68—5—-24—-84-1.0/1.0 Text Processing System

IMPORTANT NOTE ABOUT INSTALLATION

TEXT PROCESSING SYSTEM
XENIX 3.0 fortheApple™ Lisa2™
May24, 1984

These notes contain information about installing the optional XENIX Text Processing
System. If you wish toinstall the Text Processing System atthe sametime asinstalling
the XENIX Operating System, please refer to the Installation Guide in the binder
marked Installation Guide/Operations Guide/User’s Guide. When installing the
XENIX Text Processing System after you've already installed the XENIX Operating
System, refertothese notes.

READ THE INSTALLATION NOTES IN THEIR ENTIRETY AND MARK SURE
YOU COMPLETELY UNDERSTAND THE INSTALLATION PROCESS
BEFORE INSTALLING THE PRODUCT. Note that you need the XENIX Operating
System in order to use the Text Processing System, so you must install the XENIX
Operating System first.

If you have already installed the XENIX Operating System, and wish to install the Text
Processing System Paclmge separately, follow this procedure:

1. Loginasroot (super—user).

2. The floppies are mumbered (beginning with 1) and must be installed in
sequential mumeric order. Insert the first Text Processing System floppy
intothe floppy driveand enter thecommand:

/etc/install

3. Theinstallutility willprompt:
First floppy (y/n)
Enter ‘y’ andpressRETURN.

4. Theprogram will prompt you for each floppy. Remove the previous floppy
from the floppy drive and insert the next Text Processing Sytem floppy.
Enter‘y’ inresponsetotheprompt (#).

5. Whenyou have installed the final Text Processing System floppy, enter ‘n’
inresponsetothe prompt.

Note that some files may extend from one floppy tothe next. Inthiscase, the tar utility
will prompt you in a slightly different fashionthanthe /erc/instal! program. Insert the
nextfloppy and pressRETURN whenthe floppyisproperly inserted andthefloppy door

latchisclosed.

The Santa Cruz Operation XENIX for the Apple Lisa 2

The XENIX"

Text Processing System

Text Processing Guide

for the Apple Lisa 2"

The Santa Cruz Operation, Inc.

Information in this document is subject to change without notice and
does not represent a commitment on the part of The Santa Cruz
Operation, Inc. and Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance
with the terms of the agreement.

©The Santa Cruz Operation, Inc., 1984
©Microsoft Corporation, 1983

The Santa Crus Operation, Inc.

500 Chestnut Street

P.O. Box 1900

Santa Cruz, California 95061

(408) 425-7222 - TWX: 910-598-4510 SCO SACZ

UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft Corporation
Apple, Lisa 2, and ProFile are trademarks of Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

Contents

1 TextProcessingOverview

Introduction 1-1
BasicConcepts 1-3
FormattingDocuments 1—7
ASampleProject 1-9
Managing Writing Projects 1—11
Summary 1-15

— b et e
AWNE WN -

Tools For Writing and Editing

Introduction 2-1

XENIX Commandsfor TextProcessing 2—2
WritingTools 2-8

Usingspell 2-9

Usingstyleanddiction 2-—-10

PNNON N
NE WN -

w

Using themm Macros

Getting Startedwithmm 3—1

Basic FormattingMacros 3-3

Using nroff/troff Commands 3-8
CheckingmmInput Withmmcheck 3-9

W www
& WN -

mm Reference

Introduction 4-1

InvokingtheMacros 4-3
FormattingConcepts 4—7

Paragraphsand Headings 4-—10

Lists 4-18

Displays 4-25

Footnotes 4-31

PageHeadersandFooters 4—34
TableofContents 4—38

References 4—40

Miscellaneous Features 4—41
MemorandumandReleasedPaperStyles 4—46
ReservedNames 4-54

Emrors 4—56

Summary ofMacros, Strings, andNumber Registers 4—62

Phrrrbhhhhhibhin &
el X R E- XV R AT

NEWN=O

(7]

ey
bt et bt bt e e \D OO J O\ N D W)

S hbWN=O

s o
& WN -

6.5

Annroff/troff Tutorial

Introduction 5-—1

Inserting Commands 5—2

Point SizesandLine Spacing 5—2
Fontsand Special Characters 5—4
IndentsandLineLengths 5—7
Tabs 5—8

Drawing Linesand Characters 5—9
Strings 5—12

Macros 5-12 .

Titles, PagesandNumbering 5—14
Number Registersand Arithmetic S—16
Macros with Arguments S—17
Conditionals 5—19
Environments 5-21

Diversions 5-21

nrofl/troff Reference

Introduction 6-—1
Basic FormattingRequests 6—35

Character Translations, Overstrike, andLocalMotions 6—13

Processing Control Facilities 6—17
Outputand ErrorMessages 6—24

Summary of Escape Sequencesand NumberRegisters 6—26

Formatting Tables

Introduction 7-1

InputFormat 7-2
Invokingtbl 7-9

Examples 7-11

Summary 7-18

- FormattingMathematics

Introduction 8-1

DisplayedEquations 8-—2

Basic Mathematical Constructions 8-—3
Complex Mathematical Constructions 8—7
LayoutandDesignof MathematicalText 8—10
In-LineEquations 8-15

Definitions 8-—16

Invokingeqn 8-17

Sample Equation 8-—18

8.10 EmorMessages 8-—18
8.11 SummaryofKeywordsandPrecedences 8—19

AppendixA Editing Withsed and awk
A.l Introduction A-1

A2 EditingWithsed A-1
A3 PatternMatching Withawk A-1

Chapter 1
Text Processing Overview

1.1 Introduction 1-1
1.1.1 Before YouBegin 1-2
1.1.2 Reading This Manual 1-2

"1.2 Basic Concepts 1-3
1.2.1 Writing Tasks 1-4
1.2.2 Anatomy of aDocument 1-4
1.2.3 Formatting Characteristics 1-5
1.2.4 AnInventory of Tools 1-6

1.3 Formatting Documents 1-7
1.3.1 The mm Macros 1-7
1.3.2 Supporting Tools 1-8
1.3.3 Order of Invoking Programs 1-8

1.4 ASampleProject 1-9
1.4.1 Entering Text and Formatting Commands 1-9
1.4.2 Formatting Text 1-10
1.4.3 Printing the Document 1-11

1.5 Managing Writing Projects 1-11
1.5.1 TheLife Cycleof aDocument 1-12
1.5.2 Organizing YourProject 1-12
1.5.3 Shortcuts: Boilerplatesand Cut and Paste 1-14

1.6 Summary 1-15

1.1 Introduction

The XENIX Text Processing System is a collection of powerful tools for
enhancing writing productivity and making the process of document
preparation more efficient. To create documents with the XENIX system, you
will be using special XENIX text processing programs, including text editors and
text formatters. You will also be relying on XENIX system featuresand utilities
with which you may already be familiar. Whether you have used other text
processing programs or not, this manual provides you with a practical
orientation toward text processing and describes the XENIX tools in detail,
along with examples that illustrate their applications to your writing tasks.
Where possible, strategies are offered for using the XENIX system to best
advantage in your ownenvironment.

This manual emphasizes the interrelationship of tools and techniques into a
“text processing system’. Understanding the relationship between these
programs discussed here is as important as learning to use each individual
program. Think of the XENIX system as a ‘“writing environment”. How you
organize this environment is up to you. Once you learn to use your XENIX tools
selectively, and make the right decisions in planning your writing projects
before you begin them, the XENIX system is ultimately more powerful and
flexible than any of the ‘“word processing packages” with which you may be
familiar.

This introduction provides you with an overview of text processing with the
XENIX System, including:

e The text processing concepts and terms you will need to understand
e Theediting and formatting tools you will be using

e The stepsinthe processof creating afinished document

o Thestrategies for managing writing projects

As you read the XENIX Tezt Processing Guide remember that the XENIX
system has been evolving over a number of years and that it offers an enormous
range of programs and utilities. Many of the tools introduced here were not
originally designed for text processing—they are general-purpose utilities upon
which all XENIX users depend heavily. Programmers, for example, use the
same text editors and file comparison utilities discussed here to write and revise
programs. Those programs intended solely for text processing applications,
including the formatters and style analysis programs, have developed
independently of each other. You will often find that their capabilities overlap.
A large part of learning to use your XENIX system successfully is deciding how
to make the various programs and utilities work together.

Do not expect to sit down and learn the XENIX Text Processing System in a
single afternoon. This manual is designed to help you approach a wide range of

1-1

XENIX Text Processing

editing and formatting tools gradually. There are many programs described
here for which youmay not have an immediate application, and some you may
never need at all. You need not learn all the material introduced here to
produce professional-quality ma.nuscnpts Choose the tools that will work best
for your-projects.

1.1.1 Before You Begin

Before you can begin to use your XENIX system effectively as a text-processing
environment, you should already be familiar with the material covered in the
XENIX User’s Guide, particularly:

e The most common XENIX commands
e The XENIX hierarchical file structure

"o TheXENIX shell programming language
e Atleast one of the XENIX text editors

‘Equally important, however, is making use of the power of XENIX as an
operating system by usingits features to your advantage. Inparticular, as you
begin working with XENIX Text Processing, consider how your work can be
* made easier by utilizing the XENIX hierarchical file structure to organize files
efficiently. Make use of the XENIX shell to ‘“‘pipe’’ one process to another and
run several processes concurrently. Use the XENIX shell programming
language to create ‘‘scripts’” for automating your text processing work.
Develop strategies for managing your writing projects beyond merely learning
a collection of commands.

Most importantly, before you begin working with the XENIX Text Processing
System, learn one of the XENIX text editors well enough to feel comfortable
entering and revising document text.

Because there is so much to learn about text processing with the XENIX system,
the best approach is toread through thisvolumefirst and decide which editors,
utilities, and formatters best suit your needs. Then learn selectively, but
thoroughly, those tools which are most appropriate. As you become more
experienced, you will develop a feel for which functions work best in which
situations, and you will find new ways to make the writing process more
efficient. You will be continually amazed at how powerful the editors and
related tools can be.

1.1.2 Reading This Manual

Thismanual contains thefollowing chapters:

1-2

Text Processing Overview

1. Text Processing Overview
The chapter you are now reading provides you with a general
overview of XENIX text processing: how it works and what kinds of
tasks it can do. The XENIX tools and how they fit into each phase of
document production are described.

2. Writing and Editing Tools
This chapter introduces several XENIX programs which can help
you search for recurring patterns, compare files, and make global
revisions to large files and groups of files. It also introduces three
special writing tools for locating spelling errors and awkward
diction, as well as assessing the readability of a document.

3.Usingmm
This chapter introduces mm, a package of document formatting
requests which simplifies the task of formatting documents.

4.Mm Reference
Thischapter isa comprehensive guide to mm.

5. Nroff/Troff Tutorial
This chapter introduces the two XENIX text formatters, nroff and
troff. ’

6. Nroff/TroffReference
. This chapter is a comprehensive guide to the nroff and troff
.formatting programs.

7. Formatting Tables
This chapter describes the specialized formatter, -tbl, which
produces effective tablesin documents.

8. Formatting Mathematical Equations
This chapter describes the eqn program which formats
mathematical symbols and equations.

Appendix A: Editing Withsed and awk
This appendix describes how to use the two batch editing programs
sed andawk.

1.2 Basic Concepts

This section reviews some general text processing terms and concepts,
including the:

— Typesof writing tasks which can be done with XENIX text processing

-— Partsofa document

1-3

XENIX Text Processing

— Design characteristicsof a formatted document

—— Typesof XENIX tools which you will be using

1.2.1 Writing Tasks
You can write, edit, and typeset any manuscript on the XENIX system—
whether a2 memo, business letter, novel, academic dissertation, feature article
or manual. In some respects this manual relies more heavily on examples
relevant to technical documentation, because these projects require the
application of the greatest number of XENIX tools, and demand the most
careful planning and strategy in their construction.
1.2.2 Anatomy of a Document
To fully determine thescope of your formatting needs, let’s look at the parts of
a typical document. Unless you are using your XENIX text processing system to
write memos and letters, you may have some or all of the following in your
documents:
Front Matter

— Titlepage

— Copyright notice or document number

— Tableof contents

— Listof tablesor illustrations

— Foreword

— Preface

— Acknowledgements
Body of Text

— Chaptersor sections

— Figuresand display

— Tablesand equations

— Footnotes

~— Runningheadersandfooters

1-4

Text Processing Overview

Back Matter
- Appendices
— Notes
-— Glossary
— Bibliography
— Index

Your XENIX tools will help you automatically generate many parts of your
document. For example, you will be able to create lists of figures and tables,
and a table of contents as part of the formatting process. You can create and
store in advance a standard copyright notice page (often called a ““boilerplate’)
and change only thatinformation specific to the document.

Even in those sections of your document that must be written from scratch you
can do much to standardize the ‘‘look” of a preface page, the pagination of an
appendix, or the section numbering and format of a chapter. Once you have

. developed specifications, you can achieve consistency in the production of a
long and complex document, and even produce many documents with the same
specifications, without going through the definition process again. A further
advantage is that you can change your specifications at any time, often without
re-editing the text and formatting commands themselves. Then, you need only
reformat your document and print it.

1.2.3 Formatting Characteristics

There are many characteristics of your finished text that can be controlled with
XENIX formatting tools. Keep in mind, however, that the appearanceof your
finished document depends largely on the capabilities of your output device.
To determine the format of your text you will insert commandsin yourtext file
as you write and edit. These commands will be identical, whether you are
planning to produce your document on alineprinter using the XENIX formatter
nroff, or whether you are sending your document directly to a phototypesetter
using troff. Because a lineprinter cannot do variable spacing, or change the
point size or font of your text, nroff willignore commands tochange pointsize,
round the parametersofspacing commands to the nearest line unit, andreplace
italics with underlining.

You will also notice qualitative differences in the output. For example, the
justification of text—the spacing of text across the line to preserve a margin—is
considerably less subtle in lineprinter output. Some of the characteristics you
can control with the nroff/troff programs are:

— Textfilling,centering, and justification

XENIX Text Processing

— Multicolumn output, margin, and gutter width

— Verticalspacing, linelength, pagelength,and indentation
— -Font typeand pointsize |

- Styleof page headersand footers

— Pageandsection numbering

-~ Layout of mathematical equationsand tables

1.2.4 An Inventory of Tools

When you approach any writing project, you should examine the whole range
of XENIX tools to find those that will work best, just as you might look inside a
toolbox. Although you can often do a job in several ways, there is frequently a
tool, or a combination of tools, designed especially for-that job.

Feel free to experiment in using the various editors, utilities, and formatters. If
you are cautious about making copies of your files and backing up your XENIX
system regularly, you can do little irreversible damage. Asyou work, you will
gain more confidence and find new solutions.

While it is a good idea to learn to use a few of the XENIX tools skillfully, you
should also work consciously to learn new tools and methods, rather than
depending on a few procedures which you feel you know well. Some XENIX
tools, like the screen editor vi, offer many more commands and functions than
you can comfortably learn at one sitting. You may find yourself relying on a
limited number of commands quite heavily. To prevent this, periodically
review the documentation and force yourself to try new commands.

In this manual we will be looking at XENIX *“tools’’ which fall into a few basic
categories:

System features
Aspectsof the XENIX operating system that can be used to enhance
the text processing environment, such as multitasking and the
hierarchical filestructure.

Utilities
These include the XENIX text editors (such as vi) and other utilities

that are used for both software development and text processing
(such assort, diff, grep, or awk).

I-8

Text Processing Overview

Text Processing Tools

These include specialized programs designed solely for text
formatting tasks, including mm, eqn, and tbl and the formatters
nroff and troff. Alsoincluded are the special writing tools, spell,
style,and diction, which help you edit what you write.

1.3 Formatting Documents

In this section you will be introduced to nroff and troff, the two XENIX
formatting programs. By inserting a series of commands in your text files you
will be able to produce text with justified right margins, automatic page
numbering and titling, automatic hyphenation, and many other special
features. Nroff (pronounced “en-rofl”') is designed to produce output on
terminals and lineprinters. Troff (pronounced “tee-roff’) uses identical
commands to drive a phototypesetter, The two programs are completely
compatible, but because of the limitations of ordinary lineprinters, troff
output can be made considerably moresophisticated. With troff, for example,
you can specify italic font, variable spac¢ing, and point size. If you format the
text using the same macros with nroff, italicized text will be underlined, the
spacing will be approximated, and the text will be printed in whateversize type
thelineprinteroffers.

1.3.1 The mm Macros

To use nroff and troff, you must insert a fairly complicated series of
commands directly into your text. These “formatting commands” specify in
detail how the final output will look. Because nroff and troff are relatively
hard to learn to use effectively, XENIX also offers a package of canned
formatting requests called the mm macros. With mm you can specify the style
of paragraphs, titles, footnotes, multicolumn output, lists and so on, with less
effort and without learning nroff and troff themselves. The mm program
reads the commands from the text, and translates them into nroff/troff
specifications. Mm is described in detail in the next two chapters. It is
recommended that you learn mm first, and use it for most of your formatting
needs. If you need to fine-tune your output, you can add nroff/troff requests
tothe text as necessary.

To produce a document with mm, use the command
nroff -mm filename

to view the output on your terminal screen. To store the output of nroffin a
file, use the command line:

nroff -mm filename > outfile

where outfile is the name of the file you wish to designate for the stored output.

54

XENIX Text Processing

It is suggested that you give consistent extensions to your input and output
filenames. You might use *‘.s” for “‘source’ as the extension for all input
filenames, and “.mm” as the extension for the names of files which are the
outputof mm. Forexample,

nroff -mm l.intro.s>intro.mmé&

Note thatthe ampersand isused to processthe file in the background.

1.3.2 Supporting Tools

In addition to the nroff and troff formatting programs, and the mm
formatting package, there are also formatting programs to meet some
specialized needs. The eqn program, for example, formats complicated
mathematical symbols and equations. A version of eqn called neqn outputsthe
same mathematical text for the more limited capabilitiesof lineprinter. Eqn is
a preprocessor. Thatis, you run eqn first,before nroff/troff, totranslate the
commands of the eqn *‘language” into ordinary nroff/ troff requests. The eqn
commands resemble English words (e.g., over, lineup, bold, union), and the
format is specified much as you might try to describe an equation in
conversation. It is recommended that you delay learning about eqn in detail
until youactually need to use it.

The tbl program is also a preprocessor: tbl commands are translated into
nroff/troff commands to prepare complex tables. Tbl gives a you a high
degree of control over material which must appear in tabular form, by doingall
the computations necessary to align complicated columns with elements of
. varying widths. Like eqn, it requires that you learn another group of
commands, and process your files through another program before using

nroff/troff.

1.3.3 Order of Invoking Programs

After you have inserted all your formatting commands into the text, you are
ready to process your files, using the XENIX formatting programs. Please note
that it is extremely important to use the various macro packages and
formatters in the correct order. However, you may invoke all these programs
with a single command line, using the XENIX pipe facility. As noted above, you
can invoke the mm macro package along with nroff/troff using.a command
suchas:

nrofl -mm intro.s>intro.mm
However, if you are using several specialized formatters along with
nroff /troff, the command becomes more complex. You must invoke eqn

before nroff/troff and mm, in order to translate the eqn commands into
nroff/troff specifications before the files are formatted, as in the following:

-8

Text Processing Overview

neqn intro.s | nroff -mm> intro.mm
If you are usingboth eqn and tbl, the t bl programshould be called first:
tbl intro.s | neqn|nroff -mm>intro.mm

If you are formatting multicolumn material or tables with nroff you must use
the col (for *column”) program. Col processes your text into the necessary
columns, after formatting, as in:

nroff -mm intro.s | col>intro.mm

1.4 A Sample Project

The preparation of every document has several phases: entering and editing
text, checking your draft for spelling errors and style quality, formatting the
finished version, and printing it on a printer or typesetter. To illustrate the
process of producing a finished document with the XENIX Text Processing
System, let’s look at the steps for creating asimple document one by one.

1.4.1 Entering Text and Formatting Commands

First you must write the text of the document. To do this, you will invoke one
of the XENIX text editors and type the text on the screen. For example, to
produce a memo informing the members of your department that you will be
holding a seminar on the XENIX Text Processing System, you might begin by
typing the following command line:

vi memo.s

You will probably use your editor’sspecial functionsto correct errorsand make
revisions asyou write, such as deleting words or lines, globally substituting one
word for another, or moving whole paragraphs and sections around in the
document.

If you have used a dedicated word processing system or a microcomputer word
processing program before, note that the XENIX Text Processing System works
somewhat differently. Formatting of text takes place in a “batch” rather than
an “interactive’ mode. That is,instead of using special function keys to format
your text on the screen as you work, you will be interspersing commands with
ordinary text in your file. Most of these are t wo-letter commands preceded by a
dot (.), that appear at the beginning of text lines. These will be lowercase
letters,if youareusingeither of the XENIX text formatters, nroff, or troff.

In addition to these two programs, there is another program called mm which

we recommend you use, especially if you are new to text processing. Mm
commands are called “macros’. These macros, which are generally two upper

18

XENIX Text Processing

or lowercase letters preceded by a dot (.), replace whole sequences of nroff and
troff commands, and allow you to reduce the number and complexity of the
commands necessary to format a document. You can use the mm macros
wherever possible and add extra nroff or troff commands, as necessary, for
fine-tuning the format of your document.

Let’slook at the beginningof afile called memo.e:

.ce
.B MEMO
sp 2
P
A seminar has been scheduled for Thursday, September 15,
to introduce users to the XENIX Text Processing System.
" It is is intended for all department members
planning to use XENIX for writing or preparing documentation..

The seminar will include the following topics:

AL 1

.LI

Reviewing the XENIX file structure and basic commands.
.LI

Using the vi text editor.

.LI

Formatting documents with mm.

.LE

.P

The seminar will begin at 9 A.M. and will last approximately
two hours...

. In the input file above, each paragraph of text begins with the mm paragraph
macro, .P. In the final document, the word “MEMO" will appear centered on
the page and in boldface. The nroff/troff command .ce means “center” and
the mm macro .B means “boldface”. The nroff /troff command .sp 2 below
MEMO means “‘2”’spaces

Notethethree mm macros.AL,.LI, and .LE. These will turn the text following
the words *‘following topics” into an automatically numbered list.

1.4.2 Formatting Text

Now, let’s format the finished memo into the file called memo.mm using the
following command line:

nroff -mm memo.s>memo.mmé&

1-10

Text Processing Overview

This command invokes the nroff formatter using the mm macro package to
format the file memo.s. When formatted, the memo will be storedin anoutput
file called memo.mm. If you do not specify an output file, the formatted text
willsimply roll acrossyour screen and be lost. Note that the command line ends
with an ampersand (&), an instruction to put the formatting of this file *in the
background’. It is generally a good idea to put formatting jobs in the
background because they will often take severalminutes, especially if the file is
long and the formatting relatively complex. If you put the formatting job in the
background, your terminal will remain free for you to do other work on the
system.

1.4.3 Printing the Document
When youareready to print the memo, use the command
lpr text.memo.mm

The finished memo looks like this:

MEMO

A seminar has been scheduled for Thursday, September 15,
to introduce users to the XENIX Text Processing System.
It is intended for all department members planning

to use XENIX for writing or preparing documentation.
The seminar will include the following topics:

1. Reviewing the XENIX file structure and
basic commands.

2. Using the vi text editor.
3. Formatting documents with mm.

The seminar will begin at 9 A.M and will last
approximately two hours...

1.5 Managing Writing Projects

Once you have mastered one or more of your text editors, and are ready to do

1-11

XENIX Text Processing

extensive writing, revision, and text processing with the XENIX system, it is
time to consider the overall organization of your writing projects. This section
offers some common-sense suggestions for managing and standardizing your
text files to make processing more efficient. Not all of the suggestions and
writing aids discussed here will be equally appropriate in all situations. The
larger and more complex the writing project, however, the more time and
confusion can be saved by their implementation.

1.5.1 ThelLife Cycle of a Document

Before youcanbegin to work successfully with XENIX text processing tools, you
need to determine which tools are appropriate for each phase of a project. This
section discusses the application of XENIX tools toeachstep in thelifecycleof a
document from the first notes you take and outlines you develop, to the
archivingand management of multipleversionsand updates.

Every document goes through several phases before it is complete. First, you
must enter the body of the text, using one of the XENIX text editors. As you
write, you will insert formatting commands, or “macros,” which specify in
detail to the formatting programs how the final output should look. In addition
to checking your work for mistakes and spelling errors, you may need to go
through an extensive revision process—the global substitution of one name or
term for another, for instance, or the reorganization of your manuscript using a
‘“cut and paste’ technique.

Depending on the size and scope of your project, you may need to compare text
variants and maintain several versionsof your documents. Finally, you will be
producing formatted output, whether it is a one-page business letter produced

.onanordinary lineprinter or a book-length manuscript communicated directly
to a phototy pesetter. XENIX provides all the necessary toolsfor every phase of
document preparation, and in many cases offers several approaches to each
task.

1.5.2 Organizing Your Project

Organization is a key element of writing projects, especially if you are working
on a large document, or attempting to control many short ones. Text
processing can greatly simplify any writing project if you use common sense in
adapting the wide range of XENIX tools to your work. If you work with many
short memos, letters, and documents that are similar in content but require
constant revision, or if you are involved with the production of book-length
manuscripts, you can easily find yourself swamped by huge files containing
innumerable text variations and fragments. These can become difficult to
control and process. Time you spend defining the scope of your project in
advance is be well rewarded. Decide which files and versions you need to
maintain, and which formatting and error-checking programs you need to use.
Determine in advance, if possible, the style and format of your text.

1-12

Text Processing Overview

Since most documents go through several revisionsbefore they are finished, a
few simple measures make the work of repeated revision considerably easier. If
you are like most people, you rewrite phrases and add, delete, or rearrange
sentences. Subsequent editing of your text will be easier if every sentence starts
on a new line, and if each line is short and breaks at a natural place,such as after
a semicolon or comma.

Asyou are editing, you can insert markers in your text, so that you canreturn
to them later; use an unlikely string as a marker that you can search for easily
using the grep command or your text editor to do a global search. If, for
example, you are unsure of which term to use, or how you want the final text to
look, use a given word, or text formatting macro provisionally, but
consistently. Inthisway, a global substitution can be made easily.

You may find that certain global definitions, like the choice of a font fora given
header level, or a commonly used string, may be created at the last minute and
placed at the beginning of your text file. When you are experienced in the use of
macros, you may want to create “template’”’ definitions which you use
repeatedly. You can even place your definitions in a separate file to be called
every time you invoke a script you have prewritten for processing your
documents. This will facilitate consistency in your documents and allow
greater flexibility if changes are required. In many cases, you will find that you
can delay your formatting decisions until the document is to be printed or
typeset.

Long documents should be broken down into individual files of reasonable
length, perhaps ten to fifteen thousand characters. Operations on larger files
are considerably slower, and the accidental loss of a small file is less
catastrophic. If possible, each file should represent a natural boundary in a
document, such as a chapter or section. Develop naming conventions to make
yourfilenames consistent and self-explanatory,suchas:

lintro.s 2.basic.s 3.adv.s

This allows files to be processed in groups with global commands, editing and
shellscripts. You willalso be able to see the contents of files and directoriesat a
glance, and if someone else needs to access your files, they will not be confronted
with filesnamed “aardvark”, “katmandu”, or “‘fred”.

Youshould also use the XENIX hierarchical file structure to your advantage in
organizing your work, by creating different directories for special purposes.
For example, you may wish to have your source text filesina different directory
from your formatted output files, or you may find it handy to have “rough’” and
“final” draft directories. If your projects grow and change over time, you may
need to maintainseveral versionsof a document at once.

Unless your project is truly unwieldy, the creation of parallel directoriesshould
provide sufficient organizationfor storing multiple versions of a document:

1-13

XENIX Text Processing

[Jusr/docwriter

versionl version2 version3

rough final nroff

l.intro.s l.intro.n
2.basic.s 2.basic.n
3.adv.s 3.adv.n

If you have created definition files and scripts, such as shell programs for
processing text or sed scripts for making uniform changes (see Appendix A),
place them in yet andéther directory. This might also be a good place to add
some “help”’ files, which explain which versionsof a document are contained in
the directory or explain formatting procedures.

There are no rules to apply in deciding which procedures will produce
documentation with the least effort and the fewest errors. How elaborate you
make your procedures depends on the quantity and complexity of the text you
need to process and maintain. The essential point here is the theme of this
entire volume: select the XENIX tools which seem most appropriate and adapt
them to your own specific needs. The more organized and consistent your work
is, the more powerful your use of these tools will become.

1.5.3 Shortcuts: Boilerplates and Cut and Paste

You will almost always find several approaches to any writing or revision you
do with the XENIX system. Begin each writing project by reviewing these -
alternatives, and determine which solution requires the least repetitive human
effort and leaves the least room for error. You can increase your productivity,
whether you are writing technical papers, documentation, or many memos
with similar content, by focusing on writing clearly and concisely, rather than
wasting time on needless duplication of effort. If you proceed in an organized,
consistent way, as outlined in the previous section, you will quickly find that
XENIX offers you many shortcuts. One of these is the concept of the *‘editing
script”. Either of the line editors, ed or ex, can be used to perform a
complicated sequence of editing operations on a large group of files
simultaneously. These can often be a substitute for the use of a batch editing
facility like sed, or awk.

For example, to change every “Xenix” to *XENIX" in all your files, create a
script file with the following lines:

1-14

Text Processing Overview

g/Xenix/s/[XENIX/g
q

Now, you can use the command
ed filename <script

to make this change to any given file. The editor will take its commands from
the prepared script. You can further automate procedures by using the XENIX
shell language to write a shell procedure. For example, you can write a script
which asks XENIX to make the above changes, reformat the entire text, and
print the results. It is even possible to put this procedure in a file to be read by
the at command to do your processing at some other time.

Ifyou must produce many similar documents, or long documents which contain
repeated material, the concept of the “boilerplate” may already be familiar to
you. Often, information which must be presented in a standardized way canbe
stored in a separate file which can be reused as necessary. Not only is thisa
valuable shortcut to rewriting, it may be the preferred approach if a complex
display or an example of program text must be reproduced. Using boilerplates
assures consistency and makes subsequent changes to all recurrences of the
copiedmaterial much simpler.

1.6 Summary

Here are some hints for making your XENIX Text Processing System work for
you:

— Make your filenames easy to understand, and use a naming
convention that allows you to take advantage of wildcard characters.

~ Create text files of manageable length which represent chapters or
logical divisions in the document; arrange files into directories which

represent major documents or versions so that they can be easily
identified.

— Create “help” or “README" files in each directory which explain
your text—what version you are writing, what scripts, processors,
and files are needed to successfully produce the document. Use
comment lines in your text to explain organizational details of your
project or any special macrosyouhave created.

-~ Control parallel versions and updates carefully, especially if you are
working on a large project. Use conditional processing in your text
files, copies of text in different directories, and file linking where
appropriate. If you arein doubt about versions of text in different files
use diffto compare text.

XENIX Text Processing

When using vi or another text editor to write text, start each sentence
or clauseon a new line.

Identify text and formats which recur in a document or several
documents, and create boilerplates or templates to save work.

Make fulluse of“‘cut and paste” techniques torearrange materialina
file, move text between files, or use the same text repeatedly in several
places.

Use batch processes like sed, awk, or an ed script to make consistent
changes to alarge number of files.

Use spell, style, and diction regularly to reduce the number of
editorial corrections.

Try to define your production specificationsand style conventionsin
advance; prepare editing scripts to reduce the number of changes you
need to make individually.

Always use the simplest possible technique to achieve your results.
Use the mm macros where possible, reserving nroff/troff
commands for “fine-tuning” or creating an effect impossible with
mm. If you define a new macro, explain it in a comment line so it can
be readily understood.

Avoid running too many formatting processes simultaneously. If
necessary, use the at command to process files at a time when the
systemisnot busy.

Protect yourself by backing up your system and user files regularly.
Make copies of files if you are in doubt about whether your procedures
will damage them.

Chapter 2
ToolsFor Writing and Editing

2.1 Introduction 2-1

2.2 XENIX Commands for Text Processing ~ 2-2
2.2.1 Pattern Recognition: The grepCommands 2-2
2.2.2 File Comparison: diff, diff3, and comm 2-3
2.2.3 Other Useful Commands 2-6

2.3 Writing Tools 2-8
2.4 Using Spell 2-9
2.5 Using Style and Diction 2-10

2.5.1 Style 2-11
2.5.2 Diction 2-18

2.1 Introduction

This chapter introduces you to some XENIX system utilities that can simplify
document editing and revision. It also discusses three special XENIX writing
tools for improving writing style and locating typographical errors in
documents.

Although this chapter focuses on how the XENIX tools are used to accomplish
some common text processing tasks, keep in mind that these tools are XENIX
utilities which are alsoused by programmersfor searching and editing dataand
program text. The emphasis here is on XENIX commands and utilities that can
help you simplify complicated editing procedures, and allow you to work with
many files at once. As you read, it will become apparent that several of the
programs introduced here can be used interchangeably, and that many of these
tasks can also be performed with your text editor. You may also find the two
additional XENIX programs, sed and awk, helpfulfor making complex changes
to text files. (See Appendix A, “Editing With sed andawk”.)

There are several revision tasks common to all text processing projects. The
larger your project, the more complex these tasks become. For example, you
may often need to change a key term, name, or phrase everywhere it appears,
or locate references to items you need to change or delete. You may need to
compare and contrast multiple versions of your text in order to locate
variations. You may also find that you need to alter some aspect of the text
format to suit production requirements. To do this,you must locate a string—a
word, a phrase, a text formatting macro or any repeated set of characters—
and, if necessary, change it everywhere it appears. Using the XENIX system
tools discussed in this chapter, these changes can be made very rapidly and
consistently.

The first half of this chapter discusses several extremely useful and easy to
learn XENIX commands. If you have read the XENIX User ‘s Gusde, you may
already be familiar with several of them. More detailed information about
these commands is provided in the XENIX Reference Manual. They include:

~— The commands of the grep family print lines that match a single
specified pattern. When combined with other commands in a shell
procedure and used to process many files at once, the grep commands
become extremely powerful for locating text in large files. Two
variantsof grep arealso introduced here: egrep, and fgrep.

— The XENIX file comparison utilities, diff, diff3, and comm. These
utilities compare two or more files and output those lines which are
different. In text processing applications these programs can be
extremely useful for locating variations between several versions of
documents quickly.

— Additional XENIX commands, including sort, which alphabetizes
lines in your text files, we, which counts lines, words, and characters

2:1

XENIX Text Processing

in your text, and cut and paste, commands that duplicate “cut and
paste’’ editing operations.

2.2 XENIX Commands for Text Processing

If you have been working with the XENIX system for a while, you recognize
many of the basic XENIX commands discussed in this section. Since these
commands have a wide range of applications for both programmers and text
processing users, you should learn to use them, whatever work you normally do
on your XENIX system.

2.2.1 Pattern Recognition: The grep Commands

Because of its power to search for patterns in many filesat once, grep and its
variants are among the most useful XENIX commands. The members of the
grep family, like the awk program and the batch editor, sed have as their
basis the same principle of pattern recognition as the text editors, ed and vi,
the concept of the regular expression. Each of these programs searches for the
occurrence of a given pattern—a character or group of characters, a word or
word string—and generates a list of those lines containing the same pattern.
Finding all occurrences of some word or pattern‘in a group of files is a common
text processing task. You can easily write a shell script using the grep
command or one of its variants, egrep and fgrep, and quickly search multiple
files. grep searches for the same regular expressions recognized by ed. The
word "grep” standsfor

g/re/p

that is, "globally” locate and print a regular expression. It does exactly this.
grep searches every line in a set of files for all occurrences of the specified
regular expression. Thus,

grep thing filel file2 file3

finds the pattern "thing” wherever it occurs in any of the files you name (e.g.
filel, file2, file3. If you use the -n option withgrep, it willindicate not only the
file in which theline was found but also the line number, so that you can locate
and edit it later. By combining the use of grep with other commands to
generate a shell program that reads and transforms input, large quantities of
text can be processed through multiple searching orediting procedures quickly.

The commands grep, egrep, and fgrep all search one or more files for a
specified pattern. They appear on the command line in the following form:

grep [option] expression filename

Commands of the grep family search the files you specify, or the standard
input if you do not specify any files, for lines matching a pattern. Each line is

2-2

Tools For Writing and Editing

copied to the standard output (your terminal screen), but if you are processing
great quantities of.text you should specify a filename in which to store the
resultsof the gre p search.

For example, the command:
grep -n 'system utility’ chap#.s> util

requests that grep command search for the phrase ‘‘system utility” in every
file that begins with the letters "chap” and ends with ‘“‘s”, and store the
resulting list, with line numbers, in a file called util. Unless the —h option is
used, the filename isgiven if there is more than oneinput file.

The difference betwzen the three grep variants is that grep patterns are
limited regular expressions in the style of ed. Egrep patterns are full regular
expressions; it is normally faster, but requires more space. Fgrep only
recognizes fixed strings, rather than regular expressions. See grep(C) for
details.

2.2.2 File Comparison: diff, diff3, and comm

In addition to locating occurrences of particular strings or regular expressions
in your text, you may often find it useful to compare and contrast two or more
similar text files for variations which are not immediately apparent. You can
also use diff to store file versions more compactly. This is accomplished by
storing the output of diff, which would be the differences in that file version,
rather than the file itself. The —e option collects a script of those ed commands
(such as append, change, and delete) which would be necessary to recreate the
revised file from the original.

Another comparison tool, comm, is discussed in this section. Comm is useful
primarily for comparing the output of two sorted lists.

Diff
Tousethediffcommandtocomparetwofiles,usetheform:
diff —option filel file2

Diff reports which lines must be changed in two files to bring them into
agreement. If you use a dash (-) instead of the first filename, diff will read from
the ‘‘standard input”. If either file is actually a directory, then whatever file in
that directory which has the same name as the first file named is used. The
normal output contains lines in this format, where is the linenumber of the
text file:

23

XENIX Text Processing

nl a n3,n4
nl,n2 d n3
nl,n2 c n3,n4

These lines resemble the ed commands which would be necessary to convert
filel into file2. The letters a, d, and ¢ are ed commands for appending,
deleting, and changing, respectively. The numbers after the letters refer to
file2. By exchanging an ““a” command for a “d"’ command and reading
backward you can convert file2back into filel. Inthose cases where nl =n2or
n3 = n4, the pairsare abbreviated as a single number. Following each of these
lines are printed all the lines that are affected in the first file, flagged by a less-
than sign (<), then all the lines that are affected in the second file, flagged by a

greater-thansign (>).

For example, you might want to compare two text files, frusitand vegies. The
contentsof the file called frust are thelines:

apples
bananas
cherries
tomatoes

The contentsof the file called vegses are the lines:

asparagus
beans
cauliflower
tomatoes

If you used the command line
diff fruit vegies>diffile&

the file diffile will contain the list of differences between fruitand vegies which
aretheoutputofthe diff program:

1,3¢1,3

< apples
<bananas

< cherries

> asparagus
>beans

> cauliflower

In this case, all the lines in the file vegies are different from the linesin the file

fruit, except line 4, for which no differences are reported. See diff{C) for
options.

2-4

Tools For Writing and Editing

Using Diff3
D:iff3 works like diff, except that it compares three files. It has the form:
diff3 —option filel file2 file3

Diff3 reports disagreeing ranges of text flagged with the following codes:

filel is different

file2 is different

filed is different

The change which has occurred in converting a given range of lines in a given
file to some other isreported.

For example, the message
filel: nla

means textis to be appended after line numbernlin file file1. The message:
filel : n1, n2¢

means that the text to be changed isin the range of lines nl to line n2. If nl =
n2, the range may be abbreviated tonl.

The original contents of the range follows immediately after a ‘““c” indication.
When the contents of two files are identical, the contents of the lower-
numbered fileissuppressed.

As in the case of diff, diff3 used with the —e option prints a script for ed that
will incorporate into filel all changes between file2 fileS. In other words, it
recordsthe changesthat normally wouldbe flagged ====and ====2.

Comm

The comm program selectsor rejects lines common to two sorted files. It has
the form:

comm [-option] filel file2

Comm reads file1and file2, and produces a three-column output: lines only in

2-5

XENIX Text Processing

filel, lines only in file2, and lines in both files. Ordinarily, the lines should be
sorted in ASCII collating sequence, a process which canbe carried out using the
sort program before using comm. As in diff and its variants, if you type a
dash (-) instead of a filename, comm will read either file! or file2 from the
standard input.

The possible options with comm are the flags 1, 2, or 3, which suppress
printing of the corresponding column. Thus comm with -12 prints only the
lines common to the two files; comm -23 printsonly lines in the first file but not
in the second. The command comm with the options-123 would print nolines.

2.2.3 cher Useful Commands

In this section a group of XENIX commands that are helpful in text
manipulations are summarized. In each case you may find it helpful to refer to
the XENIX Reference Manual for more information.

Sort

If you have been using your XENIX system for a while, you may have already
learned the sort command. Because of its capacity to alphabetize a list of
items, it can be extremely useful in a variety of text processing situations (e.g.,
alphabetizing the names on a mailing list or the entries in an index). To use
sort, simply type the command

sort filename> list.eut

The output file list. out will contain the sorted list.

Like some other XENIX commands, if you use ‘~” instead of a filename, sort
will read from the standard input, and unless you direct the output to another
file, the sorted list will appear on your screen. Sort will, by default, sort an
entire line in ascending ASCII collating sequence, including letters, numbers,
and special characters. See sort(C) for alist of available options.

If you need to do repeated sorts by field, you may find it easier to prepare a
simple awk script, as described in “Appendix A”.

Note that if you invoke one or more of the sort options, or use position names,
you must use the following syntax:

sort [—options] [post] [poe?] [-o output] [filenames)
we
The XENIX command wc counts words, characters, or lines in your files. If, for
example, you are submitting a manuscript to a publisher, an exact word count

may be necessary, or you may want to estimate the number of lines in your file
before you make some critical formatting decision. To use we, type

2-8

Tools For Writing and Editing

we filename

If you give no options, we automatically countslines, words, and charactersin
the named files, or in the standard input if you do not specify any filenames. It
keeps a total count for all named files, and the filenames will also be printed
along with the counts. The option -l for “lines,” option —w for “words” and
option —cfor “characters” can be also be used in any combination, if you do not
want all three statistics printed. Remember, when doing a word count, that we
will automatically treat as a word any string of characters delimited by spaces,
tabs, or newlines.

Cut and Paste

If you work with large text files, youmay find the two XENIX commands, cut
and paste extremely useful. There are, of course, several other ways to
approach “cut and paste” operations with the XENIX system. By now you
should feelfairly confident usingone of the XENIX text editors tomoveblocksof
text, write parts of files to new files, and rearrange lines. Using sort to
alphabetically sort fields withinlines, or the awk program to changetheorder
of fieldsin a text file are two special cases of cut and paste operations. The two
commands, cut and paste offer a powerful way to rearrange text blocksin a
document.

Cut is a useful shortcut for extracting columns or fields of information from a
file, or for rearranging columns in lines. To invoke cut in its simplest form,

type:
cut [options] file
The cut command will cut out columns from each line of a file. The columns can

be specified as fields separated by a named delimiter or by character positions.
The following options are available:

—clist A list of numbers following —c specifies character positions or
ranges.
—flist A list of numbers following —f is a list of fields, delimited by a

character specified after the —d option.

—dchar A character following the —d option is read as the field delimiter.
The default is the tab character. Spaces or other characters with
special meanings must be surrounded with single quotation marks

()

-8 This option suppresses lines which do not contain the delimiter
character, if the -foptionisinvoked.

Either the —c or —f option must be invoked when using cut. Cut is a useful
shortcut for extracting columns or fields of information from a file or re-
arranging columns.

29

XENIX Text Processing

The paste command performs the reverse operation: it can be used tomerge
linesin one or several files. To use paste in its simplest form, type

paste filel file2

Paste will concatenate filel and file2, treating each file as a column or columns
of a table and pasting them together horizontally. As with the cut command,
you can also specify a delimiter character to replace the default tab. You can
evenuse paste to merge materialin columnsinto linesin asinglefile.

The followingoptionsare available:

-d The —d option suppresses the tab which automatically replaces the
newline character in the old file. It can be followed by one or more
characters which act as delimiters.

list The list of characters which follow the -d option.

-8 The -s option merges subsequent lines, rather than one from each
input file. The tabisthe default character, unless a list isspecified
with the -d option.

- The dash can be used in place of any filename, to read a line from
the standard input.

2.3 Writing Tools

In the previous sections you were introduced to some common XENIX utilities
that are used both by programmers and text processing users: programs can be
used to search for patterns, do batch editing, or compare two or more files.
These files can contain anything—data, programs, or text. This section
introduces three XENIX programs which have been designed solely for writing
and editing documents:

— spell, a program that checks for spelling and typographical errorsin
your text files.

-~ style, a program that analyzes the readability of your writing style,
based onstatistical measures of sentence length and type.

— diction, a program that searches for awkward, ambiguous, and
redundant phrases and suggests alternatives.

Think of these programs as “tools” in the same way as the system utilities
discussed earlier in the chapter. The XENIX system will not do your writing for
you, but it will help you rewrite and polish your work efficiently. As you read
about these programs, keep in mind thatthey are not intended to substitute for
careful reviewing, editing, and proofreading by a human being. Use spell,
style, and diction early in the editing process as a preliminary check on your

2-8

Tools For Writing and Editing

work. You will get some interesting feedback on your writing and uncover
recurrent patterns in your word usage and sentence construction, as well as
locate your common spelling errors. As you are preparing your final draft, you
may find it helpful to use spell again to locate any last-minute typographical
errors.

2.4 Using Spell

You can save a lot of time and grief in proofreading your documentsby using
spell. Although not totally infallible, the spell program will find most of your
spelling and typographical errors with a minimum of effort and processing
time. The spell program compares all the words in the text files you specify
with the correctly spelled words in a pre-existing XENIX dictionary file. Words
which neither appear in this dictionary, nor can be derived by the application
of ordinary English prefixes, suffixes, or inflections are printed out as spelling
errors. You can either specify an output file in which to store the list of
misspelled words, or allow them to appear on your screen. For example, to find
the spelling errorsin a file named 1.intro.e, type

spell l.intro.s

and a list of possible misspelled words will appear on your screen. You can also
use a command line like

spell #.s>errors&

to check all your files with names ending in ‘‘.s” at once and output the possible
misspellings into asinglefile named errore.

Spell ignores the common formatting requests macrosfrom nroff, troff, tbl,
and eqn. It automatically invokes a program called deroff to remove all
formatting commands from the copy of your text file it examines for spelling
errors.

Several options are available. With ‘“spell —v”’, words not literally in the
dictionary are also printed, along with plausible derivations from dictionary
words. The —b option checks British spelling. This option prefers British
spelling variants such as: centre, colour, speciality, and travelled, and insistson
the useof ““-ise” in words like ‘‘standardise’’.

The XENIX dictionary is derived from many sources, and while it recognizes
many proper names and popular technical terms, it does not include an
extensive specialized vocabulary in biology, medicine, or chemistry. The
XENIX dictionary will not recognize your friends’ names, your company’s
acronyms, and many esoteric words. You will have to examine your list of
spelling “‘errors” critically in thislight, then search your text for those words
which really are misspelled. In practice, you may discover that it is difficult to
predict in advance which technical terms, names, and acronyms spell will
uncover in your documents. Youmay wish to run spell on your files first, then

2-9

XENIX Text Processing

edit the output list,deleting those words which are allowable, before correcting
yourerrors.

2.5 Using Style and Diction

This section describes two programs, style and diction. Although these two
programs attempt to critique your writing style, keep in mind that the qualities
which distinguish good writing from bad are not entirely quantifiable. Taste in
writing remains subjective, and different stylistic qualities may be appropriate
to different writing situations. XENIX is neither a literary critic nor your
sophomore English teacher. These tools are best used to eliminate errors and
give you some preliminary assessment of a document’s readability. They are
not intended to substitute for human editing, so be sure to evaluate the results
cautiously.

Both style and diction are based on statistical measures of writing
characteristics—characteristics that can be counted and summarized on your
computer.. With a large number of documents stored on computers it is has
become feasible to study the recurrent features of writingstylein agreat many
documents. The programs described here use the resultsof such studies to help
you write in a more readable style, by producing a stylistic profile of writing,
including:

— A measurement of readability, determined on the basis of sentence
and word length, sentence type, word usage, and sentence openers.

— A listing of awkward, ambiguous, redundant and ungrammatical
phrasesfound in the document.

This will help you evaluate overall document style, and correct or eliminate
poor word choices or awkward sentences. As you work with these programs,
you can accumulate data to provide you with a profile of your writing style
based on all your documents.

Because the style and diction programs can only produce a statistical
evaluation of words and sentences, the term “‘style” is defined here in a rather
narrow way: the results of a writer’s particular word and sentence choices.
Although many stylistic judgements are subjective, particularly those
involving word choice, these programs make use of some relatively objective
measures developed by experts.

Three programs have been written to measure some of the objectively definable
characteristics of writing style and to identify some commonly misused or
unnecessary phrases. Although a document that conforms to these stylistic
‘rules is not guaranteed to be coherent and readable, one that violates all of the
ruleswill almost certainly be difficult or tedioustoread. These programs are:

1. Style, which calculates readability, sentence length variability,
sentence type, word usage and sentence openers. It assumes that the

2-10

Tools For Writing and Editing

sentences are well-formed, i.e. that each sentence has a verband that
the subject and verbagree in number.

2. Diction, which identifies phrases that reflect dubious usage or seem
unnecessarily awkward.

These programsare described in detail in the following sections.

2.5.1 Style

Style reads a document and prints a summary of sentence length and type,
word usage, sentence openers and ‘‘readability indices.” The readability
indices are tradition school grade levels assigned to a document, based on four
different studies of what makes one style more readable than another. You can
also use the style program to locate all sentences in a document longer than a
given length, those containing passive verb forms, those beginning with
expletives, or those withreadability indices higher than a specified number.

Style, in turn, is based on a system for determining English word classes or
parts of speech called parts. Parts is a set of programs that uses a limited
dictionary of about 350 words and some suffix rules to partially assign word
classes to English text. It then usesexperimentally derived rules of word order
to assign word classes to all words in the text. Parts uses a small dictionary
and general rules, and can be used for any subject text with an accuracy rate of
approximately 95%%. Style measures have been built into the output phase of
the programs that make up parts. Some of the measures are simple counters of
the word classes found by parts; many are more complicated. For example,
the verb count is the total number of verb phrases. Thisincludes phraseslike:

has been going
was only going
to go

Each of these phrases countsasone verb.

Whatisa Sentence?

A human reader has little trouble deciding where a sentence begins and ends.
Computers, however, are confused by different uses of the period character (.)
in constructions like 1.25, A. J. Jones, Ph.d., i.e., or etc. Before attempting to
count the words in a sentence, the text is stripped of potentially misleading
formatting macros. Then style defines a sentence as a string of words ending in
oneof the punctuation marks:

The end marker “/.”may be used to indicate an imperative sentence.
Imperative sentences not marked in this way are not identified. Style
recognizes numbers with embedded decimal points and commas, strings of
letters and numbers with embedded decimal pointsused in computer filenames,
and alist of commonly used abbreviations. Numbers that end sentences causea

2-11

XENIX Text Processing

sentence break if the next word begins with a capital letter. Initials followed by
periods are only assumed to be at the end of the sentence if the next word begins
with a capital and is found in the dictionary of function words used by parts.
Asaresult,theperiodsin thestring

J. D. Jones
are not read as the ends of sentences, but the period in the followingstring:
...system H. The...

is assumed to end a sentence. With these rules most sentences are correctly
identified, although occasionally either two sentences are counted as one or a
fragmentisidentified asa sentence.

The results of running style are reported in five parts. A typical output might
have values that look like this:

readability grades
(Kincaid) 12.3 (auto) 12.8 (Coleman-Liau) 11.8 (Flesch) 13.5 (46.3)

sentence info
no. sent 335 no. wds 7419 av sent leng 22.1 av word leng 4.91 no.
questions 0 no. imperatives 0 no. nonfunc wds 4362 58.8% av leng
6.38 short sent (<17) 35% (118) long sent (>32) 16% (55) longest
sent 82 wdsat sent 174; shortest sent 1 wdsat sent 117

sentence types
simple 34% (114) complex 32% (108) compound 12% (41)
compound-complex 21% (72)

word usage
verb types as % of total verbs tobe 45% (373) aux 16% (133) inf
14% (114) passives as % of non-inf verbs 20% (144) types as % of
total prep 10.8% (804) conj3.5% (262) adv 4.8% (354) noun 26.7%
(1983) adj 18.7% (1388) pron 5.3% (393) nominalizations 2 % (155)

sentence beginnings
subject opener: noun (63) pron (43) pos(0) adj (58)art (62) tot 67%
prep 12% (39) adv 9% (31) verb 0% (1) sub_conj 6% (20) conj
1% (5) expletives 4% (13)

Readability Grades

The style program uses four separate readability indices. Generally, a
readability index is used to estimate the grade level of the reading skills needed
by the reader to understand a document. The readability indicesreported by
style are based on measures of sentence and word lengths. Although the

2-12

Tools For Writing and Editing

indices themselves do not measure whether the document is coherent and well
organized, highindices correlate with stylistic difficulty. Documents with short
sentences and short words have low scores; those with long sentences and many
polysyllablic words have high scores. Four sets of results computed by four
commonly used readability formulae are reported: the Kincaid Formula, the
Automated Readability Index, the Coleman-Liau Formula, and a version of the
Flesch Reading Ease Score. Because each of these indices was experimentally
derived from different text and subject results, the results may vary. They are
summarized here.

Kincaid Formula

The formula is: Reading Grade=11.8 * syllables per word + .39 *
words per sentence- 15.59

The Kincaid formula isbased on Navy trainingmanualsranging in
difficulty from 5.5 to 16.3 in gradelevel. Thescorereportedby this
formula tendsto be in the mid-range of the four scores. Becauseit is
based on adult training manuals rather than schoolbook text, this
formula is probably the best one to apply to technical documents.

Automated Readability Index (ARI)

The formula is: Reading Grade=4.71 sletters per word +.5 * words
per sentence -21.43

The Automated Readability Index is based on text from grades 0 to
7, and intended for easy automation. ARI tends to produce scores
that are higher than Kincaid and Coleman-Liau but are usually
slightly lower than Flesch.

Coleman-LiauFormula

The formula is: Reading Grade = 5.89 #* letters per word - .3 *
sentences per 100 words- 15.8

This is based on text ranging in difficulty from .4 to 16.3. This
formula usually yields the lowest grade when applied to technical
documents.

Flesch Reading Ease Score

The formulais: Reading Score = 206.835 - 84.6 * syllables per word
- 1.015 * words per sentence.

This formula is based on grade school text covering grades 3 to 12.
It is usually reported in the range 0 (very difficult) to 100 (very

easy).

2-13

XENIX Text Processing

The score reported by style is scaled to be comparable to the other formulas,
except that the maximum gradelevel reported is set to 17. On the whole, the
Kincaid formula isthe best predictor for technical documents; theFleschscore
will generally be the highest for technical documents. Both ARI and Flesch
tend tooverestimate text difficulty; Coleman-Liau tends to underestimate. On
text in the range of grades 7 to 9 the four formulas tend to be about the same.
For easy text, use the Coleman-Liau formula since it is reasonably accurate at
the lower grades.

It is generally safer to present text that is too easy than toohard. If a document
has particularly difficult technical content, especially if it includes a lot of
mathematics, it is probably best to make the text very easy to read. You can
lower the readability index by shortening the sentences and words, so that the
reader can concentrate on the technical content and not the long sentences.
Remember, however, that these indices produce only rough estimates; the
resultsshould not be taken as absolute. If you invoke style with the —r option,
followed by a number, all sentences with an Automated Readability Index
equaltoor greater than the number specified will be printed.

Sentencelength and structure

Most authorities on effective writing style emphasize variety in sentence
length, as well as overall sentence structure. Three simple rules for writing
sentences are:

1. Avoid theoveruseofshort simple sentences.
2. Avoid theoveruse of long compound sentences.

3. Use various sentence structures to avoid monotony and increase
effectiveness.

Although experts agree that these rules are important, not all writers follow
them in practice. Technical documents often contain sentences that vary little
in length or type. A typical document may have 90% of its sentences about the
samelengthastheaverage, or be made up almost entirely of simple sentences.

The output sections labeled ‘‘sentence info” and ‘‘sentence types” give both
length and structure measures. Style reports on the number and average
length of both sentences and words. It also reports the number of questions and
imperative sentences. The content words in the document are taken to be the
nonfunction words, that is, allthe nouns, adjectives,adverbs, and nonauxiliary
verbs. Function words are prepositions, conjunctions, articles, and auxiliary
verbs.

Since most function words are short, they tend to lower the average word
length. The average length of nonfunction words, therefore, is a more useful
measure for comparing word choice of different writers than the total average
word length. The percentages of short and long sentences measure sentence
length variability. Short sentences are those at least five words less than the

2-14

Tools For Writing and Editing

average. Long sentences are those at least ten words longer than the average.
Finally, the length and location of the longest and shortest sentences is
reported in the “sentence information” section. If the flag —lnumberis used,
style will print allsentenceslonger than the specified number.

Styleappliesthe followingrulesto the definition of sentence types:
1. Asimple sentence hasone verb and no dependent clause.

2. A complex sentence has one independent clause and one dependent
clause, each with one verb. Complex sentences are found by
identifying sentences that contain either a subordinate conjunction
or a clause beginning with a word like “that” or “who”. The
preceding sentence hassuch a clause.

3. A compound sentence has more than one verb and no dependent
clause. Sentences joined by a semi-colon (;) are also counted as
compound.

4. A compound-complex sentence has either several dependent clauses
or one dependent clause and a compound verbin either the dependent
or independent clause.

Word Usage

The word usage measurements used by style attempt toidentify other features
of writing constructions. InEnglish, there are many alternative ways to say the
same thing. For example, the following sentencesall convey approximately the
same meaning but differ in word usage:

— The cxio program is used to perform all communication between the
systems.

— The cxio program performs all communications between the systems.
— The cxio program isused to communicate between the systems.
— The cxio program communicates between the systems.

— All communication between the systems is performed by the cxio
program.

The distribution of the parts of speech and verb constructionsin a docurment
helps the writer identify the overuse of particular construction. For each
category, style reports a percentage and a raw count of the parts of speech
used. Although these measures are somewhat crude, they demonstrate
excessive repetition of sentence constructions. In addition to looking at
percentages, it is useful to compare the raw count with the number of
sentences. If, for example, the number of infinitives is almost equal to the
number of sentences, then an unusual number of sentences in the document

2-15

XENIX Text Processing

must contain infinitives, like the first and third sentencesin the example above.
Youmay want to change some of these sentencesfor greater variety.

Verbs

To determine the predominant verb constructions in a document, Verb
frequency is measured in several ways. Technical writing, for example, tends
toward passive verb constructions and other usages of the verb “to be”’. The
category of verbs labeled ““to’’be measures both passives and sentences of the
form:

subject tobe predicate

Whole verb phrases are counted as a single verb. Verb phrases containing
auxiliary verbs are counted in an ‘‘aux” category, including verb phrases whose
tense is not simple present or simple past. Infinitives are listed as “inf.” The
percentages reported for these three categories are based on the total number
of verb phrases found. These categories are not mutually exclusive; some
constructions may be in more than one category. For example, ‘“to be going”’
counts as both ‘““tobe’’ and “inf”’. Use of these three types of verb constructions
varies significantly among different writers.

Style reports passive verbs asa percentage of the finite verbsin the document.
Because sentences with active verbs are easier to comprehend than those with
passive verbs, you should avoid the overuse of passive verbs. Although the
inverted object-subject order of the passive voice seems to emphasize the
object, studies show that comprehension is not significantly affected by word
position. Furthermore, a reader will retain the direct object of an active verb
better than the subject of a passive verb. The —p option causes style to print
all sentences containing passive verbs.

Pronouns

Pronouns can add cohesiveness and connectivity to a document by acting asa
shorthand notation for something previously mentioned. They connect the
sentence containing the pronoun with the word to which the pronoun refers.
Although there are other ways to connect ideas, documents with no pronouns
tend to be verbose and to havelittle connectivity.

Adverbs

Adverbs provide transitions between sentences and order in time and space.
Like pronouns, adverbs provide connectivity and cohesiveness.

Conjunctions
Conjunctions provide logical parallelism between ideas by connecting two or
more equal units. These units may be whole sentences, verb phrases, nouns,

adjectives, or prepositional phrases. The compound and compound-complex
sentences reported under sentence type are parallel structures. Other uses of

2-16

Tools For Writing and Editing

parallel structures are indicated by the degree thatthenumber of conjunctions
reported under word usage exceeds the compound sentence measures.

Nouns and Adjectives

Some writers qualify almost every noun with one or more adjectives. If the

ratio of nouns to adjectives in your text approaches one, it is probable that you

using too many adjectives. Multiple qualifiers in phrases like ‘‘simple linear
.single-link network model”’ oftenlend more obscurity than precision to a text.

Nominalizations

Nominalizations are verbs transformed into nouns by the addition of a suffix
like: “ment”, “ance”, “ence”, or “ion”. Examples are accomplishment,
admittance, adherence, and abbreviation. When a writer transforms a
nominalized sentence to a non-nominalized sentence, it becomes more effective.
The noun becomes an active verb and frequently one complicated clause

becomes two shorter clauses. For example

Their inclusion of this provision is admission of the
importance of the system.

could be changed to:
When they included this provision, they admitted the

The transformed sentences are easier to comprehend, even if they are slightly
longer, provided the transformation breaks one clause into two. If your
document contains many nominalizations, you may want to transform some of
the sentences to use active verbs.

Sentence Openers

Another principle of style is the desirability of varied sentence openers.
Because style determines the type of sentence opener by looking at the part of
speech of the first word in the sentence, the sentences counted under the
heading “subject opener” may not allreally begin with thesubject. However, a
large total percentage in this category suggests a lack of variety in sentence
openers. Other sentence opener measurements help determine if there are
transitions between sentences and where subordination occurs. Adverbs and
conjunctions at the beginning of sentences are mechanisms for the transition
between sentences. A pronoun at the beginning of a sentence shows a link to
something previously mentioned and indicates connectivity.

The location of subordination can be determined by comparing the number of
sentences that begin with a subordinator with the number of sentences with
complex clauses. If few sentences start with subordinate conjunctions then the
subordination isembedded or at the end of the complex sentences. For greater
variety, transform some sentencesso that they have leading subordination.

XENIX Text Processing

The last category of openers, expletives, is commonly overworked in technical
writing. Expletives are the words “it” and ‘‘there”, generally used with the
verb “to be” in constructions where the subject follows the verb. Forexample,

There are three streets used by the traffic.
There are too many users on this system.

This construction tendsto emphasize the object rather than the subject of the
sentence. The —e option will cause style to print all sentences that begin with
anexpletive.

2.5.2 Diction

The diction program prints all sentences in a document containing phrases
that are either frequently misused or indicate wordiness. Diction uses fgrep
to match a file of phrases or patterns to a file containing the text of the
document to be searched. A data base of about450 phrases has been compiled
as a default pattern file for diction. To facilitate the matching process,
diction changes uppercase letters to lowercase and substitutes blanks for
punctuation before beginning the search for matching patterns. Sincesentence
boundaries are less critical in diction than in style, abbreviations and other
uses of the period character (.) are not treated specially. diction marks all
pattern matchesin a sentence with brackets ([]). Althoughmany of the phrases
in the default data base may be correct in some contexts, they generally
indicate an awkward or verbose construction. Some examples of the phrases
and suggested alternatives are:

Phrase: Alternative:
a large number of many
arrive at a decision decide
collect together collect

for this reason so
pertaining to about
through the use of by or with
utilize use

with the exception of except

All of the following examples contain the repetitious and awkward phrase ‘““the
fact:”

2-18

Tools For Writing and Editing

Phrase: Alternative:

accounted for by the fact that caused by

an example of this is the fact that thus

based on the fact that because

despite the fact that although

due to the fact that because

in light of the fact that because

in view of the fact that since
|notwithstanding the fact that slthough

If you have some phrases that you particularly dislike, or feel you use too of ten,
you may create your own file of patterns. Then, you can invoke the diction
program with the —f

diction —f pattern file

The default pattern file for the diction program will be loaded first, followed
by your pattern file. In this way, you can either suppress patterns contained in
the default file or include your own favorites in addition to those in the default
file. You can also use the —n option to exclude the default file altogether.

In constructing a pattern file, spaces should be used before and after each
phrase to avoid matching substrings in words. For example, to find all
occurrences of the word ““the”, use leading and trailing spaces, so that only the
word “the” ismatched and not the string ‘“the” in words like there, other, and
therefore. Note however, that one side effect of surrounding the words with
spaces is that when two phrases occur without intervening words, only the first
will be matched.

2-19

Chapter 3
Using the MM Macros

3.1 Getting Started withmm 3-1
3.1.1 Inserting mm Macros 3-1
3.1.2 Invokingmm 3-2

3.2 Basic Formatting Macros 3-3
3.2.1 Paragraphsand Headings 3-3
3.2.2 Lists 3-5
3.2.3 Font Changes and Underlining 3-6
3.2.4Footnotes 3-7
3.2.5 Displaysand Tables 3-7
3.2.6 Memos 3-8
3.2.7 Multicolumn Formats 3-8

3.3 Using Nroff /Troff Commands 3-8

3.4 Checking mm Input with mmcheck 3-9

3.1 Getting Started with mm

This chapter provides a simple introduction to mm, a macro package which
you can use on your XENIX System with either of the two XENIX formatting
programs, nroff or troff, to produce formatted text for the lineprinter or
typesetter, respectively. The featuresof mm are described comprehensively in
the next chapter, “mm Reference’’. You can learn to use the mm macros
quickly and format text immediately, without learning the more complicated
nroff or troff formatting commands.

The mm program reads the commands you have inserted in your text and
“translates’’ them into nroff or troff commands at the time your text file is
processed. With mm you can specify the style of paragraphs, section headers,
lists, page numbering, titles, and footnotes. You can also produce cover pages,
abstracts, and tables of contents, as well as control font changes and
multicolumn output, and, if you are using mm along with troff tooutput your
text to a phototypesetter, you can specify variable spacing and the size of your
type.

Although using nroff or troff directly offers you a much wider range of
commands and options, we definitely recommend that you learn and use mm
for most of your formatting needs. Use the nroff and troff requests discussed
in Chapter 5, “The Nrofi/Troff Tutorial” and Chapter 6, ‘“Nroff/Troff

Reference” only when necessary.

3.1.1 Inserting mm Macros

To use the mm macros to format a document, type in your text normally,
interspersed with formatting commands. Most of these commands consist of
two uppercase letters preceded by a dot (.) and appearing at the beginning of a
line. Instead of indenting for paragraphs, for example, you use the .P macro
beforeeach paragraph, toproduce indenting and extraspace:

P
To meet the objectives proposed at the meeting...

A single mm macro can often perform a number of formatting functions at
once. In a long document, you might have several sections, each beginning with
anumbered heading, like this

1.0 Saltwater Fishing in the Pacific Northwest
Tocreate thisheader, you would enter:

.H 1 " Saltwater Fishing in the Pacific Northwest”

Not only will mm create a bold heading and leave a space between the heading
and the text which follows, it will also automatically number allthe headingsin

3-1

XENIX Text Processing

the document sequentially. Furthermore, if you use the table of contents
macro (.TC) at the end of the document, mm will create a table of contents,
listing all the numbered headings and the pages where they occur.

The mm macros also provide a convenient facility for creating a consistent
format for such document elements as lists and displays. For example, if you
wanted a “bullet list” to look like this:

e Convenience
« [Easeofuse
e Portability
you would enter the following text and macros:

.BL

.LI
Convenience
.LI

Ease of use
.L1
Portability
.LE

mm will provide the current indents, spacing, and bullets.

Note that you you must always begin a document to be formatted with mm
with some macro, rather than an ordinary line of text. You might just start
with a .P command, for example, to begin your document with an ordinary
paragraph. Thistellsmm tobeginanew page.

3.1.2 Invoking mm

After you have created a file containing text and mm macros, you can format it
with the following command:

nroff -mm filename>filename.mmé&
This command line tells the XENIX system that you want to format the
document, using the mm macropackage and the nroff formatting program, in
order to prepare it for a letter-quality printer or lineprinter. Once the
document is formatted, it will be stored in filename.mm or whatever file you
name. Youcanthensendittotheprinter withthe command:

lpr filename.mm

Ifyouare formatting documentsfor printingon a typesetter, you would need to
use the mm macros with the troff program instead:

3-2

Using the MM Macros

troff -mm filename>filename.t

If you have somewhat more complex formatting, such as two-column text,
formatted with the two-column (.2C) macro, or if you have used the tablestart
(.TS) and table end (.TE) macros to produce multicolumn tabular material,
you must remember to pipe the output through the preprocessor col, in order
to prepare the columnsof text. Your command line might look like this:

nroffl -mm filename | col>filename.mm
If you are using the tbl or eqn programs to produce tables and mathematical
equations, you must also process the files through these programs first, using

tbl before eqn, as in the following:

tbl filename|neqn|nroff -mm >filename.mm

3.2 Basic Formatting Macros
The following sections describe the most commonly used mm macros,
including macros to define paragraphs, headings, lists, font changes, displays,

and tables. For more detailed information about each of these macros, read
Chapter 4, ““mm Reference’’.

3.2.1 Paragraphs and Headings

With mm, it is easy to specify paragraph and heading style. For example, look
at the following passage:

3-3

XENIX Text Processing

1.0 Paragraphs and Headings

This section describes the types of paragraphs and the
kinds of headings that are available.

1.1 Paragraphs

Paragraphs are specified with the .P macro. Usually, they are
flush left.

1.2 Headings

Numbered Headings
There are seven levels of numbered headings. Level 1 is the
highest; level 7 is the lowest.

Headings are specified with the .H macro, whose first argument is
the level of heading (1 through 7).

Unnumbered Headings
The macro .HU is a special case of .H which creates a heading
with no heading number.

To createthisheadingformat, you wouldinsert the following in a text file:

.H 2 "Paragraphs and Headings”

This section describes the types of paragraphs and the
kinds of headings that are available.

.H 3 "Paragraphs”

Paragraphs are specified with the .P macro. Usually, they
are flush left.

.H 3 "Headings”

HU "Numbered Headings”

There are seven levels of numbered headings. Level 1 is the
highest; level 7, the lowest.

P

Headings are specified with the .H macro, whose first argument
is the level of heading (1 through 7).

.HU "Unnumbered Headings”

The macro .HU is a special case of .H which creates a heading
with no heading number.

mm produces these headings in default styles which can be redefined, if
necessary. This is described in detail in Chapter 4, ‘“mm Reference”. The
headings are automatically numbered and are used to print a table of contents,
if the table of contents (.TC) macro is used. The numbers may be altered or
reset with the number register (.nr) request. To restart the numbering of a

3-4

Using the MM Macros

second levelheadingat 1, you wouldinsert the following command:

.nr H2 1

3.2.2 Lists

All list formats in mm have a list-begin macro, one or more list items, each
consisting of a .LI macro followed by the list item text, and the list-end macro
(.LE). In addition to the bullet list demonstrated at the beginning of this
chapter, there is also the dash list, using the list begin macro (.DL) to create a
list format like the bullet list except marked with dashes rather than bullets. A
mark list (ML) is also available, to mark list items with the character of your
choice.

The automatic list (LAL) macro automatically numbers list items in one of
several ways. When specified alone, or followed by ¢‘1”, the AL macronumbers
the list items with Arabic numbers. The macro .AL A specifies alist ordered A,
B, C, etc. The macro.AL fcllowed by a lowercase a (.AL a), specifies a, b, ¢, etc.
The macro .AL Inumberslist items with Romannumerals. .AL i numbers a list
with lowercase Roman numerals (i, ii, iii, etc.)

Numbered lists may be nested to produce outlines and other formats. For
example:

I. Incan Archaeological Sites
A. Peru
1. Macchu Picchu
2. Pisac
B. Ecuador

Thisisproduced with:

3-5

XENIX Text Processing

ALI

.LI

Incan Archaeological Sites
AL A

.LI

Peru

AL 1

LI

Macchu Picchu

.LI

.LI
Ecuador
.LE
.LE

In addition to the numbered and marked lists, mm offers a variable list (.VL)
macro, which is useful for producing two-column lists with indents. The .VL
macro is described in detail in Chapter 4, “‘mm Reference”.

3.2.3 Font Changes and Underlining

To produce italics on the typesetter, precede the text to be italicized with the
sequence \fIand follow it with \fR. Forexample:

\fTas much text as you want
can be typed here\fR

Italics are represented on lineprinters and letter-quality printers by
underlining. The \fR command restcres the normal, usually Roman font.

If only one word is to be italicized, it may be typed alone on a line after a .I
command:

0

.I word

In this case no .R is needed to restore the previous font. The default font is
automatically restored on the next line.

Similarly boldface can be produced by typing:

B -

Text to be set in boldface
goes here

.R

As with the I macro, a single word can be placed in boldface by placing it alone
on the same line with a.B command.

3-6

Using the MM Macros

3.2.4 Footnotes

Material placed between lines with the footnote start (.FS) and footnote end
(.FE) macros will be collected, and placed at the bottom of the current page.
The footnotes are automatically numbered, or an optional footnote mark may
be used. This mark followsthe .FS macro. For example:

Without further research

FS

As demonstrated by Tiger and Leopard (1975).
FE

the claim could not be substantiated.
However, other studies

FSs

For example, Panther and Lion (1981).

FE

indicated that the correlation was significant.
producesone numbered footnote:
1. As demonstrated by Tiger and Leopard (1975).

" and one marked footnote:

* For example, Panther and Lion (1981).

3.2.5 Displays and Tables

To prepare displays of lines, such as tables, which are to be set off from the
running text, enclose them in the commands .DS and .DE. For example:

.DS
text goes here
.DE

By default, lines between .DS and .DE are left-adjusted. Lines between .DSL
and .DE are also left-adjusted. To get an indented display, use .DS I. You can
also create centered tables with .DS C. For example:

This is a centered display preceded by
a .DS C and followed by a .DE command

or:
This is a left-adjusted display

preceded by a .DS L command
and followed by a .DE command.

37

XENIX Text Processing

Notethatthe .DS Cmacro centerseachline.You canalsouse.DSBto makethe
display into a left-adjusted block of text and then center that entire block.
Normally a display is kept together on one page. Text within display is
produced in ““nofill” mode, that it lines of text are not rearranged.

3.2.6 Memos

Ifyouneed to producemany memosin a standardized format, youmay find the
memorandum (.MT) type macros useful for creating titling information. Be
warned, however, that because these memorandum types were originally
developed inside Bell Laboratories, some of the possible parameters to this
‘macro automatically print the string ‘Bell Laboratories” on the memo. To
suppress this, be sure to use the “affiliation” (.AF) macro after an MT macro,
as follows:

.AF”ﬂ

or, if you wish to have your own company or organization name appear
automatically, use:

.AF "Widgets, Ltd.”

There are a number of parameters which substantially change the format and
content of memoranda output and it iscritical that you insert the macrosin the
correct order. Therefore, it is important that you read the section on
“Memorandum Type” in Chapter 4, “‘mm Reference” before inserting these
macros in memos. Once you have chosen the appropriate type, you should be
able toreuse these macrosforallyour memos to produce a standardstyle.

3.2.7 Multicolumn Formats

If you place the command .2C in your document, the document will be printed
in double column format beginning at that point. This feature is generally not
accommodated by ordinary lineprinter facilities, but is often desirable on the
typesetter. The command .1C stops two-column output and returns to one-
column output.

3.3 Using Nroff/ Troff Commands

If you want to format text using mm without learning the other formatting
programs, you should become familiar with at least a few simple nroff /troff
commands, which you will probably need to supplement the mm macros.
These work with both typesetter and lineprinter or terminal output:

.bp begin new page.

3-8

Using the MM Macros

.br “break”, that isstop runningtextfromlinetoline.

.spn insert n blank lines.

3.4 Checking mm Input with mmcheck

The program mmcheck can be used to check the accuracy of your input to
mm, without actually formatting a document. If you use mmcheck regularly,
you will save a great deal of processing time, because you will be able to
‘“/debug” your input file quickly, without running the nroff and troff
programs. Toinvoke mmcheck, use the command line:

mmcheck filename

The output of mmcheck goes to the standard output (the terminal screen) by
default. mmcheck checks for correct pairing of macros, including .DS/.DE,
.TS/.TE, and .EQ/.EN. It also looks for list specification format, making sure
thatevery list has alistbegin macro(.AL,.DL,.BL,.ML,VL,etc.)and alistend
macro (.LE). Normally, mmcheck prints a list of errors and the lines where
they occurred.Forexample:

chapl.s:
Extra .DE at line 74
539 lines done.

Note, however, that the location of an error may occasionally be obscured. In
the example above, the ‘‘extra’ .DE could actually be caused by a missing .DS.

3-9

Chapter 4
MM Reference

4.1 Introduction 4-1
4.1.1 WhyUse MM? 4-1
4.1.2 Organization and Conventions 4-1
4.1.3 StructureofaDocument 4-2
4.1.4 Definitions 4-2

4.2 Invoking the Macros 4-3
421 TheMMCommand 4-3
4.2.2 The—<cmor-mmFlags 4-4
4.2.3 Typical Command Lines 4-4
4.24 CommandLineParameters 4-4
425 Omissionof-cmor-mm 4-6

4.3 Formatting Concepts 4-7
4.3.1 Argumentsand Quoting 4-7
4.3.2 UnpaddableSpaces 4-8
4.3.3 Hyphenation 4-8
434 Tabs 4-9
4.3.5 Bullets 4-9
4.3.6 Dashes, MinusSigns,and Hyphens 4-10
43.7 Trademark String 4-10

44 Paragraphsand Headings 4-10
4.4.1 Paragraphs 4-10
4.4.2 Numbered Headings 4-12
4.4.3 Appearanceof Headings 4-12
4.4.4 Bold,Italic,and Underlined Headings 4-14
4.4.5 HeadingPoint Sizes 4-14
4.4.6 MarkingStyles 4-15
4.47 Unnumbered Headings 4-16
4.4.8 Headingsand the Table of Contents 4-16
4.4.9 First-Level Headings and the Page Numbering
Style 4-16
4.4.10 User Exit Macros 4-17

4.5 Lists

4.6

4.7

48

4.5.1
4.5.2
4.5.3
4.54

4.5.5
4.5.6
4.5.7
4.5.8
4.5.9
4.5.10

4-18

Sample Nested List 4-19

List Item 4-20

ListEnd 4-21

Initializing Automatically Numbered or
Alphabetized Lists 4-21 '
Bullet List 4-22

Dash List 4-22

Marked List 4-23

ReferenceList 4-23

Variable-Item List 4-23

List-Begin Macroand Customized Lists 4-25

Displays 4-26

4.6.1
4.6.2
4.6.3
4.6.4
4.6.5

4.6.6

Static Displays 4-26
FloatingDisplays 4-27

Tables 4-29

Equations 4-30

Figure, Table, Equation, and Exhibit
Captions 4-31

List of Figures, Tables, Equations, and
Exhibits 4-31

Footnotes 4-32

4.7.1

Format of Footnote Text 4-33

PageHeaders and Footers 4-34

4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6
4.8.7
4.8.8
4.8.9

4.8.10

4.8.11
4.8.12

Default Headers and Footers 4-34

Page Header 4-35

Even-PageHeader 4-35

Odd-Page Header 4-35

Page Footer 4-36

Even-PageFooter 4-36

Odd-PageFooter 4-36

Footeron the FirstPage 4-36

Default Header and Footer With Section-Page
Numbering 4-36

Strings and Registers in Header and Footer
Macros 4-37

Header and Footer Example 4-37
Generalized Top-of-Page Processing 4-37

4.8.13
4.8.14

Generalized Bottom-of-Page Processing 4-38
Topand Bottom Margins 4-38

4.9 Tableof Contents 4-39

4.10 References 4-40

4.10.1
4.10.2
4.103
4.10.4

Automatic Numbering of References 4-40
Delimiting Reference Text 4-40
Subsequent References 4-41

Reference Page 4-41

4.11 MiscellaneousFeatures 4-41

4.11.1
4.11.2
4.11.3
4114
4.11.5
4.11.6
4.11.7
4.11.8
4.11.9

Bold, Italic,and Roman Fonts 4-42

Right Margin Justification 4-43

SCCS Release Identification 4-43
Two-Column Output 4-43

Vertical Spacing 4-44

Skipping Pages 4-45

Forcingan Odd Page 4-45

Setting Point Size and Vertical Spacing 4-45
Inserting Text Interactively 4-46

4.12 Memorandum and Released Paper Styles 4-47

4.12.1
4.12.2
4.12.3
4.12.4
4.12.5
4.12.6
4.12.7
4128
4.12.9

Title 4-47

Authors 4-47

Technical Memorandum Numbers 4-48
Abstract 4-48

Other Keywords 4-49

Memorandum Types 4-49

Date and Format Changes 4-50
Alternate First-Page Format 4-50
Released-Paper Style 4-51

4.12.10 Order of Invocation of Beginning Macros 4-51
4.12.11 Macros for the End ofa Memorandum 4-52
4.12.12 Copy toand Other Notations 4-53

4.12.13 Approval Signature Line 4-54

4.12.14 Forcing a One-Page Letter 4-54

4.12.15 Cover Sheet 4-54

4.13 Reserved Names 4-54

4.13.1

Names Used by Formatters 4-55

4.13.2 Names Used by MM 4-55

4.13.3 NamesUsed by eqn/neqn and tbl 4-56
4.13.4 User-Definable Names 4-56

4.13.5 Sample Extension 4-56

4.14 Errors 4-56
4.14.1 Disappearanceof Output 4-57
4.14.2 MMETrror Messages 4-57
4.14.3 Formatter Error Messages 4-60

4.15 Summary ofMacros, Strings, and Number
Registers 4-62
4.15.1 Strings 4-67
4.15.2 Number Registers 4-68

MM Reference

4.1 Introduction

This chapter is the reference guide for the MM Memorandum Macros. MM
provides a unified, consistent, and flexible tool for producing many common
types of documents, often eliminating the need for working directly with nroff
or troff commands. MM is the standard, general-purpose macro package for
most documents.

Using the MM macros, you can produce letters, reports, technical memoranda,
papers, manuals, and books. Documents may range in length from single-page
letters to documentsthat are hundreds of pageslong.

4.1.1 Why Use MM?

There are several reasons why we recommend using MM instead of working
with the formatting programs nroff and troff directly. These include:

— You need not be an expert to use MM successfully. If your input is
incorrect, the macros attempt to interpret it, or a message describing
the errorisoutput.

— Reasonable default values are provided so that simple documents can
be prepared without complex sequences of commands.

— Parameters are provided to allow for individual preferences and
requirementsin document styling.

— The capability exists for expert users to extend the MM macros by
adding new macrosor redefiningexistingones.

— The output of MM is device independent, allowing the use of
terminals, lineprinters, and phototypesetters with no change to the
macros.

— The need for repetitious input is minimized by allowing the user to
specify parametersonce at the beginning of a document.

— Output style can be modified without making changes to the
document input.

4.1.2 Organization and Conventions

Eachsection of thischapter explains a feature of MM, with the more commonly
used features explained first. You may find you have no need for the
information in the later sections, or for some of the options and parameters
which accompany even common features. This reference guide is organized so
that you can skim a section to obtain formatting information you need, and

41

XENIX

Text Processing

skip features for whichyouhaveno use.

4.1.3 Structure of a Document

Input for

adocument tobe formatted with MM contains four major parts, any

of which is optional. If present, they must occur in the following order:

Parameter-setting. This segment determines the general style and
appearance of a document, including page width, margin
justification, numbering styles for headings and lists, page headers
and footers, and other properties. In this segment, macros can be
added or redefined. If omitted, MM will produce output in a default
format; this segment produces no actual output, but performs the
setup for the rest of the document.

Beginning. This segment includes those itemsthat occur only once, at
the beginning of a document (e.g., title, author’sname, date).

Body. This segment contains the actual text of the document. It may
be as small as a single paragraph, or as large as hundreds of pages. It
may include hierarchically-ordered headings of up to seven levels,
which may be automatically numbered and saved to generate the
table of contents. Also available are list formats with up to five levels
of subordination, which may have automatic numbering, alphabetic
sequencing, and marking. The body may contain various types of
displays, tables, figures, references, and footnotes.

Ending. This segment contains those items that occur only once at
the end of a document. Included here are signature(s) and lists of
notations (e.g., “copy to’’ lists). In this segment, macros may be
invoked to print information that is wholly or partially derived from
the rest of the document, such as the table of contents or the cover
sheet.

The size or existence of any of these segments depends on the type and length of
the document. Although aspecificitem (such asdate,title,author’sname) may
be printed in several different ways depending on the document type, it will
alwaysbe enteredin the same form.

4.1.4 Definitions

The following termsare used throughout this chapter:

Formatter Referstoeitherof the text-formatting programsnroffor troff.

Requests

42

Built-in commands recognized by the formatters. Although it
may not be necessary to use these requests directly, they are

Macros

Strings

MM Reference

referred toin this chapter.

Named collections of requests. Each macroisan abbreviation for
a collection of requests that would otherwise require repetition.
MM supplies many predefined macros, and you may define
additional macros as necessary. Macros and requests share the
same set of names and are usedin the same way.

Provide character variables, each of which names a string of
characters. Strings are often used in page headers, page footers,
and lists. They use the same names as requests and macros. A
string can be defined with the define string(.ds) request, and then
referred to by its name, preceded by *for a one-character name
or *(for a two-character name.

Number registers

Integer variables used for flags, arithmetic, and automatic
numbering. A register can be given a value using a number
register (.nr) request, and can be referenced by preceding its
name by \n for one-character names or \n(for two-character
names.

4.2 Invoking the Macros

This section describes the command lines necessary to MM, with different
optionson variousoutput devices.

4.2.1 The MM Command

The MM command is used to print documents using nroff and MM. This
command is equivalent to invoking nroff with the —mm flag. Options are
available to specify preprocessing by tbl and/or by eqn/neqn, and for
postprocessing by various output filters, such as col. Any argumentsor flags
not recognized by MM are passed to nroff. The following options can occur in
any order before the filenames:

-

-t

-C

-y

Invokes neqn.

Invokestbl.

Invokescol.

Invokesthe “—¢” option of nroff.

Invokes -mm (uncompacted macros) instead of —cm (See Section
4.2.2 of this manual).

43

XENIX Text Processing

-12 Invokes 12-pitch mode (The pitch switch on the terminal must be
set to 12).
4.2.2 The —cm or -mm Flags

The MM package can also be invoked by including the —cm or —-mm flag asan
argument to the formatter, asin:

nrofl -mm file

4.2.3 Typical Command Lines
The prototype command lines are as follows:
Text without tables or equations:
mm [options] filename
nroff [options] filename
troff [options] filename
Text with tables:
mm -t [options| filename
tbl filename|nroff [options] -mm
tbl filename|troff [options] -mm
Textwithequations:
mm -e [options] filename
neqn filename|nroff [options] -mm
eqn filename|troff [options] -mm
Text withbothtablesand equations:
mm -t -e [options] filename
tbl filename|neqn|nroff [options] -mm
tbl filename|eqn|troff [options] -mm
If two-column processing is used with nroff, either the -c option must be
specified toMM or the nroff output must be postprocessed by col.
4.2.4 Command Line Parameters
Number registershold parameter values that control variousaspectsof output

style. Many of these can be changed within the text files with number register
(.nr) requests. In addition, some of these registers can be set from the command

44

MM Reference

line itself, a useful feature for those parameters that should not be permanently
embedded within the input text itself. If used, these registers must be set on the
command line or before the MM macro definitionsare processed. These are:

-rAn

-rCn

-rD1

-rEn

-rLk

-rNn

-rOk

For n = 1, this has the effect of invoking the AF macro without an
argument.

Nsets the type of copy (e.g., DRAFT) to be printedatthe bottom of
eachpage:

n=1 For OFFICIAL FILE COPY
n=2 For DATEFILE COPY

n=3 ForDRAFT with single-spacing and default paragraph
style

n = 4 For DRAFT with double-spacing and 10-space
paragraphindent

Sets “debug mode”. This flag requests the formatter to continue
processing even if MM detects errors that would otherwise cause
termination. It also includes some debugging information in the
default page header.

Controls the font of the Subject/Date/From fields. If n = 0 these
fields are bold (default for troff) and if n = 1 they are regular text
(default for nroff).

Sets the length of the physical page to k lines. For nroff, kis an
unscaled number representing lines or character positions; for
troff, k must be scaled. The default value is 66 lines per page.

Specifies the page numbering style. When n = 0 (default), all pages
get the (prevailing) header. When n = 1, the page header replaces
the footer on page 1 only. When n = 2, the page header isomitted
from page 1. When n = 3, section-page numberingoccurs. When n
= 4, the default page header is suppressed, but user-specified
headers are not affected. When n =35, section-page and section-
figure numberingoccurs.

The contents of the prevailing header and footer do not depend on
the value of the number register N; N only controls whether and
where the header (and, for N =3 or 5, the footer) is printed, as well
as the page numbering style. In particular, if the header and footer
values are null, the value of Nisirrelevant.

Offsets output k spaces to the right. For nroff, these values are

unscaled numbers representing lines or character positions. For
troff, these values must be scaled. This register is helpful for

45

XENIX Text Processing

adjusting output positioning on some terminals. If thisregister is
notseton the command line the default offset is.75 inches. NOTE:
The register name isthe capital letter (O), not the digit zero (0).

-rPn Specifies that the pages of the document are to be numbered
starting with n. This register may also be set via a.nrrequestin the
input text.

-rSn Setsthe pointsizeand vertical spacing. The default nis10, i.e., 10-

point type on 12-point leading (vertical spacing), giving 6 lines per
inch. This parameter appliestotroffonly.

-rTn Provides register settings for certain devices. If n =1, then theline
length and pageoffset areset to 80 and 3, respectively. Setting n to
2 changes the page length to 84 lines per page and inhibits
underlining. The default value for nis0. This parameter applies to
nroffonly.

-rUl Controls underlining of section headings. This flag causes only
letters and digits to be underlined. Otherwise, all characters
(including spaces) are underlined. This parameter appliesto nroff
only.

-tWk Sets page width (i.e., line length and title length) to k. For nroff, kis
an unscaled number representing lines or character positions; for
troff, kmust be scaled. This register can be used to change the page
width from the default value of 6.0 inches (60 charactersin 10 pitch
or 72 charactersin 12 pitch).

4.2.5 Omission of -cm or -mm

If many arguments are required on the command line, it may be convenient to
set up the first (or only) input file of a document as follows:

ss 18

.so fusr/lib/tmac/tmac.m
.ss 12

remainder of text

In this case, do not use the —cm or -mm flags (or the MM or mm¢t commands);
the .so request has the equivalent effect. The registers must be initialized before
the .so request, because their values are meaningful only if set before the macro
definitions are processed. When using this method, it is best to put into the
input file only those parametersthatare seldom changed. For example:

4-6

MM Reference

.nir W 80

.nr 0 10

.ar N3

.so fusr/lib/tmac/tmac.m

.H 1 "INTRODUCTION"

specifies, for nroff, a line length of 80, a page offset of 10, and section-page
numbering.

4.3 Formatting Concepts

The normal action of the formatters is to fill output lines from one or more
input lines. The output lines may be justified so that both the left and right
marginsare aligned. Asthe lines are being filled, words may alsobe hyphenated
asnecessary. It ispossible to turn any of these modes on and off. Turning off fill
mode also turnsoff justification and hyphenation.

Certain formatting commands (both requests and macros) cause the filling of
the current output line to cease. Printing of a partially filled output line is
known as a “break’. A few formatter requests and most of the MM macros
cause a break.

While formatter requests can be used with MM, they occasionally have
unpredicted consequences. There should be little need to use formatter
requests. The macros described in this section should be used in most cases
because you will be able to control and change the overall style of the document
easily and specify complex features, such as footnotes or tables of contents, -
without using intricate formatting requests. A good rule is to use direct nroff
andtroff requests only when absolutely necessary.

To make future revision easier, input lines should be kept short and should be
brokenat the end of clauses; each newfullsentence should begin onanewline.

4.3.1 Arguments and Quoting

For any macro, a “null argument” is an argument whose width is zero. Suchan
argument often has a special meaning; the preferred formfor a null argumentis
double quotation marks (”). Omitting an argument is not the same as
supplying a null argument. Furthermore, omitted arguments can occur only at
the end of an argument list, while null arguments canoccur anywhere.

Any macro argument containing ordinary (paddable) spaces must be enclosed
in double quotation marks, (*’’). Otherwise, it will be treated as several
separate arguments. A double quotation mark (") is a single character that
must not be confused with two apostrophes or acute accents (**), or with two
graveaccents ().

47

XENIX Text Processing

Double quotation marks () are not permitted as part of the value of a macro
argument or of a string that is to be used as a macroargument. If you must, use
two grave accents() and/or two acute accents (**)instead. Thisrestrictionis
necessary because many macro arguments are processed (interpreted) several
times. For example, headings are first printed in the text and may be reprinted
in the table of contents.

4.3.2 Unpaddable Spaces

When output lines are justified to give an even right margin, existing spacesina
line may have additional spaces appended to them. This may affect the desired
alignment of text. To avoid this problem, it isnecessary to be able to specify a
space that cannot be expanded during justification, i.e., an “unpaddable
space”. There are several ways to do this. First, you may type a backslash (\)
followed by a space. This pair of characters generates an unpaddable space.
Second, you may sacrifice some seldom-used character to be translated into a
space upon output. Because this translation occurs after justification, the
chosen character may be used anywhere an unpaddable space is desired. The
tilde (*) isoften used for this purpose. To useitin thisway, insert the following
line at the beginning of the document:

tr”

If a tilde must actually appearin the output, it can be temporarily recovered by
inserting

.tr

before the place where it is needed. Its previous usage is restored by repeating
the .tr *, but only after a break or after the line containing the tilde has been
forced out. Use of the tilde in this way is not recommended for documents in
which the tilde is used within equations.

4.3.3 Hyphenation

The formatters do not perform hyphenation unless the user requests it.
Hypheénation can be turned on in the body of the text by specifying

.r Hy 1

at the beginning of the document. If hyphenation is requested, the formatters
will automatically hyphenate words as needed. However, you may specify the
hyphenation points for a specific occurrence of any word by using a special
character known as a “hyphenation indicator” (initialy, the two-character
sequence \ %), or you may specify hyphenation pointsfor a small list of words
(about 128 characters).

48

MM Reference

Ifthe hyphenation indicator (initially, the two-character sequence \ %) appears
at the beginning of a word, the word is not hyphenated. It can also be used to
indicate legal hyphenation point(s) inside a word. In any case, all occurrences
of the hyphenation indicator disappear on output.

The user may specify a different hyphenation indicator with the command:
.HC [hyphenation-indicator]

The caret (") is often used for this purpose; this is done by inserting the
following at the beginningof a document:

.HC

Note that any word containing hyphens or dashes—also known as em
dashes—will be broken immediately after a hyphen or dash if it is necessary to
hyphenate the word, even if the formatter hyphenation function is turned off.

Using the .hw request, you may supply a small list of words with the proper
hyphenation points indicated. For example, to indicate the proper
hyphenation of the word ““‘printout”, you may specify:

.hw print-out

4.3.4 Tabs

The macros .MT, .TC, and .CS use the .ta request to set tab stops, and then
restore the default values of tab settings. Setting tabs to other than the default
values is the user’s responsibility.

Note that a tab character isalways interpreted with respect to its position on
the input line, rather than its position on the output line. In general, tab

characters should appear only on lines processed in no-fill mode. The tbl
program changes tab stops but does not restore the default tab settings.

4.3.5 Bullets
A bullet (o) is often obtained on a typewriter terminal by using the letter o
overstruck by a +. For compatibility with troff, a bullet string is provided by
MM. Rather than overstriking, use the sequence:

*(BU

wherever a bullet is desired. Note that the bullet list (.BL) macro uses this
string to automatically generate bulletsfor the list items.

49

XENIX Text Processing

4.3.6 Dashes, Minus Signs, and Hyphens

Troff has distinct graphics for a dash, a minussign,and ahyphen, while nroff

does not. If you intend to use nroff only, you can use the minussign (-) for all

three.

If you plan to use both formatters, you must be careful in preparing text.

Unfortunately, these characters cannot be represented in a way that is both

compatibleand convenient. Try the following:

Dash Use \#(EM for each text dash for both nroff and troff. This string
generates an em dash (—) in troff and two dashes (--) in nroff.
Note that the dash list (.DL) macro automatically generates the em
dashes for the list items.

Hyphen Use the hyphen character () for both formatters. Nroffwill print
it asis, and troffwill print a true hyphen.

Minus Use \- for a true minus sign, regardless of formatter. Nroff will
ignore the \, while troff will print a true minussign.

4.3.7 Trademark String

The trademark string *(Tm places the letters TM one half-line above the text
that it follows. For example, the input:

The XENIX\#(Tm System Reference Manual.
yields:
The XENDCmSyst,em Reference Manual.

4.4 Paragraphs and Headings

This section describessimple paragraphs and section headings.

4.4.1 Paragraphs

The paragraphmacro is used to begintwo kinds of paragraphs:

P [type]
one or more lines of text.

In a “left-justified” paragraph, the first line begins at the left margin, while in
an “indented” paragraph, it is indented five spaces.

410

MM Reference

Adocument hasa default paragraph style obtained by specifying .P before each
paragraph that doesnot follow a heading. The default style is controlled by the
number register Pt. The initial value of Pt is 0, which always provides left-
justified paragraphs. All paragraphs can be forced to be indented by inserting
the following at the beginning of the document:

.nr Pt

All paragraphs will be indented except after headings, lists, and displays if the
following:

.nr Pt 2
isinserted at the beginning of the document.

The amount a paragraph is indented is contained in the register Pi, whose
default valueis 5. Toindent paragraphsby 10spaces, for example, insert:

.ar Pi 10

atthe beginning of the document. Both the Pi and Pt register values must be
greater than zerofor any paragraphs tobe indented.

The number register Ps controls the amount of spacing between paragraphs.
By default, the Ps register is set to 1, yielding one blank space (1/2 vertical
space). Values that specify indentation must be unscaled and are treated as
“character’ positions, i.e., as a number of ens. In troff, an en is the number of
points (1 point = 1/72-inch) equal to half the current point size. In nroff,anen
isequal to the width of a character.

Regardless of the value of Pt, an individual paragraph can be forced to be left-
justified or indented. .P always forces left justification; .P 1 always causes
indentation by the amount specified by the register Pi. If .P occursinside a list,
the indent (if any) of the paragraphis added to the current list indent.

Numbered paragraphs may be produced by setting the register Np to 1. This
produces paragraphsnumbered within first level headings, e.g., 1.01, 1.02,1.03,
2.01.

A different style of numbered paragraphsisobtained by using the

.nP
macro rather than the .P macro for paragraphs. This produces paragraphs
that are numbered within second level headings and contain a double-line

indent in which the text of the second line is indented to be aligned with the text
of the first line so that the number stands out. For example:

4-11

XENIX Text Processing

.H 1 "FIRST HEADING”
.H 2 "Second Heading”
.nP

one or more lines of text

4.4.2 Numbered Headings
The heading macro has the form:

.H level |heading-text] [heading-suffix]
zero or more lines of text

The .H macro provides seven levels of numbered headings. Level 1 is the
highest; level 7 the lowest. The keading-suffiz is appended to the keadsng-tezt
and may be used for footnote marks which should not appear with the heading
text in the table of contents. You will not need to insert a.P macro aftera.Hor
.HU macro, because the .H macro also performs the function of the .P macro. If
a.Pfollowsa.H, the.Pisignored.

The effect of .H varies according to the level argument. First-level headings are
preceded by two blank lines (one vertical space); all others are preceded by one
blank line.

H1 heading-tezt
Gives a bold heading followed by a single blank line. The following
text begins on a new line and is indented according to the current
paragraph type. Full capital letters should normally be used to
make the heading stand out.

.H2 keading-tezt
Yields abold heading followed by a single blankline. The following
text begins on a new line and is indented according to the current
paragraph type. Normally, initialcapitalsare used.

Hnheading-tezt
Where n is a number greater than 3 and lessthan 7, produces an
underlined (italic) heading followed by two spaces. The following
textappearson the sameline.

Appropriate numbering and spacing (horizontal and vertical) occur evenif the
heading textisomitted from an .Hmacro.

4.4.3 Appearance of Headings
You can modify the appearance of headings quite easily by setting certain

registers and strings at the beginning of the document. In this way you can
quickly alter a document’s style because the style control information is

412

MM Reference

concentratedin a few lines, rather than distributed throughout the document.

A first-level heading normally has two blank lines (one vertical space)
preceding it, and all others have one blank line. If a multiline heading splits
across pages, it is automatically moved to the top of the next page. Every first-
level heading may be forced to the top of a new page by inserting

.nrEj 1

at the beginning of the document. Long documents may be made more
manageable if each section starts on a new page. Setting Ej to a higher value
has the same effect for headings up to that level; i.e., a page eject occurs if the
headinglevelislessthan or equal to Ej.

Three registers control the appearance of text immediately following an .H
macro. They are heading break level (Hb), heading space level (Hs), and post-
headingindent (Hi).

If the heading level is less than or equal to Hb, a break occurs after the heading.
If the heading level is less than or equal to Hs, a blank line is inserted after the
heading. Defaultsfor Hb and Hs are 2. If a heading level is greater than Hb and
also greater than Hs, then the heading (if any) is run into the following text.
With these registers, you can separate headings from text consistently
throughout the document, and allow for easy alteration of whitespace and
header emphasis.

For any stand-alone heading, i.e., a heading not run into the following text, the
alignment of the next line of output is controlled by the register Hi. If Hi is 0,
text is left-justified. If Hiis 1 (the default value), the textisindented according
to the paragraph type as specified by the register Pt. Finally, if Hiis 2, text is
indented to line up with the first word of the headingitself, so that the heading
number standsout more clearly.

For example, to cause a blank line to appear after the first three headinglevels,
to have no run-in headings, and to force the text following all headings to be
left-justified (regardless of the value of Pt), the following linesshouldappear at
the top of the document:

arHs 3
ar Hb 7
aH 0

The register He can be used to obtain centered headings. A heading iscentered
if its level is less than or equal to He, and if it isstand-alone. Hc is 0 by default
(no centered headings). :

4-13

XENIX Text Processing

4.4.4 Bold, Italic, and Underlined Headings

Any heading that is underlined by nroff is made italic by troff. The string HF
(heading font) contains seven codes that specify the fontsfor heading levels 1-7.

Levels 1 and 2 are bold; levels 3 through 7 are underlined in nroff and italic in
troff. The user may reset HF asdesired. Any value omitted from the right end
of the list is taken to be 1. For example, the following would result in five bold
levelsand two nonunderlined (Roman) levels: '

dsHF 33333

Nroff can underline in two ways. The underline (.ul) request underlines only
letters-and digits. The continuous style (.cu) request underlines all characters,
including spaces. By default, MM attempts to use the continuous style on any
heading that is to be underlined and is short enough to fit on a single line. If a
heading is too long, only lettersand digits are underlined.

Using the -rUl flag when invoking nroff forces the underlining of only letters
and digitsin all headings.

4.4.5 Heading Point Sizes

If youare using troff, you may specify the desired point size for each heading
level with the HP string, as follows:

.ds HP [ps1] [ps2] [ps3] [ps4] [psS] [ps6] [psT]

By default, the text of headings(.Hand .HU) is printed in the same point size as
the body except that bold stand-alone headings are printed in a size one point
smaller than the body. The string HP, similar to the string HF, can be specified
to contain up to seven values, corresponding to the seven levels of headings.
For example:

.ds HP 12 12 11 10 10 10 10

prints the first two heading levels in 12;point type, the third heading level in
11-point type, and the remainder in 10-point type. The specified values may
also be relative point-size changes, e.g.:

.dsHP +2 +2-1-1

If absolute point sizes are specified, those sizes will be used regardless of the
point size of the body of the document. If relative point sizes are specified, then
the point sizes for the headings will be relative to the point size of the body, even
if the point size of the body is changed. Omitted or zero values imply that the
default point size will be used for the corresponding heading level.

4-14

MM Reference

Note

When you change the point size of headings, vertical spacing remains
unchanged. Therefore, if you specify a large point size for a heading,
you must also increase vertical spacing (with .HX and/or .HZ) to
prevent overprinting.

4.4.6 Marking Styles

The heading mark macro has the form:
.HM [argl] ...[arg7]

to change the heading mark style of a heading. The registers named H1
through H7 are used as counters for the seven levels of headings. Their values
are normally printed using Arabic numerals. The heading mark style ((HM)
macro allows this choice to be overridden. This macro can have up to seven
arguments; each argument is a string indicating the type of marking to be used.
Omitted values are interpreted as 1; illegal values have no effect. The values
availableare:

Value Interpretation

1 Arabic (default for all levels)

0001 Arabic with enough leading zeroes to get specified digits
A Uppercase alphabetic

Lowercase alphabetic

Uppercase Roman

Lowercase Roman

e -t 0y

By default, the complete heading mark for a given level is built by
concatenating the mark for that level to the right of all marks for all levels of
higher value. To inhibit the printing of successive heading level marks, i.e., to
obtain just the current level mark followed by a period, set the heading-mark
type (Ht) register to 1.

For example, a commonly used outline styleisobtained by:

HMIAlai
.nr Ht 1

415

XENIX Text Processing

4.4.7 Unnumbered ﬁeadings
The unnumbered heading macro has the form:
.HU heading-text .

It produces unnumbered heads. .HU is a special case of .H; it is handled in the
same way as .H, except that no heading mark is printed. In order to preserve
the hierarchical structure of headings when .H and .HU macros are intermixed,
each .HU heading is considered to exist at the level given by register Hu, whose
initial value is 2. Thus, in the normal case, the only difference between:

.HU heading-text
and
.H 2 heading-text

is the printing of the heading mark for the latter. Both have the effect of
incrementing the numbering counter for level 2, and resetting to zero the
counters for levels 3 through 7. Typically, the value of Hu should be set to make
unnumbered headings (if any) be the lowest-level headings in a document. .HU
can be especially helpful in setting up appendices and other sections that may
not fit well into the numbering scheme of the main body of a document.

4.4.8 Headings and the Table of Contents

The text of headings and their corresponding page numbers can be
automatically collected for a table of contents. This is accomplished by
specifying in the register Cl what level headings are to be saved, then invoking
the .TC macro at the end of the document. '

Any heading whose level is less than or equal to the value of the contents level
(CL) register is saved and printed in the table of contents. The default value for
Clis 2;i.e., the first two levels of headings are saved.

Because of the way the headings are saved, it is possible to exceed the
formatter’s storage capacity, particularly when saving many levels of many
headings while also processing displays and footnotes. If thishappens, an “Out
of temp file space’ message will occur; the only remedy is tosave fewer levels or
tohave fewer wordsin the heading text.

4.4.9 First-Level Headings and the Page Numbering Style
By default, pages are numbered sequentially at the top of the page. For large

documents, it may be desirable to use section-page numbering where the
section is the number of the current first-level heading. This page numbering

4-16

MM Reference

style can be achieved by specifying the -rN3or —-rN5 flag on the command line.
As a side effect, this also sets Ej to 1, so that each section begins on a new page.
The page number is printed at the bottom of the page, so that the correct
section number is printed.

4.4.10 User Exit Macros

Thissection is intended only for users who are accustomed to writing formatter
macros. With HX, .HY and .HZ you can obtain control over the previously
described heading macros. You must define these macros yourself and use them
inthe form:

.HX dlevel rlevel heading-text
.HY dlevel rlevel heading-text
.HZ dlevel rlevel heading-text

The .H macro invokes .HX shortly before the actual heading text is printed; it
calls .HZ as its last action. After .HX is invoked, the size of the heading is
calculated. This processing causes certain features that may have been
included in .HX, such as .ti for temporary indent, to be lost. After the size
calculation, .HY isinvoked so that you may specify these featuresagain. Allthe
default actions occur if these macros are not defined. If you define . HX,.HY, or
.HZ, your definition is interpreted at the appropriate point. These macros can
therefore influence the handling of all headings, because the .HU macro is
actually a special case of the .H macro.

If the user originally invoked the .Hmacro, then the derivedlevel dleveland the
real level rlevel are both equal to the level given in the .H invocation. If you
originally invoked the .HU macro, dlevelis equal to the contentsofregister Hu,
and rlevelis 0. In both cases, ke adtng-tezt is the text of the original invocation.

By the time .H calls .HX it has already incremented the heading counter of the
specified level, produced a blank line (vertical space) to precede the heading,
and accumulated the heading mark, i.e., the string of digits, letters, and periods
needed for a numbered heading. When .HX is called, all user-accessible
registersand strings can be referenced as well as the following:

string }0
If rlevelis nonzero, this string contains the heading mark.If rlevelis
0, thisstring is null.

register ;0
This register indicates the type of spacing that is to follow the
heading. A value of 0 means that the heading is run-in. A value of 1
means a break (but no blank line) is to follow the heading. A value of
2 means that a blank line is to follow the heading.

string }2
Ifregister ;0is0, this string contains two unpaddable spacesthat will

417

.XENIX Text Processing

be used to separate the heading from the following text. If register ;0
isnonzero, thisstring is null.

register ;3

Thisregister contains an adjustment factor for an .ne request issued
before the heading is actually printed. On entry to .HX, it has the
value 3 if dlevel equals 1, and 1 otherwise. The .ne request isfor the
following number of lines: the contents of the register ;0 taken as
blank lines (halves of vertical space), plus the contents of register ;3
asblank lines (halves of vertical space) plus the number of lines of the
heading.

The user may alter the valuesof }0, }2, and ;3 within .HX as desired. If you use
temporary string or macro names within .HX, choose them carefully.

JHY is called after the .ne is issued. Certain features requested in .HX must be
repeated. For example:

.de HY
df \\$1=3 .ti 5n
P

.HZ is called at the end of .H to permit user-controlled actions after the heading
is produced. For example, in a large document, sections may correspond to
chapters of a book, and you may want to change a page header or footer. For
example:

.de HZ
Jif \\$1=1 PF” *“Section \\$2 "
P

4.5 Lists

This section describes the kinds of lists which can be obtained with the MM
macros, including automatically numbered and alphabetized lists, bullet lists,
dash lists, lists with arbitrary marks, and lists starting with arbltrary strings
(e.g. with terms or phrases to be deﬁned)

In order to avoid repetitive typing of arguments to describe the appearance of
items in a list, MM provides a convenient way to specify lists. All lists are
composed of the following parts:

— A “list-initialization” macro that controls the appearance of the list

(e.g. line spacing, indentation, marking with special symbols, and
numberingor alphabetizing).

418

MM Reference

— One or more “list item” macros, each followed by the actual text of
the corresponding listitem.

— The “list end” macro that terminates the list and restores the
previousindentation.

Lists may be nested up to five levels. The list-item (.LI) macro saves the
previous list status (e.g., indentation, marking style, etc.); the list-end {.LE)
macro restores it. The format of a list is specified only once at the beginning of
list. You may also create your own customized sets of list macros with
relatively littleeffort.

4.5.1 Sample Nested List

The input for several lists and the corresponding output are shown below. The
AL and .DL macros are examples of the ‘list-initialization’ macros. Here is
some sample input text:

AL A

.LI

This is an alphabetized item.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

AL

.LI

This is a numbered item.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

.DL

.LI

This is a dash item.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.
LI+1

This is a dash item with a plus as prefix.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

.LE

.LI

This is numbered item 2.

.LE

.LI

This is another alphabetized item, B.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

.LE

P

This paragraph appears at the left margin.

419

XENIX Text Processing
The output locks like this:

A. Thisis an alphabetized item. This text shows the alignment of the
second line of the item. The quick brown fox jumped over the lazy
dog’sback. '

1. Thisisa numbered item. This text shows the alignment of
the second line of the item. The quick brown fox jumped
overthelazy dog’sback.

-~ Thisis adashitem. Thistext shows the alignment
of the second line of the item. The quick brownfox .
jumped over the lazy dog’s back. :

+— Thisis a dash item with a plus as prefix. This text
shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s
back.

2. Thisisnumbereditem2.

B. Thisis another alphabetized item, B. This text shows the alignment
of the second line of the item. The quick brown fox jumped over the
lazy dog’sback. '

Thisparagraph appearsat theleft margin.

4.5.2 List Item
Thelistitem macrohasthe form:

.LI [mark] [1]
one or more lines of text that make up the list item.

The .LI macro is used with all lists. It normally causes the output of a single
blank line before itsitem, although this may be suppressed. If no arguments are
given, it labels its item with the “current mark” which is specified by the most
recent list-initialization macro. If a single argument is given to .LI, that
argument is output instead of the current mark. If two arguments are given,
the first argument becomes a prefix to the current mark, thus allowing you to
emphasize one or more items in a list. One unpaddable space is inserted
between the prefix and the mark. For example:

4-20

MM’ Reference

.BL

.LI

This is a simple bullet item.

.LI +

This replaces the bullet with a plus.
LI+1

But this uses plus as prefix to the bullet.
.LE

Thisyields:
e Thisisasimple bulletitem.
+ Thisreplacesthe bullet with aplus.
+e But this uses plus as prefix to the bullet.
Note that the mark must not contain ordinary (paddable) spaces, because
alignment of items will be lost if the right margin is justified. If the “current
mark’ in the current list is a null string, and the first argument of .LIisomitted
or null, the resulting effect is that of a ““hanging indent”, i.e., the first line of the
following text is outdented, starting at the same place where the mark would
havestarted.
4.5.3 List End
Thelistendmacro hastheform:
.LE [1]
The list end macro restores the state of the list to that existing just before the
most recent list-initialization macro call. If the optional argument isgiven, the
.LE outputs a blank line. You should use this option only when the .LE is
followed by running text, but not when followed by a macro that produces
blank linesof itsown, such as.P, .H,or .LI.
.H and .HU automatically clear all list information, so you may omit the .LE(s)
that would normally occur just before either of these macros. This is not
recommended, however, because errors will occur if the list text is separated
fromthe heading at somelater time (e.g., by insertion of text).
4.5.4 Initializing Automatically Numbered or Alphabetized Lists

The list initialization macro for numbered listshas the form:

.AL [type] [text-indent] [1]

4-21

XENIX Text Processing

The .AL macro is used to begin sequentially numbered or alphabetized lists. If
there are no arguments, the list is numbered and text isindented by Li, initially
6 spaces from the indent in force when the .AL is called, thus leaving room for a
space, two digits, a period, and two spaces before the text. Values that specify
indentation must be unscaled and are treated as character positions, i.e., as the
number of ens in troff.

Spacing at the beginning of the list and between the items can be suppressed by
setting the list space (Ls) register. Ls is set to the innermost list level for which
spacingisdone. Forexample:

.nrls O

specifies that no spacing will occur around any list items. The default value for
Lsis 6 (which is the maximum list nesting level).

The type argument may be given to obtain a different type of sequencing, and

its value should indicate the first element in the sequence desired, (i.e., it must

be 1, A, 3,1, or i). Note that the 0001 format is not permitted. If type is omitted

or null, then 1is assumed. If tezt-indent is non-null, it is used as the number of

spaces from the current indent to the text, it is used instead of Li for this list
“only. If tezt-indentis null, then the value of Li will be used.

If the third argument is given, a blank line will not separate the itemsin the list.
A blank line willoccur before the first item, however.
4.5.5 Bullet List
The list-initialization macro for a bullet listhas the form:

BL [text-indent] [1]
.BL begins a bullet list, in which each item is marked by a bullet () followed by
one space. If tezt-indent is non-null, it overrides the default indentation—the
amount of paragraph indentation as given in the register Pi.In the default case,
the text of bullet and dash lists lines up with the first line of indented -
paragraphs. If a second argument is specified, no blank lines will separate the
items in the list.
4.5.6 Dash List
The list-initialization macrofor dashlistshasthe form:

.DL [text-indent] (1]

.DLisidentical to.BL,exceptthata dashisusedinstead of a bullet.

422

MM Reference

4.5.7 Marked List
The form of the list-initialization macro for a markedlistis:
ML mark [text-indent] [1]

ML is much like .BL and .DL, except that it requires an arbitrary mark, which
may consist of more than asingle character. Text isindented tezt-indentspaces
if the second argument is not null; otherwise, the text is indented one more
space than the width of the mark. If the third argument is specified, no blank
lines will separate the items in the list. Note that the mark must not contain
ordinary (paddable) spaces, because alignment of items will be lost if the right
margin is justified.

4.5.8 Reference List
Thelist-initialization macro for areferencelisthastheform:
.RL [text-indent] [1]

A RL macro begins an automatically numbered list in which the numbers are
enclosed by square brackets ([]). The tezt-indent may be supplied, asfor.AL. If
omitted or null, it is assumed to be 6, a convenient value for lists numbered up
to 99. If the second argument is specified, no blank lines will separatethe items
in the list.

4.5.9 Variable-Item List
The list-initialization macrofor a variable-item list is:
.VL text-indent [mark-indent] [1]

When alistbeginswith a.VL,thereiseffectively no current mark;itisexpected
that each .LI provides its own mark. This form is typically used to display
definitions of terms or phrases. Mark-rndent gives the number of spaces from
the current indent to the beginning of the mark, and it defaults to 0 if omitted
ornull. Tezt-indentgives the distance from the current indent to the beginning
of the text. If the third argument is specified, no blank lines will separate the
itemsin the list. Hereis an example of . VL usage:

4-23

XENIX Text Processing

tr

.VL 20 2

.LI mark~1

Here is a description of mark 1;

mark 1 of the .LI line contains a tilde translated

to an unpaddable space in order to avoid extra spaces
between the mark and 1.

.LI second “mark

This is the second mark, also using a tilde translated
to an unpaddable space.

.LI third “mark “longer "than"indent:

This item shows the effect of a long mark; one space separates the matrk
from the text. '

LI~

This item has no mark because the

tilde following the .LI is translated into a space.

.LE
Thisyields:
mark”1 Here is a description of mark 1; mark 1 of the .LI line
contains a tilde translated to an unpaddable space in
order toavoid extra spaces between themark and 1.
second “mark Thisis the second mark, alsousinga tilde translated to

an unpaddable space.

third “mark"longer “than”indent This item shows the effect of a long mark;
onespace separates the mark from the text.

- This item has no mark because the tilde following the
.Llistranslated into a space.

The tilde argument on the last .LIabove isrequired; otherwisea hangingindent
would have been produced. A hanging indent is produced by using .VL and
calling .LIwith noargumentsor witha null first argument. For example:

.VL 10

.LI

Here is some text to show a hanging indent.
The first line of text is at the left margin.
The second is indented 10 spaces.

.LE

yields:

Here is some text to show a hanging indent. The first line of text is at
the left margin. The second isindented 10 spaces.

4-24

MM Reference

Note that the mark must not contain ordma.ry (paddable) spaces, because
alignment of items will be lostif the right margin is justified.

4.5.10 List-Begin Macro and Customized Lists
The list-begin macro has the form:
.LB text-indent mark-indent pad type [mark] [LI-space] [LB-space]

The list-initialization macros should be adequate for most cases. However, if
necessary, you may obtain more control over list layouts by using the basic
list-begin macro .LB.

A tezt-indent argument gives the number of spaces that the text is to be
indented from the current indent. Normally, this value is taken from the
register Li for automaticlistsand from the register Pi for bullet and dash lists.
The combination of mark-indent and pad determines the placement of the
mark. The mark is placed within an area (called ‘“mark area”) that starts
mark-indent spaces to the right of the current indent, and ends where the text
begins tezt-indent spaces to the right of the current indent. The mark-indent
argument is typically 0. Within the mark area, the mark is left-justified if pad
is 0. If pad is greater than 0, then n blanks are appended to the mark; the
mark-sndent value is ignored. The resulting string immediately precedes the
text. That is, the mark is effectively right-justified pad spaces immediately to
the left of the text.

Type and markinteract to controlthe type of marking used. If type is 0, simple
marking is performed using the mark character(s) found in the mark
argument. If type is greater than 0, automatic numbering or alphabetizing is
done, and mark is then interpreted as the first item in the sequence to be used
for numbering or alphabetizing (i.e., it is chosen from theset 1, A, a, I, i).

Each nonzero value of type from 1 to 6 selects a different way of displaying the
items. The following tableshowsthe output appearance for each valueof type:

Type Appearance

D RN
=

The mark must not contain ordinary (paddable) spaces, because alignment of
items will be lost if the right marginisjustified.

LI-epace givesthe number of blank lines (halvesof a vertical space) thatshould

be output by each .LI macro in the list. If omitted, LI-space defaults to 1; the
value0 can be used toobtaincompact lists. If LI-space is greater than 0, the .LI

4-25

XENIX Text Processing

macro issues a .ne request for two lines just before printing the mark. LB-
epace, the number of blank lines to be output by .LB itself, defaults to 0 if
omitted.

There are three reasonable combinations of LI-space and LB-space. The
normal case is to set LI-space to 1 and LB-space to 0, yielding one blank line
before each item in the list; such alist is usually terminated with a.LE 1 to end
the list with a blank line. For a more compact list, set LI-space to 0 and LB-
space to 1, and, again, use .LE 1 at the end of the list. The result isa list with one
blank line before and after it. If you set both LI-space and LB-space to 0, and
use .LE to end thelist, a list without any blank lines will result.

4.6 Displays

Displays are blocks of text that are to be kept together rather thansplitacross
pages. MM provides two styles of displays: a ‘‘static” (.DS) style and a
“floating” (.DF) style. In the static style, the display appears in the same
relative position in the output text asit doesin the inputtext. If the display will
not fit in the space remaining on a page, it will be shifted to the top of the next
page. This may result in extra whitespace at the bottom of some pages. In the
floating style, the display floats through the input text to the top of the next
page if there is not enough room for it on the current page; thus the input text
that follows a floating display may precede it in the output text. A queue of
floating displaysis maintained so that their relative order is not disturbed.

By default, a display is processed in no-fill mode, with singlespacing, and is not
indented from the existing margins. You can specify indentation or centering,
as well as fill-mode processing.

Displays and footnotes can never be nested in any combination. Although lists
and paragraphs are permitted, no headings (.H or .HU) can occur within
displaysor footnotes.

4.6.1 Static Displays

A static display macro has the form:

.DS [format] [fill] [rindent]
one or more lines of text
.DE

A static display is started by the .DS macro and terminated by the .DE macro.
With no arguments, .DS will accept the lines of text exactly as they are typed
(no-fill mode) and will not indent them from the prevailing left margin
indentation or from the right margin. The rindent argument is the number of
characters that the line length should be decreased, i.e., an indentation from
the right margin. This number must be unscaled in nroff and is treated asens.
It may be scaled in troff or else it defaults to ems.

4-26

MM Reference

The format argument to .DS is an integer or letter used to control the left
margin indentation and centering. The format argument can have the
following meanings:

Code Meaning

wn No indent

OorL No indent

lorl Indent by standard amount
20r C Center each line

3or CB Center as a block

The fill argument is also an integer or letter and can have the following
meanings:

Code Meaning
“n -fill mode
O or N Nofill mode
lorF Fill mode

Omitted arguments are interpreted as zero.

The standard indentation is taken from the Siregister which isinitially set at 5.
Thus, by default, the text of an indented display aligns with the first line of
indented paragraphs, whose indent is contained in the Piregister. Eventhough
their initial values are the same, these two registers are independent of one
another.

The display format value 3 (CB) centers the entire display as a block (as
opposed to .DS 2and .DF 2, which center each line individually). Thatis, all the
collected lines are left-justified, and the display is centered based on the width
of the longest line. This format must be used in order for the eqn/neqn mark
and lineup feature to work with centered equations.

By default, a blank line is placed before and after displays. The blank lines
before and after static displays can be inhibited by setting the register Ds to 0.

4.8.2 Floating Displays
The floating display macro has the form:

.DF [format] [fill] [rindent]
one or more lines of text

.DE

A floating display is started by the .DF macro and terminated by the .DE
macro. The arguments have the same meanings as for .DS (see Section 4.6.1,
“Static Displays’’), except that for floating displays, indent, no indent, and
centering are always calculated with respect to the initialleft margin, because
the prevailing indent may change between the time when the formatter first

427

XENIX Text Processing

reads the floating display and the time that the display is printed. One blank
line alwaysoccursboth before and after afloating display.

You may control output positioning of floating displays through two number
registers, De and Df. When a floating display is encountered by nroff or troff,
it is processed and placed into a queue of displays waiting to be output.
Displays are removed from the queue and printed in the order that they were
entered in the queue, which is the order that they appear in the input file. If a
new floating display is encountered and the queue of displays is empty, the new
display is a candidate for immediate output on the current page. Immediate
output is governed by the size of the display and the setting of the Df register.
The De register controls whether or not text will appear on the current page
after afloating display has been produced.

The settings for the De register areasfollows:

0 Default: Nospecial actibn occurs.

1 A page eject will always follow the output of each floating display,
so only one floating display will appear on a page and no text will
followit.

The settingsfor the Df register are asfollows:

0 Floating displays will not be output until end of section (when using
section-page numbering) or end of document.

1 Outputs the new floating display on the current page if there is
room, otherwise hold it until the end of the section or document.

2 Outputsexactly one floating display from the queue at the top of a
new page or column (when in two-column mode).

3 Outputs one floating display on current page if there is room.
Outputs exactly one floating display at the top of a new page or
column.

4 Outputs as many displays as will fit (at least one), starting at the

top of a new page or column. Note that if register De is set to 1, each
display will be followed by a page eject, causinga new top of page to
be reached, where atleast one more display will be output.

5 Default. Outputs a new floating display on the current page if there
isroom. Outputs as many displaysas will fit starting at thetopof a
new page or column. Note that if register De isset to 1, each display
will be followed by a page eject, causing a new top of page to be
reached, where at least one more display will be output.

Note: any value greater than Sistreated as the value 5.

4-28

MM Reference

The .WC macro may also be used to control handling of displays in double-
column mode and to control the break in the text before floating displays.

As long as the queue contains one or more displays, new displays will be
automatically added to the queue, rather than be output. When a new page is
started (or when at the top of the second column in two-column mode), the next
display from the queue will be output if the Df register has specified top-of-page
output. When a display is output itisremoved from the queue.

When the end of a section (when using section-page numbering) or the end of a
document is reached, all displays are automatically output and removed from
the queue. This will occur before an.SG,.CS, or .TC macrois processed.

A display fits on the current page if there is enough room to contain the entire
display on the page, or if the display islonger than one page inlength and less
than half of the current page has been used. Wide (full page width) display will
never fitin the second column of a two-column document. ’

4.6.3 Tables

The table macro has the form:

TS [H]

global options;
column descriptors.
title lines

[.THN]]

data within the table.
.TE

The table start (.TS) and table end (. TE) macros allow use of the tbl processor.
They are used to delimit the text to be examined by the tbl program as well as
to set proper spacing around the table. The display function and the tbl
delimiting function are independent of one another, however. In order to keep
together blocks that containany mixture of tables, equations, filled and unfilled
text, and caption lines, the .TS-.TE block should be enclosed within a display
(.DS-.DE), as each display is always treated as a unit. Floating tables may be
enclosed inside floating displays (.DF-.DE). (For more information on displays,
see Section 4.6, “‘Displays”.)

The macros .TS and .TE also permit processing of tables that extend over
several pages. If a table heading is needed for each page of a multipage table,
use the argument H with the .T'S macro (as above). Following the options and
format information, the table headingis typed on as many lines as required and
followed by the .TH (table header) macro. The .TH macro must occur when
.TS His used. Note that thisis not a feature of tbl, but rather of MM macro
definitions.

429

XENIX Text Processing

The table header macro .TH may take as an argument the letter N. This
argument causes the table header to be printed only if it is the first table header
on the page. This option is used when it is necessary to build long tables from
smaller . TS H-.TE segments. For example:

STSH

global options;
column descriptors.
Title lines

.TH

data

.TE

.TSH

global options;
column descriptors.
Title lines

.THN

data

.TE

This causes the table heading to appear at the top of the first table segment, and
no heading to appear at the top of the second segment when both appear on the
same page. However, the heading will still appear at the top of each page that
the table continues onto. This feature is used when a single table must be
broken into segments because of table complexity (for example, too many
blocks of filled text). If each segment had its own .TS H-TH sequence, each
segment would have its own header. However, if each table segment after the
first uses. TS H.TH N then the table header will only appear at the beginning of
the table and thetopof eachnew page or column that the table continuesonto.

4.6.4 Equations

The equationmacrohasthe form:

.DS1
.EQ [label]

equation(s)
DE

The equation formatters eqn and neqn use the the equation start (.EQ) and
equation end (.EN) macros as delimiters.in the same way that tbluses.TS and
.TE; however, .EQ and .EN must occur inside a .DS-.DE pair. There is an
exception to this rule: if .EQ and .EN are used only to specify the delimiters for
in-line equations or to specify eqn/neqn “defines”, .DS and .DE must not be
used; otherwise, extra blank lines will appear in the output.

The .EQ macro takes an argument that will be used as a label for the equation.
By default, the label appears at the right margin in the vertical center of the

430

MM Reference

general equation. The Eq register may be set to 1 to set the label at the left
margin. The equation is centered for centered displays; otherwise, the e quation
is adjusted to the opposite margin from the label.

4.6.5 Figure, Table, Equation, and Exhibit Captions

Themacrosfor captionshave the form:

.FG [title] [override] [flag]

.TB |[title] [override| [flag
EC |title| [override| [flag
EX [title| [override]| |flag

The figure title (.FG), table title (.TB), equation caption (.EC), and exhibit
caption (.EX) macros are normally used inside .DS-.DE pairs to automatically
number and title figures, tables, and equations. They use registers Fg, Tb, Ec,
and Ex, respectively. Asan example, the macro:

JFG "This is an illustration”
yields:
Figure 1. This is an illustration

Instead of ‘‘Figure” TB prints “TABLE”; .EC prints ‘“Equation’’, and .EX
prints “Exhibit”. Output is centered if it can fit on a single line; otherwise, all
lines but the first are indented to line up with the first character of the table
title. The format of the numbers may be changed using the .af request of the
formatter. The format of the caption may be changed from “Figure 1. Title” to
“Figure 1- Title’’ by setting the Of register to 1.

The override string is used to modify the normal numbering. If flag isomitted
or 0, override is used as a prefix to the number; if flag is 1, override isused asa
suffix; and if flag is 2, override replaces the number. If the -rN5 flag is given,
section-figure numbering is set automatically and the override string is
ignored.

As a matter of style, table headings are usually placed ahead of the text of the
tables, while figure, equation, and exhibit captions usually occur after the
corresponding figures and equations.

4.8.8 List of Figures, Tables, Equations, and Exhibits

Listsof Figures, Tables, Equations, and Exhibits may be obtained. Theywill be

printed after the Table of Contents s printed if thenumber registersLf,Lt,Lx,
andLearesetto 1. Lf,Lt,and Lx are 1 by default; LeisO by default.

4-31

XENIX Text Processing

The titles of these lists may be changed by redefining the following strings
which are shown here with their default values:

.ds Lf LIST OF FIGURES

.ds Lt LIST OF TABLES

.ds Lx LIST OF EXHIBITS
.ds Le LIST OF EQUATIONS

4.7 Footnotes

There are two macros that delimit the text of footnotes, a string used to
automatically number the footnotes, and a macro that specifies the style of the
footnote text. Like displays, footnotes are processed differently from the body
of the text.

Footnotes may be automatically numbered by typing the three characters
“*F” immediately after the text to be footnoted, without any intervening
spaces. This will place the next sequential footnote number (in a smaller point.
size) ahalf-lineabove the text to be footnoted.

There are two macros that delimit the text of each footnote:

.FS [label]
one or more lines of footnote text
.FE

The footnote start (.FS) macro marks the beginning of the text of the footnote,
and the footnote end (.FE) macro marksitsend. The label on .FS, if present,
will be used to mark the footnote text. Otherwise, the number retrieved from
the *F will be used. Automatically numbered and user-labeled footnotes may
be intermixed. If a footnote is labeled .F'S the text to be footnoted must be
followed by ‘‘label,” rather than by \sF. The text between .FS and .FE is
processed in fill mode. Another .FS, a.DS, or a .DF are not permitted between
the .FS and .FE macros. Automatically numbered footnotes may not be used
for information, such as the title and abstract, to be placed on the cover sheet,
but labeled footnotes are allowed. Similarly, only labeled footnotes may be
used with tables. Here are two examples:

1. Automatically numbered footnote:

This is the line containing the word *F
FS

This is the text of the footnote.

.FE

to be footnoted.

432

MM Reference

2. Labeled footnote:

This is a labeled*

FS*

The footnote is labeled with an asterisk.
FE

footnote.

The text of the footnote (enclosed within the .FS-.FE pair) should immediately
follow the word to be footnoted in the input text, so that *F or label occurs at
the end of a line of input and the next line is the .FS macro call. It is also good
practice to append an unpaddable space to ‘‘label” when it follows an end-of-
sentence punctuation mark (i.e., period, question mark, exclamation point).

4.7.1 Format of Footnote Text

The footnote format macro has the form:
.FD [arg] [1]

Within the footnote text, you can control the formatting style by specifying
text hyphenation, right margin justification, and text indentation, as well as
left- or right-justification of the label when text indenting is used. The .FD
macro isinvoked to select the appropriatestyle. The firstargumentshouldbea
number from the left column of the following table. The formatting style for
each number is given by the remaining four columns. For further explanation
of the first two of these columns, see the definitions of the .ad, .hy, .na,and .nh
requests.

ARGUMENT | FORMATTING STYLE

0 .nh | .ad | text indent | label left-justified
1 hy | .ad | text indent [label left-justified
2 .nh | .na | text indent | label left-justified
3 hy | .na | text indent | label left-justified
4 .nh | .ad | no indent label lefi-justified
5 .hy | .ad | no indent label left-justified
6 .nh | .na | noindent label left-justified
7 :hy | .na | noindent label teft-justified
8 .nh | .ad | textindent | label right-justified
9 .hy | .ad | text indent | label right-justified
10 .nh | .na | text indent | label right-justified
11 hy | .na | text indent ! label right-justified

If the first argument to .FD is out of range, the effect isasif .FD 0 were specified.
If the first argument is omitted or null, the effect is equivalent to.FD 10in nroff
and to.FD 0 in troff; these are also the respective initial defaults.

4-33

XENIX Text Processing

If a second argument is specified, then whenever a first-level heading is
encountered, automatically-numbered footnotes begin again with 1. This is
most useful with the section-page page numbering scheme. Asanexample, the
input line:

FD "™ 1

maintains the default formatting style and causes footnotes to be numbered
beginning with 1 after each first-level heading.

For long footnotes that continue onto the following page, it is possible that, if
hyphenation is permitted, the last line of the footnote on the current page will
be hyphenated. Except for this case (which you can change by specifying an
even-numbered argument to .FD), hyphenation across pages is inhibited by
MM.

Footnotes are separated from the body of the text by a short rule. Footnotes
that continue to the next page are separated from the body of the text by a full-
width rule. In troff, footnotes are set in type that is two points smaller than the
pointsize usedin the body of the text.

Normally, one blank line (a three-point vertical space) separates the footnotes
when more than one occurs on a page. To change this spacing, set the register
Fstothe desired value. For example:

.nr Fs 2

will cause two blank lines {(a six-point vertical space) to occur between
footnotes.

4.8 Page Headers and Footers

Text that occurs at the top of each page is known as the “page header”. Text
printed at the bottom of each page is called the ‘‘page footer’’. Therecan be up
tothreelinesof textassociated withtheheader:everypage,even pageonly,and
odd page only. Thus the page header may have up to two lines of text: the line
that occurs at the top of every page and the line for the even- or odd-numbered
page. The same is true for the page footer. When not qualified by “even” or
“odd”, “header” and “footer’ will mean those headers and footers that occur
on every page. The default appearance of page headers and page footers is
described here, followed by themethodsfor changing them.

4.8.1 Default Headers and Footers
By default, each page has a centered page number as the header. There is no

default footer and no even/odd default headers or footers, except with section-
page numbering.

4-34

MM Reference

In a memorandum or a released paper, the page header on the first page is
automatically suppressed, if a break doesnot occur before MT is called. Since
they do not cause a break, the header and footer macros are permitted before
the MT macro call.

4.8.2 Page Header

The page header macro has the form:

.PH [arg]

For this and for the .EH, .OH, .PF, .EF, and .OF macros, the argument is of the
form:

"’left-part’center-part’right-part’™

If it is inconvenient to use the apostrophe (’) as the delimiter (because it occurs
within one of the parts), it may be replaced uniformly by any other character.
On output, the parts are left-justified, centered, and right-justified,
respectively.

The .PH macro specifies the header that is to appear at the top of every page.
The initial value is the default centered page number enclosed by hyphens. The
page number contained in the P register is an Arabic number. The format of
thenumber may be changed by the.af request.

If ““debug mode” is set using the flag -rD1 on the command line, additional

information, printed at the top left of each page, is included in the default
header.

4.8.3 Even-Page Header

The even-page header macro has the form:
.EH [arg]

The .EH macro supplies a line to be printed at the top of each even-numbered
page, immediately following the header. Theinitial valueisa blank line.

4.8.4 Odd-Page Header
The odd-page header macro has the form:
.OH |[arg]

Thismacroisthe same as .EH, except that it applies to odd-numbered pages.

4-35

XENIX Text Processing

4.8.5 Page Footer
The form of the page footer macro is:
.PF [arg]

The .PF macro specifies the line that is to appear at the bottom of each page. Its
initial value is a blank line. If the -rCn flag is specified on the command line, the
type of copy follows the footer on a separate line. In particular, if-rC3 or -rC4
(DRAFT) is specified, then the footer is initialized to contain the date, instead
of being a blank line.

4.8.6 Even-Page Footer
. The even-page footer macro has the form:

EF [arg]
The .EF macro supplies a line to be printed at the bottom of each even-
numbered page, immediately preceding the footer. The initial value is a blank
line.
4.8.7 Odd-Page Footer
The odd-page footer macro hasthe form:

.OF [arg]
This macro is the same as .EF (described in Section 4.8.6), except that it applies
toodd-numbered pages.
4.8.8 Footer on the First Page
By default, the footer on the first page is a blank line. If, in the input text, you
specify .PF and/or .OF before the end of the first page of the document, then
these lines will appear at the bottom of the first page. The header (whatever its
contents) replaces the footer on the first page only if the-rN1 flag isspecifiedon
the command line.
4.8.9 Default Header and Footer With Section-Page Numbering
Pages can be numbered sequentially within sections. Toobtainthisnumbering
style, specify -rN3 or -rN5 on the command line. In this case, the default footer

is a centered section-page number (e.g., 7-2) and the default page header is
blank.

4-36

MM Reference

4.8.10 Strings and Registers in Header and Footer Macros

String and register names may be placed in the arguments to the header and
footer macros. If the value of the string or register is to be computed when the
respective header or footer is printed, the invocation must be escaped by four
backslashes. This is because the string or register invocation is actually
processed three times: as the argument to the header or footer macro; in a
formatting request within the header or footer macro; and in a .tl request
during header or footer processing.

For example, the page number register P must be escaped with four
backslashes in order to specify a header in which the page number is to be
printed at the right margin:

.PH ""’Page \\\\nP”

This creates a right-justified header containing the word “Page” followed by
the page number.

4.8.11 Header and Footer Example

The following sequence specifiesblank lines for the header and footer lines, page
numberson theoutsideedgeof each page (i.e., topleftmarginof even pagesand
top right margin of odd pages), and “Revision 3” on the top inside margin of
each page:

PH"
PF "
.EH "’\\\\nP’'Revision 3"
.OH "’Revision 3”\\\\nP”

4.8.12 Generalized Top-of-Page Processing

This section and the next are intended only for users accustomed to writing
formatter macros. During header processing, MM invokes two user-definable
macros. One, the . TP macro, isinvoked in the environment of the header. The
PX macromay beused to provide text that is to appear at the top of each page
after the normalheader and that may have tab stopstoalignit with columnsof
textin thebody of the document.

The effective initial definition of .TP (after the first page of a document)is:

437

XENIX Text Processing

.de TP

sp 3

A \\s(e}t
if e ’tl

if o't
.sp 2

The string }t contains the header, the string }e contains the even-page header,
and the string }o contains the odd-page header, as defined by the .PH, .EH, and
.OH macros, respectively. To obtain more specialized page titles, you may
redefine the .TP macro to cause any desired header processing. Note that
formatting done within the .TP macro is processed in an environment different
from that of the body.

For example, to obtain a page header that includes three centered lines of data,
say, a document’s number, issue date, and revision date, you could define .TP
asfollows:

.de TP

.Sp
.ced

777-888-999

Iss. 2, AUG 1977
Rev. 7, SEP 1977

.Sp

4.8.13 Generalized Bottom-of-Page Processing

Thebottom start macrohastheform:

.BS
zero or more lines of text
.BE

Lines of text that are specified between the bottom-block start (.BS) and
bottom-block end (.BE) macros will be printed at the bottom of each page after
the footnotes (if any), but before the page footer. This block of text is removed
by specifying an empty block, i.e.:

.BS
.BE

4.8.14 Top and Bottom Margins

Thevertical marginmacrohastheform:

4-38

MM Reference

.VM [top] [bottom)

The vertical margin (.VM) macro allows you to specify extra space at the top
and bottom of the page. This space precedes the page header and follows the
page footer. The .VM macro takestwo unscaledargumentsthataretreatedas
v’s. For example:

.VM 10 15

adds 10 blank lines to the default top of page margin, and 15 blank linesto the
default bottom of page margin. Both arguments must be positive (default
spacing at the top of the page may be decreased by redefining . TP).

4.9 Table of Contents

The table of contents for a document is produced by invoking the table of
contents (.TC) macro. The table of contents is produced at the end of the
writingprocessbecause the entire document must be processed before the table
of contentscan be generated. Thetable of contents macro hasthe form:

.TC [slevel] [spacing] [tlevel] [tab] [head]] ... [headT)

The .TC macro generates a table of contents containing the headings that were
saved for the table of contents as determined by the value of the Cl register.
The arguments to .TC control thespacing before each entry, the placement of
the associated page number, and additionaltext on the first page of the table of
.contentsbeforethe word “CONTENTS”.

Spacing before each entry is controlled by the first two arguments; headings
whose level is less than or equal to slevel will have epacing blank lines (halves of
a vertical space) before them. Both eleveland spacing default to 1. This means
that first-level headings are preceded by one blank line. Note that slevel does
not control what levels of heading have been saved; that is controlled by the
setting of the Clregister.

The third and fourth arguments control the placement of the page number for
each heading. The page numbers can be justified at the right margin with
either blanks or leader dots separating the heading text from the page number,
or the page numbers can follow the heading text. For headings whose level is
less than or equal to tle vel (default 2), the page numbers are justified at the right
margin. In this case, the value of tab determines the character used to separate
the heading text from the page number. If tab is 0 (the default value), dots(i.e.,
leaders) are used; if tab is greater than 0, spaces are used. For headings whose
level is greater than tlevel, the page numbers are separated from the heading
text by two spaces(i.e.,they are ragged right).

All additional arguments (e.g., headl, head2), if any, are horizontally centered
onthe page, and precede the actual table of contentsitself.

4-39

XENIX Text Processing

If the .TC macro is invoked with at most four arguments, then the user-exit
macro .TX is invoked (without arguments) before the word “CONTENTS” is
printed; or the user-exit macro .TY isinvoked and the word “CONTENTS” is
not printed. By defining .TX or .TY and invoking .TC with at most four
arguments, you canspecify what needs to be done at the top of the (first) page of
the table of contents.

By default, the first level headings will appear in the table of contentsat the left
margin. Subsequent levels will be aligned with the text of headings at the
preceding level. These indentations may be changed by defining the Ci string
which takes a maximum of seven arguments corresponding to the heading
levels. It must be given at least asmany arguments as are set by the Cl register.
Theargumentsmustbe scaled. Forexample, with Cl1 =5,

.ds Ci .2561.51.75i 1i 1i
or
.ds Ci 0 2n 4n 6n 8n

Two other registers are available to modify the format of the table of contents,
Oc and Cp. By default, table of contents pages will have lowercase Roman
numeral page numbering. If the Oc register is set to 1, the .T'C macro will not
print any page number but will instead reset the P register to 1. It is your
responsibility to give an appropriate page footer to place the page number.
Ordinarily the same .PF used in the body of the document and exhibits will be
adequate. The List of Figures and List of Tables will be produced separately
unless Cp is set to 1 which causes these lists to appear on the same page as the
table of contents.

4.10 References

There are two macros that delimit the text of references, a string used to
automatically number the references, and an optional macro that produces
reference pages within the document.

4.10.1 Automatic Numbering of References

Automatically numbered references may be obtained by typing *(Rf
immediately after the text to be referenced. This places the next sequential
reference number (in a smaller point size) enclosed in brackets a half-line above
the text to be referenced.

4.10.2 Delimiting Reference Text

The .RS and .RF macros are used to delimit textfor each reference. They have
the following form:

4-40

MM Reference

A line of text to be referenced.*(Rf
.RS [string-name]

reference text

.RF

4.10.3 Subsequent References
.RStakesone argument, a ‘‘string-name’’. For example:

RS AA
reference text
.RF

Thestring AA isassigned the current reference number. It may beused later in
the document, as the string call *(AA to reference text which must belabeled
with a prior reference number. The reference is output enclosed in brackets a
half-line above the text to be referenced. No .RS or RF isneeded for subsequent
references.

4.10.4 Reference Page

An automatically generated reference page is produced at the end of the
document before the table of contents and the cover sheet are output. -‘The
reference page is entitled “References”. This page contains the reference text
(RS/RF). The user may change the reference page title by defining the Rp
string. For example,

.ds Rp "New Title”

The optional reference page (.RP) macro may be used to produce reference
pagesanywhere within a document (i.e., within heading sections).

.RP [argl] [arg2]

These arguments allow the user to control resetting of reference numbering
and page skipping. The first argument with a value of 0 indicates that the
reference counter is to be reset; this is the default. A value of 1 indicates that
the counter will not be reset. In the second argument, a value of 0 causes a
following .SK; a value of 1 does not cause an .SK. .RP need not be used unless
you want to produce reference pageselsewhere in the document.

4.11 Miscellaneous Features

In this section a number of MM features to control font, spacing, justification,
multiple-column output and page skipping are discussed.

4-41

XENIX Text Processing

4.11.1 Bold, Italic, and Roman Fonts
Fontchangesare obtained with the following macros:

.B [bold-arg] [previous-font-arg] ...
I [italic-arg] [previous-font-arg] ...

When called without arguments, .B changes the font to bold and .I. changes to
italic (troff) or underlining (nroff). This condition continues until the
occurrenceof a.R, whentheregular Romanfontisrestored. Thus,

I
here is some text.
.R

yields:
here 16 some tezt.

If .B or .I is called with one argument, that argument is printed in the
appropriate font (underlined in nroff for .I). Then the previous font is restored
(underlining is turned off in nroff). If two or more arguments (maximum 6) are
givento a .Bor .I, the second argument is then concatenated to the first with no
intervening space (1/12-space if the first font is italic), but is printed in the
previous font; and the remaining pairs of arguments are similarly alternated.
For example:

Jitalic 7 text " right -justified
produces:

ttalic text right-justified

These macros alternate with the prevailing font at the time they are invoked.
To alternate specific pairs of fonts, the following macrosare available:

IB
.BI
IR
RI
.RB
.BR

Each takes a maximum of 6 arguments and alternates the arguments between
the specified fonts. Note thatfont changesin headings are handled separately.

4-42

MM Reference

4.11.2 Right Margin Justification

The justification macro hasthe form:
SA [arg]

The .SA macro is used to set right-margin justification for the main body of
text. Two justification flagsare used: ““current’ and ‘“default”. .SAQ setsboth
flags to no justification (i.e., it acts like the .na request). .SA 1istheinverse: it
sets both flags to cause justification, just like the .ad request. However, calling
.SA without an argument causes the current flag to be copied from the default
flag, thus performing either an .na or .ad, depending on what the default is.
Initially, both flags are set for no justification in nroff and for justification in
troff.

In general, the request .na can be used to ensure that justification is turned off,
but .SA should be used to restore justification, rather than the .ad request. In

this way, justification or lack thereof for the remainder of the text is specified
by inserting .SA Oor .SA 1once at the beginning of the document.

4.11.3 SCCS Release Identification

The string .ft 1 E contains the SCCS Release and Level of the current version
of MM. For example, typing:

This is version *(RE of the macros.
broduces:

This is version 15.110 of the macros.
This information is useful in analyzing suspected bugsin MM. The easiest way
to have this number appear in your output is to specify -rD1 on the command
line, which causesthestringRE to be output aspart of the page header.

4.11.4 Two-Column Output

MM can print two columnson a page:

.2C
text and formatting requests (except another .2C)
.1C

The .2C macro begins two-column processing which continues until a .1C
macro is encountered. In two-column processing, each physical pageis thought
of as containing two columnar pages of equal (but smaller) page width. Page
headers and footers are not affected by two-column processing. The .2C macro

443

XENIX Text Processing

doesnot balance two-column output.

It is possible to have full page width footnotes and displays when in two column
mode, although the default action is for footnotes and displays to be narrow in
two column mode and wide in one column mode. Footnote and display width is
controlled by the width control ((WC) macro, which takes the following
arguments:

N Normal default mode

WF Wide footnotes always (even in two-column mode)

-WF Default: turns off WF (footnotes follow column mode, wide in 1C
mode, narrowin2Cmode, unlessFF isset)

FF First footnote; all footnotes have the same width as the first
footnote encountered for that page

-FF Default: turns off FF (footnote style follows the settings of WF or
-WF)

WD Wide displays always(even in two column mode)

-WD Default: Displays follow whichever column mode is in effect when

the display isencountered

For example: .WC WD FF will cause all displaysto be wide, and all footnoteson
a page to be the same width, while .WC N will reinstate the default actions. If
conflicting settings are given to .WC the last one is used. Thatis, .WC WF -WF
has the effect of . WC-WF.

4.11.5 Vertical Spacing

The vertical space macro has the form:
.SP |[lines]

The .SP macro avoids the accumulation of vertical space by successive macro
calls. Several .SP calls in a row produce not the sum of their arguments, but
their maximum; i.e., the following producesonly 3 blank lines:

SP 2
SP 3
.SP

There are several ways of obtaining vertical spacing, all with different effects.
The .sp request spaces the number of lines specified, unless no-space (.ns) mode
is on, in which case the request is ignored. The .ns mode is typically set at the
end of a page header in order to eliminate spacing by a .sp or .bp request that

4-44

MM Reference

just happens to occur at the top of a page. The .ns mode can be turned off with
the restore spacing (.rs) request.

Many MM macros utilize .SP for spacing. For example, .LE 1 immediately
followed by .P producesonly a single blank line between the end of the list and
the following paragraph. An omitted argument defaults to one blank line (one
vertical space). Negative argumentsare not permitted. The argument must be
unscaled but fractional amounts are permitted. Like .sp, .SP is also inhibited
by the .ns request.

4.11.8 Skipping Pages
The skip page macro has the form:

SK [pages]
The .SK macro skips pages, but retains the usual header and footer processing.
If pages is omitted, null, or 0, .SK skips to the top of the next page unless it is
currently at the top of a page, in which case it doesnothing. .SK nskipsn pages.
That is, .SK always positions the text that followsit at the top of a page, while
.SK lalwaysleavesone page that is blank exceptfor the header and footer.
4.11.7 Forcing an Odd Page
The odd page macro has the form:

.OP
This macro is used to ensure that the following text begins at the top of an odd-
numbered page. If currently at the top of an odd page, no motion takes place. If
currently on an even page, text resumes printing at the top of the next page. If
currently on an odd page (but not at the top of the page) one blank page is
produced, and printing resumeson the page after that.
4.11.8 Setting Point Size and Vertical Spacing
In troff, the default point size (obtained from the register S)is 10, with a
vertical spacing of 12 points. The prevailing point size and vertical spacing
may be changed by invoking the .S macro:

.S [point size] [vertical spacing]

The mnemonics, D for default value, C for current value, and P for previous
value, may be used for both point size and vertical spacing arguments.

Arguments may be signed or unsigned. If an argument is negative, the current
value is decremented by the specified amount. If the argument is positive, the

4-45

XENIX Text Processing

current value is incremented by the specified amount. If an argument is
unsigned, it is used as the new value. .S without argumentsdefaults to previous
(P). If the first argument is specified but the second argument (vertical spacing)
isnot then thedefault (D) valueis used. The default value for vertical spacingis
always 2 points greater than the current point size value selected. Footnotes
are printed in a size 2 points smaller than the point size of the body, with an
additional vertical spacing of 3 points between footnotes. A null ("”)argument
foreither the first or second argument defaults to the current (C) value.

4.11.9 Inserting Text Interactively
The readinsertion macro hasthe form:
.RD [prompt] [diversion] [string]

The read insertion macro (.RD) allows you to stop the standard output of a
document and to read text from the standard input until two consecutive
newlines are found. When the newlines are encountered, normal output is
resumed. '

.RD follows the formatting conventions already in effect. Thus, the examples
below assume that the .RD isinvoked in no fill mode (.nf). The first argument is
a prompt which will be printed at the terminal. If no prompt is given, .RD
signals the user with a bell on terminal output.

The second argument, a diversion name, allows the user to save all the entered |
text typed after the prompt. The third argument, a string name, allows the
user to save for later reference the first line following the prompt. For example:

.RD Name aa bb
produces
Name: C. R. Jones
16 Densmore St,
Kensington
The diversion aa contains:
C. R. Jones
16 Densmore St,
Kensington

The string bb contains C.R. Jones.

A newline followed by a CNTRL-D (ASCI end-of-file) also allows you to
resumenormal output.

4-46

MM Reference

4.12 Memorandum and Released Paper Styles

MM lets you specify astyle for a memorandum or technical paper with a macro
that controlsthe layout of heading information (e.g. title,author,date, etc.) on
the first page or cover sheet. The information is entered in the same way for
both styles; an argument indicates which style is being used. The macros used
tospecily paper style are described in thissection.

Note that it is critical to enter the macros in the order prescribed here. If
neither the memorandum nor released-paper style is desired, the macros
described below should be omitted from the input text. If these macros are
omitted, the first page will simply have the page header followed by the body of
the document.

4.12.1 Title

Thetitle macrohastheform:

.TL
one or more lines of title text

The title of the memorandum or paper follows the .TL macro and is processed
in fill mode. On output, the title appears after the word “subject” in the
memorandum style. Inthereleased-paperstyle, thetitleiscenteredand bold.

4.12.2 Authors
Theauthormacrohastheform:

.AU name [initials]
AT [title] ...

Aseparate AUmacroisrequired for each author named.

The .AT macro is used to specify the author’s title. Up to nine argumentsmay
be given. Each will appear in the Signature Block for memorandum style on a
separate line following the signer’s name. The .AT must immediately follow
the .AU for the given author. For example:

AU "C. R. Jones” [initials] [loc] [dept] [ext] [room]
.AT "Editor-in-chief”

In the “from” portion for the memorandum style, the author’sname is followed
by location and department number on one line and by room number and
extension number on the next. The x for the extension is added automatically.
The printing of the location, department number, extension number, and room
number may be suppressed on the first page of a memorandum by setting the

447

XENIX Text Processing

register Au to 0; the default value for Auis 1. Arguments7 through 9ofthe .AU
macro, if present, will follow this *‘normal’ author information in the “from”
portion, each on a separate line. If your organization has a numbering scheme
for memoranda, engineer’s notes, etc., these numbers are printed after the
author’s name. This can be done by providing extra arguments to the .AU
macro.

The name, initials, location, and department are also used in the Signature
Block described below. The author information in the from portion, as well as
the names and initials in the Signature Block will appear in the same order as
the AUmacros. :

The names of the authors in the released-paper style are centered below the
title.

4.12.3 Technical Memorandum Numbers
The technical memorandum macro hasthe form:
.TM [number] ...

If the memorandum is a Technical Memorandum, the TM numbers are
supplied via the .TM macro. Up to nine numbers may be specified. For
‘example:

.TM 7654321 77777777

If present, this macro will be ignored in papers assigned the released-paper or
external-letter styles.

4.12.4 Abstract
Theabstract macro hastheform:

.AS [arg] [indent]
text of the abstract
AE

Three styles of cover sheet are available: Technical Memorandum,
Memorandum forFile, and released-paper. On the cover sheet, the text of the
abstract follows the author information and is preceded by the centered and
underlined (italic) word “ABSTRACT".

The abstract start (.AS) and abstract end (.AE) macros bracket the abstract.

The abstract is optional except that for the Memorandum for File style no
coversheet will be produced unlessanabstractisgiven.

4-48

MM Reference

A combination of the first argument to .AS and the use of the .CS macro (see
Section 4.12.15) controls the production of the cover sheet. If the first
argument is 2, a Memorandum for File cover sheet is generated automatically.
Any other value for the first argument causes the text of the abstract to be
saved until the .CSmacroisinvoked, then the appropriate cover sheet (either
Technical Memorandum or released paper depending on the .MT type) is
generated. Thus, .CS is not needed for Memorandum for File cover sheets.
Notations, such as a copy to list, are allowed on Memorandum for File cover
sheets. The.NSand .NEmacrosare givenfollowingthe . AS2and .AE.

The abstract is printed with ordinary text margins. Anindentation to be used
for both margins can be specified as the second argument for .AS. Valuesthat
specify indentation must be unscaled and are treated as character positions,
i.e., as the number of ens. Headings and displays are not permitted within an
abstract.

4.12.5 Other Keywords
The keyword macro has the form:

.OK [keyword] ...
Topicalkeywordsshouldbespecifiedon a Technical Memorandum coversheet.
Up to nine such keywordsor keyword phrases may be specified asarguments to
the .OK macro; if any keyword contains spaces, it must be enclosed within
double quotation marks. ‘
4.12.6 Memorandum Types
The memorandum type macro has the form:

MT [type] [addressee]
The .MT macro controls the format of the top part of the first page of a

memorandum or of a released paper, as well as the format of the cover sheets.
Legal codesfor type and the corresponding valuesare:

Code Value

MT " No memorandum type is printed
MTO No memorandum type is printed
MT MEMORANDUM FOR FILE
MT 1 MEMORANDUM FOR FILE
MT 2 PROGRAMMER'’S NOTES
MT 3 ENGINEER’S NOTES

MT 4 Released-paper style

MT 5 External-letter style

.MT "string” String

4-49

XENIX Text Processing

If type indicates a memorandum style, then the value will be printed after the
last line of author information. If type is longer than one character, then the
string itself will be printed. For example:

.MT "Technical Note #5”

A simple letter is produced by calling .MT with a null (but not omitted!) or zero
argument.

The second argument to .MT is used to give the name of the addressee of a
letter. The name and page number will be used to replace the ordinary page
header on the second and following pages of the letter. For example,

.MT 1 " Charles Jones”
produces

Charles Jones - 2
as the header on the second page.

This second argument may not be used if the first argument is 4 (the released-
paper style).

In the external-letter style (MT 5), only the title (without the word “subject:’’)
is printed in the upper left and right corners, respectively, on the first page.
You would normally use this style with preprinted stationery that has the
company name and address already printed on it.

4.12.7 Date and Format Changes

By default, the current date appears in the date part of a memorandum. This
can be overridden by using;:

.ND new-date

The ND macro alters the value of the string DT, which is initially set to the
current date.

4.12.8 Alternate First-Page Format

You can specify that the words ‘‘subject”, “‘date”, and “from” be omitted in
the memorandum style by using the alternate format (.AF) macro. Unless you
use the .AF macro, with your own company name as an argument, ‘‘Bell
Laboratories’” will automatically be printed as the company name on any
papers which begin with .MT macros. Therefore, you will always want to use:

4-50

MM Reference

AF [company-name|

If an argument is given, it replaces “Bell Laboratories’’ without affecting the
other headings. The .AF with no argument suppresses “Bell Laboratories’’ as
well as the ‘““subject’’, “date”, and ‘from” headings. The use of .AF with no
argumentsisequivalent to theuseof—-rAl on the command line, except that the
latter must be used ifit isnecessary tochangethelinelength and/or page offset
(which default to 5.8i and 1i, respectively, for preprinted forms). The
command line options -rOk and -rWk are not effective with .AF.

The only .AF option aﬁpropriate for troff is to specify an argument to replace
“Bell Laboratories” with another name.

4.12.9 Released-Paper Style
The released-paper styleisobtained by specifying:
MT 4 [])

This results in a centered, bold title followed by centered names of authors.
The location of the last author is used as the location following *‘Bell
Laboratories’” unless .AF is used to specify a different company. If the optional
second argument to .MT 4is given, Then the name of each authorisfollowed by
the respective company name and location. Information necessary for the
memorandum style but not for the released-paper style is ignored. The
Signature Block macros and their associated lines of input are also ignored
when the released-paper styleis specified.

In addition to using the .AF macro to specify your company name, you can
define a string with a two-character name for your address before each .AU.
Forexample:

.TL

A Learned Treatise

.AF " Getem, Inc.”

.ds XX "22 Maple Avenue, Sometown 09999”
(AU "F. Swatter” " XX

.AF "Profit Associates”

.AU”Sam P. Lename” "” CB

MT 41

4.12.10 Order of Invocation of Beginning Macros

The macros described in this section must be givenin the following order if they
are used to define document style:

4-51

XENIX Text Processing

.ND new-date

.TL

one or more lines of text
AF [company-name]
AU name [initials] [loc] [dept] [ext] [room] [arg] [arg] [arg]
AT [title] ...

.TM [number] ...

.AS [arg] [indent]

one or more lines of text
AE

.NS [arg]

one or more lines of text
.NE

.OK [keyword] ...

MT [type] [addressee]

The only required macros for a memorandum or a released paper are .-TL, .AU,
and .MT; all the others (and their associated input lines) may be omitted if the
featuresthey provide are not needed. Once MT has been invoked, none of the
above macros (except .NS and .NE) can be reinvoked because they are removed
from the table of defined macrostosavespace.

4.12.11 Macros for the End of a Memorandum

At the end of amemorandum (but not of a released paper), the signaturesof the
authors and a list of notations can be requested. The following macros and
their input are ignored if the released-paper style is selected. A signature block
macrois provided in the form:

.FC [closing]
SG [arg] [1]

.FC prints “Yours very truly’ as a formal closing. It must be given before the
.SG which prints the signer’s name. A different closing may be specified as an
argument to .FC. .SG prints the author name(s) after the formal closing (or the
lastlineof text). Eachname begins at thecenter of the page. Three blank lines
are left above each name for the actual signature. If no argument is given, the
line of reference data (e.g., location code, department number, author’sinitials,
and typist’sinitials) will not appear followingthe last line.

A first argument is treated as the typist’s initials, and is appended to the
reference data. A null argument prints reference data with neither the typist’s
initials nor the preceding hyphen.

If there are several authors and if the second argument is given, then the

reference datais placed on the same line asthe name of the first author, rather
than on the line that hasthe name of the last author.

4-52

MM Reference

The reference data contains only the location and department number of the
first author. Thus, if there are authors from different departments or from
different locations, the reference data should be supplied manually after the
invocation (without arguments) of the .SG macro.

4.12.12 Copy to and Other Notations
The notation macrohasthe form:

.NS [arg] ,
zero or more lines of the notation
.NE

After the signature and reference data, many types of notations may follow,
such as a list of attachments or copy to lists. The various notations are
obtained through the .NS macro, which provides for the proper spacingand for
breaking the notations across pages, if necessary.

The codesfor argand the corresponding notations are:

Code Notations

NS"?” Copy to

.NSo Copy to

.NS Copy to

.NS1 Copy (with att.) to
.NS2 Copy (without att.) to
.NS3 - Att.

.NS4 Atts.

.NS 5 Enc.

.NS 6 Encs.

.NS7 Under Separate Cover
.NS8 Letter to

.NS 9 Memorandum to

.NS "string” Copy (string) to

If arg consists of more than one character, it is placed within parentheses
between the words ““Copy”’ and ““to”’. For example:

.NS "with att. 1 only”

generates ‘‘Copy (with att. 1 only) to’’ as the notation. More than one notation
may be specified before the .NE occurs, because a .NS macro terminates the
preceding notation, if any.

The .NS and .NE macros may also be used at the beginning following .AS and
.AE to place the notation list on the Memorandum for File cover sheet. If
notations are given at the beginning without .AS 2, they will be saved and
outputattheendofthe document.

4-53

XENIX Text Processing

4.12.13 Approval Signature Line
The approval signature macro has the form:
AV " Jane Doe”

It can be used to provide a space for an approval signature next to the printed
name.

4.12.14 Forcing a One-Page Letter

Attimesitisuseful to get abitmore space onthe page, by forcingthesignature
or items within notations onto the bottom of the page, so that the letter or
memo is just one page in length. This can be accomplished by increasing the
page length through the -rLr option, e.g. -rL90. This has the effect of making
the formatter believe that the page is 90 lines long and therefore giving it more
room than usual to place the signature or the notations. This will only work for
asingle-page letter or memo.

4.12.15 Cover Sheet
The cover sheet macro hasthe form:
.CS |pages] [other] [total] [figs] [tbls] [refs]

The .CS macro generates a cover sheet in either the Technical Memorandum
(TM) or released-paper style. All of the other information for the cover sheet is
obtained from the data given before the . MT macro call. If a TMstyle is used,
the .CS macro generates the “Cover Sheet for Technical Memorandum”. The
datathatappearsin the lower left corner of the TM cover sheet (the number of
pagesof text, the number of other pages, the total number of pages, the number
of figures, the number of tables, and the number of references) is generated
automatically. These values may be changed by supplying the appropriate
arguments to the .CS macro. Any values that are omitted will be calculated
automatically (0 is used for other pages). If the released-paper styleis used, all
arguments to .CS areignored.

4.13 Reserved Names

If you are extending, changing, or redefining existing MM macros, use the legal
names listed in this section. The following conventions are used in this section
to describe legal names:

4-54

MM Reference

Digit

Lowercase letter

Uppercase letter

Any letter or digit (any alphanumeric character)
Special character (any nonalphanumeric character)

w xpo D

Allother charactersare literals (i.e., stand for themselves).
Note that “request”, “‘macro”, and “string” names are kept by the formatters

in a single internal table, so that there must be no duplication among such
names. “Number register’’ names are kept in aseparatetable.

4.13.1 Names Used by Formatters

These are the names of the registers and requests used by nroffand troff.

Requests

aa(most common)

an(only one, currently: .c2)
Registers

aa(normal)

.x (normal)

.s(only one, currently: .$)
% (page number)

4.13.2 Names Used by MM

These are the namesof the macros, strings, and registersused by MM.

Macros
AA (most common, accessible to user)
A (less common, accessible to user)
)x (internal, constant)
>x (internal, dynamic)
Strings

AA (most common, accessible to user)

A (less common, accessible to user)

x (internal, usually allocated to specific functions throughout)
x (internal, more dynamic usage)

Registers Aa(most common, accessible to users)
An (common, accessible to user)
A (accessible, set on command line)
:x (mostly internal, rarely accessible, usually dedicated)
;x (internal, dynamic, temporaries)

4-55

XENIX Text Processing

4.13.3 Names Used by eqn/neqn and tbl

The equation preprocessors, eqn and neqn, use registers and string names of
theform nn. The table preprocessor, tbl, usesthe following names:

a at+ a | nn #a ## #- # "a T& TW

4.13.4 User-Definable Names

None of the above may be used to define your own extensions. To avoid
problems, use names that consist either of a single lowercase letter, or of a
lowercase letter followed by anything other than a lowercase letter. The
following isa sample naming convention, where acan be any letter:

For macros use a lowercase letter, followed by an uppercase letter (aA),
or an uppercase letter followed by a lowercase letter (Aa).

For strings use a, followed by a parenthesis (), a bracket (]), or a brace
For registers use alowercase letter followed by an uppercase letter (aA).

4.13.5 Sample Extension

The following is an example of how MM macro definitions may be extended.
Thissequence generatesand numbers the pages of appendices:

.nr Hu 'l
nral
.de aH
.nr a +1
.nrPO

PH " **“Appendix \\na - \\\\\\\\nP

SK

HU "\\$1”
After the above initialization and definition, each call of the form .aH *“‘title”
begins a new page (with the page header changed to “Appendix 2 -n) and
generates an unnumbered heading of “‘title,’”’ which, if desired, can be saved for

the table of contents. Those who wish Appendix titles to be centered must, in
addition, set the register He to 1.

4.14 Errors

When a macro discovers an error, a break occurs in processing. To avoid

4-56

MM Reference

confusion regarding the location of the error, the formatter output buffer
(which may contain some text) is printed and a short message is printed giving
the name of the macro that found the error, the type of error, and the
approximate line number (in the current input file) of the last processed input
line. Processing terminates, unless the register D has a positive value. In the
latter case, processing continues even though the output is guaranteed to be
derangedfrom that point on.

Note that the error message is printed by writing it directly to the user’s
terminal. If either tbl or eqn/neqn, or both are being used, and if the -olist
option of the formatter causes the last page of the document not to be printed, a
harmless‘‘broken pipe” message results.

4.14.1 Disappearance of Output
This usually occurs because of an unclosed diversion (e.g.,’a missing .FE or
" .DE). Fortunately, the macrosthatuse diversionsare careful aboutit, and they
check to make sure that illegal nestings do not occur. If any message is issued
about a missing .DE or .FE, the appropriate action is to search backwardsfrom
the termination point looking for the corresponding .DS,.DF,or .FS.
The following command:

grep -n "\.[EDFT|[EFNQS]” files ...
printsallthe .DS, .DF, .DE, .FS, .FE,.TS,.TE, .EQ, and . EN macros found in
the files, each preceded by its filename and line number in that file. This listing
can be used to check forillegal nesting and/or omission of these macros.

4.14.2 MM Error Messages

Each MM error message consists of a standard part followed by a variablepart.
Thestandard partisof the form:

ERROR:input line n
The variable part consists of a descriptive message, usually beginning with a

macro name. The variable parts are listed below in alphabetical order by
macro name, each with amore complete explanation:

Check TL,AU, AS, AE, MT sequence
These macros for the beginning of a memorandum are out of sequence.
AL:bad arg:value

The argument to the .AL macroisnotoneof 1, A, a, I, ori. The incorrect
argument is shown as value.

457

XENIX Text Processing

CS:cover sheet too long

The text of the cover sheet is too long to fit on one page. The abstract
should be reduced or the indent of the abstract should be decreased.

DS:too many displays

More than 26 floating displays are active at once, i.e., have been
accumulated but not yet output.

DS:missing FE

A display starts inside a footnote. The likely cause is the omission (or
misspelling) of a.FE toend a previous footnote.

DS:missing DE

.DS or .DF occurs within a display, i.e., a .DE has been omitted or
mistyped.

DE:no DS or DF active

.DE has been encountered but there has not been a previous.DS or .DF to
matchiit.

FE:noFS
.FEhasbeenencountered with no previous . FStomatchit.
FS:missing FE

A previous.FS wasnot matched by a closing .FE, i.e., an attempt is being
made to begin a footnote inside another one.

FS:missing DE

A footnote starts inside a display, i.e., a .DS or .DF occurs without a
matching .DE.

H:bad arg:value

The first argument to .H must be a single digit from 1 to 7, but value has
been supplied instead.

H:missing FE
A heading macro (.Hor .HU) occurs inside a footnote.

H:missing DE

4-58

MM Reference

A heading macro (.Hor .HU) occursinside a display.
H:missing arg
.Hneedsat least 1 argument.
HU:missingarg
.HUneeds 1argument.
LB:missing arg(s)
.LBrequires at least 4 arguments.
LB:too many nested lists
Another list wasstarted when there were already 6 active lists.
LE:mismatched
.LE has occurred without a previous .LB or other list-initialization
macro. Although this is not a fatal error, the message is issued because
there almost certainly exists some problem in the preceding text.
Ll:no lists active
.LI occurs without a preceding list-initialization macro. The latter has
probably been omitted, or has been separated from the .LI by an
intervening .Hor .HU.
ML:missing arg
ML requiresat least 1 argument.
ND:missing arg
.ND requires 1 argument.

SA:bad arg:value

The argument to .SA (if any) must be either 0 or 1. The incorrect
argumentisshown as value.

SG:missing DE
.SG occurs inside a display.
SG:missing FE

.SG occurs inside a footnote.

4-59

XENIX Text Processing

SG:no” authors
.SG occurs without any previous .AUmacro(s).
VL:missing ai’g

.VLrequiresat least 1 argument.

4.14.3 Formatter Error Messages

Most messages issued by the formatter are self-explanatory. Those error
messages over which the user has some controlarelisted below.

Cannot doev
Caused by setting a page width that is negative or extremely short,
setting a page length that is negative or extremely short, reprocessing a
macro package (e.g. performing a a macro package that was requested
from the command line), or requesting the -s1 option to troff on a
document that islonger than ten pages.

Cannot execute filename
Givenby the.! requestifit cannot find the filename.

Cannot open filename
Issuedif one of the files in the list of files to be processed cannot be opened.

Exception word list full

Too many words have been specified in the hyphenation exception list
(via .hw requests).

Line overflow
The output line being generated was too long for the formatter’s line
buffer. The excess was discarded. See the “Word overflow” message
below.

Nonexistentfont type
Arequest hasbeen made to mount an unknown font.

Nonexistent macro file

The requested macro package does not exist.

4-60

MM Reference

Nonexistent terminal type
The terminal optionsrefers to an unknown terminal type.

Out of temp file space
Additional temporary spacefor macro definitions, diversions, etc. cannot
be allocated. This message often occurs because of unclosed diversions
(missing .FE or .DE), unclosed macro definitions (e.g., missing‘‘..”’), or a
huge table of contents.

Too many page numbers
Thelist of pagesspecified to the formatter —ooptionistoo long.

Too many string/macro names

The pool of string and macro namesisfull. Unneeded stringsand macros
can be deleted using the .rm request.

Toomany number registers

The pool of number register names is full. Unneeded registers can be
deleted by using the .rr request.

Word overflow

A word being generated exceeded the formatter’s word buffer. Theexcess
characters were discarded. A likely cause for this and for the “Line
overflow’’ message above are very long lines or words generated through
the misuse of \c or of the .cu request, or very long equations produced by
eqnor neqn.

4-61

XENIX Text Processing

4.15 Summary of Macros, Strings, and Number
Registers

The following is an alphabetical list of macro names used by MM. The first line
of each item gives the name of the macro and a brief description. The second
line shows the form in which the macro is called. Macros marked with an
asterisk are not, in general, invoked directly by the user. They are “user exits”’
called from inside header, footer, or other macros.

1C One-column processing
.1C

2C Two-column processing
2C

AE Abstractend
AE

AF Alternate format of “Subject/Date/From” block
.AF [company-name]

AL Automatically-incremented list start
.AL [type][text-indent][1]

AS Abstractstart
.AS [arg] [indent]

AT Author'stitle
AT [title] ...

AU Author information
.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg] [arg]

AV Approval signature
AV |name]

‘B Bold
.B[bold-arg] [previous-font-arg] |bold] [prev] [bold] [prev]

BE Bottomend
.BE

BI Bold/Italic
.BI|bold-arg] [italic-arg] [bold] [italic] [bold] [italic]

BL Bulletliststart
.BL [text-indent][1]

4-62

BR

BS

CS

DE

DF

DL

DS

EC

EF

EH

EN

EQ

FC

FD

FE

FG

MM Reference

Bold/Roman
.BR [bold-arg] [Roman-arg] [bold] [Roman] [bold] [Roman]

Bottom start
.BS

Cover sheet
.CS [pages] [other] [total][figs] [tbls] [refs]

Display end
.DE

Display floating start
.DF [format] [fill] [right-indent]

Dashlist start
.DL [text-indent] [1]

Display static start
.DS [format] [fill] [right-indent]

Equationcaption
.EC [title] [override] [flag]

Even-page footer
.EF [arg]

Even-page header
EH [arg]

End equation display
EN

Equation display start
.EQ|label]

Exhibit caption
EX[title] [override] [lag]

Formal closing
.FC|[closing]

Footnote defaultformat
FD|arg] [1]

Footnote end
.FE

Figure title
.FG [title] [override] [flag]

4-63

XENIX Text Processing

FS

H

HC

HZ

LB

LC

LE

LI

4-64

Footnote start
FS|[label]

Heading—numbered
.Hlevel [heading-text] [heading-suffix]

Hyphenation character
.HC [hyphenation-indicator]

Heading mark style (Arabic or Roman numerals, or letters)
.HM [argl]... [arg7]

Heading—unnumbered
.HU heading-text

Heading user exit X (before printing heading)
.HX dlevelrlevel heading-text

Heading user exit Y (before printing heading)
.HY dlevelrlevel heading-text

Heading user exit Z (after printing heading)
.HZ dlevelrlevel heading-text

Italic (underline in nroff)
[italic-arg) [previous-font-arg][italic] [prev] [italic] [prev]

Italic/Bold
B [italic-arg] [bold-arg] [italic] [bold] [italic] [bold]

Italic/Roman
IR [italic-arg] [Roman-arg] [italic] [Roman)] [italic] [Roman]

List begin
.LB text-indent mark-indent pad type [mark] [LI-space] [LB-space]

List-status clear

.LC [list-level]

List end
LE(1]

List item

.LI[mark] 1]

Marked list start

MT

NS

nP

OF

OH

OK

-OP

PF

PH

PX

RB

RD

MM Reference

ML mark [text-indent] [1]
Memorandum type

.MT [type] [addressee]

or MT[4][1]

Newdate
.ND new-date

Notation end
.NE

Notation start
.NS [arg]

Double-line indented paragraphs
.nP

Odd-page footer
.OF [arg]

Odd-page header
.OH [arg]

Other keywords for TM cover sheet
.OK [keyword] ...

0Odd page
.OP
Paragraph
P [type]

Pagefooter
PF [arg]

Pageheader
PH [arg]

Page-header user exit
PX

Return to regular (Roman) font (end underlining in nroff)
Roman/Bold
.RB|Roman-arg] [bold-arg] [Roman)] [bold] [Roman] [bold]

Read insertion from terminal
.RD [prompt][diversion] [string]

4-85

XENIX Text Processing

RF

RI

RL

RP

RS

SA

SG

SK

SP

TB

TC

TE

TH

TL

™

TP

466

Reference end

.RF

Roman/Italic

.RI[Roman-arg] [italic-arg] [Roman][italic| [Roman] lxtahc]

Reference list start
.RL [text-indent] 1]

Produce reference page
.RP [arg] [arg]

Reference start
.RS [string-name]

Set troff point size and vertical spacing
.S|size] [spacing]

Set adjustment (right margin)ustlﬁcauon) default
SA [arg]

Signature line
.SG [arg] [1]

Skip pages
SK [pages]

Space—vertically
.SP |lines]

Table title
.TBi|title] [override] [flag]

Table of contents

.TC [slevel] [spacing] [tlevel] [tab] [head]] [head2] [head3] [head4] [head5]

Tableend
.TE

Table header
.TH[N]

Title of memorandum
.TL [charging-case] [filing-case|

Technical Memorandum number(s)
.TM|[number]...

Top-of-page macro

TS

2

WwC

MM Reference

Table start

TS H]

Table-of-contents user exit
TX

Table-of-contents user exit (suppresses “CONTENTS")
TY

Variable-item list start
.VL text-indent [mark-indent] [1]

Vertical margins
.VM |top] [bottom]

Width control
.WC [format]

4.15.1 Strings

Thefollowingisan alphabetic list of stringnamesused by MM, giving foreach a
brief description and aninitial default value.

Ci
F

DT
EM

Le
Lf
Lt
Lx

Contentsindent up tosevenargumentsfor headinglevels.
Footnote numberer.

Innroff:\u\\n+(:p\d

In troff: \v’-.4m’\s-3\\n+9:p\sO\v’.4m’

Date. The current date, unless overridden.

Em dash string. Used by both nroffand troff

Headingfont list, up to seven codesfor heading levels 1 through7
3322222 (levels 1 and 2 bold, 3-7 underlined in nroff, italic in

troff)

Heading point size list, up to seven codes for heading levels 1
through7

Titlefor LIST OF EQUATIONS
Titlefor LIST OF FIGURES
Title for LIST OF TABLES
Title for LIST OF EXHIBITS

467

XENIX Text Processing

RE SCCSRelease and MM
' Release Level
Rf Reference numberer
Rp Title for References
Tm Trademark string places the letters*“TM” half a lineabove the text
" that it follows

4.15.2 Number Registers

This section provides an alphabetical list of register names, giving for each a
brief description, initial (default) value, and the legal range of values (where
[m:n] meansvaluesfrom m to n inclusive).

Any register having a single-character name can be set from the command line.
An asterisk attached to a register name indicates that that register can be set
only from the command line or before the MM macro definitionsareread by the
formatter.

A Handlespreprinted forms
0,[0:2]

Au Inhibits printing of author’s location, department, room, and extension
in the from portion of a memorandum
1, [0:1]

C Copy type (Original, DRAFT,etc.)
0(Original), [0:4]

Cl Contentslevel (i.e., level of headings saved for table of contents)
2,[0:7)

Cp Placement ofList of Figures, etc.
1(on separate pages), [0:1]

D Debugflag
0, [0:1]

De Display ejectregister for floating displays
0,[0:1]

Df Display format register for floating displays
5,[0:5)

Ds Static display pre- and post-space
1, [0:1]

4-68

Ec

Ej

Eq

Ex

Fg

Fs

MM Reference
Equation counter, used by .EC macro
0, [0:?), incremented by 1for each .EC call.

Page-ejection flag for headings
0 (no eject), [0:7]

Equation label placement
0 (right-adjusted), [0:1]

Exhibit counter, used by EX macro
0, [0:?), incremented by 1foreach . EXcall.

Figure counter, used by .FG macro
0, [0:?], incremented by 1foreach .FG call.

Footnote space (i.e., spacing between footnotes)
1,[0:?)

H1-H7 Heading countersforlevels 1-7

Hb

Hi

Hs

Ht

Hy

Le

0, [0:?), incremented by .H of corresponding level or .HU if at level given
by register Hu. H2-H7 are reset to 0 by any heading at a lower-numbered
level.

Heading break level (after .Hand .HU)
2,[0:7])

Heading centeringlevel(for .Hand .HU)
0 (no centered headings), [0:7]

Heading temporary indent (after .Hand .HU)
1(indent as paragraph), [0:2]

Heading space level (after .H and .HU)
2 (space only after .H1and .H 2), [0:7]

Heading type (for .H:single or concatenated numbers)
0 (concatenated numbers: 1.1.1, etc.), [0:1]

Heading level (for unnumbered heading .HU)
2 (.HU at the same level as.H 2), [0:7]

Hyphenation control for body of document
0 (automatic hyphenation off), [0:1]

Length of page
66, [20:?] (11, [2i:?] in troff these values must be scaled.

List of Equations
0 (list not produced) [0:1]

4-69

XENIX Text Processing

Lf

Li

Ls

Lt

Lx

of

Pi

Ps

Pt

Si

470

List of Figures
1(list produced) [0:1]

List indent
6, [0:7]

List spacing between items by level
5 (spacing between all levels)

List of Tables
1 (list produced) [0:1]

List of Exhibits
1(list produced) [0:1]

Numberingstyle
0,[0:5]

Numbering style for paragraphs
0 (unnumbered) [0:1]

Offset of page
.75i, [0:?] (0.5, [0i:?] in troff

Table of Contents page numbering style
0 (lowercase Roman), [0:1]

Figure caption style
0 (period separator), [0:1]

Page number, managed by MM.
0, [0:?]

Paragraphindent
5,[0:7]

Paragraphspacing
1 (one blank space between paragraphs), [0:7]

Paragraph type
0 (paragraphs alwaysleft-justified), [0:2]

Point size
10, [6:36)

Standard indent for displays
5,[0:?]

Type of nroff output device
0,[0:2]

Tb

MM Reference

Table counter
0,[0:?],incremented by 1 for each.TB call.

Underlining style for . Hand .HU
0 (continuous underline when possible), [0:1]

Width of page (line and title length)
6i, [10:1365] (6i, [2i:7.54i] in troff

4+

Chapter 5
Using Nroff/Troff

5.1

5.2
5.3
54
5.5
5.6
5.7
5.8

5.9

Introductio‘n 5-1

Inserting Commands 52

Point Sizes and Line Spacing 5-2
Fonts and Special Characters 54
Indents and Line Lengths 5-6
Tabs 5-8

Drawing Lines and Characters 5-9
Strings 5-11

Macros 5-12

5.10 Titles, Pages and Numbering 5-14

5.11 Number Registersand Arithmetic 5-15

5.12 Macros with Arguments 5-17

5.13 Conditionals 5-19

5.14 Environments 5-20

5.15 Diversions 5-21

Using Nroff/ Troff

5.1 Introduction

Nroff and troff are the XENIX text formatting programs for producing high-
quality printed output on the lineprinter and phototypesetter, respectively.
Commands in the two formatting programs nroff and troff are identical,
although those specifications which are impossible to achieve on a
lineprinter—like changes in point size, font, or variable spacing—are either
approximated or ignored by nroff. The output of nroff and troff may look
dramatically different, but this is largely the result of the limitations of
conventional lineprinters. In this chapter, the two programs will be treated
together; the names nroff and troff are used synonymously. Commands not
recognized by nroff or which result in significantly different output will be
noted.

Wherever possible, you should avoid using nroff or troff directly. In many
ways, nroff and troff resemble computer assembly languages: they are
powerful and flexible, but they require that many operations must be specified
at a level of detail and complexity too difficult for most people to use effectively.
That is why it is suggested that you use the MM macro package instead. If you
must deal with specialized text, you can use the eqn macros for typesetting
mathematics and the tbl program for producing complex tables. Eqn and tbl
are discussed in Chapters 10and 11 of this manual.

For producing running text, whether or not it containsmathematicsor tables,

you will ordinarily want to use the MM macro package, described in Chapter 3,
“Using the MM Macros’’ and Chapter 4, MM Reference”.

All these macro packages offer the capability of meeting most formatting
requirements. You may find you have little or no need to use nroff/troff
directly. The macrosdefine formatting rules and operations for specific styles
of documents. The definitions are concise: in most cases two-letter commands.
In those cases where an existing macro will not do the job, the solution isnot to
write an entirely new set of nroff /troff instructionsfrom scratch, but to make
small adaptationsto macrosyou are already using.

This chapter is meant to introduce you to the formatting possibilities of
nroff /troff. It does not discuss every command or operation in detail. The
emphasis is on demonstrating simple and commonly used specifications, with
- examplesof some of the variations you may need to create.
The following topics are introduced in this tutorial:
— Specifying point size, fonts, and special characters

— Determiningline spacing, linelengths, indents, and tabs

— Usingstring definitionsand macros

51

XENIX Text Processing

— Specifyingtitle and paginationstyles

— Specifying conditionals, environments, and diversions

5.2 Inserting Commands

To use nroff or troff you intersperse formatting commands with the actual
text you want printed, just as you did with MM commands described in the last
chapter. You will notice that nroff and troff commands are in lowercase, so
you will not confuse them with the MM macros. Most nroff and troff
commands are placed on a line separate from the text itself, beginning with a
period, one command per line. For example, if you had a file that contained the
following lines:

Some text.

.ps 14

Some more text.
the .ps command would instruct troff to change the point size, that is, the size
of the letters being printed, to 14 point {one point is 1/72-inch). Your output
would look like this:
Some text. Some more text.
If you were to use nroff to output this same file to the lineprinter, nroff would
ignore the .ps command and you would see no difference in the size of your
letters.
Some nroff /troff commandsdo occur in the middle of a line. To produce

This line contains font and point size changes.
you have to type

This \fBline\fR contains \fIfont and \s+2point size\s-2 changes.
The backslash character *‘\” is used to introduce nroff/troff commands and
special characters within a line of text.
5.3 Point Sizes and Line Spacing
As we just saw, point size and vertical spacing arenot normally controllable in
nroff (lineprinter) output. In troff, the command .ps sets the point size. One

point is 1/72-inch, so 6-point characters are at most 1/12-inch high, and 36-
pointcharacters are 1/2-inch. There are 15 point sizesavailable, asillustrated:

5-2

Using Nroff /Troff

6 point: In Xanadu did Kubhla Khan...

7 point: In Xanadu did Kubhla Khan...

8 point: In Xanadu did Kubhla Khan...

9 point: In Xanadu did Kubhla Khan...

10 point: In Xanadu did Kubhla Khan...
11 point: In Xanadu did Kubhla Khan...

12 point: In Xanadu did Kubhla Khan...
14 point: In Xanadu did Kubhla Khan...

16 point 18 point 20 point

22 24 28 30

If the number after .psis not one of these legal sizes, it is rounded up to the next
valid value, to a maximum of 36. If no number follows .ps, troff reverts to its
previous size. Troff begins with a default point size of 10.

Point size can also be changed in the middle of a line or even a word with the in-
line command *\s”. Toproduce

The XENIX system is derived from the UNIX system.
type
The \s12XENIX\s8 system is derived from the \s12UNIX\s8 system.

The \s should be followed by a legal point size. An \sO causes the size to revert
toitsprevious value. An\s1011 means‘‘size 10, followed by an 11"

Relativesize changes are possible. The following

The \s+2XENIX\s-2 system

increases the point size by two points, then restores it. The amount of the
relative change is limited to asingle digit.

Another feature to consider is the spacing between lines, which is set
independently of the point size. Vertical spacing is measured from the bottom
of one line to the bottom of the next. The command to control vertical spacing
is.vs. For running text, it is usually best to set the vertical spacingabout 20%
bigger thanthe pointsize.

For example, to use what typesetters call“9on 11"’ that is, a pointsize of 9 with
avertical spacing of 11, you would insert the following commands:

53

XENIX Text Processing

.ps 9
.vs 11p

If you do not specify a point size or vertical spacing, troff automatically uses 10

onl12.

Point size and vertical spacing make a substantial

diﬁ’leie)nce in the amount of text per square inch. (This is 12
on 14.

Point sise and vertical spacing make a substantial difference in the amount of text per squareinch. For example, 10 on
12 uses about twice as much space as 7on 8. This is 6on 7, which is evensmaller, and packs alot more wordsperline.

When you use the commands .ps and .vs without numbers, troff revertsto the
previoussize and vertical spacing.

The .sp command can be used to get vertical space. Without a number, it gives
you one blank line (one unit of whatever .vs has been set to). The .sp can be
followed by a unit specification:

.sp 2i

means ‘“two inchesof vertical space’’. The command:
.sp 2p

means‘“‘t wopoints of vertical space’’. The command:
.sp 2

means ‘‘two vertical spaces” of whatever size .vs is set to. Be careful to specify
the correct unit of space.

Troffalso understands decimal fractions in most commands, so
.sp 1.5
is a space of 1.5 inches. Scaling (designating a unit of measure such as inches,

points, or picas) can also be used after .vs to define line spacing, and in fact after
most commands that deal with physical dimensions.

5.4 Fonts and Special Characters

The phototypesetter is limited to four different fonts at any one time.
Normally three fonts (Roman, italic and bold) and one collection of special
characters are permanently mounted. What these fonts will actually look like
depends on your own typesetting equipment. Here are the Roman, italic, and
bold character sets:

54

Using Nroff /Troff

abedefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abedefghigklmnopqretuvwzyz 0128456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Troff prints in Roman by default, unless instructed otherwise. To switch into
bold, use the.ft (font) command

ItB
and for italics,
ft 1

‘To return to roman, use .ft R; to return to the previous font, whatever it was,
use either .ft P or just .ft. The underline command .ul causes the nextinputline
to print in italics. The .ul can be followed by a count toindicate that more than
one line is to be italicized.

Fonts can also be changed within a line or word with the in-line command “\f”.
The words

boldface text
are produced with
\fBbold\fIface\fR text

There are other fontsavailable besides the standard set, although only four can
be mounted at any given time. The command .fp tells troff what fonts are
physically mounted on the typesetter:

fp3H

says that the Helvetica font is mounted on position 3. Appropriate .fp
commands should appear at the beginning of your document if you do not use
the standard fonts.

It is possible to print a document by using font numbersinstead of names. For
example, \f3 and .ft 3 mean *“whatever font is mounted at position 3”’. Normal
settings are Roman font on 1, italic on 2, bold on 3, and special on 4. An
approximation of bold font can also be created by overstriking letters with a
slight off set. Thisis done with the command .bd.

Special characters have four-character names beginning with ‘“\(”’, and they
may be inserted anywhere. In particular, Greek letters are all of the form
“\(*-", where “~” is an uppercase or lowercase Roman letter similar to the
Greek. Toget

55

XENIX Text Processing

Z(oXp) =
in troff we have to type

\(*S(\(*a\(mu\(*b) \(\(-> \(if

which is a series of special characters:

\(+S o
((

\(*a a
\(mu X
\(sb 14
))

\(_‘) -
\(@if o)

You could also use the mathematical typesetting program eqn to achieve the
same effect:

SIGMA (alpha times beta) -=> inf

Whether you choose to use eqn or the troff special character set should depend
on how often you use Greek or other special characters.

Nroff and troff treat each four-character name as a single character. Some
characters are automatically translated into others: grave and acute accents
(apostrophes) become open and close single quotation marks (); the
combination of single quotation marks is generally preferable to the double
quotation mark character. ("). A typed minus sign becomes a hyphen -. To
print an explicit minus sign, use “\-”’. Toprint abackslash, use *“\e”.

5.5 Indents and Line Lengths

Troff starts with a default line length of 6.5 inches. To reset the line length, use
the I (line length) command, as in

Al 6i

to indicate a line length of 6 inches. The length can be specified in the same
waysas the space (.sp) command, in inches, fractionsof inches, or points.

The maximum line length provided by the typesetter is 7.5 inches. To use the
full width, however, you will have to reset the default physical left margin,
which is normally slightly less than one inch from the left edge of the paper.
This is done with the page offset (.po) command:

.po 0

5-6

Using Nroff/Troff

Thissets theoffset asfar to the left asit will go.

The indent (.in) command causes the left margin to be indented by a specified
amount from the page offset. If we use .in to move theleft margin in, and .1l to
move the right margin to the left, we can make offset blocks of text. For
example,

.in 0.6i

11-0.6i

text to be set into a block
A1 +0.6i

.in -0.6i

will create ablockthatlookslike this:

Pater noster qui est in caelis sanctificetur nomen tuum;
adveniat regnum tuum; fiat voluntas tua, sicut in caelo, et in
terra... Amen.

Noticethe use of + and - to specify theamount of change. These changethe previous
setting by the specified amount, rather than just overriding it. The distinction is
quite important: .1l +1i makes lines one inch longer than current setting; .11 1i makes
them one inch long. If no argument is specified with .in, .1, and .po, troff revertsto
the previousvalue.

Toindent a single line, use the temporary indent (.ti) command. The default unit for
.ti, as for most horizontally oriented commandssuch as.ll, .in, .po,isanem. An em is
roughly the width of the letter m in the current point size. Although inches may seem
a more intuitive measure to nontypesetters, ems are a measure of size that is
proportional to the current point size. If you want to make text that keeps its
proportions regardless of point size, you should use ems for all dimensions. Ems can
be specified in the same way as points or inches:

ti 2.5m
Lines can also be indented negatively iftheindent isalready positive:

ti -0.3i
causes the next line to be moved back three tenths of an inch. You can make a
decorative initial capital, indent a whole paragraph, and move the initial letter back
with a.ti command:

Pater noster qui est in caelis sanctificetur nomen tuum;

adveniat regnum tuum;

fiat voluntas tua, sicut in caelo, et in terra. ... Amen.

Thisis achieved with the following:

57

XENIX Text Processing

J11-0.3i
A

Ain +3i
i -0.3i

The P is made bigger with a ‘“\s36P\s0”. It also has been moved down from its
normal position with a local motion, as described in Section 5.7, *‘DrawingLinesand
Characters”.

5.6 Tabs

Tabs can be used to produce output in columns, or to set the horizontal position of
output. Typically, tabs are used only in unfilled text. Tab stops are set by default
every 1/2-inch from the current indent, but can be changed with the .ta command.
To setstops every inch, for example, use:

.ta 1i 2i 3i 4i 5i 6i

The stopsare left-justified, as they are on a typewriter, so lining up columns of right-
justified numbers can be painful. If you have many numbers, or if you need more
complicated table layout, don’t attempt to use nroff or troff commands. Use the tbl
programinstead. (See Chapter 7, “Formatting Tables”.)

For a handful of numeric columns, you can precede every number by enough blanks
to make it line up when typed:

.nf
ta 11 2i 3i

1tab 2tadb 3
40 tab 50 tab 60
700 tab 800 tab 900
A

Then change each leading blank into the string ‘“‘\0”. This is a character that does
not print, but that has the same width asa digit. When printed, this will produce

1 2 3
40 50 60
700 800 900

It is also possible to fill up tabbed-over space with a character other than a spaceby
setting the “tabreplacement character’’ withthetab character (.tc) command:

.ta 1.5i 2.51
.te \(ru
Name tab Age tab

produces

5-8

Using Nroff/Troff

Name Age

To reset the tab replacement character to a blank, use .tc with no argument. Lines
can also be drawn with the \l command, described below.
5.7 Drawing Lines and Characters
Troff provédes a way to place characters of any size at any place, as in the examples
Area = 7r° and the big P in the Paternoster (See Section 5.5). Commands can be
used to draw special charactersor togive youroutputaparticularappearance. Most
of these commands are reasonably straightforward, but look rather complicated.
For example, without eqn, subscripts and superscripts are most easily done with the
half-line local motions \uand \d. Togo back up the page half a point-size, insert a \u
at the desired place; to go down, insert a \d. Thus

Area = \(*pr\u2\d
produces

Area = 1r1'2
To make the 2smaller, bracket it with

\s-2...\s0

Since \u and \d are relative to the current point size, be sure to put them either both
inside or both outside the size changes, or the results will be unbalanced.

If the space given by \u and \d doesn’t look right, the \v command can be used to
request an arbitrary amount of vertical motion. The in-line command

\v’(amount)’

causes motion up or down the page by the specified amount. For example, to move
the P in Pater, the followingisrequired:

ta li

.in +0.6i \"move paragraph in
A1 -0.3i \"shorten lines

t1 -0.3i \"move P back
\v’'1I’\s36P\s0\v’\-1’ater noster qui est

in caelis ...

The backslash \” isa troff command that causestherest of the line tobe ignored. It
is useful for adding commentstothemacrodefinition.

59

XENIX Text Processing

A minussign, after *\v’”’ causes upward motion, while no sign or a plus sign causes
downward motion. Thus “\v/ -1’ causes an upward vertical motion of one line
space.

There are many other waysto specify the amount of motion:

\v'0.17’
\vlsp’
\v'-0.5m’

and so on are all legal. Notice that the specifiers, i for inches, p for points or m for
ems, go inside the quotation marks. Any character can be used in place of the
quotation marks, as well asinany troff commands described in thissection.

Since troff does not take within-the-line vertical motions into account when figuring
out where it is on the page, output lines can have unexpected positions if the left and
right ends aren’t at the same vertical position. Thus\v, like \u and \d, should always
balance upward vertical motion in a line with the same amount in the downward
direction.

Arbitrary horizontal motions are also available: \h is quite analogous to \v, except
that its default scale is ems instead of line spaces. The specification \h’-0.1i’ causesa
backwards motion of a 1/10-inch.

Frequently \h is used with the width function \w to generate motions equal to the
width of some character string. The construction

\w’thing’

is a number equal to the width of thing in machine units (1/432-inch). All troff
computations are actually done in these units. To move horizontally the width of an

X,yOu can use:
\P’\wx'v’

As we mentioned above, the default scale factor for all horizontal dimensionsis m for
ems, so here u for machine units must be specified, or the motion produced will be far
too large. Nested quotation marks are acceptable to troff; be careful to supply the
right number.

There are also several special-purpose troff commands for local motion. We have
already seen \0, which is an unpaddable whitespace of the same width as a digit.
Unpaddable means that it will never be widened or split across a line by line
justification and filling. There is also \(space), which isan unpaddable character the
width of a space, |, which is half that width, \", which isone quarter of the width of a
space, and \&, which has zero width. This last one is useful, for example, when
entering a text line which would otherwise begin with a dot (.).

The command ‘‘\o”, usedlike

510

Using Nroff/Troff

\o'set of characters’

causes up to 9 characters to be overstruck, centered on the widest. This can be used
for accents, asin:

syst\o”e\(ga"me t\o"e\(aa”l\o"e\(aa" phonique
which makes:

systéme téléphonique
The accents are treated by troff assingle characters.

You can make your own overstrikes with another special convention, \z, the zero-
motion command, which suppresses the normal horizontal motionafter printing the
single character x, so another character can be laid on top of it. Although sizescan be
changed within \o, it centers the characters on the widest, and there can be no
horizontal orvertical motions,so\zmay be theonly way to get whatyouwant.

Youcan create rather ornate overstrikes with the bracketing function \ b, which piles
up characters vertically, centered on the current baseline. Thus you can get big
brackets by constructing them with piled-up smaller pieces:

18}

by typingin this:

\b\(E\ KA\ \Je\(1f x \B'\(re\(£\b™\(re\(rk\(rb’

Troff also provides a convenient facility for drawing horizontal and vertical lines of
arbitrary length with arbitrary characters. \I'1i’ draws a line one inch long, like
this: . Thelength can be followed by the character to use if the _
isn’t appropriate. For example, \V' 0.5i." draws a half-inch line of dots:
The construction \L is entirely analogous, except that it draws a vertical line lnstead
of horizontal.

5.8 Strings

Obviously, if a paper contains a large number of occurrencesof an acute accent over a
letter e, typing \o” e\’ ” for each occurrence would be a great nuisance. Fortunately,
nroff and troff provide a facility for storing any string of text in a string definition.
Strings are among the nroff and troff mechanisms that allow you to type a
document with less effort and organize it so that extensive format changes can be
made with few editing changes. Strings are defined with the define (.ds) command.
Thereafter, whenever you need to use the string, you can replace it with the
shorthand you have defined. For example, the line:

5-11

XENIX Text Processing

.dse\o"\'”
defines the string e to have the value €.
String names may be either one or two characters long. To distinguish them from
normal text, single-character strings must be preceded by ‘‘\+” and double-
character strings by “\#(”. Thus, to use the definition of the string e asabove, we can
say t*el*ephone. If a string must begin with blanks, define it by using a double
quotation mark to signal the beginning of the definition. For example,

ds xx 7 text

defines the string ‘“xx” as the word ‘‘text’’ preceded by several blanks. There is no
trailing quote; the end of the line terminates the string.

A string may actually be several lines long; if troff encounters a \ at the end of any
line, it is thrown away and the next line added to the current one. So you can make a
long string simply by ending each line but the last with a backslash:

.ds xx this is a very long string)\

continuing on the next line\

and on to the next

Strings may be defined in terms of other strings, or even in terms of themselves.

5.9 Macros
In its simplest form, a macro is just a shorthand notation—somewhat like a string.

For example, suppose we want every paragraph in a document to start with a space
and atemporary indent of twoems: -

.sp
b1 +2m

To save typing, we could translate these commandsinto one macro:
P

which troff wouldinterpret exactly as

.sp
.ti +2m

If you first define it with the .de command, the macro .P can replace the longer
specification:

5-12

Using Nroff/Troff

de P

.sp
ti +2m

The first line names the macro, in this case .P for paragraph; it is in uppercase to
avoid conflict with any existing nroff or troff command. The last line marks the end
of the definition. In between is the text, which is simply inserted whenever troff sees
the command or macro call .P. A macro can contain any mixture of text and
formatting commands. The definition of .P naturally has to precede its first use.
Namesare restricted to one or two characters.

Using macros for commonly occurring sequences of commands not only saves typing,
but it makes later changes much easier. Suppose we decide that the paragraph
indent is too small, the vertical space is much too big, and roman font should be
forced. Instead of changing the whole document, we need only change the definition
of .P to something like

de P \” paragraph macro
.sp 2p

i +3m

ftR

andthe changetakeseffect everywherethe .P macroisinvoked.

As another example of a macro definition, consider these two which start and end a
block of offset, unfilled text:

.de BS \" start indented block
.sp

.nf

.in +0.3i

.de BE \” end indented block
.sp

fi

in \(mi0.3i

Now we can surround text with the commands.BS and .BE to create indented blocks.
Usesof .BS and .BE can be nested to get blocks within blocks. To change the indent,
it isonly necessary to change the definitions of .BS and .BE, not every occurrence of
theindent in the entire document.

The macro package MM, as well as the two specialized macro packages, tbl and eqn,
are simply very large collections of macro definitions which replace more
cumbersome arrays of nroff and troff commands. One thing to keep in mind when
you consider defining a new macro, is that unless you are doing something quite
unusual, an MM macro probably already exists for that purpose. So check your
documentation carefully before reinventing the wheel.

5-13

XENIX Text Processing

5.10 Titles, Pages and Numbering

None of the features described in this section are automatic. You may wish to copy
these specifications literally until you feel more comfortable with these commands.
For example, suppose you want to have a title at the top of each page. Youhave to
give the actual title, along with instructions about when to print it,and directions for
its appearance. First, a new page ((NP) macro can be created to process titlesand the
like at the end of one page and the beginning of the next:

.de NP

,bp

’sp 0.51

.t] ’left top’center top’right top’
'sp 0.3i

Tostart at the top of apage, a begin page (.bp) command should be included, which
causes a skip to the top of the next page. Then we space down half an inch, use the
title(.tl) command to print the title and space another 0.3 inches.

Toask for .NP at the bottom of each page, we need to specify that the processingfora
new page should start when the text is within an inch of the bottom of the page. This
is done with 2 when (.wh) command:

.wh \-1i NP

(Note that no dot is used before NP; this is simply the name of a macro, not a macro
call.) The minussign means “measure up from the bottom of the page,” so -limeans
one inch fromthe bottom.

The .wh command appears in the input outside the definition of .NP; typically the
input wouldbe

.de NP
macro defined here

-wh -1i NP

As text is actually being output, nroff /troff keeps track of its vertical position on
the page, and after a line is printed within one inch of the bottom, the NP macro is
activated. The .NP macro causes a skip to the top of the next page, then prints the

“title with the appropriate margins. All the input text collected but not yet printedis
flushed out as soon as possible, and the next input line is guaranteed to start a new
line of output; a break is caused in the middle of the current output line when a new
page is started. The leftover part of that line is printed at the top of the page,
followed by the next input line on a new output line. Using\(fminsteadof dot (.) for a
command tells nroff and troff that no break is to take place; the output line
currently being filled should not be forced out before the space or new page. For
example, \(fmbp and \(fmsp are used here instead of .bp and .sp.

514

Using Nroff/Troff

The list of commands that cause a break isshort:
.bp .br .ce .fi .nf .sp .in .ti

All others cause no break, regardless of whether you use a period (.)ora’. If you
really need a break, add a .br command at the appropriate place.

If you change fonts or point sizes frequently , you may find that if you cross a page
boundary in an unexpected font or size, your titles come out in that size and font
instead of what you intended. Furthermore, the length of a title isindependent of the
current line length, so titles will come out at the default length of 6.5 inches unless
you change it, which is done with the.lt command. There are several ways to correct
point sizes and fontsin titles. Thesimplest way is to change .NP to set the proper size
andfontfor the title, thenrestore the previous values, like this:

ta 8i

.de NP

’ bp

’sp 0.5i

ftR \” set title font to Roman
.ps 10 \” and size to 10 point

Jt6i \” and length to 6 inches

.t] ’left’center’right’

.ps \” revert to previous size
ftP \" and to previous font
‘sp 0.31

This version of .NP does not work if the fields in the .t command contain size or font
changes.

Toget afooter at the bottom of a page, you can modify .NP so it doessome processing
before the’ bp command, or split the job into a footer macro invoked at the bottom
margin and a header macro invoked at the top of the page.

Output page numbers are computed automatically starting at 1, but nonumbersare
printed unless you ask for them. To get page numbers printed, include the character
%% in the .tl line at the position where you want the number to appear. For example

.tl ”_ % N

centersthe page number inside hyphens. You can set the page number at any time
with either .bp n, which immediately starts a new page numbered n, or with.pnn,
which sets the page number for the next page but doesn’t cause a skip to the new
page.

5.11 Number Registers and Arithmetic

Troff uses number registers for doing arithmetic and defining and using variables.
Number registers, like strings and macros, are useful for setting up a document so it

515

XENIX Text Processing

is easy to change later, as well as for doing any sort of arithmetic computation. Like
strings, number registers have one- or two-character names. They are set by the .nr
command, and are referenced by \nz (one-character name) or \n(zy (two-character
name).

There are quite a few pre-defined number registers maintained by troff, among them
% for the current page number, .nl for the current vertical position on the page; .dy,
.mo and .yr for the current day, month and year; and .s and .f for the current point
-size and font. Any of these can be used in computations like any other register, but
some, like .s and.f, cannot be arbitrarily changed with an .nr command.

In MM, most significant parameters are defined in terms of the valuesof a handful of
number registers. These include the point size for text, the vertical spacing, and the
line and title lengths. To set the point size and vertical spacing for the following
paragraphs, for example, you could say

.nr PS9
ar VS 11

Thiswould set the point size to 9 and the vertical spacing to 11 points.
The paragraph macro.P is defined as follows:

.ta 1i
.de.P

. .ps \\n(PS \” reset size
.vs \\n(VSp \” spacing
ft R \" font
sp 0.5v \" half a line
ti +3m

This sets the font to Roman and the point size and line spacing to whatever values are
stored in the number registersPSand VS.

Two backslashes are required to quote a quote. That is, when nroff or troff
originally read the macro definition, they peel off one backslash to see what is coming
next. Toensure that another isleft in the definition when the macro is actually used,
we have to put two backslashes in the definition. If only one backslash is used, point
size and vertical spacing will be frozen at the time the macro is defined, not when it is
used.

Protection with extra backslashes is only needed for \n, \s, \$, and \ itself.
Commands like \s, \f, \h, \ v, and so on do not need an extrabackslash, since they are
converted by nroffand troff to aninternal code when they areread.

Arithmetic expressions can appear anywhere that a number is expected. For
example,

ar PS \\n(PS-2

5-16

Using Nroff /Troff

decrements PS by 2. Expressions can use the arithmetic operators +, -, *, /, %
(mod), the relational operators >, >=, <, <=, =, and != (not equal), and
parentheses.

There are a few things to consider in using number register arithmetic. First,
number registers hold only integers. Nroff /troff arithmetic uses truncating integer
division. Second, in the absence of parentheses, evaluation is done left-to-right
without any operator precedence, including relational operators. Thus

Ts-443/13

becomes “~1"’. Number registers can occur anywhere in an expression, and so can

scale indicators like p, i, m, and so on. Althoughinteger division causes truncation,

each number and itsscale indicator is converted to machine units (1/432-inch) before
* any arithmetic is done, so 1i/2u evaluates t0 0.5i correctly.

The scale indicator u (for " units”) often has to appear when you wouldn’t expect it--
in particular, when arithmetic is being done in a context that implies horizontal or
vertical dimensions. For example,

A1 7i/2u
A saferuleisto attach ascaleindicator toevery number, even constants.
For arithmetic done within a .nr command, there is no implication of horizontal or
vertical dimension, so the default units are units, and 7i/2 and 7i/2u mean the same

thing. Thus

.or 11 7i/2
1 0u

issufficiently explicit as long asyou use u with the.ll command.

5.12 Macros with Arguments

You can define macros that can change from one use to the next according to
parameters supplied as arguments. To make this work, you need two things: first,
when you define the macro, you must indicate thatsome partsof it willbe provided as
arguments when the macro is called. Second, when the macro is called you must
provide actual arguments to be plugged into the definition.

Toillustrate, let’s define a macro .SM that will print its argument two points smaller
than the surrounding text. The definition of .SM is

.de SM
\s-2\\$1\s+2

Within a macro definition, the symbol \\$n refers to the nth argument that the
macro was called with. Thus \\$1 is the string to be placed in a smaller point size

517

XENIX Text Processing

when .SMiscalled.

. The following definition of .SM permits optional second and third arguments that
will be printed in the normalssize:

.de SM
\\$3\s-2\\81\s+2\\$2

Arguments not provided when the macro is called are treated as empty. It is
convenient to reverse the order of arguments because trailing punctuation is much
more common than leading. The number of arguments that a macro was called with
is available in number register $.

For example, let’s define a macro .BD to create a bold Roman for troff command
names in text. It combines horizontal motions, width computations, and argument
rearrangement.

.de BD

\&\\E\FI\\$1\B’\-\w’\\$1'u+ 1u’\\$1\[P\\$2
The \h and \w commands need no extra backslash, as we discussed earlier in this
section. The \ & is there in case the argument begins with a period.
Two backslashes are needed with the \\$n commands to protect one of them when
the macro is being defined. Consider a macro called .SH which produces section

headings rather like those in this paper, with the sections numbered automatically,
and the title in bold in a smaller size. Y ou would use it in this form:

.SH ”Section title ...”

If the argument to amacro is to contain spaces, then it must be surrounded by double
quotation marks.

Here is the definition of the .SH macro:

.ta .75i 1.15i

.r SHO \" initialize section number
.de SH

.sp 0.3i

ftB

ar SH \\n(SH+1 \” increment number

.ps \\n(PS-1 \” decrease PS

\\n(SH. \\$1 \" number. title

.ps \\n(PS \" restore PS

.sp 0.3i

ftR
The section number is kept in number register SH, which is incremented each time

518

Using Nroff /Troff

just before it is used. Note that a number register may have the same name as a
macro without conflict, but a string may not.

We used \\n(SH instead of \n(SHand \\n(PS instead of \n(PS. If we had used \n(SH,
we would get the value of the register at the time the macro was defined, not at the
time it was used. Similarly, by using \\n(PS, we get the point size at the time the
macroiscalled.

Asan example that does not involve numbers, recall the NP macro which had a
.tl ’left’center’right’

We could make these into parameters by using instead
A1 *(LT’*(CT’*(RT’

so the title comes from three strings called LT, CT and RT. If theseare empty, then
the title will be a blank line. Normally CT would be set withsomethinglike

ds CT -%-

but you can also supply private definitions for any of the strings.

5.13 Conditionals

To cause the .SH macro to leave two extra inches of space just before section 1, but
nowhere else, you can put a test inside the .SH macro to determine whether the
section number is 1, and add some space if it is. The .if command provides a
conditional test just before the heading line isoutput:

Af \\n(SH=1 .sp 2i \" first section only

The condition after the .if can be any arithmetic or logical expression. If the
condition is logically true, or arithmetically greater than zero, the rest of the line is
treated as if it were text. If the condition is false, or zero or negative, the rest of the
line is skipped. It is possible to do more than one command if a condition is true.
Suppose several operations are to be donebeforesection 1. One possibility is to define
amacro .Sl andinvokeitif we areabout to dosection 1, asdetermined by an.if:.

.de S1
--- processing for section 1 ---

:;ie SH
if \\n(SH=1 "S1

5-19

XENIX Text Processing

Analternate way istousethe extended form of the.if, like this: -

4f \\n(SH=1 \{--- processing

for section 1 ----

The braces \{ and \} must occur in the positions shown or you will get unexpected
extralinesin your output.

Nroff and troff also provide an if-else construction. A condition can be negated by
preceding it with!; we get the same effect as above by using

Af \\n(SH>1 .51

There are a handful of other conditions that can be tested with .if. For example, you
may need to determine if the current page is even or odd. The following conditionals
give facing pages different titles when used inside an appropriate new page macro.

.if e .tl even page title”
.if o0 .t] odd page title”’

Two other conditions, which you will find useful when you need to process text for
both lineprinter and typesetter, are nand t. These can be used to indicate conditions
dependent on whether troff or nroff are being invoked.

.Af t troff input ...
.Aif n nroff input ...

Finally, string comparisons may be made in an .if statement. The following
comparison does “input” if string 1 is the same as string 2:

e&.if ’stringl’string2’ input

The character separating the strings can be anything reasonable that is not
contained in either string. The strings themselves can reference strings with *,
arguments with \$, and so on.

5.14 Environments

In an earlier section, the potential problem of going across a page boundary was
mentioned: parameters like size and fontfor a page title may be different from those
in effect in the text when the page boundary occurs. Nroff /troff provides a way to
deal with this and similar situations. There are three environments that have
independently controllable versions of many of the parameters associated with
processing, including size, font, line and title lengths, fill or no-fill mode, tab stops,
and even partially collected lines. Thus the titling problem may be solved by
processing the main text in one environment and titles in a separate environment
with its own suitable parameters.

520

Using Nroff/Troff

The environment command .ev n shifts to environment n; n must be 0, 1 or 2. The
command .ev with no argument returns to the previous environment. Environment
names are maintained in a stack, so calls for different environments may be nested
and called in order. If, for example, the main text is processed in environment 0,
which is where troff begins by default, we can modify the new page macro.NP to
process titlesin environment 1 like this:

.de NP

evl \” shift to new environment

Jt 6i \” set parameters here

ftR

.ps 10

... any other processing ...

.ev \" return to previous environment

It is also possible to initialize the parameters for an environment outside the .NP
macro, but the version shown keeps all the processingin one place to make it easier to
understand and change.

5.15 Diversions

In page layout there are numerous occasions when it is necessary to store some text
for a period of time without actually printing it. Footnotes are the most obvious
example: the text of the footnote usually appearsin the input long before the place on
the page where it is to be printed is reached. In fact, the place where it is output
normally depends on how big it is. The footnote text must be preprocessed at least to
the extent that itssize is determined.

Nroff and troff provide a mechanism called a diversion for doing this processing.
Any part of the output may be diverted into a macro instead of being printed, and
then at some convenient time the macro may be put back into the input. The
command .di zy begins a diversion. All subsequent output is collected into the macro
2y until the command .di with no arguments is encountered. This terminates the
diversion. The processed text is available at any time thereafter, simply by giving
the command:

Xy

The vertical size of the last finished diversion is contained in the built-in number
register dn.

For example, suppose we want to implement a keep-release operation, so that text
(such asa figure or table) between the commands .KS and .KE will not be split across
a page boundary. Clearly, when a .KS is encountered, we have to begin diverting the
output so we can find out how big it is. Then when a .KE is seen, we decide whether
the diverted text will fit on the current page, and printiteither thereif it fits, or at the
top of the next pageif it doesn’t. We could use thefollowingto define .KSand .KE:

5-21

XENIX Text Processing

.de KS \” start keep

.br \” start fresh line

evl \” collect in new environment
fi \" make it filled text

di XX \” collect in XX

.de KE \" end keep

.br \" get last partial line

di " end diversion

.f \\n(dn>=\\n(.t .bp \” bp if doesn’t fit

.nf \" bring it back in no-fill
XX \” text

.ev \" return to normal environment

Recall that number register nl is the current position on the output page. Since
output wasbeing diverted, this remains at itsvalue when the diversion started. The
amount of text in the diversion is stored in dn. Another built-in register, .t is the
distance to the next trap, which we assume is at the bottom margin of the page. If the
diversion is large enough to go past the trap, the .if is satisfied, and a .bp is issued
automatically. In either case, the diverted output is then brought back with X3C It
is essential to bring it back in no-fill mode so nroff/troff will do no further

processing on it.

The definition of .KS and .KE is only intended as an example to demonstrate the
power of diversions. You will find the KSand .KE macros already defined in the MM
macro package.

522

Chapter 6
Nroff/Troff Reference

6.1 Introduction 6-1
6.1.1 Invoking nroff and trof 6-1
6.1.2 Technical Information 6-2

6.2 Basic Formatting Requests 6-5
6.2.1 Fontand Character Size Control 6-5
6.2.2 Page Control 6-6
6.2.3 Text Filling, Adjusting, and Centering 6-7
6.2.4 Vertical Spacing 6-9
6.2.5 Line Length and Indenting 6-10
6.2.6 Tabs,Leaders, and Fields 6-11
6.2.7 Hyphenation 6-12
6.2.8 ThreePart Titles 6-12
6.2.9 OutputLine Numbering 6-13

6.3 Character Translations, Overstrike, and Local Motions -
6-13
6.3.1 Input/Output Conventions and Character
Translations 6-13
6.3.2 Local Motions and the Width Function 6-15
6.3.3 Overstrike, Bracket, Line-drawing, and Zero-width
Functions 6-16

6.4 Processing Control Facilities 6-17
6.4.1 Macros, Strings, Diversions, and Position Traps -
6-17
6.4.2 Number Registers 6-21
6.4.3 Conditional Acceptance of Input 6-22
6.4.4 Environment Switching 6-23
6.4.5 Insertions From the Standard Input 6-23
6.4.6 Input/Output File Switching 6-24
6.4.7 Miscellaneous Requests 6-24

6.5 Output and Error Messages 6-24

6.6 Summary of Escape Sequences and Number Registers -
6-26
6.6.1 Escape Sequences for Characters, Indicators, and
Functions 6-26 '
6.6.2 Predefined General Number Registers 6-28
6.6.3 Predefined Read-Only Number Registers 6-28

6.1 Introduction

Nroffand troffarethe XENIX text processing formatting programs. Nroff can
be used to output text to terminals, lineprinters, and letter-quality printers.
Troff can be used to output text to a rumber of phototypesetters and laser
printers. Both programs use identical commands, which are interspersed with
lines of text. The commands used by both programs allow you to control the
style of headers and footers, footnotes, paragraphs, and sections. You may
specify font and point size, spacing, multiple column output, and local motions
to create overstriking and line drawing effects.

Because nroff and troff are highly compatible with each other, it is almost
always possible to prepare input acceptable to both. By using conditional
input, you may add commands which are specific toeither program.

6.1.1 Invoking nroff and troff

Thegeneralform of invoking the formatters on thecommandline is:
nroff options files

or
troff options files

where optione represents any of a number of option arguments and files
represents a list of files containing the document to be formatted. An argument
consisting of a single minus sign () is taken to be a filename corresponding to
the standard input. If no filenames are given, input is taken from the standard
input. The options may appear in any order so long as they appear before the
filenames. They are:

-olsst Prints only pages whose page numbers appear in list, which consists
of comma-separated numbers and number ranges. A number range
has the form N-M and means pages N through M; an initial -N
means from the beginning to page N, and a final N- meansfrom N

to the end.
-nN Numbersfirst generated page N.
-sN Stopsevery N pages. Nroff will halt prior toevery N pages(default

N=1) to allow paper loading or changing, and resume upon receipt
of a newline. Troff will stop the phototypesetter every N pages,
produce a trailer to allow changing cassettes, and will resume after
the phototypesetter ‘‘start” button ispressed.

-mname Prependsthemacrofile /uer/lib/tmac.nametothe input files.

61

XENIX Text Processing Guide

-mcname Same asabove, but uses a compacted form of /usr/lib/tmac.name

for efficiency.
-raN Register aissettoN.
- Readsthestandardinput after the input files are exhausted.
—-q Invokes the simultaneous input-output mode of the rd request.

The following options are recognized by nroffonly:
-Tname Specifiesthe name of the output terminal type.

- Produces equally-spaced words in adjusted lines, using full
terminal resolution.

The following options are recognized by troffonly:

-t Directs output to the standard output instead of the
phototypesetter.

-f Refrains from feeding out paper and stopping phototypesetter at
the end of the run.

-w Waits until phototypesetter isavailable, if currently busy.

-b Reports whether the phototypesetter is busy or available. No text
processingisdone.

-a Sends a printable ASCII approximation of the results to the
standard output. :

-pN Prints all characters in point size N while retaining all prescribed

spacingsand motions, to reduce phototypesetter elapsed time.

Notethateach option mustbeinvoked asa sepai’a.te argument.

6.1.2 Technical Information

The input to the formatters consists of text linesinterspersed with control lines
that set parameters or otherwise control later processing. Control lines begin
with a “control character”, usually a period (.) or a single quotation mark (*),
followed by a one- or two-character name that specifies abasic“request’ or the
substitution of a user-defined ‘‘macro” in place of the control line. The single
quotation mark control character (’) suppresses the “break function,” which is
the forced output of a partially filled line caused by certain requests. The
control character may be separated from the request or macro name by
whitespace (spacesand/or tabs) for esthetic reasons. Names must be followed
by either a space or a newline. Control lines with unrecognized names are

6-2

Nroff/Troff Reference

ignored.

Various special functions may be introduced anywhere intheinputby means of
an ‘“‘escape’’ character, normally the backslash (\). For example, the function
\nR causes the interpolation of the contents of the number register R in place of
the function; here R is either a single character name as in \nx, or a left-
parenthesis-introduced, two-character name asin \n(xx.

Troff uses 432 units to the inch, corresponding to the Wang Laboratories
phototypesetter which has a horizontal resolution of 1/432-inch and a vertical
resolution of 1/144-inch. Nroff uses 240 units to the inch internally,
corresponding to the least common multiple of the horizontal and vertical
resolutions of varioustypewriter-like output devices. Troff rounds horizontal
and vertical numerical parameter input to the actual horizontal and vertical
resolution of the typesetter. Nroff similarly rounds numerical input to the
actual resolution of theoutput deviceindicated by the —T option.

Both Nroff and troff accept numerical input with the appended scale
indicators shown in the following table, where S is the current type size in
points, V is the current vertical line spacing in basic units, and C is a nominal
character width in basic units, as shown below:

Scale Number of basic units
Indicator Meaning Troff Nroff
i Inch 432 240
c Centimeter 432x50/127 | 240x50/127
P Pica=1/16inch 72 240/6
m Em =S points 6xS C
n En=Em/2 3xS C,sameasEm
p Point =1/72inch | 6 240/72
u Basic unit 1 1
v Vertical line space | V v
none Default

In nroff, both the em and the en are taken to be equal to the C, which is output-
device dependent; common values are 1/10- and 1/12-inch. Actual character
widths in nroff-need not be all the same and constructed characterssuchas->
(—) are often extra wide. The default scaling is ems for the horizontally-
oriented requests and functions, including:

Al in .ti .ta It .po .mc \h \};

Vs is the scaling for the vertically-oriented requests and the following
functions:

.pl .wh .ch .dt .sp .sv .ne .rt .ev \v \x \L

p is the scale for the .vsrequest; and uisthe scale for the requests .nr, .if, and .ie.
All other requests ignore any scale indicators. When a number register

6-3

XENIX Text Processing Guide

containing an already appropriately scaled number is interpolated to provide
numerical input, the unit scaleindicator u may need to be appended to prevent
anadditional inappropriate defaultscaling. The number N, may be specified in
decimal-fractionform but the parameter finally stored isrounded to aninteger
number of basic units.

The “absolute’position indicator (|) may be prepended to a number N to
generate the distance to the vertical or horizontal place N. For vertically
oriented requests and functions, [N becomes the distance in basic unitsfrom the
current vertical place on the page or in a ‘‘diversion” to the vertical place N.
For all other requests and functions, [N becomes the distance from the current
horizontal place on the input line to the horizontal place N.

For example,
sp |3.2¢

will space in the required direction to 3.2 centimetersfrom the top of the page.
Wherever numerical input is expected an expression involving parentheses, the
arithmetic operators (+, -, /, *, %) and the logical operators (<, >, <=,

'>=, =, ==, & (and), : (or)) may be used. Except where controlled by
parentheses, evaluation of expressions is left-to-right; there is no operator
precedence. In the case of certain requests, an initial + or - is stripped and
interpreted as anincrement or decrement indicator respectively.

For example, if the number register x contains 2 and the current point size is 10,
then

Al (4.251+2P+3)/2u
setsthe line length to 1/2 the sum of 4.25inches + 2 picas + 30 points.

Note: numerical parameters are indicated here in two ways. N means that
the argument may take the forms N, +N, or -N and that the corresponding
effectisto set the affected parameter to N, to increment it by N, or to decrement
it by N respectively. Plain N means that an initial algebraic sign is not an
increment indicator, but merely the sign of N. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For
example, most requests expect to set parameters to non-negative values;
exceptions are .sp, .wh, .ch, .nr, and .if. The requests.ps, .ft, .po, .vs, .ls, .1}, .in
and.ltrestorethe previous parameter valuein theabsenceof an argument.

Single-character arguments are indicated by single lowercase letters, and one-

or two-character arguments are indicated by a pair of lowercase letters.
Character string arguments are indicated by multicharacter mnemonics.

6-4

Nroff /Troff Reference

6.2 Basic Formatting Requests

The following sections describe the commonly used nroff and troff formatting
requests.

6.2.1 Font and Character Size Control

The troff character set includes a regular character set plus a Special
Mathematical Font character set—each having 102 characters. All ASCII
characters are included, with some on the Special Font. With three exceptions,
the ASCII characters are input as themselves, and non-ASCII characters are
input in the form \(xx where xx is a two-character name. The three ASCII
exceptions are mapped asfollows:

ASCHInput Printed by troff
Character Name

‘ acuteaccent

' graveaccent

- minus

The characters’, ¢, and - may be input as \’, \‘, and \- respectively or by their
names. The ASCII characters @, #,”,°,%, <, >,,{,},, ", and _exist only on
the Special Font and are printed as a 1-em space if that font is not mounted.
Nroff understands the entire troff character set, but can in general print only
ASCII characters, such characters as can be constructed by overstriking or
other combinations, and those that can reasonably be mapped into other
printable characters. The exact behavior is determined by a driving table
prepared for each device. The characters’, ¢, and -print as themselves. The
default mounted fonts are Roman (R), italic (I), bold (B), and the Special
Mathematical Font (S) on physical typesetter positions 1, 2, 3, and 4
respectively.

The current font, initially Roman, may be changed (among the mounted fonts)
by use of the .ft request, or by imbedding at any desired point either \fx,\f(xx,
or \fN where x and xx are the name of a mounted font and Nisa numerical font
position. It is not necessary to change to the Special font; characters on that
font are handled automatically. A request for a named but unmounted font is
ignored. Troff can be informed that any particular font is mounted by use of
the fp request. The list of known fonts is installation-dependent. Nroff
understandsfont control and normally underlinesItalic characters.

Character point sizes are typically in the range 6-36 (1/12- to 1/2-inch). The .ps
request is used to change or restore the point size. Alternatively the point size
may be changed between any two characters by imbedding a \sN at the desired
point to set the size to N, or a \sxN (1 <N <9) toincrement /decrementthesize
by N; \sO restores the previous size. Requested point size values that are
between two valid sizesyield the larger of the two. The current size isavailable
inthe .sregister. Nroffignorestypesize control.

6-5

XENIX Text Processing Guide

.ps

ssN

esFNM

.bdFN

.bdSFN

ftF

fpNF

Hasaninitial value of 10. Point size set to £ N. Alternatively imbed
\sN or \sxN. Any positive size value may be requested; if invalid,
the next larger valid size will result, with a maximum of 36. A
paired sequence +N, -N will work because the previous requested
value is also remembered. Ignored in nroff. If no argument is
given, .ps has the previous value.

Has an initial value of 12/36 em. Space-character size isset to N/36
ems. This size is the minimum word spacing in adjusted text.
Ignored in nroff. If no argument is specified, the requestisignored.

Initially off. Constant character space (width) mode is set on for
font F (if mounted); the width of every character will be taken to be
N/36 ems.IfMis absent, the em is that of the character’s point size;
if M is given, the em is M points. All affected characters are
centered in this space, including those with an actual width larger
than this space. Special Font characters occurring while the
current font is F are also so treated. If N is absent, the mode is
turned off. The mode must be in effect when the characters are
physically printed. Ignoredin nroff.

Initially off. The charactersin font F will be artificially emboldened
by printing each one twice, separated by N-1 basic units. A

- reasonable value for N is 3 when the character size isin the vicinity

of 10 points. If N is missing the embolden mode is turned off. The
mode must be in effect when the characters are physically printed.
Ignored innroff.

Initially off. The charactersin the Special Font will be emboldened
whenever the current font isF. The mode must be ineffect when the
charactersare physically printed.

Initially Roman. Font changed to F. Alternatively, imbed \{F. The
font name P is reserved to mean the previousfont. If no argument is
specified, previous font is assumed.

Initially R, I, B, S. Font position. This is a statement that a font
named F is mounted on position N (1-4). It is a fatal error if F is not
known. The phototypesetter has four fonts physically mounted.
Each font consists of a film strip which can be mounted on a
numbered quadrant of a wheel. This request is ignored if no
argumentsare given.

6.2.2 Page Control

Top and bottom margins are not automatically provided. It is standard
procedure to define two macros and set traps for them at vertical positions 0
(top) and -N (N from the bottom). A pseudo-page transition onto the first page
occurs either when the first break occurs or when the first nondiverted text

6-6

Nroff /Troff Reference

processing occurs. Arrangements for a trap to occur at the top of the first page
must be completed before this transition.

.plxN

.bpxN

.pnxN

.poxN

.neN

.mk R

rt+N

Page lengthsetto £+ N, initially 11 inches. Theinternal limitationis
about 75 inchesin troffand about 136inchesin nroff. The current
page length is available in the .p register. The default scale
indicator isv.Ifnoargumentisgiven, 11 inches is assumed.

Begin page, initially N=1. The current page is ejected and a new
pageis begun. If +N is given, thenew page number will be £N. The
defaultscaleindicator is v.

Page number, initially N=1. The next page (when it occurs) will
have the page number £N. A .pn must occur before the initial
pseudo-page transition to effect the page number of the first page.
The current page number isin the % register.

Page offset, initially 0. The current left margin is set to £N. The
troff initial value provides about 1 inch of paper margin including
the physical typesetter margin of 1/27-inch. In troff the maximum
line-length + page-offset is about 7.54 inches. The current page
offset isavailable in the .o register.

Need N vertical space. If the distance D to the next trap positionis
less than N, a forward vertical space of size D occurs, which will
spring the trap. If there are no remaining traps on the page, D isthe
distance to the bottom of the page. If DKV, another line could still
be output and spring the trap. In a diversion, D is the distance to
the diversion trap, if any, or is very large. If no argument is
specified, N=1V.

Marks the current vertical place in an internal register (both
associated with the current diversion level), or in register R, if
given.

Returns upward only to a marked vertical place in the current
diversion. If +Nisgiven, the placeis £N from the top of the page or
diversion or, if N is absent, to a place marked by a previous .mk.
Note that the .sp request may be used in all cases instead of .rt by
spacingtothe absolute placestoredin an explicit register.

68.2.3 Text Filling, Adjusting, and Centering

Normally, words are collected from input text lines and assembled into an
output text line until some word doesn’t fit. An attempt is then made to the
.hyphenate the word in an effort to place a part of it onto the output line. The
spaces between the words on the output line are then increased to spread out
the line to the current line length minus any current indent. A word is any
string of characters delimited by the space character or the beginningor end of

6-7

XENIX Text Processing Guide

theinputline. Any adjacent pair of words that must be kept together (neither
split across output lines nor spread apart in the adjustment process) can be tied
together using the unpaddable space character (backslash-space). The
adjusted word spacings aré uniform in troff and the minimum interword
spacing can be controlled with the .ss request. In nroff, they are normally
nonuniform because of quantization to character-size spaces; the command line
option -e causes uniform spacing with full output device resolution. Filling,
adjustment, and hyphenation can all be prevented or controlled. The text
length on the last line output is available in the .n register, and text baseline
position on the page for this line is in the .nl register. The text baseline high-
water mark (lowest place) on the current page isin the .hregister.

An input text line ending with ., ?, or ! is taken to be the end of a sentence, and
an additional space character isautomatically provided during filling. Multiple
interword space characters found in the input are retained, except for trailing
spaces; initial spaces also cause a break. When filling is in effect a \p may be
embedded or attached to a word to cause a break at the end of the word and
havetheresultingoutputlinespread out tofill thecurrentlinelength.

A text input line that happens to begin with a control character can be printed
as a text line by prefacing it with the nonprinting, zero-width filler character
\&. Another method is to specify output translation of some convenient
character into the control character using .tr.

The copying of an input line in no-fill mode can be interrupted by terminating
the partial line with a \c. The next encountered input text line will be
considered to be a continuation of the same line of input text. Similarly, a word
within filled text may be interrupted by terminating the word and line with \c;
the next encountered text will be taken as a continuation of the interrupted
word. If the intervening control lines cause a break, any partial line will be
forced out along withany partial word.

.br Break. The filling of the line currently being collected is stopped
and the line is output without adjustment. Text lines beginning
with space charactersand empty text lines (blank lines) also cause a
break.

A Fill subsequent output lines. Initially fill is on. The register .uis1in
fill mode and 0 in nofill mode.

.nf Nofill. Initially, fill ison. Subsequent output lines are neither filled
nor adjusted. Input text lines are copied directly to output lines
without regard for the current line length.

.ade Line adjustment is begun. If fill mode is not on, adjustment will be
deferred until fill mode is back on. If the type indicator c ispresent,
the adjustment type is changed in the following ways: | to adjust
left-margin only, r to adjust right margin only, c to center,bor nto
adjust both margins. If c isabsent the line remains unchanged. -

6-8

Nroff/Troff Reference

.na Noadjust. Initially, set to adjust. Adjustment is turned off; the
right margin will be ragged. The adjustment type for .ad is
unchanged. Output line filling still occurs if fill mode is on.

.ce N Initially off. Center the next N input text lines within the current
line-length minus indent. If N=0, any residual count is cleared. A
break occurs after each of the N input lines. If the input line is too
long, it will be left-adjusted.

6.2.4 Vertical Spacing

The vertical spacing (V) between the baselines of successive output linescan be
set using the .vs request with a resolution of 1/144-inch = 1/2 point in troff,
and to the output device resolutipn in nroff. V must be large enough to
accommodate the character sizes on the affected output lines. For the common
type sizes (9-12 points), usual typesetting practice is to set V to 2 points greater
than the point size; troff default is 10-point type on a 12-point spacing. The
current V is available in the .v register. Multiple-V line separation (e.g. double
spacing) may be requested with .ls.

If a word contains a vertically tall construct requiring the output line
containing it to have extra vertical space before and or after it, the extra line
space function \x’N’ can be imbedded in or attached to that word. In thisand
other functions having a pair of delimiters around their parameter, the
delimiter choice is arbitrary, except that it can’t look like the continuation of a
number expression for N. If N is negative, the output line containing the word
will be preceded by N extra vertical space; if N is positive, the output line
containing the word will be followed by N extra vertical space. If successive
requests for extra space apply to the same line, the maximum values are used.
The most recently utilized post-line extra line space is available in the .a
register.

A block of vertical space is ordinarily requested using .sp, which honors the no-
space mode and which does not space past a trap. A contiguous block of vertical
space may be reserved using .sv. The following requests control vertical
spacing:

.vsN Initially 1/6-inch or 12 points. Set vertical baseline spacing size V.
Transient extra vertical space available with \x’N’.

Is N Initially N=1. Line spacing set to £N. Vs (blank lines) are
appended to each output text line. Appended blank lines are
omitted, if the text or previous appended blank line reached a trap
position. Space vertically in either direction. If N is negative, the
motion is backward (upward) and is limited to the distance to the
top of the page. Forward (downward) motion is truncated to the
distance tothenearest trap.

6-9

XENIX Text Processing Guide

sp N Space vertically in either direction. If N is negative, the motion is
backward (upward) and is limited to the distance to the top of the
page. Forward (downward) motion is truncated to the distance to
the nearest trap. If no-space modeison, no spacing occurs.

svN Save a contiguous vertical block of size N. If the distance to the next
trap is greater than N, N vertical space is output. No-space mode
has no effect. If this distance is less than N, no vertical space is
immediately output, but N is remembered for later output.
Subsequent .svrequestswill overwriteanystillrememberedN.

.08 Output saved vertical space. No-space mode has no effect. Used to
finally output a block of vertical space requested by an earlier .sv
request.

.ns No-space mode turned on. When on, the no-space mode inhibits .sp

requests and .bp requests without a next page number. The no-
space mode is turned off when a line of output occurs, or with .rs.

IS Restore spacing. The no-space mode is turned off.

blank line Causesa break and output of ablank line exactly like .sp 1.

6.2.5 Line Length and Indenting

The maximum line length for fill mode may be set with .ll. The indent may be
set with.in; an indent applicable to only the next output line may be set with.ti.
Theline length includesindent space but not page offset space. The line length
minus the indent is the basis for centering with .ce. The effect of .1l, .in, or .tiis
delayed if a partially collected line exists, until after that line is output. In fill
mode the length of text on an output line islessthan or equal to the line length
minus the indent. The currentline length and indent are available in registers.l
and .i respectively. The length of three-part titles produced by .tl is
independently set by .It.

Jl£N Initially 6.5 inches. Line length is set to £N. In troffthe maximum
line-length + page-offset is about 7.54 inches. Without an
argument,thismeansthe previouslinelength.

intN Initially N=0. Indent is set to £N. The indent is prepended to each
output line. Without an argument, this meansthe previousindent.

tixN Temporary indent, The next output text line will be indented a
distance £N with respect to the current indent. The resulting total
indent may not be negative. The current indent is not changed.
Without an argument, the request isignored.

6-10

Nroff/Troff Reference

6.2.86 Tabs, Leaders, and Fields.

The ASCIl horizontal tab character and the ASCII SOH (leader) character can
both be used to generate either horizontal motion or a string of repeated
characters. The length of the generatedentity isgoverned by internal tab stops
specifiable with .ta. The default difference is that tabs generate motion and
leaders generate a string of periods; .tc and .lc offer the choice of repeated
character or motion. There are three types of internal tab stops: left adjusting,
right adjusting, and centering. In the following table D is the distance from the
current position on the input line (where a tab or leader was found) to the next
tab stop; the next string consists of the input characters following the tab (or
leader) up to the next tab (or leader) or.end of line; and W is the width of next-
string.

Tab" | Length of motionor Location of
type repeated characters next stting
Left D FollowingD
Right D-w Right adjusted within D
Centered D-W/2 Centered onright end of D

The length of generated motion can be negative, but the length of a repeated
character string cannot be. Repeated character strings contain an integer
number of characters, and any residual distance is prepended as motion. Tabs
or leaders found after the last tab stop are ignored, but may be used as next-
string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \aalwaysgeneratea
nomnterpreted tab and leader respectwely, and are equivalent to actual tabs
and leaders in copy mode.

A field iscontained between a pair of field delimiter characters, and consists of
substrings separated by padding indicator characters. The field length is the
distance on the input line from the position where the field begins to the next
tab stop. The difference between the total length of all the substrings and the
field length is incorporated as horizontal padding space that is divided among
the indicated padding places. The incorporated padding is allowed to be
negative. For example, if the field delimiter is # and the paddingindicatoris *,
" xxx“right# specifies a right-adjusted string with the string zzz centered in
the remaining space. The following requestsare recognized:

.taNt... Setstab stops and types. t=R, right adjusting; t=C, centering; t
absent isleft-adjusting. Trofftab stopsare preset every 0.5inches,
nroff every 0.8 inches. The stop values are separated by spaces,
and a value preceded by + is treated as an increment to the
previousstopvalue.

tce The tab repetition character becomes c, or is removed specifying
motion.

6-11

XENIX Text Processing Guide

dec The leader repetition character becomesc, orisremoved specifying
motion.

fcab The field delimiter is set to a; the padding indicator is set to the
space character or to b, if given. In the absence of arguments the
field mechanism is turned off.

6.2.7 Hyphenation

Automatic hyphenation can be switched off and on. When switched on with
.hy, several variants may be set. A hyphenation indicator character may be
imbedded in a word to specify desired hyphenation points, or may be

prepended to suppress hyphenation. In addition, the user may specify a small
exception word list. '

Only words that consist of a central alphabetic string surrounded by (usually
null) nonalphabetic strings are considered candidates for automatic
hyphenation. Words that were input containing hyphens (minus), em-dashes
(\(em), or hyphenation indicator characters —such as mother-in-law—are
always subject to splitting after those characters, whether automatic
hyphenation isonor off.

.nh Initially hyphenationison. Automatic hyphenation is turned off.

hy N Automatic hyphenation is turned on for N> 1, or off for N=0. If
N=2, last lines (ones that will cause a trap) are not hyphenated.
For N=4 and 8, the last and first two characters respectively of a
word are not split off. These values are additive; i.e., N=14 will
invoke all three restrictions.

he e Hyphenation indicator character is set to c or to the default \&.
The indicator does not appear in the output.

.hw wordl... Specify hyphenation points in words with imbedded minus signs.
Versionsof a word with various endings are implied.

6.2.8 Three Part Titles

The titling function .tl provides for automatic placement of three fields at the
left, center, and right of a line with a title-length specifiable with .1t. .tl may be
used anywhere, and is independent of the normal text collecting process. A
common use isin header and fogter macros.

tl'left'center’right’
The strings left, center, and right are respectively left-adjusted,
centered, and right-adjusted in the current title length. Any of the
strings may be empty, and overlapping is permitted. If the page-
number character (initially %) is found within any of the fieldsit is

6-12

Nroff/Troff Reference

replaced by the current page number having the formatassignedto
the register %. Any character may be used as thestringdelimiter.

.pc ¢ The page number character is set to c, or removed. The page-
number register remains %.

dt2N Initially 6.5 inches. Length of title set to £ N. The line length and
the title length are independent. Indents do not apply to titles; page
offsets do.

68.2.9 Output Line Numbering

Automatic sequence numbering of output lines may be requested with .nm.
When in effect, a three-digit Arabic number plus a digit-space is prepended to
output text lines. The text lines are thus offset by four digit-spaces, and
otherwise retain their line length; a reduction in line length may be desired to
keep the right margin aligned with an earlier margin. Blank lines, other
vertical spaces, and lines generated by .tl are not numbered. Numbering can be
temporarily suspended with .nn, or with an.nm followed by a later .nm+0. In
addition, a line number indent I, and the number-text separation S may be
specified in digit-spaces. Further, it can be specified that only those line
numbers that are multiples of some number M are to be printed (the others will
appearas blank number fields).

.nm£xN Line number mode. If £N is given, line numberingis turned on, and
the next output line numberedisnumbered £ N. Default values are
M=1, S=R, and I=0. Parameters corresponding to missing
arguments are unaffected; a non-numeric argument is considered
missing. In the absence of all arguments, numbering is turned off;
the next line number is preserved for possible further use in number
register In.

.nnN ThenextN text.output, lines are not numbered.

6.3 Character Translations, Overstrike, and Local
Motions

The troff functions described in the f ollowing sections apply to the processing

of specialized text, including special characters and lines of variable length.

Also described are methods for producing special effects in text, by changing

the position of text relative to linesand using off sets to create bold effects.

6.3.1 Input/Output Conventions and Character Translations

The newline delimits input lines. In addition, the ASCHI characters STX, ETX,

ENQ, ACK, and BEL characters are accepted, and may be used as delimitersor
translatedintoa graphicwith.tr. Allothersare ignored.

6-13

XENIX Text Processing Guide

The troff escape character backslash (\) introduces escape sequences— causes
the following character to mean another character, or to indicate some
function, The backslash (\) should not be confused with the ASCII control
character ESC of the same name. The escape character \ can be input with the
. sequence \\. The escape character can be changed with .ec, and all that has
been said about the default \ becomes true for the new escape character. The
sequence \e can be used to print whatever the current escape character is. If
necessary or convenient, the escape mechanism may be turned off with .eo, and
restored with .ec.

.ecc Setsescape characterto\,or to ¢, if given.
.0 Turnsthe escape mechanism off.

Five ligatures are available in the current troff character set: fi, fl, fl, Fi, and fli.
They may be input in nroffwith \(fi, \(l,"\(ff, \(Fi, and \(Fl respectively.

The ligature mode is normally on in troff, and automatically invokes ligatures
during input. The ligature request is:

g Ligature mode isturned on if N is absent or nonzero, and turned off
if N==0.IfN=2, only the two-character ligaturesare automatically
invoked. Ligature mode is inhibited for request, macro, string,
register, or filenames, and in copy mode. Noeffect in nroff.

Unless in copy mode, the ASCII backspace character isreplaced by a backward
horizontal motion having the width of the space character. Nroff
automatically underlines characters in the underline font, specifiable with uf,
normally on font position 2. In addition to.ft and \{F, the underline font may
. be selected by .ul and .cu. Underlining is restricted to an output-device-
dependent subset of reasonable characters.

.ulN Initially off. Underlinesin nroff (italicizes in troff) the next Ninput
text lines. Actually, switches to underline font, saving the current
font for later restoration; other font changes within the spanofa .ul
will take effect, but the restoration will undo the last change.
Output generated by .tl is affected by the font change, but doesnot
decrement N. If N> 1, there is the risk that a trap interpolated
macro may provide text lines within the span; environment
switching can prevent this.

cu N Initially off. A variant of .ul that causes every character to be
underlinedinnroff. Identical to .ulin troff.

ufF Initially italic. Underline font set to F. In nroff, , F may not be on
position 1.

Both the control character dot (.) and the no-break control character ') may be

changed, if desired. Such a change must be compatible with the design of any
macros used in the span of the change, and particularly of any trap-invoked

614

Nroff /Troff Reference

macros.
..cee The basic control character isset to ¢, or reset to dot (.).
€2 c The nobreak control character is set to ¢, or reset to single

quotation mark (’).

One character canbemadetostand in for another character using.tr. Alltext
processing (e.g., character comparisons) takes place with the input (stand-in)
character, which appears to have the width of the final character. The graphic
translation occursat the moment of output (including diversion).

.tr abed.. Translatesa to b, ¢ to d, etc. If an odd number of characters is
given, the last one will be mappedinto the space character. To be
consistent, a particular translation must stay ineffectfrom input to
output time.

Aninput line beginning with a\!isread in copy mode and transparently output
(without the initial \!); the text processor is otherwise unaware of the line’s
presence. This mechanism may be used to pass control information to a post-
processor or toimbed control lines in a macro created by a diversion.

Comments and concealed newlinesmay appear in text. An uncomfortably long
input line that must stay one line (e.g., a string definition, or nofilled text) can
be split into many physical linesby ending all but the last one with the escape \.
The sequence \(newline) is always ignored—except in a comment. Comments
may be imbedded at the end of any line by prefacingthem with \". The newline
at the end of a comment cannot be concealed. A line beginning with \” will
appear as a blank line and behave like .sp 1; a comment can be on a line by itself
if the line begins with .\".

6.3.2 Local Motions and the Width Function

The functions \v’'N’ and \h’N’ can be used for local vertical and horizontal
motion respectively. The distance N may be negative; the positive directions
are rightward and downward. A local motion is one contained within a line.

andotherwise withinalinebalance to zero. The verticalmotionsare:

\v'N’ Move distance N

\u 1/2-em up in troff; 1/2-line upin nroff
\d 1/2-em downin troff;1/2-line down in nroff
\r lemupintroff;1lineupinnroff

The horizontal motionsare:

6-15

‘XENIX Text Processing Guide

\h'N’ Move distance N

\epace Unpaddable space-size space

\o Digit-sized space .
\| 1/6-em space in troff; ignored in nroff

\" 1/12-em spacein troff; ignored in nroff

The width function \w’string’ generates the numerical width of string (in basic
units). Size and font changes may be safely imbedded in etring, and will not
affect the current environment. For example, .ti-w’l.’u could be used to
temporarily indent leftward a distance equal to the size of the string““1.”

The width function also sets three number registers. The registersstandsb are
set to the highest and lowest extent of string relative to the baseline; then, for
example, the total height of string is \n(stu-\n(sbu. In troff the number -
register ct is set to a value between 0 and 3: 0 means that all of the charactersin
string were short lowercase characters without descenders (e.g., ¢); 1 means
that at least one character has a descender (e.g., y); 2 means that at least one
character istall (e.g., H); and 3 means that both tall characters and characters
with descenders are present. The escape sequence \kx will cause the current
horizontal position in the input line to be stored in register x. '

6.3.3 Overstrike, Bracket, Line—drawing, and Zero-width
Functions

Automatically centered overstriking of up to nine charactersis provided by the
overstrike function \o’string’. The characters in stringare overprinted with
centers aligned; the total width is that of the widest character. String should
not contain local vertical motion. The function \zc will output ¢ without
spacing over it, and can be used to produce left-aligned overstruck
combinations. :

The Special Mathematical Font contains a number of bracket construction
pieces (¢ 3/ {}| L] [1) that can be combined into various bracket styles. The
function \b’string’ may be used to pile the charactersin string vertically (the
first character on top and the last at the bottom); the characters are vertically
separated by 1 em and the total pile is centered 1/2-em above the current
baseline.

The function \I'Nc’ will draw a string of repeated c’s towards the right for a
distance N. (\l is \lowercase L). If ¢ looks like a continuation of an expression
for N, it may be insulated from N with a \&. If ¢ is not specified, the _ (baseline
rule) is used (underline character in nroff). If N is negative, a backward
horizontal motion of size N is made before drawing the string. Any space
resulting from N/(size of c) having a remainder is put at the beginning(left end)
of thestring. Inthe case of charactersthatare designedto be connected suchas

6-16

Nroff /Troff Reference

baseline-rule (_), underrule (_), and root-en ("), the remaining spaceis covered
by overlapping. If N is less than the width of ¢, a single ¢ is centered on a
distance N.

The function \L'Nc’ will draw a vertical line consisting of the (optional)
character ¢ stacked vertically apart 1 em (1 line in nroff) with the first two
characters overlapped, if necessary, to form a continuous line. The default
character is the box rule (\(br); the other suitable character is the bold vertical
(\(bv). The line isbegun without any initial motion relative to the current base
line. A positive N specifies a line drawn downward and a negative N specifiesa
line drawn upward. After the line is drawn no compensating motions are made;
the instantaneous baseline is at the end of the line. The horizontal and vertical
line drawing functionsmay be used in combination to produce large boxes. The
zero-width box-rule and the 1/2-em wide underrule were designed to form
corners when using 1 em vertical spacings.

6.4 Processing Control Facilities

The following sections describe nroff and troff requests and facilities for
controlling the processing of text.

6.4.1 Macros, Strings, Diversions, and Position Traps

A ““macro’’ is a named set of arbitrary linesthat may be invoked by name or
with a trap. A “string” isa namedstring of characters, notincluding a newline
character, that may be interpolated by name at any point. Request, macro,
and string names share the same name list. Macro and stringnamesmay be one
or two characters long and may usurp previously defined request, macro, or
string names. Any of these may be renamed with .rn or removed with .rm.
Macros are created by .de and.di,and appendedtoby.amand.da;.di and .da
cause normal output to be stored in a macro. Strings are created by .ds and
appended to by .as. A macro is invoked in the same way as a request; a control
line beginning with .xx will interpolate the contents of macro xx. The
remainder of the line may contain up to nine arguments. The strings x and xx
are interpolated at nay desired point with \ex and \#(xx respectively. String
referencesand macroinvocationsmay be nested.

During the definition and extension of stringsand macros (not by diversion) the
input is read in copy mode. The input is copied without interpretation except
that:

— Thecontentsof number registersindicated by \nare interpolated.

— Stringsindicated by \# are interpolated.

— Argumentsindicated by \$ areinterpolated.

6-17

XENIX Text Processing Guide

— Concealed newlinesindicated by \newline are eliminated.
— Commentsindicated by \” are eliminated.

— \t and \a are interpreted as ASCII horizontal tab and SOH
respectively. .

— \\isinterpreted as .
— \.isinterpreted asdot(.).

These interpretations can be suppressed by prepending a\. For example, since
\\ maps into a \, \\n will copy as \n; this will be interpreted as a number
register indicator when the macroorstringisreread.

When a macro is invoked by name, the remainder of the line is taken to contain
up to nine arguments. The argument separator is the space character, and
arguments may be surrounded by quotation marks to permit imbedded space
characters. Pairs of double quotation marks may be imbedded in double-
quoted arguments to represent a single quotation mark. If the desired
arguments won’t fit on a line, a concealed newline may be used to continue on
the next line.

When a macro is invoked the input level is pushed down and any arguments
available at the previous level become unavailable until the macro is
completely read and the previous level is restored. A macro’s own arguments
can be interpolated at any point within the macro with \$N, which interpolates
the Nth argument (1<N<9). If an invoked argument doesn’t exist, a null
string results. For example, the macro xx might be defined as

.de xx \"begin definition
Today is \\$1 the \\$2.
" \"end definition
and called with |
.xx Monday 14th
to produce the text
Today is Monday the 14th.

Note that the \$ was concealed in the definition with a prepended \. The
number of currently available argumentsisin the .$ register.

No argumentsare available at the top (nonmacro) levelin thisimplementation.
Because string referencing is implemented as an input-level push down, no
arguments are available from within a string. No arguments are available
within a trap-invoked macro.

6-18

Nroff /Troff Reference

Arguments are copied in copy mode onto a stack where they are available for
reference. The mechanism does not allow an argument to contain a direct
reference to a long string (interpolated at copy time) and it is advisable to
conceal string references (with an extra \) to delay interpolation until
argumentreference time.

Processed output may be diverted into a macro for purposes such as footnote
processing or determining the horizontal and vertical size of some text for
conditional changing of pages or columns. A single diversion trap may be set at
a specified vertical position. The number registers .dn and .dl respectively
contain the vertical and horizontal size of the most recently ended diversion.
Processed text that is diverted into a macro retains the vertical size of each of
its lines when reread in no-fill mode, regardless of the current value of V.
Constant-spaced (.cs) or emboldened (.bd) text that is diverted can be reread
correctly only if these modes areagainor still in effect at reread time.

Diversions may be nested and certain parameters and registers are associated
with the current diversion level (the top nondiversion level may be thought of
as the Oth diversion level). These are the diversion trap and associated macro,
the no-space mode, the internally saved marked place (see .mk and .rt), the
current vertical place (.d register), the current high-water text baseline (.h
register), and the currentdiversionname (.2 register).

Three types of trap mechanisms are available—page traps, a diversion trap,
and an input line counttrap. Macroinvocationtrapsmay beplantedusing.wh
atanypageposition including thetop. Thistrap position may be changed using
.ch. Trap positions at or below the bottom of the page have no effect unless or
until moved to within the page or rendered effective by an increase in page
length. Two traps may be planted at the same position only by first planting
them at different positions and then moving one of the traps; the first planted
trap will conceal the second unless and until the first one is moved. If the first
one is moved back, it again conceals the second trap. The macro associated
with a page trap is automatically invoked when a line of text is output whose
vertical size reaches or sweeps past the trap position. Reaching the bottom of a
page springs the top-of-page trap, if any, provxded there is a next page. The
distance to the next trap position is available in the .t register; if there are no
traps between the current position and the bottom of the page, the distance
returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted
using .dt. The .t register worksin a diversion; if there is no subsequent trap a
large distance is returned. For a description of input line count traps, see .it
below.

.dezzyy Defineor redefine the macro zz. The contents of the macro beginon
the next input line. Input lines are copied in copy mode until the
definitionis terminated by a line beginning with .yy, whereupon the
macro yyis called. In the absence of yy, the definition is terminated
by a line beginning with two dots (..). A macro may contain .de
requests provided the terminating macros differ or the contained

6-19

XENIX Text Processing Guide

definition terminator is concealed. The dots can be concealed as
\\.. which will copy as\ .. and be reread asdots(..).

.am 2z yy Apbend tomacro.

.ds zz string Define a string xx containing string. Any initial double quotation

markin string isstripped off to permit initial blanks.

.as zz string Append string tostring zz.

rm z2

.In 2z yy

Jdi zz

.da zz

whN zz

.chzzN

.dt N zz

it Nzz

.em 22

6-20

"Remove request, macro, or string. The name xx is removed from

the name list and any related storage space is freed. Subsequent
references willhave noeffect.

Rename request, macro, or string zz to yy. If yy exists, it is first
removed.

Divert output to macro xx. Normal text processing occurs during
diversion except that page offsetting is not done. The diversion ends
when the request .di or .da is encountered without an argument;
extraneous requests of this type should not appear when nested
diversionsare being used.

Divert, appending to zz.

Install a trap to invoke 2z at page position N; a negative N will be
interpreted with respect tothe page bottom. Any macro previously
planted at N is replaced by zz. A zero N refers to the top of a page.
Inthe absence of 2z, the first found trap at N, if any, is removed.

Change the trap position for macro xx to N. In the absence of N, the
trap isremoved.

Install a diversion trap at position N in the current diversion to
invoke macro zz. Another .dt will redefine the diversion trap. If no
arguments are given, the diversion trap isremoved.

Set an input line count trap to invoke the macro xx after N lines of
text input have been read (control or request lines don’t count).
The text may be in-line text or text interpolated by in-line or trap-
invoked macros.

The macro zz will be invoked when all input hasended. The effect is
the same as if the contents of xx had been at the end of the last file
processed.

Nroff /Troff Reference

6.4.2 Number Registers

A variety of parameters are available to the user as predefined, named number
registers. In addition, the user may define his own named registers. Register
names are one or two characters long and do not conflict with request, macro,
or string names. Except for certain predefined read-only registers, a number
register can be read, written, automatically incremented or decremented, and
interpolated into the input in a variety of formats. One common use of user-
defined registers is to automatically number sections, paragraphs, lines, etc. A
number register may be used any time numerical input is expected or desired
and may be used in numerical expressions.

Number registers are created and modified using .nr, which specifies the name,
numerical value, and the auto-increment size. Registers are also modified, if
accessed with an auto-incrementing sequence. If the registers x and xx both
contain N and have the auto-increment size M, the following access sequences
havetheeffect shown: '

Effect on Value
Segquence Register Interpolated
\nx none N
\n(xx none N
\n+x xincremented by M N+M
\n-x x decremented by M N-M
\n+(xx | xxincremented by M N+M
| \n-[xx xx decremented by M N-M

When interpolated, 2 number register is converted to decimal (default),
decimal with leading zeros, lowercase Roman, uppercase Roman, lowercase
sequential alphabetic, or uppercase sequential alphabetic according to the
format specified by .af.

.nr R+ N M The number register R is assigned the value £N with respect to the
previousvalue, if any. The increment for auto-incrementing is set

toM.

.afRec Assign format c to register R. The available formatsare:

Numbering
Format Sequence
1 |0,1.2345,.
001 | 000,001,002,003,004,005,...

i 0,i,ii,ili,iv,v,...
I o,L,I,0LIV,V,...
a 0,a,b,c,...,z,33,ab,...,32,2aa,...

A |0ABC, ZAAAB. . 22 AAA,..

An Arabic format having N digits specifies a field width of N digits.
The read-only registers and the width function are always Arabic.

6-21

XENIX Text Processing Guide

ar R Remove register R. If many registers are being created
dynamically, it may become necessary to remove no longer used
registers torecapture internal storage space for newer registers.

6.4.3 Conditional Acceptance of Input

In the following, ¢ is a one-character, built-in condition name, ! signifies not, N
is a numerical expression, stringl and string2 are strings delimited by any
nonblank, non-numeric character notin the strings, and teztrepresents what is
conditionally accepted.

if c tezt
If condition c is true, process tezt as input; in multiline case, use
\{text\}.
.Aflctezt
If condition c isfalse, process tezt.
Af N tezt
If expression N >0, processtezt.
AfIN tezt

Ifexpression N <0, process tezt.

.if ’stringl’string?2’ tezt
Ifstringl identical to string2, process tezt.

ift’stringl’string2’ tezt
If string 1 notidentical to string2, process tezt.

Jdectezt
“If” portion ofif-else; allabove forms (like if).

.el tezt
“Else” portion of if-else.

There are several built-in condition names:

o Current page number is odd
e Current page number iseven
t Formatter is troff

n Formatter isnroff

If condition ¢ is true, or if the number N isgreater than zero, or if the strings
compare identically (including motions and character size and font), tezt is
accepted asinput. If a ! precedes the condition, number, or string comparison,

6-22

Nroff/Troff Reference

thesenseoftheacceptanceisreversed.

Any spaces between the condition and the beginning of tezt are skipped over.
The tezt can be either a single input line (text, macro, or whatever) or anumber
of input lines. In the multiline case, the first line must begin with aleft delimiter
\{ and thelast line mustend witha right delimiter\ }.

The request .ie (if-else) is identical to .if except that the acceptance state is
remembered. A subsequent and matching .el (else) request then uses the
reverse sense of that state. .ie-.el pairs may be nested.

6.4.4 Environment Switching

A number of the parameters that control text processing are gathered together
into an environment, which can be switched by the user. Partially collected
lines and words are in the environment. Everythingelse is global; examples are
page-oriented parameters, diversion-oriented parameters, number registers,
and macro and string definitions. All environments are initialized with default
parameter values.

.evN Initially N=0. Environment switched toenvironment where N isin
the range 0-2. Switching is done in push-down fashion so that
restoring a previous environment must be done with .ev with no
parametersratherthanaspecific numeric reference.

6.4.5 Insertions From the Standard Input

The input can be temporarily switched to the system standard input with .rd,
which will switch back when two newlines in a row are found (the extra blank
line is not used). This mechanism is intended for insertions in documentation
containing standard formats. The standard input can be the terminal, a pipe,
or a file.

.rd prompt Readsinsertion from the standard input until two newlinesina row
are found. Ifthe standard input is the user’skeyboard,a prompt (or
a BEL) is written onto the terminal. The .rd request behaves like a
macro, and arguments may be placed after the prompt.

.ex Exit from either nroff or troff. Text processing is terminated
exactly asif allinput had ended.

If insertions are to be taken from the terminal keyboard whileoutputis being
printed on the terminal, the command line option—q will turn off the echoing of
keyboard input and prompt only with BEL. The regular input and insertion
input cannot simultaneously come from the standard input.

6-23

XENIX Text Processing Guide

6.4.6 Input/Output File Switching

The following requests control the switching of inputandoutput files:

.so filename

Switch source file. The top input (file reading) levelis switched to
filename. The effect of a.soencountered in a macroisnot felt until
the input level returns to the file level. When the new file ends,
inputisagaintakenfromthe original file. .so’smay be nested.

.nx filename

.piprogram

Next file is filename. The current file is considered ended, and the
inputisimmediately switchedto filename. '

Pipe output to program in nroff only. This request must occur
before any printing occurs. No arguments are transmitted to
program.

'6.4.7 Miscellaneous Requests

.mccN

.tm string

igyy

.pmt

Specifies that a margin character ¢ appear a distance N totheright
of the right margin after each nonempty text line (except those
produced by .tl). If the output line is too long, the character will be
appended to the line. If N is not given, the previous N is used; the
initial Nis0.2 inchesinnroff,and 1emin troff.

After skipping initial blanks, string (rest of line) is read in copy
mode and writtenon the user’s terminal.

Ignores input lines. The .ig request behaves exactly like .de except
that the input is discarded. The input is read in copy mode, and any
auto-incrementedregisters will be affected.

Prints macros. The names and sizes of all ofthe defined macros and
strings are printed on the user’s terminal; if tis given, only the total
of the sizes is printed. The sizes are given in blocks of 128
characters.

Flushes output buffer. Used in interactive debugging to force
output.

6.5 Output and Error Messages

The output from .tm, .pm, and the prompt from .rd, as well as various error
messages are written onto the standard message output. The latter is different

6-24

Nroff /Troff Reference

from the standard output, where nroff formatted output goes. By default,
both are written onto the user’s terminal, but they can be independently
redirected.

Various error conditions may occur during the operation of nroff and troff.
Certain less seriouserrors having only local impact do not cause processing to
terminate. Two examplesare word overflow, caused by a word that istoo large
to fit into the word buffer (in fill mode), and line overflow, caused by an output
line that grew too large to fit in the line buffer; in both cases, a message is
printed, the offending excess is discarded, and the affected word or line is
marked at the point of truncation with a * in nroff and a «= in troff. The
program continues processing, if possible, on the grounds that output useful for
debugging may be produced. If a serious error occurs, processing terminates,
and an appropriate message is printed. Examples are the inability to create,
read, or write files,and the exceeding of certaininternal limits that make future

6-25

XENIX Text Processing Guide
output unlikely tobe useful.

6.6 Summary of Escape Sequences and Number
Registers

6.6.1 Escape Sequences for Characters, Indicators, and Functions

6-26

Nroff/ Troff Reference

Sequence

Pl
- =

)
el
®
aQ
o

Pt GGt it
»—o—"

Gt
3°=Te

\Ix\f(xx,\IN
\h'N’
\kx

I'N¢’
QL'NC'
\nx,\n(xx
\o'abe...’

\r
\sN,\sxN
\t

§u’N’
\Ww’string’
\x'N’

\z¢c

\{

\(newline)

Meaning

\(to prevent or delay the interpretation of'\)
Printable version of the current escape character
Acute accent (); equivalent to \(aa

Grave accent (‘); equivalent to\(ga

Minussign (-) in the current font

Period (.)

Unpaddable space-size space character

Digit width space

1/6-em narrow space character (zero widthin nroff)
1/12-em half-narrow space character (zero width in nroff)
Nonprinting, zero-width character

Transparent line indicator

Beginning of comment

Interpolate argument (1 KN<9)

Default optional hyphenation character

Character named xx

Noninterpreted leader character

Bracket building function

Interrupttext processing

Forward (down) 1/2 em vertical motion (1/2line in nroff)
Change to font named x or xx, or position N

Local horizontal motion; move right N (negative left)
Mark horizontal input place in register x

Horizontal line drawing function (optionally with c)
Vertical line drawing function (optionally with ¢)
Interpolate number register xor xx

Overstrike charactersa,b, ¢

Break and spread output line

Reverse 1 em vertical motion (reverse line in nroff)
Point size change function

Noninterpreted horizontal tab

Reverse 1/2-em vertical motion (1/2-line in nroff)
Local vertical motion; move down N (negative up)
Interpolate widthof string

Extraline space function(negativebefore, positiveafter)
Print c withzero width (without spacing)

Begin conditional input

End conditionalinput

Concealed(ignored) newline

X, any character not listed above

6-27

'XENIX Text Processing Guide
6.6.2 Predefined General Number Registers

% Currentpage number

et Character type(set by width function)

dl Width (maximum) of last completed diversion

dn Height(vertical size) of last completed diversion

dw Currentday of the week (1-7)

dy Currentdayof the month (1-31)

hp Currenthorizontal placeoninput line

In Output line number

mo Current month (1-12)

nl Vertical position of last printed text baseline

sb Depth ofsing below base line (generated by width function)
st . Heightofstring above base line (generated by width function)
yr Last twodigits of current year

6.6.3 Predefined Read-Only Number Registers

Numberof argumentsavailable at the current macrolevel
Set to 1in troff, if -a option used; 1 in nroff

Available in horizontalresolutionin basic units

Set tol in nroff, if- T option used; always 0 in troff
Available vertical resolution in basic units

Post-line extra line space most recently utilized using \x’N’
Numberof linesreadfromcurrentinput file

Current vertical place in current diversion; equal to nl, if no diversion
Currentfontasphysical quadrant

Textbaseline high-water mark on current page or diversion
Current indent

Current line length

Lengthof text portion on previousoutput line

Current page offset

Current page length

Current point size

Distance tothe nexttrap
Equaltolinfillmodeand0inno-fillmode

Current vertical line spacing

Width of previous character

Reserved version-dependent register

Reserved version-dependent register

Name of current diversion

hekgieohbob=aadh dimb

6-28

Chapter 7
Formatting Tables

7.1 Introduction 7-1

7.2 InputFormat 7-2
7.2.1 Options 7-3
7.2.2 Format 7-3
7.2.3 AdditionalFeatures 7-5
7.2.4 Data 7.7
7.2.5 Additional Command Lines 7-9

7.3 Invoking Tbl 7-10
7.4 Examples 7-11

7.5 Summary of tbl Commands 7-18

Formatting Tables

7.1 Introduction

By now, you have a firm grasp of most of the principles and techniques of using
XENIX text processing successfully. By using the mm macro package, along
with nroff/troff commands, you should be able to achieve precise control of
almost any formatting task. However, there are two formatting needs which
may be best met with twospecialized XENIX formatting programs:

e Formatting tables or other complicated multicolumn material
e Setting mathematical equations

In this chapter, the program tbl, the table formatting program, isintroduced.
Eqn, the mathematics formatting program, is discussed in Chapter 8. Unless
you anticipate using tables or equations fairly extensively in your work, you
may wish to postpone or skip reading about tbl and eqn. Although both
programs use commands which are easy to learn and use, you should expect to
spend several hours on each program—reading these instructions, learning the
commands, and testing them out with your output device. If you need to create
tables or equationsin your documents, the effort of learning tbl and eqn will be
well rewarded. You willsoon be able to produce high-quality, consistent output
with relatively little work.

Bothtbland eqn are “preprocessors”’—that s, you insert commandsinto your
text as you are preparing it, just as you would if you were using mm. These
commands are translated by the tbl and eqn programs into sequences of
nroff /troff commands, without altering either the body of your text or other
formatting commands. Your file is then processed through the nroff or troff
programs themselves.

You will find tbl especially useful in preparing charts, multicolumn list
summaries, and other tabular material. It will give you a high degree of control
over complicated column alignment, and it will calculate the necessary widths
of columns, when the elements are of varying lengths. Tbl also allows you to
draw horizontal lines, vertical lines and boxes in order to highlight your
material. Although the effects will be somewhat limitedif you are working with
an ordinary lineprinter or similar device, you will obtain extremely high quality
results when outputting tables to phototypesetter.

Because the tbl program works by isolating the tabular material fromthe rest
of the file, and thencreatingthe necessary nroff or troff commands, the rest of
the file isleft intact for other programs to format. Thusyou can use tbl along
with the equation formatting program eqn or various layout macro packages
like mm, without duplicating their functions. You need only be careful to
invoke the variousprogramsin the correct order.

The latter part of this chapter is devoted to some examples—in each case, the

text input is paired with the resulting output. You may find that at first you
learn the features of tbl best by examining these examples and copying those

7-1

XENIX Text Processing

formatting instructions for examples which resemble your own tables.
However, first read the rulesfor preparing tbl input, so you have a general idea
of how to invoke the tbl program, and an overview of the possible options and
formats.

7.2 Input Format

The input to tbl is text for a document, with tables preceded by a .TS (table
start) command and followed by a .TE (table end) command. Tbl processes
the text and formatting commands within these two commands, generating
nroff /troff formatting commands. The .TS and .TE lines are also copied so
that nroff and troff page layout macros can use these lines to delimit and place
tables as necessary. In particular, any arguments on the .TS or .TElinesare
copied but otherwise ignored, and may be used by document layout macro
commands.

The format of the input is:

text

Each table will contain text, options, and formatting specifications:

TS
options;
format.
data
.TE

Each table is independent, and must contain formatting information followed
by the data to be entered in the table. The formatting information, which
describes the individual columns and rows of the table, may be preceded by
options that affect the entire table.

Each table may contain global options, a format section describing the layout
of individual table entries, and then the text to be printed. The format and data
are always required, but not the options. The various parts of a table are
described in the following sections.

7-2

Formatting Tables

7.2.1 Options

There may be a single line of options which affects the whole table. If present,
this line must immediately follow the .TS line and must contain alist of option
names separated by spaces, tabs, or commas, and must be terminated by a
semicolon. The allowable optionsare:

center

Centers the table (defaultis left-adjust)
expand

Makesthetableaswideasthe currentline length
box

Encloses the table in a box
allbox

Encloses each item in the table in a box
doublebox

Encloses the table in two boxes
tab (x)

Usesx instead of tab to separate data items
linesize (n)

Setslines or rulesin n point type
delim (zy)

Recognizes zand yasthe eqn delimiters.

The tbl program tries to keep boxed tables on one page by issuing appropriate
.ne commands. These requests are calculated from the number of lines in the
tables, and if there are spacing commands embedded in the input, these
requests may be inaccurate. To ensure the correct format on one page, you can
surround the table with the display macros .DS and .DE.

7.2.2 Format

The format section of the table specifies the layout of the columns. Each linein
thissection corresponds to one line of the table. The last format line appliesto
all the remaining lines in the table. Each line contains a keyletter for each
column of the table. It is good practice to separate the key letters for each
column by spaces or tabs. The keyletters, which may be either uppercase or
lowercase, are:

Lorl
Indicates a left-adjusted columnentry

XENIX Text Processing

Rorr
Indicates a right-adjusted column entry

Corc
Indicatesa centered column entry

Norn
Indicates a numerical column entry, to be aligned with other
numerical entries so that the units digits of numbers line up

Aora
Indicates an alphabetic column; all corresponding entries are aligned
on the left, and positioned so that the widest is centered within the
column

Sors

Indicates a spanned heading, i.e., the entry from the previouscolumn
continuesacrossthiscolumn

Indicates a vertically spanned heading, i.e., the entry from the
previous row continues down through thisrow. (Not allowed for the
first row of the table.)

When you are aligning numerical information, a location for the decimal point
is sought. The rightmost dot adjacent to a digit is used as a decimal point; if
there is no dot adjoining a digit, the rightmost digit is used for the units; if no
alignment isindicated, theitemis centered in the column. However, thespecial
nonprinting character string “\&’’ may be used to override dots and digits, or
to align alphabetic data; this string lines up where a dot normally would, and
then disappears from the final output. In the example below, the items shown
at theleft will be aligned (in a numerical column) as shown on the right:

input tblformat

13 13
4.2 4.2
26.12 26.12
abe abc

- abe\& abe
43\&3.22 433.22
749.12 749.12

Note that if numerical textisusedin the same column with wider left-adjusted
(L) or right-adjusted .(R) type table entries, the widest number is centered
relative to the wider left-adjusted or right-adjusted items (L is used instead of |
for readability; they have the same meaning as keyletters). Alignment within
the numerical items is preserved, in the same way as using the A format.
However, alphabetic subcolumnsrequested by the keyletter are alwaysslightly
indented relative toL items; if necessary, the column width isincreased to force

7-4

Formatting Tables

this. This isnot true for n typeentries. Do not put N and A typeentriesin the
same column.

To make your table formatting information more readable, you should
separate the keyletters describing each column with spaces. The layout of the
keyletters in the format section resembles the layout of the actual datain the
table. The end of the format section of the table specification isindicated by a
period. For example, a simple format might look like this:
cs s
lnn.
This specifies a table of three columns. The first line of the table contains a

heading centered across all three columns; each remaining line contains a left-
adjusted item in the first column followed by two columnsof numerical data.

Hereisa sample table in thisformat:

Overall title

Item-a 34.22 9.1
Item-b 12.65 .02
Items: ¢,d,e 23 5.8
Total 69.87 14.92

Note that instead of listing the format of successive lines of a table on
consecutive lines of the format section, successive line formats may be given on
the same line, separated by commas. In the example above, the format might
have been written:

css,lnn.

7.2.3 Additional Features

There are someadditional features of the keyletter system:

HorizontalLines
A keyletter may be replaced by an underscore (_) to indicate a
horizontal line in place of the corresponding column entry, or by an
equal sign (=) to indicate a double horizontal line. If an adjacent
column contains a horizontal line, or if there are vertical lines
adjoining this column, this horizontal line is extended to meet the
nearby lines. If any data entry is provided for this column, it is
ignored and a warning message is printed.

Vertical Lines

A vertical bar (]) may be placed between column keyletters. This

7-5

XENIX Text Processing

will cause a vertical line between the corresponding columns of the
table. A vertical bar to the left of the first keyletter or to theright
of the last one producesaline at the edge of the table. If twovertical
bars appear between keyletters, a double verticalline is drawn.

Space Between Columns

A number may follow the keyletter. This indicates the amount of
separation between this column and the next column. The number
normally specifies theseparationin ens(one enisabout the width of
the letter n), or more precisely, an en is a number of points(1 point
= 1/72-inch) equal to half the current type size. If the “expand’’
option is used, then these numbers are multiplied by a constant so
that the table is as wide as the current line length. The default
column separation number is 3. If the separation is changed, the
largest space requested prevails.

Vertical Spanning

Normally, vertically spanned items extending over several rowsof
the table are centered in their vertical range. If a keyletter is
followed by t or T, any corresponding vertically spanned item will
begin at the top lineof itsrange.

Font Changes

A keyletter may be followed by a string containing a font name or
number preceded by the letter f or F. This indicates that the
corresponding column should be in a different font from the default
font (usually Roman). All font names are one or two letters; a one-
letter font name should be separated from whatever follows by a
space or tab. Font change commands given with the table entries
will override these specifications.

Point Size Changes

A keyletter may be followed by the letter p or P and a number to
indicate the point size of the corresponding table entries. The
number may be a signed digit, in which case it is taken as an
increment or decrement from the current point size. If both a point
size and a column separation value are given, one or more blanks
must separate them.

Vertical Spacing Changes

A keyletter may be followed by the letter v or Vand a number to
indicate the vertical line spacing to be used within a multiline
corresponding table entry. The number may be a signed digit, in
which case it is taken as an increment or decrement from the
current vertical spacing. A column separation value must be

Formatting Tables

separated by blanks or some other specification from a vertical
spacingrequest. Thisrequest has no effect unlessthe corresponding
tableentry isatext block.

Column Width Indication

A keyletter may be followed by the letter wor W and a width value
in parentheses. This width is used as a minimum column width. If
the largest element in the column is not as wide as the width value
given, the largest element is assumed to be that wide. If the largest
element in the column is wider than the specified value, its width is
used. The width is also used as a default line length for included
text blocks. Normal troff units can be used to scale the width
value; the default is ens. If the width specification is a unitless
integer the parentheses may be omitted. If the width value is
changed in a column, the last value given controls.

Equal Width Columns

A keyletter may be followed by the letter e or E to indicate equal
width columns. All columns whose keylettersare followed by e or E
are made the same width. This allows you to get a group of
regularly spaced columns.

The order of the above features is immaterial; they need not be separated by
spaces, except as indicated above to avoid point size and font change
ambiguities. Thus a numerical column entry in italic font and 12-point type
with a minimum width of 2.5 inches and separated by 6 ens from the next
column could be specified as

np12w(2.5i)f1 6

Note the following format defaults: Column descriptors missing from theend of
a format line are assumed to be L. The longest line in the format section,
however, defines the number of columns in the table; extra columnsin the data
areignored silently.

7.2.4 Data

The text for the table is typed after the format specification. Normally, each
table line is typed as one line of data. Very long input lines can be broken: any
line whose last character is a backslash (\) is combined with the following line
(2nd the backslash vanishes). The data for different columns(the tableentries)
are separated by tabs, or by whatever character has been specified in the tabs
option. There are a few special cases:

Troff commands within tables

An input line beginning with a dot (.) followed by anything but a

77

XENIX Text Processing

number is assumed to be a command to troff and is passed through
unchanged, retaining its position in the table. For example, space
within a table may be produced by .sp commandsinthe data.

Full Width Horizontal Lines

An input line containing only the underscore (_) or equal sign (=)is
taken to be a single or double line, respectively, extending the full
width of the table.

Single Column Horizontal Lines

An input table entry containing only the underscore or equal sign
character is taken to be a single or double line extending the full
width of the column. Such lines are extended to meet horizontal or
vertical lines adjoining this column. To obtain these characters
explicitly in a column, either precede them by *“\&" or follow them
by aspace before the usual tab or newline.

Short Horizontal Lines

Aninput tableentry containingonly the string‘‘_istakentobea
single line as wide as the contents of the column. It is not extended
to meet adjoininglines.

Vertically SpannedItems

An input table entry containing only the character string *“\"”
indicates that the table entry immediately above spans downward
over thisrow. Itisequivalenttothetable format keyletter.

Text blocks

In order to include a block of text as a table entry, precede it by T{
andfollow it by T}. Thus the sequence

T
block of
text
T}...

is the way to enter, as a single entry in the table, something that
cannot conveniently be typed as a simple string between tabs. Note
that the T} end delimiter must begin a line; additional columns of
data may follow after a tab on the same line. If more than twenty
text blocks are used in a table, various limits in the troff program
are likely to be exceeded, producing diagnostics such as *“‘too many
string/macro names” or “‘too many number registers.”

Formatting Tables

Text blocks are pulled out from the table, processed separately by
troff, and replaced in the table as a solid block. If no line length is
specified in the block of text itself, or in the table format, the
default is to use $ L times C / (N+1) § where L is the current line
length, Cis the number of table columns spanned by thetext,and N
is the total number of columns in the table. The other parameters
used in setting the block of text are those in effect at the beginning
of the table. These include the effect of the .TS macro and any table
format specifications of size, spacing and font, using the p, v and f
modifiers to the column keyletters. Commands within the text
block itself are also recognized. However, troff commands within
the table data but not within the text block do not affect that block.

Note the following limitations. Although any numberoflinesmay be presentin
a table, only the first 200 lines are used in calculating the widths of the various
columns. A multipage table may be arranged as several single-page tables if
this proves to be a problem. Other difficulties with formatting may arise
because in the calculation of column widths all table entries are assumed to be
in the font and size being used when the .TS command was encountered. Not
included in the calculation are font and size changes indicated in the table
format section and within the table data. Therefore, although arbitrary troff
requests may be sprinkled in a table, care must be taken to avoid confusing the
width calculations; use requestssuch as.ps with care.

7.2.5 Additional Command Lines

If the format of a table must be changed after many similar lines, as with sub-
headings or summarizations, the .T& (table continue) command can be used to
change column parameters. The outline of such a table input is:

TS
options ;
format .
data
T&
format .
data
T&
format .

data
.TE

Using this procedure, each table line can be close to its corresponding format
line. It is not possible to change the number of columns, the space between
columns, the globaloptions such as box, or the selection of columns to be made
equal width.

7-9

XENIX Text Processing

7.3 Invoking Tbl

Youcanruntblona simple table with the command
tbl snput-file | troff

but for more complicated use, where there are several input files, and they
contain equations and mm commands as well as tables, the normal command
would be

tbl file-1 file-2. . . | eqn | troff -mm

The usual options may be used on the troff and eqn commands. The usage for
nroffissimilar to that for troff.

For the convenience of users employing line printers without adequate driving
tables or post-filters, there is a special -TX command line option to tbl which
produces output that does not have fractional line motionsinit. Theonlyother
command line option recognized by tbl is-mm which fetches the mm macro
packages.

When you are using both eqn and tbl on the same file, tbl should be used first.
If there are no equations within tableseither order works, but it is usually faster
to run tbl first, since eqn normally produces a larger expansion of the input
than tbl. However, if there are equations within tables(e.g. when you are using
the eqn delim command), tbl must be first or the output will be scrambled.
(See Chapter 8, “Formatting Mathematics.”’) You must also be cautious of
using equations in n-style columns; this is nearly always wrong, since tbl
attempts to split numerical format itemsinto two parts and this is not possible
with equations. Give the delim(xx) tbl option instead; this prevents splitting of
numerical columns within the delimiters. For example, if the eqn delimiters
are $$, giving delim($$) a numerical column such as “1245 $+- 16$” will be
divided after 1245, not after 16.

Thbl limits tables to twenty columns; however, use of more than 16 numerical
columns may fail because of limits in troff, producing the ‘‘too many number
registers’’ message. Troff number registers used by tbl must be avoided by the
user within tables; these include two-digit names from 31 to 99, and names of
the forms #x, x+, x|, "x, and x-, where x is any lowercase letter. The names
#+#, #-, and #" are also used in certain circumstances. To conserve number
register names, the n and a formats share a register; hence the restriction that
they may not be usedin the same column.

For aid in writing macros, tbl defines a number register TW which is the table
width; it is defined by the time that the .TE macro is invoked and may be used
in the expansion of that macro. To assistin laying out multipage boxed tables
the macro T# is defined to produce the bottom lines and side lines of a boxed
table, and then invoked at the of the table. By using this macro in the page
footer a multipage table can be boxed. In particular, the mm macros can be

7-10

Formatting Tables

used to print a multipage boxed table with a repeated heading by giving the
argument H to the . TS macro. If the table start macro is written

.TSH
a line of the form
.TH

must be given in the table after any table heading (or at the start if none).
Material up to the .TH is placed at the top of each page of table; the remaining
linesin the table are placed on several pagesasrequired.

7.4 Examples

Here are some examples illustrating features of tbl. The symbol(in the input
represents atab character.

Input:

.TS

box;

ccec

111
Language®@Authors®QRuns on

Fortran®Many@Almost anything

PL/1QIBM@360/370
COABTLQ11/45,H6000,370
BLISSCarnegie-MellonQPDP-10,11
IDSOHoneywellH6000
Pascal@Stanfor d3370
.TE
Output:
Language Authors Runs on
Fortran Many Almost anything
PL/1 IBM 360/370
C BTL 11/45,H6000,370
BLISS Carnegie-Mellon PDP-10,11
IDS Honeywell H6000
Pascal Stanford 370

7-11

XENIX Text Processing

Input:
.TS
allbox;
css
cce
nnn.
AT&T Common Stock
Year(Price®Dividend
1971(D41-5433$260
2041-5409270
3(946-5503287
4040-53(¥324
5(945-52(3340
6(D51-59(P95+
.TE
* (first quarter only)
Output:

AT&T Common Stock
Year | Price | Dividend
1971 | 41-54 | $2.60

2 | 41-54 2.70
3 | 4655 | 287
4 | 40-53 3.24
5 | 4552 | 3.40
6 | 51-59 95+

7-12

* (first quarter only)

Formatting Tables

Input:

.TS
box;
css

1|1]n.
Major New York Bridges

Bridge@®Designer@Length
Brooklyn(®J A Roebling®1595
Manhattan®G Lindenthak31470
Williamsburg®L L Buck(1600

Queensborough@®Palmer &(31182
@ Hornbostel

331380
Triborough®0 H AmmannQ®_

G383

Bronx Whitestone(®0 H Ammann(2300
Throgs Neck®0 H Ammann(1800

George Washington®0 H Ammann(3500
TE

Output:
W
Bridge Designer Length |
Brooklyn J. A. Roebling 1595
Manhattan G. Lindenthal 1470
Williamsburg L. L. Buck 1600
Queensborough Palmer & 1182
Hornbostel

1380

Triborough 0. H. Ammann
383
Bronx Whitestone 0. H. Ammann 2300
Throgs Neck 0. H. Ammann 1800
1 George Washington | O. H. Ammann | 3500

7-13

XENIX Text Processing

Input:

.TS

ce
np-2|nj|.
Q@Stack

1346
a_
2323
a_
3015
Q_
1365
a_
5@21
QA
.TE
Output:

Stack
46
23
15

6.5
2.1

(- I I

7-14

Input:

.TS
box;
LLL
LL _
LL|LB
LL_
LLL.

januaryQfebruary@march

april®may
june@july@Months
august(september

october@november(december

.TE

Output:

january february
april may

june july
august september
october november

march

Months

december

Formatting Tables

7-15

XENIX Text Processing

Input:

TS
box;
cfBsss.

Composition of Foods

.T&

clcss

¢ |css

¢ Je e |e

Food@Percent by Weight
\"G_
\"@Protein@Fat@Carbo-

\"G\"G\"Ghydrate
T&
l1|n|n |n
Apples(.40.5313.0
Halibut(18.435.2Q). . .
Lima beans(37.50.80922.0
Milk®3.3(34.0(®5.0
Mushrooms(3.509.436.0
Rye bread(39.03.60352.7
.TE
Output:
Composition of Foods
: Percent by Weight
Food . Carbo-
Protein | Fat hydrate
Apples 4 S 13.0
1 Halibut 18.4 5.2
Lima beans 7.5 .8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 4 6.0
Hye bread 9.0 .6 52.7

7-16

Input:

.TS
allbox;
ofl s s

¢ cw(li)
1p9 1p9 1p9.

Formatting Tables

ew(l1i)

New York Area Rocks
Era@Formation®Age (years)
Precambrian@Reading Prong®> 1 billion
Paleozoi@Manhattan Prong(400 million
MesozoicQT{

.na

Newark Basin, incl.

Stockton, Lockatong, and Brunswick
formations; also Watchungs

and Palisades.

T}3200 million

CenozoicQCoastal PlainQT{

On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation. -

.ad
T}
.TE
Output:
Neu York Area Rocks
Era Formation ¢ [years
Precambrian | Reading Prong >1 billion
Paleozoic Manhattan Prong 400 million
Mesozoic Newark Basin, incl. 200 million
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
Cenozoic Coastal Plain On Long Island 30,000 years;

Cretaceous sediments redeposited
by recent glaciation.

7-17

XENIX Text Processing

7.5 Summary of tbl Commands

" Command Meansing

aA Alphabetic subcolumn

allbox Draws box around all items
. bB Boldface item

box Draws box around table

cC Centered column

center Centers table in page

doublebox Doubled box around table

eE Equal width columns

expand Makes table full line width

fF Font change

il Italic item

1L Left adiusted column

n N Numerical column

nnn Column separation

pP Point size change

rR Right adjusted column

s S Spanned item

t T Vertical spanning at top

tab {z] Change data separator character |

$fat roman "T{" "~ fat roman "'T}"§ Text block

vV Vertical spacing change

w W Minimum width value

22 Included ¢roff command

| Vertical line

It Double vertical line

~ Vertical span

A\ ° Vertical span

== Double horizontal line

$fat " "8 Horizontal line

$fat "_"$ Short horizontal line

7-18

Chapter 8
Formatting Mathematics

8.1
82

83

8.4

8.5

8.6
8.7

8.8

Introduction 8-1
Displayed Equations 8-2

Basic Mathematical Constructions 8-3
8.3.1 Subscripts and Superscripts 8-3
8.3.2 Bracesfor Grouping 84

8.3.3 Fractions 8-5

8.3.4 Square Roots 8-6

8.3.5 Summation and Integrals 8-7

Complex Mathematical Constructions 8-7
8.4.1 Big Brackets, Parentheses, and Bars 8-7
8.4.2 Piles 8-8

8.4.3 Matrices 8-9

8.4.4 Lining Up Equations 8-10

Layout and Design of Mathematical Text 8-11

8.5.1 Input Spaces 8-11

8.5.2 Output Spaces 8-11

8.5.3 Spaces Between Special Sequences 8-11

8.5.4 Symbols, Special Names, and Greek Characters -
8-12

8.5.5 Sizeand Font Changes 8-12

8.5.6 Diacritical Marks 8-14

8.5.7 Quoted Text 8-14

8.5.8 Local Motions 8-15

In-line Equations 8-15
Definitions 8-16

Invokingeqn 8-18

89 Sample Equation 8-18
8.10 Error Messages 8-19

8.11 Summary of Keywords and Precedences 8-20

8.1 Introduction

In the previous chapter you were introduced to the tbl program, a special
preprocessing formatting program which helps you design and create
professional-looking tables in documents. This chapter describes another
preprocessor: eqn, a program that simplifies the task of formatting complex
mathematical equations and printing special symbols. Once again, unless you
need to use mathematical equations or special symbolsin your documents, you
can postpone or skip reading abouteqn.

Like tbl, eqn is a ““preprocessor’’ —that is, you must embed commandsin the
text as you are preparing it, along with mm macros and nroff/troff
commands. The eqn macros are then translated by the eqn program into
nroff /troff commands, without altering either the body of the text or other
formatting commands. The file is processed through the nroff or troff
programs themselves to produce final output.

The uses of eqn are fairly specialized—you may simply not need to format
equations. However, eqn offers you precise control over line spacing, which is
suitable to formulas and subscripting, necessary for documents in such fields as
chemistry and physics. You also have such special character sets as the Greek
alphabetavailable toyou.

The design of the eqn program makes it relatively easy to learn. Wherever
possible, the formatting commandsresemble ordinary English words(e.g. over,
lineup, bold, union), and the format is specified much as you might try to
describe an equation in conversation. If you are faced with the task of
typesetting equations, you will soon appreciate how quickly you can specify
even complicated equations requiring unusual line motions, such as arrays,

Mathematical equations are notoriously difficult to format by conventional
typesetting methods. With the help of the XENIX program eqn, however, you
will quickly learn to use troff to typeset mathematical equations directly to a
phototypesetter. Eqn employs a language which is quite easy to use, even if
you have know little about either mathematics or typesetting. In a half hour or
so, you should be able to learn enough of the language to set equations like

lim (tan z)*82% =] or equations like:
- f2

Ky
G(]__ elnc(z)—'exp E tz [[es*!{t
k> k 21
—[1 s 527 _][! 52.7? St l
={L+ 5ot + gt oyt

5 52" e] .

= b -4
i ;
a2 bk, E.20 1) 2 k"’ m "ky!
k42t AmE =m

XENIX Text Processing

The same commands may also be used with the XENIX formatter nroff to
format mathematical expressions for lineprinters. To do this, invoke the
program neqn instead of eqn. The same limitations (inability to change font
and point size, and do variable spacing, etc.) apply to any text output to a
lineprinter. The resulting output from neqn, however, is usually adequate for
proofreading.

Asyou work with eqn, remember that the eqn program itself knows relatively
little about mathematics. In particular, mathematical symbols like +, -, X,
and parentheses have no special meanings. Eqn will set anything that looks
like an equation, regardless of whether it makessense mathematically.

To use eqn on your XENIX system, type
eqn file | troff -mm

This command line processes file with eqn,then pipesthe resulting output file
tothe troff program.

8.2 Displayed Equations

Totelleqn where a mathematical expression begins and ends, surround it with
the commands.EQ and .EN. Thus, if you type the lines

EQ
x=y+z

.EN
your output will look like:
=yt+z

The .EQ and .EN are not processed by eqn. If you want to specify centering,
numbering, or other formatting features for your mathematical text, you will
need toenter the appropriate formatting commands in your text. If you want,
you can add nroff/troff commands, but it is far simpler to use mm. mm
provides commands which allow youtocenter, indent, left-justify and number
equations.

You can give the .EQ command an argument that is treated as an arbitrary
equation number which will be placed in the right margin. For example, the
input

EQ7

x =1(y/2) + y/2

.EN

produces the output

8-2

Formatting Mathematics

=fy/2)+y/2 7
Note that .EQ is an mm macro. In other computer systems’ macro packages it
may have a different meaning.

8.3 Basic Mathematical Constructions

This section describeshoweqn can be used to handle the following frequently
used mathematical constructions:

subscripts and superscripts
grouping

fractions

square roots

summation and integrals

8.3.1 Subscripts and Superscripts

To get subscripts and superscripts into mathematical text, use sub and sup.
For example, the following

xsup 2+ ysubk
produces

24y
Eqn supplies all the commands for size changes and vertical motions to make
the output look right. The words sub and sup must be surrounded by spaces.
For example:

x sub2
will give you zsub2 instead of z,. Furthermore, don’t forget to leave a space or
a tilde to mark the end of a subscript or superscript. Note that if you use an
expression like

y = (x sup 2)+1
you will get

y=("

instead of

83

XENIX Text Processing

r=(7)+1

Subscripted subscripts and superscripted superscripts can also be created. The
following

xsubisubl
produces
3,1

A subscript and superscript on the same object are printed one above the other
if the subscript comesfirst. For example,

x sub i sup 2
produces

z
Other tl}‘an in this special case, sub and sup group to the right, so x supy subz
means 2z °, not 2¥,.
8.3.2 Braces for Grouping
Normally, the end of a subscript or superscript is marked simply by a blank,
tab, or tilde. If you need to produce a subscript or superscript with blanksin it,
you can use braces ({}) to mark the beginning and end of the subscript or
superscript. For example: .

e sup {i.omega t}
produces:

elwt

Braces can always be used to force eqn to treat an expression as a unit, or just
to make your intention perfectly clear. When you use braces:
x sub {i sub 1} sup 2

produces

7

1

The same text without braces:

8-4

Formatting Mathematics

x sub i sub 1 sup 2
produces

To
2

1
Braces can occur within bracesif necessary:

e sup {i pi sup {rho +1}}
resultsin

em’“
The general rule is that anywhere you could use a single item like x, you could
alsouseany complicated expression, if you enclose it in braces. Positioning and
size willbetaken careof by eqn.
You will need to make sure you have the right number of braces. If for some
reason you need to print braces, enclose them in double quotations (”), like " {”.
8.3.3 Fractions
To make a fraction, use the word ““over.”’ For example:

a+bover2c =1

produces

b
G+E—l

The line is made the right length and positioned automatically. You can use
braces to make clear what goes over what:

{alpha + beta} over {sin(x)}

a+p
sin(z)

If you have both an over and a sup in the same expression, eqn does the sup
before the over, so

-b sup 2 over pi

85

XENIX Text Processing

is

-¥

i

instead of

2
"y

The rules of precedence that control which operation will be done first are
summarized at the end of this chapter. If you are in doubt, however, use braces
tomake clear what you mean.-
8.3.4 Square Roots
Todrawasquareroot,use ‘““sqrt’’. Forexample

sqrt a+b + 1 over sqrt {ax sup 2 +bx+c}

produces

1
Vot b e—r
Vetybzte

Youshould note, however, that the square rootsof tall quantities often do not
look good. A square root. big enough to cover the quantity is too dark and
heavy. For example

sqrt {a sup 2 over b sub 2}

produces

1)

by

Youare better off writing big square roots asthepower 1/2. Forexample, you
could use

(a sup 2 /b sub 2) sup half

to produce

(52/ by)

8-6

Formatting Mathematics

8.3.5 Summation and Integrals

Summations, integrals, and similar constructions can be produced with eqn.
For example

sum from i=0 to {i= inf} x sup i

produces
=00
P3RS
1=0

Braces are used here to indicate where the upper part i==00 begins and ends.
No braces were necessary for the lower part $=0, because it contained no
blanks. Bracesnever hurt, and if the from and to partscontainany blanks, you
must use braces around them. The from and to parts are optional, but if both
are used, they have to occur in that order.
Other useful characterscanreplace the sum, including:

int prod union inter

These become, respectively,

JMmun

The expression before the “from” can be anything, including an expression in
braces. The from-to expression can often be used in unexpected ways. For
example

lim from {n -> inf} x sub n =0

produces

lim z,=0
n—o0

8.4 Complex Mathematical Constructions

This section describes how to use eqn to produce more complicated
mathematical constructions, including piles and matrices,of ten surrounded by
brackets, parentheses or bars.

8.4.1 Big Brackets, Parentheses, and Bars

87

XENIX Text Processing

To get big brackets (|]), braces ({ }), parentheses (()), and bars (||) around
things, use the left andright commands. For example

left { a over b + 1 right }
"= " left (c over d right)
+ left [e right]

produces

[

The resulting brackets are big enough to cover whatever they enclose. Other
characters can be used besides these, but they probably won’t look very good.
One exception is the floor and ceiling characters. Forexample

left floor x over y right floor
< = left ceiling a over b right ceiling

produces

see

Please note that braces are typically bigger than brackets and parentheses,
because the number of pieces is incremented by two (three, five, seven, etc.)
while the number of pieces in a bracket isincremented by one (two, three, etc.).
Also, big left and right parentheses often look poor, because of character set
limitations.

The right part may be omitted: a left expression need not have a corresponding
right expression. If the right part is omitted, put braces around the thing you
want the left bracket to encompass. Otherwise the resulting brackets may be
too large. If you want to omit the left part, things are more complicated,
because technically you can’t have a right without a corresponding left.
Instead you have to say

left "7 right)

The left "™ means a “left nothing”. This satisfies the rules without affecting
youroutput.

8.4.2 Piles

There is a facility for making vertical piles of things withseveral variants. For
example:

8-8

Formatting Mathematics

A T="left |

pile { a above b above ¢ }

" pile { x above y above z }
right]

will produce

6z
A=1by
oz

You can have asmany elementsin a pile asyou want. They will be centered one

above another, at the right height for most purposes. The keyword above is

used to separate the pieces; braces are used around the entire list. The elements
.of a pile can be as complicated as needed, and may even contain more piles.

Three other forms of pile exist: “Ipile’’ makes a pile with the elements left-
justified; “‘rpile” makes a right-justified pile; and *“‘cpile’’ makes a centered pile,
just like pile. The vertical spacing between the piecesis somewhat larger for |-,
r- and cpiles than it is for ordinary piles. For example

roman sign (x) ="
left {
Ipile {1 above 0 above -1}
“" lpile
{if"x>0 above if"x=0 above if"x<0}
creates the pile
1ifz>0
sign(z) =0 if z=0
-1ifz<0

Note that the left brace has no matching right one.

8.4.3 Matrices

It isalso possible to make matrices. Forexample, to make a neatarray like
z, 7
w

use

8-9

XENIX Text Processing

matrix {
ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

This produces a matrix with two centered columns. The elements of the
columns are then listed just as for a pile, each element separated by the word
above. You can also use Icol or rcol to left or right adjust columns. Each

column can be separately adjusted, and there can be as many columns as you
like.

The reason for using a matrix instead of two adjacent piles is that if the
elements of the piles do not all have the same height, they will not-line up
properly. A matrix forces them to line up, because it looks at the entire
structure before deciding what spacing to use. A word of warning about
matrices: each column must have the same number of elementsinit.

8.4.4 Lining Up Equations

Sometimes it is necessary to line up a series of equations at some horizontal
position, such as at an equal sign. This is done with two operations called
“mark”and “lineup.” The word mark may appear once at any place in an
equation. It remembers the horizontal position where it appeared. Successive
equations can contain one occurrence of the word lineup. The place where
lineup appearsis made toline up with the place marked by the previous mark if
at all possible. Thus, for example, you can say

EQ

x+y mark =z
.EN
.EQ
X lineup =1
.EN

to produce

+y==z
=1

Note thatmark doesnot look ahead, so
x mark =1
x+y lineup =z

will not work, because there is not room for the x+y part after the mark
remembers where thex is.

8-10

Formatting Mathematics

8.5 Layout and Design of Mathematical Text

The following sections describe the format and layout control features of eqn.

8.5.1 Input Spaces

Eqn ignores spaces and newlines within an expression. If you have any of the
following equations between .EQ and .EN commands,

x=y+z
or

x=y+z
or

x =Y

+:2

they will all produce the same output:

=y+z
Therefore, use spaces and newlines freely to make your input equations
readable and easy toedit.
8.5.2 Output Spaces
To get extraspaces into the your output, use a tilde (*) foreach space you want:
xX="y +72
Thisproduces
z=y+z
You can also use a caret ("), which produces a space half the width of a tilde.
Tabs may be used to position pieces of an expression, butthe tab stops must be
set with the trofftab (.ta) command.
8.5.3 Spaces Between Special Sequences
If you need to separate a special sequence of characters, you will have to make

this clear to eqn. You can either surround a special sequence with ordinary
spaces, tabs, or newlines, or make special words stand out by surrounding them

811

XENIX Text Processing

withtildesor carets, asinthefollowing:

x"=="2"pi"int"sin"(Tomega"t") "dt
The tildes not only separate the words sin, omega, etc., but also add extra
spaces, one space per tilde:

z=2n [sin(wt)dt

Special words can also be separated by braces ({ }) and double quotation marks

).

8.5.4 Symbols, Special Names, and Greek Characters

Eqn knows some mathematical symbols, some mathematical names, and the
Greek alphabet. For example,

x=2 pi int sin (omega t)dt
produces
7=2r [sin(wt)dt

Here you need input spaces to tell eqn that int, pi, sin and omega are separate
entities that should get special treatment. The sin, digit 2, and parentheses are
set in Roman typeinstead of italic; pi and omega are translated into Greek; int
becomes theintegralsign.

When in doubt, leave spaces around separate parts of the input. A common
error is to type f(pi) without leaving spaces on both sides of the pi. If you do
this, eqn does not recognize pi as a special word, and it appears as f{pi) instead
of f{r). A complete list of eqn names appears at the end of this chapter. You
can also use troff names for anything eqn doesn’t know about.

8.5.5 Size and Font Changes

By default, equations are set in 10-point type; standard mathematical
conventions determine which characters are in Roman and which are in italic.
If you are dissatisfied with the default sizes and fonts, you can change them
using the commands size n and roman, italic, bold and fat. Like sub and sup,
size and font changes affect only what follows immediately and then revert to
the default. Thus :

bold x y

is

8-12

Formatting Mathematics

xy
and
size 4 boldx =y +
size 14 {alpha + beta}
gives

X=y+a+[

You can use braces if you want to apply a change to something more
complicated than a single letter. For example, you can change the size of an
entire equation with

size 12 { ... }

Legal sizes are: 6, 7,8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. You can also
change the size by a given amount; For example, you can say

size+2
to make thesizet wo pointsbigger, or
size-3

to make it three points smaller. The advantage of this method is that you do
not need to know what the current size is.

If you are using fonts other than Roman, italic and bold, you can say font X
where X is a one character troff name or number for the font. However, since
eqn is designed for Roman, italic and bold, other fonts may not give quite as
good anappearance.

The fatoperation takes the current font and widensit by overstriking: fat grad
isx7andfat{xsubi}is z;

If an entire document is to be in a nonstandard size or font, you need not write
out asize and font change foreach equation. Instead, you can set a‘‘global” size
or font which thereafter affects allequations. At the beginning of any equation,
you might say, for instance,

.EQ
gsize 16
gfont R
EN

to set the size to 16 points and the font to Roman. In place of R, you can use any

8-13

XENIX Text Processing

troff font name. Thesize after gsize can be a relative change with + or -.

Generally, gsize and gfont will appear at the beginning of a document but they
can also appear throughout a document: the global font and size can be changed
asoften as needed. For example, in a footnote you will typically want the size of
equations to match the size of the footnote text, which is two points smaller
than the main text. Don’t forget to reset the global size at the end of the
footnote.

8.5.8 Diacritical Marks

There areseveral words that produce diacritical marksontop of letters:

[

x dot

x dotdot
x hat

x tilde

X vec

x dyad
x bar

x under

RS ES SRR

The diacritical mark is automatically placed at the correct height. The “bar’’
and “under” are made theright length for the entire construct, asin Z¥y¥z;
other marksare centered.
8.5.7 Quoted Text
Any input entirely within quotes(”...”) is not subject to any of the font changes
and spacing adjustments normally done by the equationsetter. Thisprovidesa
way to do your own spacing and adjustingif needed. For example

italic "sin(x)” + sin (x)
produces

sin(z +sin(z)

Quotation marks are also used to get braces and other eqn keywords printed.
Forexample

" { size alpha }”
produces
{ size alpha }

Similarly

8-14

Formatting Mathematics

roman " { size alpha }”
produces

{size alpha }
The construction ”” can be used as a place-holder when eqn syntax requires
something, but you don’t actually want anything in your output. For example,
to make

*He

you can’t just type
sup 2 roman He

because a sup hasto be a superscript on something. Thusyou must say

"7 sup 2 roman He

"To get aliteral quotation mark, use the sequence \".

8.5.8 Local Motions

Although eqn tries to get most things at the right place on the paper, it isn’t
perfect, and occasionally you willneed to tune the output to make it just right.
Smallextra horizontal spacescan be obtained with tildes () and carets("}. You
can also say “back n” and ‘“fwd n” tc move small distances horizontally. The n
is the distance to be moved in 1/100 em units (an em is about the width of the
letter m). Thus “back 50” moves back about half the width of an m. Similarly
you can move things up or down with “up n’’ and *down n.”” As with sub or sup,
the local motions affect the next thing in the input. This can be a complex
expression, aslong asit isenclosed in braces.

8.6 In-line Equations

In a mathematical document it is often necessary to follow mathematical
conventions in the body of the text, as well as in display equations. For
example, you may need to make variable names like z italic. Although this
could be done by surrounding the appropriate parts with .EQ and .EN, the
continual repetition of .EQ and .EN is a nuisance. Furthermore, this implies a
displayed equation.

Eqn provides a shorthand for short in-line expressions. You can define two
characters to mark the left and right ends of an in-line equation, and then type
expressions right in the middle of text lines. To set both the left and right
characters to percent signs, for example, add to the beginning of your
document the three lines

8-15

XENIX Text Processing

EQ
delim %%
.EN

Having done this, you create text like

Let %alpha sub i% be the primary variable, and let %beta% be zero.
Then we can show that %x sub 1% is %>=0%.

This produces:

Let ¢, be the primary variable, and let 8 be zero. Then we can show
that z; is 2>0.

This works as you might expect: spaces, newlines, and so on are significant in
the text, but not in the equation part itself. Multiple equations can occur in a
single input line.

Enough room is lff tbefore and after aline that contains in-line expressions that

something like z z,does not inter fere with the lines surrounding it.
=1

To turn off the delimiters, use:

.EQ
delim off
.EN

Do not use braces, tildes, carets, or double quotation marks as delimiters; these
have special meanings.

8.7 Definitions

Eqn allows you to give a frequently used string of characters a name, and
thereafter just type the name instead of the whole string. For example, if the
sequence

xsubisub 1+ ysubisubl

appears repeatedly throughout a paper, you can save retyping it each time by
defining it like this:

.EQ
define xy ’'xsubisub1l+ ysubisubl’

.EN

This makes xy a shorthand for whatever characters occur between the single
quotation marks in the definition. You can use any character instead of

8-16

Formatting Mathematics
quotation marks to indicate the ends of the definition, solongas that character
does not appear inside the definition.

Youcanuse xy like this:

EQ
f(x) = xy ...
.EN

Each occurrence of xy will expand into the string of characters you defined. Be
careful to leave spaces or their equivalent around the name when you actually
use it, so eqn will be able toidentify it as special.

There are several things to watch out for. First, although definitions can use
previous definitions, asin:

EQ
define xi 'xsubi’
define xil ’xi sub 1’
EN
don’t define something in terms of itself. You cannot use
define X ’ roman X’
because this defines Xin terms of itself. If you say
define X ’roman "X" ’
however, the quotation marks protect the second X, and everything works fine.
Eqnkeywordscan be also beredefined. Youcanmake / meanoverby saying
define / ’over’
*or redefine over as / with
define over ’/’
If you need to print a symbol one way on a terminal and another way on the
typesetter, it is sometimes worth defining a symbol differently for neqn and
eqn. This can be done with ‘““ndefine” and “‘tdefine.” A definition made with
ndefine only takes effect if you are running neqn. If you use tdefine, the

definitiononly applies for eqn. Names defined with “define’’ apply to botheqn
and neqn.

8-17

XENIX Text Processing

8.8 Invoking eqn
Toprinta document that contains mathematicsonthe typesetter, use
eqn files | troff

If there are any troff options, place them after the troff part of the command.
For example,

eqn files | troff -mm files
Toprint equationson alineprinter orsimilar device, use
neqn files | nroff -mm files

The language for equations recognized by neqn is identical to that of eqn,
although of course the output is more restricted.

Eqn and neqn can be used with the tbl program for settingtables that contain
mathematics. Use tbl before eqn like this:

tbl files | eqn | troff -mm
tbl files | neqn | nroff-mm
.8.9 Sample Equation

Now that you are familiar with the featuresof eqn, here is the complete input
text for the three display equations at the beginningof thischapter:

8-18

Formatting Mathematics

EQ

G(z)"mark =" esup { In " G(z) }

“=" exp left (

sum from k>==1 {S sub k z sup k} over k right)

“=" prod from k>=1 e sup {S sub k z sup k /k}

.EN

EQ

lineup = left (1 + Ssub 1z +

{ Ssub1sup2zsup 2} over2 + .. right)

left (14+ { S sub 2 z sup 2 } over 2

+ { Ssub 2sup 2zsup4} over { 2sup2ecdot 2!}

+ ... right) ...

.EN

EQ

lineup = sum from m>=0 left (

sum from

pile { ksub1 k sub2,..,k subm >=0

above

k sub 1 +2k sub 2 + ... +mk sub m =m}

gSsublsup {ksubl};over {lsupksublksubl!g'
S sub 2 sup {k sub 2} } over {2supk sub2ksub2!} "~

{ S sub m sup {k sub m} } over {m sup k subm k subm !}

right) z sup m

.EN

8.10 Error Messages
If you make a mistake in an equation, such as leaving out a brace or having one
too many braces or having a sup with nothing before it, eqn will respond with
the message

syntax error between lines x and y, file
where x and y are the lines between which the trouble occurred, and file is the
name of the file in question. The line numbers are only approximate, so check
nearby lines as well. You will receive self-explanatory messages if you leave out
aquotation markor try to runeqn on anonexistentfile.
If you want to check adocument before actually printingit try:

eqn files > /dev/null
This will throw away the output but print the error messages.
If you use something like dollar signs as delimiters, it is easy to leave one out.

The program eqncheck checks for misplaced or missing dollar signs and
similar errors.

8-19

XENIX Text Processing

In-line equations arelimited in size because of an internal buffer in troff. If you
get the message “word overflow”, you have exceeded thislimit. If you print the
equation as a display this message will usually go away. The message
“line’’overflow indicates you have exceeded an even bigger buffer. The only
curefor thisis to break the equation into two separate ones.

Also, eqn does not break equations by itself; you must split long equations up
across multiple lines by yourself, marking each by a separate .EQ ...EN
sequence. Eqn warns about equations that are too long to fit on one line.

8.11 Summary of Keywords and Precedences

If you don’t use braces around expressions, eqn will do operations in the order
shown in thislist.

dyad vec under bar tilde hat dot dotdot
fwd back down up

fat roman italic bold size

sub sup sqrt over

from to

These operations group to the left:
over sqrt left right
" Allothers group to the right.

Digits, parentheses, brackets, punctuation marks, and these mathematical
words are converted to Roman font when encountered:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re Im and if for det

These character sequencesare recognized and translated asshown.

>= >
<= <
= £
+- +
-> —_
<- -
<< <<
>> >>
inf 0
partial s}
half '
prime !

8-20

Formatting Mathematics

2

approx
nothing
cdot
times
del
grad
yeeny

sum

int
prod
union
inter

XX 144X

Toobtain Greek letters, simply spell them out in whatever case you want:

DELTA A iota t
GAMMA T kappa K
LAMBDA A lambda A
OMEGA mu u
PHI d nu v
PI In omega w
PSI v omicron o
SIGMA ¢ phi)
THETA © pi §
UPSILON T psi Y
X1 g8 rho P
alpha a sigma c
beta B tau T
chi X theta]
delta) upsilon v
epsilon € xi 13
eta n zeta ¢
gamma q

These are all the words known to eqn except for characters with names:

8-21

XENIX Text Processing -

8-22

above
back
bar
bold
ccol
col
cpile
define
delim
dot

dotdot
down
dyad
fat
font
from
fwd
gfont
gsize
hat

italic

leol

left

lineup
lpile size
mark
matrix
ndefine
over

pile

rcol
right
roman
rpile

sqrt
sub
sup
tdefine
tilde

to
under
up
vec

{}
\"..\”

Appendix A
Editing with Sed and Awk

A.l1 Introduction A-1

A2 Editing Withsed A-1
A.2.1 Overall Operation A-2
A.2.2 Addresses A-3
A.2.3 Functions A-5

A.3 Pattern Matching With awk A-12
A.3.1 Invokingawk A-13
A.3.2 Program Structure A-13
A.3.3 Recordsand Fields A-13
A.3.4 Printing A-14
A.3.5 Patterns A-15
A.3.6 Actions A-17

A.l1 Introduction

This appendix describes two XENIX utilities that allow you to perform large-
scale, noninteractive editing tasks:

-— Sed, a noninteractive, or “batch”, editor which is useful if you must
work with large files or run a complicated sequence of editing
commands on a file or group of files.

— Awk, which searches numerics, logical relations, variables, and
particular fields within lines of text.

Although you can perform many of the same tasks with grep, sort, and the
variants of diff, you will find that these two programsoffer an added facility for
the processing of complicated changes to large files, or many filesatonce. Sed is
very handy for large batch editing jobs, but if you choose not to learn it, many
of the same tasks can be performed with ed scripts. The awk program offers
several features not available with the other tools described in this chapter, but
it issomewhat more complicated to learnand use.

A.2 Editing With sed

The sed program is a noninteractive editor which is especially useful when the
files to be edited are either too large, or the sequence of editing commands too
complex, to be executed interactively. sed works on only a few linesof inputat
a time and does not use temporary files, so the only limit on the size of the files
you can process is that both the input and output must be able to fit
simultaneously onyour disk. Y ou can apply multiple " global” editing functions
to your text in one pass. Since you can create complicated editing scripts and
submit them to sed as a command file, you can save yourself considerable
retyping and the possibility of making errors. You canalsosave and reusesed
command files which perform editing operations you need torepeat frequently.

Processing files with sed command files is more efficient than using ed, even if
you prepare a prewritten script. Note, however, that sed lacks relative
addressing becauses it processes a file one line at a time. Also, sed givesyouno
immediate verification that a command has altered your text in the way you
actually intended. Check your output carefully.

The sed program is derived from ed, although there are considerable
differences between the two, resulting from the different characteristics of
interactive and batch operation. You will notice a striking resemblance in the
class of regular expressions they recognize; the code for matching patterns is
nearly identical for ed andsed.

XENIX Text Processing

A.2.1 Overall Operation

By default, sed copies the standard input to the standard output, performing
one or more editing commands on each line before writing it to the output.
Typically, you will need to specify the file or files you are processing, along with
the name of the command file which contains your editing script, as in the
following:

sed ~f script filenare

The flagsareoptional. The -n flag tellssed to copy only those lines specified by
—p functions or -p flags after -s functions. The -e flag tellssed to take the next
argument as an.editing command, and the -f flag tells sed to take the next
argument as a filename. (This file must contain editing commands, one to a
line.)

The general format of a sed editing command is:
addressl,address2 function arguments

In any command, one or both addresses may be omitted. A function is always
required, but an argument is optional for some functions. Any number of
blanks or tabs may separate the addresses from the function, and tab
charactersand spaces at the beginning of lines are ignored.

Three flags are recognized on the command line:

-n Directs sed to copy only those lines specified by p functions or p
flagsafter s functions.

-e Indicates that the next argumentisanediting command.

-f Indicates that the next argument is the name of the file which
containsediting commands, typedone toaline.

Sed commands are applied one at a time, generally in the order they are
encountered, unless you change this order with one of the “flow-of-control”
*functions discussed below. Sed works in two phases, compiling the editing
commands in the order they are given, then executing the commands one by
one to each line of the input file.

The input to each command is the output of all preceding commands. Even if
you change this default order of applying commands with one of the two flow-
of-control commands, t and b, the input line to any command is still the output
of any previously applied command.

You should also note that the range of pattern match is normally one line of

input text. This range is called the ‘“pattern space.”” More than one line can be
read into the pattern space by using the N command described below in

A-2

A.l1 Introduction

This appendix describes two XENIX utilities that allow you to perform large-
scale, noninteractive editing tasks:

— Sed, a noninteractive, or “batch”, editor which is useful if you must
work with large files or run a complicated sequence of editing
commandson a file or group of files.

— Awk, which searches numerics, logical relations, variables, and
particular fields within lines of text.

Although you can perform many of the same tasks with grep, sort, and the
variants of diff, you will find that these two programs offer an added facility for
the processing of complicated changes to large files, or many files at once. Sed is
very handy for large batch editing jobs, but if you choose not to learn it, many
of the same tasks can be performed with ed scripts. The awk program offers
several features not available with the other tools described in this chapter, but
it issomewhat more complicated tolearn and use.

A.2 Editing With sed

The sed program is a noninteractive editor which is especially useful when the
files to be edited are either too large, or the sequence of editing commands too
complex, to be executed interactively. sed works on only a few lines of input at
a time and does not use temporary files, so the only limit on the size of the files
you can process is that both the input and output must be able to fit
simultaneously on your disk.You can apply multiple "global” editing functions
to your text in one pass. Since you can create complicated editing scripts and
submit them to sed as a command file, you can save yourself considerable
retyping and the possibility of making errors. You can also save and reuse sed
command files which perform editing operations you need to repeat frequently.

Processing files with sed command files is more efficient than using ed, even if
you prepare a prewritten script. Note, however, that sed lacks relative
addressing becauses it processes a file one line at a time. Also, sed givesyou no
immediate verification that a command has altered your text in the way you
actually intended. Check your output carefully.

The sed program is derived from ed, although there are considerable
differences between the two, resulting from the different characteristics of
interactive and batch operation. You will notice a striking resemblance in the
class of regular expressions they recognize; the code for matching patterns is
nearly identical for ed andsed.

XENIX Text Processing

A.2.1 Overall Operation

By default, sed copies the standard input to the standard output, performing
one or more editing commands on each line before writing it to the output.
Typically, you will need to specify thefile or files you are processing, along with
_ the name of the command file which contains your editing script, as in the
following:

sed -f script filename

The flagsare optional. The -n flag tells sed to copy only those lines specified by
—p functions or -p flags after -8 functions. The -e flag tells sed to take the next
argument as an editing command, and the -f flag tells sed to take the next
argument as a filename. (This file must contain edltmg commands, one to a
line.)

The general formatof a sed editing command is:

addressl,address2 function arguments
In any command, one or both addresses may be omitted. A function is always
required, but an argument is optional for some functions. Any number of
blanks or tabs may separate the addresses from the function, and tab

charactersand spacesat the beginning of lines areignored.

Three flags are recognized on the command line:

-n Directs sed to copy only those lines specified by p functions or p
ﬂags after s functions.
-e * Indicatesthat the next argument is an editing command.
-f * Indicates that the next argument is the name of the file which

containsediting commands, typedone toaline.

Sed commands are applied one at a time, generally in the order they are
encountered, unless you change this order with one of the ‘flow-of-control”
*functions discussed below.. Sed works in two phases, compiling the editing
commands in the order they are given, then executing the commands one by
one to each line of thé input file.

The input to each command is the output of all preceding commands. Even if
you change this default order of applying commands with one of the two flow-
of-control commands, t and b, the input line to any command is still the output
of any previously applied command.

You should also note that the range of pattern match is normally one line of

input text. This range is called the ‘““pattern space.”” More than one line can be
read into the pattern space by using the N command described below in

A-2

Editing with Sed and Awk

“Multiple Input-Line Functions”.

The rest of this section discusses the principles of sed addressing, followed by a
description of sed functions. All the examples here are based on the following
lines from Samuel Taylor Coleridge’spoem, “Kubla Khan:

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

For example, the command
2q

will quit after copying the first two lines of the input. Using the sample text, the
result will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

A.2.2 Addresses

The following rules apply to addressing in sed. There are two waysto select the
lines in the input file to which editing commands are to be applied: with line
numbers or with ‘‘context addresses”. Context addresses correspond to
regular expressions. The application of a group of commands can be controlled
by one address or an address pair, by grouping the commands with curly braces
({ })- There may be 0, 1, or 2 addresses specified, depending on the command.
The maximum number of addresses possible for each command isindicated.

Aline number is a decimalinteger. As each line isread from the input file,a line

number counter isincremented. A line number address matches the input line,

causing the internal counter to equal the address line-number. The counter

runs cumulatively through multiple input files; it is not reset when a new input

file is opened. A special case is the dollar sign character ($) which matches the
_last line of the last input file.

Context addresses are enclosed in slashes (/). They include all the regular
expressions common to both ed and sed:

1. Anordinary characterisaregularexpression and matchesitself.

2. Acaret (") at the beginning of a regular expression matches the null
character at thebeginning of a line.

XENIX Text Processing

3. A dollar sign ($) at the end of a regular expression matches the null
character at theend of aline.

4. The characters\n match an embedded newline character, but not the
newline at the end of a patternspace.

5. Aperiod(.) matchesany character except theterminal newline of the
patternspace.

6. A regular expression followed by a star (*) matches any number,
including 0, of adjacent occurrences of the regular expression it
follows.

7. Astring of charactersin square brackets([]) matchesany character in
the string, and no others. If, however, the first character of the string
isacaret ("), the regular expression matchesany character except the
charactersinthestring and the terminal newline of the pattern space.

8. A concatenation of regular expressions is aregular expression which
matches the concatenation of strings matched by the components of
the regular expression.

9. Aregular expression between the sequences “\(”’ and “\)” isidentical
in effect to itself, but has side-effects with the s command. Note the
following specification.

10. Theexpression \d means the same string of characters matched by an
expression enclosed in \(and \) earlier in the same pattern. Here *“d”
is a single digit; the string specified is that beginning with the “dth”
occurrence of \(counting from the left. For example, the expression
“\(-*\)\1 matches a line beginning with two repeated occurrences of
the same string.

11. The null regular expression standing alone is equivalent to the last
regular expression compiled.

For a context address to “match” the input, the whole pattern within the
address must match some portion of the patternspace. If you want to use one of
the special characters literally, that is, to match an occurrence of itself in the
input file, precede the character with a backslash (\) in the command.

Each sed command can have 0, 1, or 2 addresses. The maximum number of
allowed addresses is included. A command with no addresses specified is
applied to every linein the input. If a command hasoneaddress, it is applied to
all lines which match that address. On the other hand, if two addresses are
specified, the command is applied to the first line which matches the first
address, and to all subsequent lines until and including the first subsequent line
which matches the second address. An attempt is made on subsequent lines to
again match the first address, and the process is repeated. Two addresses are
separated by a comma. Here are some examples:

A-4

Editing with Sed and Awk

[an/ Matches lines 1, 3, 4 in our sample text
[an.*an/ Matches line 1
/"an/ Matches no lines

-/

rt¢an/ Matches lines 1,3, 4 (number = zero!)

/

Matches all lines

A.2.3 Functions

All sed functions are named by a single character. They are of the following
types:

Whole-line oriented functions add, delete, and change whole text
lines.

Substitute functions search and substitute regular expressions within
aline.

Input-output functions read and write lines and/or files.

Multiple input-line functions match patterns that extend across line
boundaries.

Hold and get functionssaveandretrieve input text for later use.

Flow-of-control functions control the order of application of
functions.

Miscellaneousfunctions.

Whole-Line Oriented Functions

d

Deletes from the file all lines matched by its addresses. No further
commands will be executed on a deleted line. As soon as the d
function is executed, a new line is read from the input, and the list of
editing commands is restarted from the beginning on the new line.
The maximum number of addressesis two.

Reads and replaces the current line from the input, writing the
currentline totheoutputif specified. Thelist of editing commands
is continued following the n command. The maximum number of
addressesis two.

Causes the text to be written to the output after the line matched
by its address. The a command is inherently multiline; The a
command must appear at the end of a line. The text may contain
any number of lines. The interior newlines must be hidden by a
backslash character (\) immediately preceding each newline. The
text argument is terminated by the first unhidden newline, the first
one not immediately preceded by backslash. Once an a function is

A-b

XENIX Text Processing

successfully executed, the text will be written to the output
regardlessof what later commands do to the line which triggered it,
even if the line is subsequently deleted. The textis not scanned for
address matches, and no editing commands are attempted on it,
nor does it cause any change in the line-number counter. Only one
addressispossible.

When followed by a text argument it is the same as the a function,
except that the text is written to the output before the matched
line. It hasonly one possible address.

The c function deletes the lines selected by its addresses, and
replaces them with the linesin the text. Like thea andi commands,
¢ must be followed by a newline hidden with a backslash; interior
newlines in the text must be hidden by backslashes. The ¢
command may have two addresses, and therefore select a range of
lines. If it does, all the lines in the range are deleted, but only one
copy of the text is written to the output, not one copy per line
deleted. Asin the caseof aandi, thetextisnotscannedforaddress
matches, and noediting commands are attempted on it. It doesnot
changethe line-number counter. After aline hasbeen deleted by a
¢ function, no further commands are attempted on it. If text is
appended after a line by a or r functions, and the line is
subsequently changed, the text inserted by the c¢ function will be
placed before the text of the a or r functions.

Note that when you insert text in the output with these functions, leading
blanks and tabs will disappear in all sed commands. To getleadingblanksand

tabs into th

e output, precede the first desired blank or tab by a backslash; the

backslash willnotappearin the output.

For example, the list of editing commands:

n

3\
XXX
d

applied to our standard input, produces:

In Xan
XX
Where
XXX

adu did Kubhla Khan

Alph, the sacred river, ran

Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two
following command lists:

Editing with Sed and Awk

or

n
¢\
XXX

Substitute Functions The substitute function(s) changes parts of lines
selected by a context search within the line, asin:

(2)s pattern replacement flage substitute

The s function replaces part of a line selected by the designated pattern with
the replacement pattern. The pattern argument contains a pattern, exactly
like the patterns in addresses. The only difference between a pattern and a
context address is that a pattern argument may be delimited by any character
other than space or newline. By default, only the first string matched by the
patternisreplaced, except when the —goptionis used.

The replacement argument begins immediately after the second delimiting
character of the pattern, and must be followed immediately by another
instance of the delimiting character. The replacement is not a pattern, and the
characters which are special in patterns do not have special meaning in
replacement. Instead, the following charactersare special:

Isreplaced by the string matched by the pattern.

\d dis a single digit which isreplaced by the dth substring matched by
partsof the patternenclosedin \(and\). If nested substringsoccur
in the pattern, the dth substringisdetermined by counting opening
delimiters.

Asin patterns, special characters may be made literal by preceding them witha
backslash (\).

Aflagargument may contain the following:

g Substitutes the replacement for all nonoverlapping instancesof the
pattern in the line. After a successful substitution, the scanfor the
nextinstance of the patternbeginsjust after the end of theinserted
characters; characters put into the line from the replacement are
notrescanned.

p Prints the line if a successful replacement was done. The p flag

causes the line to be written to the output if and only if a
substitution was actually made by the s function. Notice that if

A-7

XENIX Text Processing

several s functions, each followed by a p flag, successfully
substitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

w file Writes the line to a file if a successful replacement was done. The
—w option causes lines which are actually substituted by the s
function to be written to the named file. If the filename existed
before sed isrun, it isoverwritten;if not, the fileis created. A single
space must separate —w and the filename. The possibilities of
multiple, somewhat different copies of one input line being written
are the same as for the —p option. A combined maximum of ten
different filenames may be mentioned after w flagsand w functions.

Here are some examples. When applied to our standard input, the following
command:

s/to/by/w changes

produces, on the standard output:
In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

andon the file changes:

Through caverns measureless by man
Down by a sunless sea.

The command
s/[.?]/*P&+*/ep

produces:
A stately pleasure dome decreesP:#
Where Alph#P,* the sacred river*P,* ran
Down to a sunless seas*P.*

With the g flag, the command
/X/[s/an/AN/p

produces: '

In XANadu did Kubhla Khan

and the command

A-8

Editing with Sed and Awk

[X/s/an/AN/gp

produces:

In XANadu did Kubhla KhAN

Input-Output Functions

P

The print function writes the addressed lines to the standard
output file at the time the p function is encountered, regardless of
what succeeding editing commands may do to the lines. The
maximum number of possible addressesistwo.

The write function writes the addressed linesto filename. If the file
previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is
encountered for each line, regardless of what subsequent editing
commands may doto them. Exactly one space must separate the w
command and the filename. The combined number of write
functionsand w flagsmay not exceed 10.

The read function readsthe contents of the named file, and appends
them after the line matched by the address. The file is read and
appended regardless of what subsequent editing commands do to
the line which matched its address. If r and a functions are
executed on the same line, the text from the a functionsand the r
functionsis written to the output in the order that the functionsare
executed. Exactly one space must separate the r and the filename.
One address is possible. If a file mentioned by an rfunction cannot
be opened, it is considered a null file rather than an error, and no
diagnostic isgiven.

Note that since there is a limit to the number of files that can be opened
simultaneously, be sure that no more than ten files are mentioned in functions
or flags; that number is reduced by one if any r functions are present. Only one
read file is open at one time.

Herearesome examples. Assume thatthefile notelhasthefollowing contents:

Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

The following command:

/Kubla/r notel

produces:

XENIX Text Processing

In Xanadu did Kubla Khan

Note:' Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Multiple Input-Line Functions Three functions, all spelled with upper
case letters, deal specially with pattern spaces containing embedded newlines.
They are intended principally to provide pattern matches across lines in the

input.

N

P

Appends the next input line to the current line in the pattern space;
the twoinputlinesare separated by anembedded newline. Pattern
matches may extend across the embedded newline(s). There is a
maximum of two addresses.

Deletes up to and including the first newline character in the
current pattern space. If the pattern space becomes empty (the
only newline was the terminal newline), another line is read from
the input. In any case, begin the list of editing commands again
from its beginning. The maximum number of addresses is two.

Prints up to and including the first newline in the pattern space.
The maximum number of addressesistwo.

The P and D functionsare equivalent to their lowercase counterparts if there
arenoembedded newlinesinthe patternspace.

Hold and Get Functions These functions save and retrieve part of theinput
for possible later use:

h

A-10

The h function copies the contents of the pattern space into a
holding area, destroying any previous contents of the holding area.
The maximum number of addressesis two.

The H function appends the contents of the pattern space to the
contents of the holding area. The former and new contents are
separated by a newline.

The g function copies the contents of the holding area into the
pattern space, destroying the previous contents of the pattern
space.

The G function appends the contents of the holding area to the
contents of the pattern space. The former and new contents are
separated by anewline. The maximum number of addresses is two.

Editing with Sed and Awk

x The exchange command interchanges the contents of the pattern
space and the holding area. The maximum number of addresses is
two.

For example, the commands
1h
1s/ did.*//
1x

G
s/\n/ :/
applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu

A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

Flow-of-Control Functions These functions do no editing on the input
lines, but control the application of functions to the lines selected by the
address part.

! This command causes the next command written on the same line
to be applied to only those input lines not selected by the address
part. Therearetwo possible addresses.

{ This command causes the next set of commands to be applied or not
applied as a block to the input lines selected by the addresses of the
grouping command. The first of the commands under control of
the grouping command may appear on the same line as the { or on
the next line. Thegroup of commandsisterminatedby amatching
} on a line by itself. Groups can be nested and may have two
addresses.

:label The label function marks a place in the list of editing commands
which may be referred to by b and t functions. The label may be
any sequence of eight or fewer characters; if two different colon
functions have identical labels, an error message will be generated,
and no executionattempted.

blabel The branch function causes the sequence of editing commands
being applied to the current input line to be restarted immediately
after encountering a colon function with the same label. If no colon
function with the same label can be found after all the editing
commands have been compiled, an error message is produced, and
noexecution is attempted. A b function with nolabelisinterpreted
as a branch to the end of the list of editing commands. Whatever
should be done with the current input line is done, and another

A-11

XENIX Text Processing

input line isread; the list of editing commandsisrestarted from the
beginning on the new line. Two addresses are possible.

tlabelfR The t function tests whether any successful substitutions have been
made on the current input line. If so, it branchesto thelabel;if not,
it does nothing. The flag which indicates that a successful
substitution has been executed is reset either by readmg a new
input lme orexecutingat function.

Miscellaneous Functlons There are two other functions of sed not
discussed above.

- The == function writes to the standard-output the line number of
the line matched by its address. One address is possible.

q The q function causes the current line to be written tothe output (if
it should be), any appended or read text to be written, and
executionto be terminated. One address is possible.

‘A.3 Pattern Matching With awk

By now you have been introduced to several tools for locating patterns and
strings in one or more text files, including grep and its variants. You should
also be familiar with using the various text editorsto do global searching. Awk
offers another approach to many of these same tasks. Awk is actually a
programming language designed to make many common search and text
manipulation tasks easy to state and to perform. It offers several key features
not available with grep or sed: numeric processing, the handling of variables,
general selection, and flow-of-control in commands. Awk is also uniquely
suited to operations on fields within lines.

In practice, awk is used in two ways for report generation, procesing input to
extract counts, sums, subtotals, etc.; and to transform data from the form
produced by one program into that expected by another. Awk searches input
lines consecutively for a match of patterns which you designate. For each
pattern, an action can be specified; this action will be performed on each line
that matches the pattern. Awk allows you to perform more complex actions
than merely printing a matching line. For example, the awk program:

{print $3, $2}
prints the third and second columns of a table in that order. The program
$2 /A|B|C/

prints allinput lines with anA, B, or C in the second field, where the second field
is text separated by whitespace. The program

A-12

Editing with Sed and Awk

$1 != prev { print; prev = $1 }

prints all lines in which the first field is different from what was previously the
first field.

A.3.1 Invoking awk
The command in the following form:
awk program filename

executes the awk commands written into the named program on the set of
named files, or on the standard input if no files are named. The statements can
alsobe placedin afile pfile,and executed by the command:

awk -f pfile filename

A.3.2 Program Structure
Anawk program is a sequence of statements, eachin the form:
pattern { action }

Each line of input is matched in turn against each of the specified patterns. For
each pattern matched, the associated action is executed. When all the patterns
have been tested, the next line is read and the matching process repeated.
Either the pattern or the action may be omitted, but not both. If there is no
action for a pattern, the matching line is simply copied to the output. Thus a
line which matches several patterns can be printed several times. If thereisno
pattern for an action, then the action is performed for every input line. A line
which matches no pattern is ignored. Since patterns and actions are both
* optional, actions must be enclosed in bracesto distinguish them from patterns.

A.3.3 Records and Fields

‘Awk input is divided into “records” which are terminated by a record
separator. Because the default record separator is a newline, awk processesits
input one line at a time. The number of the current record is available in a
predefined variable named NR, for ‘‘number register”.

Each input record is divided into *‘fields”. Fields are normally separated by
whitespace, either blanks or tabs, but the input field separator can be changed.
Fields are referred to as$1, $2, and so forth, where $1 is the first field, and $0 is
the whole input record itself. Assignments may be made to fields. The number
of fieldsin the current record is available in another predefined variable named
NF,for “number fields’.

A-13

XENIX Text Processing

The variables FS and RS refer to the input field and record separators; they
may be changed at any time to any single character. The optional command-
line argument -F ¢ may also be used to set F'S to the character *‘c’’. Iftherecord
separator is empty, an empty input line is taken as the record separator, and
blanks, tabs and newlines are treated as field separators. The variable
FILENAME contains the name of the current input file.

A.3.4 Printing
If an action has no pattern, the action is executed for all lines. The simplest
action is to print some or all of a record, using the awk command print. This
command prints each record, copying the input to the output intact. A field or
group of fields may be printedfromeachrecord. Forinstance,

print $2, $1
prints the first two fields in reverse order. Items separated by a comma in the
print statement will be separated by the current output field separator when
output. Itemsnotseparatedby commaswill be concatenated, so

print $1 $2
runs the first and second fieldstogether.
The predefined variables NF and NR can be used. For example,

{ print NR, NF, $0 }

. prints each record preéeded by the record number and the number of fields.
Also,output may be diverted to multiple files. For example, the program

{ print §1 >"list1”; print $2 >"list2" }

writes the first field, $1, on the file liet1, and the second field on file ls6t2. The
> > notation can also be used. For example,

print $1 > >"list”
appends the output to the file list. In each case, the output files are created if
necessary. The filename can be a variable or a field as well as a constant. For
example,

print $1 >$2

uses the contents of field 2 as a filename. There is a limit of ten possible output
files. Output canalsobe piped intoanother process. For instance,

print | "mail fredm”

A-14

Editing with Sed and Awk

mails the output to fredm’s mailbox.

The variables OFS and ORS may be used to change the current output field
separator and output record separator. The output record separator is
appended to the output of the print statement. Awk also providesthe printf
statement for output formatting.

printf format, expr, expr, ...

formats the expressions in the list according to the specification in the file
formatand prints them. For example,

printf " %8.2f %10ld\n", $1, $2

prints $1 as a floating point number 8 digits wide, with two digits after the
decimal point, and $2 as a 10-digit decimal number, followed by a newline. No
output separators are produced automatically; they must be added, asin the
aboveexample.

A.3.5 Patterns

You may specify a pattern before an action to act as aselector for determining
whether the action is to be executed. A variety of expressions may be used as
patterns: regular expressions, arithmetic relational expressions, string-valued
expressions, and arbitrary Boolean combinationsof these.

The special pattern BEGIN matches the beginning of the input, before the first
record is read. The pattern END matches the end of the input, after the last
record has been processed. BEGIN and END thus provide a way to gain control
before and after processing, so you can initialize and terminate the program
normally.
For example, the field separator can be set to a colon with:

BEGIN {FS=":"}
Or the input linesmay be counted by:

END { print NR }
If BEGIN ispresent, it must be the first pattern; END must be the last.

Regular Expressions The simplest regular expression is a literal string of
charactersenclosed inslashes, such as:

/smith/

This is actually a complete awk program which prints all lines containing any
occurrence of the name ‘“‘smith”. If a line contains “smith’ as part of a larger

A-15

- XENIX Text Processing

word, it willalsobe printed, asin
blacksmithing

The list of regular expressions recognized by awk includes the regular
expressions recognized by ed, sed, and the grep command. In addition, awk
allows parentheses for grouping, the pipe (|) for alternatives, the plus (+) for

“one or more”, and the question mark (?) for ““zero or one”. Character classes
may be abbreviated: [a-zA-Z0-9] is the set of all letters a.nd digits. For
example, the awk program

_/[Aa]pples|[Bb]ananas|[Cclherries/

prints all lines which contain any of the words ‘“‘apples”, “bananas”, or
‘““cherries,” whether they begin with an uppercase letter or not.

Regular expressions must be enclosed in slashes, just asin ed and sed. Withina
regular expression, blanks and the regular expression metacharacters are
significant. To turn off the special meaning of one of the regular expression
metacharacters, precede it with a backslash.

For example, the pattern

YAV

matches any string of characters enclosed in slashes. You can also specify that
any field or variable matches a regular expression (or does not match it) with
the operators tilde () and exclamation point tilde (!*). The program

" /[i3]ohn/

prints all lines where the first field matches “john’ or ‘‘John’’. Notice that this
will also match “Johnson”’, ““‘St. Johnsbury”, and so on. To restrict the match
toexactly ‘“John’’ or “john”, use

* /*li%]ohn$/

The caret (") refers to the beginning of a line or field; the dollar sign ($) refers to
the end.

Relational Expressions An awk pattern can be a relational expression
involving the operators <, <=, ==, 1=, >=,and >. For example,

$2 > $1 + 100

selects lines where the second field is at least 100 greater than the first field.
Similarly,

NF % 2 ==

A-16

Editing with Sed and Awk

printsalllines with an even number of fields.

In relational tests, if neither operand is numeric, a string comparison is made;
otherwise itisnumeric. Thus,

8l >="¢5"

L{I9% 2!

selects lines that begin with “‘s”, “t”, “u”, etc. In the absence of other
information, fieldsare treated as strings, so the program

$1 > 82

will perform a string comparison.

Combinations of Patterns A pattern can be any Boolean combination of
patterns, using theoperators | | (or), && (and), and ! (not). Forexample,

$1 >="5" "& 81 < "t" && $1 != "smith”

selects lines where the first field begins with “s”, but is not “smith”. The
operators & and || guarantee that their operands will be evaluated from left
toright; evaluation stops assoon as their truth or falsehoodis determined.

The pattern that selects an action may also consist of two patterns separated
by a comma, asin

patl, pat2 {..}

In this case, the action is performed for each line between an occurrence of pat!
and the next occurrence of pat2(inclusive). For example,

[start/, [stop/
prints all lines between ‘‘start’ and ‘‘stop”’, while
NR == 100, NR ==200{ ... }

does the action for lines 100 through. 200 of the input.

A.3.6 Actions

In addition to the patterns described above, the awk program offers a set of
possible actions. An awk action is a sequence of action statements terminated
by newlines or semicolons. These action statements can do a variety of
bookkeeping and string manipulating tasks. The possible actions are: built-in
functions, the assignment of variables and strings, the use of field variables,
string concatenation statements, arrays, and flow-of -control statements.

A-17

XENIX Text Processing

Built-in Functions Awk provides a ‘“length” function to compute the
length of a string of characters. Thisprogram prints each record, preceded by
itslength:

{print length, $0}
The length by itself is a “pseudo-variable’” which yields the length of the
current record; length(argument) is a function which yields the length of its
argument, asin the equivalent:

{print length($0), $0}
The argument may be any expression.
Awk also provides the arithmetic functions sqrt, log, exp, and int, for square
root, logarithm, exponential, and integer parts of their respective arguments.
The name of one of these built-in functions, without argument or parentheses,
standsfor the value of the function on the whole record. The program

length < 10 || length > 20
prints lines whose length is less than 100r greater than 20.
The function substr(s,m,n) produces the substring of & that begins at position
m (origin 1) and is at most n characterslong. If n is omitted, the substring goes
to the end of s. The function index(sl,s2)returnsthe position where the string

e2occursin e1, or zeroifit doesnot.

The function sprintf(f, el,e2, ...) produces the value of the expressions el, €2,
etc., in the printfformat specified by f. Thus, for example,

x = sprintf(” %8.2f %101d”, $1, $2)
sets z to the string produced by formatting the values of $1 and $2.
Variables, Expressions, and Assignments Awk variables take on
numeric (floating-point) or string valuesaccording to context. In the following
example,

x=1
zisclearly a number, while in

x = "smith”

it is clearly a string. Stringsare converted to numbers and vice versa whenever
¢ontext demands it. For instance,

x=n3”+n4n

A-18

Editing with Sed and Awk

assigns 7 to 2. Strings which cannot be interpreted as numbers in 2 numerical
context will generally have the numeric value zero.

By default, variables (other than built-in functions) are initialized to a null
string, which has numerical value zero. This eliminates the need for most
BEGIN sections. For example, the sums of the first two fields can be computed
with:

{sl +=81;s2 +=$2}
END { print sl, s2 }

Arithmetic is done internally in floating-point. The arithmetic operators are:
+,-,* /,and %. The Cincrement ++ and decrement — — operators are also
available, as well as the assignment operators +=, -=, *=, /=, and %=.
These operatorsmay all be used in expressions.

Field Variables Fields in awk share essentially all of the properties of
variables. They may be used in arithmetic or string operations, and may be
assigned to. Thusyou can replace the first field with a sequence number:

{ $1 = NR; print }
or accumulate two fields into a third,

{ $1 = $2 + $3; print $0 }
or assign a string to afield,

{if ($3 > 1000)

$3 = "too big”
print

which replaces the third field by “too big” when it is too big, and prints the
record in either case.
Field references may be numerical expressions, asin the following:

{ print $i, $(i+1), $(i+n) }

Whether a field is deemed numeric or string depends on context; in ambiguous
cases like

if (81 == §2) ...
fields are treated asstrings.

Each input line is automatically split into fields as necessary. It is also possible
to split any variable or stringinto fields. For example,

A-19

XENIX Text Processing

n = split(s, array, sep)

splits the the string e into arrayf1), arrayfn]. The number of elementsfound is
returned. If the sep argument is provided, it is used as the field separator.
Otherwise FSis used as the separator.

String Concaten ation Strings may be concatenated. For example:
length($1 $2 $3)

returns the length of the first three fields. In a print statement,
print $1 " is " §2

prints the two fields separated by ‘* is . Variables and numeric expressions
may also appear in concatenations.

Arrays Array elements are not declared; they spring into existence when
mentioned in a program. Subscripts may have any non-null value, including
non-numeric strings. For example, in a conventional numeric subscript, the
statement

x[NR] = $0
assigns the current input record to the NRth element of the array z. In
principle it is possible to process the entire input in a random order with the

awk program:

{ x[NR] = $0 }
END { ... program ... }

The first action merely records each input line in the array z.

Array elements may be named by non-numeric values. Suppose the input
contains fields with valueslike apple, orange, etc. The program

/apple/ { x[’apple”]++ }

Jorange/{ x|”orange”]++ }

END { print x["apple”], x["orange”] }
increments counts for the named array elements, and prints them at the end of
the input. Any expression can be used as a subscript in an array reference.
Thus,

x[$1) = $2

uses the first field of arecord asa string to index the array z.

Suppose each line of input contains two fields, 2 name and a nonzero value.
Names may be repeated. To print a list of each unique name followed by the

A-20

Editing with Sed and Awk

sum of allthe values for that name, use the program:

{ amount[$1] += $2 }
END { for (name in amount)
print name, amount[name] }

To sort the output, replace the last line with
print name, amount|name] | "sort”

Flow-of-Control Statements Like any programming language, awk
provides flow-of-control statements. These are: if-else, while, for, and
statement groupings with braces. When using the if statement the condition in
parentheses is evaluated. If it is true, the statement following the if is done.
The else part isoptional.

A while statement is also available. For example, to print all input fields one
per line, use:

i=1

while (i <= NF) {
print $i
++i

}

The for statement

for (i=1;i <= NF; i++)
print $i

does the same job as the while statement above.

Analternate form of the for statement is useful for accessing the elements of an
associative array. For example,

for (i in array)
statement

performs etatement with ¢ set in turn to each element of the array. The
elementsare accessed in an apparently random order. Chaos will ensue if ¢ is
altered, or if any new elements are accessed during the loop.

The expression in the condition part of an if, while or for statement can
includerelational operators like <, <=, >, >=, == ("isequal to”’),and !=
(“not equal to”); regular expression matches with the match operators\~ and
\"; the logical operators | |, &, and !, and parentheses for grouping.

The break statement causes an immediate exit from an enclosing while or for

statement. The continue statement causes the next iteration to begin. The
next statement causes awk to skip immediately tothe next record and begin

A-21

XENIX Text Processing

scanning the patternsfrom the top. The exit statement causes the program to
behave asif the end of the input had occurred.

One final note: commentsmay be placed in awk programs. If you are going to
store complex awk programs for future use, it is a good idea to use comment
lines generously, to remind you of what your program does:

print x, y # this is a comment

Commentsbegin with the character “#’’ andend with the end of theline.

A-22

Index

.AL, 1list begin macro 1-10

.LE, 1list end macro 1-10
.LI, line item macro 1-10
.P, paragraph macro 1-10
.Sp command 1=10
abstracts U4-48
Acknowledgements 1-4
alphabetizing lines in
files 2-6
Appendices 15

awk 1=-14
awk 17
awk A-1

actions A-19
arrays A-21
assignments A-19
BEGIN A-15
built-in functions A-18

exp A-18

int A-18

length A-18

log A-18

sprintf A-18

sqrt A-18

substr A-18
combination of
patterns A-17
comments A-22
continue A-21
END A-15
exit A-22
expressions A-18
field variables A-19

fields A-13
flow-of-control A-11
flow=of=control A-21

for A-21

if-else A-21

statement grouping A-21

while A-=21
next A-21
output field separator A-
14
output record
Separator A-15
patterns A-15
printf statement A-15
printing A-14
records A-13
regular expression A-15
relational expressions A-
16
searching

numeric processing A-13

var iables A-12
string concatenation A-20
variables A-13
variables A-19
Back matter 1-5
Background processing 1-11
Batch 1-9
Batch A-1
Batch editing 1-16
batch editing A-1

XENIX Text Processing

Bibliography 1=5
Body of text 1-4
Boilerplate 1-5
Boilerplates 1-15
Boilerplates 1-16
Boldface 1-10
boldface 3-6
brackets 6-16
bullet 1list 4-22
captions U4-=31
Centering 1-10
Centering 1-6
centering 6-7
Chapters 1-4
character sets 5-5
column alignment 7-1
column width 7-1
comm 2-1
comm 2-3
comm 2=5

12 2-6

23 2-6
complex sentences 2-15
compound sentences 2-14
Conditional processing 1-15
conditional processing 6-22
connectivity 2-17
Copyright notice 1-4
cover pages 3-1
cover sheet U-39
cover sheet U454
cut 2-2
cut 2-7
Cut and paste 1-16
cut and paste 2-2
cut and paste 2-8
cut

~clist 2-7

dchar 2=7
flist 2-7
s 2=7
dash list 4-22
deleting text 2-1
Deletions 1=9
deroff 2-9 _
diacritical marks 8-14
Diction 1=7
diction 2-8
-f option 2-19
-n option 2-19
diff 1-6
diff 2-1
diff 2-3
diff3 2-1
diff3 2-3
diff3 2«5
e 2=5
dirf
-e 2-3 .
producing ed script
with 2-4
displays 4-26
Displays 1=4
displays 3-7
floating U4-26
floating 4-27
static 4-26
Document life cycle
Document number -1-4
Document specifications 1-
16
Document specifications 1-5
Document
standardization - 15
drawing lines 6-16

1-12

drawing lines and
characters 5-9

ed 2-2

ed scripts A-1"

Editing techniques 1-16
boilerplates 1-15
consistency 1-13
editing scripts 1-14
markers in text 1-13
shell scripts 1-15
short lines 1-13
templates 1-13

using writing tools 1-15

egrep 2-1

Entering text 1-9

Eqn 1-7

Eqn 1-8

eqgn
braces 8-13
braces 8-U4
brackets 8-7
ceiling 8-7
centering 8<2
commands 8-1
diacritical marks 8-14
error checking with
eqncheck 8-19
error messages 8-19
floor 8=7
fonts 8-12
fonts 8-13
fractions 8-5
Greek alphabet 8-21
grouping 8-U4
in-line equations 8-15
input spaces 8-10
integrals 8-6

invoking 8-18
invoking 8-2
keywords 8-20
keywords 8-21
line spacing 8-1
lining up equations 8-10
local motions 8-15
matrices 8-9
numbering 8-2
order of precedence 8-19
output spaces 8-11
overstriking 8-13
piles 8-8
point sizes 8-12
printing documents
lineprinter 8-17
phototypesetter 8-17
quoted text 8-14
reserved names 4-56
special characters 8-20
special sequences with 8-
1
square roots 8-6
string definitions 8-16
subscripts 8-3
summation 8-6
superscripts 8-3
using caret 8-11
using tildes 8-11
with mm
centering 8-2
numbering 8-2
with nroff 8-2
with nroff/troff 8-1

eqncheck 8-19
Equations 1-5
extracting columns 2-7

XENIX Text Processing

extracting fields 2-7
fields 6-11
Figures 14
file comparison 2-1
file comparison 2-3
Files
backup copies 1=6
backups 1-16
file length 1=15
help files 1-14
help files 1-15
hierarchical file
structure 1-13
managing long
documents 1-14
README files 1-15
updates 1-13
using comment lines 1-15
versions 1-12
Filling 1=5
filling 6=7
font changes 3-1
fonts A4-42
Fonts 1=6
fonts
typesetting S5-4
Footers 1-6
footnotes 4-32
Footnotes 1-4
Footnotes 1-7
footnotes 3-1
footnotes 3-7
Foreword 1-4
formatter U4-2
Formatting commands 1-=7
Formatting documents 1-7
Formatting tables 1-8

1=4

formatting tables 7-1
Front matter 1-4
gfrep 2-2
Global substitution 1-13
Global substitution 1-9
global substitution 2=1
global substitution A=-17
Glossary 1=5
Greek alphabet 8-21
Greek alphabet 8-12
Greek alphabet 5-6
Greek alphabet B8-1
grep 1-6
grep 2-1
grep 2-2

«h 2-3

-n 2=2

combined with other

commands 2-2
Gutter width 1-6
horizontal motions 5-10
hyphenation 6-12
Hyphenation 1-7
hyphenation 4-8
Illustrations 1-4
Indentation 1-6
indentation 5-7
Index 15
inserting text

interactively U4-U46
Invoking programs

eqn 1-9

MM 1-8

nroff/troff 1-8

order 1-8

using col 1-9
italics 3-6

Justification 4-43
Justification 1-5
Justification 1-7

keep-release 5-22
leaders 6-11
Letters 14

Line length 1-6
line length 65-6
list of figures, tables,
etc. 4-31
lists U4-18
lists 3-1
local motions 6-15
local motions 5-9
locating awkward
phrases 2-18
locating awkward
phrases 2-18
locating long sentences 2-
L)
Macro definition 1-16
macro definition 4-54
macro definition 6-17
Macro definition files 1-13
Macros 1-8 ’
macros 3-1
macros U-3
macros T7-1
macros 8-1
Margins 1-6
marked 1ist (.ML) macro U-
23
mathematical equations 4-30
Mathematical equations 1-6
mathematical equations 7-1
formatting 8-1
printing 8-2

memorandum styles Ud=47
Memos 1-4
merging columns 2-8

MM 1-16

MM 1=3

MM 17

MM 3-1

MM, marking macro (.HM)
4-15

MM

abstract (.AS) macro 4=48
abstracts 3-1

alternate format (.AF) U-
50

alternate format (.AF) 3-8

author (.AU) macro 4-47
automatic list (.AL) 3-5
automatically numbered
list (.AL) macro 4-21
beginning segment 4-2
body 4-2

bold (.B) macro 4-42
bullet list 4-22
bullets U4-9

caption macro (.FG) 4-31
closing (.FC) macro 4-52
command line 44
command line

parameters 4-5

cover pages 3-1

cover sheet (.CS)

macro 4-54

dash list (.DL) 3-5

dash list (.DL) macro 4-22

dashes, minuses, and
hyphens 4-10

1-5

XENIX Text Processing

disappearance of
output 457

display (.DS I) macro 4-26

display macro(.DS-.DE) 3-7

displays 4-26
indentation 3-7
ending 4-2
equation (.EQ) macro 4-30
error checking with
mmcheck 3-9
error messages U-56
error messages U-57
error messages 4-58
error messages 4-59
even page footer (.EF)
macro 4-36
even page header (.EH)
macro 4-35
exit macros (.HX, .HY and
«HZ) 4-17 :
floating display (.DF)
macro 4-27
font changes 3-1
font changes 3-6
boldface 3-6
italies - 3-6
fonts in headings U4-14
footnote (.FS) macro 4-32
footnotes 3-1
footnotes 3-7
formatting with 4-7
heading (.H) macros U4-11
headings 4-10
headings, modifying 4-12
headings
unnumbered 4-16

1-6

hypenation 4-8

inserting commands 3-1
invoking 3-=2

invoking 4-3

invoking as a flag 4-4
invoking mmcheck 3-9
italic (.I) macro 4-42
keyword (.OK) macro 4-49
list end (.LE) macro 4-21
list end macro 4-19

list item (.LI) macro 4-20

list item macro 4-19

list item macro 3-5

list of figures 4=31
list-initialization

macro 4-18

lists 4-18

lists 3-2

lists 3-5

macro definition 4-54
mark 1ist (.ML) 3-5

memor andum type (.MT) 3-8
memorandum type (.MT)
macro 4-49

multicolumn output 3-3
nested lists 4-19

nested lists 3-5

new date (.ND) macro 4=50
notation (.N8) macro 4-53
null arguments 4-7
numbered headings 3-4

odd page (.OP) macro 4-45
odd page header (.OH)
macro 4-35

odd-page footer macro 4-36

options
12 4yn
c U=3
e U4-3
t 43
y 43

order of beginning

macros U4-51

page footer (.PF)

macro 4-36

page header (.PH)

macro 4-35

page numbering U4-16

page numbering 3-1
paragraph (.P macro) 3-4
paragraph (.P) macro 4-10
paragraph style 3-1

par agraphs 4-10

par agraphs and

headings 3-4

parameter setting U4-2
point size (.S) macro 4-45

point size in headings 4-
14

read insertion (.RD)

macro 4-46

reasons to use 4-1
redefining heading

styles 3-5

reference (.RS) macro 4-40

reference 1ist (.RL)
macro 4-23

reference page (.RP)
macro 4-41

Roman (.R) macro #-42

section headers 3-1

set right justification
(.SA) macro 4-43

signature (.SG) macro 4-52

skip page (.SK) macro 4-45

space (.SP) macro 4-44
strings 4-67

summary of macros 4-62
summary of number
registers 4-68

table (.TS) macro 4-29
table macro (.TS=.TE) 3=7
table of contents (.TC)
macro 4-16

table of contents (.TC)

macro 4-39

table of contents (.TC)
macro 3-=5

tables of contents 3-1
tabs 4-9

technical memorandum (.TM)
macro U4-48

title (.TL) macro 447
titles 3-1

top of page processing 4-
37

trademark string 4-10

two column (.2C) macro U-
43

two column command

(. ZC) 3-8

unnumbered headings 3-4
unpaddable spaces 4-8
using tilde () 4-8
variable list (.VL)

macro 4-23

XENIX Text Processing

variable lists (.VL) 3-6
vertical margin (.VM)
macro 4-38
with nroff/troff 3-1
with nroff/troff 3-8
with col 3-3
mmcheck 3-9
multicolumn output 4-43
Multicolumn output 1-6
Multicolumn output 1-7
multicolumn output 3-1
multicolumn output 3-8
Naming conventions 1-15
nested lists 4-19
nominalizations 2-17
Notes 1-5
noun usage 2-17
nroff 1-7
nroff.troff
brackets 6-16
nroff/troff/fR
relative point size
changes 5-3
nroff/troff
underline font (.uf)
command 6-14
new page (.NP) macro
5-14
absolute position 6-4
adjust (.ad) command 6-8
append string (.as)
command 6-20
append to macro (.am)
command 6-20
assign format to register
(.af) command 6-21
begin page (.bp)
command 5-14

begin page (.bp)
command 6-7
blank lines 6-10
brackets 6-16
break (.br) command 6-8
break function 6-2
breaks in 5-15
center (.ce) command 6-9
centering 6-7
change trap position (.ch)
command 6-20
character translations 6-
13
conditional processing 5-
19
conditional processing 6-
22
even and odd 5-20
if-else 5-19
lineprinter and
typesetter 5-20
string comparison 5-20
control lines 6-2
copy mode 6-15
define macro (.de)
command 6-19
define string (.ds)
command 6-20
difference between 5-1
difference in output 5-1
Nroff/troff
differences 1-5
changing point
sizes 1-5
ignoring commands 1-5
replacing italics with
underlining 1-5

rounding parameters 1-5

underlining 1-7

nroff/troff

diversions 6-19
diversions (.di) 5-21
diversions

nesting 6-19

traps 6-19
divert (.di) command 6-20
divert-append (.da)
command 6-20
drawing lines 6-17
drawing lines and
characters 5-9
end macro (.em)
command 6-20
environments 6-23
environments (.ev) 5-21
error messages 4-60
error messages 4-61
error messages 6-24
escape character 6-14
escape character 6-3
escape sequences 6-26
even page (e)
condition 6-22
exit (.ex) command 6-23
field delimiter (.fc)
command 6-12
fields 6-11
fill (.fi) command 6-8
filling 6-7
flush output buffer
(.f1) 6-24
fonts 5-5
formatter nroff (n)
condition 6-22

formatter troff (t)
condition 6-22
horizontal motions 5-10
horizontal motions 6-16
hyphenation 6-12
hyphenation on (.hy)
command 6-12

if (.if) command 6-22
ignore (.ig) command 6-24
indent (.in) 5-7

indent (.in) command 6-10
inline commands 5-2
input-output
conventions 6-13
inserting commands 5-2
install diversion trap
(.dt) command 6-20
install trap (.wh)
command 6-20

invoking 6-1

leader repetition
character (.lec)

command 6-12

leaders 6-11

ligature mode on (.lg)
command 6-14

ligatures 6-14

line length (.11) 5-6
line length (.1l1)
command 6-10

line length and
indenting 6-10

line number mode (.nm)
command 6-13

line space (.l8)
command 6-9

local motion 5-11

XENIX Text Processing

local motions 6-15
local motions 5-9
macro definitions 5-12
arguments 6-18
input 6-17
macros 6-17
macros 6-2
arguments 5-17
margin character (.mc)
command 6-24
mark current vertical
place (.mk R) 6-7
needs (.ne) command 6-7
next filename (.nx)
command 6-24
no adjust (.na)
command 6-9
no fill (.nf) command 6-8
no hyphenation (.nh)
command 6-12
no number (.nn)
command 6-13
no space (.ns) command 6-
10 .
number register assign
(.nr) command 6-21
number registers 5-16
number registers 5-17
number registers 6-21
predefined 6-26
read-only 6-26
numerical input 6-4
odd page (o) condition 6-
22
options
-1 6«2
-mcname 6-3

-mname 6-1
-nN 6-1
-0list 6-1
-q 6=2
-raN 6-2
-sN 6-1
output line numbering 6-13

output save (.08)
command 6-10

overstrike 6-16
overstriking 5-11

page control 6-6

page length (.pl
command) 6-7

page number (.pn)
command 6-7

page number character
(.pc) command 6-13

page offset (.po) 5-=7
page offset (.po)
command 6-7

pipe output (.pi)
command 6-24

point size(.ps) 5-2
pre-defined number
registers 5-16

print macro (.pm)
command 6-24

quoting quotes 5-16

read standard input (.rd)
command 6-23

read string in copy mode
(.tm0 command 6-24
remove (.rm) command 6-20
remove register (.rr)
command 6-22

rename (.rn) command 6-20
requests 6-2

reserved register and
request names 4-55
restore spacing (.rs)
command 6-10

return upward (.rt)
command 6-7

save (.sv) command 6-10
scale indicators 6-3
section titles 5-18

set control character
(.cc) command 6-15

set environment (.ev)
commands 6-23

set escape character (.ec)
command 6-14

set hyphenation indicator
(.hc) command 6-12

set input-line-count trap
(.it) command 6-20

set nobreak (.c2)

command 6-15

set tabs (.ta) command 6-
1

space (.sp) command 6-10
spacing units 5-4

special characters 5-5
specify hyphenation points
(.hw) command 6-12
standard input 6-1

string define (.ds) 5-12
string definition 5-12
string definition 6-17
switch source file (.s0)
command 6-24

tab repetition character
(.tc) command 6-11

tab replacement (.tec) 6-8

tabs 6-11
tabs (.ta) 5-8
temporary indent (.ti) 5-7

temporary indent (.ti)
command 6-10
title (.tl) command 5-14
title (.tl) command 6-12
title length (.1lt)
command 6-13
titles 5-14
titles 6-12

fonts and point

sizes 65-15
translate (.tr)
command 6-15
turn escape off (.eo)
command 6-14
underline (.ul)
command 6-14
using backslash () 6-14
using backslash () 6-3
using backslash (\) 5-16
vertical motions 6-15
vertical space (,.vs)
command 6-9
vertical spacing (.vs) 5-3

width function 6-15
width function 6-16
with MM 4-1

zero-width function 6-16

nroff

internal units 6-3
options
-e 6-2

1=-11

XENIX Text Processing

-Tname 6-2
underline (.cu)
command 6-14

number registers 4-3
Numbered 1lists 1-10
Organizing writing
projects 1=12
overstrike 6-16
page footers 4-34
page footers 4-36
page headers 4-34
Page headers 1-6
Page length 1-6
page numbering U4-16
Page numbering 1-6
Page numbering 1-=7
page numbering 3-1
paper styles 447
Paragraph style 1=7
paragraph style 3-1
parallel sentence
structures 2-16
parts 2-11
Parts of document 1-4
back matter 1-5

appendices 1-5

bibliography 1=5

glossary 1=5

index 1-5

notes 1-5 :
body of text 1-4
front matter 1-4

acknowledgements 1-4

copyright notice 1-l4

document number 14

foreword 1-=4

illustrations 1-4

preface 1=
table of contents 1-4
tables 1-4
title page 1-4
parts of speech 2-15
paste 2-2
paste 2-8
-d 2-8
-3 2-8
list 2-8
pattern matching A-13
pattern matching A-15
pattern matching A-1"
pattern recognition 2-2
point size 4-45
Point size 1-6
Point size 1-7
Preface 1-4
preparing charts 7=1
Preprocessor 1-8
Preprocessors 1-8
preprocessors 7-1
Printing documents 1-11
lineprinter 1-7
lineprinter 1-8
phototypesetters 1-7
printing lists 7-1
printing multi-col umn
material 7-1
Production consistency 1=5
quoting quotes 4-7
readability 2-10
readability 2-14
readability indices 2-11
readability indices 2-12
readability of
documents 2-8

rearranging columns 2-7
reference page U-=U1
references 4=U0
regular expression 2=2
regular expressions A-16
regular expressions A-1"
relative addressing A-1"
requests 42
reversing columns of
output A-12
Revisions 1-13
Revisions 1-9
Running footers 1=6
Running headers 1-6
Running heads, see Page
Headers 1-6
searching A-12
searching 2-1
searching within fields A-
13
searching
fields A-1
numerics A-1
pattern recognition 2-2
strings 2-3
variables A=-1
section headers 3-1
Section-page numbering 1-6
Sections 1-=4
Sed 1-14
sed A-1
-e A=2
-f A=2
-n A=2
¢ label function A-12
= function A-12
a function A-5

addressing A-3

b label function A-11

¢ function A-6

D function A-10

d function A-5

flow=of =control A-2
flow=-of-control

functions A-11

functions A-S

g function A-10

g function A-7

h function A-10

hold and get functions A-
10

i function A-6
input/output functions A-9

miscellaneous
functions A-12
multiple input-line
functions A-10
function A-10

n function A-5
P function A-11
p function A=-7
p function A=9
q
r
s
s

=

function A-12

function A-9

function A-7

ubstitution functions A-7

t label function A-12

w function A-8

w function A-9

x function A-11

{ function A-11
sentence length 2-10

1=-13

XENIX Text Processing

sentence length 2-11
sentence openers 2-17
sentence type 2-10
sentence type 2-11
simple sentences 2-14
skipping pages U=U5
sort 1-6
sort 2-1
sort 2-6
special characters 5-5
in eqn 8-20
special symbols 8-1
Spell 1-7
spell 2-9
2-8
=b 2-9
-v 2=9
British spelling 2-9
dictionary 2-9
square roots B8-6
Standard output
formatting to 1-11
Standardization 1-12
Starting paragraphs 1-9
Strategies for managing
writing projects 1-2
string definition 6-17

strings 4-3
style 2-10
Style 1-7
style 2-8

«1 option 2-14

elements of writing
style 2-10

percentage of verbs 2-16
readability 2-10
readability grades 2-12

readability indices 2-12
automated readability
index 2-13
Coleman-Liau
Formula 2-13
Flesch Reading Ease
Schore 2-13

sentence determination 2-

11

sentence length 2-12

sentence length 2-14

sentence openers 2-12

sentence type 2-12

sentence type 2-14

word length 2-12

word usage 2-12

subscripts 8-3

superscripts 8-3

symbols, mathematical 8-11

System features 1-6
hierarchical file

structure 1-14

hierarchical file

structure 1-2

hierarchical file

structure 1-6

multitasking 1-6

pipes 1=2

pipes 1-8

shell 12

shell scripts 1-2

System utilities 1-7
system utilities 2-1
system utilities 2-8
table of contents 4-16
table of contents 4-39
Table of contents 1-4

tables 4-29

Tables 1-4
Tables 1-5
Tables 1-6
tables 3=7

tables of contents 3-1
tabs 6-11

Tbl 1-7
™1 1-8
tbl

T-1

space between columns 7-6
additional command

lines 7-9

centering in columns T7-4
column alignment 7-1
column width 7-7

data 7-7

decimal point

alignment 7-4

defaults 7-7

drawing boxes 7-1
drawing horizontal

lines T-1

drawing vertical lines 7-1

equal width columns 7-7
error messages T7-=10
error messages 7-8
font changes 7-6
format section 7-3
A or a option T7-lU
C or c option T7-4
L or 1 option 7-3
N or option T7-U4
R or r option 7-4
S or s option T7-d4

I3 -FOoOD

* option 7-4
formatting section 7-2
full width horizontal
lines 7-8
horizontal lines 7-5
input to 7-2
invoking 7-10

with other

formatters 7-10
keyletters 7-5
need (.ne) commands 7-3
options 7-3
options section 7-2
options

allbox 7-3

box T7=3

center 7-3

delim 7-3

doublebox 7-3

expand 7-3

linesize 7-3

tab 7-3
point sizes 7-6
preparing charts with 7=1
printing lists 7-1
printing multi-column
material 7-1
printing with
phototypesetter 7-1
reserved names 4-56
short horizontal lines 7-8

single column horizontal
lines 7-8

table end (.TE) 7=2
table start (.TS) 7-2
text blocks 7-8

1-15

XENIX Text Processing

vertical lines 7-5
vertical spacing 7-6
vertical spanning 7-6
vertically spanned
items 7-8
with nroff/troff T7-1
with eqn 7-1
with mm 7-1
troff commands in 7-7
Technical papers 1-4
Techniques, text
processing 1-6
Templates 1-16
Title page 1-4
titles U4-47
titles 6-12
Titles 1-7
titles 3-1
tools 2-8
tools 2-9
Tools, text processing 1«6
Tools, text processing 1=7
top and bottom margins 4-38
troff 1-7
troff/fR
point size (.ps)
command 6-6
troff
change font (.ft)
command 6-6
character set 6-5
constant character space
(.cs) command 6-6
embolden (.bd)
commands 6-6
font position (.fp)
command 6<6

1=16

internal units 6-3
mathematical font set 6-=5
mounted forits 6-5

options
-a 6<2
b 6<2
-f 62
«pN 62
-t 6-2
- 6=2

space-character size (.ss)
command 6-6
using ASCII characters
with 6-5
Typesetting mathematical
equations 1-8 '
Updates 1-16
Updates to documents 1-12
use of expletives 2-18
Variable spacing 1=7
Versions 1=12
Versions 1-13
Versions 1-16
Versions of documents 1-12
Versions of documents 1-14
Vertical spacing 1-10
Vertical spacing 1-6
vi 1-6
we 2-1
we 2-7
width function 6-15
word length 2-10
word usage 2-10
word usage 2-11
word usage 2-15
Writing tools 1-7
XX 4-43
zero-width function 6-16

CONTENTS

TextProcessing Commands (CT)

intro Introducestext processing commands

col Filtersreverselinefeeds

cut Cutsout sclectedficlds of each line
ofafile

cw, cwcheck Prepares constant—width text for troff

deroffi Removesnroff/troff, tbl, andeqn
constructs

diction Checkslanguageusage

diffmk Marksdifferences between files

eqn, neqn,eqncheck Formatsmathematical text for nroff
ortroff

explain Correctslanguageusage

hyphen Findshyphenated words

mm Prints documents formatted with
Mmmacros

mmcheck Checksusageof mmmacros

mmt Typesetsdocuments

neqn Formatsmathematics

nroff Atext formatter

paste Mergeslinesof files

prep Preparestext for statistical
processing

ptx Generatesapermtedindex

soclim Eliminates .s0’s from nroffinput

spell, spellin, spellout Findsspellingerrors

style Analyzescharacteristics of adocument

tbl Formatstables for nroff ortroff

troff Typesetstext

Index

Constam width text cw
cwcheck command cw
Documentcharacteristics style
eqncheck command eqn
File, differences diffmk
Files, merging lines peste
Files, selecting ficlds cut
Hyphenation hyphen
Languageusage, correction explain
Languageusage, description diction
Macros, checking _ mmcheck
Macros, memorandum for lineprinter mm
Macros, memorandum for typeseting mmt
Macros, removal derofl
Macros, .soclimination soeJim
Mathematicaltext eqn
Mathematicaltext neqn
Permutedindex pix
Reverselinefeed cal
spellin command spell
Spelling spdl
spellout command spell
Statistical processing prep
Tables thl
Textformatter for lineprimer orddl
Textformatter fortypesetter trofl

INTRO(CT) INTRO (CT)

Name

intro - Introduces text processing commands.

Description

This section describes use of the individual commands available in
the XENIX Text Processing System. Each individual command is
labeled with the letters CT to distinguish it from commands available
in the XENIX Timesharing and Software Development Systems.
These letters are used for easy reference from other documentation.
For example, the reference mm(CT) indicates a reference to a dis-
cussion of the mm command in this section, where the letter ‘C”’
stands for ‘‘command’’ and the letter ‘T’ stands for ‘‘Text Process-

Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

name [option...] [emdarg...]
This syntax is detailed below:
name The filename or pathname of an executable file

option A single letter representing a command option By con-
vention, most options are preceded with a dash.
Opuon letters can sometimes be grouped together as
in — abcd or alternatively they are specified individu-
ally as in — a — b- ¢ — d. The method of specifying
options depends on the syntax of the individual com-
mand. In the latter method of specifying options,
arguments can be given to the options. For example,
the - f option for many commands often takes a fol-
lowing filename argument.

emdarg A pathname or other command argument not begin-

ning with a dash or a period (.). It may also be a dash
alone by itself indicating the standard input.

See Also

getopt{C), getop(S)
Diagnostics

Upon termination, each command returns 2 bytes of status, one

March 20, 1984 Page 1

INTRO(CT) _ INTRO(CT)

supplied by the system and giving the cause for termination, and (in
the case of ‘‘normal’’ termination) one supplied by the program (see
wast(S) and ezit(S)). The former byte is 0 for normal termination;
the latter is customarily 0 for successful execution and nonsero to
indicate troubles such as erroneous parameters, bad or inaccessible
data, or other inability to cope with the task at hand. It is called
variously ‘‘exit code’’, ‘‘exit status’’, or ‘‘return code”, and is
described only where special conventions are involved.

Notes

Many commands do not adhere to the given syntax.

March 20, 1984 Page 2

COL (CT) COL (CT)

Name

col - Filters reverse linefeeds.

Syntax
col [— bfxp |

Description

Col prepares output from processes, such as the text formatter
nroff{ CT), for output on devices that limit or do not allow reverse or
half-line motions. Col is typically used to process nroff output text
that contains tables generated by the tbl program. A typical com-
mand line might be

tbl file |nroff |col |lpr
Col takes the following options:

~ b Col assumes the output device in use is not capable of backspac-
ing. If two or more characters appear in the same place, col out-
puts the last character read.

— f Allows forward half-linefeeds. If not given, col accepts half-line
motions in its input, but text that would appear between lines is
moved down to the next full line. Reverse full and half
linefeeds are never allowed with this option.

— x Prevents conversion of whitespace to tabs on output. Cd nor-
mally converts whitespace to tabs wherever possible to shorten
printing time.

— p Causes col to ignore unknown escape sequences found in its
input and pPass them to the output as regular characters.
Because these characters are subject to overprinting from
reverse line motions, the use of this option is discouraged
unless the user is fully aware of the position of the escape
sequences.

Col assumes that the ASCII control characters SO (octal 016) and SI
(octal 017) start and end text in an alternate character set. If you
have a reverse linefeed (ESC 7), reverse half-linefeed (ESC 8), or
forward half-linefeed (ESC 9), within an SI-SO sequence, the ESC
7, 8 and 9 are still recognized as line motions.

On input, the only control characters col accepts are space, back-
space, tab, return, newline, reverse linefeed (ESC 7), reverse half-
linefeed (ESC 8), forward half-linefeed (ESC 9), alternate character
start{ SI), alternate character end (SO), and vertical tag (VT). (The
VT character is an alternate form of full reverse linefeed, included

March 24, 1984 - Page 1

COL (CT) COL (CT)

for compatibility with some earlier programs of this type.) All other
nonprinting characters are ignored.

See Also
nroff(CT), tbl(CT)

Notes
Col cannot back up more than 128 lines.
Colallows at most 800 characters, including backspaces, on a line.

Vertical motions that would back up over the first line of the docu-
ment are ignored. Therefore the first line must not contain any

superscripts.

March 24, 1984 Page 2

CUT(CT)

Name

CUT(CT)

cut - Cuts out selected fields of each line of a file.

Syntax

cut — cliet | filel file2 ..]
cut — flist - dchar] |- s| [filel file2 ..]

Description

Use cut to cut out columns from a table or fields from each line of a
file. The fields as specified by liet can be fixed length, i.e., character
positions as on a punched card (- c option), or the length can vary
from line to line and be marked with a field delimiter character like
tab (- f option). Cut can be used as a filter; if no files are given,
the standard input is used.

The meanings of the options are:

list

- cliet

— flist

— dchar

A comma-separated list of integer field numbers (in
increasing order), with an optional dash (-) to indicate
ranges, as in the — o option of rroff/troff for page ranges;
eg, 1,47, 1- 3,8, - 5,10 (short for 1- 5,10); or 3—
(short for third through last field).

The liet following — ¢ (no space) specifies character posi-
tions (e.g., — c1- 72 would pass the first 72 characters of
each line).

The liet following — f is a list of fields assumed to be
separated in the file by a delimiter character (see — d);
e.g., — f1,7 copies the first and seventh field only. Lines
with no field delimiters will be passed through intact (use-
ful for table subheadings), unless — s is specified.

The character following — d is the field delimiter (- f
option only). Default is tab. Space or other characters
with special meaning to the shell must be quoted.

Suppresses lines with no delimiter characters in case of — f
option. Unless specified, lines with no delimiters will be
passed through untouched.

Either the — c or — f option must be specified.

Hints

Use grep(C) to make horizontal ‘‘cuts’ (by context) through a file,
or paste(CT) to put files together horizontally. To reorder columns

March 24, 1984 Page 1

CUT(CT) CUT(CT)
in a table, use cut and paste.
Examples

cut - d: - f1,5 Jetc/passwd Maps user IDs to names

name="‘who am i |cut - f1 - d""* Sets name to current login

name.
See Also
grep(C), paste(CT)
Diagnostics
line too long * A line can have no more than 511 characters

or fields.

bad list for ¢ [f option Missing — ¢ or —f option or incorrectly
specified list. No error occurs if a line has
fewer fields than the list calls for.

no fielde ' The list is empty.

March 24, 1984 Page 2

CW (CT) CW(CT)

Name

cw, cwcheck — Prepares constant- width text for troff.

Syntax
ew|-Ixx] |-mx][-Mn][-¢t][+t][-d]]Tfiles]

cwcheck | - Ixx | | - rxx] files

Description

Cu is a preprocessor for troff(CT) input files that contain text to be
typeset in the constant-width (CW) font.

Text typeset with the CW font resembles the output of terminals and
lineprinters. This font is used to typeset examples of programs and
computer output in user manuals, programming texts, etc.

Because the CW font contains a ‘‘nonstandard’’ set of characters and
because text typeset with it requires different character and inter-
word spacing than is used for ‘‘standard’’ fonts, documents that use
the CW font must be preprocessed by cw.

The CW font contains the 94 printing ASCII characters:

abedefghijklmnopqrstuvwxys
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

18%&() e+ 0 ., /= []} _""<>{#\

It also contains eight nonASCII characters represented by 4-character
troff(CT) names (in some cases these names are attached to ‘‘non-
standard’’ graphics), as follows:

Character Symbol Troff Name
‘““Cents’’ sign \(ct
EBCDIC “not’’ sign =
Left arrow «
Rightarrow = \(->
!
'
t

Down arrow

Vertical single quote
Control-shift indicator
Visible space indicator \(sq
Hyphen - \{hy

The hyphen is a synonym for the unadorned minus sign (-). Cer-
tain versions of cw recognize two additional names: an up arrow and
a diagonal left-up (home) arrow.

March 20, 1984 Page 1

CW (CT) CW (CT)

Cuw recognizes five request lines, as weli as user-defined delimiters.
The request lines look like tro ff{CT) macro requests, and are copied
in their entirety by cw onto its output, thus they can be defined by
the user as troff(CT) macro.s In fact, the .CW and .CN macros
ehould be so defined (see Hints below).

The five requests are:

CwW
Start of text to be set in the CW font; .CW causes a break; it can
take precisely the same options, in precisely the same format, as
are available on the cw command line.

.CN End of text to be set in the CW font; .CN causes a break; it can
take the same options as are available on the ¢w command line.

.CD Change delimiters and/or settings of other options; takes the
same options as are available on the ¢w command line.

.CP argl arg? arg8 ... argn
All the arguments (which are delimited like troff{CT) macro
arguments) are concatenated, with the odd-numbered arguments
set in the CW font and the even-numbered ones in the prevail-
ing font.

PC argl arg? arg8 ... argn
Same as .CP, except that the even-numbered (rather than odd-
numbered) arguments are set in the CW font.

The .CW and .CN requests are meant to bracket text (e.g., a pro-
gram fragment) that is to be typeset in the CW font ‘‘as is’’. Nor-
mally, cw operates in the traneparent mode. In that mode, except for
the .CD request and the nine special four-character names listed in
the table above, every character between .CW and .CN request lines
stands for itself. In particular, cw arranges for periods (.) and apos-
trophes (') at the beginning of lines, and backslashes (\) and liga-
tures (fi, fl, etc.) everywhere to be ‘‘hidden’ from troff{CT). The
transparent mode can be turned off (see below), in which case nor-
mal troff[{CT) rules apply. In any case, cw hides from the user the
effect of the font changes generated by the .CW and .CN requests.

The only purpose of the .CD request is to allow the changing of vari-
ous options other than just at the beginning of a document.

The user can also define delimsters. The left and right delimiters per-
form the same function as the .CW /.CN requests; they are meant,
however, to enclose CW ‘‘words’’ or ‘‘phrases’ in running text (see
the example under NOTES below). Cuw treats text enclosed by delim-
iters in precisely the same manner as text bracketed by .CW /.CN
pairs, except that, for aesthetic reasons, spaces in text bracketed by
.CW /.CN pairs have the same width as any other CW character,
while spaces between delimiters are half as wide, so that they have
the same width as spaces in the prevailing text (but are nrot

March 20, 1984 Page 2

CW (CT) CW(CT)

adjustable).
Delimiters have no special meaning inside .CW /.CN pairs.
The options are:

- lzz The one- or two-character string 2z becomes the left del-
imiter; if 2z is omitted, the left delimiter becomes
undefined, which it is initially.

-rzz Same for the right delimiter. The left and right delimiters
may (but need not) be different.

- fa The CW font is mounted in font position n; acceptable
values for n are 1, 2, and 3 (default is 3, replacing the
bold font). This option is only useful at the beginning of
a document. »

-t Turns transparent mode off.
+t Turns transparent mode on (this is the initial default).
-d Prints current option settings on file descriptor 2 in the

form of troff(CT) comment lines. This option is meant
for debugging.

Cuw reads the standard input when no files are specified, so it can be
used as a filter. Typical usage is:

cw filee | trofl ...

Cuwcheck checks to see that the left and right delimiters, as well as
the .CW /.CN pairs, are properly balanced. It prints out all offending
lines.

Hints

Typical definitions of the .CW and .CN macros meant to be used
with the mm(CT) macro package:

if n.ig }}
.CW

.de CW

.DS1

ps9

.vs 10.5p

.ta 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u ...

.de CN :
ta 0.5i 1i 1.5i 2i 2.5i 3i 3.5i 4i 4.5i 5i 5.5i 6i

March 20, 1984 Page 3

CW (CT) CW(CT)

ps
DE
CN
3}
if v g))
PP

.RS

.nf

.de CW

DS1

.ps 9

.vs 10.5p

.ta 16m /3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u ...

de CN
.ta .51 1i 1.5i 2i 2.5i 3i ...
Vs

.ps
.DE
;

.RE
PP

3

At the very least, the .CW macro should invoke the trof{ CT) no-fill
(.nf) mode.

When set in running text, the CW font is meant to be set in the
same point size as the rest of the text. In displayed matter, on the
other hand, it can often be profitably set one point smaller than the
prevailing point size (the displayed definitions of .CW and .CN
above are one point smaller than the running text on this page).
The CW font is sized so that, when it is set in 9 point, there are 12
characters per inch.

Documents that contain CW text may also contain tables and equa-
tions. If this is the case, the order of preprocessing should be: cw,
thl, and egn. Usually, the tables contained in such documents will
not contain any CW text, although it is entirely possible to have ele-
ments of the table set in the CW font; of course, care must be taken
that tbl(CT) format information not be modified by cw. Attempts to
set equations in the CW font are not likely to be either pleasing or
successful.

In the CW font, overstriking is most easily accomplished with back-
spaces: letting «— represent a backspace. Because spaces (and, there-
fore backspaces) are half as wide between delimiters as inside
.CW /.CN pairs (see above), two backspaces are required for each
overstrike between delimiters.

March 20, 1984 Page 4

CW (CT) CW(CT)

Files

[usr/lib/font/ftCW CW font-width table

See Also
eqn(CT), mm¢{CT), tbl(CT), troff(CT)

Warning

If text preprocessed by cw is to make any sense, it must be set on a
typesetter equipped with the CW font.

Notes
Don't use periods (.) or backslashes (\) as delimiters.

Certain CW characters don’t concatenate gracefully with certain
Times Roman characters, such as a CW ampersand (&) followed by a
Times Roman comma(,); in such cases, use troff{CT) hall- and
quarter-spaces. For example, you should use _&_\", (rather than
just plain _&_,) to obtain &, (assuming that _ is used for both del-
imiters).

See also Notes under troff{ CT).

March 20, 1984 Page 5

DEROFF (CT) DEROFF (CT)

Name

deroff - Removes nroff /troff, tbl, and eqn constructs.

Syntax
deroff [- w] [- mx] [fiee]

Description

Deroff reads each of the files in sequence and removes all troff{ CT)
requests, macro calls, backslash constructs, egn(CT) constructs
(between .EQ and ,EN lines, and between delimiters), and t!(CT)
descriptions, and writes the remainder of the file on the standard
output. Deroff follows chains of included files (.so and .nx troff
commands); if a file has already been included, a .s0 naming that file
is ignored and a .nx naming that file terminates execution. If no
input file is given, deroff reads the standard input.

The — m option may be followed by an m, s, or 1. The resulting
— mm or — ms option causes the MM or MS macros to be inter-
preted so that only running text is output (i.e., no text from macro
lines). The — ml option forces the — mm option and also causes
deletion of lists associated with the MM macros. This option is used
by the dietion(CT) command.

The — w option outputs a word list, one ‘‘word’’ per line, with all
other characters deleted. Otherwise, the output follows the original,
with the deletions mentioned above. In text, a ‘‘word’’ is any string
that contains at least two letters and is composed of letters, digits,
ampersands (&), and apostrophes (’); in a macro call, however, a
‘““‘word’’ is a string that begins with at least two letters and contains a
total of at least three letters. Delimiters are any characters other
than letters, digits, apostrophes, and ampersands. Trailing apos-
trophes and ampersands are removed from ‘‘words’’.

See Also
diction(CT), eqn(CT), style(CT), tbl(CT), troff(CT)

Notes
Deroff 'is not a complete troff interpreter, so it can be confused by
subtle constructs. Most such errors result in too much rather than
too little output.
The — ml option does not handle nested lists correctly.

Deroff also removes words of two or fewer letters in lines that begin
with macro calls or troff requests.

March 24, 1984 Page 1

DICTION (CT) DICTION(CT)

Name

diction — Checks language usage.

Syntax
diction [-ml] [-mm| [[-n]]| [- [patternfile | file ...

Description
Diction finds all sentences in a document that contain phrases from a
data base of bad or wordy diction. On output, each phrase is
enclosed within brackets. Because diction runs deroff before looking

at the text, formatting header files should be included as part of the
input. The options are:

- ms.
Overrides the default macro package, MM.

- ml
Causes deroff to skip lists. Should be used if the document con-
tains many lists of nonsentences.

— fpatternfile
A user-supplied patternfile of words and phrases is used in addi-
tion to the default file.

— n Suppresses the default file.

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

See Also
deroff (CT), explain(CT)

Notes

Use of nonstandard formatting macros may cause incorrect sentence
breaks.

The - n option can’t be specified by itself.

March 24, 1984 Page 1

DIFFMK (CT) DIFFMK (CT)

Name

difmk - Marks differences between files.

Syntax
diffmk namel name2 name$

Description

Diffmk compares two versions of a file and creates a third file that
includes ‘‘change mark” commands for aroff{CT) or trofi{CT).
Namel and name2 are the old and new versions of the file. Diffmk
generates nameS, which contains the lines of name? plus inserted
formatter ‘‘change mark” (.mc) requests. When name$ is format-
ted, changed or inserted text is shown by ‘‘|"” at the right margin of
each line. The position of deleted text is shown by a single *“*,

The &ffmk command will produce listings of C (or other) programs
with changes marked. A typical command line for such use is:

difmk old.c new.c tmp; nrofl macs tmp | pr
where the file macs contains:

pl1

77

.nf

.0
.nc *

The .1l request might specify a different line length, depending on
the nature of the program being printed. The .eo and .nc requests
are probably needed only for C programs.
If the characters “‘|"" and ‘‘*"’ are inappropriate, a copy of diffmk can
be edited to change them (d&ffmk is a shell procedure).

See Also

diff(C), nroff(CT)

Notes

Aesthetic considerations may dictate manual adjustment of some
output. File differences involving only formatting requests may pro-
duce undesirable output, that is, replacing .sp by .sp 2 will produce a
‘‘change mark’’ on the preceding or following line of output.

March 24, 1984 Page 1

EQN(CT) EQN(CT)

Name

eqn, neqn, eqncheck - Formats mathematical text for nroff or troff.

Syntax
ean [- dey] [~ pa] [sn] [- ffont] [fie...]
neqn [- dzy] [-pn] [-sn] |- ffont] [file...)

eqncheck | files |

Description

Eqgn is a tro ffCT) preprocessor for typesetting mathematical text on
a phototypesetter. Negn is used with nroff{CT) for setting
mathematical text on typewriter-like terminals. Usage is normally
one of the following or its equivalent:

eqn files | troff
neqn files | nroff

If no files are specified, these programs read from the standard
input.

The options are:

— dzy Reduces subscripts and superscripts # points from the previ-
ous size; the default reduction is 3 points.

- sn Sets egn delimiters to characters z and g
- pn Changes the point size within egn delimiters to n.
— ffont Changes the font within egn delimiters to font.

A line beginning with .EQ marks the start of an equation; the end of
an equation is marked by a line beginning with .EN. Neither of
these lines is altered, so they may be defined in macro packages for
centering, numbering, etc. It is also possible to designate two char-
acters as delimsters; subsequent text between delimiters is then
treated as egn input. Delimiters may be set to characters z and gy
with the command-line argument — dzy or (more commonly) with
delim zy between .EQ and .EN. The left and right delimiters may be
the same character; the dollar sign is often used as such a delimiter.
Delimiters are turned off by delim off. All text that is neither
between delimiters nor between .EQ and .EN is passed through
untouched.

The program egncheck reports missing or unbalanced delimiters and
.EQ/.EN pairs.

March 24, 1984 - Page 1

EQN(CT) _ EQN(CT)

Tokens within egn are separated by spaces, tabs, newlines, braces,
double quotation marks, tildes, and carets. Braces {} are used for
grouping; generally speaking, anywhere a single character such as z
could appear, a complicated construction enclosed in braces may be
used instead. A tilde (~) represents a full space in the output; a
caret (%) represents half as much.

Subsecripts.and superscripts are produced with the keywords sub and
sup. Thus z sub y makes

¥,

a sub k sup 2 produces

af

while

c:?ﬂ?
is made with e eup {z sup 2 + y eup £}. Fractions are made with
over: a over b yields

a

b
sqrt makes square roots: 1 over sgrt {az sup 2+ bz+ ¢} results in

1
Vazritbz+e

The keywords from and to introduce lower and upper limits:

n
lim 3z,

a0 o

is made with lim from {n — > inf } eum from 0 to n z seubi. Left
and right brackets, braces, etc., of the right height are made with left
and right: left [z sup 2 + y sup 2 over alpha right | ~=" 1
produces

Legal characters after left and right are braces, brackets, bars, ¢ and
f for ceiling and floor, and ™” for nothing at all (useful for a right-
side-only bracket). A left need not have a matching right

March 24, 1984 Page 2

EQN(CT) EQN(CT)
Vertical piles are made with pile, lpile, cpile, and rpile:
pile {a above b above ¢} produces

a
b
¢

Piles may have arbitrary numbers of elements; lpile left-justifies,
pile and cpile center (but with different vertical spacing), and rpile
right justifies. Matrices are made with matrix: matnz { lcol { z sub ¢
above y sub 2} ccol { 1 above £} } produces

z, 1
y2 2
There is also rcol for a right- justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec,
dyad, and under: z dot = f(t) baris

i=f{1)

y dotdot bar =" n under is
y=n

and 7 vec == y dyad is
7=y

Point sizes and fonts can be changed with size n or size £ n, roman,
italic, bold, and font n. Point sizes and fonts can be changed glo-
bally in a document by gsize n and gfont n, or by the command-line
arguments — sn and - fn.

Normally, subscripts and superscripts are reduced by 3 points from
the previous size; this may be changed by the command-line argu-
ment — pa.

Successive display arguments can be lined up. Place mark before
the desired lineup point in the first equation; place lineup at the
place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with
define. For example,

define thing % replacement %
defines a new token called tking that will be replaced by replacement

whenever it appears thereafter. The % may be any character that
does not occur in replacement.

March 24, 1984 Page 3

EQN (CT) EQN (CT)

Keywords such as sum], mt (f), inf (00), and shorthands
such as >w {>]), Im (- > (=) are recogmzed by eqn.
Greek letters are spelled out m the desired case, as in alpha (a), or
GAMMA (I'). Mathematical words such as sin, cos, and log are
made Roman automatically. Troff{CT) four-character escapes such
as \(dd (1) and \(bs (@) may be used anywhere. Strings enclosed
in double quotation marks (®...") are passed through untouched;
this permits keywords to be entered as text, and can be used to com-
municate with troff{ CT) when all else fails.

See Also
mm(CT), mm¢{CT), tbl(CT), troff(CT)

Notes

To embolden digits, parentheses, etc., it is necessary to surround
them with double quotation marks. See also Notes under troff{ CT).

March 24, 1984 Page 4

EXPLAIN (CT) EXPLAIN (CT)

Name

explain - Corrects language usage.

Syntax
explain

Description
Ezplain interactively reports on language usage. It suggests slterna-
tives to phrases found with the diction command.

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

See Also
deroff(CT), diction(CT)

March 24, 1984 Page 1

HYPHEN (CT) HYPHEN (CT)

Name

hyphen - Finds hyphenated words,

Syntax

hyphen file ...

Description
Hyphen finds all the hyphenated words in files and prints them on
the standard output. If no arguments are given, the standard input
is used. Thus hyphen may be used as a filter.

Notes

Hyphen doesn’t properly deal with hyphenated stalic (i.e., under-
lined) words; it will often miss them completely.

Hyphen occasionally gets confused, but with no ill effects other than
extra output.

March 24, 1984 Page 1

MM (CT) MM (CT)

Name

mm - Prints documents formatted with the mm macros.

Syntax
mm | options | | files |

mmcheck | files]

Description

Mm can be used to type out documents using nroff(CT) and the mm
text-formatting macro package. It has options to specify preprocess-
ing by t!{(CT) and/or negn(CT) and postprocessing by various
terminal-oriented output filters. The proper pipelines and the
required arguments and flags for nroff(CT) and mm are generated,
depending on the options selected.

The options for mm are given below. Any other arguments or flags
(for example, — rC3) are passed to nroff(CT) or to mm, as appropri-
ate. Such options can occur in any order, but they must appear

before the files arguments. If no arguments are given, mm prints a
list of its options. '

— ¢ Causes mm to invoke col(CT).
— e Causes mm to invoke negn(CT).
— t Causes mm to invoke tb{(CT).

-E
Invokes the — e option of aroff{ CT).

— y Causes mm to use the noncompacted version of the macros (see
mm(M)).

Mm reads the standard input when a dash is is specified instead of

any filenames. (Mentioning other files together with the dash can

lead to disaster.) This option allows mm to be used as a filter; for

example:

cat dws | mm -

Hints
1. Mm invokes nroff(CT) with the — h flag. With this flag,

nro [CT) assumes that the terminal has tabs set every 8 charac-
ter positions.

March 20, 1984 Page 1

MM (CT) MM (CT)

2. Use the - oliet option of arofflCT) to specify ranges of pages to
be output. Note, however, that mm, if invoked with one or
more of the — e, — t, and — options, together with the — olist
option of nroff[{CT) may cause a harmless ‘‘broken pipe’’ diag-
nostic if the last page of the document is not specified in list.

3. If you use the - s option of nroff{C) (to stop between pages of
output), use linefeed (rather than return or newline) to restart
the output. The — s option of nroff{C) does not work with the
— c option of mm, or if mm automatically invokes col(C) (see
— c option above).

Use the mmcheck program to check the contents of mm source files

for errors in usage of the macros.

See Also

¢ol(CT), env(C), eqn(CT), mm¢t(CT), mmcheck(CT), nroff(CT),
tbl(CT), profile(F)

Xenix Tezt Processing Guide
Diagnostics

mm: no input file None of the arguments is a readable file and
mm has not been used as a filter

March 20, 1984 Page 2

MMCHECK (CT) MMCHECK (CT)

Name

mmcheck - Checks usage of mm macros.

Syntax

mmcheck | files |

Description
Mmecheck checks files for usage of the mm formatting macros.
Mmcheck also checks for usage of some egn(CT) constructions.

Appropriate messages are produced. The program skips all direc-
tories, and if no filename is given the standard input is read.

See Also
col(CT), env(C), eqn(CT), mm(CT), mm¢{CT), nroff(CT),
tbl(CT), profile(F)

Diagnostics
mmcheck unreadable files cause the message ‘‘Cannot open

filename’’. The remaining output of the program is diagnostic of the
source file.

March 20, 1984 Page 1

MMT(CT) MMT(CT)

Name

mmt - Typesets documents.

Syntax

mmt | options] | file]

Description

Mmt uses the MM macro package. It has options to specify prepro-
cessing by tbl(CT) and egn(CT). The proper pipelines and the
required arguments and flags for troff{ CT) and for the macro pack-
ages are generated, depending on the options selected.

Optione are given below. Any other arguments or flags (e.g., ~ rC3)
are passed to troff{CT) or to the macro package, as appropriate.
Such options can occur in any order, but they must appear before
the filee arguments. If no arguments are given, these commands
print a list of their options.

-e . Causes these commands to invoke egn(CT).

-t Causes these commands to invoke tb/(CT).

-a Invokes the — a option of troff{ CT).

-y Causes mmt to use the noncompacted version of the mac-

ros (see mm(CT)).
When a dash (-) is specified, mmt reads the standard input instead
of any filenames.
Hints

Use the — olist option of troff{ CT) to specify ranges of pages to be
output. Note, however, that these commands, if invoked with one
or more of the — e, — t, and — options, together with the — oliet
option of troff[{ CT) may cause a harmless ‘‘broken pipe’’ diagnostic
if the last page of the document is not specified in list.

See Also

env(C), eqn(CT), mm(CT), tbl(CT), troff(CT), profile(M),
environ(M)

March 24, 1984 Page 1

MMT(CT) MMT(CT)

Diagnostics

mmt: no input file None of the arguments is a readable file
and the command is not used as a filter.

March 24, 1984 Page 2

NEQN (CT) NEQN (CT)

Name

neqn - Formats mathematics.

Syntax

neqn [-dxy] [-fn] [file] ..
checkeq | file] ...

Description

Negn is an nroff(CT) preprocessor for formatting mathematics on
terminals and for printers; egn(CT) is its counterpart for typesetting
with tro ff{CT). Usage is almost always:

neqn file ... |nroff

If no files are specified, these programs read from the standard
input. A line beginning with .EQ marks the start of an equation; the
end of an equation is marked by a line beginning with .EN. Neither
of these lines is altered, so they may be defined in macro packages to
get centering, numbering, etc. It is also possible to set two charac-
ters as ‘‘delimiters’’; subsequent text between delimiters is also
treated as negn input. Delimiters may be set to characters z and y
with the command-line argument — dzy or (more commonly) with
‘‘delim zy’’ between .EQ and .EN. The left and right delimiters may
be identical. Delimiters are turned off by ‘delim off’. All text that is
neither between delimiters nor between .EQ and .EN is passed
through untouched. Fonts can be changed globally in a document
with gfont n, or with the command-line argument — fn.

The program checkeg reports missing or unbalanced delimiters and
.EQ/.EN pairs.

Tokens within neqn are separated by spaces, tabs, newlines, braces,
double quotation marks, tildes or carets. Braces {} are used for
grouping; generally speaking, anywhere a single character like =z
could appear, a complicated construction enclosed in braces may be
used instead. Tilde (°) represents a full space in the output, caret
(") half as much.

See Also

eqn(CT), checkeq(CT), troff(CT), tbl(CT)

Notes

To embolden digits, parentheses, etc., it is necessary to quote them,
as in ‘bold ¢‘12.3’"".

March 24, 1984 Page 1

NROFF (CT)

Name

NROFF (CT)

nroff - A text formatter.

Syntax

nroff | option ... | | file ...]

Description

Nroff formats text in the named files. Nroff is part of the nroff /troff
family of text formatters. Nroff is used to format files for output to
a lineprinter or daisy wheel printer; trofl to a phototypesetter.

If no file argument is present, the standard input is read. An argu-
ment consisting of a single dash (-) is taken to be a filename
corresponding to the standard input. The options, which may appear
in any order so long as they appear before the files, are:

— olist

-nN

-sN

~ mname

-~ raN

Prints only pages whose page numbers appear in the
comma-separated list of numbers and ranges. A range
N- M means pages N through M; an initial - N means
from the beginning to page N; and a final N- means
from Nto the end.

Numbers first generated page N.
Stops every N pages. Nroff will halt prior to every N pages
(default N=1) to allow paper loading or changing, and

will resume upon receipt of a newline.

Prepends the macro file fusr/lib/tmac/tmac.name to the
input files.

Sets register a (one-character) to N.
Reads standard input after the input files are exhausted.

Invokes the simultaneous input-output mode of the .rd
request.

Produces equally spaced words in adjusted lines, using full
terminal resolution.

Uses output tabs during horizontal spacing to speed output
and reduce output character count. Tab settings are
assumed to be every 8 nominal character widths.

— Tdevice Specifies the output device. The default device is *‘Ip’’, the

lineprinter.

March 24, 1984 Page 1

NROFF (CT) NROFF (CT)

Other supported devices include:

- T300
DASI (DTC, GSI) 300.

- T300s
DASI 300s.

- T450
DASI 450 (same as Diablo 1620).

- T300-12
DASI 300 at 12-pitch.

- T300s-12
DASI 300s at 12-pitch.

— T450-12
DASI 450 at 12-pitch.

- T33
TTY 33. Invokes col automatically.

— Tdumb
Terminal types with no special features. Invokes col automati-
cally.

- 137
TTY 37.

- T35
TI 735. Invokes col automatically.

- T745
TI 745. Invokes col automatically.

- T43
TTY 43. Invokes col automatically.

- T40/2.
Teletype model 40/2 Invokes col automatically.

— T40/4
Teletype mode 40/4. Invokes col automatically.

- T2631
HP 2631 series lineprinter. Invokes col automatically.

- T2631-¢

HP 2631 series lineprinter, expanded mode. Invokes col
automatically.

March 24, 1984 Page 2

NROFF (CT)

- T2631-c

HP 2631 series lineprinter, compressed mode.

automatically.

- T42
ADM 42. Invokes col automatically.

- T31
TTY 31. Invokes col automatically.

- T35
: TTY 35. Invokes col automatically.

- T1620
Diablo 1620 (same as DASI 450).

- T1620-12
Diablo 1620 at 12-pitch.

Files
[Jusr/lib/suftab Suffix hyphenation tables
Jtmp/tae Temporary file

[usr/lib/tmac/tmac.¢ Standard macro files

[usr/lib/term /¢ Terminal driving tables

See Also
col(CT), eqn(CT), tbl(CT), troff(CT)

March 24, 1984

NROFF (CT)

Invokes col

Page 3

PASTE (CT) PASTE (CT)

Name

paste — Merges lines of files.

Syntax

paste filel file2 ...
paste — dlist filel file2...
paste — s [- dlist] filel file2 ...

Description

In the first two forms, paste concatenates corresponding lines of the
given input files filel, file2, etc. It treats each file as a column or
columns of a table and pastes them together horizontally (parallel
merging). It is the counterpart of cat(C) which concatenates verti-
cally, i.e., one file after the other. In the last form above, paste sub-
sumes the function of an older command with the same name by
combining subsequent lines of the input file (serial merging). In all
cases, lines are glued together with the tab character, or with charac-
ters from an optionally specified list. Output is to the standard out-
put, so it can be used as the start of a pipe, or as a filter, if — is
used in place of a filename.

The meanings of the options are:

— d Without this option, the newline characters of each but the last
file (or last line in case of the — s option) are replaced by a tab
character. This option allows replacing the tab character by one
or more alternate characters (see below).

list One or more characters immediately following — d replace the
default tab as the line concatenation character. The list is used
circularly, i. e. when exhausted, it is reused. In parallel merging
(i. e. no — s option), the lines from -the last file are always ter-
minated with a newline character, not from the [sst. The list
may contain the special escape sequences: \n (newline), \t
(tab), \\ (backslash), and \O (empty string, not a null charac-
ter). Quoting may be necessary, if characters have special
meaning to the shell (e.g. to get one backslash, use - d"\\\\").

— 8 Merges subsequent lines rather than one from each input file.
Use tab for concatenation, unless a list is specified with — d
option. Regardless of the list, the very last character of the file
is forced to be a newline.

— May be used in place of any filename to read a line from the
standard input. (There is no prompting.)

March 24, 1984 Page 1

PASTE (CT) PASTE (CT)

Examples
Is | paste - d"" - . Lists directory in one column
ls | paste - - - - Lists directory in four columns
paste — s — d”\t\n" file Combines pairs of lines into lines
See Also

cut{ CT), grep(C), pr(C)

Diagnostics
line too long Output lines are restricted to 511 characters.
too many fies Except for — 8 option, no more than 12 input

files may be specified.

March 24, 1984 Page 2

PREP (CT) PREP(CT)

Name

prep - Prepares text for statistical processing.

Syntax
prep | — dio] file ...

Description

Prep reads each file in sequence and writes it on the standard output,
one ‘‘word’ to a line. A word is a string of alphabetic characters
and imbedded apostrophes, delimited by space or punctuation.
Hyphenated words are broken apart; hyphens at the end of lines are
removed and the hyphenated parts are joined. Strings of digits are
discarded.

The following option letters may appear in any order:

— d Prints the word number (in the input stream) with each word.

— i Takes the next file as an ‘‘ignore’ file. These words will not
appear in the output. (They will be counted, for purposes of the
- d count.)

— 0 Takes the next file as an ‘‘only” file. Only these words will
appear in the output. (All other words will also be counted for
the — d count.)

- p Includes punctuation marks (single nonalphanumeric characters)
as separate output lines. The punctuation marks are not

counted for the — d count.

The sgnore and only files contain words, one per line.

See Also
deroff(CT)

March 24, 1984 Page 1

PTX(CT) ‘ PTX(CT)

Name

ptx - Generates a permuted index.

Syntax

ptx | options] [input [output | |

Description

Pz generates a permuted index to file input on file output (standard
input and output default). It has three phases: the first does the per-
mutation, generating one line for each keyword in an input line.
The keyword is rotated to the front. The permuted file is then
sorted. Finally, the sorted lines are rotated so the keyword comes at
the middle of each line. Ptz produces output in the form:

.xx "tail” "before keyword” "keyword and after” "head”

where .xx is assumed to be an aroff or troff CT) macro provided by
the user. The ‘‘before keyword’ and ‘‘keyword and after’ fields incor-
porate as much of the line as will fit around the keyword when it is
printed. Tad and Aead, at least one of which is always the empty
string, are wrapped-around pieces small enough to fit in the unused
space at the opposite end of the line.

The following options can be applied:

~-f Folds uppercase and lowercase letters for sorting.
-t Prepares the output for the phototypesetter.
-wn Uses the next argument, n, as the length of the output

line. The default line length is 72 characters for nroff
and 100 for troff.

-gn Uses the next argument, n, as the number of characters
that ptz will reserve in its calculations for each gap
among the 4 parts of the line as finally printed. The
default gapis 3 characters.

o only Uses as keywords only the words given in the only file.

i tignore Does not use as keywords any words given in the sgnore
file. If the —i and - o options are missing, use
Jusr/lib/eign as the ignore file.

— bbreak Uses the characters in the break file to separate words.
Tab, newline, and space characters are always used as
break characters.

March 24, 1984 Page 1

PTX(CT) PTX(CT)

-r Takes any leading nonblank characters of each input line
to be a reference identifier (as to a page or chapter),
separate from the text of the line. Attaches that
identifier as a fifth field on each output line.

Files
/bin/sort
[usr/lib/eign

Notes

Line length counts do not account for overstriking or proportional
spacing.

Lines that contain tildes () are not handled correctly, because ptz
uses that character internally.

March 24, 1984 Page 2

SOELIM (CT) : SOELIM (CT)

Name

soelim — Eliminates .so’s from nroff input.

Syntax

soelim [file ...]

Description

Soelim reads the specified files or the standard input and performs
the textual inclusion implied by the nroff directives of the form

".s0 somefile
when they appear at the beginning of input lines. This is useful
since programs such.as tbl do not normally do this; it allows the
placement of individual tables in separate files to be run as a part of
a large document.

Note that inclusion can be suppressed by using a single quotation
mark (’) instead of a dot (.), e.g.

’so fusr/flib/tmac.s
Example
A sample usage of soelim would be

soelim exum?.n |tbl |nroff - mm |col |lpr

See Also
nroff(CT), troff (CT)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 24, 1984 Page 1

SOELIM (CT) SOELIM (CT)

Notes

Exactly one blank must precede and no blanks may follow the
filename. Lines of the form

if t .so fusr/lib/macros.t

mean that ‘‘.s0’’ statements embedded in the text are expanded.

March 24, 1984 Page 2

SPELL (CT) SPELL (CT)

Name

spell, spellin, spellout - Finds spelling errors.

Syntax
spell | options] [files]
Jusr/lib/spell/spellin | list |
Jusr/lib/spell /spellout | - d] list

Description

Spell collects words from the named files and looks them up in a
spelling list. Words that neither occur among nor are derivable (by
applying certain inflections, prefixes, and/or suffixes) from words in
the spelling list are printed on the standard output. If no files are
named, words are collected from the standard input.

Spell ignores most troff{ CT), tbl(CT), and egn(CT) constructions.

Under the — v option, all words not literally in the spelling list are
printed, and plausible derivations from the words in the spelling list
are indicated.

Under the — b option, British spelling is checked. Besides preferring
centre, colour, speciality, travelled, etc., this option insists upon -sse in
words like standardise, Under the — x option, every plausible stem is
printed with == for each word.

The spelling list is based on many sources, and while more hapha-
sard than an ordinary dictionary, is also more effective with respect
to proper names and popular technical words. Coverage of the spe-
cialized vocabularies of biology, medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indi-
cated below with their default settings. The stop list filters out
misspellings (e.g., thiersmthy- y+ier) that would otherwise pass.

Two routines help maintain the hash lists used by epell (both expect
a list of words, one per line, from the standard input). epellin adds
the words on the standard input to the preexisting list and places a
new list on the standard output. If no list is specified, the new list is
created from scratch. Spellout looks up each word read from the
standard input, and prints on the standard output those that are
missing from (or, with the — d option, present in) the hash list.

March 24, 1984 Page 1

SPELL (CT) SPELL (CT)

Files
D_SPELL==fusr/lib/spell/hlist[ab] Hashed spelling lists, American
and British
S_SPELL==fusr/lib/spell /hstop Hashed stop list
Jtmp/spell. T.emporary
/Jusr flib/spell/spellprog | | Program

D_SPELL and S_SPELL can be overridden by placing alternate path
definitions in your environment.
See Also
. deroff(CT), eqn(CT), sed(C), sory{ C), tbl(CT), tee(C), troff(CT)

Notes
The spelling list’s coverage is uneven: You may wish to monitor the
output for several months to gather local additions. Typically, these
additions are kept in a separate local dictionary that is added to the
hashed list via spellin.
By default, logging of errors to /usr/lib/spell/spellhist is turned off.

D_SPELL and S_SPELL can be overridden by placing alternate
definitions in your environment.

March 24, 1984 Page 2

STYLE (CT) STYLE(CT)

Name

style - Analyzes characteristics of a document.

Syntax

atyle[—lml]l[l—mm]l—a][—e][—lnum”—rnuml
_p -

Description

Style analyses the characteristics of the writing style of a document.
It reports on readability, sentence length and structure, word length
and usage, verb type, and sentence openers. Because stgle runs
deroff before. looking at the text, formatting header files should be
included as part of the input. The default macro package — ms may
be overridden with the flag — mm. The flag — ml, which: causes
deroff to skip lists, should be used if the document contains many
lists of nonsentences. The other options are used to locate sentences
with certain characteristics.

— a Prints all sentences with their length and readability index.
— e Prints all sentences that begin with an expletive.
-p Prints all sentences that contain a passive verb.

- lnum
Prints all sentences longer than num.

— raum
Prints all sentences whose readability index is greater than
num.

— P Prints parts of speech of the words in the document.

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

See Also
deroff(CT), diction(CT)

Notes

Use of nonstandard formatting macros may cause incorrect sentence
breaks.

March 24, 1984 Page 1

“TBL (CT) TPL (CT)

Name

tbl - Formats tables for nroff or troff.

Syntax
thl [— TX] [files]

Description

Tbl is a preprocessor that formats tables for nroff(CT) or trojf(CT).
The input files are copied to the standard output, except for lines
between .TS and .TE command lines, which are assumed to describe
tables and are reformatted by tl. (The .TS and .TE command lines
are not altered by tb!).

.TS is followed by global options. The available global options are:

center Centers the table (default is left-adjust)

expand Makes the table as wide as the current line length

box Encloses the table in a box

doublebax Encloses the table in a double box

allbox Encloses each item of the table in a box;

tab(z) Uses the character z instead of a tab to separate
items in a line of input data.

The global options, if any, are terminated with a semicolon (;).

Next come lines describing the format of each line of the table.
Each such format line describes one line of the actual table, except
that the last format line (which must end with a period) describes all
remaining lines of the actual table. Each column of each line of the
table is described by a single keyletter, optionally followed by
specifiers that determine the font and point size of the corresponding
item, indicate where vertical bars are to appear between columns,
and determine parameters such as column width and intercolumn
spacing. The available keyletters are:

c Centers item within the column

r Right-adjusts item within the column

1 Left-adjusts item within the column

n Numerically adjusts item in the column: unit positions of
numbers are aligned vertically;

s Spans previous item on the left into this column

a Centers longest line in this column and then left-adjusts all

other lines in this column with respect to that centered line
Spans down previous entry in this column

_ Replaces this entry with a horizontal line

== Replaces this entry with a double horizontal line

March 20, 1984 Page 1

TBL (CT) TBL (CT)

The characters B and I stand for the bold and italic fonts, respec-
tively; the character | indicates a vertical line between columns.

The format lines are followed by lines containing the actual data for
the table, followed finally by .TE Within such data lines, data items
are normally separated by tab characters.

If a data line consists of only an underscore (_) or an equals sign
occurs, then a single or double line, respectively, is drawn across the
table at that point. If a eingle stem in a data line consists of only an
underscore or equals sign then that item is replaced by a single or
double line.

Full details of all these and other features of tbl are given in the
XENIX Tezt Proceseing Guide.

The - TX option forces tbl to use only full vertical line motions,
making the output more suitable for devices that cannot generate
partial vertical line motions, such as lineprinters.

If no filenames are given as arguments, tbl reads the standard input,
so it may be used as a filter. When it is used with egn(CT) or
negn(CT), tbl should come first to minimize the volume of data
passed through pipes.

Example

If we let — represent a tab (which should be typed as a genuine
tab), then the input:

TS

center box ;

Bss

c|cs

“lce

Ilnn.

Household Population

Town—Households
—Number—Size

Bedminster—789—3.26
Bernards Twp.—+3087—3.74
Bernardsville—2018—3.30
Bound Brook—3425—3.04
Bridgewater—7897—3.81
Far Hills—240—3.19

.TE

yields:

March 20, 1984 Page 2

TBL (CT}) TBL (CT)

Household Population

Town Households
Nymber _ Size
Bedminster 789 3.26

Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04
Bridge water 7897 3.81
Far Hills 240 3.19

See Also

Xenix Tezt Processing Guide
¢qn(CT), mm(CT), mm¢t(CT), troff(CT)

Notes

See also Nofes under troff{CT).

March 20, 1984 Page 3

TROFF(CT)

Name

TROFF (CT)

troff - Typesets text.

Syntax

troff | options | [files]

Description

troff formats text contained in files (standard input by default) for
printing on a phototypesetter. Similarly, nroff formats text for print-
ing on typewriter-like devices and lineprinters.

An argument consisting of a lone dash (-) is taken to be a filename
corresponding to the standard input. The options, which may appear
in any order, but must appear before the files, are:

— olist

- aN
- sN

Prints only pages whose page numbers appear in the list
of numbers and ranges, separated by commas. A range
N- M means pages N through M; an initial - N means
from the beginning to page N; and a final N- means
from N to the end. (See NOTES below.)

Numbers first generated page N.

Stops every N pages. Nroff will halt after every N pages
(default N=1) to allow paper loading or changing, and
will resume upon receipt of a linefeed or newline (new-
lines do not work in pipelines, e.g., with mm(CT)). This
option does not work if the output of nroff is piped
through ¢ol(CT). Troff will stop the phototypesetter
every N pages, produce a trailer to allow changing
cassettes, and resume when the typesetter’s start button is
pressed. When nroff (troff) halts between pages, an ASCII
BEL (in troff, the message page stop) is sent to the termi-
nal.

Sets register ¢ (which must have a one-character name)

to N.
Reads standard input after files are exhausted.

Invokes the simultaneous input-output mode of the .rd
request.

Prints only messages generated by .tm (terminal message)
requests.

March 20, 1984 Page 1

TROFF(CT) TROFF(CT)

— mnaeme Prepends to the input files the noncompacted (ASCII text)
macro file /usr/lib/tmac/tmac.name.

— cname Prepends to the input files the compacted macro files
/usr /lib/macros /cmp.|nt].|dt] .name and
[usr /lib/macros /ucmp.|nt].name.

— kname Compacts the macros used in this invocation of
nroff ftroff, placing the output in files [dt].name in the
current directory

-e Produces equally-spaced words in adjusted lines, using the
full resolution of the particular terminal.

-h Uses output tabs during horizontal spacing to speed out-
put and reduce output character count. Tab settings are
assumed to be every 8 nominal character widths.

- un Sets the emboldening factor (number of character over-
strikes) for the third font position (bold) to n, or to zero
if n is missing.

Troff only

-t Directs output to the standard output instead of the pho-
totypesetter.

-f Refrains from feeding out paper and stopping photo-
typesetter at the end of the run.

-w Waits until phototypesetter is available, if it is currently
busy.

-b Reports whether the phototypesetter is busy or available.

No text processing is done.

-a Sends a printable ASCIl approximation of the results to
the standard output.

- pN Prints all characters in point size N while retaining all
prescribed spacings and motions, to reduce photo-
typesetter elapsed time.

— Tname Uses font-width tables for device name (the font tables
are found in fusr/lib/font/namef*). Currently, no
names are supported.

Files

[usr/lib/suftab Suffix hyphenation tables

March 20, 1984 Page 2

TROFF (CT) TROFF (CT)

Jtmp/ta$# Temporary file
[usr/lib/tmac/tmac.* Standard macro files and pointers

[usr/lib/macros/* Standard macro files

[Just/lib/term /* Terminal driving tables for nroff
[ust/lib/font/* Font width tables for troff
*See Also

¢qn(CT), tbl(CT), mm(M)
(nroff only) col(CT), greek(CT), mm(CT)
(troff only) gca{ C) mmt{CT), mv(M)

Notes

Nroff ftroff uses Eastern Standard Time; as a result, depending on the
time of the year and on your local time zone, the date that nroffftroff
generates may be off by one day from your idea of what the date is.

When nroff ftroff is used with the — oliet option inside a pipeline (e.g.,
with one or more of ¢w(CT), egn(CT), and tb{(CT)), it may cause a
harmless ‘‘broken pipe’’ diagnostic if the last page of the document
is not specified in list.

March 20, 1984 Page 3

