the value of the function on the whole record. The program

.

length < 10 I I length > 20

prints lines whose length is less than 10 or greater than 20.

The function s ubstr(s,m,n) produces the substring of • that begins at position
m (origin 1) and is at most n characters long. Ir n is omitted, the substring goes
to the end of '· The function index(sl, s2) returns the position where the string
1-foccurs in d, or zero if it does not.

The function sprintf(r, e l , e2, ...) produces the value or the expressions e 1, e2,
etc. , in the pri ntftormat specified by f. Thus, for example,

x = sprintf(" %8.2f %tOld" , $1 , $2)

sets z to the string produced by formatting the values of$1 and $2.

Variables, Expressions, and Assignments Awk variables take on
numeric (floating-point) or string values according to context. In the following
example,

X = 1

z is clearly a number, while in

x = " smith"

it is clearly a string. Strings are converted to numbers and vice versa whenever
context demands it. For instance,

X = " 3" + " 4"

A-18

Editing with Sed and Awk

assigns 7 to z. Strings which cannot be interpreted as numbers in a numerical
context will generally have the numeric value zero.

By default, variables (other than built-in functions) are initialized to a. null
string, which ha.s numerical value zero. This eliminates the need for most
BEGIN sections. For example, the sums of the first two fields can be computed
with:

{ sl += $1 ; s2 += $2 }
END { print sl , s2 }

Arithmetic is done internally in floating-point. The arithmetic operators are:
+, -, •, /, and %. The C increment ++ and decrement - - operators are also
available, as well a.s the assignment operators +=, -=, •=, /=, and %=.
These operators may all be used in expressions.

Field Variables Fields in awk share essentially all of the properties of
variables. They may be used in arithmetic or string operations, and may be
assigned to. Thus you can replace the first field with a sequence number:

{ $1 = NR; print }

or accumulate two fields into a third,

{ $1 = $2 + $3; print SO }

or assign a string to a field,

{ if ($3 > 1000)
$3 == " too big"

print
}

which replaces the third field by "too big" when it is too big, and prints the
record in either case.

Field references may be numerical expressions, a.s in the following:

{ print Si, S(i+1), $(i+n) }

Whether a field is deemed numeric or string depends on context; in ambiguous
cases like

if ($1 == $2) . ..

fields are treate'd as strings.

Each input line is automatically split into fields a.s necessary. It is also possible
to split any variable or string into fields. For example,

A-19

XENIX Text Processing

n = split(s, array, sep)

splits the the string , into arrayfl], arrayfnj. The number of elements found is
returned. Ir the eep argument is provided, it is used as the field separator.
Otherwise FS is used as the separator;

String Concatenation Strings may be concatenated. For example:

length(Sl $2 $3)

returns the length of the first three fields. In a print statement,

print Sl " is " $2

prints the two fields separated by " is ". Variables and numeric expressions
may also appear in concatenations.

Arrays Array elements are not declared; they spring into existence when
mentioned in a program. Subscripts may have any non-null value, including
non-numeric strings. For example, in a conventional numeric subscript, the
statement

x(NR] = $0

assigns the current input record to the NRth element or the array z . In
principle it is possible to process the entire input in a random order with the
awk program:

{ x (NR) = $0 }
END { . . . program . . . }

The first action merely records each input line in the array z.

Array elements may be named by non-numeric values. Suppose the input
contains fields with values like apple , orange , etc. The program

/apple/ { x(" apple"]++ }
/orange/ { x[" orange"]++ }
END { print x[" apple"], x[" orange"] }

increments counts for the named array elements, and prints them at the end or
the input. Any expression can be used as a subscript in an array reference.
Thus,

x ($1] = $2

uses the first field or a record as a string to index the array z .

Suppose each line or input contains two fields, a name and a nonzero value .
Names may be repeated. To print a list or each unique name followed by the

A-20

Editing with Sed and Awk

sum of all the values for that name, use the program:

{ amount($1] += $2 }
END { for (name in amount)

print name, amount[name] }

To sort the output, replace the last line with

print name, amount[name) I " sort"

Flow-or-Control Statements Like any programming language, awk
provides flow-of-control statements. These are: it-else, while, tor, and
statement groupings with braces. When using the it statement the condition in
parentheses is evaluated. Ir it is true, the statement following the ir is done.
The else part is optional.

A while statement is also available. For example, to print all input fields one
per line, use:

i = 1
while (i < = NF) {

print Si
++i

}

The tor statement

for (i = 1; i < = NF; i++)
print Si

does the same job as the while statement above.

An alternate form or the for statement is useful for accessing the elements or an
associative array. For example,

for (i in array)
ltatement

performs etatement with i set in turn to each element of the array. The
elements are accessed in an apparently random order. Chaos will ensue if i is
altered, or if any new elements are accessed during the loop.

The expression in the condition part or an it, while or tor statement can
include re.lational operators like < , <=, > , >=, == ("is equal .to"), and !=
("not equal to"); regular expression matches with the match operators \ � and
!\- ; the logical operators I I, &&, and !, and parentheses for grouping.

The break statement causes an immediate exit from an enclosing while or for
statement. The continue statement causes the next iteration to begin. The
next statement causes awk to skip immediately to the next record and begin

A-21

XENIX Text Processing

scanning the patterns from the top. The exit statement causes the program to
behaYe as if the end of the input had occurred.

One final note: comments may be placed in awk programs. Iryou are going to
store complex awk programs for future use, it is a good ide a to use comment
lines generously, to remind you of what your program does:

print x, y f this is a comment

Comments begin with the character "f" and end with the end of the line.

A-22

Index

. AL , l i st beg in macro 1 -1 0

. LE , l i st end macro 1 -1 0

. LI , l ine item macro 1 -1 0

. P , par agr aph macro 1 -1 0

. sp command 1 - 1 0
abstr acts 4-4 8
Acknowledgements 1 -4
al phab eti zing lines in

files 2-6
Append ices 1 -5
a wk 1 - 1 4
awl< 1 -7
awk A-1

actions A-1 9
arr ays A-2 1
assi gnmen t s A-1 9
BEGIN A-15
built-in functions A-1 8

exp A-18
int A-1 8
l ength A-1 8
log A-1 8
s pr intf A-1 8
sqr t A-1 8
substr A-1 8

c ombin ation of
patterns A-17
comment s A-22
cont inue A-21
END A-1 5
exit A-22
expr e ssions A-1 8
field v ar i ables A-1 9

field s A-1 3
flow-of-control A-1 1
flow-of-control A-21

for A-2 1
i f-el se A-21
statement grouping A-2 1

while A-2 1
next A-2 1
output field separ ator A-
1 4
output r ecord
separ ator A-15
pat terns A-1 5
print f statement A-1 5
pr inting A-1 4
r ecords A-1 3
r egul ar ex pr ession A-1 5
r el at ion al ex pressions A-
1 6
se arching

numer ic processing A-1 3

var iables A-1 2
str ing concatenation A-20
var iables A-1 3
var i ables A-1 9

Back matter 1 -5
Background proce ssing 1 -1 1
Batch 1 -9
Batch A-1
Batch ed iting 1 -1 6
batch edi t ing A-1

1 -1

XENIX Text Processing

Bibl iogr aphy 1 -5
Bod y of text 1 -4
Boiler plate 1 -5
Bo il er plates 1 -1 5
Boiler pl ate s 1 -1 6
Bold face 1 -1 0
bol d fac e 3-6
br ac kets 6-1 6
bullet l i st 4-22
captions 4 -31
Cen ter ing 1 -1 0
Center ing 1 -6
cen ter ing 6-7
Chapter s 1 -4
char acter sets 5-5
col umn al ignmen t 7-1
col umn width 7-1
COIIID 2-1
comm 2-3
comm 2-5

1 2 2-6
23 2-6

complex sentences 2-1 5
compound sentences 2-1 4
Cond ition al processing 1 -1 5
condit ion al processing 6-22
connec ti v ity 2-1 7
Copyr ight notice 1 -4
cover pages 3-1
cover sheet 4-39
cov er sheet 4-54
cut 2-2
cut 2-7
Cut and pa ste 1 -1 6
cut and paste 2-2
cut and paste 2-8
cut

-cl i st 2-7

1 -2

dchar 2-7
fl i st 2-7
s 2-7

d a sh l i st 4-22
del eting text 2- 1
Deletions 1 -9
deroff 2-9
d iacr itical mar ks 8-14
Diction 1-7
dict ion 2-8

-r opt ion 2-1 9
-n opt ion 2-1 9

d i ff 1 -6
d i ff 2-1
diff 2-3
d i ff3 2-1
d i ff3 2-3
d i ff3 2-5

e 2-5
d i ff

-e 2-3
produc ing ed scr i pts
with 2-4

d i splays 4-26
Di spl ays 1 -4
di splays 3-7

floating 4-26
floating 4•27
static 4-26

Document li fe cycle 1 -12
Document number 1 -4
Document speci fications 1 -

1 6
Document spec i ficat ions 1 -5
Document

stand ardi zation · 1 -5
drawing l ines 6-1 6

drawing l ines and
char ac ters 5-9

ed 2-2
ed scr i pts A-1 "
Ed iting tec hn ique s 1 -1 6

bo ilerplates 1 -1 5
consi stenc y 1 -1 3
ed i ting scr ipts 1 -1 4
mar ker s i n text 1-1 3
shell scri pts 1 -1 5
shor t l ines 1 -1 3
templates 1 �1 3
using wr iting tools 1 -1 5

egrep 2- 1
Enter ing text 1 -9
Eqn 1 -7
Eqn 1 -8
e qn

b r aces 8-1 3
braces 8-4
brac kets 8-7
ceil ing 8-7
cen ter ing 8-2
command s 8-1
d iac r itical mar ks 8-1 4
error checking with
eqncheck 8- 1 9
error me ssages 8-1 9
floor 8-7
fonts 8-1 2
fonts 8·1 3
fr action s 8-5
Greek al phabet 8-2 1
grouping 8-4
in-line equations 8-1 5
input spaces 8-1 0
in tegr al s 8-6

invoking 8-1 8
invoking 8-2
keyword s 8-20
keyword s 8-21
line spac ing 8-1
l in i ng up equat ion s 8-1 0
loc al motions 8-1 5
matr ices 8-9
number ing 8-2
order of preced ence 8-1 9
output spaces 8-1 1
over str iking 8-1 3
piles 8-8
po int si zes 8-1 2
pr inting documents

linepr inter 8-17
phototypesetter 8-1 7

quoted text 8-1 4
reserved names 4-5 6
spec ial char acter s 8-20
spec ial sequences with 8-
1 1
squar e roots 8-6
str i ng de fini tions 8-1 6
sub scr ipt s 8-3
summation 8-6
super script s 8-3
using caret 8-1 1
using tildes 8-1 1
with mm

center ing 8-2
number ing 8-2

with nroff 8-2
with nro ff/troff 8-1

eqncheck 8-1 9
Equat ions 1 -5
extr acting columns 2-7

1 -3

XENIX Tex t Processing

ex tr ac ting field s 2-7
fields 6- 1 1
Figur es 1 -4
file compari son 2-1
fil e compar ison 2-3
Files

backup copies 1 -6
backups 1 -1 6
fi le l ength 1-1 5
help files 1 -1 4
hel p files 1-1 5
hier archical file
str ucture 1·1 3
man aging l ong
document$ 1-1 4
README files 1 -1 5
upd ates 1 - 1 3
using comment l ines 1 -15
ver sions 1 -1 2

Fi lling 1 -5
fil l ing 6-7
font changes 3-1
fonts 4-42
Fonts 1 -6
fonts

type setting 5-4
Footer s 1-6
footnotes 4-32
Footnotes 1 -4
Footnotes 1 -7
footnote s 3-1
footnotes 3-7
Foreword 1 -4
formatter 4-2
Formatting command s 1 -7
Formatting documents 1 -7
Formatting tables 1 -8

formatting tables 7-1
Front matter 1 -4
gfr ep 2-2
Global substitution
Global subst itution
global substitution
global substi tution
Glo ssary 1 -5
Greek al phabet
Greek al phabet
Greek al phabet
Greek

·
al phabet

grep 1 -6
grep 2-1
grep 2-2

-h 2-3
-n 2-2

8-2 1
8-1�

5-6
8-1

combined with other
command s 2-2

1 -13
1 -9
2-1

A-1 "

Gutter width 1 -6
hor i zontal motions 5-1 0
hyphenation 6-12
Hyphenation 1 -7
hyphenation 4-8
Illustr ations 1 -4
Indentation 1 -6
indentation 5-7
Index 1 -5
inser ting text

inter actively 4-46
Invoking programs

eqn 1 -9
MM 1 -8
nro ff/tro ff 1 -8
ord er 1 -8
using col 1 -9

ital ics 3-6

just i fic ation 4-43
Ju sti fication 1 -5
Just i fication 1-7
keeP-r elea se 5-22
leader s 6- 1 1
Letters 1 -4
Line length · 1 -6
l ine l ength 5-6
l i st o f figures , tabl e s ,

etc . 4-3 1
l i st s 4-1 8
l i sts 3-1
l oc al motions 6-1 5
loc al motions 5-9
locating awkwar d

phr ases 2-1 8
loc ating awkward

phr a ses 2-1 8
loc ating long sentences 2-

1 4
Mac ro definition
macro de fin i tion
macro defin ition
Macro definition
Mac ros 1-8
macros 3-1
mac ros 4-3
macros 7 -1
mac ros 8-1
Margins 1 -6

1-1 6
4-54
6-1 7

files 1 -1 3

mar ked l i st (.HL) macro 4-
23

mathematic al equat ions
Mathematic al equations
mathematical equations

formatting 8-1
pr inting 8-2

4-30
1 -6
7-1

memorandum styles 4-47
Memos 1 -4
merging columns 2-8
MH 1 -1 6
MM 1-3
MM 1 -7
MM 3-1
MM, marking macro (. HM)

4-1 5
MM

abstr act (. AS) macro 4-48
abstr acts 3-1
alternate format (.AF) 4-
50
alternate format (. AF) 3-8

author (. AU) macro 4-47
automatic l i st (. AL) 3-5
automat ically numbered
l i st (. AL) macro 4-2 1
beginn ing segment 4-2
body 4-2
bold (. B) macro 4-42
bullet l i st 4-22
bullets 4-9
caption macro (.FG) 4-31
cl osing (.FC) macro 4-52
command l ine 4-4
command lin e
par ameters 4-5
cover pages 3-1
cover sheet (. CS)
macro 4-54
d a sh li st (. DL) 3-5
dash · l ist (. DL) macro 4-22

dashe s , minuses , and
hyphens 4-10

1-5

XENIX Text Processing

disappear ance o f
output 4-57
d i spl ay C . DS I) macro 4-2 6

di spl ay macro (. DS-. DE) 3-7

d i splays 4 -26
ind entation 3-7

end ing 4-2
equation (. EQ) macro 4-30
error chec king with
mmcheck 3•9
error messages 4-5 6
error messages 4-57
error messages 4-58
error messages 4-59
even page footer (. EF)
m acro 4-36
even page header (. EH)
macro 4-35
ex it macros (. HX , . HY and
• HZ) 4-17
floating d i splay (. DF)
macro 4-27
font changes 3-1
font c hanges 3-6

bol d face 3-6
ital ics · 3-6

fonts in head ing s 4- 1 4
footnote (.FS) macro 4-32
footnote s 3-1
footnotes 3-7
formatting with 4-7
head ing (. H) macros 4-1 1
head ings 4-1 0
he ad ings , mod ifying 4 - 1 2
head ing s

unnumbered 4-1 6

hypenation 4-8
in ser ting comands 3-1
invoking 3-2
invoking 4•3
invoking as a flag 4-4
invoking aacheck 3-9
italic (. I) macro 4-4�
keyword (. OK) macro 4-49
l i st end (. LE) macro 4-21
list end macro 4-1 9
l i st i tem (. LI) m acro 4-20

list item mac ro 4-1 9
l i st item macro 3-5
l i st o f figur es 4-3 1
l i st-initiali zation
macro 4-1 8
l i sts 4-1 8
list s 3-2
l i sts 3-5
macro defin ition 4·54
m ark l i st (.ML) 3-5
memor andum type (. MT) 3-8
memorandum t ype (• MT)
mac ro 4-49
mult icolumn output 3-3
nested l i st s 4-1 9
ne sted l i sts 3-5
new d ate (. ND) macro 4-50
notat ion (. NS) macro 4-53
null arguments 4-7
numbered head ings 3-4
odd page (. OP) macro 4-45
odd page he ader (. OH)
macro 4-35
odd-page footer macro 4-36

opt ions
12 4-4"
c 4-3
e 4-3
t 4-3
y 4-3

ord er of beginn ing
m acros 4-5 1
page footer (. PF)
macro 4-36
page head er (. PH)
macro 4-35
page number ing 4-1 6
page number ing 3-1
par agraph (. P macro) 3-4
par agraph (. P) macro 4-1 0
par agr a ph style 3-1
par agr aph s 4-1 0
par agr aphs and
head ing s 3-4
par ameter setting 4-2
po int si ze (. S) macro 4 -45

po int si ze in head ings 4-
1 4
re ad in ser tion (. RD)
macro 4-4 6
reason s to use 4-1
redefin ing head ing
styles 3-5
reference (. RS) macro 4-40

re fer ence li st (. RL)
macro 4-23
re fer ence page (. RP)
macro 4-4 1
Roman (. R) macro 4-42

sec tion he ader s 3-1
set r ight justi fic ation
(. SA) macro 4-43
signature (. SG) m acro 4-52

ski p page (. SK) macro 4 -45

space (. SP) mac ro 4-4�
str ings 4-67
summar y o f macros 4-62
summar y of number
register s 4-68
table (. TS) macro 4-29
table macro (. TS-. TE) 3-7
table of contents (. TC)
mac ro 4-1 6
table o f contents (. TC)
macro 4-39
table of content s (. TC)
macro 3-5
tables of contents 3-1
tab s 4-9
techn ical memorandum (.n�)
macro 4-48
t itle (. TL) macro 4-47
titles 3-1
top of page processing 4-
37
tr ademar k str ing 4-1 0
two column (. 2C) mac ro 4-
43
two column command
(. 2C) 3-8
unnumber ed he ad ing s 3-4
un padd able spaces 4-8
using tilde () 4-8

. var iable l i st (. VL)
macro 4-23

1 -7

XENIX Text Processing

var iable l i st s (. VL) 3-6
vertic al marg in (. VH)
macro 4-3 8
with nro ff/troff 3-1
wi th nroff/troff 3-8
wi th col 3-3

4-43
1 -6
1 -7
3-1
3-8
1 -1 5

IIIDCheck 3-9
mul ticol umn out put
Hul ticol umn output
Multicol umn output
multicol umn output
multic ol umn output
Naming conventions
nested l i sts 4-1 9
nomin al i zat ions 2-1 7
Note s 1 -5
noun usage 2-1 7
nroff 1 -7
nroff . troff

brackets 6- 1 6
nro ff/troff/fR

rel ati ve po int si ze
changes 5-3

nro ff /troff
und erl ine font (.uf)

command 6-1 4
new page (. NP) m acro

5-1 4
ab solute posi tion 6-4
ad j ust (. ad) command 6-8
append str ing (. a s)
command 6-20
append to macro (. am)
command 6-20
a ssign format to r egi ster
(.a f) command 6-2 1
beg in page (.bp)
command 5-1 4

1 -i

beg in page (.bp)
c ommand 6-7
bl ank l ines 6-1 0
br ackets 6-1 6
break (.br) command 6-8
break function 6-2
breaks in 5-1 5
center (.ce) command 6-9
center ing 6-7
change tr ap po si tion (.ch)
command 6-20
char acter tr an sl ations 6-
1 3
cond itional processing 5-
1 9
cond itional processing 6-
22

even and odd 5-20
i f-el se 5-1 9
linepr inter and
type setter 5-20
str ing compar i son 5-20

control l ines 6-2
copy mode 6-1 5
de fine macro (.de)
command 6-1 9
de fine str ing (. d s)
command 6-20
di fference between 5-1
di fference in output 5-1

Nro ff /troff
di fferences 1 -5

chang ing point
si zes 1 -5
ignor ing commands 1 -5
repl ac ing i tal ics with
underl in ing 1 -5

rounding par ameter s 1 -5

underl in ing 1 -7
nro ff/troff

diver sions 6-1 9
d iversions (. d i) 5-2 1
.d iver sions

nest ing 6-1 9
tr aps 6-1 9

d ivert (.d i) command 6-20
d ivert-append (. d a)
command 6-20
drawing l ines 6-17
drawing l ines and
char acter s 5-9
end macro (.em)
conunand 6-20
env ironmen ts 6-23
env ironments (. ev) 5-21
error messages 4-60
er ror messages 4-61
error messages 6-24
e scape char acter 6-1 4
e scape char acter 6-3
e scape sequences 6-26
even page (e)
cond it ion 6-22
exit (.ex) command 6-23
field delimiter (. fc)
command 6-1 2
fields 6-1 1
fil l (. fi) command 6-8
fill ing 6-7
flush output buffer
(. fl) 6�24
fo.nts 5-5
formatter nro ff (n)
cond ition 6-22

formatter tro ff (t)
cond ition 6-22
hori zontal motions 5-1 0
hor i zontal motions 6-1 6
hyphenation 6-1 2
hyphenation o n (. hy)
command 6-1 2
if (. i f) command 6-22
ignore (� ig) command 6-24
indent (. in) 5-7
indent (. in) command 6-1 0
inl ine command s 5-2
input-output
conventions 6-1 3
in serting commands 5-2
in stall d iver sion tr ap
(. dt) command 6-20
install tr ap (.wh)
command 6-20
invoking 6-1
leader repetition
char acter (. l c)
c omand 6-1 2
leader s 6-1 1
l igature mode on (. lg)
command 6-1 4
l igatures 6-1 4
l ine l ength (. 11) 5-6
l ine length (. 11)
command 6-1 0
l ine l ength and
indenting 6-1 0
l ine number mode (. nm)
command 6-1 3
l ine space (. l s)
command 6-9
l oc al mot ion 5-1 1

1 -9

XEHIX Text Processing

local motions 6-1 5
l oc al mot ions 5-9
macro defin itions 5-1 2

arguments 6-1 8
input 6-1 7

mac ros 6-17
macros 6-2

arguments 5-1 7
marg in char acter (.me)
command 6-24
mar k current vertic al
pl ace (.mk R) 6-7
need s (.ne) command 6-7
next filename (. nx)
command 6-24
no adj ust (.na)
command 6-9
no fi l l (.nf) coiiiDand 6-8
no hyphen ation (.nh)
command 6-1 2
no number (.nn)
comm and 6-1 3
no space (.n s) command 6-
1 0
number reg i ster assi gn
(. nr) command 6-21
number reg ister s 5-1 6
number r egi sters 5-1 7
number reg i ster s 6-2 1

pr ede fined 6-26
read-onl y 6-26

numer ic al input 6-4
odd page (o) cond ition 6-
22
options

-i 6·2
-mcname 6-3

1 - 1 0

-mname 6-1
-nif6-1
-olist 6-1
-q--r-2
-raN 6-2
-sN 6-1

output l ine number ing .6- 1 3

output save (.os)
command 6-1 0
over str ike 6-1 6
overstri king 5-1 1
page control 6-6
page l ength (. pl
command) 6-7
page number (. pn)
command 6-7
page number char acter
(• pc) command 6-1 3
page o ffset (. po) 5-7
page o ffset (.po)
comand 6-7
pipe output (.pi)
co11111and 6-24
po int size (.ps) 5-2
pr e-de fined number
register s 5-1 6
pr int macro (. pm)
command 6-24
quoting quotes 5-16
read stand ard input (. rd)
command 6-23
read at r ing in copy mode
(. tmO command 6-24
r emove (. rm) command 6-20
r emove regi ster (. rr)
command 6-22

r ename (.rn) command 6-20
reque sts 6-2
reserved reg i ster and
request names 4-55
restore spac ing (.r s)
command 6-1 0
return upward (.r t)
connand 6-7
save (.sv) command 6-1 0
scale ind ic ators 6-3
section titles 5-1 8
aet control c har ac ter
(.cc) command 6-1 5
set environment (. ev)
commands 6-2 3
set e scape char acter (. ec)
c oan an d 6-1 4
set hyphenation ind icator
(.he) command 6-1 2
set input-l ine-count tr ap
(. it) �ommand 6-20
set nobreak (. c2)
command 6-1 5
set tabs (. ta) command 6-
1 1
space (. sp) command 6-10
spac ing un its 5-4
spec i al char acters 5-5
spec ify hyphenation po ints
(.hw) command 6-12
stand ard input 6-1
str ing de fine (.d s) 5-1 2
str ing de fin ition 5-1 2
str ing defin it ion 6-17
switch source file (. so)
comand 6-24
tab repeti tion char acter
(. tc) COIIIIIand 6-1 1

tab repl ac ement (. tc) 5-8

tab s 6-1 1
tabs (. ta) 5-8
tempor ar y indent (. t i) 5-7

tempor ary indent (.ti)
command 6-10
title (.tl) command 5-1 4
title (. tl) command 6-1 2
title length (. l t)
COIIIIIand 6-1 3
t itles 5-1 4
titles 6-1 2

font s and po in t
si zes 5-15

tr an sl ate (.tr)
coaaand 6-1 5
turn e scape o ff (.eo)
command 6-14
und er l ine (.ul)
connand 6-1 4
using backsl ash () 6-1 4
using bac ksla sh () 6-3
using backslash (\) 5- 1 6
vertical motions 6-1 5
vertical spac e (.vs)
comand 6-9
vertic al spac ing (.v s) 5-3

width function 6-1 5
width funct ion 6-1 6
wi th MM 4-1
zero-width function 6-1 6

nroff
internal units 6-3
opt ions

-e 6-2

1 -1 1

XENIX Text Processing

-Tname 6-2
und erl ine (. cu)
command 6-1 !I

number r egi sters 4-3
Number ed l i sts 1-1 0
Org an i zing wr iting

pro j ects 1-1 2
over str i ke 6-1 6
page footer s 4-3 4
page footer s 4-36
page he ad er s 4-34
Page header s 1 -6
Page l ength 1 -6
page number ing 4-1 6
Page number ing 1 -6
Page number ing 1 -7
page number ing 3-1
paper styles 4-47
Par agraph style 1-7
par agr aph style 3-1
par al lel sen tenc e

structures 2-1 6
par ts 2-1 1
Parts of document 1-4

back matter 1 -5
append ices 1 -5
bibl iography 1-5
glo ssary 1 -5
ind ex 1 -5
notes 1 -5

bod y of text 1 -4
front matter 1 -4

acknowledgements 1 -4
copyr ight notice 1 -4
document number 1 -4
foreword 1 -4
illustrations 1 -4

1 - 1 2

pr eface 1 -4
table of contents 1 -4
tables 1-4
ti tle page 1 -4

par t s of s peech 2-1 5
paste 2-2
paste 2-8

-d 2-8
-s 2-8
l i st 2-8

pattern matching A-1 3
pattern matching A-1 5
pattern matching A-1 "
pattern r ecogni tion 2-2
po int si ze 4-4 5
Point si ze 1 -6
Point si ze 1 -7
Pre face 1 -4
prepar ing charts 7-1
Preprocessor 1 -8
Pr eprocessors 1 -8
preprocessors 7�1
Pr inting documents 1-1 1

1 inepr inter 1 -7
l inepr inter 1 -8
phototypesetter s 1 -7

pr inting l ist s 7-1
pr inting multi-col umn

mater ial 7-1
Product ion con si stency 1 -5
quoting quote s 4-7
read abil ity 2-1 0
read ab il ity 2-1 4
read ab il ity ind ices 2- 1 1
read ab ility ind ices 2-1 2
read ab ility of

documents 2-8

rear r ang ing col umns 2-7
re fer ence page 4-41
refer enc es 4-4 0
regul ar ex pression
regul ar ex pr essions
r egul ar ex pressions
rel ative addressing
re quests 4-2
rever sing col umns o f

output A-12
Revisions 1 -1 3
Rev i sions 1 -9

2-2
A-1 6

A-1 "
A-1 "

Running footer s 1 -6
Runn ing headers 1 -6
Runn ing he ad s , see Page

Header s 1 -6
searching A-1 2
searching 2-1
se arching within fields A-

1 3
se arching

field s A-1
numer ics A- 1
patter n r ecognition 2-2
str ings 2-3
var i ables A-1

section headers 3- 1
Section-page number ing 1 -6
Sections 1 -4
Sed 1 -1 4
sed A-1

-e A-2
-f A-2
-n A-2
: l abel function A-12
= func tion A-1 2
a function A-5

addressing A-3
b label function A-1 1
c function A-6
D function A-1 0
d function A-5
flow-of-control A-2
flow-of-control
functions A-1 1
functions A-5
1 function A-10
1 function A-7
h funct ion A-1 0
hold and get functions A-
1 0
i function A-6
input/output funct ions A-9

mi scellan eous
functions A-1 2
multipl e in put-line
functions A-1 0
N function A-1 0
n function A-5
P function A-1 1
p function A-7
p function A-9
q function A-1 2
r function A-9
s function A-7
substitution functions A-7

t l abel function A-1 2
w function A-8
w function A-'9
x function A-1 1
{ function A-1 1

sentence l ength 2-1 0

1-1 3

XENIX Text Processing

sentence length 2-1 1
sentence openers 2-1 7
sentence type 2-1 0
sentence type 2- 1 1
simple sentences 2-1 4
ski pping pages 4-45
sort 1 -6
sort 2-1
sort 2-6
spec i al char acters 5-5

in e qn 8-20
speci al symbol s 8-1
Spell 1 -7
spell 2-9

2-8
-b 2-9
-v 2-9 .
Br iti sh spell ing 2-9
d ictionar y 2-9

square root s 8-6
Stand ard out put

formatting to 1 - 1 1
Stand ard ization 1 -1 2
Starting par agr aphs 1 -9
Str ateg ies for man ag ing

wri t i ng proj ects 1 -2
str ing defin ition 6-1 7
str i ngs 4-3
style 2-1 0
St yle 1 -7
style 2-8

-1 opt ion 2-1 4
el ements o f wr iting
style 2-1 0
percentage o f verbs 2-1 6
read ab ility 2-1 0
read abil ity grad es 2-1 2

1 - 1 4

read abil ity ind ices 2-1 2
automated read ab il ity
ind ex 2-1 3
Col eman-Liau
Formul a 2-1 3
Fle sch Read ing Ease
Schore 2-1 3

sentence determinat ion 2-
1 1
sentence length 2-1 2
sentence l ength 2-1 4
sentence o peners 2-1 2
sentence type 2-1 2
sentence t ype 2-1 4
word length 2-1 2
word usage 2-1 2

subscript s 8-3
super script s 8-3
symbol s , mathematic al 8-1 1
System features 1 -6

hier archic al fil e
structure 1 -1 4
hier archi c al fil e
structure 1 -2
hier archi c al fil e
structure 1 -6
multitasking 1 -6
pi pes 1 -2
pi pe s 1 -8
shell 1 -2
shell scr i pt s 1 -2

System utilities · 1 -7
system ut ilities 2-1
system util i ties 2-8
table of contents 4-1 6
table of contents 4-39
Table of contents 1 -4

tables 4-29
Tables 1 -4
Tab les 1 -5
Tables 1 -6
tables 3-7
tabl es of contents 3-1
tab s 6-1 1
Tbl 1 -7
Tbl 1 -8
tbl

7-1
space between col umns 7-6
add i tional command
l ines 7-9
center ing in column s 7-4
col umn al ignment 7-1
col umn width 7-7
data 7-7
dec imal po int
al ignment 7-4
defaults 7-7
drawing boxes 7-1
drawing hor i zontal
l ines 7-1
d r awing vertical l ines 7-1

e qu al width col umns 7-7
error messages 7-1 0
error me ssages 7-8
font changes 7 -6
format section 7-3

A or a opt ion 7-4
C or c opt ion 7-4
L or 1 o ption 7-3
N or n opt ion 7 -4
R or r opt ion 7-4
S or s opt ion 7-4

"' opt ion 7-4
formatting sect ion 7-2
full width hor izontal
l ines 7-8
hor i zontal l ines 7-5
input to 7-2
invoking 7-1 0

with other
formatte r s 7-1 0

keyletters 7-5
need (.ne) command s 7-3
options 7-3
opt ions section 7-2
o ptions

al lbox 7-3
box 7-3
center 7-3
delim 7-3
doublebox 7-3
ex pand 7-3
l inesize 7-3
t ab 7-3

point size s 7-6
prepar ing c harts with 7-1
pr in ting l ist s 7-1
pr int ing multi-column
mater i al 7-1
pr inting with
phototypesetter 7-1
reserved n ame s 4-56
short hor i zontal l ines 7-8

single column hor i zontal
l ines 7-8
table end (.TE) 7-2
table start (. TS) 7-2
text b locks 7-8

1 -1 5

XENIX Text Processing

ver ti c al l ines 7-5
vertic al spac ing 7-6
verti c al spann ing 7-6
ver tic all y spanned
items 7-8
with nro ff/troff 7-1
with e qn 7-1
with ·IUD 7-1
tro ff command s in 7-7

Techn ic al papers 1 -4
Techn ique s , tex t

processing 1 -6
Templ ate s 1-1 6
Title page 1 -4
titles 4-47
ti tles 6-1 2
Titles 1 -7
titles 3-1
tool s 2-8
tools 2-9
Tool s , tex t processing 1-6
Tools , text proce ssing 1 -7
top and bottom mar g ins 4-38
troff 1 -7
troff/ fR

po int si ze (. ps)
command 6-6

tro ff
change font (. ft)
coiii1J and 6-6
char acter set 6-5
con stant char acter space
(.c s) command 6-6
embold en (. bd)
command s 6-6
font po sition (. fp)
command 6-6

1 -1 6

internal un its 6-3
mathematical font set 6-5
mounted fonts 6-5
options

-a 6-2
-b 6-2
-f 6-2
-pN 6-2
-t 6-2
-w 6-2

space-character si ze (.ss)
COIIIDand 6-6
using ASCII char acter s
with 6-5

Typesetting mathematical
equations 1 -8

Upd ate s 1-1 6
Updates to documents 1 -1 2
use o f ex pl etives 2-1 8
Var i able spac ing 1 -7
Ver sions 1-1 2
Ver sions 1 -1 3
Ver sions 1-1 6
Ver sions o f d ocuments 1 -1 2
Ver sions o f d ocuments 1 -1 4
Vertic al spac ing 1 - 1 0
Ver tic al spac ing 1 -6
vi 1 -6
we 2-1
we 2-7
wid th function 6-1 5
word length 2-1 0
word usage 2-1 0
word usage 2-1 1
word usage . 2-1 5
Wr i ting tools 1 -7
XX 4-43
zero-width function 6-16

CONTENTS

T�xr ProctssingConunant:ls (Cf)

intro
col
cut

cw, cwcheck
deroffi

diction
diffmk
eqn, neqn, eqncheck

explain
hyphen
DUD

mmcheck
mmt
neqn
JU'Off
paste
prep

ptX
soelim
spell, spellin, spellout
style
tbl
troff

Introduces text processing commands
Fihenreverse linefeeds
Cuts out selected fields of each line
ofafile
.Preparesconstanl-width text fmtroff
RemovesJD'Offltroff, tbl, andeqn
constructs
Cleckslanguageusage
Marts differences between files
Formats mathematical text forJUOff
ortroff
Corretts language usage
Finds hyphenated words
Prints documents formatted with
mmmacros
Clecksusageofmmmacros
Typesets documents
Formats mathematics
A text formatter
Merges lines of files
Prepares text for statistical
processing
Oenerates apermtec:l index
Eliminates . so • sfromJD'Offinput
Fin:ls spelling errors
Analyzes characteristics of a document
Formats tables forJUOfJ mtroff
Typesets text

1-i

Index

Cmumm��n ________________________ cw
c:wc:heckc:ommand cw
Documentc:harac:teristic:s style
eqnc:hec:kc:ommand eqa
file,diffcrences dll'fmk
files,merginglines paste
files, selecting fields cut
Hyphenation llyphta
Language usage, correction aplala
Language usage, description dktioa
Macros, checking DUDCbed
Macros, memorandum ftY lineprinter 111111
Macros, memorandumftYtypesetting IIUid
Macros, mnoval dercrlf
Macros, .soelimination aodbll
M����n eqa
Matbematic:al�n aeqa
Permuted index JD
Revenelinefeed eol
spellincommand speD
Spelling speD
spelloutc:ommand speD
Statistic:al p-oc:essing prep
Tables tW
Tenformattcrforlineprinter DrOll'
Tenformattcrfortypesetter troll'

•

/NTRO (CT) INTRO (CT)

Name

intro - Introduces text processing commands.

Description

This section describes use of the individual commands ava.il&ble in
the XENIX Text Processing System. Each individual command is
labeled with the letters CT to distinguish it from commands available
in the XENIX Timesharing and Software Development Systems.
These letters are used for easy reference from other documentation.
For example , the reference mm(CT) indicates a reference to a dis­
cussion of the mm command in this section, where the lettu "C"
stands for "command" and the letter "T' stands for "Text Process­
ing' ' .

Syntax

Unless otherwise noted, comm ands described in this section accept
options and other arguments according to the following syntax:

name (option. ..) (c:mclcarg . • .)
This syntax is detailed below:

option

c:mtlcarg

See Also

The filename or pathname or an executable file

A single letter representing a command option By con­
vention, most options are preceded with a dash.
Option letters can sometimes be grouped together as
in - abed or alternatively they are specified individu­
ally as in - a - b - c - d . The method of specifying
options depends on the syntax of the individual com­
mand. In the latter method of specifying options,
arguments can be given to the options. For example,
the - I option for m any commands often takes a fol­
lowing filename argument.

A pathname or other command argument aot begin­
ning with a dash or a period (.) . It may also be a dub
alone by itself indicating the standard input.

getopt(C), getopt(S)

Diagnostics

Upon termination, each command returns 2 bytes of status, one

March 20, 1984 Page l

/NTRO (CT) INTRO (CT)

supplied by the system and giving the cause for termination, and (in
the case or "normal" termination) one supplied by the program (see
wczit(S) and ezit(S)) . The fonner byte is 0 for normal termination;
the latter is customarily 0 for successful execution and nonzero to
indicate troubles such as erroneous parameters, bad or inaccessible
data, or other inability to cope with the task at band. It is called
variously "exit code", "exit status" , or " return code", and is
described only where special conventions are involved.

Notes

Many commands do not adhere to the given syntax.

March 20, 1984 Page 2
•

COL (CT) COL (CT)

Name

col - Filters reverse linefeeds.

Syntax

col (- bl'xp)

Description

Col prepares output from processes, such as the text form atter
nro.D{ CT) , for output on devices that limit or do not allow reverse or
half-line motions. Col is typically used to process nroft' output text
that contains tables generated by the tbl program. A typical com­
mand line m ight be

tbl file I nroft' I co I l lpr

Col takes the following options:

- b Col assumes the output device in use is not capable of backspac­
ing. If two or more characters appear in the same place, eol ou�
puts the last character read.

- r Allows forward half-linefeeds. If not given, eol accepts half-line
motions in its input, but text that would appear between lines is
moved down to the next full line. Reverse rull and half
linefeeds are never allowed with this option.

- x Prevents conversion or wbitespace to tabs on output. Ct�l nor­
mally converts whitespace to tabs wherever possible to shorten
printing time.

- p Causes eol to ignore unknown escape sequences found in its
input and J1ass them to the output as regular characters.
Because these characters are subject to overprinting from
reverse line motions, the use of this option is discoura«ed
unless the user is fully aware of the position of the escape
sequences.

Col assumes that the ASCII control characters SO (octal 0 16) and Sl
(octal 0 17) start and end text in an alternate character set. If you
have a reverse Iinefeed (ESC 7) , reverse half-linefeed (ESC 8) , or
forward half-linefeed (ESC 0) , within an SI-SO sequence, the ESC
7, 8 and 9 are still recognized as line motions.

On input, the only control characters col accepts are space, back­
space, tab, return, newline, revere:e linefeed (ESC 7) , reverse half­
linefeed (ESC 8) , forward half-linefeed (ESC 0) , alternate character
start(SI) , alternate character end (SO) , and vertical tag (VT) . (The
VT character is an alternate form of full reverse linefeed, included

March 24 , 1984 Page 1

COL (CT) COL (CT)

ror compatibility with some earlier programs or this type.) All other
nonprinting characters are ignored.

See Also

nrofJ(CT) , tbl(CT)

Notes

Col cannot back up more than 128 lines.

Col allows at most 800 characters, including backspaces, on a line .

Vertical motions that would back up over the first line or the docu­
ment are ignored. Therefore the first line must not contain any
superscripts.

March 24, 1984 Page 2

CUT(CT) CUT(CT)

Name

cut - Cuts out selecte d fields of e ach line of a file .

Syntax

cut - cli.t l filet filee . . .]
cut - tli1t - d char) (- s) (filet filee . . .)

Description

Use cut to cut out columns from a table or fields from each line of a
file . The fields as specifie d by li.t can be fixed length, i.e . , character
positions as on a punched card (- c option) , or the length can vary
from line to line and be m arked with a field delimiter charactu like
td (- r option) . Cut can be used as a filter; if no files are given,
the standard input is used.

The meanings of the options are:

li.t A comm� separated list of integer field num bers (in
increasing order) , with an optional dash (-) to indicate
ranges, as in the - o option of nroffftroff for page ranges;
e .g. , 1,4,7; 1- 3,8; - 6,10 (short for 1- 5,10); or 3-
(short for third through last field) .

- diet The lin following - c (no space) specifies character posi­
tions (e .g., - cl- 72 would pass the first 72 characters or
each line) .

- rli.t The lilt following - r is a list or fields assumed to be
separated in the file by a delimiter character (see - d) ;
e .g., - (1,7 copies the first and seventh field only. Lines
with no field delimiters will be passed through intact (use­
ful for table subheadings) , unless - 8 is specified.

- dchar The character following - d is the field delimiter (- r
option only) . Default is tab . Space or other characters
with special meaning to the shell must be quoted.

- 8 Suppresses lines with no delimiter characters in case or - t
option . U nless specified, l ines with no delimiters will be
passed through untouched.

Either the - c or - t option must be specified.

Hints

Use grep(C) to make horizontal "cuts" (by context) through a file ,
or pa.te(CT) to put files together horizontally. To reorder columns

March 24, 1 984 Page 1

OUT(CT)

in a table , use cut and pa1te.

Examples

cut - d: - fl ,5 /etc/passwd

name== 'who am i ! cut - rt - d" " '

See Also

grep(C) , pas�(CT)

Diagnostics

OUT (CT)

Maps user IDs to names

Sets name to current login
name.

lin.e too long A line can have no more than 51 1 charac�rs
or fields.

bad lilt for c /1 option. Missing - e or - t option or incorrectly
specified lilt. No error occurs ir a line has
fewer fields than the lilt calls ror.

flO /ieltl1 The li1t is empty.

March 24, 1984 Page 2

CW (CT)

Name

cw, cwcheck - Prepares constan�width �xt for trorr.

Syntax

cw (- lxx J (- rxx] (- fn J (- t J [+ t J (- d J [tiles]

cwcheck (- lxx] (- rxx] files

Description

CW (CT}

Ow is a preprocessor for tro//(CT) input riles that contain text tD be
typeset in the cons tan� width (CW) font.

Text typeset with the CW font resembles the output of terminals and
lineprinters. This font is used to typeset examples of programs and
computer output in user manuals, programming texts, etc.

Because the CW font contains a "nonstandard" set of characters and
because �xt typeset with it requires different charae�r and inter­
word spacing than is used for "standard" fonts, documents that use
the CW font must be preprocessed by ew.

The CW font contains the 94 printing ASCII characters:

abedefghijklmnopqrstuvwxyz
ABCD EFGHIJKLMNOPQRSTUVWXYZ
0 123456789
tscr�o - -·+ a . ,/: ;-T IJ � _"-" < > Of\

It also contains eight nonASCII characters represented by 4-eharacter
troD(CT) names (in some eases these names are attached tD "non­
standard" graphics) , as follows:

Character Symbol Trofl' N arne
"Cents" sign \(ct

EBCDIC "not" sign .., \(no
Left arrow - \(<-

Right arrow - \(- >
Down arrow l \(da

Vertical single quote 1 \(fm
Control-shift indicator t \(dg
Visible space indicator \(sq

Hyphen \{by
The hyphen is a synonym for the unadorned minus sign (-). Cer­
tain versions of cw recognize two additional n:J.mes: an up arrow and
a diagonal lef�up (home) arrow.

March 20, 1984 Page 1

CW (CT) CW (CT}

Ow recognizes five request lines, as weli as user-defined delimiters.
The request lines look like troff(CT) m acro requests, and are copied
in their entirety by cw onto its output, thus they can be defined b11
tlae ueer as troff(CT) marro.s In fact, the .CW and .CN macros
elaoultl be so defined (see Him. below) .

The five requests a.re:

.cw
Start of text to be set in the CW font; .CW causes a break; it can
take precisely the same options, in precisely the same format, as
are available on the cw command line .

. CN End of text to be set in the CW font; .CN causes a break; it can
take the same options as are available on the c w command line .

. CD Change delimiters and/or settings of other options; takes the
same options as are available on the cw command line .

. CP argl argt arg9 •.. argn
All the arguments (which are delimited like troff(CT) macro
arguments) are concatenated, with the odd-numbered arguments
set in the CW font and the even-numbered ones in the prevail­
ing font.

.PC arg1 argt arg9 ... argn
Same as .CP, except that the even-numbered (rather than odd­
numbered) arguments are set in the CW font.

The .CW and .CN requests are meant to bracket text (e.g., a pro­
gram fragment) that is to be typeset in the CW font "as is". Nor­
mally, cw operates in the traneparent mode. In that mode, except for
the .CD request and the nine special four-character names listed in
the table above, every character between .CW and .CN request lines
stands for itself. In particular, cw arranges for periods (.) and apos­
trophes (') at the . beginning or lines, and backslashes (\) and liga­
tures (fi , If, etc.) everywhere to be "h idden" from troff(CT) . The
transparent mode can be turned off (see below) , in which case nor­
mal troff(CT) rules apply. In any case, cw hides from the ueer the
effect of the font changes generated by the .CW and .CN requests.

The only purpose of the .CD request is to allow the changing of vari­
ous options other than just at the beginning of a document.

The user can also define delimite,... The left and right delimiters per­
form the same function as the . CW J.CN requests; they are meant,
however, to eneJose CW " words" or "phrases" in running text (see
the example under NOTES below) . Ow treats text enclosed by delim­
iters in precisely the same manner as text bracketed by .CW J.CN
pairs, except that, for aesthetic reasons, spaces in text bracke�d by
.CW J.CN pairs have the same width as any other CW character,
while spaces between delim iters are half as wide, so that they have
the same width as spaces in the prevailing text (but are not

March 20, I 984 Page 2

CW (CT) CW (CT)

adjustable) .

Delimi�rs have no special meaning inside .CW /.CN pairs.

The options are:

- lzz The one- or two-charac�r string zz becomes the lert del­
imi�r; if zz is omit.U!d, the left delimi�r becomes
undefined, which it is initially.

- rzz Same tor the right delim iter. The . left and right delimi�rs
m ay (but need not) be different.

- fra

- t

+ t

- d

The CW font is mounU!d in font position ra; acceptable
values for ra are 1 , 2, and 3 (default is 3, replacing the
bold font) . This option is only usdul at the beginning of
a document.

Turns transparent mode o/1.

Turns transparent mode ora (this is the initial default) .

Prints current option settings on file descriptor 2 in the
form of troff(CT) comment lines. This option is meant
for debugging.

Cw reads the standard input when no filu are specified, so it can be
used as a fil�r. Typical usage is:

cw file• I trofl ...

Cwdeek checks to see that the left and right delimi�rs, as well as
the .CW J.CN pairs, are properly balanced. It prints out all offending
lines.

ll int8

Typical definitions of the .CW and .CN m acros meant to be used
with the mm(CT) macro package:

.ir n . ig }}

.cw

.de CW

.DS I

.ps 9

.vs 10.Sp
.ta 1 6m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u ...

. de CN

.ta O.Si 1i l .Si 2i 2.Si 3i 3.Si 4i 4.Si Si S.5i 6i

March 20, 1984 Page 3

CW (CT)

.vs

.ps

.DE

.CN

.}}

.ir t .ig }}

.PP

.RS

.nr

.de CW

.D S I

.ps g
.vs 10.5p

CW (CT)

.ta 1 6m/3u 32m/3u 48m/3u 64m/3u 80m/3u 06m/3u ...

. de CN

.ta .5i li 1 .5i 2i 2.5i 3i ...

. vs

.ps

.DE

.fi

.RE

.PP

.}}
At the very least, the .CW m acro should invoke the tro.D'(CT) no-fill
(.nr) mode.

When set in running �xt, the CW font is meant to be set in the
same point size as the rest of the �xt. In displayed matter, on the
other hand, it can of�n be profitably set one point emoller than the
prevailing point size (the displayed definitions or .CW and .CN
above are one point smaller than the running �xt on this page) .
The CW font is sized so that, when it is set in 9 point, there are 12
charac�rs per inch.

Documents that contain CW �xt may also contain tables and equa­
tions. If this is the case, the order of preprocessing should be : CU/1
tbl, and eqn. Usually, the tables contained in such documents will
not contain any CW �xt, although it is entirely possible to have ele­
ment• or the table set in the CW font; of course, care must be taken
that tbl(CT) format information not be modified by e w . Attempts to
set equations in the CW font are not likely to be either pleasing or
successful.

In the CW font, overstriking is most easily accomplished with back­
spaces: letting - represent a backspace. Because spaces (and, there­
fore backspaces) are half as wide betwe�n delim i�rs as inside
.CW J.CN pairs (see above) , two backspaces are required for each
overstrike between delim iters.

March 20, 1 084 Page 4

CW (CT) CW (CT)

Files

/usr/lib/font/ftCW CW font-width table

See Also

eqn(CT) , mmt(CT) , tbl(CT), troff(CT)

Waming

Ir text preprocessed by ew is to make any sense, it must be set on a
typesetter equipped with the CW font.

Notes

Don't use periods (.) or backslashes (\) as delimiters.

Certain CW characters don't concatenate ,racefully with certain
Times Roman characters, such as a CW ampersand (&) followed by a
Times Roman comma(,) ; in such cases, use tro.6(CT) hair- and
quarter-spaces. For example, you should use _&_\", (rather than
just plain _&_,) to obtain &, (assumins that _ is used for both del­
imiters) .
See also Note• under troJ!(CT) .

March 20, 1 984 Page S

DEROFF (CT) DEROFF (CT)

Name

deroff - Removes nroff/troff, tbl, and eqn constructs.

Syntax

deroff (- w I (- mx J (files I

Description

Deroff reads each or the file• in sequence and removes all troJT(CT)
requests, macro calls, backslash constructs, etn(CT) constructs
(between .EQ and ,EN lines, and between de lim iU,rs) , and tbl(CT)
descriptions, and wriU,s the remainder or the file on the standard
output. Deroff follows chains or included files (.so and .nx troff
commands} ; if a file has already been included, a .so naming that file
is ignored and a . nx naming that file U,rminaU,s execution. IC no
input file is given, tleroff reads the standard input.

The - m option may be followed by an m, s, or I. The resulting
- mm or - ms option causes the MM or MS m acros to be inU,r­
preu,d so that only running U,xt is output (i.e., no U,xt from macro
Jines} . The - mJ option forces the - mm option and also causes
deletion of lists associared with the MM macros. This option is used
by the diction (CT) command.

The - w option outputs a word list, one "word" per line, with all
other characrers delered. Otherwise, the output follows the original,
with the deletions mentioned above. In rext, a "word" is any string
that contains at least two letrers and is composed or letrers, digits,
ampersands (k) , and apostrophes (') ; in a macro call, however, a
"word" is a string that begins with at least two letrers and contains a
total of at least three letrers. D elimirers are any characrers other
than letrers, digits, apostrophes, and am persands. Trailing apos­
trophes and ampersands are removed from " words" .

See Also

diction(CT) , eqn(CT) , style(CT} , tbl(CT} , troff(CT)

Notes

Deroff is not a complete troff inrerprerer, so it can be confused by
subtle constructs. Most such errors result in too much rather than
too little output.

The - ml option does not handle nesred lists correctly.

Deroff also removes words of two or fewer letrers in lines that begin
with macro calls or troff requests.

March 24, 1984 Page 1

DICTION (CT) DICTION (CT)

Name

diction - Checks language usage .

Syntax

diction 1 - m1 J 1 - mm J 1 1 - n 1 J 1 - r pattem.file J file . ..

Description

Dictiora finds all sentences in a document that contain phrases from a
data base of bad or wordy diction. On output., each phrase is
enclosed within brackets. Because tlictiora runs tleroff before looking
at the text., formatting header files should be included as part or the
input. The options are:

- IllS .
Overrides the default macro package, MM.

- ml
Causes deroff to skip lists. Should be used if the document con­
tains m any lists or nonsentences.

- fpattemfile
A user-supplied pottem.file or words and phrases is used in addi­
tion to the default file .

- n Suppresses the default file.

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

See Also

deroff(CT) , explain(CT)

Notes

Use of nonstandard formatting macros may cause incorrect sentence
breaks.

The - n option can't be specified by itself.

March 24, 1984 Page 1

DIFFMK (CT) DIFFMK (CT)

Name

diffmk - Marks differences between files.

Syntax

diffmk namd namef nameS

Description

Diffmk compares two versions of a file and crea�s a third file that
includes "change mark" commands for nro.D{ CT) or tro.D{ CT) .
Namd and namef are the old and new versions of the file. Diffmk
generates nameS, which contains the lines of nameD plus inse�d
formatter " change mark" (.me) requeste. When nameS is format,.
�d, changed or inserted �xt is shown by "I" at the right margin of
each line. The position or dele�d text is shown by a single " *".

The tliffmk command wiiJ produce listings of C (or other) programs
with changes marked. A typical command line for such use is:

diffmk old.c new.c tmp; nroff macs t.mp I pr

where the file maca contains:

.pi 1

.11 77

.nr

.eo

.nc

The .11 request might specify a different line length , depending on
the nature or the program being printed. The .eo and .nc: requests
are probably needed only for C programs.

Ir the characters "I" and "•" are inappropriate, a copy of tliffmk can
be edited to change them (tliffmk is a shell procedure) .

See Also

difJ(C) , nrofJ(CT)

Notes

Aesthetic considerations may dictate manual adjustment of some
output. File differences involving only formatting requests may pro­
duce undesirable output, that is , replacing .sp by .s p 2 will produce a
"change mark" on the preceding or following line or output.

March 24, 1 984 Page 1

EQN (CT) EQN(CT)

Name

eqn, neqn, eqncheck - Formats mathematical �xt for nroff or troff.

Syntax

eqn (- dzr 1 (- pn 1 (- s n) (- ffont 1 (file . .. 1

neqn (- dzr 1 (- pn 1 (- s n 1 (- f/ ont 1 (file ... 1

eqncheck (files 1

Description

Eqn is a troD(CT) preprocessor for typesetting mathematical uxt on
a phoootypese�r. Neqn i s used with nro6(CT) for setting
mathematical �xt on typewri�r-like �rminals. Usage is normally
one or the following or its equivalent:

eqn filu I troff
neqn file� I nroff

Ir no files are specified, these programs read from the standard
input.

The options are:

- dzr Reduces subscripts and superscripts " points from the previ­
ous size; the default reduction is 3 points.

- an Sets eqn delimi�rs oo charac�rs z and p.

- pn Changes the point size within eqn delimi�rs oo a.

- ffoat Changes the font within eqn delimi�rs oo foat.

A line beginning with .EQ marks the start of an equation; the end o f
an equation is marked by a line beginning with �EN. Neither o f
these Jines is al�red, s o they may be defined in macro packaces for
cen�ring, numbering, etc. It is also possible oo designa� two ehar­
ac�rs as delimitere; subsequent �xt between delimi�rs is then
trea�d as eqn input. Delim i�rs may be set to eharac�rs z and 11
with the command-line argument - dzr or (more commonly) with
delim zr between .EQ and .EN. The)eft and right delimi�rs may be
the same charac�r; the doiJar sign is of�n used as such a delimi�r.
Delimi�rs are turned off by delim off. All �xt that is neither
between delimi�rs nor between .EQ and .EN is passed through
unoouched.

The program eqneh.ed reports missing or unbalanced deJimi�rs and
.EQf.EN pairs.

March 24, 1 984 Page 1

EQN (CT) EQN (CT)

Tokens within egn are separated by spaces, tabs, newlines, braces,
double quotation marks, tildes, and carets. Braces {} are used for
grouping; generally speaking, anywhere a single character such as z
could appear, a complicated construction enclosed in braces may be
used instead. A tilde (-) represents a full space in the output; a
caret ("') represents half as much.

Subscripts and superscripts are produced with the keywords sub and
sup. Thus z 1ub j makes

a nb k '"P 8 produces

tJf
while

is made with e 1up {z '"P I + J eup 1}. Fractions are made with
over: a over b yields

(J

b

sqrt makes square roots: 1 over 1(/rl {az np l+ hz+ c} results in

1

The keywords from and to introduce lower and upper limits:

is made with lim from {n - > in/ } 1um from · 0 to n z 1ub i. Left
and right brackets, braces, etc., of the right height are made with lett
and right: left / z 1up 8 + J 1up 8 over alpl&a rigl&t J - - - 1
produces

Legal characters after lett and right are braces, brackets, bars, e and
t for ceiling and floor, and • • for nothing at all (useful for a right­
side-only bracket) . A lett need not have a m atching right

March 24, 1984 Page 2

EQN (CT) EQN (CT)

Vertical piles are m ade with pile, lpile, c::pile, and rpile:
pile { e1 Clbot�e b Clbot�e e } produces

(J
b
c

Piles may have arbitrary numbers or elements; lpile leftrjustifies,
pile and c::pile center (but with different vertical spacing) , and rpile
right justifies. Matrices are made with matrix : matriz { leol { z nb i
tJbof1t 1/ IUb f } ctol { J tJbot1e t } } produces

z. 1

112 2

There is also n:ol for a rightr justified column.

D iacritical marks are m ade with dot, dotdot, hat, tilde, bar, vee,
dyad, and under: z dot - f(t) b4r is

z nrr
11 dotdot bar --- n under is

11 =.n

z =V
Point sizes and fonts can be changed with size n or size :1:: n, roman,
italic::, bold, an d font n. Point sizes an d fonts can be changed glo­
bally in a document by gsize n and gf'ont n, or by the comm an d-line
arguments - sn and - tn..

Normally, subscripts and superscripts are reduced by 3 points from
the previous size; this m ay be change d by the command- line argu­
ment - pn.

Successive display arguments can be lined up. Place mark before
the desired lineup point in the first equation ; place lineup at the
place that is to line up vertically in subsequent equations.

Shorthands m ay be defined or ex isting keywords redefined with
define. For example,

define thing % replacement %

defines a new token called thing that will be replaced by replacement
whenever it appears thereafter. The % may be any character that
does not occur in replacement.

March 24, JQ84 Page 3

EQN (CT) EQN (CT)

Keywords such as sum (I:) , int (J) , inr (oo) , and shorthands
such as >-= (�) , !- (�, and - > (-+) are recognized by e qn .
G reek letters are spelled out i n the desired case, as i n alpha (a} , or
GAMMA (f) . Mathematical words such as sin, eoe, and log are
m ade Rom an au tom atica.lly. TroD(CT) four-character escapes such
as \(dd U) and \(bs (0) may be u�ed anywhere. Strings enclosed
in double quotation marks (• . . . •) are passed through untouched;
this perm its keywords to be en�red as text, and can be used to com­
m unica.� with trol!(CT) when aJI else fails.

See Also

mm(CT) , mmt(CT) , tbi(CT) , troff(CT)

Notes

To em holden digits, parentheses, etc., it is necessary to surround
them with double quotation marks. See also Note• under troD(CT) .

March 24, Jg84 Page · 4

EXPLAIN (CT) EXPLAIN (CT)

Name

explain - Corrects language usage.

Syntax

ex plain

Description

Ezplain in�ractively reports on language usage. It suggests al�rna­
tives oo phrases found with the diction command.

Credit

This utility was deve loped at the University of California at Berkeley
an d is used with permission.

See Also

deroff(CT) , diction(CT)

March 24, HJ84 Page 1

HYPHEN (CT) HYPHEN (CT)

Name

hyphen - Finds hyphenated words.

Syntax

hyphen file ...

Description

Hypl&tn finds all the hyphenated words in file• and prints them on
the standard output. U no arguments are given, the standard input
is used. Thus hyphen may be used as a filter.

Notes

Hyphen doesn't properly deal with hyphenated it4lic (i.e. , under­
lined) words; it will orten m iss them completely.

Hyphen occasionally gets conCused, but with no ill effects other than
ex tra output.

March 24, 1984 Page 1

MM (CT)

Name

mm - Prints documents formatted with the mm macros.

Syntax

mm (options) (files)

mmcheck (riles)

· Description

MM { CT)

Mm can be used to type out documents using raro//(CT) and the mm
text.formatting macro package. It has options to specify preprocess­
ing by 161(CT) and/or ratqra(CT) and postprocessing by various
terminal-oriented output filters. The proper pipelines and the
required arguments and flags for raro//(CT) and mm are generated,
depending on the options selected.

The option• for mm are given below. Any other arguments or flags
(for example , - r<::i) are passed to raro//(CT) or to mm, a.s appropri­
ate. Such options· can occur in any order, but they must appear
before the Jilt• arguments. If no arguments are given, mm prints a
list or its options.

- c Causes mm to invoke col(CT) .

- e Causes mm to invoke raeqra(CT) .

- t Causes mm to invoke 161(CT) .

- E
Invokes the - e option of raro.D'(CT) .

- y Causes mm to use the noncompacted version of the macros (see
mm(M)) .

Aim reads the standard input when a dash is is specified instead of
any filenames. (Mentioning other files together with the dash can
lead to disaster.) This option allows mm to be used as a filtu; for
example:

cat dws I mm -

Hints

1. Mm invokes raroff(CT) with the - h flag. With this flag,
nf'oJT(CT) assumes that the terminal has tabs set every 8 charac­
ter positions.

March 20, l 08f Page l

MM (CT) MM (CT)

2. Use the - oli.t option of aroff(CT) to specify ranges of pages tc
be output. No�, however, .that mm, if invoked with one or
more of the - e, - t, and - options, together with the - oli.t
option or aro.6(CT) m ay cause a harmless "broken pipe" diag­
nostic if the last page of the document is not specified in lilt.

3. It you use the - s option of aroff(C) (tc stop between pages of
output) , use linefeed (rather than return or newline) to restart
the output. The - 1 option of aroD(C) does not work with the
- c option of mm, or if mm automaticalJy invokes eol(C) (see
- c option above) .

Use the mmcAeei program tc cheek the eon�nts of mm source files
for errors in usage of the m acros.

See Also

eoi(CT) , env(C) , eqn (CT) , mmqCT) , mmeheck(CT) , nroft'(CT) ,
tbl(CT) , profile(F)

Xenix Tezt Procu,iag Guide

Diagnostics

mm: ao input file

March 20, 1 984

None of · the arguments is a readable file and
mm has not been used as a fil�r

Page 2

MMOHEOK (CT) MMCHEOK (CT)

Name

mmcheck - Checks usage of mm macros.

Syntax

mmeheck (files]

Description

Mmcheclr checks files for usage of the mm formatting macros.
MmcAeclr also checks for usage of some tfn(CT) constructions.
Appropria� messages are produced. The prosram skips all direc­
tories, and if no filename is given the standard input is read.

See Also

col(CT) , env(C) , eqn(CT) , mm(CT) , mmt(CT) , nroff(CT) ,
tbl(CT) , pro rile(F)

Diagnostics

mmcheclr unreadable files cause the message "Cannot open
filentl.mt". The remaining output or the program is diagnostic of the
source file.

March 20, 1 984 Page 1

MI.-IT(CT) MMT(CT)

Name

mmt - Typesets documents.

Syntax

mmt (option1] (fie]

Description

Mmt uses the MM macro package. It has options oo specify prepro­
cessing by tbl(CT) and eqn(CT) . The proper pipelines and the
required arguments and flags for tro.D'{ CT) and for the macro pack­
ages are generated, depending on the options selected.

Option1 are given below. Any other arguments or flags (e.g., - rC3)
are passed U> troff{ CT) or oo the macro package, as appropriate.
Such options can occur in any order, but they must appear before
the jile1 arguments. If no arguments are given, these commands
print a list of their options.

- e Causes these commands oo invoke eqn{CT) .

- t Causes these commands oo invoke t6l(CT) .

- a Invokes the - a option of troD(CT) .

- y Causes mmt U> use the noncompacted version of the mac­
ros (see mm(CT)) .

When a dash (-) is specified, mmt reads the standard input instead
of any filenames.

Hints

Use the - olilt option of troD(CT) U> specify ranges of pages oo be
output. Note, however, that these commands, if invoked with one
or more of the - e , - t, and - options, U>gether with the - olill
option of troff(CT) may cause a harmless "broken pipe" diagnostic
if the last page of the document is not specified in li1t.

See Also

env(C) , eqn(CT) , mm{ CT) , tbl(CT) , troff(CT) , profile(M) ,
environ(M)

March 24 , 1984 Pap;e 1

MM T (CT}

Diagnostics

mmt: no input #e

March 24, 1984

MMT (CT)

None or the arguments is a readable file
and the command is not used as a filter.

Page 2

NEQN (CT)

Name

neqn - Formats m athem atics.

Syntax

neqn (- dxy J (- fn) (file) . . .
checkeq (file] ...

Description

NEQN (CT)

Neqr& is an nro.6(CT) preprocessor for formatting ui athem atics on
U!rminals and for prinU!rs; eqn(CT) is its counterpart for typesetting
with troD(CT) . Usage is almost always:

neqn file .. . I nroff

If no files are specified, these programs read from · the standard
input. A line beginning with .EQ m arks the start of an equation; the
end of an equation is marked by a line beginning with .EN. Neither
of these lines is altered, so they m ay be defined in macro packages to
get centering, numbering, etc. It is also possible to set two charac­
ters as udelimiters"; subsequent text between delimiters is also
treated as neqn input. Delimiters m ay be set to characters z and 11
with the command-line argument - dz11 or (more commonly) with
u delim z11" between .EQ and .EN. The left and right delimiters may
be identical. Delimiters are turned off by ' delim off'. All text that is
neither between delimiters nor between .EQ and .EN is passed
through untouched. Fonts can be changed globally in a document
with gfont n, or with the command-line argument - fn.

The program cl&tekeq reports missing or unbalanced delim iters and
.EQ/.EN pairs.

Tokens within neqn are separated by spaces, tabs, newlines, braces,
double quotation marks, tildes or carets. Braces {} are used for
grouping; generally speaking, anywhere a single character like z
could appear, a complicated construction enclosed in braces may be
used instead. Tilde (-) represents a full space in the output, caret
C) half as much.

See Also

eq.n(CT) , checkeq(CT) , troff(CT) , tbl(CT)

Notes

To embolden digits, parentheses, etc., it is necessary to quote them,
as in 'bold " 12.3"' .

March 24, 1984 Page 1

NROFF (CT) NROFF (CT)

Name

nrotr - A text formatter.

Syntax

nroff (option ...] (file ...]

Description

Nroff formats text in the named file•. Nroff is part of the nrofr/trofr
family of text formatters. Nrofr is used to format files for output to
a lineprinter or daisy wheel printer; trofr to a phoootypese�r.

Ir no file argument is present, the standard input is read. An argu­
ment consisting or a single dash (-) is taken to be a ·filename
corresponding oo the standard input. The options, which may appear
in any order so long as they appear before the files, are:

- olilt

- nN

- aN

Prints only pages whose page numbers appear in the
comma--separated lilt or numbers and ranges. A range
N- M means pages N through M; an initial - N means
from the beginning to page N; and a final N- means
from N oo the end.

Numbers first generated page N.

Stops every N pages. Nroff will halt prior oo every N pages
(default N=-1) oo allow paper loading or changing, and
will resume upon receipt or a newline.

- mncame Prepends the macro file /usr/lib/tmK/trti1M!.ncame to the
input filet.

- rcaN Sets register a (one-character) to N.

- i Reads standard input after the input files are exhausted.

- q Invokes the simultaneous input-output mode or the .rd
request.

- e Produces equally spaced words in adjusted lines, using full
terminal resolution.

- h Uses output tabs during horizontal spacing to speed output
and reduce output character count. Tab settings are
assumed to be every 8 nominal character widths.

- Tdnice Specifies the output device. The default device is 1 1 lp" , the
lineprinter.

March 24, 1984 Page 1

NROFF (CT) NROFF (CT)

Other supported devices include:

- T300
DASI (DTC , GSI) 300 .

- T300s
DASI 300s.

- T450
DASI 450 (same as Diablo 1620} .

- 1"300- 1 2
DASI 300 at 12-pitch.

- T300s- 12
DASI 300s at 12-pitch.

- T450- 1 2
DASI 450 at 12-pitch.

- T33
1TY 33. Invokes col automatically.

- Tdumb
Terminal types with no special features. Invokes col automati­
cally.

- T37
1TY 37.

- T735
TI 735. Invokes col automatically.

- T745
TI 7 45. Invokes col automatically.

- T43
TTY 43. Invokes col automatically.

- T40/2.
Teletype model 40/2 Invokes col automatically.

- T40/4
Teletype mode 40/4. Invokes col automatically.

- T.Z631
HP 263 1 series lineprinter. Invokes col automatically.

- T.Z631-e
HP 263 1 series lineprinter, expanded mode. Invokes col
automatically.

March 24, 1984 Page 2

NROFF (CT) NROFF (CT)

- TI631 - c
HP 2631 series Jineprin�r, compressed mode. Invokes col
automatically.

- T42
ADM 42. Invokes col automatically.

- T31
TTY 3 1 . Invokes col automatically.

- T35
TTY 35. Invokes col automatically.

- TI620
D iablo 1620 (same as DASI 450) .

- TI620- 12
D iablo 1 620 at 12-pitch.

Files

/usr /lib/suftab

/tmp/ta•

Suffix hyphenation tables

Temporary file

/usr/lib/tmac/tmac.• Standard macro files

/usr/lib/�rm/• Terminal driving tables

See Also

col(CT) , eqn(CT} , tbl (CT) , trofi'(CT)

March 24, 1984 Page 3

PASTE (CT)

Name

paste - Merges lines of fi les.

Syntax

paste fil.d file I . . .

paste - dlilt file1 filel . . .

paste - s [- d li.t] jileJ jilee . . .

Description

PASTE (CT)

In the first two forms, palfe concatenates corresponding lines or the
given input files /ile1 , fild, etc. It treats each file as a colum n or
columns of a table and pastes them together horizontally (parallel
merging) . It is the counterpart or eat(C) which concatenates verti�
cally, i.e., one file after the other. In the last form above, pcete sub­
sumes the function or an older command with the same name by
combining subsequent lines of the input file (serial merging) . In all
cases, lines are 'glued together with the tab character, or with charac­
ters from an optionally specified li1t. Output is to the standard out;.
put, so it can be used as the start of a pipe, or as a filter, if - is
used in place or a filename.

The meanings
-
or the options are:

- d Without this option, the newline characters of each but the last
file (or last line in case of the - s option) are replaced by a tab
character. This option allows replacing the tab charack"r by one
or more alternate characters (see below) .

li1t One or more characters immediately following - d replace the
default tab as the line concatenation character. The list is used
circularly, i. e. when exhausted, it is reused. In parallel merging
(i. e. no - s option) , the lines from the last file are always ter­
minated with a newline character, not from the lilt. The list
may contain the special escape sequences: \n (newline) , \t
(tab) , \\ (backslash) , and \0 (empty string, not a null charac­
ter) . Quoting m ay be necessary, if characters have special
meaning to the shell (e .g. to get one backslash , use - d"\\\\") .

- s Merges subsequent lines rather than one from each input file.
Use tab for concatenation , unless a li•t is specified with - d
option. Regardless of the lilt, the very last character of the file
is forced to be a newline.

May be used in place of any filename to read a line from the
standard input. (There is no prompting.)

March 24, 1984 Page 1

PASTE (CT) PASTE (CT)

Examples

Is I pas� - d" " - Lists directory in one column

ls I pas� - - - -

pas� - s - d"\t\n" rile

Lista directory in four columns

Combines pairs of lines into lines

See Also

cu�CT) , �rep(C) , pr(C)

Diagnostics

liae too loag

too maar fie•

March 24, 1984

Output lines are restric�d to Sl l characters.

Except for - • option, no more than 12 input
files may be specified.

Page 2

PREP (CT) PREP (CT)

Name

prep - Prepares text for statistical processing.

Syntax

prep (- dio) file ...

Description

Prep reads each file in sequence and wri�s it on the standard output,
one "word" to a line. A word is a string of alphabetic charac�rs
and imbedded apostrophes, delimi�d by space or punctuation.
Hyphenated words are broken apart; hyphens at the end or lines are
removed and the hyphena�d parts are joined. Strings of digits are
discarded.

The following option letters m ay appear in any order:

- d Prints the word number (in the input stream) with each word.

- i Takes the next file as an " i�ore" file. These words will not
appear in the output. (They will be counted, for purposes of the
- d count.)

- o Takes the next file as an "only" file. Only these words will
appear in the output. (All other words will also be eoun�d for
the d count.) ·

- p Includes punctuation marks (single nonalphanumeric charac�rs)
as separate output lines. The punctuation marks are not
counted for the - d count.

The ignore and only files contain words, one per line.

See Also

deroff(CT)

March 24, 1984

P7X(CT) P7X(CT)

Name

ptx - Generates a permuted index.

Syntax

ptx (option1] (input (output J J

Description

� generates a permuted index to file input on file output (standard
input and output default) . It. has three phases: the first does the per­
m utation , generating one line ror each keyword in an input line .
The keyword is rotated to the front. The permuted file is then
sorted. Finally, the sorted lines are rotated so the keyword comes at
the middle or each line. Ptz produces output in the form:

.xx "tail" "before keyword" "keyword and after" "head"

where .xx is assumed to be an nroff or troD{ CT) m acro provided by
the user. The " before keptml'' and "kerword and afterJ ' fields incor­
porate as much or the line as will fit around the keyword when it is
printed. Tail and Aead, at least one of which is always the empty
string, are wrapped-around pieces small enough to fit in the unused
space at the opposite end or the line.

The following options can be applied:

- t Folds uppercase and lowercase letters for sorting.

- t Prepares the output for the phototypesetter.

- w n Uses the next argument, n, as the length of the output
line . The default line length is 72 characters for nroff
and 100 for troff.

- g n Uses the next argument, n, as the number of characters
that ptz will reserve in its calculations for eaeh gap
among the 4 parts or the line as finally printed. The
default gap is 3 characters.

- o onlr Uses as keywords only the words given in the onlr file.

- i ignore Does not use as keywords any words pven · in the ignore
file. If the - i and - o options are m issing, use
/usrfJib/eign as the ignore file.

- b break Uses the characters in the bred file to separate words.
Tab, newline, and spaee characters are alwap used as
break characters.

M areh 24, 1984 Page 1

PTX(CT)

- r

Files

PTX(CT)

Takes any leading nonblank characters of each input line
to be a reference identifier (as to a page or chapter) ,
separate from the text or. the line. Attaches that
identifier as a fifth field on each output line�

/bin/sort

/usr /lib feign

Notes

Line length counts do not account for overstriking or proportional
spacing.

Lines that contain tildes (-) are not handled correctly, because ptz
uses that character internally.

March 24, 1Q84 Page 2

SOELIM (CT) SOELIM (CT)

Name

soelim - Eliminates .so's from nroff input.

Syntax

soeli m [file • • •

Description

Soelim reads the specified files or the standard input and performs
the textual inclusion implied by the nroff direetives or the form

.so somefile

when they appear at the beginning or input lines. This is useful
since programs such as tbl do not norm ally do this; it allows the
placement or individual tables in separate files to be run as a part or
a large document.

Note that inclusion can be suppressed by using a single quotation
m ark (') instead of a dot (.) , e .g.

'so /usr/lib/tmac.s

Example

A sample usage of 1oelim would be

soelim exum! .n f tbl fnroft - m m f col f lpr

See Also

nroff(CT) , trofl'(CT)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 24, 1984 Page 1

SOELIM (CT) SOELIM (CT)

Notes

Exactly one blank must precede and no blanks may rollow the
filename. Lines or the form

.ir t .so /usr/lib/macros.t

mean that " .so" statements embedded in the text are expanded.

March 24, 1084 Page 2

SPELL (CT)

Name

spell, spellin, spellout - Finds spelling errors.

Syntax

spell (option•) (filu)

/usr/lib/spell/spellin (litJt)

/usr/lib/spell/spellout (- d) li1t

Description

SPELL (CT)

Spell collects words from the named filu and looks them up in a
spelling list. Words that neither occur among nor are derivable (by
applying certain inflections, prefixes, and/or suffixes) from words in
the spelling list are printed on the standard output. Ir no file• are
named, words are collected from the standard input.

Spell ignores most troD'(CT) , tbl(CT) , and eqa(CT) constructions.

Under the - v option, all words not li�rally in the spelling Jist are
printed, and plausible derivations from the words in the spelling_ Jist
are indicate d.

Under the - b option, British spelling is cheeked. Besides preferring
eeatre, eolour, 1peeialitr, trnelletl, etc., this option insists upon ·tie in
words like 1faadardi1e , Under the - x option, every plausible stem is
prin�d with .. for each word.

The spelling list is based on many sources, and while more haph&­
zard than an ordinary dictionary, is also more effective with respect
to proper names and popular technical words. Covera&e or the spe­
cialized vocabularies or biology, medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indi­
ea�d below with their default settings. The stop list fil�rs out
misspellings (e .g., thier-thy- y+ ier) that would otherwise pass.

Two routines help maintain the hash lists used by 1pell (both expect
a list or words, one per line, from the standard input) . 1pellia adds
the words on the standard input to the .preexisting lilt and places a
new list on the standard output. Ir no li1t is specified, the new list is
created from scratch. Spellout looks up each word read from the
standard input, and prints on the standard output those that are
m issing from (or, with the - d option, present in) the hash list.

M�rch 24, 1084 Page l

SPELL (CT) SPELL (CT)

Files

D_SPELL-/usrflib/spell/hlist(ab) Hashed spelling lists, American
and British

S_SPELL-=/usr/lib/spell/hsU>p Hashed sU>p list

/tmp/spell. Temporary

/usrflib/spell/spellprog Program

D_SPELL and S_SPELL can be overridden by placing al�mate path
definitions in 1our environment.

See Also

deroii(CT) , e qn(CT) , sed(C) , sort(C) , tbl (CT) , �e(C) , troii(CT)

Notes

The spelling list's coverage is uneven: You m ay wish U> moniU>r the
output Cor several m onths U> gather local additions. Typically, these
additions are kept in a separate local dictionary that is added U> the
hashed lirt via rpeUin.
By default, logging or errors U> /usrflib/spell/spellhiat is turned off.

D _SPELL and S_SPELL can be overridden by placing alternate
definitions in your environment.

March 24, 1984 Page 2

STYLE (CT) STYLE (CT)

Name

style - Analyzes characteristics of a document..

Syntax

style [- m1] (- mm) (- a] (- e) (- I num J [- r num)
(- P) (- P) file ·• ·

Description

St1Je analyzes the characteristics of the writing style of a document..
It reports on readability, sentence length and structure, word length
and usage, verb type, and sentence openers. Because .tpe runs
l.eroJf before looking at the text, formatting header files should be
included as part of the input.. The default macro pack-«e - ms may
be overridden with the flas � mm. The flag - ml, which causes
derofl' to skip lists, should be used if the document contains m any
lists or nonsentences. The other options are used to locate sentences
with certain characteristics.

- a Prints all sentences with their length and readability index.

- e Prints all sentences that begin with an expletive.

- p Prints all sentences that contain a passive verb.

- lnum
Prints all sentences longer than num.

- rnum
Prints all sentences whose readability index is greater than
num.

- p Prints parts or speech of the words in the document..

Credit

This utility was developed at the University or California at Berkeley
and is used with permission.

See Also

derofl'(CT) , diction(CT)

Notes

Use of nonstandard formatting macros may cause incorrect sentence
breaks.

March 24, 1984 Page 1

TBL (CT) TBL (CT)

Name

tbl - Formats tables for nrorr or troff.

Syntax

tbl [- 'IX J [files J

Description

Tbl is a. preprocessor that formats tables for aro//(CT) or tro/1(CT) .
The input riles are copied to the standard output, except for lines
between .18 and .'JE command lines, which are assumed to describe
tables and are reformatted by tbl. (The .TS and .1E command lines
are not altered by tbl) .
• TS is followed by global options. The available global options are:

center Centers the table (default is left-adjust)
expand Makes the table as wide as the current line length
box Encloses the table in a box
doublebox Encloses the table in a double box
allbox Encloses each item or the table in a box ;
tab (z) Uses the character z instead or a tab to separate

items in a line or input data.

The global options, if any, are terminated with a semicolon (;) .

Next come lines describing th e format or each line o f th e table .
Each such format line describes one line or the actual table, except
that the last format line (which must end with a period) describes aU
remaining lines or the actual table . Each column or each line or the
table is described by a single keyletter, optionally followed by
specifiers that determine the font and point size of the corresponding
item , indicate where vertical bars are to appear between columns,
and determine parameters such as column width and intercolumn
spacing. The available keyletters are:

c Centers item within the column
r Right-adjusts item within the cQlumn
I Left-adjusts item within the column
n Numerically adjusts item in the columrl: unit positions or

numbers are aligned vertically;
s Spans previous item on the left into this column
a Centers longest line in this column and then left-adjusts all

other lines in this column with respect to that centered line
Spans down previous entry in this column
Replaces this entry with a horizontal line
Replaces this entry with a double horizont.al line

March 20, l98 t Page 1

TBL (CT) TBL (CT)

The charac�rs B and I stand for the bold and italic fonts, respec­
tively; the character I indicates a vertical line between columns.

The format lines are followed by lines containin� the actual data for
the table , followed finally by .1E. Within such data lines, data items
are norm ally separa�d by tab characters.

If a data line consists or only an underscore (_J or an equals si�n
occurs, then a single or double line, respectively, is drawn across the
table at that point. If a lingle i}em in a data line consists or only an
underscore or equals sign then that i�m is replaced by a single or
double line.

Full details or all these and other features or tbl are �iven in the
XENIX Tezt Proce11ing Guide.

The - 1X option forces tbl to use only run vertical line motions,
m aking the output more suitable for devices that cannot genera�
partial vertical line motions, such as lineprin�rs.

If no filenames are �iven as arguments, tbl reads the standard input,
so it may be used as a filter. When it is used with etn(CT) or
netn(CT) , tbl should come first to minim ize the volume of data
passed through pipes.

Example

Ir we let - represent a tab (which should be typed as a genuine
tab) , then the input:

.TS
cen�r box
eB s s
cl l el s
" I c c
I I n n .
Household Population

Town -Households
-Num her-Size

Bedminster-789 -3.26
Bernards Twp.-3087-3.74
Bernardsville-2018-3 .30
Bound Brook-3425-3.04
Bridgewater-7897 -3.81
Far Hills-240-3. 19
. TE

yields:

March 20, 1984 Page 2

TBL (Ct) TBL (CT)

Household Population

TotDft H ou1e h oltl1
Nurnb!>:r Size

Bedmins�r 789 3.26
Bernards Twp. 3087 3 .74
Bernardsville 2018 3.30
Bound Brook 3425 3 .04
Bridgewa�r 7897 3.81
Far H ills 240 3.10

See Also

Xenix Te:rt Prottlliftg Guide
eqn(CT) , mm(CT) , mmt(CT) , trofi'(CT)

Nota

See also Note• under troi{CT) .

March 20, 1984 Page 3

TROFF (CT) TROFF (CT)

Name

troff - Typesets text.

Syntax

trorr (options] [files J

Description

troll formats text contained in file• (standard input by default) for
printing on a phorotypesetter. Similarly, nrolf formats text for print­
ing on typewriter-like devices and lineprinters.

An argument consisting of a lone dash (-) is taken w be a filename
corresponding oo the standard input. The option•, which may appear
in any order, but must appear before the fJ.u, are:

- olilt

- nN

- sN

- raN

- i

- q

- z

Prints only pages whose page numbers appear in the lilt
of numbers and ranges, separated by commas. A range
N- M means pages N through M; an initial - N means
from the beginning oo page N; and a final N- means
from N oo the end. (See NOTES below.)

Numbers first generated page N.

Stops every N pages. Nrolf will halt after every N p�es
{ default N-1) oo allow paper loading or changing, and
will resume upon receipt of a linefeed or newline (new­
lines do not work in pipelines, e.g. , with mm(CT)) . This
option does not work if the output of nrolf is piped
through tol(CT) . TroJI will srop the phoootypesetter
every N pages, produce a trailer to allow changing
cassettes, and resume when the typesetter's start butoon is
pressed. When nrolf (troJI) halts between pages, an ASCII
BEL (in troJ!, the mess�e page stop) is sent oo the termi·
nal.

Sets register ca (which must have a one-character name)
oo N.

Reads standard input after filu are exhausted.

Invokes the simultaneous input-output mode of the .rd
request.

Prints only messages generated by .tm (term inal message)
requests.

March 20, 1984 Page 1

TROFF (CT) TROFF (CT)

- mnsme Prepends to the input file• the noncompac�d (ASCII �xt)
m acro file /usr/lib/tma�./tmat!.nome .

- cname Prepends to the input file• the compac�d m acro files
/usr/lib/ma.eros/cmp.(nt) .(dt) .nome and
/usr/lib/ma.eros/ucmp.(nt) .name .

- knt�me Compacts the macros used in this invocation of
nroJf/trojf, placing the output in files (dt) .name in the
current directory

- e Produces equally-spaced words in adjus�d lines, using the
run resolution or the particular �rminal.

- h Uses output tabs during horizontal spacing to speed out,.
put and reduce output character count. Tab settings are
assumed to be every 8 nominal .charac�r widths.

- un Sets the emboldening factor (number of charac�r over­
strikes) for the third font position (bold) to n, or to zero
it n is missing.

Trojf only.

- t

- t

- w

- b

- a

- pN

Directs output to the standard output ins�ad of the pho­
totypeset�r.

Refrains from feeding out paper and stopping photo­
typeset�r at the end of the run.

Waits until phototypeset�r is available, if it is currently
busy.

Reports whether the phototypeset�r is busy or available.
No �xt processing is done.

Sends a printable ASCII approximation of the results to
the standard output.

Prints all charac�rs in point size N while retaining all
prescribed spacings and motions, to reduce photo­
typesetter elapsed time.

- Tnt� me Uses fontr-width tables for device nome (the font tables
are found in /usr/lib/font/aa.mer) . Currently, no
names are suppor�d.

Files

/usr /lib/ suftab Suffix hyphenation tables

March 20, Hl84 Page 2

TROFF (CT)

/tmp/ta$# Temporary file

/usr/lib/tmac/tmae.• Standard macro files and pointers

/usr /lib/macros/*

/usr/lib/term/*

/usr /lih/Cont/*

• See Also

Standard macro files

Terminal driving tables Cor nroff

Font width tables for troff

eqn(CT) , tbl(CT) , mm(M)

(nrofl' only) col(CT) , greek(CT) , mm(CT)

(t.rofl' only) gca� C) mm�CT) , mv(M)

Notes

TROFF (CT)

Nroff/troff uses Eastern Standard Time; as a result, depending on the
time of the year and on your local time zone, the date that nroff/troff
generates may be off by one day from your idea or what the date is.

When aroff/troff is used with the - olin option inside a pipeline (e.g.,
with one or more or cw(CT) , eqn(CT) , and tbl(CT)) , it m ay cause a
harmless "broken pipe" diagnostic ir the last page or the document
is not specified in li1t.

March 20, 1984 Page 3

