

The XENIXnt

Development System

Programmer's Reference

nt

for the Apple Lisa 2

The Santa Cruz Operation, Inc.

Information in this document is subject to change without notice and
does not represent a commitment on the part or The Santa Cruz
Operation, Inc. and Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance
with the terms of the agreement.

«:>The Santa Cruz Operation, Inc., 1984

«:>Microsoft Corporation, 1983

The Santa Crus Operation, Inc.
500 Chestnut Street
P.O. Box 1900
Santa Cruz, California 95061
(408) 425-7222 • TWX: 910-598-4510 SCO SACZ

UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft Corporation
Apple, Lisa 2, and ProFile are trademarks or Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

Contents

1 Introduction

1.1 Overview 1-1
1.2 UsingtheCLibraryFunctions 1-1
1.3 UsingThisManual 1-1
1.4 NotationalConventions 1-2

Z UsingTheStandanlVO Functions

2.1 Introduction 2-1
2.2 UsingCommandLineArguments 2-2
2.3 UsingtheStandardFiles 2-4
2.4 UsingtheStreamFunctions 2-12
2.5 UsingMoreStreamFunctions 2-24
2.6 UsingtheLow-LevelFunctions 2-28

3 ScreenProcesslng

3.1 Introduction 3-1
3.2 PreparingfortheScreen Functions 3-3
3.3 UsingtheStandardScreen 3-6
3.4 Creating and Using Windows 3-13
3.5 UsingOtherWindowFunctions 3-24
3.6 CombiningMovementwithAction 3-28
3.7 ControllingtheTerminal 3-29

4 CharaderandStringProcessing

4.1 Introduction 4-1
4.2 UsingtheCharactecFunctions 4-1
4.3 UsingtheStringFunctions 4-7

5.1 Introduction 5-l
5.2 UsingProcesses 5-l
5.3 CallingaProgram 5-l
5.4 StoppingaProgram 5-2
5.5 OverlayingaProgram 5-3
5.6 ExecutingaProgramThrough aShell 5-5
5.7 DuplicatingaProcess 5-5

5.8 WaitingforaProcess 5-6
5.9 JnheritingOpenFiles 5-7
5.10 ProgramExample 5-7

6 CreatlngaDCIUslagPipes

6.1 Introduction 6-1
6.2 OpeningaPipetoaNewProccss 6-l
6.3 ReadingandWritingtoaProcess 6- 2
6.4 ClosingaPipe 6-2
6.5 OpeningaLow-LeveiPipc 6-3
6.6 ReadingandWritingtoaLow-LeveiPipc 6-4
6.7 ClosingaLow-LevelPipc 6-4
6.8 ProgramExamples 6-5

7 UslagSignals

7.1 Introduction 7-1
7.2 UsingthesignaiFunction 7-1
7.3 ControllingExecutionwithSignals 7-7
7.4 UsingSignalsinMuhipleProcesses 7-11

8 UsiDgSystemResources

8.1 Introduction 8-1
8.2 AllocatingSpace 8-1
8.3 LockingFiles 8-4
8.4 UsingScmaphores 8-6
8.5 UsingSharedMcmory 8-12

9 ErrorProcessiDg

9.1 Introduction 9-1
9.2 UsingStandardErrorHandling 9-1
9.3 UsingtheermoVariable 9-2
9.4 PrintingErrorMessages 9-2
9.5 UsingErrorSignals 9-3
9.6 Encountering System

Appendix A Assembly Language Interface

A. I Introduction A -1

AppeudixB XENIXSystemCalls

B.l Introduction B-1
B.2 RevisedSystemCalls B-1
B.3 Version7 Additions B-1
B.3 Olangestotheioct1Function B-2
B.4 UsingthemountandchownFunctions B-2
B.S Super-B1ockFormat B-2
B.6 SeparateVersionLibraries B-3

Chapter 1
Introduction

1.1 Overview 1-1

1.2 Using the C Library Functions 1-1

1.3 Using This Manual 1-1

1.4 Notational Conventions 1-2

Introduction

1.1 Overview

This manual explains how to use the functions given in the C language libraries
of the XENIX system. In particular, it describes the functions of two C language
libraries: the standard C library, and the screen updating and cursor
movement library curse B.

The C library functions may be called by any program that needs the resources
of the XENlX system to perform a task. The functions let programs read and
write to files in the XENlX file system, read and write to devices such as
terminals and lineprinters, load and execute other programs, receive and
process signals, communicate with other programs through pipes, share system
resources, and process errors.

1.2 Using the C Library Functions

To use the C library functions you must include the proper function call and
definitions in the program and specify the corresponding library is given when
the program is compiled. The standard C library, contained in the file libc.o:, is
automatically specified when you compile a C language program. Other
libraries, including the screen updating and cursor movement library
contained in the file libcureee.11, must be explicitly specified when you compile a
program with the -1 option of the cc command (see Chapter 2, "Cc: a C
Compiler" in the XENIX Progr11mmer't Guide).

1.3 Using This Manual

This manual is intended to be used in conjunction with section S of the XENIX
Reference Manual. If you have never used the C library functions before, read
this manual first, then refer to the Reference M11nual to learn about other
functions. If you are familiar with the library functions, turn to the Reference
Manual to see how these functions may differ from the ones you already know,
then return to this manual for examples ofthe functions.

Chapter 1 introduces the C language libraries.

Chapter 2 describes the standard input and output functions. These function
let a program read and write to the files of aXENIX file system.

Chapter 3 describes the screen processing functions. These functions let a
program use the screen processing facilities of a user's terminal.

Chap�er 4 describes the character and string processing functions. These
functions Jet a program assign, manipulate, and compare characters and
strings.

1-1

Chapter 5 describes the process control functions. These functions let a.
program execute other programs and create multiple copies of itself.

Chapter 6 describes the pipe functions. These functions let programs
communicate with one another without resorting to the creation of temporary
files.

Chapter 7 describes the signal functions. These functions let a program process
signals that are normally processed by the system.

Chapter 8 describes system resource functions. These functions let a program
dynamically allocate memory, share memory with other programs, lock files
against access by other programs, and use semaphores.

Chapter 9 describes the error processing functions. These functions let a
program process errors encountered while accessing the file system or
allocating memory.

Appendix A describes the assembly language interface with C programs and
explains the calling and return value conventions of C functions.

Appendix B explains how to create and use new XENIX system calls.

This manual assumes that you understand the C programming language and
that you are familiar with the XENIX shell, d.. Nearly all programming
examples in this guide are written in C, and all examples showing a shell use the
shshell.

1.4 Notational Conventions

This manual uses a number of special symbols to describe the form of the
library function calls. The following is a listofthesesymbols and their meaning.

I I

SMALL

italics

1-2

Brackets indicate an optional function argument.

Ellipses indicate that the preceding argument may be repeated
one or more times.

Small capitals indicate manifest constants. These system­
dependent constants and are defined in a variety of include files.

Italic characters indicate placeholders for function arguments.
These must be replaced with appropriate values or names of
variables.

Chapter 2
Using the Standard I/0 Functions

2.1 Introduction 2-1
2.1.1 Preparing for thei/OFunctions 2-1

2.1.2 SpecialNames 2-1
2.1.3 Special Macros 2-2

2.2 Using Command Line Arguments 2-2

2.3 Using the Standard Files 2-4
2.3.1 Reading From the Standard Input 2-4
2.3.2 Writing to the Standard Output 2-7
2.3.3 Redirecting the Standard Input 2-9
2.3.4 Redirecting the Standard Output 2-.9
2.3.5 Piping the Standard Input and Output 2-9
2.3.6 Program Example 2-10

2.4 Using the Stream Functions 2-11
2.4.1 Using FilePointers 2-11
2.4.2 Opening a File 2-12
2.4.3 Reading a SingleCharacter 2-13
2.4.4 Reading a String from a File 2-13
2. 4.5 Reading Records from a File 2-14
2.4.6 Reading FormattedDataFrom aFile 2-14
2.4.7 Writing a SingleCharacter 2-15
2.4.8 Writing a String to aFile 2-16
2.4.9 Writing Formatted Output 2-17
2.4.10 Writing Recordsto aFile 2-17
2.4.11 Testing for theEnd ofaFile 2-18
2.4.12 Testing For File Errors 2-18
2.4.13 Closing a File 2-19
2.4.14 Prog ram Example 2-19

2.5 Using More Stream Functions 2-22
2.5.1 Using Buffered lnputand Output 2-22
2.5.2 Reopening a File 2-23

2.5.3 Setting the Buffer 2-23

2.5.4 Putting aChar:u:ter B:u:k into a Buffer 2-24

2.5.5 Flushing a File Buffer 2-25

2.6 Using the Low-Level Functions 2-25

2.6.1 UsingFileDescriptors 2-26

2.6.2 OpeningaFile 2-26

2.6.3 Reading Bytes From a File 2-27

2.6.4 Writing Bytes to a File 2-27

2.6.5 Closing a File 2-28

2.6.6 Program Examples 2·28

2.6.7 UsingRandomAccessl/0 2-31

2.6.8 Moving the Char:u:ter Pointer 2-31

2.6. 9 Moving the Character Pointer in a Stream 2-32

2.6.10 Rewinding a File 2-33

2.6.11 Getting the Current Character Position 2-33

Using the Standard I/0 Functions

2.1 Introduction

Nearly all programs use some form of input and output. Some programs read from or
write to files stored on disk. Others write to devices such as line printers. Many
programs read from and write to the user's terminal. For this reason, the standard C
library provides several predefined input and output functions that a programmer can
use in programs.

This chapter explains how to use the 110 functions in the standard C library. In
particular, it describes:

Command line arguments

Standard input and rutput files

Stream functions for ordinary files

Low-levelfunctionsforordinaryfiles

Random access functions

2.1.1 Preparing for the I/0 FunctioDS

To use the standard 110 functions a program must include the file stdio.h, which
defines the needed macros and variables. To include this file, place the following line
at thebeginningofthep-ogram.

#include <stdio.h>

The actual functions are contained in the library file libc .a . This file is automatically
read whenever you compile a program, so no special argumem is needed when you
invoke the compiler.

2.1.2 Special Names

The standard l/0 library uses many names for special purposes. In general, these
namescanbeusedinanyprogramthathasincludedthestdio.hfile.

2-1

XENIX Programmer's Reference

The following is a. list of the special names:

stdin

stdout

stderr

EOF

NULL

FILE

BSIZE

The name of the standard input file.

The name of the standard output file.

The name of the standard error file.

The value returned by the read routines on end-of-file or error.

The null pointer, returned by pointer-valued functions, to indicate
an error.

The name of the file type used to declare pointers to streams.

The size in bytes (usually 1024) suitable for an I/0 buffer supplied
by the user.

2.1.3 Special Macros

The functions getc, getc har, putc, put char ,Je of, /error, and file no are actually
macros, not functions. This means that you cannot redecla.re them or use them
as targets for a. breakpoint when debugging.

2.2 Using Command Line Arguments

The XENIX system lets you pass information to a. program at the same time you
invoke it for execution. You can do this with command line arguments.

A XENIX command line is the line you type to invoke a. program. A command
line argument is anything you type in a.XENIX command line. A command line
argument can be a. filename, a.n option, or a. number. The first argument in any
command line must be the filename of the program you wish to execute.

When you type a. command line, the system reads the first argument and loads
the corresponding program. It also counts the other arguments, stores them in
memory in the same order in which they appear on the line, and passes the
count and the locations to the main function of the program. The function can
then access the arguments by accessing the memory in which they are stored.

To access the arguments, the main function must have two parameters:
"argc", an integer variable containing the argument count, and "argv", a.n
array of pointers to the argument values. You can define the parameters by
using the lines:

2-2

Using the Standard 1/0 Functions

main (argc, argv)
int argc;
char •argv [];

at the beginning of the main program function. When a program begins
execution, "argc" contains the coun.t, and each element in "argv" contains a
pointer to one argument.

An argument is stored as a null-terminated string (i.e., a string ending with a
null character, \0). The first string (at "argv(O)") is the program name. The
argument count is never less than 1, since the program name is always
considered the first argument.

In the following example, command line arguments are read and then echoed on
the terminal screen. This program is similar to the XENIX echo command.

main(argc, argv) /* echo arguments •/
int argc;
char •argvfl;
{

int i;

for (i = 1; i < argc; i++)
printf("%s%c", argv(i), (i<argc-1)?' ' : '\n');

}
In the example above, an extra space character is added at the end of each
argument to separate it from the next argument. This is required, since the
system automatically removes leading and trailing whitespace characters (i.e.,
spaces and tabs) when it reads the arguments from the command line. Adding a
newline character to the last argument is for convenience only; it causes the
shell prompt to appear on the next line after the program terminates.

When typing arguments on a command line, make sure each argument is
separated from the others by one or more whitespace characters. If an
argument must contain whitespace characters, enclose that argument in
double quotation marks. For example, in the command line

display 3 4 "echo hello"

the string "echo hello" is treated as a single argument Also enclose in double
quotation marks any argument that contains characters recognized by the shell
(e.g.,<,>, I, and').

You should not change the values of the "argc" and "argv" variables. If
necessary, assign the argument value to another variable and change that
variable instead. You can give other functions in the program access to the
arguments by assigning their values to external variables.

2-3

XENIX Programmer's Reference

2.3 Using the Standard Files

Whenever you invoke a program for execution, the XENIX system
automatically creates a standard input, a standard output, and a standard
error file to handle a program's input and output needs. Since the bulk of input
and output of most programs is through the user's own terminal, the system
normally assigns the user's terminal keyboard and screen as the standard input
and output, respectively. The standard error file, which receives any error
messages generated by the program, is also assigned to the terminal's screen.

A program can read and write to the standard input and output files with the
getchar, get6, scan/, putchar, pull, and print/functions. The standard error
file can be accessed using the stream functions described in the section "Using
Stream I/0" later in this chapter.

The XENIX system lets you redirect the standard input and output using the
shell's redirection symbols. This allows a program to use other devices and files
as its chief source of input and output in place of the terminal's keyboard and
screen.

The following sections explains how to read from and write to the standard
input and output. It also explains how to redirect the standard input and
output.

2.3.1 Reading From the Standard Input

You can read from the standard input with the getchar, gets, and ecanf
runctions.

The getc har function reads one character at a time from the standard input.
The function call has the form:

c = getchar()
where c is the variable to receive the character. It must have int type. The
'unction normally returns the character read, but will return the end-of-file
1alue EOF if the end of the file or an error is encountered.

rhe getchar function is typically used in a conditional loop to read a string or
:haracters from the standard input. For example, the following function reads
I Cnt" number Of CharaCterS from the keyboard . .

-4

Using the Standard I/0 Functions

readn (p, cnt)
char p[];
int cnt;
{

int i,c;

i=O;
while (i<cnt)

if (p[i++J = getchar()) != EOF) {
p[i) =0;
return(EOF);

}
return(OJ;

Note that if getc har is reading from the keyboard, it waits for characters to be
typed before returning.

The gete function reads a string of characters from the standard input and
copies the string to a given memory location. The function call has the form:

gets(e)

where e is a pointer to the location to receive the string. The function reads
characters until it finds a newline character, then replaces the newline
character with a null character (\0) and copies the resulting string to memory.
The function returns the null pointer value NULL if the end of the file or an
error is encountered. Otherwise, it returns the value of B.

The function is typically used to read a full line from the standard input. For
example, the following program fragment reads a line from the standard input,
stores it in the character array "cmdln" and calls a function (called parse) if no
error occurs.

char cmdln[SIZE);

if (gets(cmdln) != NULL)
parse();

In this case, the length of the string is assumed to be less than "SIZE".

Note that gets cannot check the length of the string it reads, so overflow can
occur.

The ecanffunction reads one or more values from the standard input where a
value may be a character string or a decimal, octal, or hexadecimal number.
The function call has the form:

scan£ (/ ormat, argptr . . .)

2-5

XENIX Programmer's Reference

, where format is a pointer to a string that defines the format of the values to be
read and argptr is one or more pointers to the variables that will receive the
values. There must be one argptr for each format given in the format string.
The format may be "%s" for a string, "%c" for a character, and "%d", "%o",
or "%x" for a decimal, octal, or hexadecimal number, respectively. (Other
formats are described in scanf(S) in the XENIX Reference Manual.) The
function normally returns the number of values it read from the standard
input, but it will return the value EOF if the end of the file or an error is
encountered.

Unlike the getch.ar and gets functions, uanf skips all whitespace characters,
reading only those characters which make up a value. It then converts the
characters, if necessary, into the appropriate string or number.

The scan/function is typically used whenever formatted input is required, i.e.,
input that must be typed in a special way or which has a special meaning. For
example, in the following program fragment rcanf reads both a name and a
number from the same line.

char name[20J ;
int number;

scanf("%s %d", name, &number);

In this example, the string "%s %d" defines what values are to be read (a
string and a decimal number). The string is copied to the character array
"name" and the number to the integer variable "number". Note that pointers
to these variables are used in the call and not the actual variables themselves.

When reading from the keyboard, lcanfwaits for values to be typed before
returning. Each value must be separated from the next by one or more
whitespace characters (such as spaces, tabs, or even newline characters). For
example, for the function:

scant(" %s %d %c", name, age, sex);

an acceptable input is:

John 27
M

If a value is a number, it must have the appropriate digits, that is, a dedmal
number must have decimal digits, octal numbers octal digits, and hexadecimal
numbers hexadecimal digits.

If sc anf encounters an error, it immediately stops reading the standard input.
Before sc anfcan be used again, the illegal character that caused the error must
be removed from the input using the getch.arfunction.

2-6

Using the Standard I/0 Functions

You may use the getchar, gets, and scan/functions in a single program. Just
remember that each function reads the next available character, making that
character unavailable to the other functions.

Note that when the standard input is the terminal keyboard, the get ch ar, get1,
and scan! functions usually do not return a value until at least one newline
character has been typed. This is true even if only one character is desired. Ir
you wish to have immediate input on a single keystroke, see the example in the
section "Using the system Call" in Chapter 3.

2.3.2 Writing to the Standard Output

You can write to the standard output with the putchar, puts, and printf
functions.

The putchar function writes a single character to the output buffer. The
function call has the form:

putchar (c)

where cis the character to be written. The function normally returns the same
character it wrote, but will return the value EOF if an error is encountered.

The function is typically used in a conditional loop to write a string of
characters to the standard output. For example, the function

writen (p,cnt)
char p[J;
int cnt;
{

int i;

for (i=O; i<=cnt; i++)
putchar((i != cnt) ? p[i) : '\n');

}
writes "cnt" number of characters plus a newline character to the standard
output.

The puts function copies the string found at a given memory location to the
standard output. The function call has the form:

puts(s)

where sis a pointer to the location containing the string. The string may be any
number of characters, but must end with a null character (\0). The function
writes each character in the string to the standard output and replaces the null
character at the end of the string with a newline character.

2-7

XENIX Programmer's Reference

Since the function aut.omatically appends a newline character, it is typically
used when writing full lines to the standard output. For example, the following
program fragment writes one of three strings to the standard output.

char c;

switch(c) {
case('l'):

case('2'):

default:

puts(" Continuing ... ");
break;

puts(" All done.");
break;

puts(" Sorry, there was an error.");

The string to be written depends on the value of "c".

The print/function writes one or more values to the standard output where a
value is a character string or a decimal, octal, or hexadecimal number. The
function automatically converts numbers into the proper display format. The
function call has the form:

.printf(format[, arg] ...)

where format is a pointer to a string which describes the format ofeach value to
be written and arg is one or more variables containing the values to be written.
There must be one arg for each format in the format string. The formats may
be "%s" for a string, "%c" for a character, and "%d", "%o", or "%x" for a
decimal, octal, or hexadecimal number, respectively. (Other formats are
described in printf(S) in the XENIX Reference Manual.) Ira string is requested,
the corresponding arg must be a pointer. The function normally returns zero,
but will return a nonzero value if an error is encountered.

The print! function is typically used when formatted output is required, i.e.,
when the output must be displayed in a certain way. For example, you may use
the function to display a name and number on the same line as in the following
example.

·

char name 0;
int number;

printf(" %s %d", name, number);

[n this example, the string "%s %d" defines the type of output to be displayed
[a string and a number separated by a space). The output values are copied
rrom the character array "name" and the integer variable "number".

!-8

Using the Standard 1/0 Functions

You may use the putchar, pute, and print/functions in a single program. Just
remember that the output appears in the same order as it is written to the
standard output.

2.3.3 Redirecting the Standard Input

You can change the standard input from the terminal keyboard to an ordinary
file by using the normal shell redirection symbol, <. This symbol directs the
shell to open for reading the file whose name immediately follows the symbol.
For example, the following command line opens the file phone li1t as the
standard input to the program dilll.

dial <phonelist

The die/program may then use the getchar, get., and lean/functions to read
characters and values from this file. Note that if the file does not exist, the shell
displays an error message and stops the program.

Whenever getchar, ge ts, or ecanf are used to read from an ordinary file, they
return the value EOF if the end of the file or an error is encountered. It is useful
to check for this value to make sure you do not continue to read characters after
an error has occurred.

2.3.4 Redirecting the Standard Output

You can change the standard output of a program from the terminal screen to
an ordinary file by using the shell redirection symbol, >. The symbol directs
the shell to open for writing the file whose name immediately follows the
symbol. For example, the command line

dial >savephone

opens the file 1avephone as the standard output of the program dilll and not the
'terminal screen. You may use the putchar, putB, and print/functions to write
to the file.

If the file does not exist, the shell automatically creates it. If the file exists, but
the program does not have permission to change or alter the file, the shell
displays an error message and does not execute the program.

2.3.1> Piping the Standard Input and Output

Another way to redefine the standard input and output is to create a pipe. A
pipe simply connects the standard output of one program to the standard input
of another. The programs may then use the standard input and output to pass
information from one to the other. You can create a pipe by using the standard
shell pipe symbol, I·

2-9

XENIX Programmer's Reference

For example, the command line

dial I we

connects the standard output of the program dial to the standard input of the
program we . (The standard input of dial and standard output of we are not
affected.) It did writes to its standard output with the putch ar, put1, or print/
functions, we can read this output with the getcharand lean/functions.

Note that when the program on the output side of a pipe terminates, the system
automatically places the constant value EOF in the standard input of the
program on the input side. Pipes are described in more detail in Chapter 6,
"Creating and Using Pipes".

2.3.6 Program Example

This section shows how you may use the standard input and output files to
perform useful tasks. The ustrip (for "control character strip") program
defined below strips out all ASCll control characters from its input except for
newline and tab. You may use this program to display text or data files which
contain characters that may disrupt your terminal screen.

#include <stdio.h>

main() /• ccstrip: strip nth characters •/
{

int c;
while ((c = getchar()) != EOF)

exit(O);

if ((c >== ' ' && c < 0177) II
c == '\t' II c === '\n')
putchar(c);

You can strip and display the contents of a single file by changing the standard
input of the ccBtripprogram to the desired file. The command line

ccstrip <doc.t

reads the contents of the file doc.t, strips out control characters, then writes the
stripped file to the standard output.

If you wish to strip several files at the same time, you can create a pipe between
the cat command and ce1trip.

To read and strip the contents of the files filet, file2, and fileS, then display
them on the standard output use the command:

2-10

Using the Standard 1/0 Functions

cat filel file2 file3 I ccstrip

If you wish to save the stripped files, you can redirect the standard output of
ccstrip. For example, this command line writes the stripped files to the file
clean.

cat filel file2 file31 ccstrip >clean

Note that the e zit function is used at the end of the program to ensure that any
program which executes the ccstripprogram will receive a normal termination
status (typically 0) from the program when it completes. An explanation ofthe
e zit function and how to execute one program under control of another is given
in Chapter 5.

2.4 Using the Stream Functions
The functions described so far have all read from the standard input and
written to the standard output. The next step is to show functions that access
files not already connected to the program. One set of standard 1/0 functions
allows a program to open and access ordinary files as if they were a "stream" of
characters. For this reason, the functions are called the stream functions.

Unlike the standard input and output files, a file to be accessed by a stream
function must be explicitly opened with the /open function. The function can
open a file for reading, writing, or appending. A program can read from a file
with the getc, fgetc, /gets, fgetw, /re ad, and /scan/functions. It can write to a
file with the putc, fputc, /puts, fputw, /write, and /print/functions. A program
can test for the end of the file or for an error with the/eofand/errorfunctions.
A program can close a file with the /close function.

2.4.1 Using File Pointers

Every file opened for access by the stream functions has a unique pointer
associated with it called a file pointer. This pointer, defined with the predefined
type FILE found in the stdio.h file, points to a structure that contains
information about the file, such as the location of the buffer (the intermediate
storage area between the actual file and the program), the current character
position in the buffer, and whether the file is being read or written. The pointer
can be given a valid pointer value with the /open function as described in the
next section. (The NULL value, like FILE, is defined in the stdio.h file.)
Thereafter, the file pointer may be used to refer to that file until the file is
explicitly closed with the/close function.

Typically, a file pointer is defined with the statement:

FILE •infile;

2-11

XENIX Programmer's Reference

The standard input, output, and error files, like other opened files, have
corresponding file pointers. These file pointers are named stdin for standard
input, stdout lor standard output, and stderr for standard error. Unlike other
file pointers, the standard file pointers are predefined in the stdio.h file. This
means a program may use these pointers to read and write from the standard
files without first using thefopenfunction to open them.

The predefined file pointers are typically used when a program needs to
alternate between the standard input or output file and an ordinary file.
Although the predefined file pointers have FILE type, they are constants, not
variables. They must not be assigned values.

2.4.2 Opening a File

The /open function opens a given file and returns a pointer (called a file pointer)
to a structure containing the data necessary to access the file. The pointer may
then be used in subsequent stream functions to read from or write to the file.

The function call has the form:

fp .,. fopen(filenGme, tupe)

where fp is the pointer to receive the file pointer, filename is a pointer to the
name of the file to be opened and tupe is a pointer to a string that defines how
the file is to be opened. The type string may be "r" for reading, "w" for
writing, and "a" for appending, that is, open for writing at the end ofthe file.

A file may be opened for different operations at the same time if separate file
pointers are used. For example, the following program fragment opens the file
named fusr/ aeeounts for both reading and writing.

FILE •rp, •wp;

rp = fopen(" fusrfaccounts" ,"r");
wp = Copen(" fusr /accounts"," a");

Opening an existing file for writing destroys the old contents. Opening an
existing file for appending leaves the old contents unchanged and causes any
data written to the file to be appended to the end.

Trying to open a nonexistent file for reading causes an error. Trying to open a
nonexistent file for writing or appending causes a new file to be created. Trying
to open any file for which the program does not have appropriate permission
causes an error.

fhe function normally returns a valid file pointer, but will return the value
"lULL if an error opening the file is encountered. It is wise to check for the NULL
�alue after each call to the function to prevent reading or writing after an error.

!-12

Using the Standard I/0 Functions

2.4.3 Reading a Single Character

The getc and fgetc functions return a single character read from a given file,
and return the value EOF if the end of the file or an error is encountered. The
function calls have the form:

e == getc (stream)

and

e == fgetc (dream)

where stream is the file pointer to the file to be read and e is the variable to
receive the character. The return value is always an integer.

The functions are typically used in conditional loops to read a string of
characters from a file. For example, the following program fragment continues
to read characters from the file given to it by "infile" until the end of the file or
an error is encountered.

int i;
char buf(MAX];
FILE •infile;

while ((c=getc(infile)) != EOF)
buf[i++]=c;

The only difference between the functions is that gete is defined as a macro, and
fgetc as a true function. 'J;'his means that, unlike getc, fgete may be passed as
an argument in another function, used as a target for a breakpoint when
debugging, or used to avoid any side effects of macro processing.

2.4.4 Reading a String from a File

The fgetB function reads a string of characters a file and copies the string to a
given memory location. The function call has the form:

fgets (e, n, stream)

where B is be a pointer to the location to receive the string, n is a count of the
maximum number of characters to be in the string, and etream is the file
pointer of the file to be read. The function reads n-1 characters or up to to the
first newline character, whichever occurs first. The function appends a null
character (\0) to the last character read and then stores the string at the
specified location. The function returns the null pointer value NULL if the end
of the file or an error is encountered. Otherwise, it returns the pointer B.

2- 13

XENIX Programmer's Reference

The function is typically used to read a full line from a file. For example, the
following program fragment reads a string of characters from the file given by
"myfile".

char cmdln[MAX];
FILE •myfile;

if (fgets(cmdln, MAX, myfile) !== NULL)
parse(cmdln);

In this example, /gets copies the string to the character array "cmdln".

2.4.5 Reading Records from a File

The fre ad function reads one or more records from a file and copies them to a
given memory location. The function call has the form:

fread (ptr, size, nit ems, Btre am)

where ptr is a pointer to the location to receive the records, size is the size (in
bytes) of each record to be read, nite me is the number of records to be read, and
stream is the file pointer of the file to be read. The ptr may be a pointer to a
variable of any type (from a single character to a structrure). The size, an
integer, should give the numbers of bytes in each item you wish to read. One
way to ensure this is to use the size of function on the pointer ptr (see the
example below). The function always returns the number oCrecords it read,
regardless of whether or not the end of the file or an error is encountered.

The function is typically used to read binary data from a file. For example, the
following program fragment reads two records from the file given by
"database" and copies the records into the structure "person".

FILE •database;
struct record {

char name[20];
int age;

} person;

fread(&person, sizeof(person), 2, database);

Note that since /read does not explicitly indicate errors, the feof and ferror
functions should be used to detect end of the file and errors. These functions are
described later in this chapter.

2.4.6 Reading Formatted Data From a File

The fee an/function reads formatted input from a given file and copies it to the
memory location given by the respective argument pointers, just as the scan/

2-14

Using the Standard 1/0 Functions

function reads from the standard input. The function call ha.s the fotm:

fsca.nf (stream, format, argptr . • .)
where stream is the file pointer of the file to be read, format is a. pointer to the
string that defines the format ofthe input to be read, and argptrisone or more
pointers to the variables that are to receive the formatted input. There must be
one argptrCor each format given in the format string. The format may be "%s"
for a. string, "%c" for a. character, and "%d", "%o", or "%x" for a. decima.l,
octal, or hexadecimal number, respectively. (Other formats are described in
1canJ(S) in the XENIX Reference Manual.) The function normally returns the
number of arguments it read, but will return the value EOF ifthe end orthe file
or an error is encountered.

The function is typically used to read files that contain both numbers and text.
For example, this program fragment reads a name and a decimal number from
the file given by "file".

FILE •file;
int pay;
char name(20);

fscanf(file," %s %d\n", name, &pay);

This program fragment copies the name to the character array "name" and the
number to the integer variable "pay".

2.4.7 Writing a. Single Character

The putc and fputc functions write single characters to a. given file. The
function calls have the forms:

putc (c,etream)

and

fputc (c,etream)

where cis the character to be written and 1tre am is the file pointer to the file to
receive the character. The function normally returns the character written,
but will return the value EOF ifan error is encountered.

The function is defined a.s a macro and may have undesirable side effects
resulting from argument processing. In such cases, the equivalent function
fputc should be used.

These functions are typically used in conditional loops to write a string of
characters to a file. For example, this following program fragment writes
characters from the array "name" to the file given by "out".

2-15

XENIX Programmer's Reference

FILE •out;
char name[MAX);
int i;

for (i=O; i<MAX; i++)
fputc(name!i), out);

The only difference between the putc and fputc functions is that putc is defined
as a macro and fputc as an actual function. This means that fputc, unlike putc,
may be used as an argument to another function, as the target of a breakpoint
when debugging, and to avoid the side effects of macro processing.

2.4.8 Writing a String to a File

The /puts function writes a string to a given file. The function call has the form:

fputs(s, stream)

where e is a pointer to the string to be written and stream is the file pointer to
the file.

The function is typically used to copy strings from one file to another. For
example, in the following program fragment, gets and /puts are combined to
copy strings from the standard input to the file given by "out".

FILE •out;
char cmdln[MAX);

if (gets(cmdln) != EOF)
fputs(cmdln, out);

The function normally returns zero, but will return EOF if an error is
encountered.

2-16

Using the Standard I/0 Functions

2.4,g Writing Formatted Output

The fprintf function writes formatted output to a given file, just as the print/
function writes to the standard output. The function call has the form:

fprintf (Btream, format (, arg) • • •)
where stream is the file pointer of the file to be written to, format is a pointer to
a string which defines the format of the output, and arg is one or more
arguments to be written. There must be one arg for each format in the format
string. The formats may be "%s" for a string, "%c" for a character, and
"%d", "%o", or "%x" for a decimal, octal, or hexadecimal number,
respectively. (Other formats are described in printf(S) in the XENIX Reference
Manual.) If a string is requested, the corresponding arg must be a pointer,
otherwise, the actual variable must be used. The function normally returns
zero, but will return a nonzero number if an error is encountered.

The function is typically used to write output that contains both numbers and
text. For example, to write a name and a decimal number to the file given by
"outfile" use th� following program fragment.

FILE •outfile;
int pay;
char name(20);

fprintf(outfile," %s %d\n" , name, pay);

The name is copied from the character array "name" and the number from the
integer variable "pay".

2.4.10 Writing Records to a File

The fwrite function writes one or more records to a given file. The function call
has the form:

fwrite (ptr, size, nitems, stream)

where ptr is a pointer to the first record to be written, size is the size (in bytes) of
each record, nitems is the number of records to be written, and 1tream is the file
pointer of the file. The ptr may point to a variable of any type (from a single
character to a structure). The size should give the number of bytes in each item
to be written. One way to ensure this is to use the size of function (see the
example below). The function always returns the number of items actually
written to the file whether or not the end of the file or an err oris encountered.

The function is typically used to write binary data. to a file. For example, the
following program fragment writes two records to the file given by "database".

2-17

XENIX Programmer's Reference

FILE •database;
struct record {

char name[20];
int age;

} person;

fwrite(&person, sizeof{person), 2, database);

The records are copied from the structure "person".

Since the function does not report the end of the file or errors, the feof and
fe rrorfunctions should be used to detect these conditions.

2.4.11 Testing tor the End ot a File

The /eof function returns the value -1 if a given file has reached its end. The
function call has the form:

feof (rtream)

where rtre am is the file pointer ofthe file. The function returns-1 only if the file
has reached its end, otherwise it returns 0. The return value is always an
integer.

The /e of function is typically used after those functions whose return value is
not a clear indicator of an end-of-file condition. For example, in the following
program fragment the function checks for the end of the file after each
character is read. The reading stops as soon asfe of returns -1.

char name(lO];
FILE •stream;

do
tread(name, size(name), 1, stream);

whi!e{!feof{ stream));

2.4.12 Testing For File Errors

The /error function tests a given stream file for an error. The function call has
the form:

terror (1tream)

where dream is the file pointer of the file to be tested. The function returns a
nonzero (true) value if an error is detected, otherwise it returns zero {false).
The function returns an integer value.

2-18

Using the Standard 1/0 Functions

The function is typically used to test for errors before perform a subsequent
read or write to the file. For example, in the following program fragment/error
tests the file given by "stream".

char •buf;
char x[5);

w bile (If error(stream))
fread(buf, sizeof(x), 10, stream);

It it returns zero, the next item in the file given by "stream" is copied to "bur'.
Otherwise, execution passes to the next statement.

Further use of a file after a error is detected may cause undesirable results.

2.4.13 Closing a File

The fclo•e function closes a file by breaking the connection between the file
pointer and the structure created by /open. Closing a file empties the contents
of the corresponding buffer and frees the file pointer for use by another file. The
function call has the form:

!close (1tre am)

where 1tre am is the file pointer of the file to close. The function normally
returnsO, but will return-1 ihnerror is encountered.

The fclole function is typically used to free file pointers when they are no longer
needed. This is important because usually no more than 20 files can be open at
the same time. For example, the following program fragment closes the file
given by "infile" when the file has reached its end.

FILE •infile;

if (feof(infile))
fclose(infile);

Note that whenever a program terminates normally, the fclo•e function is
automatically called for each open file, so no explicit call is required unless the
program must close a file before its end. Also, the function automatically calls
fflu•h to ensure that everything written to the file's buffer actually gets to the
file.

2.4.14 Program Example

This section shows how you may use the stream functions you have seen so far
to perform useful tasks. The following program, which counts the characters,
words, and lines found in one or more files, uses the /open, /print/, getc , and

2-19

XENIX Programmer's Reference

felo•e runctions to open, close, read, and write to the given files. The program
incorporates a. basic design that is common to other XENIX programs, namely it
uses the filenames round in the command line a.s the files to open and read, or ir
no names are present, it uses the standard input. This allows the program to be
invoked on its own, or be the receiving end or a. pipe.

2-20

Using the S tandard 1/0 Functions

#include <stdio.h>

main(argc, argv) /* we: count lines, words, chars •/
int argc;
char •argv0;
{

int c, i, inward;
FILE •fp, •fopen();
long Jinect, wordct, charct;
long tlinect = 0, twordct = 0, tcharct = 0;

i = 1;
fp = stdin;
do
{

if (argc > 1 &&

}

(fp=fopen(argv[i], "r")) == NULL) {
fprintf (stderr, " we: can't open %s\n" ,

argv[i]);
continue;

linect = wordct = charct = inword = 0;
while ((c = getc(fp)) != EOF) {

}

charct++;
if (c == '\n')

linect++;
if (c == ' ' II c == '\t' II c == '\n')

inword = 0;
else if (inword == 0) {

inword = 1;
wordct++;

printf("%7ld %7ld %7ld" , linect, wordct, charct);
printf(argc > 1 ? " %s\n" : " \n" , argv[i]);
fclose(fp);
tlinect += linect;
twordct += wordct;
tcharct += charct;

} while (++i < argc);
if (argc > 2)

exit(O);

printf(" %7ld %7ld %7ld total\n" , tlinect,
twordct, tcharct);

The program uses "fp" as the pointer to receive the current file pointer.
Initially this is set to "stdin" in case no filenames are present in the command
line. If a filename is present, the program callsfopen and assigns the file pointer
to "fp". If the file cannot be opened (in which case {open returns NULL), the

2-21

XENIX Programmer's Reference

program writes an error message to the standard error file "stderr" with the
fprintf function. The function prints the format string "we: can't open %s",
replacing the "%s" with the name pointed to by "a.rgv(i]".

Once a. file is opened, the program uses the getc function to read each character
from the file. As it reads characters, the program keeps a. count of the number
of characters, words, and lines. The program continues to read until the end of
the file is encountered, that is, when getc returns the value EOF.

Once a file has reached its end, the program uses the print/function to display
the character, word, and line counts at the standard output. The format string
in this function causes the counts to be displayed as long decimal numbers with
no more than 7 digits. The program then closes the current file with the fclo•e
function and examines the command line arguments to see if there is another
filename.

When all files have been counted, the program uses the print/ function to
display a grand total at the standard output, then stops execution with the ezit
function.

2.5 Using More Stream Functions

The stream functions allow more control over a. file than just opening, reading, · writing, and closing. The functions also Jet a program take an existing file
pointer and reassign it to another file (similar to redirecting the standard input
and output files) as well as manipulate the buffer that is used for intermediate
storage between the file and the program.

2.5.1 Using Buffered Input and Output

Buffered IfO is an input and output technique used by theXENIX system to cut
down the time needed to read from and write to files. Buffered I/0 lets the
system collect the characters to be read or written and then transfer them all at
once rather than one character at a time. This reduces the number of times the
system must access the 1/0 devices and consequently provides more time for
running user programs. Not all files have buffers. For example, files associated
with terminals, such as the standard input and output, are not buffered. This
prevents unwanted delays when transferring the input and output. When a file
does have a. buffer, the buffer size in bytes is given by the main fest constant
BSIZE, which is defined in the 1tdio.kfile.

When a. file has a. buffer, the stream functions read from and write to the buffer
instead of the file. The system keeps track ofthe buffer and when necessary fills
it with new characters (when reading) or flushes (copies) it to the file (when
writing). Normally, a buffer is not directly accessible to a. program, however a.
program can define its own buffer for a. file with the eetbu/ function. The
function also lets a program change a buffered file to be an unbuffered one. The
ungetc function lets a program put a character it has read back into the buffer,

2-22

Using the Standard 1/0 Functions

and the ffiu•hfunction lets a program flush the buffer before it is full.

2.5.2 Reopening a File

The /reopen closes the file associated with a given file pointer, then opens anew
file and gives it the same file pointer as the old file. The function call has the
form:

freopen (ne wfile, type, ltre am)

where new file is a pointer to the name of the new file, type is a pointer to the
string that defines how the file is to be opened ("r" for read, "w" for writing,
and "a" for appending), and 1tream is the file pointer of the old file. The
function returns the file pointer 1tre am if the new file is opened. Otherwise, it
returns the null pointer value NULL.

The /reopen function is used chiefly to attach the predefined file pointers
"stdin", "stdout", and "stderr" to other files. For example, the following
program fragment opens the file named by "newfile" as the new standard
output file.

char •newfile;
FILE •nfile;

nfile = freopen(newfile,"r" ,stdout);

This has the same effect as using the redirection symbols in the command line of
the program.

2.5.3 Setting the Buffer

The utbuf function changes the buffer associated with a given file to the
program's own buffer. It can also change the access to the file to no buffering.
The function call has the form:

setbuf (stream, bu!J

where stream is a file descriptor and bufis a pointer to the new buffer, or is the
null pointer value NULL if no buffering is desired. If a buffer is given, it must be
BSIZE bytes in length, where BSIZE is a manifest constant found in 1tdio. h.

The function is typically used to to create a buffer for the standard output when
it is assigned to the user's terminal, improving execution time by eliminating
the need to write one character to the screen at a time. For example, the
following program fragment changes the buffer of the standard output the
location pointed at by "p".

2-23

XENIX Programmer's Reference

char •p;

p=malloc(BSIZE);
setbuf (stdout, p);

The new buffer is BSIZE bytes long.

The function may also be used to change a file from buffered to unbuffered input
or output. Unbuffered input and output generally increase the total time
needed to transfer large numbers of characters to or from a file, but give the
fastest transfer speed for individual characters.

The eetbufCunction should be called immediately after opening a file and before
reading or writing to it. Furthermore, the fcloee or jJiueh function must be used
to flush the buffer before terminating the program. If not used, some data
written to the buffer may not be written to the file.

2.5.4 Putting a Character Back into a Buffer

The ungetc function puts a character back into the buffer of a given file. The
function call has the form:

ungetc (c, Btre em)
where c is the character to put back and etreamisthe file pointer ofthe file. The
function normally returns the same character it put back, but will return the
value EOF if an error is encountered.

The function is typically used when scanning a file for the first character of a
string of characters. For example, the following program fragment puts the
first character that is not a whitespace character back into the buffer or the file
given by "infile", allowing the subsequent call to getB to read that character as
the first character in the string.

FILE •infile
char name(20);

while(isspace(c=getc(infile)))
'

ungetc(c, stdin);
gets(name, stdin);

Putt.ing a character back into the buffer does not change the corresponding file;
it only changes the next character to be read.

Note that the function can put a character back only if one has been previously
read. The function cannot put more than one character back at a time. This
means if three characters are read, then only the last character can be put back,
never the first two.

2-24

Using the Standard 1/0 Funetions

'Note that the value EOF must never be put back in the buffer.

2.5.5 Flushing a File Buffer

The fflu•h function empties the buffer of a give file by immediately writing the
buffer contents to the file. The function call has the form:

mush (It rum)

where 1tre11m is the file pointer of the file. The function normally returns zero,
but will return the value EOF if an error is encountered.

The function is typically used to guarantee that the contents of a partially filled
buffer are written to the file. For example, the following program fragment
empties the buffer for the file given by "outtty" if the error condition given by
"errflag" is 0.

FILE •outtty;
int errftag;

if (errflag ===- 0)
mush(outtty);

Note that fflulh is automatically called by the Jclo1e function to empty the
buffer before closing the file. This means that no explicit call to fflu•h is
required irthe file is also being closed.

The function ignores any attempt to empty the buffer of a file opened for
reading.

2.6 Using the Low-Level Functions

The low-level functions provide direct access to files and peripheral devices.
They are actually direct calls to the routines used in the XENIX operating
system to read from and write to files and peripheral devices. The low-level
functions give a program the same control over a file or device as the system,
letting it access the file or device in ways that the stream functions do not.
However, low-level functions, unlike stream functions, do not provide buffering
or any other useful services of the stream functions. This means that any
program that uses the low-level functions has the complete burden of handling
input and output.

The low-level functions, like the stream functions, cannot be used to read from
or write to a file until the file has been opened. A program may use the open
function to open an existing or a. new file. A file can be opened for reading,
writing, or appending.

2-25

XENIX Programmer's Reference

Once a. file is opened for reading, a program can read bytes from it with the read
function. A program can write to a file opened for writing or appending with
the wn'te function. A program can close a file with the cloBe function.

2.6.1 Using File Descriptors

Each file that has been opened for access by the low-level functions has a unique
integer called a "file descriptor" associated with it. A file descriptor is similar
to a file pointer in that it identifies the file. A file descriptor is unlike a file
pointer in that it does not point to any specific structure. Instead the descriptor
is used internally by the system to access the necessary information. Since the
system maintains all information about a file, the only access to a file for a
program is through the file descriptor.

There are three predefined file descriptors (just as there are three predefined
file pointers) for the standard input, output, and error files. The descriptors are
0 for the standard input, 1 for the standard output, and 2 tor the standard error
file. As with predefined file pointers, a program may use the predefined file
descriptors without explicitly opening the associated files.

Note .that if the standard input and output files are redirected, the system
changes the default assignments for the file descriptors 0 and 1 to the named
files. This is also true if the input or output is associated with a. pipe. File
descriptor 2 normally remains attached to the terminal.

2.6.2 Opening a File

The open function opens an existing or a. new file and returns a file descriptor
tor that file. The function call has the form:

fd = open(name, ac ceu [, mode]);

where /dis the integer variable to receive the file descriptor, name is a pointer to
a string containing the filename, accesB is an integer expression giving the type
ot file access, and mode is an integer number giving a. new file's permissions.
The function normally returns a. file descriptor (a. positive integer), but will
return -1 it an error is encountered.

The tJCctll expression is formed by using one or more of the following manifest
constants: O_RDONLY tor reading, 0_ WRONL Y tor writing, O_RDWR tor both
reading and writing, O_APPEND for appending to the end of an existing file, and
O_CREAT for creating ;, new file. (Other constants are described in open (S) in
the XENIX Reference Manual.) The logical OR operator { I) may be used to
combine the constants. The mode is required only if O_CREAT is given. For
example, in the following program fragment, the function is used to open the
existing file named /u•r/ account• tor reading and open the new file named
Juerftmp/ BCrtJtchfor reading and writing.

2-26

Using the Standard I/0 Functions

int in, out;

in = open(• /usr/a.ccounts" , O...RDONLY);
out = open(. /usr/tmp/scra.tch" , O_WRONLY I o_CREAT, 0754);

In the XENIX system, each file has Q bits of protection information which
control read, write, and execute permission for the owner of the file, for the
owner's group, and for all others. A three-digit octal number is the most
convenient way to specify the permissions. For example, in the example above
the octal number "0755" specifies read, write, and ex:eJ:ute permission for the
owner, read and execute permission for the group, and read everyone else.

Note that if O_CREAT is given and the file already exists, the function destroys
the file's old contents.

2 .6.3 Reading Bytes From a File

The read function reads one or more bytes of data from a given file and copies
them to a. given memory location. The function call has the form:

n_read == read(/d, bu/, n);
where n_read is the variable to receive the count of bytes actually read, /dis the
file descriptor of the file, bufis a pointer to the memory location to receive the

, bytes read, and n is a. count of the desired number of bytes to be read. The
function normally returns the same number of bytes as requested, but will
return fewer if the file does not have that many bytes left to be read. The
function returns 0 if the file has reached its end, or -1 if an error is encountered.

When the file is a. terminal, read normally reads only up to the next newline.

The number of bytes to he read is arbitrary. The two most common values are
1, which means one character at a time, and 1024, which corresponds to the
physical block size on many peripheral devices.

2.6.4 \Vriting Bytes to a File

The write function writes one or more bytes from a given memory location to a
given file. The function call has the Corm:

n_written = write(/d, buf, n);

where n_written is the variable to receive a. count of bytes actually written,/dis
the file descriptor of the file, bu/is the name of the buffer containing the bytes to
be written, and n isthe number of bytes to be written.

The function always returns the number of bytes actually written. It is
considered an error if the return value is not equal to the number of bytes

2-27

XENIX Programmer's Reference

requested to be written.

The number of bytes to be written is arbitrary. The two most common values
a.re 1, which means one character a.t a. time a.nd 512, which corresponds to the
physical block size on ma.ny peripheral devices.

2.6.5 Closing a File

The clou function breaks the connection between a. file descriptor a.nd a.n open
file, a.nd frees the file descriptor for use with some other file. The function ca.ll
ha.s the form:

close (14)
where /d is the file descriptor of the file to close. The function norma.lly returns
0, but will return -1 if a.n error is encountered.

The function is typica.lly used to close files that are not longer needed. For
example, the following program fragment closes the standard input if the
argument count is greater than 1 .

int fd;

if (argc > 1)
close(0);

Note that all open files in a. program are closed wh�n a program terminates
normally or when the ezit function is called, so no explicit call to cloee is
required.

2.6.6 Program Examples

This section shows how to use the low-level functions to perform useful tasks. It
presents three examples that incorporate the functions as the sole method of
input and output.

The first program copies its standard input to its standard output.

2-28

Using the Standard 1/0 Functions

#define BUFSIZE BSIZE

main() /• copy input to output •/
{

char
int

bufl BliFSIZE);
n;

while ((n = read(0, buf, BUFSIZE)) > 0)
write(l, buf, n);

exit(O);

The program uses the read function to read BUFSIZE bytes from the standard
input (file descriptor 0). It then uses write to write the same number of bytes it
read to the standard output (file descriptor 1). Irthe standard input file size is
not a multiple oC BUFSIZE, the last read returns a smaller number of bytes to be
written by write, and the next call to read returns zero.

This program can be used like a copy command to copy the content of one file to
another. You can do this by redirecting the standard input and output files.

The second example shows how the retJd and write functions can be used to
construct higher level functions like getclr.tJr and putclr.tJr. For example, the
following is a version of getclr.tJrwhich performs unbuffered input:

#define CMASK 0377 /• for making chars > 0 •/

getchar()/• unbuffered single character input •/
{

char c;
return((read(O, &c, 1) > 0) ! c & CMASK : EOF);

}
The variable "c" must be declared char, because retJd accepts a character
pointer. In this case, the character being returned must be masked with octal
0377 to ensure that it is positive; otherwise sign extension may make it
negative.

The second version of getclr.tJr reads input in large blocks, but hands out the
characters one at a time:

2-29

XENIX Programmer's Reterence

*define CMASK 0377
*define BUFSIZE

I* for making char's > 0 *I
BSIZE

getchar()l• buffered version *I
{

}

static char
static char
static intn = 0;

bur(BUFSIZE);
•bufp = bur;

if (n == 0} { I• buffer is empty •I
n = read(O, bur, BUFSIZE);
bufp == buf;

}
retutn((--ri >== 0) ! •burp++ & CMASK : EOF);

Again, eaj:h character must be masked with the octal constant0377.

The final example is a simplified version of the XENIX utility; cp, a program
that copies one file to another. The main simplification is that this version
copies only one file, and does not permit the second argument to be a directory.

2-30

*define NULL 0
*define BUFSIZE BSIZE
*define PMODE 0644 I• RW for owner, R for group, others •I

main(argc, argv) I• cp: copy fl to f2 *I
int argc;
char •argv0;
{

}

int fl, f2, n;
char buf(BUFSIZE);

if (argc !== 3)
error(" Usage: cp from to" , NULL);

if ((fl = open(argv(1), O_RDONLY)) == -1)
error(" cp: can't open %s" , argv(1));

if ((f2 == open(argv(2), o_CREAT I O_WRONLY,
PMODE)) ==== -1)

error(" cp: can't create %s" , argv(2)};

while ((n = read(fl, buf, BUFSIZE)) > 0)
ir (write(f2, bur, n) != n)

error("cp: write error• , NULL);
exit(O);

Using the Standard 1/0 Functions

error(s1, s2)
char •s1, •s2;

/• print error message and die •/
{

printf(s1, s2);
printf(" \n");
exit(1);

There is a. limit (usually 20) to the number of files that a. program may have
open simultaneously. Therefore, any program which intends to process many
files must be prepared to reuse file descriptors by closing unneeded files.

2.6.7 Using Random Access I/0

Input and output operations on any file are normally sequential. This means
each read or write takes place a.t the character position immediately after the
last character read or written. The standard library, however, provides a
number of stream and low-level functions that allow a program to access a file
randomly, that is, to exactly specify the position it wishes to read from or write
to next.

The functions that provide random access operate on a file's "character
pointer". Every open file has a character pointer that points to the next
character to be read from that file, or the next place in the file to receive a
character. Normally, the character pointer is maintained and controlled by the
system, but the random access functions let a program move the pointer to any
position in the file.

2 .6.8 Moving the Character Pointer

The leeek function, a low-level function, moves the character pointer in a file
opened for low-level access to a given position. The function call has the form:

lseek(/d, offeet, origin);

where/dis the file descriptor of the file, offeet is the number of bytes to move the
character pointer, and origin is the number that gives the starting point for the
move. It may be 0 for the beginning of the file, 1 for the current position, and 2
for the end.

For example, this call forces the current position in the file whose descriptor is 3
to move to the 512th byte from the beginning of the file.

!seek(3, (long)512, 0)

Subsequent reading or writing will begin a.t that position. Note that offset must
be a. long integer and/dand origin must be integers.

2-31

XENIX Programmer's Reference

The function may be used to move the character pointer to the end of a file to '
allow appending, or to the beginning as in a rewind function. For example, the
call

lseek(fd, (long)O, 2);

prepares the file for appending, and

lseek(fd, (long)O, 0);

rewinds the file (moves the character pointer to the beginning). Notice the
"(long)O" argument; it could also be written as

OL

Using lteek it is possible to treat files more or less like large arrays, at the price
of slower access. For example, the following simple function reads any number
of bytes from any arbitrary place in a file:

get(fd, pos, buf, n) I* read n bytes from position pos *I
int fd, n;
long pos;
char •buf;
{

}
lseek(fd, pos, 0); I* get to pos *I
return(read(fd, buf, n));

2.6.9 Moving the Character Pointer in a Stream

The /teek function, a stream function, moves the character pointer in a file to a
given location. The function call has the form:

fseek (ttream, oJ!tet, ptrname)

where etream is the file pointer of the file, oJ!eet is the number of characters to
move to the new position (it must be a long integer), and ptrname is the starting
position in the file of the move (it must be "0" for beginning, " 1", for current
position, or "2" for end ofthe file). The function normally returns zero, but will
return the value EOF ihn error is encountered.

For example, the following program fragment moves the character pointer to
the end ofthe file given by "stream".

Fll..E •stream;

fseek(stream, (long)O, 2);

2-32

Using the Standard 1/0 Functions

The functio� may be used on either buffered or unbuffered files.

2.6.10 Rewinding a File

The rewind function, a stream function, moves the character pointer to the
beginning of a given file. The function call has the form:

rewind (stream)

where rtream is the file pointer of the file. The function is equivalent to the
following function call

fseek (stream,OL,O);

ltts. chiefly used as a more readable version oft he call.

2.6.11 Getting the Current Character Position

The ftell function, a stream function, returns the current position of the
character pointer in the given file. The returned position is always relative to
the beginning ofthe file. The function call has the form:

p = ftell (rtream)

where rtream is the file pointer of the file and p is the variable to receive the
position. The return value is always a long integer. The function returns the
value -1 if an error is encountered.

The function is typically used to save the current location in the file so that the
program can later return to that position. For example, the following program
fragment first saves the current character position in "oldp", then restores the
file to this position if the current character position is greater than "800".

FILE •outfile;
long oldp;

oldp = ftell(outfile);

if ((ftell(outfile)) > 800)
fseek(outfile, oldp, 0);

Theft ellis identical to the function call

!seek(fd, (long)O, I)

where /dis the file descriptor of the given stream file.

2-33

Chapter 3
Screen Processing

3.1 Introduction 3-1
3. 1 . 1 Screen Processing Overview 3-1
3.1.2 Using the Library 3-2

3.2 Preparing the Screen 3-4
3.2.1 Initializing the Screen 3-4

3.2.2 Using Terminal Capability and Type 3-5
3.2.3 Using Default Terminal Modes 3-5
3.2.4 Using Default Window Flags 3-6
3. 2.5 Using the Default Terminal Size 3-6
3.2.6 Terminating Screen Processing 3-6

3.3 Using the Standard Screen 3-7
3.3.1 Adding a Character 3-7
3.3.2 Adding a S tring 3-8

3.3.3 Printing Strings, Characters, and Numbers 3-8
3.3.4 Reading a Character From the Keyboard 3-9
3.3.5 Reading a String From the Keyboard 3-9
3.3.6 Reading S trings, Characters, and Numbers 3-10
3.3.7 Moving the Current Position 3-11
3.3.8 Inserting a Character 3-11
3.3.9 Inserting a Line 3-11
3.3.10 Deleting a Character 3-12
3.3.11 Deleting aLine 3-12
3.3.12 Clearing the Screen 3-13
3.3.13 Clearing a Part ofthe Screen 3-13
3.3.14 Refreshing From the Standard Screen 3-14

3.4 Creating and Using Windows 3-14
3.4.1 Creating a Window 3-14
3.4.2 Creating a Subwindow 3-15
3.4.3 Adding and Printing to a Window 3-16
3.4.4 Reading and Scanning for Input 3-17
3.4.5 Moving a the Current Position in a Window 3-19

3.4.6 Inserting Characters 3-19
3.4. 7 Deleting Characters and Lines 3-20
3.4.8 Clearing the Screen 3-21
3.4.9 Refreshing From a Window 3-22
3.4.10 Overlaying Windows 3-23
3.4.11 Overwriting a Screen 3-23
3.4. 12 Moving a Window 3-24
3.4.13 Reading a Character From a Window 3-24
3.4.14 Touching a Window 3-25
3.4.15 Deleting a Window 3-25

Using Other Window Functions 3-26
3.5.1 Drawing aBox 3-26
3.5.2 Displaying Bold Characters 3-26

3.5.3 Restoring Normal Characters 3-27
3.5.4 Getting the Current Position 3-28
3.5.5 Setting Window Flags 3-28
3.5.6 Scrolling a Window 3-29

Combining Movement With Action 3-30

Controlling the Terminal 3-30
3.7.1 Setting a Terminal Mode 3-30
3. 7.2 Clearing a Terminal Mode 3-31
3.7.3 Moving the Terminal's Cursor 3-32
3. 7.4 Getting the Terminal Mode 3-32
3.7.5 S aving and Restoringthe Terminal Flags 3-33
3. 7.6 Setting a Terminal Type 3-33
3.7.7 Reading the TerminaiName 3-33

Screen Processing

3 . 1 Introduction

This chapter explains how to use the screen updating and cursor movement
library named cureee. The library provides functions to create and update
screen windows, get input from the terminal in a screen-oriented way, and
optimize the motion of the cursor on the screen.

3 .1.1 Screen Processing Overview

Screen processing gives a program a simple and efficient way to use the
capabilities of the terminal attached to the program's standard input and
output files. Screen processing does not rely on the terminal's type. Instead the
screen processing functions use the XENIX terminal capability file
fetcftermc!Jp to tailor their actions for any given terminal. This makes a
screen processing program terminal-independent. The program can be run
with any terminal as long as' that terminal is described in the/ etcftermc4pfile.

The screen processing functions access a terminal screen by working through
intermediate "screens" and "windows" in memory. A screen is a
representation of what the entire terminal screen should look like. A window is
a representation of what some portion of the terminal screen should look like.
A screen can be made up of one or more windows. A window can be as small as a
single character or as large as an entire screen.

Before a screen or window can be used, it must be created by using the newwin
or .ubwin functions. These functions define the size of the screen or window in
terms of lines and columns. Each position in a screen or window represents a
place for a single character and corresponds to a similar place on the terminal
screen. Positions are numbered according to line and column. For example, the
position in the upper left corner of a screen or window is numbered (0,0) and the
position immediately to its right is (0,1). A typical screen has 24 lines and 80
columns. Its upper left corner corresponds to the upper left corner of the
terminal screen. A window, on the other hand, may be any size (within the
limits of the actual screen). Its upper left corner can correspond to any position
on the terminal screen. For convenience, the init1crfunction which initializes a
program for screen processing also creates a default screen , etdecr (for
"standard screen"). The etdur may be used without first creating it. The
function also creates curscr (for "current screen") which contains a copy of
what is currently on the terminal screen.

To display characters at the terminal screen, a program must write these
characters to a screen or window using screen processing functions such as
1Jddch and waddch. If necessary, a program can move to the desired position in
the screen or window by using the mo�e and wmo�e functions. Once characters
are added to a screen or window, the program can copy the characters to the
terminal screen by using the refruh or wrefresh function. These functions
update the terminal screen according to what has changed in the given screen
or window. Since the terminal screen is not changed until a program calls

3-1

refruh or wrefruh, a program can maintain several different windows, each
containing different characters for the same portion of the terminal screen.
The program can choose which window should actually be displayed before
updating.

A program can continue to add new characters to a screen or window as needed,
and edit these characters by using functions such as in1ertln, tleleteln, and
clear. A program can also combine windows to make a composite screen using
the overla11 and overwrite functions. In each case, the refruh or wrefreBh,
function is used to copy the changes to the terminal screen.

3.1.2 Using the Library

To use the cursu library in a program, you must add the line

=linclude < curses.h>

to the beginning of your program. The curse1.h file contains definitions for
types and variables used by the library.

The actual screen processing functions are iri the library files libcurees.a and
libtermcap.a. These files are not automatically read when you compile your
program, so you must include the appropriate library switches in your
invocation of the compiler. The command line must have the form:

cc file • . . -!curses -ltermcap

where file is the name of the source file you wish to compile. You may given
more than one filename if desired. You may also use other compiler options in
the command line. For example, the command

cc main.c intf.c -!curses -Itermcap -o sample

compiles the files main.c and intf.c , and copies the executable program to the
file sample after linking the screen processing library files to the program.

Note that the curses.!& file automatically includes the file sgttv.h in your
program. This file must not be included twice.

The screen processing library has a variety of predefined names. These names
refer to variables, manifest constants, and types that can be used with the
library functions. The following is a list of these names.

3-2

T_XPe Name
WINDOW• curser

WINDOW• stdscr

char Det_term

boo) My_term

char t tytype

int LINES
int COLS

int ERR

int OK

Screen Processing

Variables

Description
A pointer to the current version ofthe
terminal screen.
A pointer to the default screen used
for updating when no explicit screen
is defined.
A pointer to the default terminal type
if the type cannot be determined.
The terminal type flag. Ir set, it
causes the terminal specification in
"Def_term" to be used, regardless of
the real terminal type.
A pointer to the full name of the
current terminal.
The number otlines on the terminal.
The number of columns on the
terminal.
The error flag. Returned by functions
on an error.
The okay flag. Returned by functions
on successful operation.

3-3

Name
reg

boo)
TRUE
FALSE

Types and Constants

Description
A storage class. It is the same as
register storage class.
Atype. It is the same achar type.
The boolean true value (1).
The boolean false value (0}.

3 .2 Preparing the Screen

The initur and endwin functions perform the operations required to initialize
and terminate programs that use the screen processing functions. The
following sections describe these functions and how they affect the terminal.

3.2.1 Initializing the Screen

The initrcr function initializes screen processing for a. program by allocating
the required memory space Cor the screen processing functions and variables,
and by setting the terminal to the proper modes. The function call has the
form:

initscr()

No arguments are required.

The initscr function must be used to prepare the program for subsequent calls
to other screen processing functions and Cor use oC the screen processing
variables. For example, in the following program fragment initBcr initializes
the screening processing functions.

*include <curses.h>

main ()
{
initscr();
if (cmpstr(ttytype,"dumb"))

fprintf(stderr, "Terminal type can't display screen.");

In this example, the predefined variable "ttytype" is checked for the current
terminal type .

The function returns (WINDOW•) ERR if memory allocation causes a.n overflow.

3-4

Screen Processing

3.2.2 Using Terminal Capability and Type

The init1cr Cunction uses the terminal capability descriptions given in the
XENIX system's f etcftermcap file to prepare the screen processing Cunctions
Cor creating and updating terminal screens. The descriptions define the
character sequences required to perCorm a given operation on a given terminal.
These sequences are used by the screen processing Cunctions to add, insert,
delete, and move characters on the screen. The descriptions are automatically
read Crom the file when screen processing is initialized, so direct access by a
program is not required.

The initlcr Cunction uses the shell's "TERM" variable to determine which
terminal capability description to use. The "TERM" variable is usually
assigned an identifier when a. user logs in. This identifier defines the terminal
type and is associated with a. terminal capability description in the
fetcftermcapfile.

IC the "TERM" variable has no value, the Cunctions use the deCault terminal
type in the library's predefined variable "Def_term". This variable initially
has the value "dumb" (Cor "dumb terminal"), b�t the user may change it to any
desired value. This must be done beCore calling the initecr function.

In some cases, it is desirable to Coree the screen processing Cunctions to use the
deCa.ult terminal type. This can be done by setting the library's predefined
variable "My_term" to the value 1. The Cull name or the current terminal is
stored in the predefined variable "ttytype".

Terminal capabilities, types, and identifiers are described in detail in
termcap(F) in theXENIX Reference Manual.

3.2.3 Using Detault Terminal Modes

The init1cr Cunction automatically sets a terminal to deCault operation modes.
These modes define how the terminal displays characters sent to the screen and
how it responds to characters typed at the keyboard. The initecr Cunction sets
the terminal to ECHO mode which causes characters typed at the keyboard to
be displayed at the screen, and RAW mode which causes characters to be used as
direct input (no editing or signal processing is done).

The deCault terminal modes can be changed by using the appropriate Cunctions
described in the section "Setting a Terminal Mode" in this chapter. IC the
modes are changed, they must be changed immediately a.Cter calling initscr.
Terminal modes are described in detail in tt11(M) in the XENIX Reference
Manual.

3-5

Note

The terminal mode functions should only be used in conjunction with
other screen processing functions. They should not be used alone.

3.2.4 Using Derault Window Flags

The initscrfunction automatically clears the cursor, scroll, and clear flags of
the standard screen to their default values. These flags, called the window
flags, define how the refresh function affects the terminal screen when
refreshing from the standard screen. When clear, the cursor flag prevents the
terminal's cursor from moving back to its original location after the screen is
updated, the scroll flag prevents scrolling on the screen, and the clear flag
prevents the characters on the screen from being cleared before being updated.
The flags may be change·d by using the functions described in the section
"Setting Window Flags," in this chapter.

3.2.5 Using the Derault Terminal Size

The initecr function sets the terminal screen size to a default number of lines
and columns. The default values are given in the predefined variables "LINES"
and "COLS". You can change the default size of a terminal by setting the
variables to new values. This should be done before the first call to initecr. Hit
is done after the first call, a second call to initecr must be made to delete the
existing standard screen and create a new one.

3.2.6 Terminating Screen Processing

The endwin function terminates the screen processing in a program by freeing
all memory resources allocated by the screen processing functions and
restoring the terminal to the state before screen processing began. The
function call has the form:

end win()

No arguments are required.

The endwin function must be used before leaving a program that has called the
init1cr function to restore the terminal to its previous state. The function is
generally the last function call in the program. For example, in the following
program fragment initscr and endwt"n form the beginning and end of the
program.

3-6

Screen Processing

#include <curses.h>

main ()
{
initscr();

/* Program body. •/
end win();
}

Note that endwin must not be called if initurhas not been called. Also, endwin
should be called before any call to the ezit function. The endwinfunction must
also be called if the gettmode and retterm functions have been called even it
initur has not.

3 .3 Using the Stan'i:lard S creen

The following sections explain how to use the standard screen to display and
edit characters on the terminal screen.

3.3.1 Adding a Character

The addch function adds a given character to the standard screen and moves
the character pointer one position to the right. The function call has the form:

addch(ch)

where ch gives the character to be added and must have char type. For
example, if the current position is (0, 0), the function call

addch('A')

places the letter "A" at this position and moves the pointer to (0, 1).

Ih newline ('\n') character is given, the function deletes all characters from the
current position to the end of the line and moves the pointer one line down. If
the newline flag is set, the function deletes the characters and moves the
pointer to the beginning of the next line. IC a return ('\r') is given, the function
moves the pointer to the beginningofthe current line. Ira tab ('\t') is given, the
function moves the pointer to the next tab stop, adding enough spaces to fill the
gap between the current position and the stop. Tab stops are placed at every
eight character positions.

The function returns ERR if it encounters an error, such as illegal scrolling.

3-7

3.3.2 Addin!Pj a String

The addBtr function adds a string of characters to the standard screen, placing
the first character of the string at the current position and moving the pointer
one position to the right for each character in the string. The function call has
the form:

addstr(Btr)

where Btr is a character pointer to the given string. For example, if the current
position is (0,0}, the function call

addstr(" line");

places the beginning of the string "line" at this position and moves the pointer
to (0,4).

If the string contains newline, return, or tab characters, the function performs
the same actions as described for the addehfunction. If the string does not fit on
the current line, the string is truncated.

The function returns ERR ifitencounters an error such as illegal scrolling.

3 .3.3 Printing Strings, Characters, and Numbers

The printw function prints one or more values on the standard screen, where a
value may be a string, a character, or a decimal, octal, or hexadecimal number.
The function call has the form:

printw(fmt (, arg) ...)
where/mt is a pointer to a string that defines the formatofthevalues, and argis
a value to be printed. If more than one arg is given, each must be separated
from the preceding argument with a comma (,). For each arg given, there must
be a corresponding format given in fmt. A format may be "%s" for string,
"%c" for character, and "%d", "%o", or "%x" for a decimal, octal, or
hexadecimal number, respectively. (Other formats are described in printf(S) in
the XENIX R eferene e Manual.) If "%s" is given, the corresponding arg must be
a character pointer. For other formats, the actual value or a variable
containing the value may be given.

The function is typically used to copy both numbers and strings to the standard
screen at the same time. For example, if the current position is (0,0), the
function call

printw("%s %d" , name, 15);

prints the name given by the variable "name" starting at position (0,0). It then

3-8

.)

Screen Processing

prints the number "15" immediately after the name.

The function returns ERR if it encounters an error such as illegal scrolling.

3.3.4 Reading a Character From the Keyboard

The getch function reads a single character from the terminal keyboard and
returns the character as a value. The function call has the form:

c = getch()

where c is the variable to receive the character.

The function is typically used to read a series of individual characters. For
example, in the following program fragment, characters are read and stored
until a newline or the end of the file is encountered, or until the buffer size has
been reached.

char c, p[MAXl ;
int i;

i = O;
while ((c=getch()) != '\n' && c I= EOF && i <MAX)

p(i++l == Cj

IC the terminal is set to ECHO mode, getch copies the character to the standard
screen; otherwise, the screen remains unchanged. IC the terminal is not set to
RAW or NOECHO mode, getch automatically sets the terminal to CBREAK
mode, then restores the previous mode after reading the character. Terminal
modes are described later in the chapter.

The function returns ERR if it encounters an error such as illegal scrolling.

3.3.5 Reading a String From the Keyboard

The getstr function reads a string of characters from the terminal keyboard
and copies the string to a given location. The function call has the form:

getstr(str)

where stris a character pointer to the variable or location to receive the string.
When typed at the keyboard, the string must end with a newline character or
with the end-of-file character. The extra character is replaced by a null
character when the string is stored. It is the programmer's responsibility to
ensure that str has adequate space to store the typed string.

The function is typically used to read names and other text from the keyboard.
For example, in the following program fragment, reads a filename from the

3-9

keyboard and stores it in the array "name".

char name(20];

getstr(name);

It the terminal is set to ECHO mode, get1tr copies the string to the standard
screen. If the terminal is not set to RAW or NOECHO mode, the function
automatically sets the terminal to CBREAK mode, then restores the previous
mode after reading the character. Terminal modes are described later in the
chapter.

The function returns ERR if it encounters an error such as illegal scrolling.

3.3.6 Reading Strings, Characters, and Numbers ·

The scanw function reads one or more values from the terminal keyboard and
copies the values to given locations. A value may be a string, character, or
decimal, octal, or hexadecimal number. The function call has the form:

scanw(fmt, argptr ...)

where fmt is a pointer to a string defining the format of the values to be read,
and argptr is a pointer to the variable to receive a value. It more than one argptr
is given, each must be separated from the preceding item with a comma (,). For
each argptr given, there must be a corresponding format given in fmt. A format
may be "%s" for string, "%c" Cor character, and "%d", "o/oo", or "%x" for a
decimal, octal, or hexadecimal number, respectively. (Other formats are
described in Bcanf(S) in theXENIX Reference Manual.)

The function is typically used to read a combination of strings and numbers
from the keyboard. For example, in the following program fragment Bcanw
reads a name and a number from the keyboard.

char name(20);
int id;

scanw("%s %d" , name, &id);

In this example, the input values are stored in the character array "name" and
the integer variable "id".

It the terminal is set to ECHO mode, the function copies the string to the
standard screen. It the terminal is not set to RAW or NOECHO mode, the
function automatically sets the terminal to CBREAK mode, then restores the
previous mode after reading the character.

The function returns ERR if it encounters an error such as illegal scrolling.

3-10

Screen Processing

3.3.7 Moving the Current Position

The move function moves the pointer to the given position. The function call
has the form:

move (y, z)

where 11 is an integer value giving the new row position, and z is an integer value
giving the new column position. For example, if the current position is (0,0),
the function call

move(5,4)

moves the pointer to line 5, column 4.

The function returns ERR if}tencounters an error such as illegal scrolling.

3.3.8 Inserting a Character

The in1ch function inserts a character at the current position and shifts the
existing character (and all characters to its right) one position to the right. The
function call has the form:

insch (c)

where c is the character to be inserted.

The function is typically used to insert a series of characters into an existing
line. For example, in the following program fragment in1chis used to insert the
number of characters given by "cnt" into the standard screen a the current
position.

int cnt;
char •string;

while (cnt != 0) {
insch(string(cntJ);
cnt--;
}

The function returns ERR if it encounters an error such as illegal scrolling.

3.3.0 Inserting a Line

The in1ertln function inserts a blank line at the current position and moves the
existing line (and all lines below it) down one line, causing the last line to move

If the bottom of the screen. The function call has the form:

3-11

insertln()
No arguments are required.

The function is used to insert additional lines of text in the standard screen.
For example, in the following program fragment in1ertln is used to insert a
blank line when the count in "cnt" is equal to 79.

int cnt;

if (cnt == 79)
insertln();

The function returns ERR if it encounters an error such as illegal scrolling.

3.3.10 Deleting a Character

The tleleh function deletes the character at the current position and shifts the
character to the right of the deleted character (and all characters to its right)
one position to the left. The last character on the line is replaced by a space.
The function call has the form:

delch()
No arguments are required.

The function is typically used to delete a series of characters from the standard
screen. For example, in the following program fragment tleleh deletes the
character at the current position as long as the count in "cnt" is notO.

int cnt;

while (cnt !- 0) {
delch();
cnt-- ;
}

3.3.11 Deleting a Line

The tleleteln function deletes the current line and shifts the line below the
deleted line (and all lines below it) one line up, leaving the last line on the screen
blank. The function call has the form:

deleteln()
No arguments are required.

3-12

Screen Processing

The deleteln function is used to delete existing lines from the standard screen.
For example, in the following program fragment delete In is used to delete a. line
from the standard screen ifthe count in "cnt" is 79.

int cnt;

if (cnt == 79)
deleteln();

3.3.12 Clearing the Screen

The clear and erase functions clear all characters from the standard screen by
replacing them with spaces. The functions are typically used to prepare the
screen for new text.

The dear function clears ati characters from the standard screen, moves the
pointer to (0,0}, and sets the standard screen's clear ftag. The fta.g causes the
next call to the refresh function to clear all characters from the terminal screen.

The erase function clears the standard screen, but does not set the clear ftag.
For example, in the following program fragment dear clears the screen if the
input value is 12.

char c;

if ((c=getch(}) == 12)
clear();

3.3.13 Clearing a Part of the Screen

The clrtobot and elrtoeol functions clear one or more characters from the
standard screen by replacing the characters with spaces. The functions are
typically used to prepare a. pa.rtor the standard screen for new characters.

The clrtobot function clears the screen from the current position to the bottom
ofthe screen. For example, if the current position is (10,0}, the function call

clrtobot();

clears all characters from line 10 and all lines below line 10.

The clrtoeol function clears the standard screen from the current position to
the end or the current line. For example, if the current position is (10,10}, the
function call

clrtoeol();

3-13

clears all �haracters from (10, 10) to (10,79). The characters at the beginning of
the line remain unchanged.

Note that both the clrtobot and drtoeol functions do not change the current
position.

3.3.1 4 Refresh ing From the Standard Screen

The refrerh function updates the terminal screen by copying one or more
characters from the standard screen to the terminal. The function effectively
changes the terminal screen to reflect the new contents of the standard screen.
The function call has the form:

refresh()

No arguments are required.

The function is u5ed solely to display changes to the standard screen. The
function copies only those characters that have changed since the last call to
refreeh and leaves any existing text on the terminal screen. For example, in the
following program fragment refrelh is called twice.

addstr("The first time.\n");
refresh();
addstr(" The second time.\n");
refresh();

In this example, the first call to re/re1hcopies the string "The first time. 11 to the
terminal screen. The second call copies only the string "The second time. 11 to
the terminal, since the original string has not been changed.

The function returns ERR if it encounters an error such as illegal scrolling. Iran
error is encountered, the function attempts to update as much of the screen as
possible without causing the scroll.

3.4 Creating and Using Windows
The following sections explain how to create and use windows to display and
edit text on the terminal screen.

3.4.1 Creating a Window

The newwin function creates a window and returns a pointer that may be used
in subsequent screen processing functions. The function call has the form:

win = newwin(/inu, cole, begin-11, begin_z)

3-14

.)

Screen Processing

where win is the pointer variable to receive the return value, linee and cole are
integer values that give the total number oflines and columns, respectively, in
the window, and begin_y and begin_:z are integer values that give the line and
column positions, respectively, of the upper left corner of the window when
displayed on the terminal screen. The win variable must have type
WINDOW•.

The function is typically used in programs that maintain a set of windows,
displaying different windows at different times or alternating between window
as needed. For example, in the following program fragment newwin creates a
new window and assigns the pointer to this window to the variable midecree n.

WINDOW •midscreen;

midscreen = newwin(5, 10, 9, 35);

The window has 5 lines and 10 columns. The upper left corner of the window is
placed at the position (9,35) on the terminal screen.

It either linee or cole is zero, the function automatically creates a window that
has "LINES - begin.J!' lines or "COLS - begin_:z" columns, where "LINES"
and "COLS" are the predefined constants giving the total number of lines and
columns on the terminal screen. For example, the function call

newwin(O, 0, 0, 0)

creates a new window whose upper left corner is at position (0,0) and that has
"LINES" lines and "COLS" columns.

Note

You must not create windows that exceed the dimensions of the actual
screen.

The newwin function returns the value (WINDOW•) ERR on an error, such as
insufficient memory for the new window.

3.4.2 Creating a Subwindow

The subwin function creates a subwindow and returns a pointer to the new
window. A sub window is a window which shares all or .part of the character
space of another window and provides an alternate way to access the characters
in that space. The function call has the form:

3-15

swin - subwin(win, linee, eol•, begin_y, begin_z)

where 1win is the pointer variable to receive the return value, win is the pointer
to the window to contain the new subwindow, linee and eole are integer values
that give the total number of lines and columns, respectively, in the
subwindow, and begin_y and begin_z are integer values that give the line and
column position, respectively, of the upper left corner of the subwindow when
dislayed on the terminal screen. The ewin variable must have type
WINDOW•.

The function is typically used to divide a large window into separate regions.
For example, in the following program fragment eubwin creates the sub window
named "cmdmenu" in the lower partofthestandardscreen.

WINDOW •cmdmenu;

cmdmenu - subwin(stdscr, 5, 80, 19, 0);

In this example, changes to "cmdmenu" affect the standard screen as well.

The eubwin function returns the value (WINDOW•) ERR on an error, such as
insufficient memory for the new window.

3.4.3 Adding and Printing to a Window

The wtJddell, wtJddetr, and wprintwfunctions add and print characters, strings,
and numbers to a given window.

The wtJddehfunction adds a given character to the given window and moves the
character pointer one position to the right. The function call has the form:

waddch(win, e II)
where win is a pointer to the window to receive the character, and ell gives the
character to be added; ell must have char type. For example, if the current
position in the window "midscreen" is (0,0), the function call

waddch(midscreen, 'A')

places the letter "A" at this position and moves the pointer to (0,1).

The WtJddetr function adds a string or characters to the given window, placing
the first character of the string at the current position and moving the pointer
one position to the right for each character in the string. The function call has
the form:

waddstr(win, etr)

where win is a pointer to the window to receive the string, and 1tris a character .

3-16

Screen Processing

pointer to the given string. For example, if the current position is (0,0), the
function call

waddstr(midscreen, " line");

places the beginning of the string "line" at this position and moves the pointer
to (0,4).

The wprintw function prints one or more values on the given window, where a
value may be a string, a character, or a decimal, octal, or hexadecimal number.
The function call has the form:

wprintw(win, fmt [, arg) ...)

where win is a pointer to the window to receive the values, fmt is a pointer to a
string that defines the format of the values, and arg is a value to be printed. If
more than one arg is given;each must be separated from the preceding with a
comma (,). For each arg given, there must be a corresponding format given in
fmt. A format may be "%s" for string, "%c" for character, and "%d", "%o",
or "%x" for a decimal, octal, or hexadecimal number, respectively. (Other
formats are described in printf(S) in the XENIX Reference Manual.) If "%s" is
given, the corresponding arg must be a character pointer. For other formats,
the actual value or a variable containing the value may be given.

The function is typically used to copy both numbers and strings to the standard
screen at the same time. For example, in the following program fragment
wprintw prints a name and then the number "15" at the current position in the
window "midscreen".

char •name;

wprintw(midscreen, " %s %d" , name, 15);

Note that when a newline, return, or tab character is given to a waddch,
wadd3tr, or wprintw function, the functions perform the same actions as
described for the addch function. The functions return ERR if they encounter
errors such as illegal scrolling.

3.4.4 Reading and Scanning for Input

The wgetch, wget3tr, and W3canw functions read characters, strings, and
numbers from the standard input file and usually echo the values -by copying
them to the given window.

The wgeteh function reads a single character from the standard input file and
returns the character as a value. The function call has the form:

c = wgetch(win)

3-17

where win is a pointer to a window, and e is the character variable to receive the
character.

The function is typically used to read a series of characters from the keyboard.
For example, in the following program fragment wgetch reads characters until
a colon (:) is found.

char c, dir!MAX];
int i;

i == O;
while ((c=-wgetch(cmdmenu)) I== ':' && i <MAX)

dirli++) =- c;

The wget•tr function reads a string of characters from the terminal keyboard
and copies the string to a given location. The function call has the form:

wgetstr(win, ltr)

where 'lllin is a pointer to a window, and 1tr is a character pointer to the variable
or location to receive the string. When typed at the keyboard, the string must
end with a newline character or with the end-of-file character. The extra
character is replaced by a null character when the string is stored. It is the
programmer's responsibility to ensure that 1tr has adequate space for storing
the typed string.

The function is typically used to read names and other text from the keyboard.
For example, in the following program fragment wgetltr reads a string from the
keyboard and stores it in the array "filename".

char filename!20);

wgetstr(cmdmenu, filename);

The w1e11nw function reads one or more values from the standard input file and
copies the values to given locations. A value may be a string, a character, or a
decimal, octal, or hexadecimal number. The function call has the form:

wscanw(win, fmt I, 11rgptr) ...)

where win is a pointer to a window, fmt is a pointer to a string defining the
format of the values to be read, and 11rgptris a pointer to the variable to receive
a value. Ir more than one 11rgptr is given, each must be separated from the
preceding by a comma (,). For each 11rgptrgiven, there must be a corresponding
format given in fmt. A format may be "%s" Cor string, "%c" for character, and
"%d", "%o", or "%x" for a decimal, octal, or hexadecimal number,
respectively. (Other formats are described in 1e11n/(S) in the XENIX Reference
M11nual.)

3-18

Screen Processing

The function is typically used to read a combination of strings and numbers
from the keyboard. For example, in the following program fragment w1c11nw
reads a name and a number from the keyboard.

char name!20);
int id;

wscanw(midscreen, " %s %d", name, &id);

In this example, the name is stored in the character array "name" and the
number in the integer variable "id" . .

It the terminal is set to ECHO mode, the function copies the string to the given
window. It the terminal is not set to RAW or NOECHO mode, the function
automatically sets the terminal to CBREAK mode, then restores the previous
mode after reading the character.

The functions return ERR if they encounter errors such as illegal scrolling.

3.4.& Moving a the Current Position in a Window

The wmove function moves the current position in a given window. The
function call has the form:

wmove (win, y, z)
where win is a pointer to a window, 11 is an integer value giving the new line
position, and z is an integer value giving the new column position. For example,
the function call

wmove(midscreen, 4, 4)

moves the current position in the window "midscreen" to (4,4).

The function returns ERR ifit encounters an error such as illegal scrolling.

3.4.6 Inserting Characters

The winsch and winsert/n functions insert characters and lines into a given
window.

The winsch function inserts a character at the current position and shifts the
existing character (and all characters to its right) one position to the right. The
function call has the form:

winsch (win, c)

where win is a pointer to a window, and c is the character to be inserted.

3-19

The function is typically used to edit the contents of the given window. For
example, the function call

winsch(midscreen, 'X');

inserts the character "X" at the current position in the window "midscreen".

The wineertln function inserts a blank line at the current position and moves
the existing line (and all lines below it) down one line, causing the last line to
move off the bottom of the screen. The function call has the form:

winsertln(win)

where win is a pointer to the window to receive the blank line.

The function is used to insert lines into a window. For example, in the following
program fragment win1ertln inserts a blank line at the top of the window
"cmdmenu" preparing it for a new line.

char line!SO);

wmove(cmdmenu, 3, 0);
winsertln(cmdmenu);
waddstr(cmdmenu, line);

Both functions return ERR if they encounter errors such as illegal scrolling.

3 .4.7 Deleting Characters and Lines

The wtlelch and wtleleteln functions delete characters and lines from the given
window.

The wdelchfunction deletes the character at the current position and shifts the
character to the right of the deleted character (and a.ll characters to its right)
one position to the left. The last character on the line is replaced with a space.
The function call has the form:

wdelch(win)

where win is a pointer to a window.

The function is typically used to edit the contents of the standard screen. For
example, the function call

wdelch(midscreen);

deletes the character at the current position in the window "midscreen".

3-20

Screen Processing

The wdeleteln function deletes the current line and shifts the line below the
deleted line (and all lines below it) one line up, leaving the last line in the screen
blank. The function call has the Corm:

wdeleteln(win)

where win is a pointer to a window.

The function is typically used to delete existing lines from a given window. For
example, in the following program fragment wdeleteln deletes the lines in
"midscreen" until "cnt" is equal to zero.

int cnt;

while (cnt != 0) {
wdeleteln(midscreen);
cnt--· } t

3.4.8 Clearing the Screen

The wclear, weraee, wclrtobot, and wclrtoe ol functions clear all or part of the
characters from the given window by replacing them with spaces. The
functions are typically used to prepare the window Cor new text.

The wclear function clears all characters from the window, moves the pointer
to (0,0), and sets the standard screen's clear flag. The flag causes the next
refresh function call to clear all characters from the terminal screen. The
function call has the Corm:

wclear(win)
where win is the window to be cleared.

The weraee function clears the given window, moves the pointer to (0,0), but
does not set the clear flag. It is used whenever the contents or the terminal
screen must be preserved. The function call has the Corm:

werase(win)
where win is a pointer to the window to be cleared.

The wclrtobot function clears the window from the current position to the
bottom or the screen. The function call has the Corm:

wclrtobot(win)

where win is a pointer to the window to be cleared. For example, if the current

3-21

position in the window "midscreen" is (10,0), the function call

wclrtobot(midscreen);

clears a.ll characters from line 10 a.nd a.ll lines below line 10.

The wclrtoeol function clears the standard screen from the current position to
the end ofthe current line. The function call ha.s the form:

wclrtoeol(win)

where win is a. pointer to the window to be cleared. For example, if the current
position in "midscreen" is (10, 10), the function call

wclrtoeol(midscreen);

clears a.ll characters from (10,10) to the end of the line. The characters a.t the
beginning ofthe line remain unchanged.

Note that the wclrtobot a.nd wclrtoeol functions do not change the current
position.

3.4.0 Refreshing From a Window

The wrefrerh function updates the terminal screen by copying one or more
characters from the given window to the terminal. The function effectively
changes the terminal screen to reflect the new contents or the window. The
function call ha.s the form:

wrefresh(win)

where win is a. pointer to a. window.

The function is used solely to display changes to the window. The function
copies only those characters that have changed since the la.st call to wrefruh
a.nd leaves a.ny existing text on the terminal screen. For example, in the
following program fragment wrefrerhis called twice.

wa.ddstr(cmdmenu, "Type a. command na.me\n");
wrefresh(cmdmenu);
wa.ddstr(cmdmenu, " Command: ") ;
wrefresh(cmdmenu);

In this example, the first call to wrefrerh copies the string "Type a. command
name" to the terminal screen. The second call copies only the string
"Command:" to the terminal, since the original string ha.s not been changed.

3-22

Screen Processing

Note

If curser is given with wre/re1h, the function restores the actual screen
to its most recent contents. This is useful for implementing a
"redraw" feature for screens that become cluttered with unwanted
output.

The function returns ERR if it encounters an error such as illegal scrolling. Iran
error is encountered, the function attempts to update as much of the screen as
possible without causing the scroll.

3 .4.10 Overlaying Windows

The ot1erlay function copies all characters, except spaces, from one window to
another, moving characters from their original positions in the first window to
identical positions in the second. The function effectively lays the first window
over the second, letting characters in the second window that would otherwise
be covered by spaces remain unchanged. The function call has the form:

overlay(win1, win£)

where win1 is a pointer to the window to be copied, and win£ is a pointer to the
window to receive the copied text. The starting positions of win1 and win£
must match, otherwise an error occurs. If win1 is larger than win£, the function
copies only those lines and columns in win1 that fit in win£.

The function is typically used to build a composite screen from overlapping
windows. For example, in the following program fragment overlay is used to
build the standard screen from two different windows.

WINDOW •info, •cmdmenu;

overlay(info, stdscr);
overlay(cmdmenu, stdscr);
refresh();

3.4.11 Overwriting a Screen

The ot1erwrite function copies all characters, including spaces, from one
window to another, moving characters from their positions in the first window
to identical positions in the second. The function effectively writes the contents
of the first window over the second, destroying the previous contents of the
second window. The function call has the form:

3-23

overwrite(win1, win£)

where win1 is a. pointer to the window to be copied, and win£ is a. pointer to the
window to receive the copied text. If win1 is larger than win£, the function
copies only those lines and columns in winltha.t fit in win£.

The function is typically used to display the contents of a. temporary window in
the middle of a. larger window. For example, in the following program fragment
ot�erwrite is used to copy the contents ofa. work window to the standard screen.

WINDOW •work;

overwrite(work, stdscr);
refresh();

3.4.12 Moving a Window

The mt�win function moves a. given window to a. new position on the terminal
screen, causing the upper left corner of the window to occupy a. given line and
column position. The function call has the form:

mvwin(win, Jl, z)

where win is a. pointer to the window to be moved, J1 is an integer value giving
the line to which the corner is to be moved, and z is an integer value giving the
column to which the corner is to be moved.

The function is typically used to move a temporary window when an existing
window under it contains information to be viewed. For example, in the
following program fragment mvwin moves the window named "work" to the
upper left corner of the terminal screen.

WINDOW •work;

mvwin(work, 0,0);

The function returns ERR if it encounters a error such a.s an attempt to move
part of a window off the edge of the screen.

3.4.13 Reading a Character From a Window

The inch and winch functions read a. single character from the current pointer
position in a window or screen.

The inch function reads a. character from the standard screen. The function
call has the form:

3-24

Screen Processing

c = inch()

where c is the character variable to receive the character read.

The winch function reads a character from a given window or screen. The
function call has the form:

c = winch(win)

where win is the pointer to the window containing the character to be read.

The functions are typically used to compare the actual contents of a window
with what is assumed to be there. For example, in the following program
fragment inch and wine hare used to compare the characters at position (0,0) in
the standard screen and in the window named "altscreen".

char cl, c2;

cl = inch();
c2 = winch(altscreen);
if (el l= c2)

error();

Note that reading a character from a window does not alter the contents of the
window.

3.4.14 Touching a Window

The touc hwin function makes the entire contents of a given window appear to
be modified, causing a subsequent refrerh call to copy all characters in the
window to the terminal screen. The function call has the form:

touchwin(win)

where win is a pointer to the window to be touched.

The function is typically used when two or more overlapping windows make up
the terminal screen. For example, the function call

touchwin(leftscreen);

is used to touch the window named "leftscreen". A subsequent refrerh copies
all characters in "leftscreen" to the terminal screen.

3.4.15 Deleting a Window

The delwin function deletes a given window from memory, freeing the space
previously occupied by the window for other windows or for dynamically

3-25

allocated variables. The function call has the form:

delwin(win)
where win is the pointer to the window to be deleted.

The function is typically used to remove temporary windows from a program
or to free memory space for other uses. For example, the function call

del win(midscreen);
removes the window named "midscreen".

3.5 Using Other Window Functions

The following sections explain how to perform a variety of operations on
existing windows, such as setting window flags and drawing boxes around the
window.

3.5.1 Drawing a. Box

The box function draws a box around a window using the given characters to
form the horizontal and vertical sides. The function call has the form:

box(win, 11e rt, hor)

where win is the pointer to the desired window, vert is the vertical character,
and hor is the horizontal character. Both 11e rand hor must have cha.r type.

The function is typically used to distinguish one window from another when
combining windows on a single screen. For example, in the following program
fragment bo:z creates a box around the window in the lower half orthe screen.

WINDOW •cmdmenu;

cmdmenu -= subwin(stdscr, 5, 80, 19, 0);
box(cmdmenu, 'I', '·');

If necessary, the function will leave the corners of the box blank to prevent
illegal scrolling.

3.5.2 Displaying Bold Characters

The standout and wstandout functions set the standout character attribute,
causing characters subsequently added to the given window or screen to be
displayed as bold characters.

3-26

Screen Processing

The 1tandout function sets the standout attribute for characters added to the
standard screen. The function call has the form:

standout()
No arguments are required.

The wrtandout function sets the standout attribute of characters added to the
given window or screen. The function call has the form:

wstandout(win)
where win is a pointer to a window.

The functions are typically used to make error messages or instructions clearly
visible when displayed at the terminal screen. For example, in the following
program fragment rtandollt sets the standout character attribute before
adding an error message to the standard screen.

if (code -= 5) {
standout();
addstr("IIIegal character .\n");
}

Note that the actual appearence of characters with the standout attribute
depends on the given terminal. This attribute is defined by the SO and SE (or
US and UE) sequences given in the terminal's termcapentry (see termcap(M) in
theXENIXReference M11nual). ·

3.5.3 Restoring Normal Characters

The rtandend and wrtandendfunctions restore the normal character attribute,
causing characters subsequently added to a given window or screen to be
displayed as normal characters.

The rtandend function restores the normal attribute for the standard screen.
The function call has the form:

stand end()
No arguments are required.

The w1tandend function restores the normal attribute for a given window or
screen. The function call has the form:

wstandend(win)
where win is a pointer to a window.

3-27

The functions are typically used after an error message or instructions have
been added to a screen using the standout attribute. For example, in the
following program fragment 1tandend restores the normal attribute after an
error message has been added to the standard screen.

if (code - 5) {
standout();
addstr("IIIegal character.\n");
standend();
}

3.5.4 Getting the Current Position

The getTJZ function copies the current line and column position of a given
window pointer to a corresponding pair of variables. The function call has the
form:

getyx(win, 1/, z)
where win is a pointer to the window containing the pointer to be examined, yis
the integer variable to receive the line position, and z is the integer variable to
receive the column position.

The function is typically used to save the current position so that the program
can return to the position at a l ater time. For example, in the following
program fragment getyz saves the current line and column position in the
variables "line" and "column".

int line, column;

getyx(stdscr, line, column);

3.5.5 Setting Window Flags

The leaveok, 1crollok, and clearok functions set or clear the cursor, scroll,
and dear-screen flags. The flags control the action of the refred, function
when called for the given window.

The le aveok function sets or clears the cursor flag which defines how the
refrerli function places the terminal cursor and the window pointer after
updating the screen. It the flag is set, refrerli leaves the cursor after the last
character to be copied and moves the pointer to the corresponding position in
the window. If the flag is cleared, refresh moves the cursor to the same position
on the screen as the current pointer position in the window. The function call
has the form:

3-28

Screen Processing

Jeaveok(win, 1tate)

where win is a pointer to the window containing the flag to be set, and •tate is a
Boolean value defining the state of the flag. If .tate is TRUE the flag is set; if
FALSE, the flag is cleared. For example, the function call

leaveok(stdscr, TRUE);
sets the cursor flag.

The •crollol: function sets or clears the scroll flag for the given window. If the
flag is set, scrolling through the window is allowed. If the flag is clear, then no
scrolling is allowed. The function call has the form:

scrollok(win, etate)
where win is a pointer to a window, and •tate is a Boolean value defining how the
flag is to be set. If 1t11te is TRUE, the flag is set; if FALSE, the flag is cleared. The
flag is initially clear, making scrolling illegal.

The cle11rol: function sets and clears the clear flag for a given screen. The
function call has the form:

clearok(win, .tate)
where win is a pointer to the desired screen, and •tate is a Boolean value. The
function sets the flag if etate is TRUE, and clears the flag ifF ALSE. For example,
the function call

clearok(stdscr, TRUE)

sets the clear flag for the standard screen.

When the clear flag is set, each refrelh, call to the given screen automatically
clears the screen by passing a clear-screen sequence to the terminal. This
sequence affects the terminal only; it does not change the contents of the screen.

If clearol:is used to set the clear flag for the current screen "curser", each call to
re/reeh automatically clears the screen, regardless of which window is given in
the call.

3.6.6 Scrolling a Window

The •croll function scrolls the contents of a given window upward by one line.
The function call has the form:

scroll(win)
where win is a pointer to the window to be scrolled. The function should be used

in special cases only.

3.6 Combining Movement With Action

Many screen operations move the current position of a given window before
performing an action on the window. For convenience, you can combine a
number or functions with the movement prefix. This combination has the
form:

mvfunc ((win, I y, z [, arg I ...)

where func is the name of a function, win is a pointer to the window to be
operated on (etd1crused if none is given), y is an integer value giving the line to
move to, z is an integer value giving the column to move to, and arg is a required
argument for the given function. Ir more than one argument is required they
must be separated with commas(,). For example, the function call

mvaddch(lO, 5, 'X');

moves the position to (10,5) and adds the character "X". The operation is the
same as moving the position with the move function and then adding a
character with addch.

A complete list of the functions which may be used with the movement prefix is
given in cur1e1(S) in the XENIX Reference Manual.

3.7 Controlling the Terminal

The following sections explain how to set the terminal modes, how to move the
cursor, and how to access other aspects of the terminal. These functions should
only be used when using other screen processing functions.

3.7.1 Setting a Terminal Mode

The crmode, echo, nl, and raw functions set the terminal mode, causing
subsequent input from the terminal's keyboard to be processed accordingly.

The ermode function sets the CBREAK mode for the terminal. The mode
preserves the function or the signal keys, allowing allowing signals to be sent to
a program from the keyboard, but disables the function ofthe editing keys. The
function call has the form:

crmode()

No arguments are required.

3·30

Screen Processing

The uho function sets the ECHO mode for the terminal, causing each character
typed at the keyboard to be displayed at the terminal screen. The function call
has the form:

echo()
No arguments are required.

The nl function sets a terminal to NEWLINE mode, causing all newline
characters to be mapped to a corresponding newline and return character
combination. The function call has the form:

nl()
No arguments are required.

The raw function sets the RAW mode for the terminal, causing each character
typed at the keyboard to be sent as direct input. The RAW mode disables the
function of the editing and signal keys and disables the mapping of newline
characters into newline and return combinations. The function call has the
form:

raw()
No arguments are required.

3.7.2 Clearing a Terminal Mode

The nocrmode, noecho, nom, and noraw functions clear the current terminal
mode, allowing input to be processed according to a previous mode.

The nocrmode function clears a terminal from the CBREAK mode. The
function call has the form:

nocrmode()
No arguments are required.

The noecho function clears a terminal from the ECHO mode. This mode
prevents characters typed at the keyboard from being displayed on the
terminal screen. The function call has the form:

noecho()
No arguments are required.

The nonl function clears a terminal from NEWLINE mode, causing newline
characters to be mapped into themselves. This allows the screen processing
functions to perform better optimization. The function call has the form:

3-31

non!()
No arguments are required.

The noraw function clears a terminal from RAW mode, restoring normal
editing and signal generating function to the keyboard. The function call has
the form:

noraw()
No arguments are required.

3.7.3 Moving the Terminal's Cursor

The mvcur function moves the terminal's cursor from one position to another
in an optimal fashion. The function call has the form:

mvcur (la1t_.N, l111t_:r, new_.N, new_:r)
where la1t_.N and l111t_:r are integer values giving the last line and column
position of the cursor, and neto_.N and new_:r are integer values giving the new
line and column position of the cursor. For example, the function call

mvcur(IO, 5, 3, 0)

moves the cursor from (10,5) to (3,0) on the terminal screen.

Note

The mvcur function should only be used in programs that do not use
other screen processing functions. This means the function can be
used to perform optimal cursor motion without the aid of the other
functions. For programs that do use other functions, the move,
wmove, refreeh, and wrefreeh functions must be used to move the
cursor.

3.7.4 Getting the Terminal Mode

The gettmotle function returns the current tty mode. The function call has the
form:

s = gettmode()
where 1is the variable to receive the status.

3-32

Screen Processing

The function is normally called by the init1crfunction.

3.7.5 Saving and Restoring the Terminal Flags

The 11111ttty function saves the current terminal flags, and the reretty function
restores the flags previously saved by the uvetty function. These functions are
performed automatically by init1cr and endtoin functions. They are not
required when performing ordinary screen processing.

3.7.6 Setting a Terminal Type

The 1tterm function sets the terminal type to the given type. The function call
has the form:

setterm(1111me)

where 1111me is a pointer to a string containing the terminal type identifier. The
function is normally called by the init1crfunction, but may be used in special
cases.

3.7.7 Reading the Terminal Name

The longn11me function converts a given termc 11pidentifier into the full name of
the corresponding terminal. The function call has the form:

longname(termbu/, 1111me)

where termbufis a pointer to the string containing the terminal type identifier,
and 1111me is a character pointer to the location to receive the long name. The
terminal type identifier must exist in the/ etcftermct�pfile.

The function is typically used to get the full name of the terminal currently
being used. Note that the current terminal's identifier is stored in the variable
"ttytype", which may be used to receive a new name.

3-33

Chapter 4
·character and String Processing ·

4.1 Introduction 4-1

4.2 Using the Character Functions 4-1

4.2.1 Testing for an ASCU Character 4- 1

4.2.2 Converting toASCU Characters 4-2

4.2.3 Testing for Alphanumerics 4-2

4.2.4 Testing for a Letter 4-3

4.2.5 Testing for Control Characters 4-3

4.2.6 Testing for aDecimaiDigit 4-3

4.2.7 Testing for aHexadecimalDigit 4-4

4.2.8 Testing for Printable Characters 4-4

4.2.9 Testing for Punctuation 4-4

4.2.10 Testing for Whitespace 4-5

4.2.11 Testing for Case in Letters 4-5

4.2.12 Converting the Case ofaLetter 4-5

4.3 Using the String Functions 4-6

4.3.1 Concatenating Strings 4-6

4.3.2 Comparing Strings 4-7
4.3.3 Copying a String 4-8

4.3.4 Getting a String's Length 4-8

4.3.5 Concatenating Characters to a String 4-8

4.3.6 Comparing Characters in Strings 4-9
4.3.7 Copying Characters to a String 4-10
4.3.8 Reading Valuesfrom a String 4-10
4.3.9 Writing Values to a String 4-11

Character and String Processing

4.1 In.troduction

Character and string processing is an important part of many programs.
Programs regularly assign, manipulate, and compare characters and strings in
order to complete their tasks. For this reason, the standard library provides a
variety of character and string processing functions. These functions give a
convenient way to test, translate, assign, and compare characters and strings.

To use the character functions in a program the file, etgpe.la, which provides
the definitions for special character macros, must be included in the program.
The line

*include < ctype.h>

must appear at the beginning oft he program.

To use the string functions, no special action is required. These functions are
defined in the standard C library and are read whenever you compile a C
program.

4.2 Using the Character Functions

The character functions test and convert characters. Many character
functions are defined as macros, and as such cannot be redefined or used as a
target for a breakpoint when debugging.

4 .2.1 Testing for an ASCII Character

The i•aecii function tests for characters in the ASCII character set, i.e.,
characters whose values range from 0 to 127. The function call has the form:

is ascii (c)
where c is the character to be tested. The function returns a nonzero (true)
value if the character is ASCII, otherwise it returns zero (false). For example, in
the following program fragment iuscii determines whether or not the value in
"c" read from the file given by "data" is in the acceptable ASCII range.

FILE •data;
int c;

c = fgetc(data);
if (!isascii(c))

notext();

In this example, a function named notezt is called if the character is not in
range.

4-1

4 .2.2 Converting to ASCII Characters

The toaecii function converts non-ASCII characters to ASCII. The function call
has the form:

c - toascii (1)
where c is the variable to receive the character, and i is the value to be changed.
The function creates an ASCII character by truncating all but the low order 7
bits of the non-ASCII value. It the i value is already an ASCII character, no
change takes place. For example, the function call

ascii = toascii(160)

converts value 160 to 32, the ASCII value or the space character.

The function is typically used to prepare non-ASCII characters for display at
the standard output. For example, in the following program fragment toaecii
converts each character read from the file given by "oddstrm ".

FILE •oddstrm;
int c;

c = toascii(getc(oddstrm));
it (isprint(c) II isspace(c))

putchar(c);

It the resulting character is printable or is whitespace, it is written to the
standard output.

4 .2.3 Testing for Alphanumerics

The iealnum function tests for letters and decimal digits, i.e., the alphanumeric
characters. The function call has the form:

isalnum (c)

where c is the character to test. The function returns a nonzero (true) value if
the character is an alphanumeric, otherwise it returns zero (false). For
example, the function call

isalnum('1')

returns a nonzero value, but the call

isalnum(' > ')

returns zero.

4-2

Character and String Processing

4 .2.4 Testing for a Letter

The iealpha function tests for uppercase or lowercase letters, i.e., alph:ibetic
characters. The function call has the form:

isalpha (c)

where c is the character to be tested. The function returns a nonzero (true)
value if the character is a letter, otherwise it returns zero. For example, the
function call

isalpha('a')

returns a nonzero value, but the call

isalpha(' 1 ')

returns zero.

4.2.5 Testing for Control Characters

The iecntrl function test for control characters, i.e., characters whose ASCII
values are in the range 0 to 31 or is 127. The function call has the form:

iscntrl (c)

where c is the character to be tested. The function returns a nonzero (true)
value if the character is a control character, otherwise it returns zero (false).
For example, in the program following fragment iscntrl determines whether or
not the character in "c" read from the file given by "infile" is a control
character.

FILE •infile, •outfile;
int c;

c = fgetc(infile);
if (!iscntrl(c))

fputc(c, outfile);

The fputc function is ignored ifthe character is a control character.

4.2.6 Testing for a Decimal Digit

The is digit function tests for decimal digits. The function call has the form:

isdigit (c)

4-3

where c is the character to be tested. The function returns a nonzero value if
the character is a digit, otherwise it returns zero. For example, in the following
program fragment each new character in "c" is added to the running total if the
character is a digit.

FILE •infile;
int c, num;

while (isdigit(c-getc(infile)))
num - num•lO + c-48;

4.2.7 Testing tor a Hexadecimal Digit

The iszdigit function tests Cor a hexadecimal digit, that is, a character that is
either a decimal digit or an uppercase or lowercase letter in the range A to F.
The function call has the form:

isxdigit (c)

where c is the character to be tested. The function returns a nonzero value iC
the character is a digit, otherwise it returns zero. For example, in the following
program fragment iszdigit tests whether a hexadecimal digit is read from the
standard input.

int c;

c = getchar();
if (isxdigit(c))

hexmode();

In this example, a function named l&ezmode is called if a. hexadecimal digit is
read.

4 .2.8 Testing for Printable Characters

The isprint function tests for printable characters, i.e., characters whose ASCII
values range from 32 to 126. The function call has the form:

isprint (c)
where c is the character to be tested. The function returns a nonzero value if
the character is printable, otherwise it returns zero.

4.2.9 Testing for Punctuation

The ispunct function tests for punctuation characters, i.e., characters that are

Character and String Processing

neither control characters nor alphanumeric characters. The function call has
the form:

ispunct (c)

where c is the character to be tested. The function returns a nonzero function if
the character is a punctuation character, otherwise it returns zero.

4 .2.10 Testing Cor Whitespace

The ieepace function tests Cor whitespace characters, i.e, the space, horizontal
tab, vertical tab, carriage return, Cormfeed, and newline characters. The
function call has the Corm:

isspace (c)
where c is the character to be tested. The function returns a nonzero value if
the character is a whitespace character, otherwise it returns zero.

4 .2.11 Testing Cor Case in Letters

The ieupper and islower functions test Cor uppercase and lowercase letters,
respectively. The function calls have the Corm:

isupper (c)
and

islower (c)

where c is the character to be tested. The function returns a nonzero value if
the character is the proper case, otherwise it returns zero. For example, the
function call

isupper('b ')

returns zero (false), but the call

islower('b')

returns a nonzero (true) value.

4.2.12 Converting the Case or a Letter

The tolower and toupper functions convert the case or a given letter. The
function calls have the Corm:

c == tolower (1)
a.nd

c = toupper (i)

where c is the va.ria.ble to receive the converted letter, a.nd i is the letter to be
converted. For exa.mple, the function ca.ll

lower == tolower('B')

converts "B" to "b" a.nd a.ssigns it to the va.ria.ble "lower", a.nd the ca.ll

upper = toupper('b')

converts "b" to "B" a.nd a.ssigns it to theva.ria.ble "upper".

The tolower function returns the cha.ra.cter uncha.nged if it is not a.n upperca.se
letter. Simila.rly, the toupper function returns the cha.ra.cter uncha.nged if it is
not a. lowerca.se letter.

These functions a.re typica.lly used to ma.ke the ca.se of the cha.ra.cters rea.d from
a. file or sta.nda.rd input consistent. For example, in the following statement
tolower changes the character read from the standard input to lowerca.se before
it is compa.red.

if (tolower(getcha.r()) I= 'y')
exit(O};

This conversion allows the user to type either "Y'' or "y" to prevent the
statement from executing the ezit function.

4.3 Using the String Functions

The string functions concatenate, compare, copy, and count the number of
characters in a. string. Two special string functions, IICI!.fl/ and •print/, let a
program read from and write to a. string in the same way the sta.nda.rd input
and output ca.n be read and written. These functions a.re convenient when
reading or writing whole lines containing values of several different formats.

Many string functions have two forms: a. form that manipulates all characters
in the string and one that manipulates a given number of characters. This gives
programs very fine control over all or parts of strings.

4.3.1 Concatenating Strings

The 1trcat function concatenates two strings by appending the characters of
one string to the end ofanother. The function ca.ll ha.s the form:

4-6

Character and String Processing

strcat (d1t, •rc)

where dst is a pointer to the string to receive the new characters, and Brc is a
pointer to the string containing the new characters. The !unction appends the
new characters in the same order as they appear in src , then appends a null
character (\0) to the last character in the new string. The !unction always
returns the pointer dBt.

The !unction is typically used to build a string such as a Cull pathname !rom two
smaller strings. For example, in the !ollowing program rragment 1trcat
concatenates the string "temp" to the contents orthe character array "dir".

char dir(MAX] - "fusr /";

strcat(dir, " temp");

4.3.2 Comparing Strings

The strcmp !unction compares the characters in one string to those in another
and returns an integer value showing the result or the comparison. The
function call has the rorm:

strcmp (d, •e)

where 11 and •I! are the pointers to the strings to be compared. The function
returns zero if the strings are equal (i.e., have the same characters in the same
order). Ir the strings are not equal, the !unction returns the difference between
the ASCII values of the first unequal pair or characters. The value or the second
string character is always subtracted from the first. For example, the !unction
call

strcmp(" Character A" , • Character A");
returns zero since the strings are identical in every way, but the !unction call

strcmp("Character A", " Character B");
returns -1 since the ASCII value of "B" is one greater than "A".

Note that the strcmp function continues to compare characters until a
mismatch is found. If one string is shorter than the other, the function usually
stops at the end of the shorter string. For example, the !unction call

strcmp(" Character A" , " Character ")
returns 65, that is, the difference between the null character at the end or the
second string and the "A" in the first string.

4.3.3 Copying a String

The etrepy function copies a given string to a given location. The function call
has the form:

strcpy (det, ere)

where sre is a pointer to the string to be copied, and det is a pointer to the
location to receive the string. The function copies all characters in the source
string ere to the det and appends a null character (\0) to the end of the new
string. Ir tlet contained a string before the copy, that string is destroyed. The
function always returns the pointer to the new string.

For example, in the program fragment ltrcpy copies the string "not available"
to the location given by "name".

char na() = • not available" ;
char namel20);

strcpy(name, na);

Note that the location to receive a string must be large enough to contain the
string. The function cannot detect overflow.

4 .3.4 Getting a String's Length

The etrlen function returns the number of character contained in a given
string. The function call has the form:

strlen (e)

where e is a pointer to a string. The count includes all characters up to, but not
including, the first null character. The return value is always an integer.

In the following program fragment, etrlen is used to determine whether or not
the contentsof"inname" are short enough to be stored in "name".

char •inname;
char name!MAXJ;

if (strlen(inname) < MAX)
strcpy(name, inname);

4 .3.5 Concatenating Characters to a String

The etrnect function appends one or more characters to the end of a given
string. The function call has the form:

4-8

Character and String Processing

strncat (d1t, 1rc, n)

where d1t is a pointer to the string to receive the new characters, 1rc is a pointer
to the string containing the new characters, and n is an integer value giving the
number of characters to be concatenated. The function appends the given
number of characters to the end of the d1tstring, then returns the pointer dlt.

In the following program fragment, •trncat copies the first three characters in
"letter" to the endof"cover".

char coverll = "cover" ;
char letter = "letter" ;

strncat(cover, letter, 3);

This example creates the new string "coverlet" in "cover".

4 .3.6 Comparing Characters in Strings

The 1trncmp function compares one or more pairs of characters in two given
strings and returns an integer value which gives the result of the comparison.
The function call has the form:

strncmp (11, If, n)

where 11 and sf! are pointers to the strings to be compared, and n is an integer
value giving the number of characters to compare. The function returns zero if
the first n characters are identical. Otherwise, the function returns the
difference between the ASCII values of the first unequal pair of characters. The
function generates the difference by subtracting the second string character
from the first.

For example, the function call

strncmp(" Character A" , " Character B", 5)

returns zero because the first five characters are identical, but the function call

strncmp(" Character A" , "Character B" , 11)

returns-1 because the value of"B" is one greater than "A".

Note that the function continues to compare characters until a mismatch or the
end of a string is found.

4-9

4.3.7 Copying Characters to a String

The etrncpyCunction copies a given number of characters to a given string. The
function call has the form:

strncpy (tlet, ere, n)

where tlet is a pointer to the string to receive the characters, ere is a pointer to
the string containing the characters, and n is an integer value giving the
number of characters to be copied. The function copies either the first n
characters in ere to tlet, or if ere has fewer than n characters, copies all
characters up to the first null character. The function always returns the
pointer tilt.

In the following program fragment, etrncpv copies the first three characters in
"date" to "day".

char bur (MAX] ;
char date (29) = {"Fri Dec 29 09:35:44 EDT 1982" };
char •day = buf;

strncpy(day, date, 3);

In this example, "day" receives the string "Fri".

4 .3.8 Reading Values from a String

The eec an/ function reads one or more values from a given character string and
stores the values at a given memory location. The function is similar to the
•can/function which reads values from the standard input. The function call
has the form:

sscanr (e, format, argptr . . .)

where e is a pointer to the string to be read, format is a pointer to the string
defining the format of the values to be read, and argptr is a pointer to the
variable that is to receive the values read. If more than one argptrisgiven, they
must be separated with commas. The format string may contain the same
formats as given for ecan/(see rcan/(S) in the XENIX Reference Manual). The
function always returns the number ofvaluesread.

The function is typically used to read values from a string containing several
values of different formats, or to read values from a program's own input
buffer. For example, in the following program fragment ucan/ reads two
values from the string pointed to by "datestr".

4-10

Character and String Processing

char datestr[) == {"THU MAR 29 11:04:40 EST 1983"};
char month(4);

·

char year(5);

sscanf(datestr ," %•3s%3s%•2s%•8s%•3s%4s" ,month,year);
printf(" %s, %s\n" ,month,year);

The first value (a three-character string) is stored at the location pointed to by
"month", the second value (a four-character string) is stored at the location
pointed to by "year".

4.3.0 Writing Values to a String

The sprint/ function writes one or more values to a given string. The function
call has the form:

sprintf (s, format (, arg) • . .)
where 1 is a pointer to the string to receive the value, format is a pointer to a
string which defines the format of the values to be written, and arg is the
variable or value to be written. If more than one arg is given, they must be
separated by commas (,). The format string may contain the same formats a.s
given for printf(see printf(S) in the XENIX Reference Manual). Arter all values
are written to the string, the function adds a null character (\0) to the end of
the string. The function normally returns zero, but will return a nonzero value
if an error is encountered.

The function is typically used to build a large string from several values of
different format. For example, in the following program fragment sprint/
writes three values to the string pointed to by "cmd".

char cmd(IOO);
char •doc = "/usr/src/cmd/cp.c"
int width = 50;
int length = 60;

sprintf(cmd,"pr -w%d -l%d %s\n" ,width,length,doc);
system(cmd);

In this example, the string created by 1printf is used in a call to the 11JBtem
function. The first two values are the decimal numbers given by "width" and
"length". The last value is a string (a filename) and is pointed to by doe . The
final string has the form:

pr -w50 -160 /usr/src/cmd/cp.c

Note that the string to receive the values must have sufficient length to store
those values. The function cannot check for overflow.

·

4-11

:hapter 5
rsing Process Control

Introduction 5-l

Using Processes 5-l

Calling aProgram 5-l

StoppingaProgram 5-2

Starting a New Program 5-3

Executing a Program Through a Shell 5-5

Duplicating a Process 5-5

Waiting for a Process 5-6

Inheriting Open Files 5-7

D Program Example 5-7

Using Process Control

5.1 Introduction

This chapter describes the process control functions of the standard C library.
The functions let a program call other programs, using a method similar to
calling functions.

There are a variety of process control functions. The •111tem and e:n"tfunctions
provide the highest level of execution control and are used by most programs
that need a straightforward way to call another program or terminate the
current one. The ezecl, ezec�, fori:, and toait functions provide low-level
control of execution and are for those programs which must have very fine
control over their own execution and the execution of other programs. Other
process control functions such as abort and ezec are described in detail in
section SoftheXENIX Reference Manual.

The process control functions are a part of the standard C library. Since this
library is automatically read when compiling a C program, no special library
argument is required when invoking the compiler.

5.2 Using Processes

"Process" is the term used to describe a program executed by the XENIX
system. A process consists of instructions and data, and a table ofinformation
about the program, such as its allocated memory, open files, and current
execution status.

You create a process whenever you invoke a program through a shell. The
system assigns a unique process ID to a program when it is invoked, and uses
this ID to control and manage the program. The unique IDs are needed in a
system running several processes at the same time.

You can also create a process by directing a program to call another program.
This causes the system to perform the same functions as when it invokes a
program through a shell. In fact, these two methods are actually the same
method; invoking a program through a shell is nothing more than directing a
program (the shell) to call another program.

The system handles all processes in essentially the same way, so the sections
that follow should give you valuable information for writing your own
programs and an insight in to the XENIX system itself.

5 .3 Calling a Program

The •y•tem function calls the given program, executes it, and then returns
control to the original program. The function call has the form:

5-1

system (c ommand-line)

where command-line is a pointer to a string containing a shell command line.
The command line must be exactly as it would be typed at the terminal, that is,
it must begin with the program name followed by any required or optional
arguments. For example, the call

system(" date");

causes the system to execute the date command, which displays the current
time and date at the standard output. The call

system(" cat >response");

causes the system to execute the cat command. In this case, the standard
output is redirected to the file reepon•e, so the command reads from the
standard input and copies this input to the file rupon1e.

The 1111tem function is typically used in the same way as a function call .to
execute a program and return to the original program. For example, in the
following program fragment lyfte m calls a program whose name is given in the
string "cmd".

char •name, •cmd;

printf("Enter filename: ");
scanf("%s", name);
sprintf(cmd, " cat %s " , name);
system(cmd);

Note that the string in "cmd" is built using the •print/ function and contains
the program name c at and an argument (the filename read by 1c anf). The effect
is to execute the cat command with the given filename.

When using the •u•tem function, it is important to remember that buffered
input and output functions, such as getc and putc, do not change the contents of
their buffer until it is ready to be read or flushed. Ira program uses one ofthese
functions, then executes a command with the sustem function, that command
may read or write data not intended for its use. To avoid this problem, the
program should clear all buffered input and output before making a call to the
system function. You can do this for output with the Jflu•h function, and for
input with the 1etbuj function described in the section "Using More Stream
Functions" in Chapter 2.

5 .4 Stopping a Program

The ezit function stops the execution of a program by returning control to the
system. The function call has the form:

5-2

Using Process Control

exit (etahLP)

where 1tatu1 is the integer value to be sent to the system a.s the termination
status.

The function is typically used to terminate a program before its normal end,
such a.s after a serious error. For example, in the following program fragment
ezit stops the program and sends the integer value "2" to the system if the
fopenfunction returns the null pointer value:NULL.

FILE •ttyout;

if (fopen(ttyout," r") == NULL)
exit(2);

Note that the ezit function automatically closes each open file in the program
before returning to the system. This means no explicit calls to the fclole or
elo1e functions are required before an exit.

5 .5 Starting a New Program

The ezed and ezecfl functions cause the system to overlay the calling program
with the given one, allowing the calling program to terminate while the new
program continues execution.

The ezecl function call has the form:

execl (pathname, command-name, argptr . . .)

where pathname is a pointer to a string containing the full pathname of the
command you want to execute, command-name is a pointer to a string
containing the name of the program you want to execute, and argptr is one or
more pointers to strings which contain the program arguments. Each argptr
must be separated from any other argument by a comma. The last argptrin the
list must be the null pointer value NULL. For example, in the call

execl(" /bin/date" , "date" , NULL);

the date command, whose full pathname is "/bin/date", takes no arguments,
and in the call

execl(" /bin/cat" , " cat" , fllel, flle2, NULL);

the cat command, whose full pathname is "/bin/cat", takes the pointers
"file I" and "file2" as arguments.

The ezecv function call has the form:

5-3

execv (pathname, ptr);

where path name is the full pathname of the program you want to execute, and
ptr is pointer to an array of pointers. Each element in the array must point to a
string. The array may have any number of elements, but the first element must
point to a string containing the program name, and the last must be the null
pointer, NULL.

The e:recl and e:ree11 functions are typically used in programs that execute in
two or more phases and communicate through temporary files (for example a
two-pass compiler). The first part of such a program can call the second part by
giving the name of the second part and the appropriate arguments. For
example, the following program fragment checks the status of "errflag", then
either overlays the current program with the program paul!, or displays an
error message and quits.

char •tmpfile;
int errflag;

if (errflag == 0)

else {
execl(" /usr/bin/pass2" , "pass2" , tmpfile, NULL);
fprintf(stderr, "Error %d: Quitting", errflag);
exit(2);

The e:rec11 function is typically used to pass arguments to a program when the
precise number of arguments is not known beforehand. For example, the
following program fragment reads arguments from the command line
(beginning with the third one), copies the pointer of each to an element in
"cmd", sets the last element in "cmd" to NULL, and executes the cat command.

char •cmd();

cmd(O) == " cat" ;
for (i=3; i<argc; i++)

cmd(i) = argv(iJ;
cmd(argc) = NULL;

execv(" /bin/cat" , cmd);

The e:recl and e:ree11 functions return control to the original program only if
there is an error in finding the given program (e.g., a misspelled pathname or no
execute permission). This allows the original program to check for errors and
display an error message if necessary. For example, the following program
fragment searches for the program displauin the / uir/ bin directory.

5-4

execl(" /usr/bin/display" , "display" , NULL);
fprintf(stderr, "Can't execute 'display' \n");

Using Process Control

Ir the program di1plag is not found or lacks the necessary permissions, the
original program resumes control and displays an error message.

Note that the ezeel and ezec11 functions will not expand metacharacters (e.g.,
< , > , *, !, and !J) given in the argument list. Iraprogram needsthesefeatures,
it can use ezeelor ezec11 to call a shell as described in the next section.

5 .6 Executing a Program Through a S hell

One drawback of the eztcl and ezec11 functions is that they do not provide the
metacharacter features of a shell. One way to overcome this problem is to use
ezeclto execute a shell and let the shell execute the command you want.

The function call has the form:

execl (" /bin/sh" ,"sh" ,"-c", command-line, NULL);
where command-line is a pointer to the string containing the command line
needed to execute the program. The string must be exactly as it would appear if
typed at the terminal.

For example, a program can execute the command

cat •.c

(which contains the metacharacter *) with the call

execl("/bin/sh" , • sh" , • -c" , • cat •.c• , NULL);

In this example, the full pathname fbin/•h and command name '" start the
shell. The argument "-c" causes the shell to treat the argument "cat •.c" as a
whole command line. The shell expands the metacharacter and displays all files
which end with .c , something that the eat command cannot do by itself.

5.7 Duplicating a Process

The fork function splits an executing program into two independent and fully­
functioning processes. The function call has the form:

fork ()

No arguments are required.

The function is typically used to make multiple copies of any program that
must take divergent actions as a part of its normal operation, e.g., a program
that must use the ezeel function yet still continue to execute. The original
program, called the "parent" process, continues to execute normally, just as it
would after any other function call. The new process, called the "child"

5-5

process, starts its execution at the same point, that is, just after the fork call.
(The child never goes back to the beginning of the program to start execution.)
The two processes are in effect synchronized, and continue to execute as
independent programs.

The fork function returns a different value to each process. To the parent
process, the function returns the process ID of the child. The process ID is
always a positive integer and is always different than the parent's !D. To the
child, the function returns 0. All other variables and values remain exactly as
they were in the parent.

The return value is typically used to determine which steps the child and
parent should take next. For example, in the program segment

char •cmd;

if (fork() === 0)
execl("/bin/sh" , "sh", "-c" , cmd, NULL);

The child's return value, 0, causes the expression "fork() === 0", to be true,
and therefore the e:red function is called. The parent's return value, on the
other hand, causes the expression to be false, and the function call is skipped.
Executing the ezeel function causes the child to be overlayed by the program
given by "command". This does not affect the parent.

If fork encounters an error and cannot create a child, it will return the value -1.
It is a good idea to check for this value after each call.

5.8 Waiting for a Process

The wait function causes a parent process to wait until its child processes have
completed their execution before continuing its own execution. The function
call has the form:

wait (ptr)

where ptr is a pointer to an integer variable. It receives the termination status
of the child from both the system and the child itself. The function normally
returns the process ID of the terminated child, so the parent may check it
against the value returned by fork.

The function is typically used to synchronize the execution of a parent and its
child, and is especially useful if the parent and child processes access the same
files. For example, the following, program fragment causes the parent to wait
while the program named by "pathname" (which has overlaid the child
process) finishes its execution.

5-6

int status;
char *pathname;
char •cmd();

if (fork() == 0)
execv(pathname, cmd);

wait(&status);

Using Process Control

The wait function always copies a status value to its argument. The status
value is actually two 8-bit values combined into one. The low-order 8 bits is the
termination status of the child as defined by the system. This status is zero for
normal termination and nonzero for other kinds of termination, such as
termination by an interrupt, quit, or hangup signal (see •ignal(S) in the XENIX
Reference Manual for a description of the various kinds of termination). The
next 8 bits is the termination status of the child as defined by its own ca.ll to ezit.
If the child did not explicitly call the function, the status is zero.

5.9 Inheriting Open Files

Arly program called by another program or created as a child process to
aprogram automatically inherits the original program's open files and
standard input, output, and error files. This means if the file was open in the
original program, it will be open in the new program or process.

A new program also inherits the contents of the input and output buffers used
by the open files of the original program. To prevent a new program or process
from reading or writing data that is not intended for its use, these buffers
should be flushed before calling the program or creating the new process. A
program can flush an output buffer with the fflueh function, and an input buffer
with setbuf.

5.10 Program Example

This section shows how to use the process control functions to control a simple
process. The following program starts a shell on the terminal given in the
command line. The terminal is assumed to be connected to the system through
a line that has not been enabled for multiuser operation.

5-7

#include <stdio.h>

main(argc, argv)
int argc;
char •argv ();
{
int status;

if (argc < 2) {

}
fprintf(stderr,"No tty given.O);
exit(l);

if (fork() == 0) {

}

if (freopen(argv(l),"r" ,stdin) == NULL)
exit(2);

if (freopen(argv(l),"w" ,stdout) === NULL)
exit(2);

if (freopen(argv(l),"w" ,stderr) == NULL)
exit(2);

execl(" /bin/sh" ,"sh" ,NULL);

wait(&status);
if (status == 512)

fprintf("Bad tty name: %sO, argv(l));

In this example, the fork function creates a duplicate copy of the program. The
child changes the standard input, output, and error files to the new terminal by
closing and reopening them with the /reopen function. The terminal name
pointed to by "argv" must be the name of the device special file associated with
the terminal, e.g., "/dev /tty03". The e:zecl function then calls the shell which
uses the new terminal as its standard input, output, and error files.

The parent process waits for the child to terminate. The e:zit function
terminates the process if an error occurs when reopening the standard files.
Otherwise, the process continues until the CNTRL-D key is pressed at the new
terminal.

5-8

Chapter 6
Creating and Using Pipes

6.1 Introduction �1

6.2 Opening a Pipe to a New Process � 1

6.3 Reading and Writing to a Process �2

6.4 Closing a Pipe �2

6.5 Opening a Low-LevelPipe �3

6.6 Reading and Writing to a Low-Level Pipe �4 ·

6.7 Closing aLow-Level Pipe �4

6.8 Program Examples �5

Creating a.nd Using Pipes

6.1 Introduction

A pipe is an artifical file that a program may create and use to pass information
to other programs. A pipe is similar to a file in that it has a file pointer and/or a
file descriptor and can be read from or written to using the input and output
functions of the standard library. Unlike a file, a pipe does not represent a
specific file or device. Instead a pipe represents temporary storage in memory
that is independent of the program'sown memory and is controlled entirely by
the system.

Pipes are chiefly used to pass information between programs, just a.s the shell
pipe symbol (I), is used to pass the output of one program to the input of
another. This eliminates the need to create temporary files to pass information
to other programs. A pipe can also be used a.s a temporary storage place for a
single program. A program can write to the pipe, then read that information
back at a later time.

The standard library provides several pipe functions. The popen and pclo•e
functions control both a pipe and a process. The popen function opens a pipe
and creates a new process at the same time, making the new pipe the standard
input or output of the new process. The pclou function closes the pipe and
waits for termination of the corresponding process. The pipe function, on the
other hand, gives low-level access to a pipe. The function is similar to the open
function, but opens the pipe for both reading and writing, returning two file
descriptors instead of one. The program can either use both sides of the pipe or
close the one it does not need. The low-level input and output functions read
and write can be used to read from and write to a pipe. Pipe file descriptors are
used in the same way as other file descriptors.

6.2 Opening a Pipe to a New Process

The popen function creates a new process and then opens a pipe to the standard
input or output file of that new process. The function call has the form:

popen (command, type)

where command is a pointer to a string that contains a shell command line, and
type is a pointer to the string which defines whether the pipe is to be opened for
reading or writing by the original process. It may be "r" for reading or "w" for
writing. The function normally returns the file pointer to the open pipe, but
will return the null pointer value NULL if an error is encountered.

The function is typically used in programs that need to call another program
and pass substantial amounts of data to that program. For example, in the
following program fragment popen creates a new process for the ca.t command
and opens a pipe for writing.

6-1

FILE •pstrm;

pstrm = popen(" cat >response" ," w");

The new pipe given by "pstrm '' links the standard input of the command with
the program. Data written to the pipe will be used as input by the cat
command.

8.3 Reading and Writing to a Process

The f3canf, fprintf, and other stream functions may be used to read from or
write to a pipe opened by the popen function. These functions have the same
form as described in Chapter 2.

The /scan/function can be used to read from a pipe opened for reading. For
example, in the following program fragment /3c an/ reads from the pipe given
by pstrm.

FILE •pstrm;
char namel20);
int number;

pstrm = popen(" cat" ," r");
fscanf(pstrm, " %s %d" , name, &number);

This pipe is connected to the standard output of the cat command, so /" anf
reads the first name and number written by cat to its standard output.

The fprintf function can be used to read from a pipe opened for writing. For
example, in the following program fragment/print/writes the string pointed to
by "buf" to the pipe given by "pstrm".

FILE •pstrm;
char buf!MAX);

pstrm = popen("wc" ," w");
fprintf(pstrm," %s" ,buf)

This pipe is connected to the standard input of the we command, so the
command reads and counts the contentsof"bur•.

8.4 Closing a Pipe

The pclose function closes the pipe opened by the popen function. The function
call has the form:

pclose (stream)

6-2

B.a Reading ••d W,itiog to • P...,.,_
T�e /eeanJ, /p,.,·,tf, and other stream fu ·

•n� to • p;po 0Po"dby tho o 0, t '·"'""' "'"' bo •�d to '<od ko., �

rw., "d�_,;bod ;, Ohapo., ,_' P """"•· Th.,. ""'"'""' ''" tho ._

Tho foo,._, ton,.;., '" bo ""d to '-•dl .

""'"'Pk, ;. tho foiioo..;'< P�g,., l �,., 0 P•Po 0P0>od fo, 'ood;,g, F�

by ""'""· '""'o"' ''""' """' tho P;,o .,,.,

FILE '*Pstrm;
.
char name[20]; lnt number;

rm """ Popen(�wc• ·w�;.
ntt(pstrm:%s�,b�t) '

h """'��d to tho ""''�• ;,Pot of tho
"""'"'• M""'" ""''"'""'"bor•

. •• "'"'"'"''· "' 'ho
lction closes the pi

d b
.,, '"Pooo "'' ''"'' '"••·� Tho r,,,.,,)

Creating and Using Pipes

6.1 Introduction

A pipe is an artifical file that a program may create and use to pass information
to other programs. A pipe is similar to a file in that it has a file pointer and/or a
file descriptor and can be read from or written to using the input and output
functions of the standard library. Unlike a file, a pipe does not represent a
specific file or device. Instead a pipe represents temporary storage in memory
that is independent of the program'sown memory and is controlled entirely by
the system.

Pipes are chiefly used to pass information between programs, just as the shell
pipe symbol (I), is used to pass the output of one program to the input of
another. This eliminates the need to create temporary files to pass information
to other programs. A pipe can also be used as a temporary storage place for a
single program. A program can write to the pipe, then read that information
back at a later time.

The standard library provides several pipe functions. The popen and pclo1e
functions control both a pipe and a process. The popen function opens a pipe
and creates a new process at the same time, making the new pipe the standard
input or output of the new process. The pelou function closes the pipe and
waits for termination of the corresponding process. The pipe function, on the
other hand, gives low-level access to a pipe. The function is similar to the open
function, but opens the pipe for both reading and writing, returning two file
descriptors instead of one. The program can either use both sides of the pipe or
close the one it does not need. The !ow-level input and output functions read
and write can be used to read from and write to a pipe. Pipe file descriptors are
used in the same way as other file descriptors.

6.2 Opening a Pipe to a New Process

The popen function creates a new process and then opens a pipe to the standard
input or output file of that new process. The function call has the form:

popen (command, type)

where commandis a pointer to a string that contains a shell command line, and
type is a pointer to the string which defines whether the pipe is to be opened for
reading or writing by the original process. It may be "r" for reading or "w" for
writing. The function normally returns the file pointer to the open pipe, but
will return the null pointer value NULL if an error is encountered.

The function is typically used in programs that need to call another program
and pass substantial amounts of data to that program. For example, in the
following program fragment popen creates a new process for the cat command
and opens a pipe for writing.

6-1

Creating and Using Pipes

The system copies the end-of-file value EOF to a pipe when the process that
made the original pipe and every process created or called by that process has
closed the writing side of the pipe. This means, for example, that if a parent
process is sending data to a child process through a pipe and closes the pipe to
signal the end of the file, the child process will not receive the end-of-file value
unless it has already closed its own write side of the pipe.

6.8 Program Examples

This section shows how to use the process control functions with the low-level
pipe function to create functions similar to the popen and pclo1e functions.

The first example is a modified version of the popen function. The modified
function identifies the new pipe with a file descriptor rather than a file pointer.
It also requires a "mode" argument rather than a "type" argument, where the
mode is 0 for reading or 1 for writing.

*include <stdio.h>

*define
*define
*define
static

READ 0
WRITE 1
tst(a, b) (mode == READ ? (b) : (a))
int popen_Jlid;

popen(cmd, mode)
char •cmd;
int mode;
{

}

int p(2);

if(pipe(p) < 0)
return(NULL);

if ((popen_Jlid = fork()) == 0) {
close(tst(p(WRITE), p(READ)));
close(tst(O, 1));

}

dup(tst(p(READ), p(WRITE)));
close(tst(p(READ], p(WRITE)));
execl(" /bin/sh" , "sh" , "-c" , cmd, 0);
exit(1); /• sh cannot be found •/

if (popen_Jlid == -1)
return(NULL);

close(tst(p[READ], p(WRITE]));
return(tst(p[WRITE], p(READ]));

The function creates a pipe with the pipe function first. It then uses the fork

6-5

function to create two copies cf the original process. Each process has its own
copy of the pipe. The child process decides whether it is supposed to read or
write through the pipe, then closes the other side of the pipe and uses e:red to
create the new process and execute the desired program. The parent, on the
other hand, closes the side of the pipe it does not use.

The sequence of dose functions in the child process is a trick used to link the
standard input or output of the child process to the pipe. The first close
determines which side of the pipe should be closed and closes it. If "mode" is
WRITE, the writing side is closed; if READ, the reading side is closed. The
second close closes the standard input or output depending on the mode. If the
mode is WRITE, the input is closed; if READ, the output is closed. The tlup
function creates a duplicate of the side of the pipe still open. Since the standard
input or output was closed immediately before this call, this duplicate receives
the same file descriptor as the standard file. The system always chooses the
lowest available file descriptor for a newly opened file. Since the duplicate pipe
has the same file descriptor as the standard file it becomes the standard input or
output file for the process. Finally, the last dou closes the original pipe, leaving
only the duplicate.

The following example is a modified version of the pclose function. The
modified version requires a file descriptor as an argument rather than a file
pointer.

6-6

Creating and Using Pipes

*include <signal.h>

pclose(Cd)
int Cd;

I* close pipe Cd • I
{

int r, status;
int (•hstat)(), (•istat)(), (•qstat)();
extern int popen_pid;

close(fd);

istat = signal(SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
hstat = signal(SIGHUP, SIGJGN);

while ((r == wait(&status)) !- popen_pid && r 1- -1)

if (r ==
1
-l)

status = -1;

signal(SIGINT, istat);
signal(SIGQUIT, qstat);
signal(SIGHUP, hstat);

return(status);

The function closes the pipe first. It then uses a while statement to wait for the
child process given by "popen_pid". If other child processes terminate while it
waits, it ignores them and continues to wait Cor the given process. It stops
waiting as soon as the given process terminates or if no child process exists. The
function returns the termination status of the child, or the value -1 if there was
an error.

The 1igntd function calls used in this example ensure that no interrupts
interfere with the waiting process. The first set of functions causes the process
to ignore the interrupt, quit, and hang up signals. The last set restores the
signals to their original status. The 1igntd function is described in detail in
Chapter 7, "Using Signals".

Note that both example functions use the external variable "popen_pid" to
store the process ID of the child process. IC more than one pipe is to be opened,
the "popen_pid" value must be saved in another variable before each call to
popen, and this value must be restored before calling pelo1e to close the pipe.
The functions can be modified to support more than one pipe by changing the
"popen_pid" variable to an array indexed by file descriptor.

6-7

Chapter 7
Using Signals

7.1 Introduction 7-1

7.2 Using the signa/Function 7-1
7.2.1 Disabling a Signal 7-2
7.2.2 Restoring a Signal's Default Action 7-3
7.2.3 Catching a Signal 7-4
7.2.4 Restoring a Signal 7-6
7.2.5 Program Example 7-6

7.3 Controlling Execution With Signals 7-7
7.3.1 Delaying a Signal's Action 7-7
7.3.2 Using Delayed Signals With System Functions 7-8
7.3.3 Using Signals in Interactive Programs 7-9

7.4 Using Signals in Multiple Processes 7-10
7.4.1 Protecting Background Processes 7-11
7.4.2 Protecting Parent Processes 7-12

Using Signals

7.1 Introduction

This chapter explains how to use C library functions to process signals sent to a
program by the XENIX system. A signal is the system's response to an unusual
condition that occurs during execution of a program such as a user pressing the
INTERRUPT key or the system detecting an illegal operation. A signal
interrupts normal execution of the program and initiates an action such as
terminating the program or displaying an error message.

The signal function oft he standard C library lets a program define the action of
a signal. The function can be used to disable a signal to prevent it from affecting
the program. It can also be used to give a signal a user-defined action.

The signal function is often used with the setjmp and longjmp functions to
redefine and reshape the action of a signal. These functions allow programs to
save and restore the execution state of a program, giving a program a means to
jump from one state of execution to another without a complex assembly
language interface.

To use the signal function, you must add the line

#include <signal.h>

to the beginning of the program. The signal. h file defines the various manifest
constants used as arguments by the function. To use the setjmp and longjmp
functions you must add the line

#include <setjmp.h>

to the beginning of the program. The setjmp. h file contains the declaration for
the typej mp_buf, a template for saving a program's current execution state.

7 .2 Using the signal Function

The signal function changes the action of a signal from its current action to a
given action. The function has the form

signal (eigtype, ptr)

where eigtype is an integer or a mainfest constant that defines the signal to be
changed, and ptr is a pointer to the function defining the new action or a
manifest constant giving a predefined action. The function always returns a
pointer value. This pointer defines the signal's previous action and may be used
in subsequent calls to restore the signal to its previous value.

The ptr may be "SIG_IGN" to indicate no action (ignore the signal) or
"SIG_DFL" to indicate the default action. The eigtype may be "SIGINT" for
interrupt signal, caused by pressing the INTERRUPT key, "SIGQUIT" for quit

7-1

XENIX Programmer's Reference

signal, caused by pressing the QUIT key, or "SIGHUP" for hangup signal,
caused by hanging up the line when connected to the system by modem. (Other
constants tor other signals are given in •igncl(S) in the XENIX Reference
Manuel.)

For example, the function call

signal(SIGINT, SIGJGN)
changes the action ot t·he interrupt signal to no action. The signal will have no
effect on the program. The default action is usually to terminate the program.

The following sections show how to use the eigncl function to disable, change,
and restore signals.

7 .2.1 Disabling a Signal

You can disable a signal, i.e., prevent it from affecting a program, by using the
"SIG_IGN" constant with eignal. The function call has the form

signal (eigtype, SIGJGN)

where •igtype is the manifest constant ot the signal you wish to disable. For
example, the function call

signal(SIGINT, SIG_IGN);
disables the interrupt signal.

The function call is typically used to prevent a signal from terminating a
program executing in the background (e.g., a child process that is not using the
terminal tor input or output). The system passes signals generated from
keystrokes at a terminal to all programs that have been invoked from that
terminal. This means that pressing the INTERRUPT key to stop a program
running in the foreground will also stop a program running in the background it
it has not disabled that signal. For example, in the following program fragment
•igncl is used to disable the interrupt signal tor the child.

7-2

#include <signal.h>

main ()
{

if (fork() == 0) {

}

signal(SIGINT, SIGJGN);
/• Child process. */

/* Parent process. •/

}

Using Signals

This call does not affect the parent process which continues to receive
interrupts as before. Note that if the parent process is interrupted, the child
process continues to execute until it reaches its normal end.

7 .2.2 Restoring a Signal's Default Action

You can restore a signal to its default action by using the "SIG_DFL" constant
with signal. The function call has the form

signal (sigtype, SIGDFL)

where sigtype is the manifest constant defining the signal you wish to restore.
For example, the function call

signal (SIGINT, SIG_DFL)

restores the interrupt signal to its default action.

The function call is typically used to restore a signal after it has been
temporarily disabled to keep it from interrupting critical operations. For
example, in the following program fragment the second call to signal restores
the signal to its default action.

7-3

XENIX Programmer's Reference

#include <signal.h>
#include <stdio.h>

main ()
{

Fll..E •fp;
char •record{BUF), filename[MAX);

signal (SIGINT, SIG_IGN);
fp = fopen(filename, " a");
fwrite(fp, BUF, record, 512);
signal (SIGINT, SIG.J)FL);

In this example, the interrupt signal is ignored while a record is record from the
file given by "fp".

7 .2.3 Catching a Signal

You can catch a signal and define your own action for it by providing a function
that defines the new action and giving the function as an argument to ligna/.
The function call has the form

signal (•igtype, newptr)

where eigtype is the manifest constant defining the signal to be caught, and
newptr is a pointer to the function defining the new action. For example, the
function call

signal(SIGINT, catch)

changes the action of the interrupt signal to the action defined by the function
named catch.

The function call is typically used to let a program do additional processing
before terminating. In the following program fragment, the function catch
defines the new action for the interrupt signal.

7-4

#include <signal.h>

main ()
{

}
catch ()
{

}

int catch ();

printf("Press INTERRUPT key to stop.O);
signal (SIGINT, catch);
while () {

/• Body •/
}

printf("Program terminated.\n");
exit(I);

Using Signals

The catch function prints the message "Program terminated" before stopping
the program with the e:ritfunction.

A program may redefine the action of a signal at any time. Thus, many
programs define different actions for different conditions. For example, in the
following program fragment the action of the interrupt signal depends on the
return value of a function named ke11te1t.

#include <signal.h>

main ()
{

int catchl (), catch2 ();

if {keytest() === 1)
signai(SIGINT, catchl);

else
signai(SIGINT, catch2);

Later the program may change the signal to the other action or even a third
action.

When using a function pointer in the 1ignal call, you must make sure that the
function name is defined before the call. In the program fragment shown above,
catch1 and catch!J are explicitly declared at the beginning of the main program
function. Their formal definitions are assumed to appear after the 1ignal call.

7-5

XENIX Programmer's Reference

7 .2.4 Restoring a Signal

You can restore a signal to its previous value by saving the return value of a.
eignoJ call, then using this value in a. subsequent call. The function call has the
form:

signal (eigtype, oldptr)

where eigtype is the manifest constant defining the signal to be restored and
oldptris the pointer value returned by a. previous •igno.lca.ll.

The function call is typically used to restore a. signal when its previous action
may be one of many possible actions. For example, in the following program
fragment the previous action depends solely on the return value of a function
keytut.

#include <signal.h>

main ()
{

int catchl(), ca.tch2();
int (•savesig)();

if (keytest() =- 1)
signai(SIGINT, catchl);

else
signal(SIGINT, catch2);

savesig = signal (SIGINT, SIGJGN);
compute();
signa.l(SIGINT, savesig);

In this example, the old pointer is sa.ved in the va.riable "savesjg". This value is
restored after the function compute returns.

7 .2.5 Program Example

This section shows how to use the •ignoJ function to create a modifed version of
the eystem function. In this version, eyetem disa.bles a.ll interrupts in the parent
process until the child process has completed its opera.tion. It then restores the
signals to their previous actions.

1-6

Using Signals

iinclude <stdio.h>
iinclude <signal.h>

system(s)
char •s;
{

/• run command string s •/

int status, pid, w;
register int (•istat)(), (•qstat)();

if ((pid = fork()) == 0) {

}
execl("/bin/sh" , " sh" , "-c" , s, NULL);
exit(127);

istat = signal(SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
while ((w = wa.it(&status)) I= pid && w I= -1)

if (w =.,: -1)
status = -1;

signal(SIGINT, istat);
signal(SIGQUIT, qstat);
return(status);

Note that the parent uses the while statement to wait until the child's process
ID "pid" is returned by wait. If wait returns the error code "-1" no more child
processes are left, so the parent returns the error code as its own status.

, 7 .3 Controlling Execution With Signals

Signals do not need to be used solely as a means of immediately terminating a
program. Many signals can be redefined to delay their actions or even cause
actions that terminate a portion of a program without terminating the entire
program. The following sections describe ways that signals can be caught and
used to provide control of a program.

7 .3.1 Delaying a Signal's Action

You can delay the action of a signal by catching the signal and redefining its
action to be nothing more than setting a globally-defined flag. Such a signal
does nothing to the current execution of the program. Instead, the program
continues uninterrupted until it can test the flag to see if a signal has been
received. It can then respond according to the value of the flag.

The key to a delayed signal is that all functions return execution the exact point
at which the program was interrupted. If the function returns normally the
program continues execut-ion just as if no signal occurred.

7-7

XENIX Programmer's Reference

Delaying a signal is especially useful in programs that must not be stopped at an
arbitrary point. If, for example, a program updates a linked list, the action of a
signal can be delayed to prevent the signal from interrupting the update and
destroying the list. For example, in the following program fragment the
function delay used to catch the interrupt signal sets the globally-defined flag
"sigflag" and returns immediately to the point ofinterruption.

#include <signal.h>
int sigflag;

main ()
{

delay ()
{

int delay ();
int (•savesig)();
extern int sigflag;

signal(SIGINT, delay); /• Delay the signal. •/
updatelist();
savesig == signal(SIGINT, SIGJGN); /• Disable the signal. •/
if (sigfiag)

/• Process delayed signals if any. •/

extern int sigfiag;

sigfiag=l;

In this example, if the signal is received while updateliet is executing, it is
delayed until after updateliet returns. Note that the interruptsigna.lisdisabled
before processing the delayed signal to prevent a. change to "sigfia.g" when it is
being teste d.

Note that the system automatically resets a signal to its default action
immediately after the signal is processed. If your program delays a signal,
make sure that the signal is redefined after each interrupt. Otherwise, the
default action will be taken on the next occurrence of the signal.

7 .3 .2 Using Delayed Signals With System Functions

When a delayed signal is used to interrupt the execution of a. XENIX system
function, such as read or wait, the system forces the function to stop and return
an error code. This action, unlike actions taken during execution of other
functions, causes all processing performed by the system function to be
discarded. A serious error can occur if a. program interprets a. system function
error caused by delayed signals as a normal error. For example, if a program

7-8

XENIX Programmer 's Reference

Delaying a signal is especially useful in programs that must not be stopped at an
arbitrary point. Ir, for example, a program updates a linked list, the action of a
signal can be delayed to prevent the signal from interrupting the update and
destroying the list. For example, in the following program fragment the
function tlela11 used to catch the interrupt signal sets the globally-defined flag
"sigftag" and returns immediately to the point of interruption.

#include <signal.h>
int sigftag;

main ()
{

delay ()
{

int delay ();
int (•savesig)();
extern int sigfhg;

signal(SIGINT, delay); /• Delay the signal. •/
updatelist();
savesig == signal(SIGINT, SIGJGN); /* Disable the signal. •/
if (sigftag)

/* Process delayed signals if any. •/

extern int sigftag;

sigflag=l;

In this example, if the signal is received while uptlateli8t is executing, it is
delayed until after uptlateli3t returns. Note that the interrupt signal is disabled
before processing the delayed signal to prevent a change to "sigflag" when it is
being tested.

Note that the system automatically resets a signal to its default action
immediately after the signal is processed. If your program delays a signal,
make sure that the signal is redefined after each interrupt. Otherwise, the
default action will be taken on the next occurrence of the signal.

7 .3.2 Using Delayed Signals With System Functions

When a delayed signal is used to interrupt the execution of a XENIX system
function, such as read or wait, the system forces the function to stop and return
an error code. This action, unlike actions taken during execution of other
functions, causes all processing performed by the system function to be
discarded. A serious error can occur if a program interprets a system function
error caused by delayed signals as a normal error. For example, if a program

7-8

)

XENIX Programmer's Reference

The longfmptunction has the form

longjmp (buffer)

where buffer is the variable containing the execution state.
·
It must contain

values previously saved with a •etbu/function. The function copies the values
in the buffer variable to the program counter, data and address registers, and
the process status table. Execution continues as ifit had just returned from the
setbu/function which saved the previous execution state. For example, in the
following program fragment setbufsa.ves the execution state of the program a.t
the location just before the main processing loop and longfmp restores it on an
interrupt signa.!.

#include <signal.h>
#include <setjmp.h>

main()
{

}
onintr ()
{

int onintr();

setjmp(sjbuf);
signa.l(SIGINT, onintr);

/• main processing loop •/

print!(" \nlnterrupt\n");
longjmp(sjbuf);
}

In this example, the action of the interrupt signa.! as defined by onintristo print
the message "Interrupt" and restore the old execution state. When an
interrupt signa.! is received in the main processing loop, execution passes to
onintr which prints the message, then passes execution back to the main
program function, making it appear as though control is returning from the
•etbuffunction.

7.4 Using Sign als in Multiple Processes

The XENIX system passes all signals generated a.t a. given terminal to all
programs invoked a.t that terminal. This means that a. program has potentia.!
access to a signal even if that program is executing in the background or as a
child to some other program. The following sections explain how signals may
be used in multiple processes.

7-10

Using Signals

, 7 .4.1 Protecting Background Processes

Any program that has been invoked using the shell's background symbol (&) is
executed as a background process. Such programs usually do not use the
terminal for input or output, and complete their tasks silently. Since these
programs do not need additional input, the shell automatically disables the
signals before executing the program. This means signals generated at the
terminal do not affect execution of the program. This is how the shell protects
the program from signals intended for other programs invoked from the same
terminal.

In some cases, a program that has been invoked as a background process may
also attempt to catch its own signals. If it succeeds, the protection from
interruption given to it by the shell is defeated, and signals intended for other
programs will interrupt the program. To prevent this, any program which is
intended to be executed as a background process, should test the current state
of a signal before redefining its action. A program should redefine a signal only
if the signal has not been disabled. For example, in the following program
fragment the action of the interrupt signal is changed only if the signal is not
currently being ignored.

#include <signal.h>

main()
{

}

int catch();

if (signal(SIGINT, SIG_IGN) I= SIGJGN)
signal(SIGINT, catch);

/• Program body. •/

This step lets a program continue to ignore signals if it is already doing so, and
change the signal if it is not.

7-11

XENIX Programmer's Reterence

7 .4.2 Protecting Parent Processes

A program can create and wait for a. child process that catches its own signals it
and only if the program protects itself by disabling all signals before calling the
toait function. By disabling the signals, the parent process prevents signals
intended tor the child processes from terminating its call to toait. This prevents
serious errors that may result it the parent process continues execution before
the child processes are finished.

For example, in the following program fragment the interrupt signal is disabled
in the parent process immediately after the child is created.

#include <signal.h>

main ()
{

}

int (•saveintr)();

it (fork () -- 0)
execl(...);

saveintr = signal (SIGINT, SIGJGN);
wait(&status);
signal (SIGINT, saveintr);

The signal's action is restored after the toait function returns normal control to
the parent.

7-12

Chapter 8
Using System Resources

8.1 Introduction 8-1

8.2 Allocating Space 8-1

8.2.1 Allocating Space for a Variable 8-1

8.2.2 Allocating Space for an Array 8-2

8.2.3 Reallocating Space 8-3

8.2.4 Freeing Unused Space 8-3

8.3 Locking Files 8-4

8.3.1 Preparing a File for Locking 8-4

8.3.2 Locking a File 8-5

8.3.3 Program Example 8-5

8.4 Using Semaphores 8-6

8.4.1 Creating a Semaphore 8-7

8.4.2 Opening a Semaphore 8-8

8.4.3 Requesting Control of a Semaphore
8.4.4 Checking the Status of a Semaphore
8. 4.5 Relinquishing Control of a Semaphore
8.4.6 Program Example 8-10

8.5 Using Shared Data 8-12

8-8

8-9
8-9

8.5.1 Creating a Shared Data Segment 8-13

8.5.2 Entering a Shared Data Segment 8-14

8.5.3 Leaving a Shared Data Segment 8-14

8.5.4 Getting the Current Version Number 8-15

8.5.5 Waiting for aVersion Number 8-15

8.5.6 Freeing a Shared Data Segment 8-16

Using System Resources

8.1 Introduction

This chapter describes the standard C library functions that let programs
share the resources of tlie XENIX system. The functions give a program the
means to queue for the use and control of a given resource and to synchronize its
use with use by other programs.

In particular, this chapter explains how to

Allocate memory for dynamically required storage ·

Lock a file to ensure exclusive use by a program

Use semaphores to control access to a resource

Share data space to allow interaction between programs

8 .2 Allocating Space

Some programs require significant changes to the size of their allocated
memory space during different phases of their execution. The memory
allocation functions of the standard C library let programs allocate space
dynamically. This means a program can request a given number of bytes of
storage for its exclusive use at the moment it needs the space, then free this
space after it has finished using it.

There are four memory allocation functions: malloc , c al/oc, ralloc , and free .
The malloc and c alloc functions are used to allocate space for the first time.
The functions allocate a given number of bytes and return a pointer to the new
space. The realloc function reallocates an existing space, allowing it to be used
in a different way. The free function returns allocated space to the system.

8.2.1 Allocating S pace for a Variable
The mal/oc function allocates space for a variable containing a given number of
bytes. The function call has the form:

malloc (Bize)

where Bize is an unsigned number which gives the number of bytes to be
allocated. For example, the function call

table = malloc (4)

allocates four bytes or storage. The function normally returns a pointer to the
starting address of the allocated space, but wiii return the null pointer value if
there is not enough space to allocate.

8-1

The function is typically used to allocate storage for a group of strings that vary
in length. For example, in the following program fragment mlllloc is used to
allocate space for ten different strings, each of different length.

int i;
char •temp, •strings(lO);
unsigned isize;

for (i==O; i< 10; i++) {
scanf(" %s" , temp);
isize = strlen(temp);
string(i) == malloc(isize);
}

In this example, the strings are read from the standard input. Note that the
strle n function is used to get the size in bytes of each string.

8.2.2 Allocating Space for an Array

The c alloc function allocates storage for a given array and initializes each
element in the new array to zero. The function call has the form:

calloc (n, size)

where n is the number of elements in the array, and size is the number of bytes
in each element. The function normally returns a pointer to the starting
address of the allocated space, but will return a null pointer value if there is not
enough memory. For example, the function call

table = calloc {10,4)

allocates sufficient space for a 10 element array. Each elementhas4 bytes.

The function is typically used in programs which must process large arrays
without knowing the size of an array in advance. For example, in the following
program fragment calloc is used to allocate storage for an array of values read
from the standard input.

int i;
char •table;
unsigned inurn;

scanf(" %d" , &inurn);
table = calloc (inurn, 4);
for (i=O; i<inum; i++)

scanf(" %d" , table(i));

Note that the number of elements is read from the standard input before the
elements are read.

8-2

Using System Resources

8.2.3 Reallocating Space

The realloc function reallocates the space at a given address without changing
the contents of the memory space. The function call has the form:

realloc (ptr, eize)

where ptr is a pointer to the starting address of the space to be reallocated, and
eize is an unsigned number giving the new size in bytes of the reallocated space.
The function normally returns a pointer to the starting address of the allocated
space, but will return a null pointer value if there is not enough space to
allocate.

This function is typically used to keep storage as compact as possible. For
example, in the following program fragment realloc is used to remove table
entries.

main ()
{
char •table;
int i;
unsigned inurn;

for (i=inum; i>-1; i--) {
printf(" %dO, strings[i));
strings = realloc(strings, i•4);
}

In this example, an entry is removed after it has been printed at the standard
output, by reducing the size of the allocated space from its current length to the
length given by "i•4".

8.2.4 Freeing Unused Space

The free function frees unused memory space that had been previously
allocated by a malloc , cal/oc, or realloc function call. The function call has the
form:

free (ptr)

where ptr is the pointer to the starting address of the space to be freed. This
pointer must be the return value of a malloc , calloc , or realloc function.

The function is used exclusively to free space which is no longer used or to free
space to be used for other purposes. For example, in the following program
fragment free frees the allocated space pointed to by "strings" if the first
element is equal to zero.

8-3

main ()
{
char •table;

if (table[O] == -1)
free (table);

8.3 Locking Files

Locking a file is a way to synchronize file use when several processes may
require access to a single file. The standard C library provides one file locking
function, the locking function. This function locks any given section of a file,
preventing all other processes which wish to use the section from gaining
access. A process may lock the entire file or only a small portion. In any case,
only the locked section is protected; all other sections may be accessed by other
processes as usual.

File locking protects a file from the damage that may be caused if �everal
processes try to read or write to the file at the same time. It also provides
unhindered access to any portion of a file for a controlling process. Before a file
can be locked, however, it must be prepared using the open and l1eek functions
described in Chapter 2, "Using the Standard I/0 Functions." To use the
locking function, you must add the line

#include <sys/locking.h>

to the beginning of the program. The file ryr/locking.h contains definitions for
the modes used with the function.

8.3.1 Preparing a File for Locking

Before a file can be locked, it must first be opened using the open function, then
properly positioned by using the l1eek function to move the file's character
pointer to the first byte to be locked.

The open function is used once at the beginning of the program to open the file.
The laeek function may be used any number of times to move the character
pointer to each new section to be locked. For example, the following statements
prepare the first 100 bytes beginning at the byte position 1024 from the
beginning ofthe file reaervati onr for locking.

8-4

fd = open(" reservations" , O_RDONL Y)
lseek(fd, 1024, 0)

Using System Resources

8.3.2 Locking a File

The locking function locks one or more bytes of a given file. The function call
has the form:

locking (filedu, mode, 3ize)

where file de� is the file descriptor of the file to be locked, mode is an integer
value which defines the type oflock to be applied to the file , 3ize is a long integer
value giving the size in bytes of the portion of the file section to be locked or
unlocked. The mode may be "LOCK" for locking the given bytes, or
"UNLOCK" for unlocking them. For example, in the following program
fragment locking locks 100 bytes at the current character pointer position in
the file given by "fd".

#include <sys/locking.h>

main ()
{
int fd,

fd = open(" data" , 2);
locking(fd, LOCK, 100);

The function normally returns the number of bytes locked, but will return -1 if
it encounters an error.

8.3.3 Program Example

This section shows how to lock and unlock a small section in a file using the
locking function. In the following program, the function locks 100 bytes in the
file data which is opened for reading and writing. The locked portion of the file
is accessed, then locking is used again to unlock the file.

8-5

' .' include <sysllocking.h>

main()
{
int fd, err;
char •data;

fd = open(" data" ,2);
if (fd == -1)

perror(" n);

I• Open data for R/W •I

else {
lseek(fd, 100L, 0); I• Seek to pos 100 •I
err = locking(fd, LK_LOCK, IOOL); I* Lock bytes 100-200 •I
if (err == -1) { I* process error return •I

}
I* read or write bytes 100 - 200 in the file *I
lseek(fd, 100L, 0); I* Seek to pos 100 •I
locking(fd, LK_UNLCK, 100L); I• Lock bytes 100-200 •I

8.4 Using Semaphores

The standard C library provides a group of functions, called the semaphore
functions, which may be used to control the access to a given system resource.
These functions create, open, and request control of "semaphores."
Semaphores are regular files that have names and entries in the file system, but
contain no data. Unlike other files, semaphores cannot be accessed by more
than one process at a time. A process that wishes to take control of a semaphore
away from another process must wait until that process relinquishes control.
Semaphores can be used to control a system resource, such as a data file, by
requiring that a process gain control of the semaphore before attempting to
access the resource.

There are five semaphore functions: creataem, opensem, waitum, nbwaitBem,
and sigsem. The c reatsem function creates a semaphore. The semaphore may
then be opened and used by other processes. A process can open a semaphore
with the opensem function and request control of a semaphore with the
waitsem or nbwaitsem function. Once a process has control of a semaphore it
can carry out tasks using the given resource. All other processes must wait.
When a process has finished accessing the resource, it can relinquish control of
the semaphore with the sigaem function. This lets other processes get control
of the semaphore and use the corresponding resource.

8-6

Using System Resources

8.4.1 Creating a Semaphore

The createem function creates a semaphore, returning a semaphore number
which may be used in subsequent semaphore functions. The function call has
the form:

creatsem (eem_name, mode)

where um_name is a character pointer to the name of the semaphore, and
mode is an integer value which defines the access mode of the semaphore.
Semaphore names have the same syntax as regular file names. The names must
be unique. The function normally returns an integer semaphore number which
may be used in subsequent semaphore functions to refer to the semaphore. The
function returns -1 if it encounters an error, such as creating a semaphore that
already exists, or using the name of an existing regular file.

The function is typically used at the beginning of one process to clearly define
the semaphores it intends to share with other processes. For example, in the
following program fragment createem creates a semaphore named "ttyl"
before preceding with its tasks.

main ()
{
int ttyl;
FILE fttyl ;

tty! = creatsem(" ttyl", 0777);
fttyl = fopen(" /devfttyOl", "w");

/• Program body. •/

Note that /open is used immediately after creatBem to open the file / def!jttyOJ
for writing. This is one way to make the association between a semaphore and a
device clear.

The mode "0777" defines the semaphore's access permissions. The permissions
are similar to the permissions of a regular file. A semaphore may have read
permission for the owner, for users in the same group as the owner, and for all
other users. The write and execution permissions have no meaning. Thus,
"0777" means read permission for all users.

No more than one process ever need create a given semaphore; all other
processes simply open the semaphore with the openBem function. Once created
or opened, a semaphore may be accessed only by using the waitsem,
nbwaiteem, or sigeem functions. The createem function may be used more
than once during execution of a process. In particular, it can be used to reset a
semaphore if a process fails to relinquish control before terminating.

8-7

8 .4.2 Opening a Semaphore

The openrem function opens an existing semaphore for use by the given
process. The function call has the form:

opensem (rem_name)

where rem_name is a pointer to the name of the semaphore. This must be the
same name used when creating the semaphore. The function returns a
semaphore number that may be used in subsequent semaphore functions to
refer to the stmaphore. The function returns -1 if it encounters an error, such
as trying to open a semaphore that does not exist or using the name of an
existing regular file.

·

The function is typically used by a process just before it requests control of a
given semaphore. A process need not use the function if it also created the
semaphore. For example, in the following program fragment openrem is used
to open the semaphore named semaphore 1 .

main ()
{
int semi ;

if ((sem1 = opensem("semaphorel")) != -1)
waitsem(sem1);

In this example, the semaphore number is assigned to the variable "sem1". If
the number is not -I, then "semi" is used in the semaphore function waits em
which requests control of the semaphore.

A semaphore must not be opened more than once during execution of a process.

8.4.3 Requesting Control of a Semaphore

The waitsem function requests control of a given semaphore for the calling
process. If the semaphore is available, control is given immediately.
Otherwise, the process waits. The function call has the form:

waitsem (sem_num)

where sem_num is the semaphore number of the semaphore to be controlled. Ir
the semaphore is not available (if it is under control of another process), the
function forces the requesting process to wait. Ir other processes are already
waiting for control, the request is placed next in a queue of requests. When \he
semaphore becomes available, the first process to request control receives it.
When this process relinquishes control, the next process receives control, and so
on. The function returns -1 if it encounters an error such as requesting a

8-8

Using System Resources

semaphore that does not exist or requesting a semaphore that is locked to a
dead process.

The function is used whenever a given process wishes to access the device or
system resource associated with the semaphore. For example, in the following
program fragment wait1em signals the intention to write to the file given by
"ttyl".

main ()
{
int ttyl;
FILE fttyl;

waitsem(ttyl);
fprintf(fttyl, " Changing tty driver\n");

The function waits until current controlling process relinquishes control of the
semaphore before returning to the next statement.

8.4.4 Checking the Status of a Semaphore

The nbtoaiteem function checks the current status of a semaphore. If the
semaphore is not available, the function returns an error value. Otherwise, it
gives immediate control of the semaphore to the calling process. The function
call has the form:

nbwaitsem (eem_num)

where eem_num is the semaphore number of the semaphore to be checked. The
function returns -1 if it encounters an error such as requesting a semaphore
that does not exist. The function also returns -1 if the process controlling the
requested semaphore terminates without relinquishing control of the
semaphore.

The function is typically used in place of 'Uiaiteem to take control of a
semaphore.

8.4.5 Relinquishing Control of a Semaphore

The sigeem function causes a process to relinquish control of a given semaphore
and to signal this fact to all processes waiting for the semaphore. The function
call has the form:

sigsem (•em_num)

where eem_num is the semaphore number of the semaphore to relinquish. The
semaphore must have been previously created or opened by the process.
Furthermore, the process must have been previously taken control of the

8-9

semaphore with the wciteem or nbwcitsemfunction. The function returns-1 if
it encounters an error such as trying to take control of a semaphore that does
not exist.

The function is typically used after a process has finished accessing the
corresponding device or system resource. This allows waiting processes to take
control. For example, in the following program fragment •ig•em signals the
end of control ofthe semaphore "tty1".

main ()
{
int tty1;
FILE temp, ftty1 ;

waitsem(ttyl);
while ((c=fgetc(temp)) != EOF)

fputc(c, ftty1);
sigsem(tty1);

This exampl� also signals the end of the copy operation to the semaphore's
corresponding device, given by "ftty 1".

Note that a semaphore can become locked to a dead process if the process fails
to signal the end of the control before terminating. In such a case, the
semaphore must be reset by using the ere ctsem function.

8 .4.6 Program Example

This section shows how to use the semaphore functions to control the access of a
system resource. The following program creates five different processes which
vie for control or a semaphore. Each process requests control ofthe semaphore
five times, holding control tor one second, then releasing it. Although, the
program performs no meaningful work, it clearly illustrates the use or
semaphores.

8-10

Using System Resources

#define NPROC 5

cha.r semr[] = • _kesemi'XXXXXX" j
int sem_num;
int holdsem = 5;

ma.in()
{

}
doit(id)
{

err(s)
cha.r •s;
{

register i, chid;

mktemp(semf);
if ((sem_num = crea.tsem(semr, 0777)) < 0)

err(" crea.tsem");
Cor (i = 1 ; i < NPROC; ++i) {

if((chid =- fork()) < 0)
err(" No fork");

else if(chid == 0) {

}
doit(O};

}

if((sem_num - opensem(semf)} < 0}
err(" opensem");

doit(i);
exit(O};

for (i = 1; i < NPROC; ++i)
while(wa.it((int •}0) < 0}

unlink(semf);

while(holdsem-) {
if(wa.itsem(sem_num) < 0}

perror(s);
exit(I};

err(" wa.itsem");
print£(" %d\n", id};
sleep(1);
if(sigsem(sem_num) < 0)

err(" sigsem" };

8-11

The program contains a. number · of glob a.! variables. The array "semr'
contains the semaphore name. The name is used by the creat1em and open1em
functions. The variable "sem_num" is the semaphore number. This is the
value returned by creat1em and open1em and eventually used in wait1em and
eig1em. Finally, the variable "holdsem" contains the number of times each
process requests control of the semaphore.

The main program function uses the ml:temp function to create a unique name
for the semaphore and then uses the name with creat1em to create the
semaphore. Once the semaphore is created, it begins to create child processes.
These processes will eventually vie for control of the semaphore. AB each child
process is created, it opens the semaphore and calls the doit function. When
control returns from doit the child process terminates. The parent process also
calls the doit function, then waits for termination of each child process and
finally deletes the semaphore with the unlink function.

The doit function calls the waitum function to request control of the
semaphore. The function waits until the semaphore is available, it then prints
the process ID to the standard output, waits one second, and relinquishes
control using the eigsemfunction.

Each step of the program is checked for possible errors. If an error is
encountered, the program calls the errfunction. This function prints an error
message and terminates the program.

8.5 Using Shared Data

Shared memory is a. method by which one process shares its allocated data.
space with another. Shared memory allows processes to pool information in a.
centra.! location and directly access that information without the burden of
creating pipes or temporary files.

The standard C library provides several functions to access and control shared
memory. The 1dget function creates and/or adds a. shared memory segment to
a. given process's data. space. To access a. segment, a process mtlst signal its
intention with the sdenterfunction. Once a. segment has completed its access, it
can signal that it is finished using the the segment with the 1dleave function.
The •dfree function is used to remove a. segment from a. process's data space.
The 1dgetv and edwaitv functions are used to synchronize processes when
several are accessing the segment a.t the same time.

To use the shared data functions, you must add the line

#include <sd.h>

at the beginning of the program. The 1d. h file contains definitions Cor the
ma.infest constants and other macros used by the functions.

8-12

Using System Resources

8.5.1 Creating a Shared Data Segment

The 1dget function creates a shared data segment for the current process, or if
the segment already exists, attaches the segment to the data space of the
current process. The function call has the form:

sdget (path, flag [, eize, mode))
where path is a character pointer to a valid pathname, flag is an integer value
which defines how the segment should be created or attached, eize is an integer
value which defines the size in bytes of the segment to be created, and mode is
a.n integer value which defines the access permissions to be given to the segment
if created. The eize and mode values a.re used only when creating a segment.
The flag may be SD_RDONLY for attaching the segment for reading only,
SO_ WRITE for attaching the segment Cor reading and writing, SD_CREAT for
creating the segment given by path if it d9es not already exist, or SD_UNLOCK

for allowing simultaneous access by multiple processes. The values can be
combined by logically ORing them. The SD_UNLOCK value is used only if the
segment is created. The function returns the address of the segment if it has
been successfully created or attached. Otherwise, the function returns -1 if it
encounters an error.

The function is most often used to create a. segment to be shared by another
process. The function may then be used in the other process to attach the
segment to its data. space. For example, in the following program fragment
rdget creates a. segment a.nd assigns the address of the segment to "shared".

#include <sd.h>

main ()
{
char •shared, •spa.th;

shared = sdget(spath, SD_CREAT, 512, 0777);
}

When the segment is created, the size "512" a.nd the mode "0777" a.re used to
define the segment's size in bytes and access permissions. Access permissions
a.re similar to permissions given to regular files. A segment ma.y have read or
write permission for the owner of the process, for users belonging to the same
group as the owner, a.nd for all other users. Execute permission for a. segment
has no meaning. For example, the mode "0777" means read and write
permission for everyone, but "0660" means read and write permissions for the
owner and group processes only. When first created, a segment is filled with
zeroes.

Note that the SD_UNLOCK flag used on systems without hardware support for
shared data may severely degrade the execution performance of the program.

8-13

8.5.2 Entering a Shared Data Segment

The sde nter signals a process's intention to access the contents oh shared data
segment. A process cannot effectively access the contents ofthe segment unless
it enters the segment. The function call has the form:

sdenter (addr, flag)

where addr is a character pointer to the segment to be accessed, and flag is an
integer value which defines how the segment is to be accessed. The flag may be
SD_RDONLY for indicating read only access to the segment, or SD_NOWAIT for
returning a.n error if the segment is locked and another process is currently
accessing it. These values may also be combined by logically ORing them.

The function normally waits for the segment to become available before
allowing access to it. A segment is not available if the segment has been created
without SD_UNLOCK flag and another process is currently accessing it.

In general, it is unwise to stay in a. shared data segment any longer than it takes
to examine or modify the desired location. The 1dlea11e function should be used
after each access. When in a. shared data segment, a. program should avoid
using system functions. System functions can disrupt the normal operations
required to support shared data. and may cause some data. to be lost. In
particular, if a. program creates a. shared data segment that cannot be shared
simultaneously, the program must not call the fork function when it is also
accessing that segment.

8.5.3 Leaving a Shared Data Segment

The 1dle ave function signals a. process's intention to leave a. shared data.
segment after reading or modifying its contents. The function call has the
form:

sdlea.ve (addr)

where addr is a. pointer wiih type char to the desired segment. The function
returns -1 if it encounters a.n error, otherwise it returns 0. The return value is
always a.n integer.

The function should be used after each access of the shared data. to terminate
the access. If the segment 's leek fta.g is set, the function must be used after each
access to allow other processes to access the segment. For example, in the
following program fragment 1dle ave terminates each access to the segment
given by "shared".

8-14

#include <sd.h>

main ()
{
char •shared;

while (•x++ I== 0) {
sdenter(sha.red);

}

/• write to segment •/
sdlea.ve(shared);
}

Using System Resources

8.5.4 Getting the Current Version Number

The edgett1 function returns the current version number of the given data
segment. The function call has the form:

sdgetv (addr)

where addr is a character pointer to the desired segment. A segment's version
number is initially zero, but it is incremented by one whenever a process leaves
the segment using the rdleave function. Thus, the version number is a record of
the number of times the segment has been accessed. The function's return
value is always an integer. It returns-1 if it encounters an error.

The function is typically used to choose an action based on the current version
number of the segment. For example, in the following program fragment
rdgett1 determines whether or not rdenter should be used to enter the segment
given by "shared".

#$include <sd.h>

main ()
{
char •shared;

if (sdgetv(sha.red) > 10)
sdenter(shared);

In this example, the segment is entered if the current version number of the
segment is greater than "10".

8.5.5 Waiting for a Version Number

The sdwaitv function causes a process to wait until the version number for the
given segment is no longer equal to a. given version number. The function call

8-15

has the form:

sdwaitv (addr, vnum)

where addr is a character pointer to the desired segment, and vnumis an integer
value which defines the version number to wait on. The function normally
returns the new version number. It returns -1 if it encounters an error. The
return value is always an integer.

The function is typically used to synchronize the actions of two separate
processes. For example, in the following program fragment the program waits
while the program corresponding to the version number "radical_change"
performs its operations in the segment.

#include <sd.h>

main ()
{
int radical_change == 3;

if (sdwait (sdseg, radical_change) == -1)
fprintf(stderr, "Cannot find segment\n");

If an error occurs while waiting, an error message is printed.

8.5.6 Freeing a Shared Data Segment

The sdfree function detaches the current process from the given shared data
segment. The function call has the form:

sdfree (addr)

where addr is a character pointer to the segment to be set free. The function
returns the integer value 0, if the segment is freed. Otherwise, it returns -1 .

If the process is currently accessing the segment, sdfree automatically calls
sdle ave to leave the segment before freeing it.

The contents of segments that have been fr'eed by all attached processes are
destroyed. To reaccess the segment, a process must recreate it using the sdget
function and SD_CREAT flag.

8-16

Chapter 9
Error Processing

9.1 Introduction 9- 1

9 . 2 Using the Standard Error File 9-1

9.3 Using theerrno Variable 9-1

9.4 Printing Error Messages 9-2

9.5 Using Error Signals 9-3

9.6 EncounteringSystem Errors 9-3

Error Processing

9.1 Introduction

The XENIX system automatically detects and reports errors that occur when
using standard C library functions. Errors range from problems with accessing
files to allocating memory. In most eases, the system simply reports the error
and lets the program decide how to respond. The XENIX system terminates a
program only if a serious error has occurred, such as a violation of memory
space.

This chapter explains how to process errors, and describes the functions and
variables a program may use respond to errors.

9.2 Using the Standard Error File

The standard error file is a special output file that can be used by a program to
display error messages. The standard error file is one of three standard files
(standard input, output, and error) automatically created for the program
when it is invoked.

The standard error file, like the standard output, is normally assigned to the
user's terminal screen. Thus, error messages written to the file are displayed at
the screen. The file can also be redirected by using the shell's redirection
symbol (>) For example, the following command redirects the standard error
file to the file errorliet.

dial 2>errorlist

In this case, subsequent error messages are written to the given file.

The standard error file, like the standard input and standard output, has
predefined file pointer and file descriptor values. The file pointer stderr may
be used in stream functions to copy data to the error file. The file descriptor 2
may be used in low-level functions to copy data to the file. For example, in the
following program fragment stderr is used to write the message "Unexpected
end of file" to the standard error file.

if ((c=get.:�m()) == EOF)
fprintf(stderr, "Unexpected end of file:\n");

The standard error file is not affected by the shell's pipe symbol (1). This means
that even if the standard output of a program is piped to another program,
errors generated by the program will still appear at the terminal screen (or in
the appropriate file if the standard error is redirected).

9.3 Using the errno Variable

The errno variable is a predefined external variable which contains the error

11-1

number of the most recent XENIX system function error. Errors detected by
system functions, such as access permission errors and lack of space, cause the
system to set the errno variable to a number and return control to the
program. The error number identifies the error condition. The variable may
be used in subsequent statements to process the error.

The errno variable is typically used immediately after a system function has
returned an error. In the following program fragment, errno is used to
determine the course of action after an unsuccessful call to the open function.

if ((fd=open("accounts" , O_RDONLY)) === -1)
switch (errno) {

}

case(EACCES):

· default:

fd - open(" /usr/tmp/accounts" ,O_RDONL Y);
break;

exit(errno);

In this example, if errno is equal to EACCES (a manifest constant), permission
to open the file accounts in the current directory is denied, so the file is opened
in the directory / usr/tmp instead. If the variable is any other value, the
program terminates.

To use the errno variable in a program, it must be explicitly defined as an
external variable with int type. Note that the file errno.h contains manifest
constant definitions for each error number. These constants may be used in
any program in which the line

*include <errno.h>

is placed at the beginning of the program. The meaning of each manifest
constant is described in /ntro(S) in theXENIX Reference ManutJl.

9.4 Printing Error Messages

The perror function copies a short error message describing the most recent
system function error to the standard error file. The function call has the form:

perror (•)

where ' is a pointer to a string containing additional information about the
error.

The pe rror function places the given string before the error message and
separates the two with a colon (:). Each error message corresponds to the
current value of the errno variable. For example, in the following program
fragment pe rror displays the message

9·2

accounts: Permission denied.

iC err no is equal to the constant EACCES.

iC (errno -==- EACCES) {
perror(" accounts");

Error Processing

Cd = open ("/usr/tmp/accounts" , O_RDONLY);
}

All error messages displayed by perror are stored in an array named
sys_errno, an external array or character strings. The perror function uses
the variable errno as the index to the array element containing the desired
message.

9.5 Using Error Signals

Some program errors cause the XENIX system to generate error signals. These
signals are passed back to the program that caused the error and normally
terminate the program. The most common error signals are SIGBUS, the bus
error signal, SIGFPE, the floating point exception signal, SIGSEGV, the segment
violation signal, SIGSYS, the system call error signal, and SIGPIPE, the pipe
error signal. Other signals are described in 1ignal(S) in the XENIX Reference
Manual.

A program can, if necessary, catch an error signal and perform its own error
processing by using the •ignal function. This function, as described in Chapter
7, "Using Signals" can set the action of a signal to a user-defined action. For
example, the function call

signai(SIGBUS, fixbus);
sets the action of the bus error signal to the action defined by the user-supplied
function fizbus. Such a function usually attempts to remedy the problem, or at
least display detailed information about the problem before terminating the
program.

For details about how to catch, redefine, and restore these signals, see Chapter
7.

9.6 Encountering System Errors

Programs that encounter serious errors, such as hardware failures or internal
errors, generally do not receive detailed reports on the cause of the errors.
Instead, the XENIX system treats these errors as "system errors", and reports
them by displaying a system error message on the system console. This section
briefly describes some aspects of XENIX system vrrors and how they relate to
user programs. For a complete list and description of XENIX system errors, see
meBBagu(M) in theXEHIX Reference Manual.

9-3

Most system errors occur during calls to system functions. If the system error is
recoverable, the system will return an error value to the program and set the
errno variable to an appropriate value. No other information about the error
is available.

Although the system lets two or more programs share a given resource, it does
not keep close track of which program is using the resource at any given time.
"When an error occurs, the system returns an error value to all programs
regardless of which caused the error. No information about which program
caused the error is available.

System errors that occur during routine I/0 operations initiated by the XENIX
system itself generally do not affect user programs. Such errors cause the
system to display appropriate system error messages on the system console.

Some system errors are not detected by the system until after the
corresponding function has returned successfully. Such errors occur when data
written to a file by a program has been queued for writing to disk at a more
convenient time, or when a portion of data to be read from disk is found to
already be in memory and the remaining portion is not read until later. In such
cases, the system assumes that the subsequent read or write operation will be
carried out successfully and passes control back to the program along with a
successful return value. If operation is not carried out successfully, it causes a
delayed error.

When a delayed error occurs, the system usually attempts to return an error on
the next call to a system function that accesses the same file or resource. If the
program has already terminated or does not make a suitable call, then the error
is not reported.

9-4

Appendix A
Assembly Language Interface

A. I �-�cti�1�·stersandRetum Valuesl A. . ngSequence2
A. • tac >:Probes2

Assembly Language Interface

A.l Introduction

When mixing MC68000 assembly language routines and compiled C routines, there
areseveralthingstobeawareof:

• RegistersandRetumValues

• CallingSequence

• Stack Probes

With an u!XIerstanding of these three topics, you should be able to write both C
programs that call MC68000 assembly language routines and assembly language
routines that call compiled Croutines.

A.l.l Registers and Retum V slues

Function return values are passed in registers if possible. The set of machine registers
used is called the .l"a\'4! set, and includes the registers from d2 -d7 and a2 -a7that are
modified by a routine. The cc:mpiler assumes that these registers are preserved by the
callee, and saves them itself when it is generating code for the callee (when a C
compatible routine is called by another routine, we refer to the calling routine as the
caller. We refer to the called routine as the caUee.) Note thata6 and a7 are in effect
savedbyalinkinstructionatprocedureentry.

The function return value is in ciJ. The current floating poim implementation returns
the high order 32 bits of doubles in dl, and the low order 32 bits indO. Functions that
return structure values (not pointers to the values) do so by loading dO with a poimertoa
staticbuffercontainingthestructurevalue.

This makes the following two functions equivalent:

struct foo proc 0!
struct foo this;

return (this);

struct foo *proc 0!
struct foo this;
static struct foo temp;

temp = this;
return (&temp);

This implementation allows recursive reentrancy (as long as the explicit form is not
used, since the first sequence is indivisible but not the second). However, this
implementation does not permit multitasking reentrancy. Note that the latter includes
theXENIXsigna/(3)call.

Setjmp(3) and /ongjmp(3) can not be implemented as they are on the PDP- 1 1 ,
because each procedure saves only the registers from the save set that it will modify.
This makes it difficuh to get back the current values of the register variables of the

A-1

Y.ENIX Programmer's Reference

procedure that is being setjmpedto. Hence, register variable values after a longjmpare
the same as before a corresponding setjmp is called. If you need local variables to
changebetweenthecall ofsetjmp and longjmp, they cannot be register variables.

A.l.2 Calling Sequence

The calling sequence is straightforward: arguments are pushed on the stack from the
last to first: i.e., fromrighttoleftasyoureadthemintheCsource. Thepushquantumis
4 bytes, so if you are pushing a character, you must extend it appropriately before
pushing. Structures and floating point numbers that are larger than 4 bytes are pushed
in incremenls of 4 bytes so that they end up in the same order in stack memory as they
are in any othermemory. Thismeanspushingthelast word first and longword padding
the last word (the first pushed) if necessary. The caller is responsible for removing his
own argumenls. Typically, an

addql #constant,sp

is done. It is not really important whether the caller actually pushes and pops his
arguments or just stores them in a static area at the top of the stack, but the debugger,

adb, examines the addql or addw from the sp to decide how many argumenls there
were.

A.l.3 Stack Probes

XENIX is designed to dynamically allocate stack for local variables, function
argumenls, return addresses, etc. To do this, the XENIX kernel checks the offending
instruction when a memory fault occurs. If it is a stack reference, the kernel maps
enough stack memory for the instruction to complete its execution successfully. Then
the procedure continues execution where it left off. Generally, this means restarting
the offending memory reference instruction {usually a push or store). Unfortunately,
theMC68000doesnotprovideawaytorestartinstructions.

Therefore, we need to perform a special instruction, which we call a stack probe, that
potenlially causes the memory fault, but that has no effect other than the memory fauh
itself. The kernel can then allocate any needed stack memory, ignore the fact that the
stack probe instruction did not complete, and continue on to the next instruction.
When we perform a stack probe and a memory fault occurs, the kernel allocates
additionalmemory forthe stack. The stackprobeinstructionfor68000XENIX is

tstb -value(sp)

Va/uemustbenegative: sinceanegativeindexfromthestackpoinlerisabovethetopof
the stack- an otherwise absurd reference-XENIX knows that this instruction can
onlybeastackprobe.

For the general case, use the following procedure entry sequence:

procedure..entry:
link
tstb

a6,#-savesize
-pushsize-slop-8(sp)

Anyregistersamongd2-d7anda2-a5thatareusedinthisprocedurearesavedwit.ia
moveml instruction after this sequence. The number of registers saved in the moveml
needs to be accounted for in the push size. Thus, pushsize is the sum of the number of

A-2

Assembly Language Interface

bytes pushed as temporaries, save areas, and arguments by the whole procedure. The
8 bytes are the space for the return address and frame pointer save (by the link
instruction) of a nested call. The slop is tolerance so that extremely short runtimes that
use little stack do not need to perform a stack probe. The tolerance is intentionally kept
small to conserve memory, so make sure you understand what you are doing before
youconsiderleavingoutastac:kprobeinyourassemblyprocedures.

In most eases, unless you are pushing huge structures or doing tricks with the stack
withinyourprocedure, youcanusethefollowinginstructionforyourstackprobe:

tstb - IOO(sp)
This makes sure that enough space has been allocated fa most of the usual things you
mightdowiththestackandisenougb fortheXENIXruntimesthatdonotperformstack
probes. Note that you do not need to consider space allocated by the link instruction in
this stack probe, since itisalready added by indexing off the stack pointer.

A-3

A.l Introduction

Assembly Language lnterfac:e

When mixing MC68000 assembly language routines and compiled C routines, there
areseveralthingstobeawareof:

• RegistersandReturn Values

• CallingSequence

• StackProbes

With an understanding of these three topics, you should be able to write both C
programs that call MC68000 assembly language routines and assembly language
routines that call compiled Croutines.

A.l.l Registers and Return Values

Function return values are passed in registers if possible. The set of machine registers
used is called the save ser, and includes the registers fromd2 -d7 anda2 -a7thatare
modified by a routine. The canpiler assumes that these registers are preserved by the
callee, and saves them itself when it is generating code for the callee (when a C
compatible routine is called by another routine, we refer to the calling routine as the
allier. We refer to the called routine as the C4llee.) Note that a6 and a7 are in effect
savedbya linkinstructionatprocedure entry.

The function return value is incD. The cun-ent floating point implementation returns
the high order 32 bits of doubles indl, and the low order 32 bits indO. Functions that
return structure values (not pointers to the values)do so by loadingc«Jwitha pointer to a
static buffercontainingthe structure value.

Thismakesthe followingtwofunctionsequivalent:

struct foo proc 0!
struct foo this;

return (this);

struct foo *proc 0!
struct foo this;
static struct foo temp;

temp = this;
return (&temp);

This implementation allows recursive reentrancy (as long as the explicit form is not
used, since the first sequence is indivisible but not the second). However, this
implementation does nor permit multitasking reentrancy. Note that the latter includes
theXENIXsignal(3)call.

Serjmp(3) and longjmp(3) can not be implemented as they are on the PDP- 11 ,
because each procedure saves only the registers from the save set that it will modify.
This makes it difficult to get back the current values of the register variables of the

A-1

Appendix B
XENIX System Calls

B. 1 Introduction B-1

B.2 Executable File Format B-1

B.3 Revised System Calls B-1

B.4 Version 7 Additions B-1

B.5 Changes to the ioctl Function B-2

B.6 Pathname Resolution B-2

B.7 Using the mount and chown Functions B-2

B.8 Super-Block Format B-2

B.9 Separate Version Libraries B-3

XENIX System Calls

B.l Introduction

This appendix lists some of the differences between XENlX 2.3, XENlX 3.0, UNIX
V7, and UNIX System 3.0. It is intended to aid users who wish to convert system
calls in existing application programs for use on other systems.

B.2 Executable File Format

Both XENlX 3.0 and UNIX System 3.0 execute only those programs with the
:z. out executable file format. The format is similar to the old 11. out format, but
contains additional information about the executable file, such as text and data
relocation bases, target machine identification, word and byte ordering, and
symbol table and relocation table format. The :z.out file also contains the
revision number of the kernel which is used during execution to control access
to system functions. To execute existing programs in a. out format, you must
first convert to the :z. out format. The format is described in detailin a.out(F) in
the XENIX Reference Manual.

B.3 Revised System Calls

Some system calls in XENIX 3.0 and UNlX System 3.0 have been revised and do
not perform the same tasks as the corresponding calls in previous systems. To
provide compatibilty for old programs, XENIX 3.0 and UNIX System 3.0
maintain both the new and the old system calls and automatically check the
revision information in the :z.out header to determine which version of a system
call should be made. The following table lists the revised system calls and their
previous versions.

System Call # XENIX2.3 function

35 ftime
38 unused
39 unused
40 unused
57 unused
62 clocal
63 cxenix

System 3 function

unused
clocal

setpgrp
cxenix
utssys
rent!

ulimit

The czeni:z function pro�ides access to system calls unique to XENIX System
3.0. The cloc td function provides access to all calls unique to an OEM.

B.4 Version 7 Additions

XENIX 3.0 maintains a number of UNlX V7 features that were dropped from
UNIX System 3.0. In particular, XENIX 3.0 continues to support the dupe and

B-1

ftime functions. The/time function, used with the ctime function, provides the
default value for the time zone when the TZ environment variable has not been
set. This means a binary configuration program can be used to change the
default time zone. No source license is required.

B.5 Changes to the ioctl Fu nction

XENIX 3.0 and UNIX System 3.0 have a full set of XENIX 2.3-compatible ioctl
calls. Furthermore, XENIX 3.0 has resolved problems that previously hindered
UNIX System 3.0 compatibility. For convenience, XENIX 2.3-compatible ioctl
calls can be executed by a UNIX System 3.0 program. The available XENIX 2.3
ioctl calls are: TIOCSETP, TIOCSETN, TIOCGETP, TIOCSETC, TIOCGETC,
TIOCEXCL, TIOCNXCL, TIOCHPCL, TIOCFLUSH, TIOCGETD, and TIOCSETD.

B.6 Patbname Resolution

Ir a null pathname is given, XENIX 2.3 interprets the name to be the current
directory, but UNIX System 3.0 considers the name to be an error. XE!I.'JX 3.0
uses the version number in the :z. out header to determine what action to take.

If the symbol " .. " is given as a pathname when in a root directory that has been
defined using the chroot function, XENIX 2.3 moves to the next higher
directory. XENIX 3.0 also allows the " .. " symbol, but restricts its use to the
super-user.

B.7 Using the mount and chown Functions

Both XENIX 3.0 and UNIX System 3.0 restrict the use ofthe mount system call to
the super-user. Also, both allow the owner of a file to use chown function to
change the file ownership.

B.B Super-Block Format

Both UNIX System 3.0 and UNIX System 5.0 have new super-block formats.
XENIX 3.0 uses the System 5.0 format, but uses a different magic number for
each revision. The XENIX 3.0 super-block has an additional field at the end
which can be used to distinguish between XENI� 2.3 and 3.0 super-blocks.
XENIX 3.0 checks this magic number at boot time and during a mount. If a
XENIX 2.3 super-block is read, XENIX 3.0 converts it to the new format
internally. Similarly, if a XENIX 2.3 super-block is written, XENIX 3.0 converts
it back to the old format. This permits XENIX 2.3 kernels to be run on file
systems also usable by UNIX System 3.0.

B-2

XENIX System Calls

B.9 Separate Version Libraries

XENIX 3.0 and UNIX System 3.0 support the construction or XENIX 2.3
executable files. These systems maintain both the new and old versions or
system calls in separate libraries and include files.

B-3

1dex

1tc/termcap file 3-1
ldch function 3-7
ld str function 3-8
·gc , argument count var i able
defin ing 2-2
d escr ibed 2-2
· gv , argument val ue array
defining 2-2
descr ibed 2-2

�sembly l anguage inter face ,
descr ibed A-1

�x function 3-26
>IZ E , buffer si ze
v al ue 2-2

1ffered I/0
char acter po inter 2-30
creating 2-22
described 2-22
flushing a buffer 2-24
r eturning a char acter 2-24

rtes
r ead ing from a fi le 2-27
read ing from a pipe 6-4
wr iting to a fil e 2-26
wr i ting to a pipe 6-4
c all ing conven tions
descr ibed A-1
l anguage l ibr ar ie s
descr ibed 1 -1
use in pr ogram 1 -1

�11 sequence A-1
alloc function 8-2

CBREAK mode 3-30
Character functions ,

de scr ibed 4-1
Char acter pointer

descr ibed 2-31
mov ing 2-3 1
moving 2-31
mov ing to start 2-33
reporting position 2-33

Character s
al phabetic 4-3
al ph anumer ic 4-2
ASCII 4-1
control 4-3
converting to ASCII 4-2
converting to
lowercase 4-5
converting to
upperc a se 4-5
decimal digits 4-3
hex ad ecimal d ig it 4-4
lowercase 4-5
printable 4-4
pr intabl e 4-5
processing , de scribed 4-1
punctuation 4-4
r ead ing from a file 2-1 3
read ing from stand ard
input 2-4
uppercase 4-5
wr i ting to a fil e 2-1 5
wr i ting to st and ard
output 2-7

1 -1

Progr ammer ' s Reference

proce ss ,
ribed 5-5
function 3-13
k function 3-28
funct ion 2-28
ot function 3-1 3
ol function 3-1 3
d line ar guments 2-2
d l ine arguments ,
age order 2-2
d line
r ibed 2-2
at ion
rogram 1 -1
em function 8-7

function 3-30
h file 4-1
, the screen
essing l ibr ary 1 - 1
.h file 3-2
ing , restr ictions 2-2
function 3-1 2
l n function 3-12

func tion 3-25
notion 6-6
unction 3-30
ode 3-31
ode 3-5
-file v al ue , EOf 2-2
-fil e
ing 2-1 8

func tion 3-6
nd-of-file v al ue 2-2
function 3-1 3
v ar iable
ned 9-2
r ibed 9-1

Error s
catching signal s 9-3
d elayed 9-4
errno var iable 9-1
error con stants 9-2
error number s 9-1
pr inting error
messages 9-2
processing 9-1
rout ine system I/0 9-4
sharing r e sources 9-4
signal s 9-3
stand ard error file 9-1
system 9-3
te sting files 2-1 8

execl function 5-3
ex ecv function 5-3
ex it function 5-2
fclose function 2-1 9
feof function 2-1 8
ferror function 2-1 8
fflush function 2-25
fgetc function 2-1 3
fgets function 2-1 3
File descr i ptors

creating 2-26
de scr ibed 2-26
fr eeing 2-28
pipes 6-1
predefined 2-25

File po inters
creating 2- 1 1
d e fin ing 2-1 1
desc r ibed 2-1 1
file descri ptors 2-25
FILE type 2-1 1
freeing 2- 1 9

NULL val ue 2-1 1
pipes 6-1
predefined 2-1 2
r ecreating 2-23

FILE , file po inter type 2-2
Files

buffer s 2-2 1
b uffers 2-22
buffer s 2-23
buffers 2-24
closing 2-1 9
closing low-level
access 2-28
inher i ted by processes 5-7

l ocking 8-4
opening 2-1 2
opening for low-level
access 2-26
r and om access 2-31
read ing bytes 2-27
read ing characters 2-1 3
read ing formatted d ata 2-
1 4
read ing record s 2-1 4
reading str ings 2-1 3
r eopen ing 2-23
test ing end-of-file
cond ition 2-1 8
te sting for errors 2-1 8
wr iting bytes 2-27
wr iting char acters 2-1 5
writing formatted
output 2-17
wr iting record s 2-1 7
wr iting str ings 2-1 6

fopen function 2-1 2

fork function 5-5
Formatted input

read ing from a file 2-1 4
read ing from a pipe 6-2
read ing from stand ard
input 2-4

Formatted out put
wr i ting to a file 2-17
wr iting to a pipe 6-2
wr iting to standard
output 2-7

fpr intf function 2-17
fputc function 2-1 5
fputs funct ion 2-1 6
fread function 2-1 4
free function 8-3
freopen function 2-23
fscanf function 2-1 4
fseek function 2-32
ftell function 2-33
fwr ite function 2-1 7
getc function 2-1 3
getch function 3-9
getchar function 2-4
gets function 2-5
get str function 3-9
gettmode function 3-32
getyx function 3-28
inch function 3-24
in itscr function 3-4
insch function 3-1 1
insertln function 3-1 1
isalnum function 4-2
i saplha function 4-3
isasc ii function 4-1
i scntrl function 4-3
i sd igit function 4-3

1 -3

Programmer ' s Reference

r function 4-5
t function 4-4
t function 4-4
e function 4-5
r function 4-5
it function 4-4
k function 3-28
, stand ard C l ibr ar y

1-1
ses . a , screen
essing librar y

1 -1
se s . a , the screen
essing l ibr ary 3-2
�cap . a , the terminal
ary 3-2
g files
r ibed 8-4
ar ation 8-11
locking . h file 8-11
� function 8-5
p function 7-1 0
ne function 3-33
�rel functions
ssing fil es 2-26
� ibed 2-25
d e sc r ipto r s 2-26

:>m access 2-31
:unction 2-3 1
, special I/0
�ions 2-1
function 8-1
a l l oc ation functions ,

· ib ed 8-1

�ating ar rays 8-2
�ating d ynamic al l y 8-1

allocating var iables 8-1
freeing allocated
space 8-3
reallocating 8-3

move function 3-1 1
mvcur function 3-32
mvwin function 3-24
nbwait sem funct ion 8

·
-9

NEWLINE mode 3-3 1
newwin function 3-1 4
nl function 3-30
noc rmode function 3-31
noecho function 3-3 1
nonl function 3-31
noraw function 3-31
Notational conventions ,

described 1 -2
NULL , null pointer

value 2-2
open function 2-26
open sem function 8-8
overlay function 3-23
overwr ite function 3-23
Parent process ,

desc r ibed 5-5
pclose function 6-2
perror function 9-2
pi pe function 6-3
Pipes

clo sing 6-2
closing low-level
access 6-4
described 6-1
file descri ptor 6-3
file desc r i ptors 6-1
file pointer 6-1
file pointer s 6-1

' "

low-level between
processes 6-6
opening for low-level
access 6-3
opening to a new
process 6-1
process ID 6-1
read ing b ytes 6-4
r ead ing from 6-2
shell pi pe symbol 6-1
writing bytes 6-4
wr i ting to 6-2

popen function 6-1
pr intf function 2-8
printw function 3-8
Process control functions ,

d escr ibed 5-1
Process ID

descr ibed 5-1
Process

termination status 5-2
Processes

b ackground 7-1 1
c all ing a system

program 5-1

child 5-5
commun ication by pipe 6-1
descr ibed 5-1
ID 5-1
mul tiple copies 5-5
overl aying 5-3

par ent 5-5
restor ing an ex ecution
state 7-10
saving the ex ecut ion
state 7-9
splitting 5-5

terminating 5-2
termination status 5-7
under shell control 5-5
waiting 5-6

Program s , invoking 2-2
putc funct ion 2-1 5
putchar function 2-7
puts func tion 2-7
Random access functions

char acter po inter 2-3 1
described 2-31

raw func t ion 3-30
RAW mode 3-3 1

RAW mode 3-5
read function 2-27
r eall oc function 8-3
Records

reading from a file 2-1 4
wr iting to a file 2-1 7

Red i r ection symbol
input 2-9
output 2-9

pipe 2-9
refresh function 3-1 4
r estty function 3-33
Return v alues A-2

r ewind function 2-33
Rout ine entry sequence A-1
Rout ine exit sequence A-2
savetty function 3-33
scan f function 2-4
sc anw funct ion 3-1 0
Screen processing functions ,

descr ibed 3-1
Screen processing librar y ,

de scr ibed 1 -1
Screen pr ocessing

/etc/termcap file 3-1

i -5

'rogrammer ' 8 Reference

1g char acters 3-1 6
tg char acters 3-7
1g str ings 3-1 6
tg str ings 3-8
,g val ues 3-1 6
1g v alues 3-8
character 8 3-26
ing a screen 3-1 3
ing a screen 3-2 1

. ing subwindow8 3-1 5

.ing windows 3-1 4
:nt position 3-1
:nt position 3-28
s .h file 3-2
tl t terminal 3-5
ing a window 3-25
ing char acter s 3- 1 2
ing char acters 3-20
ing lines 3-1 2
ing lines 3-20
ibed 3-1
ali zing 3-4
ting char acters 3-1 1
ting characters 3-19
ting lines 3-1 1
ting lines 3-1 9
r se s . a file 3-2
rmcap .a file 3-2
ent prefix 3-30
g a window 3-24
g the position 3-1 1
g the position 3-1 9
1 char acter s 3-27
aying a window 3-23
r iting a window 3-23
fined n ames 3-2
ng char acter s 3-1 7

read ing char acters 3-9
read i ng str ings 3-17
read ing str ings 3-9
read ing val ues 3-1 0
reading values 3-1 7
re fre shing a screen 3-22
refreshing the screen 3-1 4

screen 3-1
scrolling 3-29
sgtty.h fi l e 3-2
stand ard screen 3-7
terminal capab il ities 3-1
terminal cur sor 3-32
terminal modes 3-30
terminal modes 3-5
termin al si ze 3-6
terminating 3-6
using 3-4
window 3-1
window flags 3-28
window flags 3-6

Screen
de scr ibed 3- 1
position 3-1

scroll function 3-29
scrollok function 3-28
sdenter function 8-1 4
sd free function 8-1 6
sdget function 8-13
sdgetv function 8-1 5
sdleave function 8-1 4
sdwaitv function 8-1 5
Semaphore function s ,

described 8-6
Semaphores

checking status 8-9

creating 8-7
descr ibed 8-6
open ing 8-8
r el inqui shing control 8-9
r equesting control 8-8

setbuf function 2-23
setjmp function 7-9
setjmp .h file ,

describ ed 7-1
sgtty .h file 3-2
Shared d ata

attaching segments 8-1 3
creating segments 8-1 3
descr ibed 8-12
enter ing segments 8-1 4
freeing segments 8-1 6
leaving segments 8-1 4
ver sion number 8-1 5
waiting for segments 8-1 5

Shell
called as a separate
process 5-5

signal function 7-1
signal .h file ,

d escribed 7-1
Signal s

c atching 7-4
catching 9-3
default action 7-3
delaying an action 7-7
descr ibed 7-1
disabling 7-2
on program errors 9-3
rede fin ing 7-4
restor ing 7-3
restor ing 7-6
SIGINT constant 7-1

SIGQUIT constant 7-1
SIG DFL constant 7-1
SIG

-
IGN constant 7-1

to a child process 7-12
to b ackground
processes 7-1 1
with inter active
programs 7-9
with multiple
processes 7-10
with system functions 7-8

sigsem function 8-9
spr intf function 4-1 1
sscanf function 4-1 0
Stack order A-1
Standard C l ibrary,

desc r ibed 1 -1
Standard error

described 2-4
Standard files

described 2-4
predefined file
descr iptor s 2-26
predefined file
pointer s 2-1 1
read i ng and writing 2-4
red irecting 2-4
red ir ecting 9-1

Standard I/0 file 2-1
Standard I/0 functions 2-1
Standard input

descr ibed 2-4
read ing 2-4
read ing char acters 2-4
r ead ing formatted
input 2-4
r ead ing str ings 2-5

1 -7

rogrammer ' s Reference

ecting 2-9
:1 out put
ibed 2-4
ecting 2-9
o Output
llg 2-7
:1 output
ng char acter s 2-7
ng formatted
t. 2-8
ng str ings 2-7
:1 function 3-27
t. function 3-26

standard error file
er 2-2

standard error file
er 2-1 2

the standard error
9-1

standard input file
er 2-2
standard input file
er 2-12

file
ibed 2-1
cl ing 2-1

standard output file
er 2-2

standard output file
er 2-1 2
function IJ-6
function 4-7
function 4-8
function s ,
ibed 2- 1 1
functions
sing files 2-1 2

accessing stand ard
files 2-1 1
file po inters 2-1 1
random access 2-3 1

Str ing function s ,
desc ribed IJ-6

Str ings
compar ing 4-7
compar ing 4-9
concatenating 4-6
concatenating 4-8
copying 4-1 0
copying 4-8
length 4-8
pr inting to 4-1 1
processing , described 4-1
read ing from a file 2-1 3
reading from stand ard
input 2-5
scanning 4-1 0
wr i ting to a file 2-1 6
wr iting to standard
output 2-7

strl en function 4-8
strncat function 4-8
strncmp function 4-9
strncpy function 4-10
stterm function 3-33
subwin funct ion 3-1 5
sys/locking .h file 8-4
System errors

described 9-3
repor ting 9-4

system function 5-1
System programs

calling as a separ ate
process 5-1

System resource functions ,
descr ibed 8-1

System
resource s 8-1

sys errno array,
described 9-3

TERM var iable 3-5
Terminal screen 3-1
Terminal

capabilities 3-1
capabil ity d escr ipt ion 3-5

cur sor 3-32
modes 3-30
modes 3-31
mod es 3-5
type 3-5

termination status ,
descr ibed 5-7

termination status
processes 5-2

toasc i i function 4-2
tolower function 4-5
touchwin function 3-25
toupper function 4-5
Unbuffered I/0

creating 2-22
described 2-22
low-level functions 2-25

ungetc function 2-24
Var iables

allocating for arr ays 8-2
memor y allocation 8-1

waddch function 3-1 6
waddstr function 3-1 6
wai t func tion 5-6
wait sem function 8-8

wclear function 3-21
wclr tobot function 3-21
wclrtoeol function 3-21
wd elch function 3-20
wdel eteln function 3-20
werase function 3-21
wgetch function 3-1 7
wget str function 3-1 8
winch function 3-24
Window

border 3-26
d eleting 3-25
descr ibed 3-1
flags 3-6
position 3-1

Windows
creating 3-1 4
flags 3-28
moving 3-24
overl aying 3-23
overwr iting 3-23
reading a character 3-24
updating 3-25

winsch function 3-1 9
win sertln function 3-1 9
wmove function 3-1 9
wpr intw function 3-1 7
wr efresh function 3-22
wr ite funct ion 2-27
wscanw function 3-1 8
wstandend function 3-27
wstandout function 3-26

1-9

CONTENTS

ProgrammingCommands(CP)

intro Introduces programming commands
adb lnvokesageneral-purposedebugger
admin Creates and administers SCCS files
ar Maintains archives and hbraries
as lnvoltesihe XENlXassembler
cb BeautifiesCprognuns
cc Invokes the Ccompiler
cdc Changesthedehacommentary of

anSCCSdelta
comb CombinesSCCSdehas
config ConfigureaXENIX system
cref Makes a cross-reference listing
ctags Createsatagsfile
deha Makesadeha(change)toan

SCCSfile
get Gets a version of anSCCS file
gets Gets a string fromthestandard

input
hdr Displays selected parts of

object files
help Asks forhelpaboutSCCS coounands
ld lnvokesthelinkeditor
lex Generatesprogramsforlexical

analysis
lint ChecksClanguageusage and syntax
!order Finds orderingrelation for an

object
m4 Invokes a macroprocessor
make Maintains, updates, and

regenerates programs
mkstr Creates an error message file

from Csource
nm Prints name list
prof Displays profile data
prs PrintsanSCCS file
ranlib Convertsarchivestorandom

libraries
ratfor lnvokesRATFOR preprocessor
regcmp Compiles regular expressions
rmdel RemovesadehafromanSCCS

file
sact Prints current sees file

editing
sccsdiff Comparestwoversionsofan

SCCS file
size Prints the size of an object file
spline Interpolates smooth curve

1-i

1-ii

strings

strip
time
tsort
unget

val
xref
XSU'
yacc

Findsthcprintablcstringsinan
object
Rcmovcssymbolsandrelocation bits
Timcsac:ommand
Sonsalilctopologic:ally
Undocsaprevia�sgetofan
SCCSfilc
ValidatcsanSCCS file
Cross-referenc:csCprograms
Extracts strings from Cprograms
lnvokcsac:ompilcr-c:ompiler

Index

Archivesandhbraries _____________ ar
�kr u
Ccompiler ce
Clanguageusageandsyntax lint
Cprogram, fonnatting eb
Compilercompiler yaee
Debugger adb
Errormessage file mkstr
Execution, time time
Graphics, interpolating curves spline
Lexical analyzers lex
Linkeditor lei
Macroprocessor m4
Object file, printable strings strings
Object file, size size
Object file, displaying bdr
Object file, symbols and relocation strip
Ordering relations I order
Program listing, cross-reference xrd'
Programlisting,cross-reference erer
Programmaintenance make
RationalFORTRAN ratl'or
Regularexpressions regemp
sees files, combining comb
sees files, comments ede
sees files, comparing seesdllr
sees files, ereatingnewversions delta
sees files, editing saet
sees files, printing prs
seesfiks, removing rmdel
sees files, restoring unget
sees files, retrieving versions get
sees files, ereatingandmaintaining admin
sees files, validating val
sees,commandhelp help
Sorting topologically tsort
Standard input, reading strings gets
Strings, extracting xstr
System, XENIX configuration config
Tagsfile etags

INTRO (CP) INTRO (CP)

Name

intro - Introduces XEl�IX Software Development commands.

Description

This section describes use of the individual commands available in
the XENIX Software. Development System. Each individual com­
mand is labeled with the letters CP to distinguish it from commands
available in the XENIX Timesharin·g and Text Processing Systems.
These letters are used for easy reference from other documentation.
For example, the reference cc(CP) indicates a reference to a discus­
sion of the cc command in this section, where the letter "C" stands
for "command" and the letter "P" stands for "Programming".

Syntax

Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

where:

name

option

cmdarg

See Also

name (options) (cmdargJ

The filename or pathname of an executable file

A single letter representing a command option By con­
vention, most options are preceded with a dash.
Option letters can sometimes be grouped together as
in - abed or alternatively they are specified individu­
ally as in - a - b - c - d . The method of specifying
options depends on the syntax of the individual com­
mand . . In the latter method of specifying options,
arguments can be given to the options. For example,
the - f option for many commands often takes a fol­
lowing filename argument.

A pathname or other command argument not begin­
ning with a dash. It may also be a dash alone by itself
indicating the standard input.

getopt(C) , getopt(S)

Diagnostics

Upon termination, each command returns 2 bytes of status, one sup­
plied by the system and giving the cause for termination, and (in the

Marci, 24, 1984 Page 1

INTRO (CP) INTRO (CP)

ease or "normal" termination) one supplied by the program (see
wt�it(S) and ezit(S)) . The rormer byte is 0 ror normal termination;
the latter is customarily 0 tor successful execution and nonzero to
indicate troubles such as erroneous parameters, or bad or inaccessi­
ble data. It is called variously "exit code", "exit status", or "return
code", and is described only where special conventions are involved.

Notes

Not· all commands adhere to the above sYntax.

March 24, 1984 Page 2

)

ADB (CP) ADB (CP)

Name
adb - debugger

Syntax
adb [-w1 [objfil [corfil 1 1

Description

Adb is a general purpose debugging program. It may be used to
examine files and to provide a controlled environment for the exe­
cution of XENIX programs.

Obifil is normally an executable program file, preferably containing
a symbol table; if not then the symbolic features of adb cannot be
used although the file can still be examined. The default for obffil
is a.out. Corjil is assumed to be a core image file produced after
executing obffil; the default for corjil is core.
Requests to adb are read from the standard input and responses are
to the standard output. If the -w flag is present then both obffil
and corjil are created if necessary and opened for reading and
writing so that files can be modified using adb. Adb ignores
QUIT; IN1ERRUYf causes return to the next adb command.

In general requests to adb are of the form:

[address 1 [, count 1 [command 1 [; 1
1f address is present then dot is set to address. Initially dot is set
to 0. For most commands count specifies how many times the
command will be executed. The default count is 1. Address and
count are expressions.

The interpretation of an address depends on the context it is used
in. 1f a subprocess is being debugged then addresses are inter­
preted in the usual . way in the address space of the subprocess.
For further details of address mapping see ADDRESSES.

EXPRESSIONS

+

"

integer

'ecce '

The value of dot.

The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed.

If the integer begins with 0 it is an an octal number. It is
a hexadecimal number if preceded by Ox or OX. It is a
decimal number when preceded by Od, OD, Ot, or Of;
otherwise the current input radix (default decimal).

The ASCll value of up to 4 characters. \ may be used to

May 10, 1984 Page 1

ADB (CP) ADB (CP)

escape a ' .

< name The value of name, which is either a variable name or a
register name. Adb maintains a number of variables (see
Y ARIABLES) named by single letters or digits. If name is
a register name then the value of the register is obtained
from the system header in corjil.

symbol A symbol is a sequence of upper or lower case letters,
underscores or digits, not starting with a digit. The value
of the symbol is taken from the symbol table in obffiJ. An
initial _ or - will be prepended to symbol if needed.

_ symbol
In C, the 'true name' of an external symbol begins with
an underscore (_), It may be necessary to use this name
to distinguish it from the internal or hidden variables of a
program.

(exp) The value of the expression exp.

Mouaclic operators

•exp The contents of the location addressed by exp in corji/.

@exp The contents of the location addressed by exp in obffil.

-exp Integer negation.

·exp Bitwise complemem.

Dyadic operators are left associative and are less binding than
monadic operators.

el +e2 Integer addition.

el -e2 Integer subtraction.

el •e2 lmeger multiplication.

el %e2 Integer division.

el &e2 Bitwise conjunction.

el ie2 Bitwise disjunction.

el #e2 El rounded up to the next multiple of e2 .

COMMANDS
Most commands consist of a verb followed by a modifier or list of
modifiers. The following verbs are available. (The commands '?'
and '/' may be followed by '•'; see ADDRESSES for further
details.)

?f Locations starting at address in obffil are printed according

May 10, 1984 Page 2

)

ADB (CP) ADB (CP)

to the format f.

If Locations starting at address in corji/ are printed according
to the format f.

=f The value of address itself is printed in the styles indi-
cated by the formatf.

A format consists of one or more characters that specify a style of
printing. Each format character may be preceded by a decimal
integer that is a repeat count for the format character. While step­
ping through a format dot is incremented temporarily by the
amount given for each format letter. If no format is given then the
last format is used. The format letters available are as follows.

o 2 Print 2 bytes in octal. All octal numbers output
by adb are preceded by 0.

0 4 Print 4 bytes in octal.
q 2 Print in signed octal.

Q 4 Print long signed octal.
d 2 Print in decimal.
D 4 Print long decimal.
x 2 Print 2 bytes in hexadecimal. All hexadecimal

numbers output by adb are preceded by Ox.
X 4 Print 4 bytes in hexadecimal.
u 2 Print as an unsigned decimal number.
U 4 Print long unsigned decimal.
b 1 Print the addressed byte in octal.
c 1 Print the addressed character.
C 1 Print the addressed character using the following

escape convention. Character values 000 to 040

are printed as @ followed by the corresponding
character in the range 0100 to 0140. The char­
acter @ is printed as @@.

s n Print the addressed characters until a zero char­
acter is reached.

S n Print a string using the @ escape convention. n
is the length of the string including its zero ter­
minator.

Y 4 Print 4 bytes in date format (see ctime(S)).
i n Print as MC68000 instructions. n is the number

of bytes occupied by the instruction. This style
of printing causes variables 1 and 2 to be set to
the offset parts of the source and destination
respectively.

a 0 Print the value of dot in symbolic form. Symbols

May 10, 1984 Page 3

ADB (CP) ADB (CP)

are checked to ensure that they have an
appropriate type as indicated below.

I local or global data symbol
? local or global text symbol

local or global absolute symbol

p 2 Print the addressed value in symbolic form using
the same rules for symbol lookup as a.

t 0 When preceded by an integer tabs to the next
appropriate tab stop. For example, 8t moves to
the next 8-space tab stop.

r 0 Print a space.
D 0 Print a newline.
" ... " 0 Print the enclosed string.

Dot is decremented by the current increment.
Nothing is printed.

+ Dot is incremented by l . Nothing is printed.
Dot is decremented by 1. Nothing is printed.

newline If the previous command temporarily incremented dot,
make the increment permanent. Repeat the previous
command with a count of 1 .

[?/]1 value mask
Words starting at dot are masked with mask and compared
with value until a match is found. If L is used then the
match is for 4 bytes at a time instead of 2. If no match is
found then dot is unchanged; otherwise dot is set to the
matche.d location. If mask is omitted then - 1 is used.

[?11w value . . .
Write the 2-byte value into the addressed location. If the
command is W, write 4 bytes. Odd addresses are not
allowed when writing to the subprocess address space.

[?11m bl el fl[?l]
New values for (bl, el, fl) are recorded. If less than
three expressions are given then the remaining map
parameters are left unchanged. If the '?' or 'I' is followed
by • •' then the second segment (b2 , e2 ,j2) of the map­
ping is changed. If the list is terminated by '?' or 'I' then
the file (obifil or corjil respectively) is used for subsequent
requests. (So that, for example, '/m?' will cause '/' to
refer to obifil.)

>name Dot is assigned to the variable or register named.

May 10, 1984 Page 4

ADB (CP) ADB (CP)

A shell is called to read the rest of the line following ' ! ' .

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.

>f Send output to the file f, which is created if it
does not exist; > ends the output diversion.

r Print the general registers and the instruction
addressed by pc. Dot is set to pc.

b Print all breakpoints and their associated counts
and commands.

c C stack. back.trace. If address is given then it is
taken as the address of the currem frame.
(instead of a6). If count is given then only the
first count frames are printed.

e The names and values of external variables are
printed.

w Set the page width for output to address (default
80).

s Set the limit for symbol matches to address
(default 255).

o Set the current input radix to octal.
d Set the current input radix to decimal. EXPRES-

SIONS.
x Set the current input radix to hexadecimal.

q Exit from adb .
v Print all non zero variables in hexadecimal.
m Print the address map.

:modifier
Manage a subprocess. Available modifiers are:
be Set breakpoint at address. The breakpoint is

executed count-1 times before causing a stop.
Each time the breakpoint is encountered the
command c is executed. If this command sets
dot to zero then the breakpoint causes a stop.

d
r

May 10, 1984

Delete breakpoint at address .

Run obifil as a subprocess. If address is given
explicitly then the program is entered at this
point; otherwise the program is entered at its
standard entry point. count specifies how many
breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on

Page 5

ADB (CP)

VARIABLES

ADB (CP)

the same line as the command. An argument
starting with < or > causes the standard input or
output to be established for the command . All
signals are turned on on entry to the subprocess.

cs The subprocess is continued with signal s c s, see
signai(S). If address is given then the subpro­
cess is continued at this address. If no signal is
specified then the signal that caused the subpro­
cess to stop is sent. Breakpoint skipping is the
same as for r.

ss As for c except that the subprocess is single
stepped counJ times. If there is no current sub­
process then obifil is run as a subprocess as for r.
In this case no signal can be sent; the remainder
of the line is treated as argume�· to the subpro­
cess.

k The current subprocess, if any , is terminated.

Adb provides a number of variables. Named variables are set ini­

tially by adb but are not used subsequently. Numbered variables
are reserved for communication as follows.

0 The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1 .
On entry the following are set from the system header in the corjil.
If cor:fil does not appear to be a core file then these values are set
from obifil.

b The base address of the data segment.
d The data segment size.
e The entry point.
s The stack. segment size.
t The text segment size.

ADDRESSES
The address in a file associated with a written address is deter­
mined by a mapping associated with that file. Each mapping is
represented by two triples (bl, el, fl) and (b2, e2, /2) and the .file
address corresponding to a written address is calculated as follows.

bl :S;.adtfress<el
address =address +fl -bl, otherwise,

May 10, 1984

=> file

Page 6

ADB (CP)

b2�ress<e2
address =address +f2-b2,

=>

ADB (CP)

file

otherwise, the requested address is not legal. In some cases (e.g. ,
for programs with separated 1 and D space) the two segments for a
file may overlap. If a ? or I is followed by an • then only the
second triple is used.

The initial setting of both mappings is suitable for normal a.out
and core files. If either file is not of the kind expectetl then, for
that file, bl is set to 0, el is set to the maximum file size and fl is
set to 0; in this way the whole file can be examined with no
address translation.

So that adb may be used on large files all appropriate values are
kept as signed 32 bit integers.

FDes
/dev/mem
/dev/swap
a.out
core

See Also
ptrace(S), a.out(F), core(F)

DIAGNOSTICS
The message 'adb' when there is no current command or format.
Conunents about inaccessible files, syntax errors, abnormal termi­
nation of commands, etc.
Exit status is 0, unless last command failed or returned nonzero
status.

Notes
A breakpoint set at the entry point is not effective on initial entry to
the program.
When single stepping, system calls do not count as an executed
instruction.
Local variables whose names are the same as an external variable
may foul up the accessing of the external.

May 10, 1984 Page 7

ADMJN (CP) ADMJN (CP)

Name
a.dmin - Creates and administers sees files.

Syntax

admin (- nJ �- i (nameJ J (- rrelJ (- t(nameJJ (- tflag(ftag-va.IJ I 1- dflag(ftag-va.l] [- aloginJ [- eloginJ [- m(mrlist]
- y(commentJI [- hJ (- z] files

Description
Admin is used to create new sees files and to change parameters of
existing ones. Arguments to adminmay appear in any order. They
consist of options, which begin with - , and named files (note that
sees filenames must begin with the characters s .) . _ If a named file
doesn't exist, it is created, and its parameters are initialized accord­
ing to the specified options. Parameters not initialized by a. option
are assigned a default value. If a named file does exist, parameters
corresponding to specified options are changed, and other parameters
are left as is.

Ir a directory is named, admin behaves as though each file in the
directory were specified as a named file, except that nonsees files
(last component of the path name does not begin with s .) and
unreadable files are silently ignored. If the dash - is given, the
standard input is read; each line of the standard input is taken to be
the name of an sees file to be processed. Again, nonsees files and
unreadable files are silently ignored.

The options are a.s follows. Each is explained as though only one
named file is to be processed since the effects of the arguments apply
independently to each named fi le .

- n

- i(nameJ

March 24, 1984

This option indicates that a new sees file is to be
created.

The name of a. file from which the text for a new
sees file is to be taken. The text constitutes the
first delta. of the file (see - r below for delta
numbering scheme) . If the i option is used, but the
filename is omitted, the text is obtained by reading
the standard input until an end-of-file is encoun­
tered. If this option is omitted, then the sees file is
created empty. Only one sees file may be created
by an admin command on which the i option is sup­
plied. Using a single admin to create two or more
sees files require that they be created empty (no - i option) . Note that the - i option implies the
- n option.

Page 1

)

ADMIN (CP)

- rrel

- t(name)

- tjlag

March 24, 1984

b

ADMIN (CP)

The release into which the initial delta is inserted.
This option m ay be used only if the - i option is
also used. If the - r option is not used, the initial
delta is inserted into release I. The level or the ini­
tial delta is always 1 (by default initial deltas are
named 1.1) .

The name or a file Crom which descriptive text for
the sees file is to be taken. Ir the - t option is
used and atlmin is creating a new sees file (the - n
and/or - i options also used), the descriptive text
filename must also be supplied. In the case of exist­
ing sees files: a - t option without a filename
causes removal or descriptive text (if any) currently
in the sees file, and a - t option with a filename
causes text (if any) in the named file to replace the
descriptive text (if any) currently in the sees file.

This option specifies a flag, and possibly a value for
the flag, to be placed in the sees file. Several t
options may be supplied on a single atlmin com­
mand line. The allowable flags and their values are:

Allows use of the - b option on a get(CP)
command to create branch deltas.

ceeil The highest release (i.e., "ceiling") , a number
less than or equal to 9999, which may be
retrieved by a get(CP) command for editing.
The deCault value Cor an unspecified c flag is
9999.

Cfloor The lowest release (i.e., "floor") , a number
greater than 0 but less than 9999, which may
be retrieved by a get(CP) command for edit­
ing. The default value for an unspecified r flag

· is 1.

dSID The default delta number (SID) to be used by
a get(CP) command.

Causes the "No id keywords (ge6)" message
issued by get(CP) or delta(CP) to be treated as
a fatal error. In the absence of this flag, the
message is only a warning. The message is
issued if no sees identification keywords (see
get(CP)) are found in the text retrieved or
stored in the sees file.

Allows concurrent get(CP) commands for edit­
ing on the same SID of an sees file. This
allows multiple concurrent updates to the same
version of the sees file.

Page 2

ADMJN (CP)

March 24, 1984

n

ADM/N (CP)

A liet of releases to which deltas can no longer
be made (get - e against one of these
"locked" releases fails) . The liet has the fol­
lowing syntax:

<list> ::- <range > I <list> , <range>
<range > ::- RELEASE NUMBER I a

The character a in the liBt is equivalent to
specifying all rtltllltl for the named sees file.

Causes delta(CP) to create a "null" delta in
each of those releases (if any) being skipped
when a delta is made in a new release (e.g., in
making delta 5.1 after delta 2.7, releases 3 and
4 are · skipped) . These null deltas serve as
"anchor points" so that branch deltas may
later be created f.rom them. The absence or
this ftag causes skipped releases to be nonex­
istent in the sees file preventing branch deltas
from being created from them in the future.

qtezt User-definable text substituted for all
occurrences or the keyword in sees file text
retrieved by get(CP).

mmod

ttgpe

v(pgmJ

Module name of the sees file substituted for
all occurrences of the admin.CP keyword in
sees file text retrieved by get(CP) . If the m
ftag is not specified, the value assigned is the
name of the sees file with the leading s.
removed.

Tupe of module in the sees file substituted for
all occurrences of
keyword in sees file text retrieved by

get(CP).

Causes delta(CP) to prompt for Modification
Request (MR) numbers as the reason for
creating a delta. The optional value specifies
the name of an MR number validity checking
program (see delta(CP)) . (If this ftag is set
when creating an sees file, the m option must
also be used even if its value is null) .

Causes removal (deletion) of the specified flag from
an sees file. The - d optidn may be specified only
when processing existing sees files. Several - d
options may be supplied on a single admi11 com­
mand. See the - f option for allowable flag names.

Page '3

ADMIN (CP)

I lilt

ADMIN (CP)

A list of releases to be "unlocked". See the
- r option for a description of the I flag and
the syntax of a list.

- alogin A login name, or numerical XENIX group ID, to be
added to the list of users which may make deltas
(changes) to the sees file. A group ID is equivalent
to specifying all login names common to that group
!D . Several a options may be used on a single
admin command line. As many logins, or numerical
group IDs, as desired may be on the list simultane­
ously. It the list of users is empty, then anyone
may add deltas.

- elogin A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the sees file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e options may be used on a
single admin command line.

- y[commen� The comment text is inserted into the sees file as a
comment for the initial delta in a manner identical
to that of delta(CP) . Omission of the - y option
results in a default comment line being inserted in
the form:

- m(mrlis4

- h

March 24, 1 984

YY/MM/DD HH:MM:SS by login

The - y option is valid only if the - i and/or - n
options are specified (i.e., a new sees file is being
created) .

The list of Modification Requests (MR) numbers is
inserted into the sees file as the reason tor creating
the initial delta in a manner identical to delta(CP) .
The v flag must be set and the MR numbers are
validated if the v flag has a value (the name of an
MR number validation program) . D iagnostics will
occur if the v flag is not set or MR validation fails.

Causes admin to check the structure of the sees file
(see sccsfile(F)), and to compare a newly computed
checksum (the sum of all the characters in the sees
file except those in the first line) with the checksum
that is stored in t.he first line of the sees file.
Appropriate error diagnostics are produced.

This option inhibits writing on the file, nullifying
the effect of any other options supplied, and is
therefore only meaningful when processing existing
files.

Page 4

ADMIN (CP)

- z

Files

ADMIN (CP)

The sees file checksum is recomputed and stored in
the first line of the sees file (see - h, above) .

Note that use of this option on a truly corrupted file
m ay prevent future detection of the corruption.

The last component of all sees filenames must be of the form
s.file-name. New sees files are created read-only (444 modified by
umask) (see ehmod(C)) . Write permission in the pertinent directory
is, of course, required to create a file. All writing done by admin is
to a temporary x-file, called x.filename, (see get(CP)} , created with
read-only permission if the admin command is creating a new sees
file, or with the same mode · as the sees file if it exists. After suc­
cessful execution of admin, the sees file is removed (if it exists),
and the x-file is renamed with the name of the sees file. This
ensures that changes are made to the sees file only if no errors
occurred.

It is recommended that directories containing sees files be mode
755 and that sees files themselves be read-only. The mode of the
directories allows only the owner to modify sees files contained in
the directories. The mode of the sees files prevents any
modification at all except by sees commands.

If it should be necessary to patch an sees file for any reason, the
mode m ay be changed to 644 by the owner allowing use of a text
editor. Care must be taken! The edited file should alwaye be pro­
cessed by an a.dmin - h to check for corruption followed by an
a.dmin - z to generate a proper checksum. Another admin - h is
recommended to ensure the sees file is valid.

Admin also makes use of a transient lock file (called z.filename) ,
which is used to prevent simultaneous updates to the sees file by
different users. See get(CP) for further information.

See Also

delta(CP) , ed(C) , get(CP) , help(CP), prs(CP) , what(C) , sccsfile(F)

Diagnostics

Use help(CP) for explanations.

March 24, 1984 Page 5

AR (CP) AR (CP)

Name

ar - Maintains archives and libraries.

Syntax

ar key [posname) atile name ...

Description

4r maintains groups of files combined into a single archive file. Its
main use is to create and update library files as used by the link edi­
tor, though it can be used for any similar purpose.

When 4r creates an archive, it always creates the header in the for­
m at of the local system.

Ke11 is one character from the set drqtpmx, optionally concatenate d
with one o r more o f vuaibcl. 4/ile is the archive file. The n4mee are
constituent files in the archive file. The meanings of the /ee11 charac­
ters are:

d D eletes the named files from the archive file.

r Replaces the named files in the archive file. It the optional
character u is used with r, then only those files with modified
dates later than the archive files are replaced. If an optional
positioning character from the set abi is used, then the pom4me
argument must be present and specifies that new files are to be
placed after (a) or before (b or i) poen4me. Otherwise new files
are placed at the end.

q Quickly appends the named files to the end of the archive file.
Optional positioning characters are invalid. The command does
not check whether the added members are already in the
archive. Useful only to avoid quadratic behavior when creating
a. large archive piece by piece.

t Prints a table of contents of the archive file . If no names are
given, all files in the archive are tabled. If names a.re given,
only those files are tabled.

p Prints the named files in the archive.

m Moves the named files to the end of the archive. If a position­
ing character is present, then the poen4me argument must be
present and, as in r, specifies where the files are to be moved.

x Extracts the named files. If no names a.re given, all files in the
archive are extracted. In neither case does x alter the archive

March 20, 1984 Page 1

AR (CP) AR (CP)

file.

v Verbose. Under the verbose option, ar gives a file-by-file
desrription or the making or a new archive file from the old
archive and the constituent files. When used with t, it gives a
long listing or all information about the files. When used with
x, it precedes each file with a name.

c Create. Normally ar will create afile when it needs to. The
create option suppresses the normal message that is produced
when afile is created.

Local. Normally ar places its temporary files in the directory
/tmp. This option causes them to be pbced in the local direc­
tory.

Files

ftmpfv* Temporary files

See Also

ld(CP) , lorder(CP) , ar(F)

Notes

Ir the same file is mentioned twice in an argument list, it may be put
in the archive twice.

March 20, 1084 Page 2

)

AS (CP) AS (CP)

Name

as - assembler

Syntax
as [-1 1 [-o objfile 1 [-g 1 file.s

Description
As assembles the named file. If the argument -1 is used, an
assembly listing is produced and written to file.L. This includes the
source, the assembled code, and any assembly errors.

The output of the assembly is left on the file obifile; if that is
omitted, file .o is used. If the optional -g flag is given, undefined
symbols will be treated as externals. Arguments may appear in
any order, except that -o must immediatly precede objfile. The
optional flag -e (externals only) prevents local symbols from being
extended into ob.ifile' s symbol table.

Fnes
ltmpl A68tmpr* temporary

See Also
ld(CP), nm(CP), adb(CP), a.out(F)

May 10, 1984 Page 1

CB (CP) CB (CP)

Name

cb - Beautifies C programs.

Syntax

cb [file]

Description

Cb places a copy or the C program in file (standard input ir file is
not given) on the standard output with spacing and indentation that
displays the structure or the program.

March 24, 1984 Page 1

CC (CP) CC (CP)

Name
cc - C compiler

Syntax
cc r option 1 . . . file . . .

Description
Cc is the XENIX M68000 C compiler. Arguments whose names
end with • .c' are taken to be C source programs; they are com­
piled, and each object program is left on the file whose name is
that of the source with • .o' substituted for • .c' . The • .o' file is

. normally deleted, however, if a single C program is compiled and
loaded all at one go.
In the same way, arguments whose names end with ' .s' are taken
to be assembly source programs and are assembled, producing a
' .o' file.

The following options are interpreted by cc. See ld(CP) for
load-time options.

-c Suppress the loading phase of the compilation, and force
an object file to be produced even if only one program is
compiled.

-0 Invoke an object-code optimizer.

-s Compile the named C programs, and leave the
assembler-language output on corresponding files
suffixed ' . s' .

-o output
Name the final output file output . If this option is used
the file 'a.out' will be left undisturbed.

-Dname=def
-Dname Define the name to the preprocessor, as if by '#define' .

If no definition is given, the name is defined as 1 .
-Uname Remove any initial definition of name.

-ldir ' #include' files whose names do not begin with '/' are
always sought first in the directory of the file argument,
then in directories named in -I options, then in direc­

tories on a standard list.
-tl replace the compiler phase with a program called c68

from the current directory.

-t2 replace the object code optimizer phase with a program
called c68o from the current directory.

May 10, 1984 Page 1

CC (CP) CC (CP)

-K Do not generate stack probes. Stack probes are necessary
for XENIX user programs to assure proper stack growth.

Other arguments
are taken to be either loader option arguments, or C­
compatible object programs, typically produced 'by an
earlier cc run, or perhaps libraries of C-compatible
routines. These programs, together with the results of
any compilations specified, are loaded (in the order
given) to produce an executable program with name
a.out.

FUes
file.c
file.o
a.out
file.[isx1
!lib/cpp
/lib/c68
!lib/c68o
!lib/crtO.o
!lib!libc.a
/usc/include

See Also

input file
object file
loaded output
temporaries for cc
preprocessor
compiler for cc
optional optimizer
runtime startoff
standard library, see intro(S)
standard directory for '#include' files

B. W. Kernighan and D. M. Ritchie, The C Programming
Language, Prentice-Hall, 1978
D. M . Ritchie, C Reference Manual
adb(CP), ld(CP)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self­
explanatory. Occasional messages may be produced by the
assembler or the loader. Of these, the most mystifying are from
the assembler, as(C), which produces line number reports based on
the generated code, which is only loosely related to the source
linenumber. Running the compiler with the -S option and assem­
bling the result by hand may help you resolve the difficulty.

May 10, 1984 Page 2

CDC (CP) CDC (CP)

Name

cdc - Changes the delta com mentary or an sees delta.

Syntax

cdc - rSID [- m[mrlist)] [- y[comment]) files

Description

Cdc changes the delta commentary for the SID specified by the - r
option, of each named sees file.

Delta commentary is defined to be the Modification Request (MR)
and comment information normally specified via the delta(CP) com­
mand (- m and - y options) .

If a directory is named, cdc behaves as though each file in the direc­
tory were specified as a named file, except that nonsees files (last
component of the pathname does not begin with s.) and unreadable
files are silently ignored. Ir a name or - is given, the standard input
is read (see Warning) ; each line or t.he standard input is taken to be
the name of an sees file to be processed.

Arguments to cdc, which m ay appear in any order, consist of options
and file names.

All the described options apply independently to each named file:

- rSID

- m[mr!istJ

March 24, 1984

Used to specify the Sees IDentification (SID)
string of a delta for which the delta commen­
tary is to be changed.

Ir the sees file has the v flag set (see
admin(CP)) then a list of MR numbers to be
added and/or deleted in the delta commentary
of the SID specified by the - r option ma11 be
supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the
same m anner as that of delta(CP) . In order to
delete an MR, precede the MR number with
the character I (see Examples). If the MR to
be deleted is currently in the list of MRs, it is
removed and changed into a "comment" line.
A list of all deleted MRs is placed in the com­
ment section of the delta commentary and pre­
ceded by a comment line stating that they were
deleted.

Page 1

CDC (CP)

- y[comment)

CDC (CP)

Ir - m is not used and the standard input is a
terminal, the prompt MRs! is issued on the
standard output before the standard input is
read; if the standard input is not a terminal,
no prompt is issued. The MRs! prompt always
precedes the comment:a! prompt (see - y
option) .

M.Rs in a list are separated by blanks and/or
tab characters. An unescaped newline charac·
ter terminates the MR list.

Note that if the v flag has a value (see
admin(CP)) , it is taken to be the name of a
program (or shell procedure) which validates
the correctness or the M.R numbers. It a
nonzero exit status is returned !rom the M.R
number validation program, cdc terminates
and the delta commentary remains unchanged.

Arbitrary text used to replace the comment(s)
already existing !or the delta specified by the
- r option. The previous comments are kept
and preceded by a comment line stating that
they were changed. A null comment has no
effect.

Ir - y is not specified and the standard input is
a terminal, the prompt "comments? " is issued
on the standard output before the standard
input is read; if the standard input is not a ter·
minal, no prompt is issued. An unescaped
newline character terminates the comment text.

In general, if you made the delta, you can change its delta
commentary; or i! you own the file and directory you can
modify the delta commentary.

Examples

The following:

cdc - r l .6 - m"bl78- 12345 !bl77-54321 bi79-0000I" - ytrouble
s .file

adds bl78-12345 and bl79-00001 to the M.R list, removes bl77-54321
from the MR list, and adds the comment trouble to delta 1.6 of
s.file.

'

March 24, 1984

)

CDC (CP)

The following interactive sequence does the same thing.
cdc - r l .6 s.file

Warning

MRs! lbl77-54321 bl78-12345 bl79-0000I
comments! trouble

CDC (CP)

It sees file names are supplied to the cdc command via the standard
input (- on the command line), then the - m and - y options must
also be used.

Files

x-file See delt11(CP)

z-file See delt11 (CP)

See Also

admin(CP), delta(CP) , get(CP) , help(CP), prs(CP), sccsfile(F)

Diagnostics

Use help(CP) for explanations.

March 24, 1984 Page 3

COMB (CP) COMB (CP)

Name

comb - Combines sees deltas.

Syntax

comb 1- o) I- s) 1- psid) 1- clist) files

Description

Comb provides the means to combine one or more deltas in an sees
file and ma.ke a single new delta.. The new delta replaces the previous
deltas, m a.king the sees file $m aller than the original.

Comb does not perform the combination itselr. Instead, it generates
a shell procedure that you must save and execute to reconstruct the
given sees files. Comb copies the generated shell procedure to the
standard output. To save the procedure, you must redirect the out­
put to a file. The saved file can then be executed like any other shell
procedure (see eh(C)) .

When invoking comb, arguments may b e specified in any order. All
options apply to a.ll named sees files. Ir a directory is named, comb
behaves as though each file in the directory �ere specified as a
named file, except that nonsees files (last component of the path­
name does not begin with s .) and unreadable files are silently
ignored. IC a name of - is given, the standard input is read; each
line or the standard input is taken to be the name or an sees file to
be processed; nonsees files and unreadable files are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed, but the effects of any option apply
independently to each named file.

- pSID The sees IDentification string (SID) or the oldest delta to
be preserved. All older deltas are discarded in the recon­
structed file.

- cliBt A liet (see get(CP) Cor the syntax of a list) of deltas to be
preserved. All other deltas are discarded.

- o For each get - e generated, this argument causes the recon­
structed file to be accessed at the release of the delta to be
created, otherwise the reconstructed file would be accessed
at the most recent ancestor. Use of the - o option may
decrease the size of the reconstructed sees file. It may a.lso
a.lter the shape of the delta tree of the o riginal file.

•

March 24, 1984 Page 1

COMB (CP) COMB (CP)

- s This argument causes comb to generate a shell procedure
that will produce a report for each file giving the filename,
size (in blocks) after combining, original size (also in
blocks) , and percentage change computed by:

100 • (original - combined) / original

Before any sees files are actually combined, you should use this
option to determine exactly how much space is saved by the combin­
ing process.

If no options are specified, comb will preserve only leaf deltas and
the minimal number of ancestors needed to preserve the tree.

Files

comb! ! ! !! Temporary files

See Also

admin(CP) , delta(CP), get(CP) , help(CP) , prs(CP) , sccsfile(F)

Diagnostics

Use help(CP) for explanations.

Notes

Comb may rearrange the shape of the tree of deltas. It m ay not save
any space; in fact, it is possible for the reconstructed file to be larger
than the original.

March 24, 1984 Page 2

CONFJG (CP) CONFJG (CP)

Name

config - configure a XENIX system

Syntax

ferefconfig [- tj [- I file] [- c file] [- m file] dille

Description

Config is a program that takes a description of a XENIX system and
generates a file which is a C program defining the configuration
tables for the various devices on the system.

The - c option specifies the n ame of the configuration table file; c.c
is the default name.

The - m option specifies the name of the file that contains all the
information regarding supported devices; /ere/master is the default
name. This file is supplied with the XENIX system and should not be
modified unless the user fully understands its construction.

The - t option requests a short table of major device numbers for
character and block type devices. This can facilitate the creation of
special files.

The user must supply dfile ; it m ust contain device information for
the user's system. This file is divided into two parts. The first part
contains physical device specifications. The second part contains
system-dependent information. Any line with an asterisk (*) in
column 1 is a comment.

All configurations are assumed to have a set of required devices
which must be present to run XENIX such as the system clock.
These devices muBt not be specified in dfile.

First Part of dfile

Each line contains two fields, delimited by blanks and/or tabs in the
following format:

devname number

where de'Vname is the name of the device (as it appears in the
/ere/master device table) , and number is the number (decimal) of
devices associated with the corresponding controller; number is
optional, and if omitted, a default value which is the maximum
value for that controller is used.

March 24, 1984 Page 1

)

CONFJG (CP) CONFIG (CP)

There are certain drivers that m ay be provided with the system, that
are actually p6eudo-device drivers; that is, there is no real hardware
associated with the driver. Drivers of this type are identified on
their respective manual entries.

Second Part of dfile

The second part contains three different types of lines. Note that aU
specifications of this part are required, although their order is arbi­
trary.

1 . R ootfpipe device 6pecification

Each line has three fields:

root
pipe

devname
devname

minor
minor

where minor is the minor device number (in octal) .

2. Swap device 6pecificati�n

One line that contains five fields as follows:

swap devname minor swplo nswap

where swplo is the lowest disk block (decimal) in the swap area and
nswap is the num her of disk blocks (decimal) in the swap area.

3. Parameter specification

A number of lines of two fields each as follows (number is decimal) :

buffers number
in odes number
files number
mounts number
swapmap number
pages number
calls number
procs number
ma.xproc number
texts number
clists number
locks number
timezone number
daylight 0 or I

Example

Suppose we wish to configure a system with the following devices:
one HD disk drive controller with I drive
one FD floppy disk drive controller with I driver

March 24, I984 Page 2

CO!'VFIG (CP) CONFIG (CP)

We must also specify the following parameter information:
root device is an HD (pseudo disk 3)
pipe device is an HD (pseudo disk 3)
swap device is an HD (pseudo disk 2)

with a swplo of 1 and an nswap of 2300
number of buffers is 50
number of processes is 50
maximum number of processes per user ID is 15
number of mounts is 8
number of inodes is 120
number of files is 120
number of calls is 30
number of texts is 35
number of character buffers is 150
number of swapmap entries is 50
number of memory pages is 512
number of file locks is 100
timezone is pacific time
daylight time is in effect

The actual system configuration would be specified as follows:
hd 1

Files

fd 1
root hd 3
pipe hd 3
swap hd 2 0 2300
• Comments m ay be inserted in this manner
buffers 50
procs 150
ma.xproc 15
mounts 8
inodes 120
files 120
calls 30
texts 35
clists 150
swapmap 50
pages (1024/2) ;
locks 100
timezone (8•60)
daylight 1

fetc/m aster
c.c

default input master device table
default output configuration table file

See Also

master(F)

March 24, 1984 · page 3

CONFIG (CP) CONFIG (CP)

Diagnostics

Diagnostics are routed tq the standard output and are self­
explanatory.

Notes

The - t option does not know about .devices that have aliases. How­
ever, the m ajor device numbers are always correct.

March 24, 1 984 Page 4

CREF (CP) CREF (CP)

Name

cref - Makes a. cross-reference listing.

Syntax

eref [- acilnostmd23] files

Description

Cref makes a cross- reference listing of assembler or C programs. The
program searches the given fileB for symbols in the appropriate C or
assembly language syntax.

The output report is in four columns:

1. Symbol
2. Filename
3. Current symbol or line number
4. Text as it appears in the file

Cref uses either an ignore file or an orr.lg file. Ir the - i option is
given, the next argument is taken to be an ignore file; if the - o
option is given, the next argument is taken to be an orr.lg file. Ignore
and orr.lg files are lists of symbols separated by newlines. All sym­
bols in an ignore file are ignored in columns 1 and 3 of the output.
Ir an only file is given, only symbols in that file will appear in
column 1. Only one of these options may be given; the default set­
ting is - i using the default ignore file (see FILES below). Assem­
bler predefined symbols or C keywords are ignored.

The - s option causes current symbols to be put in column 3. In the
assembler, the current symbol is the most recent name symbol; in C,
the current function name. The - I option causes the line number
within the file to be put in column 3.

The - t option causes the next available argument to be used as the
name of the intermediate file (instead of the temporary file
/tmp/crt!!). This file is created and is not removed at the end of
the process.

The ere/ options are:

a Uses assembler format (default)

c Uses C format

Uses an ignore file (see above)

Puts line number in column 3 (instead of current symbol)

March 24, 1984
'

Page 1

)

CREF (CP) CREF (CP)

n Omits column 4 (no context)

0 Uses an only file (see above)

8 Current symbol in column 3 (default)

t User-supplied temporary file

u Prints only symbols that occur exactly once

X Prints only C external symbols

1 Sorts output on column 1 (de!a.ult)

2 Sorts output on column 2

3 Sorts output on column 3

Files

/usr/lib/cref/• Assembler specific files

See Also

as(CP) 1 cc(CP) 1 sort(C) 1 xref(CP)

Notes

Cref inserts an ASCII DEL character into the intermediate file after
the eighth character of each name that is eight or more characters
long in the source file.

March 241 1984 Page 2

CTAGS (CP) CTAGS (CP)

Name

ctags - Creates a tags file.

Syntax

ctags [- u I (- w I [- x I name ...

Description

Ctage makes a tags file for �i(C) from the specified C sources. A tags
file gives the locations of specified objects (in this case functions) in
a group of files. Each line of the tags file contains the function
name, the file in which it is defined, and a scanning pattern used to
find the function definition. These are given in separate fields on the
line, separated by blanks or tabs. Using the tags file, �i can quickly
find these function definitions.

If the - x flag is given, etags produces a list of function names, the
line number and file name on which each is defined, as well as the
text of that line and prints this on the standard output. This is a sim­
ple index which can be printed out as an off-line readable function
index.

Files whose name ends in .c or .h are assumed to be C source files
and are searched for C routine and macro definitions.

Other options are:

- w Suppresses warning diagnostics.

- u Causes the specified files to be updated in tags; that is, all refer­
ences to them are deleted, and the new values are appended to
the file. (Beware: this option is implemented in a way which is
rather slow; it is usually faster to simply rebuild the tags file.)

The tag main is treated specially in C programs. The tllg formed is
created by prepending M to the name of the file, with a trailing .c
removed, if any, and leading pathname components also removed.
This makes use of ctags practical in directories with more than one
program.

Files

tags Output tags file

See Also

ex(C), vi(C)

. March 24, 1984 Page 1

CTAGS (CP) CTAGS (CP)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 24, IQ84 Pa;ge 2

DEL TA (CP) DEL TA (CP)

Name

delta - Makes a delta (change) to an sees file.

Syntax

delta [- rSID) [- s) [- n) (- glist) [- m(mrlist]] [- y(comment))
[- pj files

Description

Delta is used to permanently introduce into the named sees file
changes that were made to the file retrieved by get(CP) (called the
g-Jile, or generated file) .

Delta makes a delta to each sees file named by Jiles. If a directory
is named, tlelt11 · behaves as though each file in the directory were
specified as a named file, except that nonsees files (last component
of the pathname does not begin with a .) and unreadable files are
silently ignored. Ir a name of - is given, the standard input is read
(see Warning) ; each line of the standard input is taken to be the
name or an sees file to be processed.

Delt11 may issue prompts on the standard output depending upon
certain options specified and flags (see 11tlmin(CP)) that may be
present in the sees file (see - m and - y options below) .

Options apply independently to each named file.

- rSID

- II

- n

March 24, Ul84

Uniquely identifies which delta is to be made to the
sees file. The use or this keyletter is necessary
only if two or more versions of the same sees file
have been retrieved for editing (get - e) by the
same person (login name). The SID value specified
with the - r keyletter can be either the SID specified
on the get command line or the SID to be made as
reported by the get command (see get(CP)) . A
diagnostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command
line.

Suppresses the issue, on the standard output, of the
created delta's SID, as well as the number of lines
inserted, deleted and unchanged in the sees file.

Specifies retention of the edited g·Jile (normally
removed at completion of delta processing) .

Page 1

)

DEL TA (CP)

- gl�t

- m[mrlis�

DEL TA (CP)

Specifies a list (see get(CP) for the definition of lilt)
of deltas which are to be ignored when the file is
accessed at the change level (SID) created by this
delta.

If the sees file has the v flag set (see admin(CP))
then a Modification Request (MR) number must be
supplied as the reason for creating the new delta.

If - m is not used and the standard input is a termi­
nal, the prompt MRs! is issued on the standard out..
put before the standard input is read; if the standard
input is not a terminal, no prompt is issued. The
MRs! prompt always precedes the comments!
prompt (see - y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped newline character ter­
minates the MR list.

Note that if the v flag has a value (see admin(CP)) ,
i t is taken to be the name of a program (or shell
procedure) which will validate the correctness of the
MR numbers. If a nonzero exit status is returned
from MR number validation program, delta ter­
·minates (it is assumed that the MR numbers were
not all valid).

- y[commen� Arbitrary text used to describe the reason for mak­
ing the delta. A null string is considered a valid
comment.

- p

Files

If - y is not specified and the standard input is a
terminal, the prompt comments! is issued on the
standard output before the standard input is read; if
the standard input is not a terminal, no prompt is
issued. An unescaped newline character terminates
the comment text.

Causes delta to print (on the standard output) the
sees file differences before and after the delta is
applied. D ifferences are displayed in a di/I(C) for­
mat.

All files of the form ?-file are explained in Chapter 5, "SCCS: A
Source Code Control System" in the XENIX Programmer's Guide. The
naming convention for these files is also described there.

g-Cile

March 24, 1984

Existed before the execution of delta; removed after
completion or delttJ.

Page 2

DEL TA (CP)

p-Cile

q-Cile

x-file

z-file

d-file

DEL TA (CP)

Existed before the execution of delta; may exist
after completion or delta.

Created during the execution of delta; removed after
completion of delta.

Created during the execution of delta; renamed to
sees file after completion of delta.

Created during the execution of delta; removed dur­
ing the execution of delta.

Created during the execution of delta; removed after
completion of delta.

/usr/bin/bdiff Program to compute differences between the
"retrieved" file and the g-file.

Warning

Lines beginning with an SOH ASCII character (binary 001) cannot be
placed in the sees file unless the SOH is escaped. This character has
special meaning to sees (see •cc•file(F)) and will cause an error.

A gtt of many sees files, followed by a delta of those files, should
be avoided when the get genera.tes a large amount of data.. Instead,
multiple get/delta sequences should be used.

If the standard input (-) is specified on the delta command line, the
- m (it necessary) and - y options mu•t also be present. Omission
of these options causes an error to occur.

See Also

admin(CP) , bdiff(C) , get(CP) , help(CP), prs(CP) , sccsfile(F)

Dia$f1ostics

Use Aelp(CP) for explanations.

March 24, 1984 Page 3

DEL TA (CP}

ist (see get(CP) for the definition of list)
rhich are to be ignored when the file is
t the cha.nge level (SID) created by this

es file has the v flag set (see admin(CP))
!odification Request (MR) number muft be
as the reason for creating the new delta.

is not used a.nd the sta.ndard input is a termi·
e prompt MRs! is issued on the sta.nda:rd out­

:fore the standard input is read; if the sta.ndard
is not a terminal, no prompt is issued. The

f prompt always precedes the comments!
.tpt (see - y keyletter).

s in a list are se parated by bla.nks a.ndfor tab
J.raeters. An unesca.ped newline character ter·
mates the MR list.

lote that if the v flag has a value (see admin(CP)) ,
t i s taken to b e the name or a program (o r shell

procedure} which will validate the correctness or the
MR numbers. If a non�ero exit status is returned
from MR number validation program, delta ter·

'minates (it is assumed that the MR numbers were
not all valid).

Arbitrary text used to describe the reason for mak­
ing the delta. A null string is considered a. valid
comment.

If - y is not specified a.nd the standard input is a
terminal, the prompt comments! is issued on the
sta.ndard output before the standard input is read; if
the standard input is not a terminal, no prompt is
issued. An unescaped newline character terminates
the comment text.

Causlls delta to print (on the sta.ndard output) the
sees file differences before a.nd after the delta is
applied. D ifferences are displayed in a diD(C) for·
m at.

files of the form ?-file are explaine d in Chapter 5, "SCCS: A
nee Code Control System" in the XENIX Programmer's Guide. The

.ming convention for these files is also described there.

·file Existed beforll the execution ot delta; removed alter
completion of delta.

Page 2

� k) {- ej

�ording
· The
to a.ll

lOUgh
that

llrith
is

t is
in,

e

GET(CP) GET (CP)

gets for editing on the sa.me SID until delta is executed or
the j (joint edit) fla.g is set in the sees file (see
admin(CP)) . Concurrent use of get - e for different
SIDs is a.lwa.ys allowed.

If the g-file generated by get with a.n - e option is
accidentally ruined in the editing process, it ma.y be
regenerated by reexecuting the get command with the
- k option in place of the - e option.

sees file protection specified via. the ceiling, floor, a.nd
authorized user list stored in the sees file (see
admin(CP)) are enforced when the - e option is used.

- b Used with the - e option to indicate tha.t the new delta.
should ha.ve a.n SID in a. new branch. This option is
ignored if the b fla.g is not present in the file (see
admin(CP)) or if the retrieved delta is not a. lea.f delta.
(A leaf delt11 is one tha.t ha.s no successors on the sees
file tree.)

- ililt

Note: A branch delta ma.y always be created from a. non­
leaf delta.

A list of deltas to be included (forced to be applied) in
the creation of the generated file. The list ha.s the follow­
ing syntax:

<list> ::-= <range > I <list> , <range >
<range > ::== SID I SID - SID

SID, the sees Identification of a. delta., may be in a.ny
form described in Chapter 5, "SCCS: A Source Code
Control System," in the XENIX Programmer's Guide.

- x/ist A list of deltas to be excluded (forced not to be applied)
in the creation of the generated file. See the - i option
for the lilt format.

- k Suppresses replacement of identification keywords (see
below) in the retrieved text by their value. The - k
option is implied by the - e option.

- I(pf Causes a. delta. summary to be written into a.n /-file. If
- lp is used then a.n /-file is not created; the delta. sum-
mary is written on the standard output instead. See
FILES for the format of the /-file.

- p Causes the text retrieved from the sees file to be written
on the standard output. No g-file is created. All output
tha.t normally goes to the standard output goes to file
descriptor 2 instead, unless the - s option is used, in
which ca.se it disappears.

March 24, 1984 Page 2

GET (CP) GET(CP)

- s Suppresses all output normally written on the standard
output. However, fatal error messages (which always go
to file descriptor 2) remain unaffected.

- m Causes each text line retrieved from the sees file to be
preceded by the SID of the delta that inserted the text
line in the sees file . . The format is: SID, followed by a
horizontal tab, followed by the text line.

- n Causes each generated text line to be preceded with the
�% identification keyword value (see below) . The for­
mat is: �% value, followed by a horizontal tab, fol­
lowed by the text line. When both the - m and - n
options are used, the format is: �%value, followed by
a horizontal tab, followed by the - m option generated
format.

- g Suppresses the actual retrieval of text from the sees file.
It is primarily used to generate an /-file, or to verify the
existence of a particular SID.

- t Used to access the most recently created (top) delta in a
given release (e.g., - rl) , or release and level (e.g.,
- r1.2) .

- aeeq-no. The delta sequence number or the sees file delta (ver­
sion) to be retrieved (see eccefile(F)) . This option is
used by the comb(CP) command; it is not particularly
useful should be avoided. If both the - r and - a
options are specified, the - a option is used. Care
should be taken when using the - a option in conjunc­
tion with the - e option, as the SID of the delta to be
created may not be what you expect. The - r option can
be used with the - a and - e options to control the nam­
ing of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with
the SID being accessed and with the number of lines retrieved from
the sees file.

Ir the - e option is used, the SID of the delta to be made appears
after the SID accessed and before the num her of lines generated. Ir
there is more than one named file or if a directory or standard input
is named, each filename is printed (preceded by a newline) before it
is pro.cessed. Ir the - i option is used included deltas are listed fol­
lowing the notation "Included"; if the - x option is used, excluded
deltas are listed following the notation "Excluded".

Identification Keywords

Identifying information is inserted into the text retrieved from the
sees file by replacing identification keyworde with their value

March 24, 1984 Page 3

DEL TA (CP)

(see get(CP) for the definition of lilt)
ch are to be ignored when the file is
he change level (SID) created by this

file has the v flag set (see 11tlmin(CP))
.ification Request {MR) number mu6t be
the reason for creating the new delta.

ot used and the standard input is a termi­
ompt MRs! is issued on the standard out­
the standard input is read; if the standard

,ot a terminal, no prompt is issued. The
·ompt always precedes the comments!
lee - y keyletter).

a list are separated by blanks and/or tab
rs. An unescaped newline character ter­
the MR list.

1at if the v flag has a value (see 11dmin(CP)) ,
ken to be the name or a program (or shell
ure) which will validate the correctness of the
.1mbers. If a nonzero exit status is returned
MR number validation program, delta ter­

es (it is assumed that the MR numbers were
11 valid) .

trary text used to describe the reason for m a.k­
the delta.. A null string is considered a valid
ment.

- y is not specified and the standard input is a
minal, the prompt comments! is issued on the
Jldard output before �he standard input is read; if
e standard input is not a terminal, no prompt is
med. An unescaped newline character terminates
'e comment text.

Jauses delta to print (on the standard output) the
;ccs file differences before and after the delta. is
&pplied. D ifferences are displayed in a di.D(C) for­
mat.

l form ?-file are explained in Chapter S, "SCCS: A
!ontrol System" in the XENIX Programmer'e Guide. The
ntion for these files is also described there.

Existed before the execution of delta; removed alter
completion of delta.

Page 2

GET(CPJ
>e used in the

ag in the file the sees lile

!>S%) of the

>D). 'Y) .
;),
file (see

r iden-
"this

ended
rs.
) .
:s for
ntaJ-

�(C)
iles.

·n
e

)

GET (CP) GET(CP)

implied, the g-file's mode is 644; otherwise the mode is 444. Only
the real user need have write permission in the current directory.

The !-file contains a table showing which deltas were applied in gen­
erating the retrieved text. The !-file is created in the current direc­
tory if the - · I option is used; it.s mode is 444 and it is owned by the
real user. Only the real user need have write permission in the
current directory.

Lines in the !-file have the following format:

a. A blank character if the delta was applied;
* otherwise

b. A blank character if the delta was applied or wasn't applied
and ignored;
* if the delta wasn't applied and wasn't ignored

c. A code indicating a "special" reason why the delta was or
was not applied:

d. Blank

"1": Included
"X": Excluded
"C": Cut off (by a - c option)

e. sees identification (SID)
f. Tab character
g. D ate and time (in the form YY/MM/DD HH :MM:SS) of crea­

tion
h. Blank
i. Login name of person who created delta

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an
- e option along to delta. Its contents are also used to prevent a
subsequent execution of get with an - e option for the same SID
until delta is executed or the joint edit flag, j, (see admin(CP)) is set
in the sees file. The p-file is created in the directory containing the
sees file and the effective user must have write permission in that
directory. Its mode is 644 and it is owned by the effective user. The
form at of the p-file is: the gotten SID , followed by a blank, followed
by the SID that the new delta will have when it is made, followed by
a blank, followed by the login name of the real user, followed by a
blank, followed by the date-time the get was executed, followed by a
blank and the - i option if it was present, followed by a blank and
the - x option if it was present, followed by a newline. There can
be an arbitrary number of lines in the p-file at any time; no two lines
can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous
updates. lt.s contents are the binary (2 bytes) process ID of the com­
m and (i.e., get) that created it. The z-file is created in the directory
containing the sees file for the duration of get. The same protection
restrictions as those for the p-file apply for the z-file . The z-file is

March 24, 1984 Page 5

GET (CP) GET(CP)

created mode 444.

See Also

admin(CP) , delta(CP), help(CP) , prs(CP), what(C) , sccsfile(F)

Diagnostics

Use help(CP) for explanations.

Notes

Ir the effective user has write permission (either explicitly or impli­
citly) in the directory containing the sees files, but the real user
doesn't, then only one file may be named when the - e option is
used.

March 24, 1984 Page 6

GETS (CP) GETS (CP)

Name

gets - Gets a string from the standard input.

Syntax

gets [string J

Description

Gets can be used with uh(CP) to read a string from the standard
input. If string is given it is used as a default value if an error
occurs. The resulting string (either 1tring or as read from the stan­
dard input) is written to the standard output. If no ltring is given
and an error occurs, getl exits with exit status I.

See Also

line(C) , csh(CP)

March 24, 1984 Page 1

HDR (CP) HDR (CP)

Name

hdr - Dis plays selected parts of object files.

Syntax

heir I - dhprsSt J file . . .

Description

Hdr displays object file headers, symbol tables, and text or data relo­
cation records in human-readable formats. It also prints out seek
positions for the various segments in the object file.

A.out, x .out, and x.out segmented formats and archives are under­
stood.

The symbol table form at consists of six fields. In a.out formats the
third field is missing. The first field is the symbol's index or position
in the symbol table, printed in decimal. The index of the first entry
is zero. The second field is the type, printed in hexadecimal. The
third field is the s_seg field, printed in hexadecimal. The fourth
field is the symbol's value in hexadecimal. The fifth field is a single
character which represents the symbol's type as in nm(CP), except C
common is not recognized as a special case of undefined. The last
field is the symbol name.

IC long form relocation is present, the format consists of six fields.
The first is the descriptor, printed in hexadecimal. The second is the
symbol iD , or index, in decimal. This field is used for external relo­
cations as an index into the symbol table. It should reference an
undefined symbol table entry. The third field is the position, or
offset, within the current segment at which relocation is to take
place; it is printed in hexadecimal. The fourth field is the name of
the segment referenced in the relocation: text, data, bss or EXT for

· external. The fifth field is the size of relocation: byte, word (2
bytes) , or long. The last field will indicate, if present, that the relo­
cation is relative.

If short form relocation is present, the format consist of three fields.
The first field is the relocation command in hexadecimal. the second
field contains the name of the segment referenced; text or data. The
last field indicates the size or relocation: word or long.

Options and their meanings are:

- h Causes the object file header and extended header to be printed
out. Each field in the header or extended header is labeled.
This is the default option.

March 24, 1984 Page 1

HDR (CP) HDR (CP)

- d Causes the data relocation records to be printed out.

- t Causes the text relocation records to be printed out.

- r Causes both text and data relocation to be printed.

- p Causes seek positions to be printed out as defined by macros in
the include file, <a.out.h>.

- s Prints the symbol table.

- S Prints t.he file segment table with a header. (Only applicable to
x.out segmented executable files.)

See Also

a.out(F), nm(CP)

March 24, 1984 Page 2

HELP (CP) HELP (CP)

Name

help - Asks for help about ·Sees commands.

Syntax

help (args]

Description

Help finds information to explain a message from an sees command
or explain the use of a command. Zero or more arguments may be
supplied. It no arguments are given, help will prompt for one.

The arguments may be e ither message numbers (which normally
appear in parentheses following messages) or command names.
There are the following types or arguments:

type I Begins with nonnumerics, ends in numerics. The non­
numeric prefix is usually an abbreviation for the program
or set of routines which produced the message (e .g., ge6,
for message 6 from the get command) .

Does not contain numerics (as a command, such as get) type 2

type 3 Is all numeric (e.g., 212)

The response of the program will be the explanatory information
related to the argument, if there is any.

When all else fails, try "help stuck".

Files

· /usr/lib/help Directory containing files of message text

March 2·i, 1984 Page I

)

W (CP) W(CP)

Name
ld - link editor

Syntax
ld [option 1 file . . .

Description

Ld combines several object programs into one, resolves external
references, and searches libraries. Ld combines the given object
files, producing an object module which can be either executed or
become the input for a further ld run (in the latter case, the -r
option must be given to preserve the relocation records). The
output of ld is left by default in the file x.out. This file is made
executable only if no errors occurred.
The files given as arguments are concatenated in the order
specified. The default entry point of the output is the beginning of
the first routine in the first file. The C compiler, cc , calls ld
automatically unless given the -e option. The command line that
cc passes to ld is

ld lliblertO.o rues cc-options -Ie
If any argument is a library, it is searched exactly once at the point
it is encountered in the argument list. Only those routines defining
an unresolved external reference are loaded. If a routine from a
library references another routine in the library, and the library has
not been processed by ranlib(CP), the referenced routine must
appear after the referencing routine in the library. Thus the order
of programs within libraries may be important. If the first member
of a library is named • _.SYMDEF' , then it is understood to be a
dictionary for the library

as produced by ranlib; the dictionary is searched iteratively to
satisfy as many references as possible.

The symbols '...etext' , '...edata' and •_end' ('etext' , 'edata' and 'end'
in C) are reserved, and if referred to, are set to the first location
above the program, the first location above initialized data, and the
first location above all data, respectively. It is erroneous to define
these symbols.

If no errors occur and there are no unresolved external references,
then short form relocation information is attached and the file is
made executable. This short form relocation information is
sufficient to allow the file to be used for another pass of ld , to
change the text and data base addresses. At the same time, the -n

May 10, 1984 Page 1

W (CP) LD(CP)

, -i , or - F options can b e used to produce different types of
executable files.

l.d understands several options. Except for -1, they should appear
before the names of all object file arguments.

-s 'Strip' the output to save space by removing the symbol
table and relocation records. Note that stripping impairs
the usefulness of the debugger. This information can also
be removed later with strip(CP).

-sr Do not attach the short form of relocation. This does not
imply removing the symbol table, as with -s •

-u Take the following argument as a symbol and enter it as
uJXIefined in the symbol table. This is useful for loading
wholly from a library, since initially the symbol table is
empty and an unresolved reference is needed to force the
loading of the first routine.

-U Discard all symbols except those that are undefined exter­
nal.

-g The same as -U, except also retain the following list of
global symbols. The list consists of the next command
line arguments and is terminated by the end of the com­
maJXI line, by - alone, or by any further option beginning
with a - .

- G The same a s -g, except that the list of global symbols is
taken from the file named by the following argument. If
the next argument is - alone, the standard input is read.
The symbols may be separated by any type of whitespace.

-lx This option is an abbreviation for the libraCy name
'llibllibx.a' , where x is a string. If the library does not
exist, ld then tries '/usrllibllibx.a'. A library is searched
when its name is encountered, so the placement of a -I is
significant. Note that -1 with no argument, defaults to
-lc: • If the processor on which ld is running is not the
same as the target processor, then it is possible that -p
may be implied. In the case of the MC68000 target, -p
/usr/Ublmllb is implied.

-p Take the following argument as the directory in which -lx
libraries will be fouJXI.

-x Do not preserve local (non.globl) symbols in the output

May 10, 1984 Page 2

LD (CP) LD (CP)

symbol table; only enter external symbols. This option
saves some space in the output file.

-X Save local symbols except for those whose names begin
with 'L' . This option is used by cc(CP) to discard inter­
nally generated labels while retaining symbols local to
routines.

-r Generate (long form) relocation records in the output file
so that the output file can be the subject of another ld run.
This flag also prevents final definitions from being given
to common symbols and suppresses the 'undefined sym­
bol' diagnostics.

-d Force definition of common storage even if the -r flag is
present.

-on Arrange that when the output file is executed, the text
portion will be read-only and shared among all users
executing the file. This involves moving the data areas up
to the first possible page boundary following the end of
the text. A warning is issued if the current machine does
not support this option.

-ur Identical to -on except that the text and data positions are
reversed.

-n Identical to whichever of -on and -ur is the default for
the current machine.

-i When the output file is executed, the program text and
data areas are given separate address spaces. The only
difference between this option and -n is that with -1 the
data may start at a boundary unrelated to the position of
the text. A warning is issued if the current machine does
not support this option.

-o The name argument after -o is used as the name of the ld
output file, instead of x.out.

-e The following argument is taken to be the name of the
entry point of the loaded program. The base of the text
segment is the default.

-D The next argument is a decimal number that sets the size
of the data segment.

-N The next argument is taken to be a hexadecimal number
that sets the pagesize, or rounding size, for use with the
-n option. With -i, it specifies the base of the data

May 10, 1984 Page 3

W (CP) W (CP)

segment. With - on , it is used to compute the base of the
data segment. With -nr, it is used to compute the base
of the text segment.

-R The next argument is taken to be a hexadecimal number
that is used as the base address for text relocation. With
-1 or -nn , it also specifies the text base address; with
-nr it specifies the data base address.

-F The next argument is taken to be a hexadecimal number
that specifies the size of the stack. required by the object
file when executing. This only has meaning on those
proc.essors that cannot expand the stack dynamically.

FOes
nibnib'!' .a libraries
/usr/mlibnib* .a more libraries
x.out output file

See AJso
as(CP), ar(CP), cc(CP), ranlib(CP), strip(CP), x.out(F)

May 10, 1984 Page 4

LEX(CP) LEX(CP)

Name

lex - Generates programs for lexical analysis.

Syntax

lex [- ctvnJ [file J . . •

Description

Lez generates programs to be used in simple lexical analysis of text.

The input filee (standard input default) contain strings and expres­
sions to be searched for, and C text to be executed when strings are
round.

A file lex.yy.c is generated which, when loaded with the library,
copies the input to the output except when a string specified in the
file is found; then the corresponding program text is executed. The
actual string matched is left in wtezt, an external character array.
Matehing is done in order of the strings in the Cile. The strings may
contain square brackets to indicate character classes, as in (abx- z]
to indicate a, b, x, y, and z; and the operators •, + , and f mean
respectively any nonnegative number of, any positive number of,
and either zero or one occurrences of, the previous character or
character class. The character • is the class of all ASCII characters
except newline. Parentheses for grouping and vertical bar for alter­
nation are also supported. The notation r{d,e} in a rule indicates
between d and e instances of regular expression r. It has higher pre­
cedence than � but lower than •, f, + , and concatenation. The
character • at the beginning of an expression permits a successful
match only immediately after a newline, and the character $ at the
end of an expression requires a trailing newline. The character / in
an expression indicates trailing context; only the part of the expres­
sion up to the slash is returned in r,tezt, but the remainder of the
expression must follow in the input stream. An operator character
may be used as an ordinary symbol if it is within • symbols or pre­
ceded by \. Thus [a- zA- Z)+ matches a string of letters.

Three subroutines defined as macros are expected: input() to read a
character; unput(c) to replace a character read; and output(c) to
place an output character. They are defined in terms of the standard
streams, but you can override them. The program generated is
named yylex(), and the library contains a main() which calls it. The
action REJECT on the right side of the rule causes this match to be
rejected and the next suitable match executed; the function
yymore() accumulates additional characters into the same wtezt; and
the function yyless(p) pushes back the portion of the string matched
beginning at p, which should be between wte:lt and wtezt+ 111ieng.
The macros input and output use files yyin and yyout to read from

March 26, 1984 Page l

LEX(CP) LEX(CP)

and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text
and is copied; it it precedes � it is copied into the external defini·
tion area of the lex.yy.c file. All rules should follow a %1ij as in
YACC. Lines preceding � which begin with a nonblank character
define the string on the left to be the remainder of the line; it can be
called out later by surrounding it with Q. Note that curly brackets
do not imply parentheses; only string substitution is done.

Example

D
%%

(0- 9J

if printf("IF statement\n") ;
(a- z J+ printf("tag, value %s\n",yytext);
O{D }+ printf("octal number %s\n",yytext) ;
{D }+ printf("decimal number %s\n",yytext) ;
"+ + " printf("unary op\n") ;
"+ " printf("binary op\n") ;
"/*" { loop:

while (input() !=== '*') ;
switch (input())

}

{
case 1 /': break;
case '*': unput('*') ;
default: go to loop;
}

The external names generated by le:t all begin with the prefix yy or
YY.

The options must appear before any files. The option - c indicates
C actions and is the default, - t causes the le:'C.yy.c program to be
written instead to standard output, - v provides a. one-line summary

. or statistics or the machine generated, - n will not print out the -
summary. Multiple files are treated as a. single tile. If no files are
specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set in
the definitions section:

o/'cp ft
number or positions is ft (default 2000)

%t n
number or states is n (500)

% n
number or parse tree nodes is n {1000)

. March 26, 1984 Page 2

LEX(CP) LEX(CP)

� II
number of transitions is II (3000)

The use or one or more or the above automatically implies the - v
option, unless the - n option is used.

See Also

yace(CP)
Xenix Software De•elopmeat Gvi4e

March 26, 1084 Page 3

LINT (CP) L/NT (CP)

Name

lint - Checks C language usage and synta.x.

Syntax

lint [- abchlnpuvx] file ...

Description

Lint attempts to detect features of the C program file that are likely
to be bugs, nonporta.ble, or wasteful. It a.lso checks type usage more
strictly than the C compiler. Among the things which are currently
detected are unreachable statements, loops not entered at the top,
a.utomatic variables declared and not used, and logical expressions
whose value is constant. Moreover, the usage of functions is
checked to find functions which return values in some places and
not in others, functions called with varying numbers of arguments,
and functions whose values are not used.

It more than one file is given, it is assumed that all the files are to be
loaded together; they are checked for mutual compatibility. If rou­
tines from the standard library are called from file, lint checks the
function definitions using the standard lint library llibc.ln. If lint is
invoked with the - p option, it checks function definitions from the
portable lint library llibport.ln.

Any number of lint options may be used, in any order. The follow­
ing options are used to suppress certain kinds of complaints:

- a Suppresses complaints about assignments of long values to vari­
ables that are not long.

- b Suppresses complaints about break statements that cannot be
reached. (Programs produced by lez or uacc will often result in
a large number of such complaints.)

- c Suppresses complaints about casts that have questionable porta­
bility.

- h Does not apply heuristic tests that attempt to intuit bugs,
improve style, and reduce waste.

- u Suppresses complaints about functions and external variables
used and not defined, or defined and not used. (This option is
suitable for running lint on a. subset of files of a larger program.)

- v Suppresses complaints about unused arguments in functions.

- x Does not report variables referred to by external declarations
but never used.

March 24, 1984 Page 1

LINT (CP) LINT(CP)

The following arguments alter lint'• behavior:

- n Does not check compatibility against either the standard or the
portable lint library.

- p Attempts to check portability to other dialects of C.

- llibname
Checks functions definitions in the specified lint library. For
example, - lm causes the library llibm.ln to be checked.

The - D, - U, and - I options or ee(CP) are also recognized as
separate arguments.

Certain conventional comments in the C source will change the
behavior or lint:

/*N(ffREACHED*/
At appropriate points stops comments about unreachable
code.

/*YARARGSn*/
Suppresses the usual checking for variable numbers or argu·
menta in the following function declaration. The data. types
or the first n arguments are checked; a missing n is taken to
be 0.

/*ARGSUSED*/
Turns on the - v option for the next function.

/*LINTLIBRARY*/
Shuts off complaints about unused functions in this file.

Lint produces its first output on a per source file basis. Complaints
regarding included files are collected and printed after all source files
have been processed. Finally, information gathered from all input
files is collected and checked for consistency. At this point, if it is
not clear whether a complaint stems from a given source file or from
one of its included files, the source filename will be printed followed
by a question mark.

Files

/usr /lib/lintl l2) Program files

/usr/lib/llibc.ln, /usr/lib/llibport.ln,
/usr/lib/llibdbm.Jn, /usr/lib/llibtermlib.ln

Standard lint libraries (binary format)

March 24, 1984

/usr/lib/llibm.Jn,

Page 2

LINT (CP) L/NT(CP)

/usr /li b/llibc, /usr /lib /llibpo rt, /usr/lib/llibm, /usr /lib /llibdbm,
fusr/lib/lliburmlib

Standard lint libraries (source format)

fusr/tmp/*lint* Tempora.ries

See Also

cc(CP)

Notes

Ezit(S) , and other functions which do not return, are not under·
stood. This can cause improper error messages.

March 24, 1984 Page 3

LORDER (CP) LORDER (CP)

Name

!order - Finds ordering relation for an object library.

Syntax

lorder file •..

Description

Lorder creates an ordered listing of object filenames, showing which
files depend on variables declared in other files. The file is one or
more object or library archive files (see ar(CP)) . The standard out­
put is a list or pairs or object filenames. The first file or the pair
refers to external identifiers defined in the second. The output may
be processed by uort(CP) to find an ordering of a library suitable for
one-pass access by ld(CP) .

Example

The following command builds a new library from existing .o files:

ar cr library ' !order *.o l tsort'

Files

*symref, *symdef Temp files

See Also

ar(CP) , ld(CP) , tsort(CP)

Notes

Object files whose names do not end with .o, even when contained
in library archives, are overlooked. Their global symbols and refer­
ences are attributed to some other file.

March 24, 1984 Page 1

M./ (CP) M4 (CP)
Name

m4 - Invokes a macro processor.

Syntax

m4 (options I [files I

Description

M./ is a macro processor. intelided as a front end for Ratfor, C, and
other languages. Each of the argument jile1 is processed in order; if
there are no files, or if a filename is - , the standard input is read.
The process.ed text is written on the standard output.

The options and their effects are as follows:

- e Operates interactively. Interrupts are ignored and the output is
unbuffered.

- s Enables line sync output for the C preprocessor (fline . . .)

- Bint
Changes the size of the push-back and argument collection
buffers from the default of 4,096.

- Hint
Changes the size of the symbol table hash array from the
default of 199. The size should be prime.

- Sint
Changes the size of the call stack from the default of 100 slots.
Macros take three slots, and nonmacro arguments take one.

- Tint
Changes the size of the token buffer from the default of 512
bytes.

To be effective, these flags must appear before any filenames and
before any - D or - U flags:

- Dname[=vall
Defines name to 11al or to null in val's absence.

- Uname
Undefines name.

March 24, 1984 Page 1

)

M.t (CP) M-l (CP)

Macro Calls

Macro calls have the form:

name(argl,arg2, . . . , argn)

The (must immediately follow the name of the macro. If a defined
macro name is not followed by a (, it is deemed to have no argu­
ments. Leading unquored blanks, tabs, and newlines are ignored
while collecting arguments. Potential macro names consist of alpha­
betic lett�rs, digits, and underscore _, where the first character is not
a digit.

· Left and right single quotation m arks are used to quote strings. The
value of a quoted string is the string stripped of the quotation marks.

When a macro name is recognized, its arguments are collected by
searching for a matching right parenthesis. Macro evaluation
proceeds normally during the collection of the arguments, and any
commas or right parentheses which happen to turn up within the
value of a nested call are as effective as those in the original input
text. After argument collection, the value of the m acro is pushed
back onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be
redefined, but once this is done the original meaning is lost. Their
values are null unless otherwise stared.

define The second argument is installed as the value of the
m acro whose name is the first argument. Each
occurrence of $n in the replacement text, where n is a
digit, is replaced by the n-th argument. Argument 0 is
the name of the macro; missing arguments are replaced
by the null string; $f is replaced by the number or
arguments; $* is replaced by a list of all the arguments
separated by commas; $0 is like $*, but each argument
is quo red (with the current quotation marks) .

undefine Removes the definition of the macro named in Its argu­
ment.

defn Returns the quoted definition of its argument(s). It is
useful for renaming macros, especially built-ins.

pushdef Like define, but saves any previous definition.

popdef Removes current definition of its argument(s) , expos­
ing the previous one if any.

ifdef If the first argument is defined, the value is the second
argument, otherwise the third. If there is no third
argument, the value is null. The word XENIX is
predefined in M4.

March 24, 1984 Page 2

M4 (CP)

shift

M4 (CP)
Returns all but its first argument. The other arguments
are quoted and pushed back with commas in between.
The quoting nullifies the effect of the extra scan that
will subsequently be performed.

changequote Changes quotation marks to the first and second argu­
ments. The symbols may be up to five characters long.
Oh.angequote without arguments restores the original
va.lues (i.e., ' 1 ·

changecom Changes left and right comment markers from the
default f and newline. With no arguments, the com­
ment mechanism is effectively disabled. With one
argument, the left marker becomes the argument and
the right marker becomes newline. With two argu­
ments, both markers are a.fl'ected. Comment markers
may be up to' five characters long.

divert M4 maintains 10 output streams, numbered 0-9. The
final output is the concatenation of the streams in
numerical order; initia.lly stream 0 is the current
stream. The tli�ert macro changes the current output
stream to its (digit-string) argument. Output diverted
.to a stream other than 0 through 9 is discarded.

undivert Causes immediate output of text from diversions
named as arguments, or all diversions if no argument.
Text may be undiverted into another diversion.
Undiverting discards the diverted text.

divnum Returns the value of the current output stream.

dnl Reads and discards characters up to and including the
next newline.

ifelse Has three or more arguments. Ir the first argument is
the same string as the second, then the value is the
third argument. Ir not, and if there are more than four
arguments, the process is repeated with arguments 4, 5,
6 and 7. Otherwise, the va.lue is either the fourth
string, or if it is not present, null.

incr Returns the value of its argument incremented by 1.
The va.lue of the argument is ca.lculated by interpreting
an initia.l digit-string as a decimal number.

deer Returns the value of its argument decremented by 1.

eva.l Eva.luates its argument as an arithmetic expression,
using 32-bit arithmetic. Operators include + , - , •, /,
% • (exponentiation), bitwise &, 1 . ·, and -; relation­
a.ls; parentheses. Octa.l and hex numbers may be
specified as in C. The second argument specifies the

March 24, 1984 Page 3

)

M4 (CP)

len

index

substr

translit

include

M4 (CP)

radix for the result; the default is IO. The third argu­
ment may be used to specify the minimum number of
digits in the result.

Returns the num her of characters in its argument.

Returns the position in its first argument where the
second argument begins (zero origin) , or - I if the
second argument does not occur.

Returns a substring of its first argument. The second
argument is a zero origin number selecting the first
character; the third argument indicates the length or
the substring. A missing third argument is taken to be
large enough to extend to the end of the first string.

Transliterates the characters in its first argument from
the set given by the second argument to the set given
by the third. No abbreviations are permitted.

Returns the contents of the file named in the argu­
m ent.

sinclude Identical to include, except that it says nothing if the
file is inaccessible.

syscmd Executes the XENIX command given in the first argu­
ment. No value is returned.

sysval Is the return code from the last call to BVBcmd.

maketemp Fills in a string of XXXXX in its argument with the
current process ID.

m4exit Causes immediate exit from m4. Argument I, if given,
is the exit code; the default is 0.

m4wrap Argument I will be pushed back at final EOF; example:
m 4wrap('cleanup() 1

errprint Prints its argument on the diagnostic output file.

dumpdef Prints current names and definitions, for the named
items, or for all if no arguments are given.

traceon With no arguments, turns on tracing for all macros
(including built-ins). Otherwise, turns on tracing for
named macros.

traceoff Turns off trace globally and for any macros specified.
Macros spe cifically traced by traceon can be untraced
only by specific calls to traceof!.

March 24, 1984 Page 4

MAKE (CP) MAKE (CP)

Name

m ake - Maintains, updates, and regenerates groups of programs.

Syntax

make [- f makefile] [- p] [- i] [- k] [- s] [- rj [- n] [- bj [- e]
[- t) [- qJ [- d) [names)

Description

The following is a brief description of all options and some special
names:

- r makefile Description filename. Makefile is assumed to be the
name of a description file. A filename of - denotes
the standard input. The contents of makefile override
the built,. in rules if they are present.

- p Prints out the complete set of macro definitions and
target descriptions.

- i Ignores error codes returned by invoked commands.
This mode is entered if the fake target name .IGNORE
appears in the description. file.

- k Abandons work on the current entry, but continues on
other branches that do not depend on that entry.

- s Silent mode. Does not print command lines before
executing. This mode is also entered if the fake target
name .SILENT appears in the description file.

- r Does not use the built,.in rules.

·- n No execute mode. Prints commands, but does not
execute them. Even lines beginning with an Q are
printed.

- b Compatibility mode for old makefiles.

- e Environment variables override assignments within
makefiles.

- t Touches the target files (causing them to be up-to­
date} rather than issues the usual commands.

- d Debug mode. Prints out detailed information on files
and times examined.

March 24, 1984 Page 1

MAKE (CP) MAKE (CP)

- q Question. The make command returns a zero or
nonzero status code depending on whether the target
file is or is not up-to-dare .

. DEFAULT IC a file must be made but there are no explicit com­
mands or relevant built-in rules, the commands associ­
ated with the name .DEFAULT are used if it exists .

. PRECIOUS Dependents of this target will not be removed when
quit or interrupt are hit.

• SILENT Same effect as the - s option .

. IGNORE Same effect as the - i option .

Make executes commands in makefile to update one or more target
namer. Name is typically a program. If no - t option is present,
makefile, Makeflle, s.makefile, and s .Makefile are tried in order.
If makefile is - , the standard input is taken. More than one - t
makefile argument pair may appear.

Make updates a target only if it depends on files that are newer than
the target. All prerequisite files of a target are added recursively to
the list of targets. Missing files are deemed to be out of date.

Makefile contains a sequence of entries that specify dependencies.
The first line or an entry is a blank-separated, nonnull list or targets,
then a : , then a (possibly null) list or prerequisite files or dependen­
cies. Text following a ; and all following lines that begin with a tab
are shell commands to be executed to update the target. The first
line that does not begin with a tab or # begins a new dependency or
macro definition. Shell commands may be continued across lines
with the <backslash> <newline > sequence. (f) and newline sur­
round comments.

The following makefile says that pgm depends on two files a.o and
b.o, and that they in turn depend on their corresponding source files
(a.c and b.c) and a common file ind.h:

pgm: a.o b.o
cc a.o b.o - o pgm

a.o: incl.h a.c
cc - c a.c

b.o: incl.h b.c
cc - c b.c

Command lines are executed one at a time, each by its own shell. A
line is printed when it is executed unless the - s option is present,
or the entry .SILENT: is in makefile, or unless the first character or
the command is 0 . The - n option specifies printing without execu­
tion; however, if the command line has the string $(MAKE) in it, the

March 24, 1984 Page 2

.MAKE (CP) MAKE (CP)

line is always executed (see discussion of the MAKEFLAGS macro
under Environment) . The - t (touch) option updates the modified
date of a file without executing any commands.

Commands returning nonzero status normally terminate m11ke. Ir
the - i option is present, or the entry .IGNORE: appears in makefile,
or if the line specifying the command begins with
<ta.b> <hyphen>, the error is ignored. If the - k option is
present, work is abandoned on the current entry, but continues on
other branches that do not depend on that entry.

The - b option allows old ma.kefiles (those written for the old ver­
sion of make) to run without errors. The difference between the old
version of make and this version is that this version requires all
dependency lines to have a (possibly null) command associated with
them. The previous version of make assumed if' no command was
specified explicitly that the command was null.

Interrupt and quit cause the target to be deleted unless the target
depends on the special name .PREaous.

Environment

The environment is read by make. All variables are assumed to be
macro definitions and processed as such. The environment variables
are processed before any ma.kefile and after the internal rules; thus,
macro assignments in a ma.kefile override environment variables.
The - e option causes the environment to override the macro
assignments in a makefile.

The !'.iAKEFLAGS environment variable is processed by m11ke as
containing any legal input option (except - r, - p, and - d) defined
for the command line. Further, upon invocation, make "invents"
the variable if it is not in the environment, puts the current options
into it, and passes it on to invoca.tions of commands. Thus,
MAKEFLAGS always contains the current input options. This proves
.very useful for "super-makes". In fact, as noted above, when the
- n option is used, the command $(MAKE) is executed anyway;
hence, one can perform a make - n recursively on a whole software
system to see what would have been executed. This is because the
- n is put in !'.fAKEFLAGS and passed to further invocations of
$(MAKE). This is one way of debugging all of the ma.kefiles for a
software project without actually doing anything.

MaeroB

Entries of the form ttring1 = etringe are macro definitions. Subse­
quent appearances or $(etring1 (:eubet1=(eubeteJl) are replaced by
Btring2. The parentheses are optional if a single character m acro
name is used and there is no substitute sequence. The optional
:subst1=eubet2 is a substitute sequence. If it is specified, all nono­
verlapping occurrences of subett in the named macro are replaced by

March 24, 1984 Page 3

MAKE (CP) MAKE (CP)

eubne. Strings (for the purposes of this type of substitution) are
delimited by blanks, tabs, newline characters, and beginnings of
Jines. An example of the use of the substitute sequence is shown
under Libraries.

Internal Macros

There are five internally m aintained m acros which are useful for
writing rules for building targets:

$* The macro $* stands for the filename part of the current
dependent with the suffix deleted. It is evaluated only for
inference rules.

$@ The $0 m acro stands for the full t&rget name of the current
target. It is evaluated only for explicitly named dependencies.

$< The $< m acro is only evaluated for inference rules or the
.DEFA'OLT rule. It is the module which is out of date with
respect to the target (i.e., the "manufactured" dependent
filename) . Thus, in the .c.o rule, the $< macro would evalu·
ate to the .c file. An example for making optimized .o files
from .c files is:

.c.o:
cc - c - 0 $*.c

or:

.c.o:
cc - c - 0 S <

$! The $! macro is evaluated when explicit rules from the
makefile are evaluated. It is the list of prerequisites that are
out of date with respect to the target; essentially, those
modules which must be rebuilt.

$% The $% macro is only evaluated when the target is an archive
library member of the form lib(file.o). In this case, $@ evalu­
ates to lib and $%evaluates to the library member, file.o.

Four of the five macros can h ave alternative forms. When an upper
case D or F is appended to any of the four macros the meaning is
changed to " directory part" for D and "file part" for F. Thus,
$(@ D) refers to the directory part of the string $@ . If there is no
directory part .f is generated. The only macro excluded from this
alternative form is $! .

Suffizee

Certain names (ror instance, those ending with .o) have default

March 24, 1984 Page 4

MAKE (CP) MAKE (CP)

dependents such as .c, .s , e tc. If no update commands for such a
file appear in makefile, and if a default dependent exists, that prere­
quisite is compiled to make the target. In this case, make has infer­
ence rules which allow building files from other files by examining
the suffixes and determining an appropriate inference rule to use.
The current default inference rules are:

.c .c· .sh .sh • .c.o .c-.o .c-.c :s.o .s-.o .y.o .y-.o .l.o .l".o

.y.c .y-.c .I.e .c.a .c·.a .s-.a .h-.h

The internal rules for make are contained in the source file rules.c
for the make program. These rules can be locally modified. To print
out the rules compiled into the make on any machine in a form suit­
able for recompilation , the following command is used:

make - fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which pn'nt.f(S)
prints when handed a null string.

A tilde in the above rules refers to an sees file (see •cufile(F)) .
Thus, the rule .c-.o would transform an sees C source file into an
object file (.o) . Because the s. of the sees files is a prefix it is
incompatible with make's suffix point-of-view. Hence, the tilde is a
way or changing any file reference into an sees file reference.

A rule with only one suffix (i.e . • c:) is the definition of how to build
z trom z .c. In effect, the other suffix is null. This is useful for
building targets from only one source file (e .g., shell procedures,
simple C programs) .

Additional suffixes are given as the dependency list for .SUFF1XES.

Order is significant; the first possible name for which both a file and
a rule exist is inferred as a prerequisite.

The default list is:

.SUFF1XES: .o .c .y .I .s

Here again, the above .command for printing the internal rules will
display the list of suffixes implemented on the current machine.
Multiple suffix lists accumulate; .SUFF1XES: with no dependencies
clears the list of suffixes.

Inference R tdes

The first example can be done more briefly:

pgm: a.o b.o
cc a.o b.o - o pgm

a.o b.o: incl.h

March 24, 1984 Page 5

MAKE (CP) MAKE (CP)

This is because make has a set of internal rules for building files.
The user m a.y add rules to this list by simply putting them in the
make file.

Certain macros are used by the default inference rules to permit the
inclusion of optional matter in any resulting commands. For exam­
ple, CFLAGS, LFLAGS, and 'YFLAGS are used for compiler options to
cc(CP) , lea:(CP) , and gacc(CP) respectively. Again, the previous
method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create
a file with suffix .o from a file with suffix .c is specified as an entry
with .c.o: as the target and no dependents. Shell commands associ­
ated with the target define the rule for making a .o file from a .c file.
Any target that has no slashes in it and starts with a dot is identified
as a rule and not as a true target.

Librarie1

If a target or dependency name contains parentheses, it is assumed
to be an archive library, the string within parentheses referring to a
member within the library. Thus Iib(flle.o) and $(LIB)(flle.o) both
refer to an archive library which contains file.o. (This assumes the
LIB macro has been previously defined.) The expression
$(LIB)(fllel.o flle2.o) is not legal. Rules pertaining to archive
libraries have the form .XX.a where the XX is the suffix from which
the archive member is to be made. An unfortunate byproduct of the
current implementation requires the XX to be different from the
suffix of the archive member. Thus, one cannot have lib(file.o)
depend upon file.o explicitly. The most common use of the archive
interface follows. Here, we assume the source files are all C type
source:

lib: lib(file l.o) lib(file2.o) lib(file3.o)
@ echo lib is now up to date

.c.a.:
$(CC) - c $(CFLAGS) $<
ar rv $@ s•.o
rm -r $*.o

In fact, the .c.a rule listed above is built into make and is unneces­
sary in this example. A more interesting, but more limited example
of a.n archive library m a.intenance construction follows:

lib: lib(file l.o) lib(file2.o) lib(file3.o)
$(CC) - c $(CFLAGS) $(? :.o=.c)
ar rv lib $!
rm $? @ echo lib is now up to date

.c.a:;

Here the substitution mode of the macro expansions is used. The
$! list is defined to be the set of object filenames (inside lib) whose

March 24, 1984 Page 6

MAKE (CP) MAKE (CP)

C source files are out of date. The substitution mode translates the
.o to .c. (Unfortunately, one cannot as yet transform to .c-) Note
also, the disabling of the .c.a: rule, which would have created each
object file, one by one. This particular construct speeds up archive
library maintenance considerably. This type of construct becomes
very cumbersome if the archive library contains a mix of assembly
programs and C programs.

· Files

[Mm)akefile

s. [Mm] akefile

See Also

sh(C)

Notes

Some commands return nonzero status inappropriately; use - i to
overcome the difficulty. Comm ands that are directly executed by the
shell, notably cd(C) , are ineffectual across newlines in make. The
syntax (Iib(fllel.o file2.o file3.o) is illegal. You cannot build
Iib(file.o) from file.o. The m acro $(a: .o=.c-) is not available.

March 24, 1984 Page
'
7

)

MKSTR (CP) .MKSTR (CP)

Name

mkstr - Creates an error message file from C source.

Syntax

mkstr (-] messagefile prefix file ...

Description

.Mkstr is used to create files of error messages. Its use can make pro­
grams with large numbers of error diagnostics much smaller, and
reduce system overhead in running the program as the error mes­
sages do not have to be constantly swapped in and out.

.Mkstr will process each specified file, placing a massaged version of
the input file in a file whose name consists of the specified prefiz and
the original name. The optional dash (-) causes the error messages
to be placed at the end of the specified message file for recompiling
part of a large mkstred program.

A typical mkstr command line is

mkstr pistrings xx *.c

This command causes all the error messages from the C source files
in the current directory to be placed in the file pistrings and processed
copies of the source for these files to be placed in files whose names
are prefixed with u.

To process the error messages in the source to the message file,
mkstr keys on the string 'error("' in the input stream. Each time it
occurs, the C string starting at the '"' is placed in the message file
followed by a null character and a newline character; the null charac­
ter terminates the message so it can be easily used when retrieved,
the newline character makes it possible to sensibly cat the error mes­
sage file to see its contents. The massaged copy of the input file
then contains a lseek pointer into the file which can be used to
retrieve the message. For example, the command changes

error("Error on reading", a2, a3, a4) ;

into

error(m, a2, a3, a4) ;

where m is the seek position of the string in the resulting error mes­
sage file. The programmer must create a. routine error which opens
the message file, reads the string, and prints it out. The following
example illustrates such a routine.

March 24, 1984 Page 1

MKSTR (CP)

Example

char efilna.me!J = "/usr/lib/pi_strings";
int efil - ·1 ;

error(al, a2, a.3, a4)
{

char buf[256) ;

if (efil < 0) {
efil == open(efilname, 0) ;
if (efil < 0) {

}
}

perror(efilna.me) ;
exit(C) ;

MKSTR (CP)

if (lseek(efil, (long) al, 0} U read(efil, buf, 256) <= 0)
goto oops;

printf(buf, a2, a3, a4) ;

See Also

lseek(S) , xstr(CP)

Credit

This utility was developed at the University of California a.t Berkeley
a.nd is used with permission.

Notes

All the arguments except the name of the file to be processed are
unnecessary.

March 24, 1984 Page 2

)

NM (CP) NM (CP)

Name
run - Prints name list.

Syntax

nm r -gnoOprucv l r file .. . l
Description

nm prints the name list (symbol table) of each object file in the
argument list. If an argument is an archive, a listing for each
object file in the archive will be produced. If no file is given, the
symbols in x.out are listed.
Each symbol name is preceded by its value in hexadecimal (blanks
if undefined) and one of the letters U (undefined), A (absolute), T
(text segment symbol), D (data segment symbol), B (bss segment
symbol), or C (common symbol). If the symbol is local (non­
external) the type letter is in lowercase. The output is sorted
alphabetically.

Options are:

-g Print only global (external) symbols.
-n Sort numerically rather than alphabetically.

-o Prepend file or archive element name to each output line
rather than only once.

-0 Print symbol values in octal.
-p Don't sort; print in symbol-table order.

-r Sort in reverse order.

-u Print only undefined symbols.

-c Print only C program symbols (symbols which begin with
'_') as they appeared in the C program.

- v Also describe the object file and symbol table format.

Files
x.out Default input file

See AJso
ar(CP), ar(F), x.out(F)

May 10, 1984 Page 1

PROF (CP)

Name
prof - display profile data

Syntax
prof r -a 1 r -1 1 r -low r -high 1 1 r file 1

Description

PROF(CP)

Prof interprets the file mon.out produced b y the monitor subrou­
tine. Under default modes, the symbol table in the named object
file (x.out default) is read and correlated with the mon.out profile
file. For each external symbol, the percentage of time spent exe­
cuting between that symbol and the next is printed (in decreasing
order), together with the number of times that routine was called
and the number of milliseconds per ca)l.

If the -a option is used, all symbols are reported rather than just
external symbols. If the -I option is used, the output is listed by
symbol value rather than decreasing percentage.

If the -v option is used, all printing is suppressed and a graphic
version of the profile is produced on the standard output for display
by the plot(C) filters. The numbers low and high, by default 0 and
100, cause a selected percentage of the profile to be plotted with
accordingly higher resolution.

In order for the number of calls to a routine to be tallied, the -p
option of cc must have been given when the file containing the
routine was compiled. This option also arranges for the mon.out
file to be produced automatically.

Files
mon.out for profile
x.out for namelist

See Also
monitor(S), profil(S), cc(CP) , plot(C)

Notes
Beware of quantization errors.

If you use an explicit call to monitor(S) you will need to make sure
that the buffer size is equal to or smaller than the program size.

May 10, 1984 Page 1

PRS (CP) PRS (CP)

Name

prs - Prints an sees rile.

Syntax

prs 1- dldataspecJI I- r[SIDIJ I- e) 1- 1) 1- a) riles

Description

p,.. prints, on the standard output, all or part or an sees rile (see
ecc•file(F)) in a user supplied format. If a directory is named, PfY
behaves as though each rile in the directory were specified as a
named file, except that nonsees files (last component of the path­
name does not begin with s .) , and unreadable files are silently
ignored. IC a name of - is given, t.he standard input is read; each
line or the st:mdard input is taken to be the name or an sees rile or
directory to be processed; nonsees files and unreadable riles are
silently ignored.

Arguments to pre, which m ay appear in any order, consist of
options, and filenames.

All the described options apply independently to each named file:

- df datupee) Used to specify the output data specification. The
datupec is a string consisting of sees file data key­
words (see Dota K<!JIIIortlr) interspersed with optional
user-supplied text.

- r(SID) Used to specify the Sees IDentification (SID) string
of a delta. for which information is desired. It no
SID is specified, the SID of the most recently created
delta. is assumed.

- e Requests information Cor all deltas created earlier
than and including the delta. designated via. the - r
option.

- I Requests information Cor all deltas created later than
and including the delta. designated via. the - r
option.

·

- a Requests printing of information for both removed,
i.e., delta. type = R, (see rmtlei(CP)) and existing,
i.e., delta type = D, deltas. If the - a option is not
specified, information for existing deltas only is pro­
vided.

March 24, 1984 Page 1

PRS (CP) PRS (CP)

Data Keywor<k

Data keywords epeciCy which parts or an sees file are to be retrieved
and output. All parts or an sees file (see eceefile(F)) have an asso­
ciated data keyword. There is no limit on the number or times a
data keyword may appear in a dataepee.

The information printed by prs consists or the user-supplied text and
appropriate values (extracted from the sees file) subetituted Cor the
recognized data keywords in the order or appearance in the dataepee.
The rormat or a data keyword value is either simple, in which key­
word substitution is direct, or multiline, in which keyword substitu­
tion is Collowed by a carriage return.

User-supplied text is any text other than recognized data keywords.
A tab is specified by \t and carriage return/newline is specified by \n.

March 24, 1984 Page 2

PRS (CP) PRS (CP)

TABLE 1. sees Files Data. Keywords
KeyrtJrm!Dala Item

:Dt: Delta information
:DL: Delta line statistics
:Li: Lines inserted by Delta
:Ld: Lines deleted by Delta
:Lu: Lines unchanged by Delta
:DT: Delta type
:I: sees ID string (SID)
:R: Release number
:L: Level number
:B: Branch number
:S: Sequence number
:D: Date Delta created
:Dy: Year Delta created
:Dm: Month Delta created
:Dd: Day Delt.a. created
:T: Time Delta created
:Th: Hour Delta created
:Tm: Minutes Delta created
:Ts: Seconds Delta created
:P: Programmer who created Delta

:DS: Delta sequence number
:D P: Predecessor Delta seq-no.
:Dl: Seq-no. of deltas incl., t'Xcl., ignored
:Dn: Deltas included (seq #)
:Dx: Delta!� excluded (seq #)
:Dg: Deltas ignored (seq #)
:MR: MR numbers for delta
:C: Comments fl)r delta :UN: User names
:FL: Flag list
:Y: Module type !lag

:MF: MR validation lla.g
:MP: MR validation pgm name
:KF: Keyword error/warning !lag
:BF: Branch bg
:J: Joint edit !lag

:LK: Locked releases
:Q: User defined keyword
:M: Module name
:FB: Floor boundary
:CB: Ceiling boundary
:Ds: Default SID

:ND: Null delta !lag
:FD : File descriptive text
:BD: Body
:GB: Gotten body
:W: A form of tohal(C) string
:A: A form of 11hal(C) string
:Z: tohat(C) st.ring delimiter
:F: SCCS filename

:PN: SCCS file pathname

• :Dt: = :DT: :1: :D : :T: :P: :OS: :DP:

March 24, 1984

File Section
Delta Table

User Names
Flags

.

Comments
Body

.
N/A
N/A
N/A N/A N/A

Value
See below•

:Li:/:Ld:/:Lu:
Dnnnn
nnnnn
Dnnnn
D or R

:R:.:L: .:B:.:S:
nnnn
nnnn
nnnn
nnnn

:Dy:/:Dm:/:Dd:
nn
nn
DD

:Th:::Tm:::Ts:
DD
nn
liD

logname
nnnn
DDnD

:Dn:/:Dx:/:Dg:
:DS: :DS: .. .
:DS: :DS: .. .
:DS: :DS: .. .

text
text
text
text
text

re• or flO
text

re• or no
yer or no
re• or flO

:R: ...
text
text
:R:
:R:
:I:

ye• or no
text
text
text

:Z::M:\t:l:
:Z::Y: :M: :l::Z:

@ (#)
text
text

Format
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
M
M
M
M
s
s
s
s
s
s
s
s
s
s
s
s
s
M
M
M
s
s
s
s
s

Page 3

PRS (CP) PRS (CP)

Examples

The following:

prs - d"U sers and/or user IDs for :F: a.re:\n:UN:" s.file

ma.y produce on the sta.nda.rd output:

Users and/or user IDs for s.file a.re:
xyz
131
a.bc

prs - d"Newest delta. for pgm :M:: :1: Created :D : By :P:" - r
s.file

may produce on the standard output:

Newest delta. for pgm m a.in.c: 3.7 Created 77/12/1 By cas

prs s.file

may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
bl78- 12345
bJ7g-54321
COMMENTS:
this is the comment line for s.file initial delta.

for each delta. ta.ble entry of the "D" type. The only option allowed
to be used with the 1pecial cue is the - a option.

Files

/tmp/pr! ! ! ! !

See Also

admin(CP) , delta(CP) , get(CP) , help(CP) , sccsfile(F)

Diagnostics

Use hdp(CP) for explanations.

March 24, 1gs4 Page 4

RANUB (CP) RANUB(CP)

Name
ranlib - Converts archives to random libraries.

Syntax
ranllb archive . . .

Description

Ranlib converts each archive to a form that can be loaded more
rapidly by the loader, by adding a table of contents named
-SYMDEF to the beginning of the archive. It uses ar(CP) to
reconstruct the archive, so sufficient temporary file space must be
available in the file system containing the c�nt directory.

See Also
ld(CP), ar(CP), copy(C), settime(C)

Notes
Because generation of a library by ar and randomization by ranlib
are separate, phase errors are possible. The loader ld warns when
the modification date of a library is more recent than the creation
of its dictionary; but this means you get the warning even if you
only copy the library. On XENIX 68K use of ranlib is optional.

May 10, 1984 Page 1

RATFOR (CP) RATFOR (CP)

Name

ratfor - Converts Rational FORTRAN into standard FORTRAN.

Syntax

rat.for I option ... I (filename ... I

Description

Rat/or converts a rational dialect of FORTRAN into ordinary irra­
tional FORTRAN. Ratfor provides control flow constructs essentially
identical to those in C:

statement grouping:
{ statement; statement; statement }

decision-malting:
if (condition) statement I else statement I
switch (integer value) {

case integer: statement

}
I default: I statement

loops:
while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement I until (condition) I
break (nl
next (nl

and some addi.tional syntax to malte programs easier to read and write:

Free form input: .
multiple statements/line; automatic continuation

Comments:
f this is a comment

Translation of relationals:
>, >-, etc., become .GT., .GE., etc.

Return (expression)
returns expression to caller from function

Define:
define name replacement

March 26, 1984 Page 1

RATFOR (CP) RATFOR (CP)

Include:
include filename

The option - h causes quoted strings to be turned into 27H con­
structs. - C copies comments to the output, and attempts to format
it neatly. Normally, continuation lines are marked with an & in
column 1; the option - 6x makes the continuation character x and
places it in column 6.

March 26, Ul84 Page 2

REGOMP (CP) REGOMP (CP)

Name

regcmp - Compiles regular expressions.

Syntax

regcmp (-) files

Description

Regcmp, in most cases, precludes the need for calling regcmp (see
regez(S)) from C programs. This saves on both execution time and
program size. The command regcmp compiles the regular expres­
sions in tile and places the output in tile .i. If the - option is used,
the output will be placed in tile .c. The format of entries in file is a
name (C variable) followed by one or more blanks followed by a
regular expression enclosed in double quotation marks. The output
of regcmp is C source code. Compiled regular expressions are
represented as extern char vectors. File.i files may thus be included
into C programs, or fil.e.c files may be compiled and later loaded. In
the C program which uses the regemp output, regez(4bc,line) applies
the regular expression named 4bc to line. Diagnostics are self­
explanatory.

Examples

name

telno

"((A- Za- z)[A- Za- zO- 9...) *)$0"

"\({0,1}([2- 9)[01)[1- 91) $0\) {0, 1} *" "(12- 91 (0- 9) {2})$1(- {0, 1}"
"(0- 9 {4})$2"

In the C program that uses the regemp output,

regex(telno, line, area, exch, rest)
will apply the regular expression named telno to line.

See Also

regex(S)

March 26, 1984 Page 1

RMDEL (CP) RMDEL (CP)

Name

rmdel - Removes a delta from an sees file.

Syntax

rmdel - rSID files

Description

Rmdel removes the delta specified by the SID from each named sees
file. The delta to be removed must be the newest (most recent)
delta in its branch in the delta chain of each named sees file. In
addition, the SID specified must not be that of a version being edited
for the purpose oC making a delta. That is, if a p-file exists Cor the
named sees file, the SID specified must not appear in any entry of
the p-file(see get(CP)) .

If a directory is named, rmdel behaves as though each file i n the
directory were specified as a named file, except that nonsees files
(last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to be
the name of an sees file to be processed; nonsees files and unread­
able files are silently ignored.

Files

x-file See delta (CP)

z-Cile See delta(CP)

See Also

delta(CP) , get(CP) , help(CP) , prs(CP) , sccsfile(F)

Diagnostics

Use help(CP) for explanations.

March 24, 1984 Page 1

SACT (QP) SACT (GP)

Name

sact - Prints current sees file editing activity.

Syntax

sact files

Deseription

Sact in·forms the user of any impending. deltas to a named sees file.
This situation occurs when get(OP) with the - e option has been
previously executed without a subsequent execution of delta(OP) . Ir
a directory is named on the command line, �act behaves liB though
each file in the directory were specified liB a named file, except that
nonsees files and unreadable files are silently ignored. If a name of
- is given, the standard input is read with each line being taken liB
the name of an sees file to be processed.

The output for each named file consists of five fields separated by
spaces.

Field 1

Field 2

Field 3

Field 4

Field 5

See Also

Specifies the SID of a delta that currently exists in the
sees file to which changes will be made to make the
new delta

Specifies the SID for the new delta to be created

Oonta.ins the logname of the user who will make the
delta i.e., executed a get for editing

Oonta.ins the date that get - e was executed

Oonta.ins the time that get - e was executed

delta(OP) , get(OP) , unget(OP)

Diagnosties

Use help(OP) for explanations.

March 24, 1984 Page 1

SCCSDIFF (CP) SCCSDIFF (CP)

Name

sccsdiff - Compares two versions of an sees file.

Syntax

sccsdiff - rSID l - rSID2 [- p) [- snJ files

Description

SeudiJJ compares two versions of an sees file and generates the
differences between the two versions. Any number of sees files
may be specified, but arguments apply to all files.

- rSID '? SID1 and SID£ specify the deltas of an sees file that are
to be compared. Versions are passed to bdi./f(C) in the
order given.

- p Pipe output for each file through pr(C).

- sn 11 i s the file segment size that bdiJJ will pass to tliJJ(C) .
This is useful when diJJ fails due to a high system load.

Files

/tmpfget! ?! !! Temporary files

See Also

bdiff(C), get(CP) , help(CP), pr(C)

Dia.gnostics

file: No tli!ferencee It the two versions are the same.

Use help(CP) for explanations.

March 24, 1984 Page 1

S/ZE (CP) S/ZE (CP)

Name

size - Prints the size or an object file.

Syntax

size [object ... J

Description

Size prints the (decimal) number or bytes required by the text, data,
and bss portions, and their sum in decimal and hexadecimal, or each
object-file argument. Ir no file is specified, a.out is used.

See Also

a.out{F)

March 24, 1984 Page 1

SPLINE (CP) SPLJNE (CP)

Name

spline - Interpolates smooth curve.

Syntax

spline [option J

Description

Spline takes pairs of numbers from the standard input as a.bcissas and
ordinates oC a. function. It produces a similar set, which is approxi­
mately equally spaced and includes the input set, on the standard
output. The cubic spline output has two continuous derivatives, and
enough points to look smooth when plotted.

The following options are recognized, each as a separate argument.

- a Supplies abscissas automatically (they are missing from the
input) ; spacing is given by the next argument, or is assumed to
be I iC next argument is not a number.

- k The constant k used in the boundary value computation

y; = ky; ' . . . ' y: = ky;_ l

is set by the next argument. By default k == 0.

- n Spaces output points so that approximately n intervals occur
between the lower and upper z limits. (Default n = 100.)

- p Makes output periodic, i.e. matches derivatives at ends. First
and last input values should normally agree.

- x Next 1 (or 2) arguments are lower (and upper) z limits. Nor­
mally these limits are calculated from the data. Automatic
abcissas start at lower limit (default 0) .

Diagnostics

When data. is not strictly monotone in z, epline reproduces the input
without interpolating extra points.

Notes

A limit of 1000 input points is silently enforced.

March 26, 1984 Page 1

STRINGS (CP) STRINGS (CP)
.

Name

strings - Finds the printable strings in an object file.

Syntax

strinp 1- I I- ol I - number I file ...

Description

Stnnge looks ror ASCII strings in a binary file. A string is any
sequence or four or more printing characters ending with a newline
or a null character. Unless the - flag is given, ltn"nge only looks in
the initialized data space of object files. If the - o flag is given, then
each string is preceded by its decimal offset in the file. If the
- number flag is given then number is used as the minimum string
length rather than 4.

Stnnge is userul ror identifying random object files and many other
things.

See Also

hd(C) , od(C)

Credit

This utility was developed at the University or Calirornia at Berkeley
and is used with permission.

March 24, 1D84 Page 1

)

STRIP (CP) STRIP (CP)

Name

strip - Removes sym bois a.nd relocation bits.

Syntax

strip na.me ...

Description

Strip removes the symbol ta.ble a.nd relocation bits ordinarily a.tta.ched
to the output of the assembler and link editor. This is useful for
sa.ving space a.fter a. program has been debugged.

The errect of 1trip is the sa.me as use of the - s option of ld.

Ir name is a.n a.rchive file, 1trip will remove the local symbols from
any a. out forma.t files it finds in the archive. Certain libraries, such
as those residing in /lib, ha.ve no need for local symbols. By delet­
ing them, the size of the archive is decreased a.nd link editing perf or·
mance is increased.

Files

/tmp/stm* Temporary rile

See Also

ld(CP)

Ma.rch 26, 1984 Pa.ge 1

TIME (CP) TIME (CP)

Name

time - Times a command.

Syntax

time comm&nd

Description

The given eommtJnd is executed; after it is complete, time prints the
elapsed time during the command, the time spent in the system, and
the time spent in execution or the command. Tunes are reported in
seconds.

The times &re printed on the standard error.

See Also

times(S)

M&rch 24, 1984 Page 1

T.S'OR T (CP) T.S'OR T (CP)

Name

tsort - Sorts a file topologically.

Syntax

tsort [file)

Description

T1ort produces on the standard output a totally ordered list of items
consistent with a partial ordering of items mentioned in the input
file. It no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by
blanks. Pairs of different items indicate ordering. Pairs of identical
items indicate presence, but not ordering.

See Also

lorder(CP)

Diagnostics

Odd data: There is an odd number of fields in the input file.

Notes

The •ort algorithm is quadratic, which can be slow if you have a large
input list.

March 24, 1984 Page 1

UNGET(CP) UNGET(CP)

Name

unget - Undoes a previous get of an sees file.

Syntax

unget 1- rSID) 1- s) 1- n) files

Description

Unget undoes the effect of a get - e done prior to creating the
intended new delta. Ir a directory is named, unget behaves as
though each file in the directory were specified as a named file,
except that nonsees files and unreadable files are silently ignored.
If a name of - is given, the standard input is read with each line
being taken as the name of an sees file to be processed.

Options apply independently to each named file.

- rSID Uniquely identifies which delta is no longer intended. (This would have been specified by get as the "new
delta".) The use of this option is necessary only if two
or more versions or the same sees file have been
retrieved tor editing by the same person (login name) .
A diagnostic results if the specified SID is ambiguous,
or it it is necessary and omitted on the command line.

- s Suppresses the printout, on the standard output, of the
intended delta's SID.

- n Causes the retention ot the file which would normally
be removed from the current directory.

See Also

delta(CP) , get(CP) , sact(CP)

Diagnostics

Use Aelp(CP) for explanations.

March 24, 1 984 Page 1

)

VAL (CP) VAL (CP)

Name

val - Validates an sees file.

Syntax

val -

val [- s) 1- rSID) 1- mname) [- ytype) files

Description

Val determines if the specified file is an sees file meeting the
characteristics specified by the optional argument list. Arguments to
val may appear in any order. The arguments consist or options,
which begin with a - , and named files.

Val has a special argument, - , which causes reading or the standard
input until an end-of-file condition is detected. Each line read is
independently processed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each
command line and file processed and also returns a single 8-bit code
upon exit as described below.

The options are defined as follows. The effects ot any option apply
independently to each named file on the command line:

- 8

- rSID

- mname

- ytype

March 24, 1984

The presence or this argument silences the diagnos­
tic message normally generated on the standard out­
put for any error that is detected while processing
each named file on a given command line.

The argument value SID (Sees IDentification
String) is an sees delta number. A check is made
to determine if the SID is ambiguous (e . g., r1 is
ambiguous because it physically does not exist but
implies 1. 1 , 1 .2, etc. which may exist) or invalid (e .
g., rl.O or rl.l.O are invalid because neither case
can exist as a valid delta number) . Ir the SID is
valid and not ambiguous, a check is made to deter­
mine if it actually exists.

The argument value name is compared with the
sees %M % keyword in file.

The argument value type is compared with the sees
%Y% keyword in file.

Page 1

VAL (CP) VAL (CP)

The 8-bit code returned by �al is a disjunction of the possible errors,
i. e., can be interpreted as a bit string where (moving from left to
right) set bits are interpreted as follows:

bit 0 ... Missing file argument

bit 1 ,. Unknown or duplicate option

bit 2 - Corrupted sees file

bit 3 ... Can't open file or file not sees

bit 4 ... SID is invalid or ambiguous

bit 6 - SID does not exist

'bit 6 - %Y%, - y mismatch

bit 1 ... �% - m mismatch

Note that 11al can process two or more files on a given command line
and in tum can process multiple command line (when reading the
standard input) . In these cases an aggregate code is returned; a logi·
cal OR or the codes generated for each command line and file pro·
cessed.

See Also

admin(CP) , delta(CP) , get(CP) , prs(CP)

Diagnostics

Use help(CP) for explanations.

Notes

Val can process up to 50 files on a single command line.

March 24, 1984 Page 2

)

XREF (CP) XREF (CP)

Name

xref - Cross-references C programs.

Syntax

xret (file ...)

Description

Xref reads the named filu or the standard input if no file is specified
and prints a cross reference consisting or lines or the form

identifier filename line numbers ...

Function definition is indicated by a plus sign (+) preceding the line
number.

See Also

crer(CP)

March 24, 1984 Page 1

XSTR (CP) XSTR (CP)

Name

xstr - Extracts strings from C programs.

Syntax

xstr (- c) [-) [file)

Description

Xetr maintains a file strings into which strings in component parts of
a large program are hashed. These strings

·
are replaced with refer­

ences to this common area. This serves to implement shared con­
stant strings, most useful it they are also read-only.

The command

xstr - c name

will extract the strings from the C source in name, replacing string
references by expressions of the form (&xstr(number)) for some
number. An appropriate declaration of :utr is prepended to the file.
The resulting C text is placed in the file r�.c, to then be compiled.
The strings from this file are placed in the 1tnng1 data base if they
are not there already. Repeated strings and strings which are suffices
of existing strings do not cause changes to the data base.

After all components of a large program have been compiled, a file
111.c declaring the common 111tr space can be created by a command
or the form

xstr -c name 1 name2 name3 ...

This IIB.C file should then be compiled and loaded with the rest of the
program. IC possible, the array can be made read-only (shared) sav­
ing space and swap overhead.

Xetr can also be used on a single file. A command

xstr name

creates files r�. c and 111.c as before, without using or affecting any
ltn·nge file in the same directory.

It may be useful to run 111tr after the C preprocessor if any macro
definitions yield strings or if there is conditional code which contains
strings which may not, in fact, be needed. Xltr reads from its stan­
dard input when the argument - is given. An appropriate command
sequence for running zstr after the C preprocessor is:

Mar�h 24, 1984 Page 1

XSTR (CP)

cc - E na.nie.c lxstr - c ­
cc - c x.c
mv x .o na.me.o

XSTR (CP)

Xetr does not touch the file etring• unless new items a.re added, thus
make ca.n avoid remaking :u. o unless truly necessary.

Files

strings D a.ta. base of strings

x.c Massaged C source

xs.c C source for definition of a.rra.y "xstr"

/tmp/xs• Temp file when "xstr name" doesn't touch 1tring•

See Also

mkstr(CP)

Credit

This utility was developed a.t the University of California. a.t Berkeley
a.nd is used with permission.

·

Notes

Ir a. string is a. suffix of another string in the data. base, but the
shorter string is seen first by zltr , both strings will be placed in the
data. base when just placing the longer one there will do.

March 24, 1984 Page 2

YAOO (CP) YAOO (CP)

Name

yacc - Invokes a compiler-compiler.

Syntax

yacc [- vd] grammar

Description

Yacc converts a context-tree gramm ar into a set or tables tor a sim­
ple automaton which executes an LR(l) parsing algorithm. The
grammar m ay be ambiguous; specified precedence rules are used to
break ambiguities.

The output tile, y.tab.c, must be compiled by the C compiler to pro­
duce a program mane. This program must be loaded with the lexi­
cal analyzer program, w/ez, as well as main and werror, an error
handling routine. These routines must be supplied by the user;
lez(CP) is useful tor creating lexical analyzers usable by vacc.

Ir the - v flag is given, the tile y.output is prepared, which contains
a description or the parsing tables and a report on contlicts generated
by ambiguities in the grammar.

It the - d tlag is used, the tile y.tab.h is generated with the fdetine
statements that associate the 1/4Cc-assigned " to ken codes" with the
user-declared "token names". This allows source riles other than
y.tab.c to access the token codes.

Files

y.output

y.tab.c

y.tab.h Defines tor token names

yacc.tmp, yacc.acts Temporary tiles

fusr /lib/yaccpar Parser prototype for C programs

See Also

lex(CP)

�arch 26, 1984 Page 1

)

YACC (CP) YACC (CP)

Diagnostics

The number of reduce-reduce and shiCt,reduce conC!icts is reported
on the standard output; a. more detailed report is found in the
y.output file. Similarly, if some rules are not reachable from the
start symbol, this is also reported.

Notes

Because Cilena.mes are fixed, a.t most one yacc process can be active
in a. given directory a.t a time.

March 26, 1984 Page 2

CONTENTS

intro

a641,164a

abort
abs
access
acct

alarm
assert
atof, atoi, atol
bessel,jO,jl ,jn,
yO,yl ,yn
bsearch
chdir
chmod
chown

chroot
chsize
close
conv,toupper,
tolower, toascii
creat

creatsem

crypt, setkey, encrypt
ctermid

ctime, localtime,
gmtime, asctime,
tzset
ctype, isalpha,
isupper, islower,
isdigit, isxdigit,
isalnum, isspace,
ispunct, isprint,
isgraph, iscntrl,
isascii
curses

cuserid
dbm, dbminit, fetch,
store, delete,
firstkey, nextk:ey

SystemServices(S)

Introduces system services and
error numbers
Converts between long integer and
base64ASCII
<leneratesanlOT fauh

Returns an integer absolute value
Determines accessibility of a file
Enablesordisablesprocess
accounting
Sets a process· alarm clock
Helps verify validity of programs
ConvertsASClltonumbers

Performs Bessel functions
Performs a binary search
Changes the working directory
Changesmodeofafile
Changes the owner and group
of a file
Changes the root directory
Changes the size of a file
Closesafiledescriptor

Translates characters
Createsanewfileorrewritesan
existing one
Creates an instance of a
binary semaphore
Performs encryption functions
Generates a filename for
a terminal

ConvertsdateandtimetoASCll

Classifies characters
Performs screen and cursor
functions
Reads default entries

Performs database functions

1 -i

defopen, defread Readsdefauhentries
dup,dup2 Duplicatesanopenfile

descriptor
ecvt,fcvt Performs output conversions
execl, execv, execle,
execve, execlp, execvp Executes a file
exit T�esaprocess
exp, log, pow, sqrt Performsexponential,logarithm,

power, square root functions
fclose, ftlush Closesorftushesastream
fcllll Colllrolsopenfiles
fetTor, feof,
clearerr, fileno, Determines stream status
floor, fabs,ceil,
fmod Performsabsolutevalue, floor,

celling,andremainderfunctions
fopen, freopen, fdopen Opens a stream
folk Creates a new process
fread, fwrite Performs buffered binary

input and output
frexp,ldexp, modf Splitsftoating-poilllnumberilllo

amalllissaandanexponem
fseek, fteU,rewind Repositions a stream
gatnma Performsloggatnmafunctions
getc, getchar,
fgetc,getw Getscharacterorwordfroma

stream
getcwd Getspathnameofcurrelll

working direct(¥)'
getenv Getsvalueforenvironmelllname
getgrelll, getgrgid,
getgrnam, setgrelll,
endgrent Get group file entry
getlogin Getsloginnatne
get opt Getsoptionletterfr001argument

vector
get pass Reads a password
getpid, getpgrp,
getppid Gets process, process group, and

parentprocesslDs
getpw Gets name from UID
getpwent, getpwuid,
getpWnatn, setpwent,
endpwent Gets password file entry
gets,fgets Getsastringfromastream
getuid, geteuid,
getgid, getegid Gets real user, effective user, real 0'

groupandeffectivegrouplDs
hypot DetenninesEuclideandistance
ioctl CODirolscharacterdevices
kill Sends a signal to a processor ora

groupofprocesses

l-ii

i3tol,ltol3

link
lock
locking

logname
lsearch
lseek
malloc, free,
realloc, calloc
mknod

mktemp
monitor
mount
nap
nice
nlist
open
opensem
pause

pcuor, sys..errlist,
sy!Ulerr, ermo
pipe
popen, pclose
printf, fprintf, sprintfFormatsoutput
profil
ptrace
putc, putchar,
fputc,putw

putpwent
puts, fputs
qsort
raoo, srand
rdchk

read
regex, regcmp

regexp

sbrk

scanf, fscanf, sscanf
sdenter, sdleave

sdget

Converts between3-byteintegersand
long integers
Links a file to an existing file
Locksaprocessinprimarymemory
Locksafileregionfor
reading or writing
Findsloginnameofuser
Performslinearsearchandupdate
Movesread/writefilepointer

Allocatesmainmemory
Makes a directory, or a special
or ordinary file
Makes a unique filename
Prepares execution profile
Mountsafilesystem
Suspends execution fora short
interval
Otanges priority of a process
Getsentriesfromnamelist
Opens file for reading or writing
Opens a semaphore
Suspendsaprocessuntilasignal
occurs

Sends systemerrormessages
Createsaninterprocess channel
Initiatesl/Otoorfromaprocess

Createsanexecutiontimeprofile
Traces a process

Putsacharacterorwordona
stream
Writes a file password entry
Puts a string on a stream
Performs a sort

Generatesarandomnumber
Otecksto see if there is
datatoberead
Reads from a file
Compiles and executes regular
expressions
Performsregularexpressioncompile
and match functions
Changes data segment space
allocation
Convertsandformatsinput
Synchronizes access to a shared
data segment
Attaches and detaches a shared
data segment

1-iii

sdgetv, sdwaitv Synchronizes shared data access
setbuf Assignsbufferingtoastream
setjmp, longjmp Perfonnsanonlocal"goto"
setpgrp SetsprocessgrouplD
setuid, setgid SetsuserandgroopiDs
shutdn Flushesblockl/Oandhalts

the CPU
signal Specifies whattodoupon

receipt of a signal
sigsem Signalsaprocesswaitingon

a semaphore
sinh, cosh, tanh Pefonnshyperbolicfunetions
sleep Suspendsexecutionforan

interval
ssignal, gsignal lmplememssoftwaresignals
stat,fstat Gets file status
stdio Performs standard buffered

input and output
stinte Sets the time
string, strcat,
stmcat, strcmp,

stmcmp, strcpy' stmcpy, strlen,
strchr, strrchr,

) stJpbr:k, strspn,
strcspn, strtok Performs string operations
swab Swaps bytes

sync Updatesthesupec-block
system Executesa shellcommand
termcap, tgetent,
tgetnum, tgetftag,
tgetstr, tgoto, tputs Perfonnstenninalfunetions
time,ftime Getstimeanddate
times Gets process and child

process times
tmpfile Creates a temporary file
tmpnam Createsanamefora

temporary file
uig, sin, cos, tan,
asin, acos, atan, atan2 Perfonnstrigonom.euicfunctions
ttyname, isatty . Findsthenameofaterminal
ulimit Gets and sets user limits
umask Sets and gets file creation

mask
umount Unmountsafi.lesystem) uname GetsnameofcurrentXENlX

system
ungetc Pushes character back into

input stream
unlink Removes directory entry
ustat Gets files system statistics
utime Sets file access and

1 -iv

wait

waitsem, nbwaitsem

write
xlist, fxlist

modification times
Waitsforachildprocessto
stop or terminate
Awaits and checks access to
a resource goverenedby
a semaphore
Writestoafile
Getsnamelistentriesfromfiles

1-v

)

Index

Absolutevalue, integer ____________ abs
Absolutevalue, real Boor
Accounting acct
acos function trig
Alarmclock alarm
asctime function dime
asin function trig
atan function trig
atan2 function trig
atoi function ator
atol function a tor
Binarysearch bsearch
bJkfunction sbrk
cabsfunction hypot
callocfunction maDoc
ceil function floor
O!aracters, classification dype
clearerr function ferror
Conversion, 3-byteintegersand long integers 13to1
Conversion, byte swapping swab
Conversion, date and time to ASCII c:time
Conversion, integer and base 64ASC11 a641
Conversion, ASCII to numbers. ator
Conversions, output eevt
Conversions,realtomantissaandexponent frexp
Conversions, toASCllcharacters eonv
cos function trig
cosh function sinh
Database, functions dbm
dbminitfunction dbm
Defauhentries defopen
defread function . defopen
deletefunction dbm
Devices, controls ioed
dup2function dup
encrypt function erypt
Encryption erypt
endgrentfunction getgrent
endpwent function getpwent
Environment, value getenv
ermovariable perror
Errormessages perror
Errornumbers intro
execl function exee
execle function exee
execlp function exee

Execution, files exec
Execution, nonl_ocal__,',..,.'g_o...,..to-=•':""• ----------

set,jmp
Execution, profiling monitor
Execution, shell system
e�v��oo exec
execvefunction exec
execvp��on exec
fabs��oo Boor
fcvt function ecvt
fdopenfun�on fopeu
feoffunction ferror
fetch functioo dbm
mush fun�oo fclose
fgetc function getc
fgets function gets
Filesystem,mounting mouut
File system, statistics ustat
File system, unmounting umauut
File, accessandmodificationtimes ulime
File, accessibility access
File,checkforreading nlchk
File,closing dose
File, con!rol feDtl
File, creation ereat
File, creation mkuod
File, creation mast uiDIL'Ik
File,duplication dup
File, error and status ferror
File, linking liDk
File, lockingregions lockblg
File,mode ehmod
File,opening OpeD
File,ownership dlOwD
File,reading read
File,removal uniiDk
File, size ehsize
File, status stat
File, temporary tmpfile
File,userandgroupiD setuld
File, writing write
Filename, creation mktemp
Filename, temporary tmpuam
fileno functioo ferrer
Files, repositioning lseek
firstkeyfun�on dbm
Floor, ceiling, and remainder functions Boor
fmod�ctioo Boor
fprintffunction priDtf

fputcfunction _______________ potc
fputs function pots
free function mallcx:
freopenfunction Copen
fscanffunction scanl'
fstat function stat
ftell function fseek
ftime function time
fwrnefunction fread
fxlist function :di<lt
gcvt function ecvt
getchar function getc
getegid getuid
geteuid getuld
getgid getuid
getgrgid function getgrent
getgrnam function getgrent
getpgrp function getpid
getppid function getpid
getpwnamfunction getpwent
getpwuid function getpwent
getwfunction getc
gmtimefunction etime
Group, fileenuies getgrent
gsignal function ssignal
isalnumfunction etype
isalpha function etype
isascii function etype
isany function ttyname
iscntrl function etype
isdigitfunction etype
isgraph function etype
is lower function etype
isprill1 function etype
ispunct function etype
isspacefunction etype
isupper function etype
isxdigitfunction etype
jOfunction bessel
jl function bessel
jn function bessel
164a function a64l
ldexpfunction rrexp
Librarynames intro
Library, screenandcursorfunctions enrses
Library, standard input and output stdio
Linear search lsearch
localtimefunction etime

logfunction _______________ exp
logl 0 function exp
Loginname c:userid
Loginname,user lopame
Login, name getlogiD
longjmpfunction setjmp
hol3function 13tol
Mathematics, Bessel functions bessel
Mathematics, Euclidean distance bypot
Mathematics, exponential and logarithm functions exp
Mathematics,hyperbolicfunctions siub
Mathematics, loggammafunction gamma
Mathematics, trigonometric functions trig
Memory, allocation Dllllloe
Message, errors assert
modffunction frexp
Name list ullst
Namelist xllst
nbwaitsemfunction waitsem
nextkeyfunction dbm
Option, from argument vector getopt
Password, file entries getpweut
Password, fileentries putpweut
Password,foruseriD getpw
Password, input getpass
pclosefunction popeu
Pipe, creating pipe
Pipe, opening and closing popeo
powfunction exp
Process,alarmclock alarm
Process, creation fork
Process,executionpriority oiee
Process,executiontimeprofile profil
Process,executiontimes times
Process, groupiD setpgrp
Process, limits ullmlt
Process, locking in memory lock
Process,memory allocation sbrk
Process,realandeffective!Ds getuid
Process, suspension until signal pause
Process, temporary suspension nap
Process, temporary suspension sleep
Process, termination abort
Process, termination exit
Process, termination kill
Process, trace ptrace
Process, waiting for child process wait
Process, IDs getpid

putcharfunction ______________ putc
putwfunction putc:
Random numbers rand
reallocfunction maDoc::
regcmpfunction regex
Regularexpressions regex
rewind function fseek
Rootdirectory cbroot
sdfree function sdget
sdleavefunction scienter
sdwaitv function sdgetv
Semaphore, creation creatsem
Semaphore, opening opensem
Semaphore, signaling slgsem
Semaphore, waitingforresource waitsem
setgid function setuld
setgrent function getgrent
setkey function crypt
setpwent function getpwent
Shared data, attaching and detaching sdget
Shared data, entering and leaving sdenter
Shared data, sychronized access sdgetv
Signal, processing signal
Signal, software sslgnal
sin function trig
Sorting qsort
sprintf function printr
sqrtfunction exp
srand function rand
sscanffunction scanf
storefunction dbm
strc:at function string
strchrfunction string
strc:mp function string
strc:py function string
strcspn function string
strdup function string
Stream, bufferedinputandoutput fread
Stream, buffers setbnf
Stream, character input getc
Stream, character output putc
Stream, closing and flushing fc:lose
Stream, formatted input scanf
Stream, formatted output prlntr
Stream, opening fopen
Stream, repositioning fseek
Stream, returning character to ungetc
Stream, string input gets

Stream, stringoutput ____________ puts
Strings, operations string
strlenfunction string
strncat function string
strncmp function string
strncpyfunction string
sttpbdrfunction string
sttrchrfunction string
strspnfunction string
strtokfunction string
System, cum:ntname uaame
System, stopping sbutdu
System, super-block syue
System, time stlme
sys.errlist variable perror
sy&..��errvariable perror
tanfunction trig
tanh functioon sinh
Terminal, capability functions termcap
Terminal, filenames etermid
Terminal, name ttyuame
tgettlag function termeap
tgetnumfunction termcap
tgetstrfunction termcap
tgotofunction termcap
Timeanddate time
toascii function couv
tolowerfunction couv
toupperfunction CODV
tputsfunction termcap
tzset function ctlme
Workingdirectory ebdir
Working directory, pathname gekwd
yOfunction bessel
y 1 function bessel
ynfunction bessel

INTRO (S) IN1RO (S)

Name

intro - Introduces system services, library routines and error
numbers.

Syntax

#include <errno.h>

Description

This se ction describes all system services. System services include
all routines or system calls that are available in the operating system
kernel. These routines are available to a C program autom atically as
part of the standard library Jibe. Other routines are available in a
variety of libraries. On 8086/88 and 286 systems, versions for
Small, Middle, and Large model programs are provided (that is,
three of each library) .

To use routines in a program that are not part of the standard library
Jibe, the appropriate library must be linked. This is done by specify­
ing - ln11me to the compiler or linker, where name is the name listed
below. For example - lm, and - ltermcap are specifications to the
linker to search the named libraries for routines to be linked to the
object module. The names of the available libraries are:

The stan dard library containing all system call interfaces,
Standard I/0 routines, and other general purpose services.

m The standard math library.

termcap Routines for accessing the termcap data base describing ter­
minal characteristics.

curses Screen and cursor m anipulation routines.

dbm D ata base management routines.

Most services that are part of the operating system kernel h ave one
or more error returns. An error condition is indicated by an other­
wise impossible returned value. This is almost always - 1 ; the indi­
vidual descriptions specify the details. An error number is also
m ade available in the external variable ermo. Ermo is not cleared
on successful calls, so it should be tested only after an error has
been indicated.

All of the possible error numbers are not listed in each system call
description because many errors are possible for most of the calls.
The following is a complete list of the error numbers and their
names as defined in <error.h>.

March 24, 1984 Page 1

/NTRO (S) INTRO (S)

EPERM Not owner
Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also
returned for attempts by ordinary users to do things allowed
only to the super-user.

2 ENOENT No such file or directory
This error occurs when a filename is specified and the file
should exist but doesn't, or when one of the directories in a
pathname does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid
in kill or ptrace.

4 EINTR Interrupted system ca.!!
An asynchronous signa.! (such as interrupt or quit) , which the
user has elected to catch, occurred during a system call. If exe­
cution is resumed after processing the signal, it will appear as if
the interrupted system ca.!! returned this error condition.

5 EIO 1/0 error
Some physical 1/0 error. This error may in some cases occur on
a ca.!! following the one to which it actually applies.

6 ENXIO No such device or address
1/0 on a special file refers to a subdevice which does not exist,
or beyond the limits of the device. It may also occur when, Cor
example, a tape drive is not on-line or no disk pack is loaded on
a drive.

7 E2BIG Arg list too long
An argument list longer than 5, 120 bytes is presented to a
member or the e:rec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic
number (see a.out(F)) .

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respec­
tively write) request is made to a file which is open only for
writing (respectively reading) .

10 ECHILD No child processes
A wait, was executed by a process that had no existing or
unwaited-Cor child processes.

11 EAGAIN No more processes
A fork , failed because the system's process table is Cull or the
user is not allowed to create any more processes.

March 24, 1984 Page 2

)

INTRO (S) INTRO (S)

12 ENOMEM Not enough space
D uring an ezec, or 3brl:, a program asks for more space than the
system is able to supply. This is not a temporary condition; the
m aximum space size is a system parameter. The error m ay also
occur if the arrangement of text, data, and stack segments
requires too m any segmentation registers, or if there is not
enough swap space during a fork.

1 3 EACCES Permission denied
An attempt was m ade to access a file in a way forbidden by the
protection system.

14 EFA ULT Bad address
The system encountered a h ardware fault in attempting to use
an argument of a system call.

15 ENOTBLK Block device required
A nonblock file was mentioned where a block device was
required, e.g., in mount.

1 6 EBUSY D evice busy
An attem pt to mount a device that was already mounted or an
attempt was m ade to dismount a device on which there is an
active file (o pen file, current directory, mounted-on file, active
text segment). It will also occur if an attempt is m ade to enable
accounting when it is already enabled.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.,
link.

18 EXD EV Cross-device link
A link to a file on another device was attempted.

19 ENOD EV No such device
An attempt was m ade to apply an inappropriate system call to a
device; e.g., read a write-only device.

20 ENOTDIR Not a directory
A nondirectory was specified where a directory is required, for
example in a path prefix or as an argument to chdir(S) .

2 1 EISDIR Is a directory
An attempt to write on a directory.

22 EINVA L Invalid argument
Some invalid argument (e .g., dismounting a nonmounted dev­
ice; mentioning an undefined signal in 3igna.l, or kt1l; reading or
writing a file for which lBeek has generate d a negative pointer) .
Also set by the math functions describe d in the { S) entries o f
this manual.

March 24, 1984 Page 3

INTRO (S) INTRO (S)

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more
open• can be accepted.

24 EMFILE Too many open files
No process may have more than 20 file descriptors open at a.
time.

25 ENOTTY Not a typewriter

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is
currently open Cor writing (or reading) . Also an attempt to open
for writing a pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size
(1,082,201,088 bytes) or ULIMIT; see tdimit(S) .

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on
the device.

29 ESPIPE Illega.l seek
An l•eek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links
(1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data.
This condition normally generates a. signa.l; the error is returned
if the signa.l is ignored.

33 EDOM Math arg out of domain of tunc
The argument of a. function in the math package is out of the
domain or the function.

34 ERANGE Math result not representable
The va.lue of a. function in the math package is not representable
within machine precision.

35 EUCLEAN File system needs cleaning
An attempt was made to mount(S) a file system whose super­
block is not flagged clean.

36 EDEADLOCK Would deadlock
A process' attempt to lock a file region would cause a deadlock

March 24, 1984 Page 4

INTRO (S) IN1RO (S)

between processes vying Cor control or that region.

37 ENOTNAM Not a name file
A ereatsem(S) , opensem(S) , waitsem(S) , or sigeem(S) was issued
using an invalid semaphore identifier.

38 ENAVAIL Not available
An opensem(S) , waitsem(S) or Bigsem(S) was issued to a sema­
phore that has not been initialized by a call to creatsem(S) . A
sigsem was issued to a semaphore out or sequence; i.e., before
the process has issued the corresponding waitsem to the sema­
phore. An nbwaiteem was issued to a. semaphore guarding a.
resource that is currently in use by another process. The sema­
phore on which a. process was waiting has been left in an incon­
sistent state when the process controlling the semaphore exits
without relinquishing control properly; i.e., without issuing a.
waitsem on the semaphore.

39 EJSNAM A name file
A name file (semaphore, shared data., etc.) was specified when
not expected.

Definitions

Proeess !D

Each active process in the system is uniquely identified by a positive
integer called a process !D. The range of this ID is from 0 to 30,000.

Parent Proee88 lD

A new process is created by a currently active process; see fork(S) .
The parent process ID of a process is the process 10 of its creator.

Process Group lD

Each active process is a member or a process group that is identified
by a positive integer called the process group !D. This ID is the pro­
cess ID of the group leader. This grouping permits the signaling of
related processes; see kill(S).

ny Group ID

Each active process ca.n be a member or a. terminal group that is
identified by a. positive integer called the tty group !D . This grouping
is used to terminate a group or related process upon termination or
one or the processes in the group; see ezit(S) and eignal(S) .

March 24, 1984 Page 5

/NTRO (S) /NTRO (S)

Real Ueer ID a11tl Real Group ID

Each user allowed on the system is identified by a positive integer
called a real user ID .

Each user is also a member or a group. The group is identified by a
positive integer called the real group ID .

An active process has a real user ID and real group ID that are set to
the real user ID and real group ID, respectively, or the user responsi­
ble Cor the creation or the process.

Elf��ii�e Ueer ID a11tl Elfecti�e Group ID

An active process has an effective user ID and an effective group ID
that are used to determine file access permissions (see below). The
effective user ID and effective group ID are equal to the process' real
user ID and real group ID respectively, unless the process or. one or
its ancestors evolved from a file that had the set-user-ID bit or set­
group ID bit set; see ezee(S) .

Super- Ueer

A process is recognized as a euper-u1er process and is granted special
privileges if its effective user ID is 0.

Special Procueee

The processes with a process ID or 0 and a process ID or 1 are special
processes and are referred to as procO and proct.

ProcO is the scheduler. Proct is the initialization process (i11it) .
Procl is the ancestor or every other process in the system and is
used to control the process structure.

File11ame

Names consisting or up to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be selected from the set or all character values
excluding 0 (null) and the ASCII code Cor a / (slash) .

Note that it is generally unwise to use *• ! , [, or] as part or
filenames because of the special meaning attached to these characters
by the shell. Likewise, the high order bit or the character should not
be set.

March 24, 1984 Page 6

S) INTRO (S)

d U 1tr ID and R eat Group lD

.ch user allowed on the system is identified by a poaitive integer
Jled a real user ID .

�ach user is also a member of a group. The group is identified by a
positive integer called the real group ID.

An aetive process has a real user ID and real group ID that are set to
the real user lD and real group lD, respectively, of the user responsi·
ble for the creation or the process.

An active process has an effective user ID and an tftective group ID
that are used to determine file access permissions (see below) . The
effective user ID and effective group ID are equal to the process' real
user lD and real group ID re11peetively, unless the process or. one of
it:; ancestors evolved from a. file that had the set-user-ID bit or set­
group ID bit set; see ezec(S) .

Super-Urtr

A process is recognized as a. •uper-u1er process and is granted special
privileges if its effective user ID is 0.

Special Pr(}cene•

The processes with a process ID of 0 and a process ID of l are spe cial
processes and are referred to as procO and prod.

PrtJcO is the scheduler. Pr(}cl is the initialization process (init) .
Procl is the ancestor of every other process in the system and is
used to control the process structure.

Names consisting of up to 14 characters may be used to name an
ordinary file, speeia.l file or directory.

These characters may be selected from the set of all character values
excluding 0 (null) and the ASCII eode for a. / (slash) .

Note that it is genually unwise to use *• ! , [, or] as part of
filenames because of the special meaning attached to these characters
by the shell. Likewise, the high order bit of the character should not
be set.

Page 6

)

JN1'1W (S)
bit of

• t.e access
-nTopna.

·en processes vying for control of that region.

INTRO (S)
1\M Not a name file •em(S), open�tem(S), waits em(S), or lllU•em(S) was issued

invalid sem aphore iden tifier.
No t available m(S) , wa,��tem(S) or •iu�tem(S) was issued to a Berna.

h as not been initialized by a cal/ to creauem(S) . A
issued to a semaphore out o{: sequence; i.e., before

h as issued the corresponding Wai't11em to the serna­

tbwait�tem was issued to a sem aphore guarding a

is curren tly in use by ano ther process. The serna.

h a process Was Waiting has been lett in an incon.

'len the process con trolling the semaphore exits

ishing con trol properly; i.e., without issuing a

llll aphore.

'lle
lph ore, sh ared data, etc.) was specified when

·stern is uniquely iden tified by a positive
'he range of this ID is from 0 to 30,0oo.

urrently active pro cess; see /ork(S) . 1 is the process ID ot its creator.

process group that is iden tified
9 group ID. This ID is the Pro.
uping Permits the signaling of

a termin al group that is · group ID. This grouping �ess upon termination of and "Una/(S).

A64L (S) A64L (S)

Name

a641, 164a - Converts between long integer and base 64 ASCII.

Syntax

long a641 (s)
char •s;

char *164a (I)
long I;

Description

These routines are used to m aintain numbers stored in base 64
ASCII. This is a notation by which long integers can be represented
by up to six characters; each character represents a "digit" in a radix
64 notation.

The characters used to represent " digits" are • tor 0, / tor 1 , 0
through 0 tor 2 through 11, A through Z for 12 through 37, and a
through z for 38 through 63.

A641 takes a pointer to a null-terminated base 64 representation and
returns a corresponding long value. L64a takes a long argument and
return.s a pointer to the corresponding base 64 representation.

Notes

The value returned by 164a is a pointer into a static buffer, the con­
tents ot which are overwritten by each call.

March 24, 1984 Page 1

ABOR T (S) ABORT (S)

Name

abort - Generates an lOT fault.

Syntax

abort ()

Description

.AbDrl causes an 1/0 trap--signal (SIGIOT) to oe sent to the calling
process. This usually results in termination with a core dump.

Aborl can return control if the calling process is set to catch or
ignore the SIGIOT signal; see lignal(S) .

See Also

adb(CP) , exit(S), signai(S)

Diagnostics

IC an aborted process returns control to the shell (ell(C)) , the shell
usually displays the message "abort - core dumped".

March 24, 1Q84 Page 1

ABS (S)

Name

abs - Returns an integer absolute value.

Syntax

int abs (i)
int i;

Description

Abe returns the absolute value of its integer operand.

See Also

fo.be in ftoor(S)

Notes

ABS (S)

Ir the largest negative integer supported by the hardware is given,
the function returns it unchanged.

March 24, 1984 Page 1

AOOESS (S) AOOESS (S)

Name

access - D etermines accessibility or a file.

Syntax

int access (path, amode)
char *path;
int amode;

Description

Path points to a pathname naming a file. Acce11 checQ the named
file Cor accessibility according to the bit pattern contained in o.mode,
using the real user ID in place of the effective user ID and the real
group ID in place or the effective group !D. The bit pattern for
o.mode can be formed by adding any combination or the following:

04 Read
02 Write
01 Execute (search)
00 Check existence of file

Access to the file is denied if one or more or the following are true:

A component of the path prefix is not a directory. [ENOTDIR}

Read, write, or execute (search) permission is requested for a
null pathname. [ENOENTJ

The named file does not exist. [ENOENT}

Search permission is denied on a component or the path prefix.
(EACCES]

Write access is requested for a file on a read-only file system.
(EROFS}

Write access is requested for a pure procedure (shared text) file
that is being executed. [ETXTBSY]

Permission bits of the file mode do not permit the requested
access. [EACCES]

Path points outside the process' allocated address space.
(EFAULT]

Acce" checks the permissions for the owner of a file by checking the
"owner" read, write, and execute mode bits. For members or the
file's group, the "group" mode bits are checked. For all others, the
"other" mode bits are cheeked.

March 24, 1984 Page 1

ACCESS (S) ACCESS (S)

Return Value

If the requested access is permitted, a value or 0 is returned. Other­
wise, a value or - 1 is returned and ermo is set to indicate the error.

See Also

chmod(S) , stat(S)

Notes

The super-user (root) may access any file, regardless of permission
settings.

March 24, 1984 Page 2

AOOT(S) AOOT(S)

Name

acct - Enables or disables process accounting.

Syntax

int a.cct (path)
char •path;

Description

Acct is used to enable or disable the system's process accounting
routine. It the routine is enabled, an accounting record will be writ­
ten on an accounting file for each process that terminates. A process
can be terminated by a call to ezit or by receipt of a signal which it
does not ignore or catch; see ezit(S) and lignal(S). The effective
user ID of the calling process must be super-user to use this call.

Path points to the pathname of the accounting file. The accounting
file format is given in aect(F).

The accounting routine is enabled if path is nonzero and no errors
occur during the system call. It is disabled if path is zero and no
errors occur during the system call.

Acct will fail if one or more of the following are true:

The effective user ID of the calling process is not super-user.
IEPERM]

An attempt is being m ade to enable accounting when it is
already enabled.]EBUSY]

A component of the path prefix is not a directory. IENOTDIR]

One or more components of the accounting file's pathname do
not exist. IENOENT]

A component of the path prefix denies search permission.
IEACCES]

The file named by path is not an ordinary file. IEACCES]

Mode permission is denied for the named accounting file.
IEACCES]

The named file is a directory. IEACCES]

The named file resides on a read-only file system. IEROFS]

March 24, Hl84 Page 1

ACCT(S) ACCT(S)

Patll points to an illegal a.ddress. [EFAULT]

Return Value

Upon successful completion, a value or 0 is returned. Otherwise, a
value or - I is returned and ermo is set to indicate the error.

See Also

accton(C) , acctcom(C), acct(F)

March 24, 1gs4 Page 2

ALARM (S)

Name

alarm - Sets a process' alarm clock.

Syntax

unsigned alann (sec)
unsigned sec;

Description

ALARM (S)

Alarm sets the calling process' alarm clock to let seconds. After 1ec
"real-time" seconds have elasped, the alarm clock sends a SIGALRM
signal to the process; see ngnal(S) .

Although alarm does not wait for · the signal after setting the alarm
clock, pauee(S) may be used to make the calling process wait.

Alarm requests are not stacked; successive calls reset the calling pro·
cess' alarm clock.

IC 1ec is 0, any previously made alarm request is canceled.

Return Value

Alarm returns the amount of time previously remaining in the cal·
ling process' alarm clock.

See Also

pause (S) , signal(S)

March 24, 1984 Page 1

ASSER T (S)

Name

assert - Helps verity validity or program.

Syntax

#include <assert.h>

assert (expression);

Description

ASSER T (S)

This macro is useful Cor putting diagnostics into programs under
development. When it is executed, iC e:rpreuion is Calse, it prints

Assertion tailed: file n11me, line nnn

on the standard error file and exits. N11me is the source filename
and nnn the source line number or the 1111ert statement.

Notes

To suppress calls to 1111ert, use the option "- DNDEBUG" when
compiling the progra.m; see cc (CP)) .

Ma.rch 24, 1984 Pa.ge I

A TOF (S)

Name

atof, atoi, atol - Converts ASCII to numbers.

Syntax

double atot (nptr)
char *nptr;

int atoi (nptr)
char *nptr;

long atol (nptr)
char *nptr;

Description

ATOF (S)

These functions convert a string pointed to by raptr to floating,
integer, and long integer numbers respectively. The first unrecog­
nized character ends the string.

Atof recognizes a string of the form:

I + 1 - I digits[. digits II e l E I + 1 - I digits I
where the digits are continguous decimal digits. Any number of tabs
and spaces m ay precede the string. The + and - signs are optional.
Either e or E ma.y be used to mark the beginning of the exponent.

Atoi and 11tol recognize strings of the form:

I + 1 - I digits

where the digits are contiguous decimal digits. Any number of tabs
and spaces may precede the string. The + and - signs are
optional.

See Also

scanf(S)

Notes

There are no provisions for overflow.

March 24, 1984 Page 1

)

BESSEL (S) BESSEL (S)

Name

bessel, jO, jl, jn, yO, yl, yn - Performs Bessel functions.

Syntax

#include <math.h>

double jO (x)
double x;

double jl (x)
double x;

double jn (n, x);
double x;

double yO (x)
double x;

double yl (x)
double x;

double yn (n, x)
int n;
double x;

Description

These functions calculate Bessel functions of the first and second
kinds for real arguments and integer orders.

Notes

Negative arguments cause ,0, gl, and p to return a huge negative
value.

March 24, 1984 Page I

BSEARCH (S)

Name

bsearch - Performs a binary search.

Syntax

char *bsearch (key, base, nel, width, compa.r)
char *key;
char *base;
int nel, width;
int (*compar)();

Description

BSEARCH (S)

B1e1Jrch is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating the location
at which a datum m ay be found. The table must be previously
sorted in increasing order. The first argument is a pointer to the
datum to be located in the table. The second argument is a pointer
to the base or the table. The third is the number or elementa in the
ta.ble. The fourth is the width or an element in bytes. The last argu­
ment is the na.me or the compa.rison routine. It is called with two
a.rgumenta which a.re pointers to the elementa being compared. The
routine must return an integer less than, equal to, or grea.ter than 0,
depending on whether the first a.rgument is to be considered less
than, equal to, or greater than the second.

Return Value

Ir the key cannot be found in the table, a value of 0 is returned.

See Also

lsea.rch(S) , qsort(S)

Ma.rch 24, 1984 Page 1

)

CHDIR (S)

Name

chdir - Changes the working directory.

Syntax

int chdir (path)
char •path;

Description

CHDIR (S)

Path points to the pathname of a directory. Chdir causes the named
directory to become the current working directory, the starting point
for path searches for pathnames not beginning with f.
Chdir will fail and the current working directory will be unchanged if
one or more of the following are true:

A component or the pathname is not a directory. JENO'IDIRI

The named directory does not exist. JENOENTI

Search permission is denied for any component of the path­
name. JEACCESJ

Path . points outside the process' allocated address space.
JEFAULTJ

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also

chroot(S)

March 24, 1984 Page 1

OHMOD (S)

Name

chmod - Oha.nges mode of a. file.

Syntax

int chmod (path, mode)
char *path;
int mode;

Description

OHMOD (S)

P4tb. points to a. psthname naming a. file. Ob.mod sets the access per­
mission portion of the named file's mode according to the bit pattern
contained in mode.

Access permission bits for mode ca.n be formed by adding a.ny combi­
nation of the following:

04000 Set user ID on execution
02000 Set group 10 on execution
01000 Sa.ve text ill) age after execution
00400 Rea.d by owner
00200 Write by owner
00100 Execute (or search it a directory) by owner
00040 Rea.d by group
00020 Write by group
00010 Execute (or search) by group
00004 Read by others
00002 Write by others
00001 Execute (or search) by others

To change the mode of a. file, the effective user ID of the process
must ma.tch the owner of the file or must be super-user.

If the effective user 10 of the process is not super-user, mode bit
01000 (save text image on execution) is cleared.

If the effective user ID of the process is not super-user or the
effective group ID of the process does not ma.tch the group ID of the
file, mode bit 02000 (set group ID on execution) is cleared.

If a.n executable file is prepared for sharing, then mode bit 01000
prevents the system from abandoning the swa.p-spa.ce image of the
program-text portion of the file when its la.st user terminates. Thus,
when the next user executes the file, the text need not be read from
the file system but ca.n simply be swapped in, saving time. Ma.ny
systems ha.ve relatively sma.ll amounts of swap spa.ce, a.nd the same­
text bit should be used sparingly, if a.t a.ll.

Ma.rch 24, 1984 Pa.ge 1

CHMOD (S) CHMOD (S)

Chmotl will fail &nd the file mode will be unch&nged if one or more
of the following are true:

A component of the path prefix is not a. directory.]ENOTDIRJ

The named file does not exist.]ENOENTJ

Se&rch permission is denied on & component of the path prefix.
[EACCESJ

e effective user ID does not m atch the owner of the file and
�ffective user ID is not super-user. JEPERMJ

March 24, 1984

med file resides on a re&d-only file system.]EROFSJ

'11ts outside the process' allocated address space.

1etion, a value of 0 is returned. Otherwise, a
and ermo is set to indi.cate the error.

Page 2

CHOWN (S)
Name

ehown - Changes the owner and group of a file.

Syntax

int chown (path, owner, group)
char *path;
int owner, group;

Description

CHOWN (S)

Path points to a pathname naming a file. The owner ID and group
ID of the named file are set to the numeric values contained in
owner and group respectively.

Only processes with an effective user 10 equal to the file owner or
super-user may change the ownership or a file.

If chown is invoked by other than the super-user, the setruser-ID
and set-group-10 bits of the file mode, 04000 and 02000 respectively,
will be cleared.

Chown will fail and the owner and group or the named file will
remain unchanged if one or more or the following are true:

A component of the path prefix is not a directory. [ENOTDIRJ

The named file does not exist. [ENOENTJ

Search permission is denied on a component of the path prefix.
[EACCESJ

The effective user ID does not match the owner of the file, and
the effective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process' allocated address space.
[EFAULTJ

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
va.lue of - 1 is returned and ermo is set to indicate the error.

See Also

chmod(S)
March 24, 1984 Page 1

)

OHROOT (S)

Name

chroot - Changes the root directory.

Syntax

int chroot (path)
char •path;

Description

OHROOT(S)

Path points to a pathname naming a directory. Ol&root causes the
named directory to become the root directory, the starting point for
path searches for pa.thnames beginning with f.

To change the root directory, the effective user 10 of the process
must be super-user.

The " .. " entry in the root directory is interpreted to mean the root
directory itself. Thus, " .. " cannot be used to access files outside the
root directory.

Ol&root will fail and the root directory will remain unchanged if one
or more of the following are true:

Any component or the pathname is not a directory. (ENOTDIR]

The named directory does not exist. [ENOENT]

The effective user ID is not super-user. (EPERM]

Path points outside the process' allocated address space.
[EFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value or - I is returned and ermo is set to indicate the error.

See Also

chdir(S) , chroot(C)

March 24, 1984 Page 1

OHSIZE (S)

Name

chsize - Changes the size of a file.

Syntax

int chsize (fildes, size)
int fildes;
long size;

Description

OHSIZE (S)

Fildu is a file descriptor obtained from a creat, open, dup, fcntl, or
pipe system call. Oheize changes the size of the file associated with
the file descriptor fildee to be exactly .ize bytes in length. The rou­
tine either truncates the file, or pads it with an appropriate number
or bytes. If eize is less than the initial size or the file, then all allo­
cated disk blocks between size and the initial file size are freed.

The maximum file size as set by ulimit(S) is enforced when elaeize is
called, rather than on subsequent writes. Thus cheize fails, and the
file size remains unchanged if the new changed file size would
exceed the ulimit.

Return Value

Upon successful completion, a value of 0 is returned. Otherwise,
the value - 1 is returned and ermo is set to indicate the error.

See Also

creat(S) , dup(S) , lseek(S) , open(S) , pipe(S) , ulimit(S)

Notes

In general if cheize is used to expand the size of a file, when data is
written to the end of the file, intervening blocks are filled with zeros.
In a few rare cases, reducing the file size may not remove the data
beyond the new end-of-file.

March 24, 1984 Page 1

)

OLOSE (S)

Name

close - Closes a file descriptor.

Syntax

int close (tildes)
int tildes;

Description

OLOSE (S)

Filder is a file descriptor obtained from a ereat, open, tlup, fcntl, or
pipe system call. Clore closes the file descriptor indicated by filtler.

Clore will fail ir jiltle1 is not a valid open file descriptor. [EBADFI

Retum Value

Upon successful completion, a value or 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also

creat(S) , dup(S) , exec(S), fcnti(S) , open(S) , pipe(S)

March 24, 1084 Page 1

OONV (S)

Name

conv, toupper, tolower, toascii - Translates characters.

Syntax

#include <ctype.h>

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (c)
int c;

Description

OONV (S)

Toupper and tolower convert the argument c to a letter of opposite
case. Arguments may be the integers - 1 through 255 (the same
values returned by getc(S)) . It the argument of toupper represents a
lowercase letter, the result is the corresponding uppercase letter. It
the argument or tolower represents an uppercase letter, the result is
the corresponding lowercase letter. All other arguments are returned
unchanged.

_toupper and _tolower are macros that accomplish the same thing as
toupper and tolower but have restricted argument values and are fas­
ter. _toupper requires a lowercase letter as its argument; its result is
the corresponding uppercase letter. _tolower requires an uppercase
letter as its argument; its result is the corresponding lowercase letter.
All other arguments cause unpredictable results.

Toaecii converts integer values to ASCII characters. The function
clears all bits of the integer that are not part of a standard ASCII
character; it is intended for compatibility with other systems.

See Also

ctype(S)

March 24, 1984 Page 1

OONV (S) OONV (S)

Notes

Because _touP'Per and _tololller are implemented as macros, they
should not be used where unwanted side effects may occur. Remov­
ing the _toupper and _tolollltr macros with the #under directive
causes the corresponding library tunctions to be linked instead. This
allows any arguments to be used without worry about side effects.

March 24, 1984 Page 2

OLOSE (S)

Closes & file descriptor.

ildes)

descriptor obtained from & erut, Dpen, dup, fcntl., or
lJ. ao,t c:Joses the file descriptor indicated by /ildtl.

filtle• is not a valid open file descriptor. (EBADFJ

·ompletion, a value or 0 is te�umed. Otherwise, a
tmed and errno is set to indicate the error.

c(S), fcntl(S), ope n(S) , pipe(S)

Page 1

��()'l'P1tt\

10E�\
�h -ptetilt·

tlt 'Pa

p�e \

CREAT (S) CREA T(S)

The named file resides or would reside on a read-only file sys­
tem. [EROFS]

The file is a pure procedure (shared text) file that is being exe­
cuted. [ETXTBSY]

The file exists and write permission is denied. [EACCESJ

The named file is an existing directory. [EISDIRJ

Twenty file descriptors are currently open. [EMFILE]

Path points outside the process' allocated address space.
[EFAULTJ

Return Value
'•

Upon successful completion, a nonnegative integer, namely the file
descriptor, is returned. Otherwise, a va.lue or - 1 is returned and
ermo is set to indicate the error.

See Also

close(S) , dup(S) , lseek(S), open(S) , read(S) , umask(S), write(S)

Notes

Open(S) is preferred to ere at.

March 24, 1984 Page 2

OR EA. TSEM (S) CREATSEM (S)

Name

creatsem - Creates an instance of a binary sema.phore.

Syntax

sem,_num = creatsem(sem_name,mode) ;
int aem_num,mode
char •sem_name;

Description

Createem defines a binary semaphore named by 1em_name to be used
by waiteem(S) a.nd 1igeem(S) to manage mutually exclusive access to
a resource, shared variable, or critical section of a program.
Createem returns a unique semaphore number eem_num which may
then be used as the parameter in waiteem a.nd lig1em calls. Sema­
phores are special files or 0 length. The filename space is used to
provide unique identifiers Cor semaphores. Mode sets the accessibil­
ity of the semaphore using the same format as file access bits.
Access to a semaphore is granted only on the basis or the read
a.ccess bit; the write a.nd execute bits are ignored.

A semaphore ca.n be operated on only by a synchronizing primitive,
such as waiteem or lig1em, by createem which initializes it to some
value, or by openeem which opens the semaphore Cor use by a pro­
cess. Synchronizing primitives are guaranteed to be executed
without interruption once sta.rted. These primitives are used by
associating a semaphore with ea.ch resource (including critical code
sections) to be protected.

The process controlling the semaphore should issue

sem_num = creatsem("semaphore", mode) ;

to create, initialize, and open the semaphore Cor that process. All
other processes using the semaphore should issue

sem_num == opensem ("semaphore")
to access the semaphore's identification value. Note that a. process
cannot open a.nd use a semaphore that has not been initialized by a
call to createem, nor should a process open a semaphore more tha.n
once in one period of execution. Both the creating a.nd opening
processes use wait1em and eigeem to use the semaphore eem_num.

See Also

opensem (S) , waitsem (S) , sigsem(S) .

March 24, 1984 Page 1

)

CREA TSEM (S) CREATSEM (S)

Diagnostics

Creatrem returns the value - 1 it an error occurs. It the semaphore
named by sem_name is already open for use by other processes,
ermo is set to EEXIST. It the file specified exists but is not a sema­
phore type, ermo is set to ENOTNAM. It the semaphore has not
been initialized by a call to ereatlem, ermo is set to ENA VAIL.

Notes

After a ereatfem you must do a 'IDaitfem to gain control of a given
resource.

March 24, 1984 Page 2

ORYPT(S)

Name

crypt, setkey, encrypt - Performs encryption functions.

Syntax

char *crypt (key, salt)
char *key, *salt;

setkey (key)
char *key;

encrypt (block, edflag)
char *block;
int edflag;

Description

CRYPT(B)

Crypt is the password encryption routine. It is based on the NBS
Data Encryption Standard (DES) , with variations intended (among
other things) to frustrate use of hardware implementations of the
DES for key search.

The first argument to C'I'!Jpt is a user's typed password. The second is
a 2-character string chosen from the set (a.-zA-Z0-9./J ; this ealt
string is used to perturb the DES algorithm in one of 4096 different
ways, after which the password is used as the key to encrypt repeat­
edly a constant string. The returned value points to the encrypted
password, in the same alphabet as the ealt. The first two characters
are the ealt itself.

The eetkey and enc'I'!J1It entries provide access to the actual DES algo­
rithm. The argument of eetkev is a character array of length 64 con­
taining only the characters with numerical value 0 and 1. If this
string is divided into groups or 8; the low-order bit in each group is
ignored, leading to a 56-bit key which is set into the machine.

The argument to the encf'!J1/t entry is likewise a character array of
length 64 containing zeroes and ones. The argument array is
modified in place to a similar array representing the bits of the argu­
ment after having been subjected to the DES algorithm using the key
set by eetkev. Ir edflag is 0, the argument is encrypted; if nonzero, it
is decrypted.

See Also

passwd(C) , getpass(S), passwd(M)

March 24, 1984 Page 1

· CRYPT(S) CRYPT(S)

Notes

The return value from crypt points to static data that is overwritten
by each call.

March 24, Jg84 Page 2

CTERMID (S)

Name

ctermid - Generates a filename for a terminal.

Syntax

findude <stdio.h>

char •ctermid(s)
char *s;

Description

CTERMID (S)

Ctermitl returns a pointer to a string that, when used used as a
filename, refers to the controlling terminal of the calling process.

Ir (int) • is zero, the string is stored in an internal static area, the
contents of which are -overwritten at the next call to etermitl, and the
address of which is returned. If (int) • is nonzero, then • is assumed
to point to a character array of at least L_ctermid elements; the
string is placed in this array and the value of • is returned. The
manifest constant L_ctermid is defined in <stdio.b>.

Notes

The difference between ctermitl and ttyname(S) is that ttpame must
be given a file descriptor and it returns the actual name of the termi­
nal associated with that file descriptor, while etermitl returns a magic
string (/dev /tty) that will refer to the terminal if used as a filename.
Thus ttvname is useless unless the process already has at least one
file open to a terminal.

See Also

ttyname(S)

March 24, Hl84 Page 1

' '>) CT!ME (S)

·"'le, asctime, tzset - Converts date and time

'ime pointed to by clock (such as returned by
AI and returns a pointer to a 26-chara.cter string in

:m:

16 0 1:03:52 1Q73\n\O

,ry, fields in this string are padded with spaces to keep the
"on stan t length.

time and gmtime return pointers to structures containing the
, as a variety of individual quantities. These quantities give the

.te on a 24-hour clock, day of month (1-31) , month of year (0-
. 1) , day of week (Sunday == 0) , year (since IQOO) , day of year (0-

365) , and a flag that is nonzero if daylight saving time is in effect.
Localtime corrects for the time zone and possible daylight savings
time. Gmtime converts directly to Greenwich time (GMT), which is
the time the XENIX system uses.

Asctime converts the times returned by loccltime and gmtime to a
26-character ASCII string and returns a pointer to this string.

March 24, 1Q84 Page 1

OTIME (S) OTIME (S)

The structure declaration for tm is defined in fusr/include/tira!.h.

The external long variable timezone contains the difference, in
seconds, between GMT and local standard time (e.g., in Eastern
Standard Time (EST) , timezone is 5*60*60) ; the external integer vari­
able daylight is nonzero if and only iC the standard U.S.A. Daylight
Savings Time conversion should be applied. The program knows
about the peculiarities of this conversion in 197 4 and 1975.

Ir an environment variable named TZ is present, arctime uses the
contents of the variable to override the default time zone. The
value of TZ must be a three-letter time zone name, followed by a
number representing the differeiice betw�en local time (with optional
sign) and Greenwich time in hours, followed by an optional three­
letter name for a daylight time zone. For example, the setting for
New Jersey would be EST5EDT. The effects of setting TZ are thus to
change the values of the external variables timezone and tla!Jight. In
addition, the time zone names contained in the external variable

char •tzname[2) == {"EST", "EDT"};

are set from the environment variable. The function tzret sets the
external variables from TZ ; it is called by arctime and may also be
called explicitly by the user.

See Also

time(S), getenv(S), environ(M)

Notes

The return values point to static data those content is overwritten by
each call.

March 24, 1984 Page 2

CTI'PE (S) CTI'PE (S)

Name

ctype, isa.lpha, isupper, islower, isdigit, isxdigit, isalnum, isspa.ce,
ispunct, isprint, isgra.ph, i�cntrl, isascii - Classifies characters.

Syntax

#include <ctype.h>

int isalpha (c)
int c;

Description

These m acros classity ASCII-coded integer values by table lookup.
Each returns nonzero lor true , zero lor false. l•a•cii is defined on
all integer values; the rest are defined only where iBtucii is true and
on the single non-ASCII value EOF (see etdio(S)) .

iBlower

isdigit

in digit

isalnum

i1space

ispunct

ieprint

i1graph

iscntrl

iaaecii

March 24, 1984

c is a. letter

c is an uppercase letter

c is a. lowercase letter

c is a digit (0-9)
c is a. hexidecimal digit (0-9) , (A-F) or (a.-f)

c is an alphanumeric

c is a space, tab, carriage return, newline, vertical
ta.b, or form teed

c is a punctuation character (neither control nor
alphanumeric)

c is a printing character, octal 40 (spa.ce) through
octa.l 176 (tilde)

c is a printing character, like ieprint except false tor
space

c is a delete character (octal 177) or ordinary con­
trol character (less than octal 40) .

c is an ASCII character, code less than 0200

Page 1

CTYPE (S)

See Also

ascii(M)

, March 24, 1984

CTYPE (S)

Pa.ge 2

CURSES (S) CURSES (S)

Name

curses - Performs screen and cursor functions.

Syntax

cc [flags] files - !curses - ltermlib [libraries]

Description

These routines give the user a method of updating screens with rea­
sonable optimization. They keep an image of the current screen,
and the user sets up an image of a new one. Then the refresh{) tells
the routines to make the current screen look like the new one. In
order to initialize the routines, the routine inilllcr{) must be called
before any of the other routines that deal with windows and screens
are used.

The routines are linked with the loader option -!curses.

See Also

termcap(F) , stty(S) , setenv(S)

Functions

addch(ch) Adds a character to etdscr
addstr(str) Adds a string to etdscr
box(win,vert,hor) Draws a box around a window
crmode() Sets cbreak mode
clear() Ole ars Btdscr
clearok(scr,boolf) Sets clear flag for Bcr
clrtobot() Clears to bottom on Btdscr
clrtoeol() Clears to end of line on Btdscr
delwin(win) De lete win
echo() Sets echo mode
erase() Erase Btdscr
getch() Gets a char through •tdscr
getstr(str) Gets a string through •td1cr
gettmode() Gets tty modes
getyx(win,y,x) Gets (y,x) coordinates
inch() Gets char at current (y,x) co-ordinates
initscr() Initializes screens
leaveok(win, bootr) Sets leave flag for win
longname(termbuf,name) Gets long name from termbuf
move(y,x) Moves to (y,x) on ttdscr
mvcur(lasty,lastx,newy,newx)Actually moves cursor
newwin(lines, cols,begin_y,begin_x)Creates a new window

March 27, 1984 Page 1

OURSES (S) OURSES (S)

nl() Sets newline mapping
nocrmode() Unsets cbreak mode
noecho() Unsets echo mode
non!() Unsets newline mapping
noraw() Unsets raw mode
overlay(winl,win2) Overlays winl on win2
overwrite(winl,win2) Overwrites winl on top of win2
printw(fmt,argl ,arg2, ...) Printfs on 6td1cr
raw() Sets raw mode
refresh() Makes current screen look like ltdecr
restty() Resets tty flags to stored value
savetty() Stored current tty flags
scanw(fmt,argl,arg2, ...) Scanf through etd1cr
scroll(win) Scrolls toin one line
scrollok(win, boolf) Sets scroll flag
setterm(name) Sets term variables for name
unctrl(ch) Printable version of cl&
waddch(win, ch) Adds char to win
waddstr(win,str) Adds string to win
wclear(win) Clear win
wclrtobot(win) Clears to bottom of win
wclrtoeol(win) Clears to end of line on win
we rase(win) Erase win
wgetch(win) Gets a char through win
wgetstr(win,str) Gets a string through win
winch(win) Gets char at current (y,x) in win
wmove(win,y,x) Sets current (y,x) co-ordinates on wia
wprintw(win,fmt,argl,arg2, ••.)Printf on win
wrefresh(win) Makes screen look like win
wscanw(win,fmt,argl,arg2, ...)Scanf through win

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 27, 1984 Page 2

)

CURSES (S)

md cursor functions.

ltermlib ! libraries J

a method of updating screens with rea­
keep an image of the current screen,

e of a new one. Then the refrerh{) tells
-rent screen look like the new one. In
lS, the routine initBcr() must be called
tes that deal with windows and screens

te loader option -!curses.

a cha.racter to etdscr
a string to etdur
' a box around a window
brea.k mode
etd1er
ear flag for 1cr
to bottom on etdecr
to end of line on etdaer
win
no mode
edscr
:bar through stdecr
;tring through etdeer
modes
x) coordinates
l.!' at current (y,x) co-ordinates
s screens
e flag for win
� name from termbuf
' (y,x) on ltdecr
lly moves cursor
:Jreates a new window

Page 1

USERID (S)

the login name

, this represen·
:ess or which is
to an arra.y or at

rt in this array.
C).h>.

l S NULL; if e is

results of a user's

equent call to the

Page 1

DBM (S) DBM (S)

Name

dbminit, fetch, store, delete, firstkey, nextkey - Performs database
functions.

Syntax

typedef struct { char �tr; int dsize; } datum;

dbminit(flle)
char >!<file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum flrstkey();

datum nextkey(key);
datum key;

Description

These functions maintain key/content pairs in a database. The func­
tions will handle very large (a billion blocks) databases and will
access a keyed item in one or two file system accesses. The func­
tions are obtained with the loader option - ldbm.

Ke11s and contents are described by the datum typedef. A datum
specifies a string or deize bytes pointed to by dptr. Arbitrary binary
data, as well as normal ASCII strings, are allowed. The database is
stored in two files. One file is a directory containing a bit map and
has ".dir" as its suffix. The second file contains all data and has
" .pag" as its suffix.

Before a database can be accessed, it must be opened by dbminit. At
the time of this call, the files file.dir and Jile .pag must exist. (An
empty database is created by creating zero-length " .dir" and ".pag"
files.)
Once open, the data stored under a key is accessed by fetch and data
is placed under a key by store. A key (and its associated contents) is
deleted by delete. A linear pass through all keys in a database may
be made, in an (apparently) random order, by use or jiretke11 and
neztke1J. Fir1tke11 will return the first key in the database. With any
key neztke11 will return the next key in the database. This code will

March 24, 1984 Page 1

)

DBM (S) DBM (S)

Name

dbminit, fetch, store, delete, firstkey, nextkey - Performs database
functions.

Syntax

typeder struct { char *<lptr; int dlize; } datum;

dbmini t(file)
char *file;

datum fetCh(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkey();

datum nextkey(key);
datum key;

Description

These functions maintain key/content pairs in a database. The func­
tions will handle very large (a billion blocks) databases and will
access a keyed item in one or two file system accesses. The func­
tions are obtained with the loader option - ldbm.

Ke'Vs and contents are described by the datum typedef. A datum
specifies a string of deize bytes pointed to by dptr. Arbitrary binary
data, as well as normal ASCII strings, are allowed. The database is
stored in two files. One file is a directory containing a bit map and
has ".dir" as its suffix. The second file contains all data and has
".pag" as its suffix.

Before a database can be accessed, it must be opened by tlbminit. At
the time of this call, the files file .dir and file .pag must exist. (An
empty database is created by creating zero-length ".dir" and ".pag"
files.)

Once open, the data stored under a key is accessed by fetch and data
is placed under a key by store. A key (and its associated contents) is
deleted by delete. A linear pass through all keys in a database may
be made, in an (apparently) random order, by use of jiNtkt'V and
ne:rtkeg. Fir�tkt'V will return the first key in the database. With il.ny
key ne:rtkeg will return the next key in the database. This code will

March 24, 1984 Page 1

DEFOPEN (S)

Name

defopen, defread - Reads default entries.

Syntax

int defopen(filename)
char *filename;

char *<lefread(pattem)
char *J>attem;

Description

DEFOPEN(S)

De/open and t!.efreGd are a pair of routines designed to allow easy
access to default definition files. XENIX is normally distributed in
binary form; the use or default files allows OEMS or site administra­
tors to customize utility defaults without having the source code.

De/open opens the default file named by the pathname in filenGme.
De/open returns null iC it is successful in opening the file, or the
fopen failure code (ermo) if the open fails.

DefreGt!. reads the previously opened file from the beginning until it
encounters a line beginning with pGttern. De/read then returns a
pointer to the first character in the line after the initial p11ttern. If a
trailing newline character is read it is replaced by a null byte.

When all items or interest have been extracted from the opened flle
the program may call de/open with the name or another file to be
searched, or it may call de/open with NULL, which closes the default
file without opening another.

Files

The XENJX convention is for a system program zvz to store its
defa.ults (if any) in the file /etc/defaultfxyz.

' Diagnostics

De/open returns zero on success and nonzero if the open fails. The
return value is the ermo value set by /open(S) .

Defret�t!. returns NULL if a default file is not open, i f the indicated
pattern could not be found, or if it encounters any line in the file
greater than the maximum length of 128 characters.

March 24, 1984 Page I

D UP (S)

Name

dup, dup2 - Duplicates an open file descriptor.

Syntax

int dup (fildes)
int flldes;

dup2{flldes, flldes2)
int Hides, fildes2;

Description

DUP(S)

Filde1 is a file descriptor obtained from a treat, oper:, llup, featl, or
pipe system call. Dvp returns a new file descriptor having the follow­
ing in common with the original:

Same open file (or pipe) .

Same file pointer (i.e., both file descriptors share one file
pointer) .

Same access mode {read, write or read/write) .

The new file descriptor is set to remain open across ezee system
calls. See fer:tl{S) .

Dvp returns the lowest available file descriptor. Dupe causes filde•f
to refer to the same file as filllu. If filderB already referred to an
open file, it is closed first..

Dvp will fail if one or more of the following are true:

Fildu is not a valid open file descriptor. (EBADF)

Twenty file descriptors are currently open. (EMFILE)

Return Value

Upon successful completion a nonnegative integer, namely the file
descriptor, is returned. Otherwise, a value of - 1 is returned and
ermo is set to indicate the error.

See Also

creat(S) , close(S}, exec{S), fcnti{S), open{S), pipe(S)

March 24, 1984 Page 1

EOVT (S)

Name

ecvt, fcvt, gcvt - Performs output conversions.

Syntax

char •ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, •decpt, *sign;

char •rcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char •gc:vt (value, ndigit, buf)
double value;
char •bur;

Description

EOVT(S)

Ec11t converts the t>alue to a null-terminated string of ndigit ASCII
digits and returns a pointer to the string. The position of the
decimal point relative to the beginning of the string is stored
indirectly through decpt (negative means to the left of the returned
digits) . Ir the sign of the result is negative, the word pointed to by
lign is nonzero, otherwise it is zero. The low-order digit is rounded.

Fcvt is identical to ectJt, except that the correct digit has been
rounded for FOR1RAN F format output of the number of digits
specified by ndigit1.

Gcvt converts the value to a null-terminated ASCII string in buf and
returns a pointer to buf. It attempts to produce ntligit significant
digits in FOR1RAN F format if possible, otherwise E format, ready
for printing. Trailing zeros m ay be suppressed.

See Also

Notes

The return values point to static data whose content is overwritten
by each call.

March 24, 1984 Page I

)

EXEC (S) EXEC (S)

Name

execl, execv, execle, execve, execlp, execvp - Executes a rile.

Syntax

int exec! (path, argO, argl, ••• , argn, 0)
char *path, *argO, *argl, • . . , *argn;

int execv (path, argv)
char *path, *a.rgv[];

int execle (path, argO, argl, . . . , argn, 0, envp)
char *path, *argO, *argl, • • • , *argn, *envp[] ;
int execve (path, argv, envp);
char *path, *a.rgv[], *envp[];
int execlp (tile, argO, argl, . . • , argn, 0)
char *tile, *argO, *argl, • • • , *argn;

int execvp (tile, argv)
char *tile, *argv[) ;

Description

Ezee in all its rorms transrorms the calling process into a new pro­
cess. The new process is constructed rrom an ordinary, executable
rile called the "new process rile" . There can be no return rrom a
successrul ezec because the calling process is overlaid by the new
process.

Path points to a. pa.thname tha.t identiries the new process rile.

File points to the new process rile. The pa.th prefix ror this rile is
obtained by a search or the directories passed as the environment line
"PATH ==" (see en11iron(M)) . The environment is supplied by the
shell (see •h(C)) .

ArgO, ug1 , . . • , argn are pointers to null-terminated character
strings. These strings constitute the argument list ava.ila.ble to the
new process. By convention, a.t least argO must be present, and it
must point to a. string that is the sa.me as ptzth (or its last com­
ponent) .

Argv is an array o f character pointers to null-terminated strings.
These strings constitute the argument list a.va.ila.ble to the new pro­
cess. By convention, tzrg11 must have at least one member, and it
must point to a. string that is the sa.me as ptzth (or its last com­
ponent) . Arg11 is terminated by a. null pointer.

March 24, 1984 Page 1

EXEC (S) EXEC (S)

En�p is an a.rra.y of character pointers to null-terminated strings.
These strings constitute the environment for the new process. En�p
is terminated by a. null pointer.

File descriptors open in the calling process remain open in the new
process, except for those whose close-on-exec flag is set; see
fcntl(S) . For those file descriptors that remain open, the file pointer
is unchanged.

Signals set to terminate the calling process will be set to terminate
the new process. Signals set to be ignored by the calling process will
be set to be ignored by the new process. Signals set to be caught by
the calling process will be set to terminate new process; see
•ignlll(S) .

If the setruser-ID mode bit of the new process file is set (see
chmod(S)) , ezec sets the effective user ID of the new process to the
owner ID of the new process file. Similarly, if the setrgroup-ID
mode bit of the new process file is set, the effective group ID of the
new process is set to the group ID of the new process file. The real
user ID and real group ID of the new process remain the same a.s
those or the calling process.

Profiling is disabled for the new process; see proft1(S) .

The new process also inherits the following attributes from the cal­
ling pro cess:

Nice value (see nice(S))

Process ID

Parent process ID

Process group ID

tty group ID (see ezit(S) and lignal(S))

Trace flag (see ptrace(S) request 0)

Time left until an alarm clock signal (see alarm(S))

Current working directory

Root directory

File mode creation mask (see umuk(S))

File size limit (see ulimit(S))

utime , etime, cutime, and c1time (see timee(S))

March 24, 1084 Page 2

EXEC (S) EXEC (S)

From C, two interfaces are available. Ezecl is useful when a known
file with known arguments is being called; the arguments to ezecl are
the character strings constituting the file and the arguments. The
first argument is conventionally the same as the tile name (or its last
component) . A 0 argument must end the argument list.

The ezec� version is useful when the number of arguments is unk­
nown in advance. The arguments to ezec� are the name of the Cile
to be executed and a vector of strings containing the arguments.
The last argument string m ust be followed by a 0 pointer.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and arg� is an array of character
pointers to the arguments themselves. As indicated, ngc is conven­
tionally at least one and the first member of the array points to a
string containing the name of the tile.

Arg11 is directly usable in another ezee� because 11rg11(argc) is 0.

En11p is a pointer to an array of strings that constitute the en11ironment
of the process. Each string consists of a name, an "-", and a null­
terminated value. The array of pointers is terminated by a null
pointer. The shell 1h(C) passes an environment entry tor each glo­
bal shell variable defined when the program is called. See
en11iron(M) for some conventionally used names. The C run-time
start-off routine places a · copy of entlp in the global cell enfliron,
which is used by ezecfl and ezul to pass the environment to any sub­
programs executed by the current program. The ezec routines use
lower-level routines as follows to pass an environment explicitly:

execle(file, argO, argl , . . . , argn, 0, environ) ;
execve(tile, argv, environ) ;

Ezeclp and ezectlp are called with the same arguments as ezecl and
ezec11, but duplicate the shell's actions in searching for an executable
file in a list of directories. The directory list is obtained from the
environment.

Ezec will fa.il and return to the calling process it one or more of the
following are true:

One or m ore components of the new process file's pathname do
not exist. [ENOENTj

A component of the new process file's path prefix is not a direc­
tory. [ENOTD!Rj

March 24, 1984

l
I
I

E.XEO (S) I
I

sd
c�

�
Tl

Retum

ex·

EXEO (S)

Name

exec!, execv, execle, execve, execlp, execvp - Execures a

Syntax

int exec! (path, argO, argl, • • . , argn, 0)
char *path, *argO, *argl, ••• , *argn;

int execv (path, argv)
char *path, *argv[] ;

int execle (path, argO, argl, • • . , argn, 0, envp)
char *path, *argO, *argl, • . • , *argn, •envp[];

int execve (path, argv, envp);
char *path, *argv[), *envp[];

int execlp (l'ile, arg{), argl, • . • , argn, 0)
char *file, *arg{), *argl, • . • , *argn;

int execvp (l'ile, argv)
char *file, *argv[];

Description

Ezec in all its forms transforms the calling process into a n
cess. The new process is construcred from a.n ordinary, ex'
file called the "new process file" . There can be no return
successful ezec because the calling process is overlaid by t
process.

Path points to a pathname that identifies the new process Cile.

File points to the new process file. The path prefix for thi!
obtained by a search of the directories passed as the entlironm,
"PA'rn -" (see environ(M)) . The environment is supplied
shell (see •h(C)}.

ArgO, arg1 , • • • , argn are poinrers to null-rerminared ch
strings. These strings constitute the argument list available
new process. By convention, at least argO must be present,
m ust point to a string that is the same as p4th (or its last
ponent) .

Argv is a.n array or character pointers to null-terminared sl
These strings constiture the argument list available to the nel
cess. By convention, argv must have at least one member, ;
m ust point to a string that is the same as path (or its last
ponent} . Argv is rerminared by a null pointer.

March 24, 1984 P:

EXIT(S)

Name

exit - Terminates a process.

Syntax

exit (status)
int status;

Description

EXIT(S)

Ezit terminates the calling process. All or the file descriptors open in
the calling process are closed.

Ir the parent process or the calling process is executing a wait, it is
notified or the calling process' termination and the low-order 8 bits
(i.e., bits 0377) or ltatue are made available to it; see wait(S) .

Ir the parent process or the calling process is not executing a wait,
the calling process is transformed into a "zombie process." A zom­
bie process is a process that only occupies a slot in the process table,
it has no other space allocated either in user or kernel space. The
process table slot that it occupies is partially overlaid with time
accounting information (see <sys/proc.h>) to be used by timee(S) .

The parent process ID of all of the calling process' existing child
processes and zorn bie processes is set to 1. This means the initiali­
zation process (see intro(S)) inherits each or these processes.

An accounting record is written on the accounting file if the system's
accounting routine is enabled; see acct(S).

Ir the process lD, tty group ID , and process group ID of the calling
process are equal, the SIGHUP signal is sent to each processes that
has a process group ID equal to that of the calling process.

See Also

signal(S) , wait(S)

Warning

See Warning in eignal(S)

March 24, 11184 Page 1

EXP (S) EXP (S)

Name

exp, log, pow, sqrt, loglO - Performs exponential, logarithm,
power, square root functions.

Syntax

#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

double loglO (x)
double x;

Description

Ezp returns the exponential function or z.

L og returns the natural logarithm or z.

Pow returns z11•

Sqrt returns the square root or z.

See Also

intro(S) , hypot(S) , sinh(S)

Diagnostics

Ezp and pow return a huge value when the correct value would
overflow. A truly outrageous argument may also result in ermo
being set to ERANGE • Log returns a huge negative value and sets
ermo to EDOM when z is nonpositive. Pow returns a huge negative
value and sets ermo to EDOM when z is nonpositive and 11 is not an
integer, or when z and 'II are both zero. Sqrt returns 0 and sets ermo
to EDOM when z is negative.

March 24, 1984 Page 1

FCLOSE (S)

Name

fclose, ffiush - Closes or flushes a stream.

Syntax

#include <stdio.h>

int fdose (stream)
HLE •stream;

int mush (stream)
HLE *stream;

Description

FCLOSE (S)

Fclo1e causes any buffers for the named •tream to be emptied, and
the file to be closed. Buffers allocated by the standard input/output
system are freed.

Fclo•e is performed automatically upon calling ezit(S) .

Ffluth causes any buffered data for the named output ttream to be
written to that file. The stream remains open.

These functions return 0 for success, and EOF if any errors were
detected.

See Also

close(S), fopen(S) , setbuf(S)

March 24, 11184 Page 1

FONTL (S) FONTL (S)

Name

Cent! - Controls open files.

Syntax

#include <fcntl.h>

int fcntl (flldes, cmd, arg)
int flldes, cmd, arg;

Description

Fcntl provides Cor control over open files. Fildes is an open file
descriptor obtained from a. creat, open, dup, fcntl, or pipe system call.

The cmds a.va.ila.ble a.re:

F_DUPFD

F_GETFD

F_SETFD

Returns a. new file descriptor as follows:

Lowest numbered available file descriptor greater than
or equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file
descriptors share one file pointer) .

Same access mode (read, write or read/write) .

Same file status fta.gs (i.e., both file descriptors share
the same file status fta.gs) .

The close-on-exec fta.g associated with the new file
descriptor is set to remain open across ezec(S) system
calls.

Gets the close-on-exec fta.g associated with the file
descriptor fildes. Ir the low-order bit is 0 the file will
remain open across ezec, otherwise the file will be
closed upon execution or ezec.

Sets the close-on-exec fta.g associated with Jildes to the
low-order bit or arg (0 or 1 as above) .

F _GETFL Gets file status fta.gs.

F _SETFL Sets file status fta.gs to arg. Only certain fta.gs can be
set.

March 24, 1984 Page 1

)

FON1L (S)

Jne or more of the following is true:

not a valid open file descriptor. !EBADF]

s F _DUPFD and 20 file descriptor.'! are currently open.
,E]

is F_DUPFD and arg is negative or greater than 20.
1AL]

.e

uccessful completion, the value returned depends on cmtl as

.DUPFD A new file descriptor

_GETFD Value of flag (only the low-order bit is defined)

F_SETFD Value other than - 1

F _GETFL Value of file flags

F_SETFL Value other than - 1

;herwise, a value of - 1 is returned and errno is set to indicate the
·ror.

\.I so

close(S) , exec(S) , open(S)

March 24, 1984 Page 2

FERROR (S) FERROR (S)

Name

terror, teot, clearerr, fileno - Determines stream status.

Syntax

#include <stdio.h>

int teof (stream)
F1LE *stream;

int terror (stream)
F1LE *stream

clearerr (stream)
F1LE *stream

int ftleno(stream)
F1LE *stream;

Description

Feof returns nonzero when end-of-file is read on the named input
•tream, otherwise zero.

Ferror returns nonzero when an error has occurred reading or wri�
ing the named 1tream, otherwise zero. Unless cleared by clearerr,
the error indication lasts until the stream is closed.

Olearerr resets the error indication on the named •tre11m.

Fileno returns the integer file descriptor associated with the ltre11m,
see open(S) .

Feo/, /error, and fileno are implemented as macros; they cannot be
redeclared.

See Also

open(S) , Copen(S)

March 24, 1984 Page 1

FERROR (S) FERROR (S)

Name

ferror, feof, clea.rerr, fileno - Determines stream status.

Syntax

:finclude <st.dio.h>

int rear (stream)
F1LE •stream;

int terror (stream)
F1LE •stream

cleareiT (stream)
F1LE •stream

int flleno(stream)
F1LE •stream;

Description

Feof returns nonzero when end-of-file is read on the named input
etream, otherwise zero.

Ferror returns nonzero when an error has occurred reading or writ,.
ing the named etream, otherwise zero. Unless clea.red by clearerr,
the error indication lasts until the stream is closed.

Olearerr resets the error indication on the named etream.

Fileno returns the integer file descriptor associated with the etream,
see open(S) .

Feof, /error, and fileno are implemented as macros; they cannot be
re de clare d.

See Also

open(S) , Copen(S)

March 24, 1984 Page 1

FOLOSE (S)

'mptied, and nput/output

-earn to be

rors Were

FOPEN (S)

a stream.

stream)

by filename and associates a stream with
to be used to identify the stream in sub-

aving one or the following values:

·riting at end of file, or create Cor writing

lading and writing)

:reate Cor update at end or file

: named file in place or the open 1tream. It
.lue or ltream. The original stream is closed,
;he open call ultimately succeeds.

sed to attach the preopened constant names
err to specified files.

tream with a file descriptor obtained from open,
) . The t11pe or the stream must agree with the
e. The twe must be provided because the stan­
no way to query the type or an open file descrip­
the new stream.

Page 1

FOPEN (S) FOPEN (S)

When a file is opened for update, both input and output may be
done on the resulting stream. However, output may not be directly
followed by input without an intervening f•eek or re'IIJintl, and input
may not be. directly followed by output without an intervening f•eek,
re'IIJintl, or an input operation which encounters the end of the file.

See Also

open(S), fclose(S)

Diagnostics

Fopen and freopen return the pointer NULL i! filename cannot be
accessed.

March 24, 1984 Page 2

FORK (S) FORK (S)

Name

fork - Creates a new process.

Syntax

int fork ()

Description

Fork causes creation of a new process. The new process (child pro­
cess) is an exact copy of the calling process (parent process) except
for the following:

The child process has a unique process ID .

The child process has a different parent process ID (i.e., the pro­
cess ID of the parent process) .

The child process has its own copy of the parent's file descrip­
tors. Each of the child's file descriptors shares a common file
pointer with the corresponding file descriptor of the parent.

The child process' utime, mme, eutime, and eetime are set to 0;
see timu(S) .

The time left on the parent's alarm clock is not passed on to the
child.

Fork returns a value of 0 to the child process.

Fork returns the process ID of the child process to the parent pro­
cess.

Fork will fail and no child process will be created if one or more of
the following are true:

The system-imposed limit on the total number of processes
under execution would be exceeded. IEAGAINJ

The system-imposed limit on the total number of processes
under execution by a single user would be exceeded. IEAGAINJ

Not enough memory is available to create the forked image.
IENOMEM]

Return Value

Upon successful completion, fork returns a value of 0 to the child
process and returns the process ID of the child process to the parent

March 24, 1984 Page 1

)

FORK (S) FORK (S)

process. Otherwise, a. value or - I is returned to the pa.rent process,
no child process is crea.ted, a.nd e!TIIo is set to indica.te the error.

See Also

exec(S), wait{S)

Ma.rch 24, 1984 Pa.ge 2

FREAD (S) FREAD (S)

Name

fread, !write - Performs buffered binary input and output.

Syntax

#include <stdio.h>

int fread ((char *) ptr, sizeof (*ptr) , nitems, stream)
F1LE *stream;

int fwrite ((char *) ptr, sizeor (*ptr), nitems, stream)
F1LE *stream;

Description

Fread reads, into a block beginning at ptr, nitems or data of the type
of *ptr from the named input dream. It returns the number of items
actually read.

Fwrite appends at most nitemr of data of the type of *ptr beginning at
ptr to the named output etream. It returns the number of items
actually written.

See Also

read(S) , write(S) , fopen(S) , getc(S) , putc(S) , gets(S) , puts(S) ,
printf(S) , scanf(S)

March 24, 1984 Page 1

FREXP (S) FREXP (S)

Name

frexp, ldexp, modf - Splits floating-point number into a mantissa.
and an exponent.

Syntax

double rrexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;

double modi' (value, iptr)
double value, *iptr;

Description

Frezp returns the mantissa of a double walue as a. double quantity, .z ,
of magnitude less than 1, and stores an integer n such that w11lue ==
z*2**n indirectly through eptr.

L dezp returns the quantity 1111lue*(2**ezp) .

M odf returns the positive fractional part of 1111lue and stores the
integer part indirectly through iptr.

March 24, 1984 Page 1

FSEEK (S)

Name

fseek, ftell, rewin d - Repositions a stream.

Syntax

finclude <stdio.h>

int rseek (stream, offset, ptmame)
F1LE *stream;
long offset;
int ptmame;

long rtell (stream)
F1LE *stream;

rewind(stream)
F1LE *stream;

Description

FSEEK (S)

Feeek sets the position of the next input or output operation on the
stream. The new position is at the signed distance oflret bytes from
the beginning, the current position, or the end of the file, according
as ptmame has the value 0, 1, or 2.

Feeek undoes any effects of ungetc (S) .

After /seek or rewind, the next operation on an update file may be
either input or output.

Ftell returns the current value of the offset relative to the beginning
of the file associated with the named stream. The offset is measured
in bytes.

Rewind(etream) is equivalent to fseek(stream, OL, 0} .

See Also

lseek(S), fopen(S)

Diagnostics

Freek returns nonzero for improper seeks, otherwise zero.

March 24, 1984 Page 1

)

GAMMA (S)

Name

gamma - Performs log gamma function.

Syntax

findude < math.h>
extern int signgam;

double gamma (x)
double x;

Description

GAMMA (S)

Gamma returns ln rt I� I) I· The sign of r(I� I) is returned in the
external integer ligngam. The following C program fragment might
be used to calculate r:

y ... gamma (x);
if (y > 88.0)

error () ;
y - exp (y) • signgam;

Diagnostics

For negative integer arguments, a huge value is returned, and ermo
is set to EDOM.

March 24, 1984 Page 1

GETC (S) GETC (S)

Name

getc, getchar, fgetc, getw - Gets character or word from a stream .

• Syntax

#include <stdio.h>

int getc (stream)
HLE •stream;

•
int getchar ()
int rgetc (stream)
HLE •stream;

int getw (stream)
HLE •stream;

Description

Getc returns the next character from the named input 1tre11m.

Getckar() is identical to getc(etdin) .

Fgetc behaves like getc, but is a genuine function , not a macro; it
may therefore be used as an argument. Fgetc runs more slowly than
getc, but takes less space per invocation.

Getw returns the next word from the named input .tream. It returns
the constant EOF upon end-of-file or error, but since that is a valid
integer value, feof and /error(S) should be used to check the success
or getw. Getw assumes no special alignment in the file.

See Also

ferror(S) , fopen(S) , fread(S), gets(S) , putc(S) , scanf(S)

Diagnostics

These functions return the integer constant EOF at the end-of-file or
upon a read error.

Notes

Because getc is implemented as a macro, etream arguments with side
effects are treated incorrectly. In particular, "getc(•f+ +)" doesn't
work properly.

March 24, Hl84 Page 1

GETGWD (S)

Name

getcwd - Gets pathname or current working directory.

Syntax

len = getcwd (pnbuf, maxi en);
int len;
char •pnbuf;
int maxlen;

Description

GETGWD (S)

Getcwd determines the pathname or the current working directory
and places it in pnbuf. The length excluding the terminating NULL is
returned. M4Zlen is the length or pnbuf. Ir the length or the (null­
terminated) pathname exceeds m11zlen, it is treated as an error.

Diagnostics

A length <== 0 is returned on error.

Notes

mazlen (and pnbuf) must be 1 more than the true maximum length
or the pathname.

March 24, H184 Page 1

GETENV (S)

Name

getenv - Gets value for environment name.

Syntax

char *getenv (name)
char *name;

Description

GETENV(S)

Geten11 searches the environment list (see enfliron(M)) for a string of
the form name=11alue and returns 11alue i f such a string is present,
otherwise 0 (NULL) .

See Also

sh(C) , exec(S)

March 24, 1984 Page 1

GETGRENT (S) GETGRENT(S)

Name

getgrent, getgrgid, getgrnam, setgrent, endgrent - Get group file
entry.

Syntax

#include <grp.h>
struct group *getgrent () ;

struct group *getgrgid (gid)
int gid;
struct group *getgrnam (name)
char *name;

int setgrent () ;

int endgrent () ;

Description

Getgrent, getgrgid and getgmam each return pointers. The format or
the structure is defined in /usr/includefgrp.h.

The members or this structure are:

gr_name

gr_passwd

gr_gid

gr_mem

The name or the group.

The encrypted password of the group.

The numerical group !D.

Null-terminated vector of pointers to the indivi­
dual member names.

Getgrent reads the next line of the file, so successive calls may be
used to search the entire file. Getgrgid and getgmam search from the
beginning of the file until a matching gid ot name is round, or end­
of-file is encountered.

A call to •etgrent has the effect of rewinding the group file to allow
repeated searches. Endgrent may be called to close the group file
when processing is complete.

Files

/etc/group

March 24, 1984 Page 1

GETGRENT (S) GETGRENT (S) ·

See Also

getlogin(S) , getpwent(S), group(M)

Diagnostics

A null pointer (0) is returned on end-of-file or error.

Notes

All information is contained in a static area, so it must be copied if it
is to be saved.

March 24, 1984 Page 2

)

)

GETLOG/N (S) GE1LOG/N (S)

Name

getlogin - Gets login name.

Syntax

char *getlogin () ;

Description

Getlogin returns a pointer to the login name as found in /etc/utmp.
It may be used in conjunction with getpwnam to locate the correct
password file entry when the same user lD is shared by several login
names.

Ir getlogin is called within a process that is not attached to a terminal
device, it returns NULL. The correct procedure Cor determining the
login name is to call cueerid, or to call getlogin and iC it fails, to call
getpwuid.

Files

/etc/utmp

See Also

cuserid(S) , getgrent(S) , getpwent(S), utmp(M)

Diagnostics

Returns NULL if name not round.

Notes

The return values point to static data whose content is overwritten
by each call.

March 24, 1984 Page 1

GETOPT (S)

Name

getopt - Gets option letter from argument vector.

Syntax

#include <stdio.h>

int getopt (a.rgc, argv, optstring)
int a.rgc;
char **argv;
char *optstring;
extern char *optarg;
extern int optind;

Description

GETOPT(S)

Getopt returns the next option letter in tzrgv that matches a. letter in
optnring. Optstring is a string of recognized option letters; it a letter
is followed by a colon, the option is expected to have an argument
that may or may not be separated from it by whitespa.ce. Opttzrg is
set to point to the start or the option argument on return from
getopt.

Getopt places in optind the tzrgv index of the next argument to be
processed. Because optind is external, it is normally initialized to
zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first nonoption
argument) , getopt returns EOF. The special option -- m ay be used to
delimit the end of the options; EOF will be returned, and -- will be
skipped.

Diagn08tics

Getopt prints an error message on 1tderr and returns a. question mark
(!) when it encounters an option letter not included in optltring.

Examples

The following code fragment shows how one might process the argu­
ments for a. command that can take the mutually exclusive options a
and b, and the options r and o, both or which require arguments:

March 24, 1984 Page 1

J

GETOPT(S)

main (argc, argv)
int argc;
char **argv;
{

int c;
extern int optind;
extern char *optarg;

GETOPT (S)

while ((c =- getopt (argc, argv, "abf:o:")) !-= EOF)
switch (c) {

}

March 24, 1984

case 'a!:
if (bftg)

errftg+ + ;
e lse

aftg+ + ;
break;

case 'b':
if (aftg)

errflg+ + ;
else

bproc() ;
break;

case 'r':

case 'o':

case '? ':

}

ifile - optarg;
break;

ofile == optarg;
bufsiza = 512;
break;

errflg+ + ;

if (errftg) {

}
!print! (stderr, "usage: . . . ") ;
exit (S) ;

for(; optind < argc; optind+ +) {
if (access (argv(optind) , 4)) {

Page 2

GETPASS (S)

Name

getpass - Reads a password.

Syntax

char *getpass (prompt)
char *prompt;

Description

GE7PASS (S)

Getpa11 reads a password from the file /dev/tty, or if that cannot be
opened, from the standard input, after prompting with the null·
terminated string prompt and disabling echoing. A pointer is
returned to a null-terminated string of at most eight characters.

Files

/devftty

See Also

crypt(S)

Notes

The return value points to static data whose content is overwritten
by each call.

March 24, 1984 Page 1

GETPID (S) GETPID (S)

Name

getpid, getpgrp, getppid - Gets process, process group, and parent
process IDs.

Syntax

int getpid ()
int getpgrp ()
int getppid ()

Description

Getpid returns the process ID or the calling process.

Getpgrp returns the process group ID or the calling process.

Getppid returns the parent process ID of the calling process.

See Also

exec(S) , rork(S) , intro(S) , setpgrp(S) , signal(S)

March 24, 1984 Page 1

GETPW (S)

Name

getpw - Gets password for a given user ID .

Syntax
getpw (uid, buf)
int uid;
char *buf;

Description

GETPW (S)

Getpw searches the password file Cor the uid, and fills in bu/ with the
corresponding line; it returns nonzero if uid could not be found.
The line is null-terminated. Uid must be a.n integer value.

Files

/etcfpasswd

See Also

getpwent(S), passwd(M)

Diagnostics

Returns nonzero on error.

Notes

This routine is included only for compatibility with prior systems and
should not be used; see getpwent(S) Cor routines to use instead.

March 24, 1984 Page 1

GETPWENT (S) GETPWENT(S)

Name

getpwent, getpwuid, getpwnam, setpwent, endpwent - Gets pass­
word file entry.

Syntax

#include <pwd.h>

struct passwd *getpwent () ;

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

int setpwent () ;

int endpwent () ;

Description

Getpwent, getpwuid a.nd getpwnam each returns a pointer to a. struc­
ture containing the fields oC an entry line in the password file. The
structure or a. password entry is defined in /usr/indude/pwd.h.

The fields have meanings described in p416wd(M) . (The
pw_cqmment field is unused.)

Getpwent reads the next line in the file, so successive calls can be
used to search the entire file. Getpwuid and getpwnam search from
the beginning oC the file until a. matching uid or name is found, or
EOF is encountered.

A call to 6etpwent ha.s the effect oC rewinding the password file to
allow repeated searches. Endpwent ma.y be called to close the pass­
word file when processing is complete.

Files

fetcfpasswd

See Also

getlogin(S) , getgrent(S) , passwd(M)

March 24, Ul84 Page 1

GETPWENT(S) GETPWENT(S)

Diagnostics

Null pointer (0) returned on EOF or error.

Notes

All information is conta.ined in a sta.tie area. so it must be copied if it
is to be saved.

March 24, 1984 Page 2

GETS (S)

Name

gets, fgets - Gets a string from a stream.

Syntax

#include <stdio.h>

char *gets (s)
char •s;

char *fgets (s, n, stream)
char •s;
int n;
F1LE •stream;

Description

GETS (S)

Gete reads a string into ' from the standard input stream stdin. The
function replaces the newline character at the end of the string with
a null character before copying to e. Gete returns a pointer to s.

Fget• reads characters Crom the Btream until a newline character is
encountered or until n- 1 characters have been read. The characters
are then copied to the string e. A null character is automatically
appended to the end oC the string before copying. Fgete returns a
pointer to '·

See Also

ferror(S) , Copen(S) , fread(S) , getc(S) , puts(S), scanf(S)

Diagnostics

Gete and fgete return the constant pointer NULL upon end-of-file or
error.

Notes

Gete deletes the newline ending its input, but fgete keeps it.

March 24, 1984 Page I

GETU/D (S) GETUID (S)

Name

getuid, geteuid, getgid, getegid - Gets real user, effective user, real
group, and effective group IDs.

Syntax

int getuid ()
int geteuid ()
int getgid ()
int getegid ()

Description

Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

See Also

intro(S) , setuid(S)

March 24, 1984 Page 1

)

HYPOT (S)

Name

hypot, cabs - Determines Euclidean distance.

Syntax

finclude < math.h>

double hypot (x, y)
double x, y;

double cabs (z)
struct {double x, y;} z;

Description

Hypot and eabe return

sqrt{x*x + y*y)

Both take precautions against unwarranted overflows.

See Also

•qrt in exp(S)

March 24, 1984

HYPOT(S)

Page 1

• IOOTL (S)

Name

ioctl - Controls character devices.

· "\tax

findude <sys/ioetl.h>

ioetl(tildes, request, arg)
int tildes;

Description

/OOTL (S)

loctl performs a variety or functions on character special files (dev­
ices) . The write ups of various devices in Section M discuss how ioctl
applies to them.

I octl will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF[

Fildes is not associated with a character special device.
[ENOTI'Yj

Reque1t or arg is not valid. See ttu(M). [EINVAL]

Return Value

If an error has occurred, a value of - 1 is returned and ermo is set
to indicate the error.

See Also

tty(M)

March 24, 1g84 Page 1

)

KILL (S)

Name

kill - Sends a signal to a process or a group of processes.

Syntax

int kill (pid, sig)
int pid, s ig;

Description

KILL (S)

Kill sends a signal to a process or a group of processes. The process
or group of processes to which the signal is to be sent is specified by
pid. The signal that is to be sent is specified by rig and is either one
from the list given in rign1.1l(S) , or 0. It eig is 0 (the null signal),
error checking is performed but no signal is actually sent. This can
be used to check the validity of pid.

The effective user ID of the sending process must match the
effective user ID of the receiving process unless, the effective user ID
of the sending process is super-user, or the process is sending to
itself.

The processes with a process ID of 0 and a process ID of 1 are special
processes (see intro(S)) and will be referred to below as procO and
prod respectively.

If pt"d is greater than zero, rig will be sent to the process whose pro­
cess ID is equal to pid. Pid m ay equal 1 .

If pt"d i s 0 , eig will be sent to all processes excluding procO and prod
whose process group ID is equal to the process group ID of the
sender.

If pid is - 1 and the effective user ID of the sender is not super-user,
eig will be sent to all processes excluding procO and prod whose real
user ID is equal to the effective user ID of the sender.

If pid is - 1 and the effective user ID of the sender is super-user, lig
will be sent to all processes excluding procO and prod.

If pid is negative but not - 1 , rig will be sent to all processes whose
process group ID is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the follow­
ing are true :

Sig is not a valid signal number. !EINVAL]
No process can be found corresponding to that specified by pid.
!ESRCH]

March 24, 1984 Page 1

KILL { S) KILL { S)

The sending process is not sending to itselr, its effective user ID
is not super-user, and its effective user ID does not match the
real user ID or the receiving process. [EPERM]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value or - 1 is returned and ermo is set to indicate the error.

See Also

kill{C) , getpid{S), setpgrp{S), signa.l{S)

March 24, 1 984 Page 2

)

LSTOL (S) LSTOL (S)

Name

l3tol, ltol3 - Converts between 3-byte integers and long integer�.

Syntax

13tol (lp, cp, n)
long *lp;
char *cp;
int n;

ltol3 (cp, lp, n)
char *cp;
long *lp;
int n;

Description

LStol converts a- list of 11 3-byte integers packed into a character
string pointed to by ep into a list of long integers pointed to by lp.

LtolS performs the reverse conversion from long integers (lp) to 3-
byte integers (ep) .

These functions are useful for file system ma.intenance where the
block numbers are 3 bytes long.

See Also

filesystem (F)

March 24, 1984 Page 1

L/NK (S) LINK (S)

Name

link - Links a new filename to an existing file.

Syntax

int link (pathl, path2)
char *pathl, *path2;

Description

Patkt points to a pathname naming an existing file. Patkf! points to
a pathname giving the new filename to be linked. Link makes a new
link by creating a new directory entry for the existing file using the
new name. The contents of the existing file can then be accessed
using either name.

Link will fail and no link will be created if one or more of the fol­
lowing are true:

A component of either path prefix is not a directory. [ENOTDIR[

A component of either path prefix does not exist. [ENOENTJ

A component of either path prefix denies search permission.
[EACCES[

The file named by patkt does not exist. [ENOENTJ

The link named by patki! already exists. [EEXISTJ

The file named by patkt is a directory and the effective user ID
is not super-user. [EPERMJ

The link named by patki! and the file named by patkt are on
different logical devices (file systems) . [EXDEVJ

Patki! points to a null pathname. [ENOENTJ

The requested link requires writing in a directory with a mode
that denies write permission. [EACCESJ

The requested link requires writing in a directory on a read-only
file system. [EROFSj

Patk points outside the process' allocated address space.
JEFAULTJ

March 24, Ul84 Page 1

Lll'IX (S) LINK (S)

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, Sl
value of - 1 is returned and errno is set to indicate the error.

See Also

ln(C)

March 24, 1984 Page 2

LOCK (S)

Name

lock - Locks a process in primary memory.

Syntax

lock(flag)

Description

LOCK (S}

IC the flag argument is nonzero, the process executing this call will
not be swapped except if it is required to grow. If the argument is
zero, the process is unlocked. This call may only be executed by the
super-user.

Notes

Locked processes interfere with the compaction of primary memory
and can cause deadlock. Systems with small memory configurations
should avoid using this call. It is best to lock process soon after
booting because that will tend to lock them into one end of memory.

March 24, 1984 Page 1

)

LOCK!NG (S) L OCK/NG (S)

Name

locking - Locks or unlocks a file region for reading or writing.

Syntax

locking(fildes , mode, size);
int fildes, mode;
long size;

Description

Locking allows a specified number of bytes in a file to be controlled
by the locking process. Other processes which attempt to read or
write a portion of the file containing the locked region may sleep
until the area becomes unlocked depending upon the mode in which
the file region was locked. A process that attempts to write to or
read a file region that has been locked against reading and writing by
another process (using the LK_LOCK or LK_NBLCK mode) will sleep
until the region of the file has been released by the locking process.
A process that attempts to write to a file region that has been locked
against writing by another process (using the LK_RLCK or
LK_NBRLCK mode) will sleep until the region of the file has been
released by the locking process, but a read request for that file region
will proceed normally.

A process that attempts to lock a region of a file that contains areas
that have been locked by other processes will sleep if it has specified
the LK_LOCK or LK_RLCK mode in ill! Jock request, but will return with
the error EACCES if it specified LK_NBLCK or LK_NBRLCK.

Fildes is the value returned from a successful creat, open, dup, or pipe
system call.

Mode specifies the type of lock operation to be performed on the file
region. The available values for mode are:

LK_U NLCK 0
Unlocks the specified region. The calling process releases a
region of the file it had previously locked.

LK_LOCK I
Locks the specified region. The calling process will sleep until
the entire region is available if any part of it has been locked by
a different process. The region is then locked for the calling
process and no other process may read or write in any part of
the locke d region. (Jock against read and write) .

March 24 , 1984 Page 1

LOCKING (S) LOCKING (S)

LK_NBLCK 2
Locks the specified region. Ir any part of the region is already
locked by a different process, return the error EACCES instead
of waiting for the region to become available for locking (non·
blocking lockrequest) .

LK..RLCK 3
Same as LK..LOCK except that the locked region may be read by
other processes (read permitted lock) .

LK_NBRLCK 4
Same as LK_NBLCK except that the locked region may be read
by other processes (nonblocking, read permitted lock) .

Size is the number of contiguous bytes to be locked or unlocked.
The region to be locked starts at the current offset in the file. It eize
is 0, the entire file (up to a maximum of 2 to the power of 30 bytes)
is locked or unlocked. Size may extend beyond the end of the file,
in which case only the process issuing the lock call m ay access or add
information to the file within the boundary defined by size.

The potential for a deadlock occurs when a process controlling a
locked area is put to sleep by accessing another process' locked area.
Thus calls to locking, read, or write scan for a deadlock prior to sleep­
ing on a locked region. An error return is made if sleeping on the
locked region would cause a deadlock.

Lock requests may, in whole or part, contain or be contained by a
previously locked region for the same process. When this occurs, or
when adjacent regions are locked, the regions are combined into a
single area if the mode of the lock is the same (i.e.; either read per­
mitted or regular lock). Ir the mode of the overlapping locks differ,
the locked areas will be assigned assuming that the molt recent
requelt must be satisfied. Thus if a read only lock is applied to a
region, or part of a region , that had been previously locked by the
same process against both reading and writing, the area of the file
specified by the new lock will be locked for read only, while the
remaining region, if any, will remain locked against reading and writ­
ing. There is no arbitrary limit to the number of regions which may
be locked in a. file. There is however a system-wide limit on the
total number of locked regions. This limit is 200 for XENIX systems.

Unlock requests may, in whole or part, release one or more locked
regions controlled by the process. When regions are not fully
released, the remaining areas are still locked by 'the process. Release
of the center section of a locked area requires an additional locked
element to hold the separated section. It the lock table is full, an
error is returned, and the requested region is not released. Only the
process which locked the file region may unlock it. An unlock
request Cor a region that the process does not have locked, or that is
already unlocked, has no effect. When a process terminates, · all
locked regions controlled by that process are unlocked.

March 24, 1984 Page 2

LOCKING (S) LOCKING (S)

Ir a process has done more than one open on a file, all locks put on
the file by that process will be released on the first close of the file.

Although no error is returned if locks are applied to special files or
pipes, read/write operations on these types of files will ignore the
locks. Locks may not be applied to a directory.

See Also

creat(S) , open(S) , read(S) , write(S) , dup(S) , close(S), lseek(S)

Diagnostics

Locking returns the value (int) -1 if an error occurs. If any portion
of the region has been locked by another process for the LK_LOCK
and LK_RLCK actions and the lock request is to test only, ermo is set
to EACCES. If the file specified is a directory, ermo is set to
EACCES. IC locking the region would cause a deadlock, ermo is set
to EDEADLOCK. IC there are no more free internal locks, ermo is set
to EDEADLOCK . .

March 24, 1984 Page 3

LOGNAME (S) LOGNAME (S)

Name

logname - Finds login name or user.

Syntax

char *logname() ;

Description
LogAIIme returns a pointer to the null-terminated Iorin name. It
uses the string found in the LOGNAME variable from the user's
environment.

Files

/etc/profile

See Also

env(C) , login(M), profile(M) , environ(M)

March 24, 1984

)

LSEAR.CH (S)

Name

lsurch - Performs linear search a.nd update.

Syntax

char •!search (key, base, nelp, width, compar)
char •key;
char •base;
int •nelp;
int width;
int (•compar)();

Description

LSEARCH (S)

Lmsrd is a linear search routine generalized from Knuth (6.1)
Algorithm Q. It returns a pointer into a table indicating the location
at which a datum may be found. If the item does not occur, it is
added at the end· of the table. The first argument is a pointer to the
datum to be located in the table. The second argument is a pointer
to the base of the table. The third argument is the address or a.n
integer containing the number of items in the table. It is incre­
mented if the item is added to the table. The fourth argument is the
width of an element in bytes. The last argument is the name of the
comparison routine. It is called with two arguments which are
pointers to the elements being compared. The routine must return
zero if the items are equal, and nonzero otherwise.

Notes

Unpredictable events ca.n occur if there is not enough room in the
table to add a new item.

See Also

bsearch(S) , qsort(S)

March 24, 1984 Page 1

LSEEK (S) LSEEK (S)

Name

!seek - Moves reall/wrire file poinrer.

Syntax

long)seek (flldes, offset, whence)
int flldes;
long offset;
int whence;

Description

Filde1 is a file descriptor returned from a crest, �pen, lvp, or ft:llll
sysrem call. L11eek sets the file poinrer associared with Jillu as fol­
lows:

If vl&e11ce is 0, the poinrer is set to �ff•et byres.

It vAe11ce is 1, the poinrer is set to its current location plus �ff•et.

It vl&e11ce is 2, the poinrer is set to the size of the file plus �ffeet.

Upon successful completion, the resulting poinrer location as meas­
ured in byres from the beginning or the file is returned.

L1eek will fail and the file poinrer will remain unchanged it one or
more of the following are true:

Fildu is not an open file descriptor. }EBADF]

Filder is associared with a pipe or fifo. }ESPIPE}

Whe11ce is not 0, 1 or 2. }EINVAL and SIGSYS signal)

The resulting file poinrer would be negative. }EINVAL}

Some devices are incapable of seeking. The value of the file poinrer
associared with such a device is undefined.

Return Value

Upon successful completion, a nonnegative inreger indicating the file
poinrer value is returned. Otherwise, a value of - 1 is returned and
ermo is set to indicare the error.

March 24, 1984 Page 1

· LSEEK (S) LSEEK (S)

See Also

ereat(S), dup(S) , Centl(S) , open(S)

1984 Page 2

MALLOC (S)

Name

malloc, free, realloc, calloc - Allocates main memory.

Syntax

char •malloc (size) unsigned size;

free (ptr)
char •ptr;

char •realloc (ptr, size)
char •ptr;
unsigned size;

char •calloc (nelem, elsize)
unsigned elem, elsize;

Description

MALLOC (S)

Malloc and free provide a simple general-purpose memory allocation
package. MaUoc returns a pointer to a block of at least llize bytes
beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by
malloc; this space is made available for further allocation, but its
contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by
malloc is overrun or if some random number is handed to free.

Malloc allocates the ril'llt contiguous reach of free space found in a
circular search from the last block allocated or freed, coalescing adja­
cent free blocks as it searches. It calls ebrk (see •hrk (S)) to get
more memory from the system when there is no suitable space
already free.

Rea/loc changes the size of the block pointed to by ptr to llize bytes
and returns a pointer to the (possibly moved) block. The contents
will be unchanged up to the lesser of the new and old sizes.

Realloc also works if ptr points to a block freed since the last call of
malloc, realloc, or calloc; thus sequences of free, maUoc and realloc
can exploit the search strategy of malloc to do storage compaction.

Calloc allocates space for an array of nelem elements of size elllize.
The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of

March 24, 1984 Page 1

,)

MALLOC (S) MALLOC (S)

object.

DiagnOI!Itics

Malloe, reaUoe and ealloe return a null pointer (0) if there is no
available memory or if the area has been detectably corrupted by
sroring outside the bounds of a block. When realloe returns 0, the
block pointed w by ptr may be destroyed.

March 24, 1984 Page 2

MKNOD (S) MKNOD (S)

Name

mknod - Makes a directory, or a special or ordinary file.

Syntax

int mknod (path, mode, dev)
char *path;
int mode, dev;

Description

Mknod creates a new Cite named by the pathname pointed to by path.
The mode of the new rile is initialized from mode. Where the value
or mode is interpreted as follows:

0170000 File type; one of the following:
0010000 Named pipe special
0020000 Character special
0040000 D irectory
0050000 Name special file
0060000 Block special
0100000 or 0000000 Ordinary rile

0004000 Set user ID on execution

0002000 Set group ID on execution

0001000 Save text image after execution

0000777 Access permissions; constructed from the following
0000400 Read by owner
0000200 Write by owner
0000100 Execute (search on directory) by owner
0000070 Read, write, execute (search) by group
0000007 Read, write, execute (search) by others

Values of mode other than those above are undefined and should not
be used.

The file 's owner ID is set to the process' effective user ID. The file's
group ID is set to the process' effective group ID .

The low-order !I bits of mode are modified by the process' file mode
creation mask: all bits set in the process' file mode creation mask are
cleared. See umaek(S) . Ir mode indicates a block, character, or
name special file, then dev is a configuration dependent specification
of a character or block 1/0 device . Ir mode does not indicate a
block, character, or name special file, then dev is ignored. For block
and character special files, dev is the special file's device number.
For name special files, dev is the type of the name rile, either a

March 24, 1!184 Page 1

MKNOD (S) MKNOD (S)

shared memory file o r a. semaphore.

Mknod may be invoked only by the super-user for file types other
than named pipe special.

Mknod will fail a.nd the new file will not be created if one or more of
the following a.re true :

The process' effective user ID is not super-user. [EPERMJ

A component of the path prefix is not a. directory. [ENOTDIR[

A component of the path prefix does not exist. [ENOENT[

The directory in which the file is to be created is located on a.
read-only file system. [EROFSj

The named file exists. [EEXIST[

Path points outside the process' allocated address space.
[EFAULT[

Return Value

Upon successful completion a. value of 0 is returned. Otherwise, a
value of - 1 is returned a.nd e!Tflo is set to indicate the error.

See Also

mkdir(C), mknod(C) , chmod(S) , crea.tsem(S) , exec(S) , sdget(S),
umask(S) , filesystem(F)

Notes

Semaphore files should be created with the creatsem(S} system call.

Share data files should be created with the sdget(S) system call.

March 24, l!l84 Page 2

MKTEMP (S)

Name

mktemp - Makes a unique filename.

Syntax

char •mktemp(template)
char •template;

Description

MKTEMP (S)

Mktemp replaces template with a unique filename, and returns a
pointer to the name. The template should look like a filename with
six trailing X's, which will be replaced with the current process ID
preceded by a zero.

See Also

getpid(S)

March 24, 1984 Page 1

MONITOR (S)

Name

monitor - Prepares execution profile.

Syntax

monitor (lowpc, highJX, buffer, bufsize, nfunc)
int (*lowpc)() , (*highJX)() ;
short buffer[] ;
int bufsize, nfunc;

Description

MONITOR (S)

Monitor is an interface to . profil(S) . Lowpc and highpc are the
addresses of two functions; buffer is the address of a user-supplied
array of bufsize short integers. Monitor arranges to record a histo­
gram of periodically sampled values of the program counter, and of
counts of calls of certain functions, in the buffer. The lowest
address sampled is that of lowpc and the highest is just below highpc.
At most nfunc call counts can be kept; only calls of functions com­
piled with the profiling option - p of cc(CP) are recorded. For the
results to be significant, especially where there are small, heavily
used routines, it is suggested that the buffer be no more than a few
times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext() ;

monitor(2 , etext, buf, bufsize, nfunc) ;

Etezt lies just above all the program text.

To stop execution monitoring and write the results on the file
mon.out, use

monitor(0);

prof(CP) can then be used to examine the results.

Files

mon.out

See Also

cc(CP) , prof(CP), profil(S)

March 24, 1984 Page 1

MONITOR (S) MONITOR (S)

Notes

An executable program created by cc - p automatically includes calls
for monitor with default parameters; monitor needn't be called expli­
citly except to gain fine control over profiling.

March 24, 1984 Page 2

)

MOUNT (S)

Name

mount - Mounts a file system.

Syntax

int mount (spec, dir, rwftag)
char •spec, *dir;
int rwftag;

Description

MOUNT(S)

Mount requests that a removable file system contained on the block
special file identified by spec be mounted on the directory identified
by tlir. Spec and tlir are pointers to pathnames.

Upon successful completion, references to the file tlir will refer to
the root directory on the mounted file system.

The low-order bit of rwftag is used to control write perm1ss1on on
the mounted file system; if 1, writing is forbidden, otherwise writing
is permitted according to individual file accessibility.

Mount may be invoked only by the super-user.

Mount will fail if one or more of the following are true :

The effective user 10 i s not super-user. [EPERM]

Any or the named files does not exist. [ENOENT]

A component or a path prefix is not a directory. [ENOTDIR]

Spec is not a block special device. [ENOTBLK]

The device associated with spec does not exist. [ENXIO]

Dir is not a directory. (ENOTDIR(

Spec or tlir points outside the process' allocated address space.
(EFAULT]

Dir is currently mounted on, is someone's current working
directory or is otherwise busy. [EBUSY]

The device associated with spec is currently mounted. [EBUSY]

March 24, 1984 Page 1

MOUNT (S) MOUNT(S)

Return Value

Upon successful completion a value or 0 is returned. Otherwise, a
value or - 1 is returned and ermo is set to indicate the error.

See Also

mount(C), umount(S)

�larch 24, 1984 Page 2

NAP (S)

Name

nap - Suspends execution Cor a short intervaJ.

Syntax

long nap(period)
long period;

Description

NAP (S)

The current process is suspended Crom execution Cor at least the
number or milliseconds specified by period, or until a signa.! is
received.

Return Value

On successCul completion, a long integer indicating the number or
milliseconds actually slept is returned. Ir the process recieved a signal
while napping, the return value will be -1 , and ermo will be set to
EINTR.

Notes

This runction is driven by the system clock, which in most cases has
a granularity or tens or milliseconds.

See Also

sleep(S)

March 24, 1984 Page 1

NICE (S)

Name

nice - Changes priority of a process.

Syntax

int nice (incr)
int incr;

Description

NIOE (S)

Nice adds the value of iner to the nice value of the calling process.
A process' nice value is a positive number for which a higher value
results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are
imposed by the system. Requests for values above or below these
limits result in the nice value being set to the corresponding limit.

Nice will not change the nice value if incr is negative and the
effective user ID of the calling process is not super-user. IEPERM]

Return Value

Upon successful completion, nice returns the new nice value minus
20. Note that nice is unusual in the way return codes are handled. It
differs from most other system calls in two ways: the value - 1 is a
valid return code (in the case where the new nice value is Hl) , and
the system call either works or ignores the request; there is never an
error.

See Also

nice(C) , exec(S)

March 24, 1984 Page 1

NLIST(S)

Name

nlist - Gets entries from name list.

Syntax

#include <a.out.h>
nlist (filename, nl)
char *filename;
struct nlist nl() ;

Description

NLIST(S)

Mitt examines the name list in the given executable output file and
selectively extracts a list or values. The name list consists or an
array of structures containing names, types and values. The list is
terminated with a null name. Each name is looked up in the name
list of the file. If the name is found, the type and value or the name
are inserted in the next two fields. If the name is not round, both
entries are set to 0. See 4.out(F) Cor a discussion or the symbol
table structure.

See Also

a.out(F) , xlist(S)

Diagnostics

Mist return - 1 and sets all type entries to 0 it the file cannot be
read, is not an object file, or contains an invalid name list. Other­
wise, nlist returns 0. A return value of 0 does not indicate that any
or all symbols were found.

March 24, 1984 Page '1

OPEN (S) OPEN (S)

Name

open - Opens file for reading or writing.

Syntax

#include <fcntl.h>
int open (path, oflag[, mode])
char *path;
int oflag, mode;

Description

P4th points to a pa.thna.me naming a file. Open opens a file descrip­
tor Cor the na.med file a.nd sets the file status fta.gs according to the
va.lue of oflag. Oflag values are constructed by or-ing flags from the
following list (only one of the first three fta.gs below m ay be used) :

O_RDONLY

O_WRONLY

O_RDWR

O_NDELAY

March 24, 1984

Open Cor reading only.

Open for writing only.

Open for reading and writing.

This fta.g ma.y a.ffect subsequent reads and writes.
See re4d(S) and unte (S) .

When opening a. FIFO with O_RDONL Y o r
O_WRONLY set:

If O_ND ELA Y is set:

An open Cor reading-only will return without
delay. An open for writing-only will return a.n
error if no process currently has the file open for
reading.

If O_NDELA Y is clear:

An open for reading-only will block until a. pro­
cess opens the file for writing. An open for
writing-only will block until a process opens the
file for reading.

When opening a file associated with a communication
line:

If O_NDELA Y is set:

The open will return without waiting for carrier.

Page 1

)

OPEN (S)

O....APPEND

O_CREAT

O_TRUNC

O_EXCL

O_SYNCW

OPEN (S)

It O_NDELA Y is clear:

The open will block until carrier is present.

IC set, the file pointer will be set to the end of the file
prior to each write.

If the file exists, this flag has no effect. Otherwise,
the file's owner ID is set to the process' effective user
ID , the file's group JD is set to the process' effective
group JD , and the low-order 12 bits or the file mode
are set to the value of mode modified as follows (see
ereat(S)) :

All bits set in the process' file mode creation
mask are cleared. See uma1k (S) .

The "save text image after execution bit" o r the
mode is cleared. See chmod(S).

It· the file exists, its length is truncated to 0 and the
mode and owner are unchanged.

IC o_EXCL and O_CREA T are set, open will fail if the
file exists.

Every write to this file descriptor will be synchro­
nous, that is, when the write system call completes
data is guaranteed to have been written to disk.

Upon successful completion a nonnegative integer, the file descrip­
tor, is returned.

The file pointer used to mark the current position within the file is
set to the beginning of the file.

The new file descriptor is set to rema.in open across e:rec system
calls. See fcntl(S) .

No process may have more than 20 file descriptors open simultane­
ously.

The named file is opened unless one or more of the following are
true:

A component of the path prefix is not a directory. [ENOTDIR[

O_CREA T is not set and the named file does not exist.
[ENOENT]

A component of the path prefix denies search permission.
[EACCES]

March 24, 1984 Page 2

OPEN (S) OPEN (S)

Oflag permission is denied ror the na.med file. IEACCESJ

The na.med file is & directory &nd oflag is write or re&d/write.
IEISDIRJ

The na.med file resides on & re&d-only file system &nd oflag is
write or re&dfwrite. IEROFSJ

Twenty file descriptors &re currently open. IEMFILEJ

The n&med file is & ch&r&cter special or block speci&l file, &nd
the device &Ssoci&ted with this speci&l file does not exist.
IENXIOj

The file is & pure procedure (sh&red text) file th&t is being exe­
cuted &nd oflag is write or rudfwrite. IETXTBSYJ

Path points outside the process' &lloc&ted &ddress sp&ee.
IEFAULTI

O_CREA T &nd O_EXCL &re set, &nd the na.med file exists.
IEEXISTJ

O_ND ELA Y is set, the n&med file is & FIFO, O_WRONL Y is set,
&nd no process h&S the file open ror re&ding. IENXIOJ

Return Value

Upon successful completion, & nonnegative integer, na.mely & file
descriptor, is returned. Otherwise, & value or - 1 is returned &nd
errno is set to indic&te the e rror.

See Also

close(S) , cre&t(S) , dup(S) , rcntl(S) , lseek(S) , re&d(S) , write(S)

M&rch 24, 1984 P&ge 3

OPENSEM (S)

Name

opensem - Opens a semaphore.

Syntax

sem_num = opensem(sem_name) ;
int sem_num;
char •sem_name;

Description

OPENSEM (S)

Operuem opens a semaphore named by �em_name and returns the
unique semaphore identification number �em_num used by waitsem
and 1ig1em. Createem should always be called to initialize the sema­
phore before the first attempt to open it, or to reset the semaphore if
it has become inconsistent due to an exiting process neglecting to do
a sigsem after issuing a waitsem.

See Also

creatsem(S) , waitsem (S) , sigsem (S)

Diagnostics

Open�em returns the value - 1 if an error occurs. If the semaphore
named does not exist, ermo is set to ENOENT. If the file specified is
not a semaphore file (i.e., a file previously created by a process using
a call to ereatsem) , ermo is set to ENOTNAM. If the semaphore has
become invalid due to inappropriate use, ermo is set to ENOTAVAIL.

March 24, 1984 Page 1

PAUSE (S) PA USE (S)

Name

pause - Suspends a. process until a. signal occurs.

Syntax

int pause () ;

Description

Paute suspends the calling process until it receives a. signal. The sig­
nal must be one that is not currently set to be ignored by the calling
process.

If the signal causes termination of the calling process, paute will not
return.

If the signal is caught by the calling process and control is returned
from the signa.! catching function (see rignal(S)) , the ca.lling process
resumes execution from the point o f suspension; with a. return value
of - 1 from paute a.nd ermo set to EINTR.

See Also

a.la.rm(S) , kill(S) , signal(S), wait(S)

March 24, 1984 Page 1

PERROR (S) PERROR (S)

Name
perror, sys..errlist, sys..nerr, errno - Sends system error messages.

Syntax
perror (s)
char *s;
lnt sys._nerr;
c:bar *sys..errlls� 1;
lnt errno;

DescriptioD
Perror produces a short error message on the standard a-roc,
describing the last a-roc encount«ed during a system call from a C
program. First the argument string s is printed, then a colon, then
the message and a newline. To be of most use, the argument
string should be the name of the program that incurred the error.
The error number is taken from the external variable e"no, which
is set when errors occur but not cleared when correct calls are
made.
To simplify variant formatting of messages, the vector of message
strings sys..errlist is provided; errno can be used as an index in this
table to get the message string without the newline. Sys..nerr is the
number of entries provided f<r in the table; it should be checked
because new error codes may be added to the system before they
are added to the table.

See Also
intro(S)

May 10, 1984 Page 1

PIPE (S}

Name

pipe - Creates an interprocess pipe.

Syntax

int pipe (fildes)
int flldes (2);

Description

PIPE (S)

Pipe creates an 1/0 mechanism called a pipe and returns two file
descriptors in the array filder. Filde•(OJ is opened for reading and
fildee[l) is opened for writing. The descriptors remain open across
fork (S) system calls, making communication between parent and
child possible.

Writes up to 5120 bytes of data are buffered by the pipe before the
writing process is blocked. A read on file descriptor filde•(O)
accesses the data written to fildn(I) on a first-in-first-out basis.

No process m ay have more than 20 file descriptors open simultane­
ously.

Pipe will fail if 19 or more file descriptors are currently open.
[EMFILE)

Return Value

Upon successful completion, a value or 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also

sh(C) , read(S) , write(S) , fork(S), popen(S)

March 24, 1984 Page 1

)

POPEN (S)

Name

popen, pclose - Initiates 1/0 to or from a process .

• Syntax

#include <stdio.h>

FlLE •popen (command, type)
char •command, *type;

int pclose (stream)
FlLE •stream;

Description

POPEN (S)

The arguments to popen are pointers to null-terminated strings con­
taining, respectively, a shell command line and an 1/0 mode, either
"r" for reading or "w" for writing. Popen creates a pipe between
the calling process and the command to be executed. The value
returned is a stream pointer that can be used (as appropriate) to
write to the standard input of the command or read from its stan­
dard output.

A stream opened by popen should be closed by pclore, which waits
for the associated process to terminate and returns the exit status of
the command. Because open files are shared between processes, a
type "r" command may be used as an input filter, and a type "w"
as ��on output filter.

See Also

pipe (S) , wait(S) , fclose(S) , fopen(S) , system(S)

Diagnostics

Popen returns a null pointer if files or processes cannot be created,
or if the shell cannot be accessed.

Pclore returns - 1 if stream is not associated with a popened com­
mand.

Notes

Only one stream opened by popen can be in use at once. Buffered
reading before opening an input filter may leave the standard input
of that filter mispositioned. Similar problems with an output filter
may be forestalled by careful buffer flushing; see fclore(S) .

March 24, 1984 Page 1

PRINTF (S)

Name

printf, fprintf, sprintf - Formats output.

Syntax

#include <stdio.h>

int printf (format (, arg I . . .

char •rormat;

int fprintr (stream, format (, arg I . . .

F1LE •stream;
char •format;

int sprintr (s , format [, arg I . . .
char •s, format;

Description

PRINTF (S)

Print/ places output on the standard output stream stdout. Fprintf
places output on the named output etre11m. Sprint/ places output,
followed by the null character (\0) in consecutive bytes starting at e;
it is the user's responsibility to ensure that enough storage is avail­
able. Each function returns the number of characters placed (not
including the \0 in the case of aprintf), or a negative value if an out­
put error was encountered.

Each of these functions converts, formats, and prints its 11rgs under
control of the forme�t. The forme�t is a character string that contains
two types of objects: plain characters, which are simply copied to the
output stream, and conversion specifications, each of which results
in fetching of zero or more e�rgs. The results are undefined if there
are insufficient e�rgs for the format. If the format is exhausted while
11rgs remain, the excess 11rgs are simply ignored.

Each conversion specification is introduced by the character %
After the % the following appear in sequence:

Zero or more jle�g1, which modify the meaning of the conver­
sion specification.

An optional decimal digit string specifying a mm1mum field
width. If the converted value has fewer characters than the field
width, it will be padded on the left (or right, if the left­
adjustment flag described below has been given) to the field
width.

A precision that gives the mm1mum number of digits to appear
for the d, o, u, x, or X conversions, the number of digits to
appear after the decimal point for the e and f conversions, the

March 24, 1984 Page 1

PRINTF (S) PRINTF (S)

maximum number of significant digits for the g conversion, or
the maximum number of characters to be printed from a string
in s conversion. The precision takes the form of a period (.)
followed by a decimal digit string: a null digit string is treated as
zero.

An optional I specifying that a following d, o, u, x, or X conver­
sion character applies to a long integer arg.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead
of a digit string. In this case, an integer arg supplies the field width
or precision. The arg that is actually converted is not fetched until
the conversion letter is seen, so the args specifying field width or
precision must appear before the arg (if any) to be converted.

The flag characters and their meanings are:

+

blank

The result of the conversion will be left-justified within
the field.

The result of a signed conversion will always begin with a
sign (+ or -) .

Ir the first character o f a signed conversion is not a sign,
a blank will be prepended to the result. This implies that
if the blank and + flags both appear, the blank flag will
be ignored.

This flag specifies that the value is to be converted to an
"alternate form." For c, d, s , and u conversions, the flag
has no effect. For o conversion, it increases the precision
to force the first digit of the result to be a zero. For x
(X) conversion, a nonzero result will have Ox (OX)
prepended to it. For e, E, f, g, and G conversions, the
result will always contain a decimal point, even if no
digits follow the point (normally, a decimal point appears
in the result of these conversions only if a·digit follows
it) . For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are) .

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal, unsigned
octal, decimal, or hexadecimal notation (x and X) ,
respectively; the letters abcdcf are used for x conversion
and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer digits,
it will be expanded with leading zeroes. The default pre­
cision is I. The result of converting a zero value with a
precision of zero is a null string (unless the conversion is

March 24, 1984 Page 2

PRINTF (S) PRINTF (S)

o, x, or X and the # flag is present) .

r The float or double arg is converted to decimal notation
in the style "(-) ddd.ddd", where the number of digits
after the decimal point is equal to the precision
specification. If the precision is missing, six digits are
output; if the precision is explicitly 0, no decimal point
appears.

e,E The float or double arg is converted in the style
"[-) d.ddde::f: dd", where there is one digit before the
decimal point and the number of digits after it is equal to
the precision; when the precision is missing, 6 digits are
produced; if the precision is zero, no decimal point
appears. The E format code will produce a number with
E instead of e introducing the exponent. The exponent
always contains exactly two digits.

g,G The float or double arg is printed in style r or e (or in
style E in the case of a G format code), with the precision
specifying the number of significant digits. The style used
depends on the value converted: style e will be used only
if the exponent resulting from the conversion is less than - 4 or greater than the precision. Trailing zeroes are
removed from the result; a decimal point appears only if
it is followed by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and
characters from the string are printed until a null charac­
ter (\0) is encountered or the number of characters indi­
cated by the precision specification is reached. It the pre­
cision is missing, it is taken to be infinite, so all charac­
ters up to the first null character are printed.

% Print a % no argument is converted.

In no case does a nonexistent or small field width cause truncation
of a field; if the result of a conversion is wider than the field width,
the field is simply expanded to contain the conversion result. Char­
acters generated by print/ and fprintf are printed as if putchar had
been called (see putc(S)) .

March 24, 1984 Page 3

)

PRINTF (S) PRINIF (S)

Examples

To print a date and time in the form "Sunday, July 3, 10:02", where
weeA:dtt.'U and month are pointers to null-terminated strings:

printf("o/c:s, %l %1, %.2d:%.2d", weekday, month, day, hour,
min);

To print 71' to five decimal places:

printf("pi - %.5f", 4*atan(l .O)) ;

· See Also

ecvt{ S) , putc(S) , scanf(S)

March 24, 1Q84 Page 4

PROF/L (S)

Name

profil - Creates an execution time profile.

Syntax

profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

Description

PROFIL (S)

Buff points to an area of core whose length (in bytes) is given by
bu/Biz. After this call, the user's program counter is examined each
clock tick, where a clock tick is some fraction or a second given in
maehine(M) . Offset is subtracted from it, and the result multiplied
by Beale. If the resulting number corresponds to a word inside buff,
that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with
binary point at the left: 0177777 (octal) gives a 1-1 m apping or pc's
to words in buff; 077777 (octal) m aps each pair of instruction words
together. 02(octal) maps all instructions onto the beginning or buff
(producing a noninterrupting core elock).

Profiling is turned off by giving a Beale of 0 or 1 . It is rendered
ineffective by giving a bu/siz of 0. Profiling is turned off when an
ezee is executed, but remains on in child and parent both after a
fork. Profiling will be turned off if an update in buff would cause a
memory fault.

See Also

prof(CP) , monitor(S)

March 24, 1984 Page I

)

PTRACE (S) P77?ACE (S)

Name

ptrace - Traces a process.

Syntax

int ptrace (request, pid, addr, data) ;
int request, pid, data;

Description

Ptrace provides a means by which a parent process may control the
execution of a child process. Its primary use is in the implementa­
tion of breakpoint debugging; see adb (CP) . The child process
behaves normally until it encounters a signal (see •ignai (S) for the
list) , at which time it enters a stopped state and its parent is notified
via wait (S) . When the child is in the stopped state, its parent can
examine and modify its "memory image" using ptraee. Also, the
parent can cause the child either to terminate or continue, with the
possibility of ignoring the signz.l that cause.d it to stop.

The addr argument is dependant on the underlying machine type,
specifically the process memory model. On systems where the
memory management mechanism provides a uniform and linear
address space to user processes, the argument is declared as:

int •addr;

which is sufficient to address any location in the process' memory.
On machines where the user address space is segmented (even if the
particular program being traced has only one segment allocated) , the
form of the addr argument is:

struct {
int offset;
int segment;

} •addr;

which allows the caller to specify segment and offset in the process
address space.

The request argument determines the precise action to be taken by
ptrace and is one of the following:

0 This request must be issued by the child process if it
is to be traced by its parent. It turns on the child's
trace II ag that stipulates that the child should be left in
a stopped state upon receipt of a signal rather than the
state specified by fun.e; see •ign.ai(S) . The pid, addr,
a.nd data arguments are ignored, an d a return value is

March 27, 1984 Page 1

PTRACE (S) PTRACE (S)

not defined for this request. Peculiar results will
ensue it the parent does not expect to trace the child.

The remainder of the requests ca.n only be used by the parent pro­
cess. For each, pid is the process ID of the child. The child must be
in a. stopped state before these requests are ma.de.

I, 2 The word at location 11ddr in the address space of the
child is returned to the parent process. If I a.nd D
space are separated, request 1 returns a. word from I
space, a.nd request 2 returns a. word from D space. Ir
I a.nd D space are not separated, either request 1 or
request 2 may be used with equal results. The data
argument is ignored. These two requests will fa.il if
11ddr is not the start address of a. word, in which ca.se a.
value of - I is returned to the parent process a.nd the
parent's ermo is set to EIO.

3 With this request, the word at location addr in the
child's USER area in the system's address space (see
<sys/user.h>) is returned to the parent process.
The data argument is ignored. This request will fa.il if
addr is · not the start address of a. word or is outside
the USER area., in which ca.se a value of - I is
returned to the parent process a.nd the parent's ermo
is set to EIO.

4, 5 With these requests, the value given by the data argu­
ment is written into the address space of the child at
location addr. If I and D space are separated, request
4 writes a. word into I space, a.nd request 5 writes a.
word into D space. If I a.nd D space are not separated,
either request 4 or request 5 may be used with equal
results. Upon successful completion, the value written
into the address space of the child is returned to the
parent. These two requests will fail if addr is a loca­
tion in a. pure procedure space a.nd another process is
executing in that space, or addr is not the start address
of a word. U pen failure a. value of - 1 is returned to
the parent process a.nd the parent's ermo is set to EIO.

6 With this request, a. few entries in the child's USER
area ca.n be written. Data gives the value that is to be
written a.nd addr is the location of the entry. The few
entries that ca.n be written follow:

- The general registers

- Any floating-point status registers

- Certain bits of the processor status

March 27, 1984 Page 2

)

)

PTRACE (S) PTRACE (S)

Errors

7

8

9

This request causes the child to resume execution. If
the data argument is 0, all pending signals including
the one that caused the child to stop are canceled
before it resumes execution. If the data argument is a
valid signa.! num her, the child resumes execution as if
it had incurred that signal and any other pending sig­
nals are canceled. In a linear address space memory
model, the value of addr must be (int •) 1 , or in a seg­
mented address space the segment part of addr must
be zero and the offset part of addr must be (int •) 1 .
Upon successful completion , the value of data is
returned to the parent. This request will fa.il if data is
not 0 or a valid signal number, in which case a value
of - 1 is returned to the parent process and the
parent's errno is set to EIO.

This request causes the child to terminate with the
same consequences as e:r"(S) .

Execution continues as in request 7; however, as soon
as possible after execution of at least one instruction,
execution stops aga.in. The signal number from the
stop is SIGTRAP. This is part of the mechanism for
implementing breakpoints. The exact implementation
and behaviour is somewhat CPU dependant.

As indicated, these calls (except for request 0) can be used
only when the subject process has stopped. The wait system
call is used to determine when a process stops; in such a
case the termination status returned by wait has the value
0177 to indicate stoppage rather than genuine termination.

To prevent security violations, ptrace inhibits the set-user-id
facility on subsequent e:rec(S) calls. If a traced process calls
e:rec, it will stop before executing the first instruction of the
new image showing signa.! SIGTRAP.

Ptrace will in general fa.il if one or more of the following are true:

Notes

Requeet is an illegal number. [EIOJ

Pid identifies a child that does not exist or has not executed a
ptrace with request 0. [ESRCHJ

The implementation and precise behaviour of this system call is
"inherently tied to the specific CPU and process memory model in
use on a particular machine. Code using this call is likely to not be

March 27, 1984 Page 3

PTRAOE (S) P7RAOE (S)

portable across all implementations without some change. Please
note that IBM-PC performs no memory mapping.

System calls cannot be single-steppe d. Ir a ptrace call requests a sin­
gle step through a system cn.ll, the trn.ace bit is cleared, and the user
program will run to completion or until it encounters an explicitly set
breakpoint.

See Also

adb(CP) , exec(S) , signai(S) , wait(S) , machine(M)

March 27, 1984 Page 4

)

PUTC (S) PUTC (S)

Name

putc, putcha.r, fputc, putw - Puts a. character or word on a stream.

Syntax

#include <stdio.h>

int putc (c, stream)
char c ;
F1LE •stream;

putchar (c)

int fputc (c, stream)
F1LE •stream;

int putw (w, stream)
int w;
F1LE •stream;

Description

Putc appends the character c to the named output etream. It returns
the character written.

Putchar(c) is define d as putc(c,stdout) .

Fputc behaves like putc, but is a genuine function rather than a
m aero; it may therefore be used as an argument. Fputc runs more
slowly than putc, but takes less space per invocation.

Putw appends the word (i.e., integer) w to the output 1tre11m. Putw
neither assumes nor causes special alignment in the file.

The standard stream stdout is normally buffered if and only if the
output does not refer to a terminal; this default may be changed by
•etbuf(S) . The standard stream stderr is by default unbuffered
unconditionally, but use of /reopen {see fopen(S)) will cause it to
become unbuffered; lttbuf, again, will set the state to whatever is
desired. When an output stream is unbuffered information appears
on the destination file or terminal as soon as written; when it is
buffered many characters are saved up and written as a. block. See
ffiush is fclo1e(S) .

See Also

fclose(S) , ferror(S) , fopen(S) , fread(S) , getc(S) , printf(S) , puts(S)

March 24, 1984 Page 1

PUTC (S) PUTC (S)

Diagn06tics

These functions return the constant EOF upon error. Since this is a
valid integer, ferror(S) should be used to detect putto errors.

Notes

Because putc is implemented as a macro, the etream argument with
side effects is not treated correctly.

March 24, 1984 Page 2

PVTPWENT (S)

Name

putpwent - Writes a password file entry.

Syntax

#include <pwd.h>

int putpwent (p, f)
struct passwd *p;
FlLE *t;

Description

PUTPWENT(S)

Putpwent is the inverse of getpwent(S) . Given a pointer to a p1111wtl
structure created by getpwent (or getpwuitl or getpwn11m) , putpwent
writes a line on the stream /. The line matches the format of
fetc/passwd

See Also

passwd(M) , getpwent(S)

Diagnostics

Putpwent returns nonzero if an error was detected during its opera­
tion, otherwise zero.

March 24, 1984 Page 1

PUTS (S)

Name

puts, fputs - Puts a string on a stream.

Syntax

#include <stdio.h>

int puts (s)
char *s;

int fputs (s, stream)
char *s ;
FlLE *stream;

Description

PUTS (S)

Pute copies the null-terminated string e to the standard output
stream etdout and appends a newline character.

Fpute copies the null-terminated string 1 to the named output 1tream.

Neither routine copies the terminating null character.

Diagnostics

Both routines return EOF on error.

See Also

fe rror(S) , fopen(S), fread(S), gets(S), printf(S) , putc(S)

Notes
Put• appends a newline, fputl does not.

March 24, 1984 Page 1

,)

QSOR T (S)

Name

qsort - Performs a sort.

Syntax

qsort (base, nel, width, compar)
char *base;
int nel, width;
int (*compar)() ;

Description

QSOR T (S)

Qaort is an implementation ·of the quicker-sort algorithm. The first
argument is a pointer to the base of the data; the second is the
number of elements; the third is the width of an element in bytes;
the last is the name of the comparison routine. It is called with two
arguments which are pointers to the elements being compared. The
routine must return an integer less than, equal to, or greater than 0
according to how much the first argument is to be considered less
than, equal to, or greater than the second.

See Also

sort{ C) , bsearch(S) , lsearch(S) , string(S)

March 24, 1984 Page 1

RAND (S)

Name

rand, srand - Generates a random number .

• Syntax

s-rand (seed)
unsigned seed;

int rand ()

Description

RAND (S)

Rand uses a multiplicative congruential random number generator
with period 282 to return successive pseudo-random numbers in the
range from 0 to 215- 1.

The generator is reinitialized by calling erand with 1 as argument. It
can be set to a random starting point by calling rrand with an
unsigned integer in argument 1eed.

March 24, 1984 Page 1

RDGHK (S)

Name

rdchk - Checks to see if there is data to be read.

Syntax

rdchk(fdes) ;
int fdes;

Description

RDGHK (S)

R dchk checks to see if a process will block if it attempts to read the
file designated by fdu. R dchk returns 1 if there is data to be read or
if it is the end of the file (EOF) . In this context, the proper
sequence of calls using rdchk is:

if(rdchk(fildes) > 0)
read(fildes, buffer, nbytes) ;

See Also

read(S)

Diagnostics

Rdchk returns -1 if an error occurs (e.g., EBADF) , 0 if the process
will block if it issues a read and 1 if it is okay to read. EBADF is
returned if a rdchk is done on a semaphore file or if the file specified
doesn't exist.

March 24, 1Q84 Page 1

READ (S)

Name

read - Reads rrom a. file.

Syntax

int read (Hides, buf', nbyte)
int ftldes;
char *bur;
unsigned nbyte;

Description

READ (S)

Fildu is a. file descriptor obtained rrom a. ereat, ope11, dup, feJ&tl, or
pipe system call.

Read a.ttem pts to read 11byte bytes rrom the file associated with jilde1
into the buffer pointed to by buf.

On devices capable or seeking, the read starts at a position in the file
given by the file pointer associated with jilde1. Upon return rrom
read, the file pointer is incremented by the number or bytes actually
rea.d.

D evices that are incapable or seeking always read rrom the current
position. The value or a file pointer associated with such a. file is
undefined.

Upon successrul completion, read returns the number of bytes actu­
ally rea.d and placed in the buffer; this number m a.y be less than
11byte it the file is associated with a. communication line (see ioetl(S)
and tty(M)) , or if the number of bytes left in the file is less than
nbyte bytes. A value of 0 is returned when a.n end-of-file has been
reached.

When attempting to rea.d from a.n empty pipe (or FIFO) :

If O...NDELA Y is set, the read will return a. 0.

If O_NDELA Y is dear, the rea.d will block until data is written to
the file or the file is no longer open for writing.

When attempting to rea.d a. file associated with a tty tha.t has no da.ta
currently a.va.ila.ble:

If O...NDELAY is set, the read will return a. 0.

It O...NDELAY is dear, the rea.d will block until da.ta becomes
ava.ila.ble.

March 24, 1984 Page 1

READ (S) READ (S)

Read will fa.il if one or more of the following are true:

Fildes is not a. valid file descriptor open for reading. [EBADF)

Buf points outside the allocated address space. (EFAULT!

Return Value

Upon successful completion a nonnegative integer is returned indi­
cating the num her of bytes actually read. Otherwise, a - 1 is
returned and ermo is set to indicate the error.

See Also

creat(S) , dup(S) , fcntl(S) , ioctl(S), open(S) , pipe(S) , tty(M)

Notes

Reading a region of a file locked with locking causes read to hang
indefinitely until the locked region is unlocked.

March 24, 1984 Page 2

REGEX (S) REGEX(S)

Name

regex, regcmp - Compiles and executes regular expressions.

Syntax

char •regcmp(stringl(,string2, . • .] ,0);
char •stringl, *string2, . . . ;

char *regex(re,subject(,retO, • • •]);
char •re, *subject, *retO, • • • ;

Description

Regemp compiles a regular expression and returns a pointer to the
compiled form. Malloc (S) is used to create space Cor the compiled
expression. It is the user's responsibility to free unneeded space so
allocated. A zero return from regcmp indicates an incorrect argu­
ment. Regcmp(CP) has been written to generally preclude the need
for this routine at execution time.

Rege:e executes a compiled pattern against the subject string. Addi­
tional arguments are passed to receive values back. Rege:e returns
zero on failure or a pointer to the next unmatched character on suc­
cess. A global character pointer _loc1 points to where the match
began. Although regcmp and rege:e were derived from the e ditor,
ed(C), the syntax and semantics have been changed slightly. The
following are the valid symbols and their associated meanings.

(] • .· These symbols retain their current meaning.

$ Matches the end of the string, \n matches the newline.

Within brackets the minus means th.rouglr.. For example,
[a- z) is equivalent to (abed • • • xyz) . The - can appear as
itself only if used as the last or first character. For exam­
ple, the character class expression []-) matches the char­
acters] and - .

+ A regular expression followed by + means "one or more
times". For example, (B- OJ+ is equivalent to
(a- o](a- o]•.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times
the preceding regular expression is to be applied. m is the
minimum number and u is a number, less than 256, which
is the maximum. If only m is present (e .g., {m}) , it indi­
cates the exact number of times the regular expression is

March 24, 1984 Page 1

REGEX(S) REGEX (S)

to b e applied. {m , } i s analogous to {m, infinity}. The plus
(+) and star (*) operations are equivalent to {1 , } and {0, }
respectively.

(. . .)$n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+ 1) th argu­
ment following the subject argument. At present, at most
ten enclosed regular expressions are allowed. Regez makes
its a.ssignments unconditionally.

(. . .) Parentheses are used for grouping. An operator, e .g. "',
+ , {}, can work on a single character or a regular expres­
sion enclosed in parenthesis. For example, (a*(cb+) *) $0.

By necessity, all the above defined symbols are special. They must,
therefore, be escaped to be used as themselves.

Examples

E:rample 1:

char •cursor, •newcursor, *ptr;

newcursor ;,., regex((ptr=regcmp(""\n",O)) , cursor) ;
free(ptr);

This example will match a leading newline in the subject string
pointed at by cursor.

E:rample 2:

char ret0[9] ;
char *newcursor, *name;

name = regcmp("([A- Za.-- z]lA- za.-- zO- 9_) {0,7}) $0",0) ;
newcursor = regex(name,"l23Testing321 ",retO) ;

This example will match through the string "Testing3" and will
return the address of the character after the last matched character
(cursor+ 1 1) . The string "Testing3" will be copied to the character
array retO.

E:rample 9:
#include "file.i"
char *string, *newcursor;

newcursor = regex(name,string) ;

This example applies a precompiled regular expression in file.i (see
regcmp(CP)) against string.

March 24, 1984 Page 2

REGEX(S) REGEX(S)

See Also

ed(C), regcmp(CP), malloc(S)

Notes

The user program may run out or memory if regemp is called itera­
tively without freeing the vectors no longer required. The following
user-supplied replacement tor maUoe (S) reuses the same vector sav·
ing time and space:

/* user's program */

malloc(n)
{

}

March 24, 1984

static int rebuf(256) ;
return &:rebut;

Page 3

' .

REGEXP (S) REGEXP (S)

Name

regexp - Performs regular expression compile and match functions.

' Syntax

fdefine INIT < declarations>

fdefine GETC() <getc code>

fdefine PEEKC() <peekc code >

fdefine UNGETC(c) <ungetc code >

fdefine REWRN(pointer) < return code >

fdefine ERROR(val) <error code >

#include <regexp.h>

char •compile(instring, expbuf, endbut, eof)
char *instring, *expbuf, *endbut;

int step(string, expbuf)
char •string, *expbuf;

Description

This entry describes general purpose regular expression matching
routines in the form of ed(C), defined in /usr/include/regexp.h.
Programs such as ed(C) , eed(C) , grep(C) , b�(C) , ezpr(C) , etc.,
which perform regular expression matching use this source file. In
this way, only this file need be changed to m ainta.in regular expres­
sion compatibility.

The interface to this file is unpleasantly complex. Programs that
include this file must have the following five m acros declared before
the "#include <regexp.h >" statement. These macros are used by
the compile routine.

GETC()

PEEKC()

March 27, 1Q84

Returns the value of the next character in the
regular expression pattern. Successive calls to
GETC() should return successive characters of
the regular expression.

Returns the next character in the regular
expression. Successive calls to PEEKC()
should return the same character (which
should also be the next character returned by
GETC(}) .

Page 1

REGEXP (S) .

UNGETC(e)

RETURN(pointer)

ERROR(11al)

Error
11
16
25
36
41
42
43
44
45
46
49
50

REGEXP (S)

Cause the argument e to be returned by the
next call to GETC() (and PEEKC()) . No more
that one character of pushback is ever needed
and this character is guaranteed to be the last
character read by GETC(). The value of the
macro UNGETC(e) is always ignored.

This macro is used on normal exit of the eom­
pile routine. The value or the argument
pointer is a pointer to the character after the
last character of the compiled regular expres­
sion. This is useful to programs which have
memory allocation to manage.

This is the abnorm:U return from the compile
routine. The argument 11111 is an error number
(see table below for meanings) . This call
should never return.

Meaning
Range endpoint too large
Bad number
"\digit" out of range
Illegal or missing delimiter
No remembered search string
\(\) imbalance
Too m any \(
More than 2 numbers given in \{ \}
} expected after \
First number exceeds second in \{ \}
() imbalance
Regular expression overflow

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eof)
The first parameter in1tring is never used explicitly by the compile
routine but is useful for program that pass down different pointers to
input characters. It is sometimes used in the !NIT declaration (see
below) . Programs which call functions to input characters or have
characters in a.n external array can pass down a value of ((char *) 0)
for this parameter.

The next parameter e:zpbuf is a character pointer. It points to the
place where the compiled regular expression will be placed.

The parameter endbuf is one more that the highest address that the
compiled regular expression may be placed. If the compiled expres­
sion cannot fit in (endbuf- ezpbuf) bytes, a call to ERROR(50) is
made.

March 27, 1984 Page 2

REGEXP (S) REGEXP (S)

The parameter eof is the character which marks the end of the regu­
lar expression. For example, in ed(C) , this character is usually a f.
Each programs that includes this file must have a. fdeflne statement
for !NIT. This definition will be placed right a.fter the declaration for
the function compile and the opening curly brace ({) . It is used for
dependent declarations and initia.liza.tions. It is most often used to
set a. register variable to point the beginning of the regular expres­
sion so that this register variable can be used in the declarations for
GETC() , PEEKC() and UNGETC() . Otherwise it can be used to
declare external variables that might be used by GETC() , PEEKC()
and UNGETC() . See the example below of the declara.t.ions ta.ken
from grep(C).

There are o ther functions in this file which perform actual regular
expression matching, one of which is the function etep. The call to
etep is as follows:

step(string, expbuf)
The first parameter to step is a. pointer to a. string of characters to be
cheeked for a. match. This string should be null terminated.

The second parameter ezpbuf is the compiled regular expression
which was obtained by a. call of the function compile.

The function step returns one, if the given string m atches the regular
expression , and zero if the expressions do not m at�h. If there is a.
m atch, two external character pointers are set as a. side effect to the
call to etep. The variable set in lfep is loct. This is a. pointer to the
first character that m atched the regular expression. The variable
loci!, which is set by the function advance, points the character a.fter
the last character that m atches the regular expression. Thus if the
regular expression matches the entire line, loci will point to the first
character of string and loci! will point to the null at the end of etring.

Step uses the external variable eire/ which is set by compile if the reg­
ular expression begins with •. If this is set then ltep will only try to
match the regular expression to the beginning of the string. Ir more
than one regular expression is to be compiled before the the first is
executed the value of eire/ should be saved for each compiled
expression and eire/ should be set to that saved value before each
call to etep.

The function advance is called from rtep with the same arguments as
step. The purpose of step is to step through the string argument and
call advance until advance returns a one indicating a. match or until
the end of etring is reached. It one wants to constrain .tring to the
beginning of the line in all cases, etep need not be called, simply call
advance.

When adva"ce encounters a • or \{ \} sequence in the regular
expression it will advance its pointer to the string to be matched as

March 27 1984 Page 3

REGEXP (S) REGEXP (S)

far as possible and will recursively call itself trying to match the rest
of the string to the rest of the regular expression. As long as there
is no match, cdvanee will back up along the string until it finds a
match or reaches the point in the string that initially matched the •
or \{ \}. It is sometimes desirable to stop this backing up before the
initial point in the string is reached. If the external character pointer
loe• is equal to the point in the string at sometime during the back­
ing up process, adunee will break out of the loop that backs up and
will return zero. This is used be ed(C) and eed(C) for substitutions
done globally (not just the first occurrence, but the whole line) so,
for example, expressions like s/y*//g do not loop forever.

The routines eemp and getrsnge are simple and are called by the rou­
tines previously mentioned.

Examples

The following is an example of how the regular expression macros
and calls look from grep(C):

fdeflne INIT
#define GETC()
#define PEEKC()
fdefine UNGETC(c)
fdefine RETURN(e)
#define ERROR(c)

#include <regexp.h>

register char *sp - instring;
(*sp+ +)
(*sp)
(- - sp)
return;
regerr()

compile(*argv, expbuf, &expbuf(ESIZE) , '\01) ;

if(step(linebuf, expbuf))
succeed() ;

Files

/usr/includefregexp.h

See Also

ed(C) , grep(C) , sed(C) .

Notes

The handling of eire/ is kludgy.

The routine ecmp is equivalent to the standard 1/0 routine etrncmp
and should �le replaced by that routine.

March 27, !984 Pa.g" 4

SBRK (S)

Name

sbrk, brk - Changes data segment space allocation.

Syntax

char •sbrk (iner)
int iner;

Description

SBRK (S)

Sbrk is used to dynamically change the amount of space allocated for
the calling process' data segment; see ezec(S) . The change is made
by resetting the process' break value. The break value is the address
or the first location beyond the end of the data segment. The
amount of allocated space increases as the break value increases.

Sbrk adds incr bytes to the break value and changes the allocated
space accordingly. /ncr can be negative, in which ease the amount of
allocated space is decreased.

Sbrk will fail without making any change in the allocated space if
such a change would result in more space being allocated than is
allowed by a system-imposed maximum (see ulimit(S)) . IENOMEMJ

Retum Value

Upon successful completion, ebrk and brk return pointers to the
beginning of the allocated space. Otherwise, a value of - 1 is
returned and ermo is set to indicate the error.

See Also

exec(S)

March 27, 1984 Page 1

SCANF (S)

Name

scant, fscanf, sscanf - Converts and formats input.

Syntax

#include <stdio.h>

int scanr (rormat 1 , pointer 1 . . .
char •rormat;

int fscanr (stream, format 1 , pointer 1 • . .

F1LE •stream;
char *format;

int sscanf (s, format 1 , pointer 1 . . .
char •s, *format;

Description

SCANF (S)

Scan/ reads from the standaril input stream Bttlin. F1can/ reads from
the named input 1tream. S•canf reads from the character string •·
Each function reads characters, interprets them according to a for·
mat, and stores the results in its arguments. Each expects, a.s argu·
ments, a control string format described below, and a. set of pointer
arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which
are used to direct interpretation of input sequences. The control
string may contain:

1. Blanks, tabs, or newlines, which cause input to be read up to the
next nonwhitespace character.

2. An ordinary character (not � . which must match the next char·
acter of the input stream.

3. Conversion specifications, consisting of the character % an
optional assignment suppressing character •, an optional numeri­
cal maximum field width, and a. conversion character.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the
corresponding argument, unless assignment suppression was indi­
cated by •. An input field is defined as a. string of nonspa.ce chara.c·
ters; it extends to the next inappropriate character or until the field
width, if specified, is exhausted.

The conversion chara.cte • indicates the interpretation of the input
field; the corresponding pointer argument must usually be of a res­
tricted type. The following conversion characters are allowed:

March 24, 1984 Page 1

SC.4NF (S) SCANF(S)

% A single % is expected in the input at this point; no assignment
is done.

d A decimal integer is expected; the corresponding argument
should be an integer pointer.

o An octal integer is expected; the corresponding argument should
be an integer pointer.

x A hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

s A character string is expected; the corresponding argument
should be a character pointer pointing to an array of characters
large enough to accept the string and a terminating \0, which
will be added automatically. The input field is terminated by a
space character or a newline.

c A character is expected; the corresponding argument should be
a character pointer. The normal skip over space characters is
suppressed in this case; to read the next nonspace character, use
%is. Ir a field width is given, the corresponding argument
should refer to a character array; the indicated number of char­
acters is read.

e,f A floating-point number is expected; the next field is converted
accordingly and stored through the corresponding argument,
which should be a pointer to a float. The input format for
floating-point numbers is an optionally signed string of digits,
possibly containing a decimal point, followed by an optional
exponent field consisting of an E or an e, followed by an option­
ally signed integer.

Indicates a string that is not to be delimited by space characters.
The left bracket is followed by a set of characters and a right
bracket; the characters between the brackets define a set or char­
acters making up the string. If the first character is not a caret
(·) , the input field consists of all characters up to the first char­
acter that is not in the set between the brackets; if the first char­
acter after the left bracket is a ·, the input field consists of all
characters up to the first character that is in the set of the
remaining characters between the brackets. The corresponding
argument must point to a character array.

The conversion characters d, o, and x m ay be capitalized and/or pre­
ceded by I to indicate that a pointer to long rather than to int is in
the argl!ment list. Similarly, the conversion characters e and f may
be capitalized and/or preceded by I to indicate that a pointer to dou­
ble rather than to float is in the argument list. The character h will,
some time in the future, indicate short data items.

Scan/ conversion terminates at EOF, at the end of the control string,
or when an input character conflicts with the control string. In the

March 24, 1984 Page 2

SOANF (S) SOANF (S)

l11tter e111e, tAe offending ehr11ekr is left unread in the input stream.
This is very important to remember, because subtle errors can

occur when not taking this into account.

Sean/ returns the number of successfully matched and assigned
input items; this number can be zero in the event of an early conflict
between an input character and the control string. If the input ends
before the first conflict .or conversion, EOF is returned.

Examples

The call:

int i; float x; char name (SO) ;
scanr ("rcdrclrts•, &i, &x, name) ;

with the input line:

25 S4.32E- 1 thompson

will assign to i the value 25, to :r the value 5.432, and name will
contain thompson\0. Or:

int i; float x; char name(SO) ;
scant ("rc2d9fi%*d� l234S67890)", &i, &x, name);

with input:

56789 0123 S6a72

will assign 56 to i, 780.0 to :r, skip 0123, and place the string 56\0 in
n11me. The next call to geteflar (see geu(S)) will return a.

See Also

atof(S), getc(S) , printf(S)

Diagnostics

These functions return EOF on end of input and a short count for
missing or illegal data items.

Notes

The success of literal matches and suppressed assignments is not
directly determinable.

Trailing whitespace (including a newline) is left unread unless
m:.L�hed in the control string.

M arch �4, 1984 Page 3

SDENTER(S) SD�NTER (S)

Name
sdenter, sdleave - Synchronizes access to a shared data. segment.

Syntax
#Include <scl.b>

IDt sdenter(addr,flags)
char •addr;
IDt flags;
IDt sdleave(addr)
char •addr;

Descriptioo
Sdenter is used to indicate that the current process is about to
access the contents of a shared data segment. The actions per­
fonned depend on the value of flags. Flags values are formed by
OR-ing together entries from the following list:

·

SO ..NOW AlT If anotha- process bas called sdenter but not
sdleave for the indicated segment, and the seg­
mert was not created with the SO-UNLOCK flag
set, return an error instead of waiting for the
segment to become free.

SO_ WRITE Indicates that the process intends to modify the
data. If SD_WRITE isn't specified changes made
to data are not guarenteed to be reflected in other
proceses.

Sdleave is used to indicate that the current process is done modi­
fying the contents of a shared data segment.

Only changes made between invocatations of sdenter and sdleave
are guaranteed to be reflected in otha- processes. Sdenter and
sdleave are very fast; consequently. it is recommended that they be
called frequently rather than leave sdenter in effect for any pa-iod
of time. In particular, system calls should be avoided between
sdenter and sdleave calls.

The fork system call is forbidden between calls to sdenter and
sdleave if the segmert was created without the SD_UNLOCK flag.

May 10, 1984 Page 1

SDENI'ER (S) SDENI'ER (S)

Relura Value
Successful calls return 0. Unsuccessful calls return - 1 , and errno
is set to indicate the error.

See Also
sdget(S), sdgetv(S)

May 10, 1984 Page 2

SDGET(S) SDGET(S)

Name

sdget :.. Attachs and detachs a shared data segment.

Syntax

finclude <sd.h>

char •sdget(path, flap, (size, mode})
char *Path; ,
int flap, mode;
long size;

int 11 dtree(addr);
char •addr;

Description

Sdget attachs a shared data segment to the data space of the current
process. The actions performed are controlled by the value of flag•.
Flage values are constructed by OR-ing flags from the following list:

SD_RDONLY
Attach the segment for reading only.

SD_WRITE Attach the segment for both reading and writing.

SD_CREAT It the segment named by path exists, this flag has no
effect. Otherwise, the segment is created according to
the values or llize and mode. Read and write access to
the segment is granted to other processes based on the
permissions passed-in mode, and functions the same as
those for regular files. Execute permission is meaning­
less. The segment is initialized to contain all zeroes.

SD_UNLOCK
It the segment is created because of this call, the seg­
ment will be made so that more than one process can
be between sdenter and sdleave calls.

Sdfree detachs the current process from the shared data segment that
is attached at the specified address. Ir the current process has done
an •denier but not a •d/eat1e Cor the specified segment, an edleave will
be done before detaching the segment.

When no process remains attached to the segment, the contents or
that segment disappear, and no process can attach to the segment
without creating it by using the SD_CREAT flag in 1dget.

March 24, 1984 Page 1

SDGET(S) SDGET(S)

Retum Value

On successful completion, the address at which the segment wu
attached is returned. Otherwise, ·1 is returned, and err�ao is set to
indicate the error.

Notes

Use ot the so_UNLOCK ftag on systems without hardware support
for shared data may cause severe performance degradation.

See Also

sdenter(S), sdgetv(S)

March 24, 1984 Page 2

SDGETV{ S)

Name

sdgetv, sdwaitv - Synchronizes shared data access.

Syntax

#include <sd.h>

int sdgetv{ a.ddr)
int sdwa.itv{ a.ddr, vnum)
char •a.ddr;
int vnum;

Description

SDGETV (S)

Stlgetv and etlwaitv may be used to synchronize cooperating processes
that are using shared data segments. The return value of both rou­
tines is the version num her of the shared data segment attached to
the process at address atltlr. The version num her of a segment
changes whenever some process does an etlleave for that segment.

Stlgetv simply returns the version number of the indicated segment.

Stlwaitv forces the current process to sleep until the version number
for the indicated segment is no longer equal to vnum.

Return Value

Upon successful completion, both etlgetv and etlwaitv return a positive
integer that is the current version number for the indicated shared
data segment. Otherwise, a value of -1 is returned, and ermo is set
to indicate the error.

See Also

sdenter{ S) , sdget(S)

March 24, 1984 Page 1

SET.BUF (S)

Name

setbur - Assigns buffering to a stream.

Syntax

finclucle <stdio.h>

setbuf (stream, buf)
F1LE *stream;
char •bur;

Description

SETBUF (S)

Setbuf is used after a stream has been opened but before it is read or
written. It causes the character array buf to be used instead of an
automatically allocated buffer. Ir buf is the constant pointer NULL,
input/output. will be completely unbuffere.d.

A manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ) i
A buffer is normally obtained from malloe(S) upon the first gete(S)
or pute(S) on the file, except that output streams directed to termi­
nals, and the standard error stream stdeJT are normally not buffered.

A common source or error is allocation or buffer space as an
"automatic" variable in a code block, and then failing to close the
stream in the same block.

See Also

fopen(S) , getc(S) , malloc(S) , putc(S)

March 24, 1984 Page 1

SETJMP (S)

Name

setjmp, longjmp - Performs a nonlocal "goto".

Syntax

#include <setjmp.h>

int setjmp (env)
jmp_but env;

int longjmp (env, val)
jmp_but env;

Description

SETJMP (S)

These routines are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

Set;"mp saves its stack environment in env for later use by long;"mp. It
returns value 0.

Long;"mp restores the environment saved by the last call of •et;"mp. It
then returns in such a way that execution continues as if the call of
eet;"mp had just returned the value val to the corresponding call to
eet;"mp. The routine which calls •etimp must not itself have returned
in the interim. Long;"mp cannot return the value 0. It long;"mp is
invoked with a second argument of 0, it will return 1 . All accessible
data have values as of the time long;"mp was called. The only excep­
tion to this are register variables. The value of register variables are
undefined in the routine that called •efimp when the corresponding
long;"mp is invoked.

· see Also

signal(S)

March 24, 1984 Page 1

SETPGRP (S) SETPGRP (S)

Name

setpgrp - Sets process group ID.

Syntax

int setpgrp ()

Description

Setpgrp sets the process group ID of the calling process to the process
ID of the calling process and returns the new process group ID.

Return Value

Setpgrp returns the value of the new process group ID.

See Also

exec(S), fork(S) , getpid(S), intro(S) , kili(S), signal(S)

March 24, 1984 Page 1

SETU!D (S)

Name

setuid, setgid - Sets user and group IDs .

. Syntax

int setuid (uid)
int uid;

int setgid (gid)
int gid;

Description

SETU!D (S)

Set�id is used to set the real user 10 and effective user 10 or the cal­
ling process.

S�tgid is used to set the real group ID and effective group 10 or the
calling process.

H th� eJfective user 10 of the calling pro�ess is super-user, the real
user (group) ID and effective user (group) ID are ,set to uid (gid).

H the effective user 10 of the calling process is not super-user, but
i,ts real user (group) ID is equal to uid (gitl) , the effective user
(group) ID is set to uid (gid).

Setuitl will fail if the real user (group) 10 of the calling process is not
equal to uid (gid) and its effective user ID is not super-user.
[EPERM]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value or - 1 is returned and ermo i:s set to indicate the error.

See Also

getuid(S), intro(S)

March 24, 1984 Page 1

SHUTDN(S)

Name

shutdn - Flushes block I/0 and ha.lts the CPU.

Syntax

finelude <sys/fllsys.h>

shutdn (sblk)
struet fllsys •sblk;

Description

SHUTDN(S)

Sl&utd" ca.uses all informa.tion in core memory tha.t should be on disk
to be written out. This includes modified super-blocks, modified
inodes, and dela.yed block 1/0. The super-blocks or all writa.ble file
systems are fta.gged 'clean', so that they can be remounted without
cleaning when XENIX is rebooted. Shutd" then prints "Normal Sys·
tem Shutdown" on the console and halts the CPU.

·

Ir eblk is nonzero, it specifies the address or a. super· block which will
be written to the root device as the last 1/0 before the halt. This
ra.eility is provided to allow file system repair programs to supercede
the system's copy of the root super-block with one or their own.

Shutd" locks out all other processes while it is doing its work. How­
ever, it is recommended that user processes be killed off (see
kill(S)) before ca.lling ehutd" as some types or disk activity could
ca.use file systems to not be fta.gged "clean".

The caller must be the super-user.

See Also

fsck(C), haltsys(C) , shutdown(C) , mount(S) , kill(S)

Ma.rch 24, 1084 Pa.ge 1

SIGNAL (S) SIGNAL (S)

Name

signal - Specifies what to do upon receipt of a signal.

Syntax

finclude <signal.h>

int (*s ignal (sig, rune))()
int sig;
int (•rune)() ;

Description

Signal allows the calling process to choose one of three ways in
which it is possible to handle the receipt of a specific signal. Sig
specifies the signal and June specifies the choice.

Sig can be assigned any one or the following except SJGKJLL:

SIC� UP
SI GI :"<T
SIGQUIT

SI GILL
SIG1RAP
SIGIOT

SIGEP.fT
SIGFPE
SIGKILL
SI<>BUS
SIGSEGV
SI GSYS

SI GPIPE
SI GALRM
SI Gn:RM

SIGUSRl
SIGUSR2
SI GCLD

SI GP\\R

01
02
03•
04•
05•
06•
07•
08•
09
10•
1 1 •
12•
1 3
14
15
16
17
18
19

Hangup
Interrupt
Quit
Illegal instruction (not reset when caught)
Trace trap (not reset when caught)
1/0 trap instruction
Emulator trap instruction
Floating-point exception
Kill (cannot be caught or ignored)
Bus error
Segmentation violation
Bad argument to system call
Write on a pipe with no one to read it
Alarm clock
Software termination signal
User-defined signal I
User-defined signal 2
D e ath of a child (see Warning below)
Power fail (see Warning below)

See below for the significance of the asterisk in the above list.

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a func­
tion addreM. The actions prescribed by these values of are described
below.

The SI G_DFL value causes termination of the process upon receipt
of a signal. Upon receipt of the signal •ig, the receiving process is to
be terminated with the following consequences:

March 24, 1984 Page 1

SIGNAL (S) SIGNAL (S)

1. All of the receiving process' open file descriptors will be closed.

2. If the parent process of the receiving process is executing a Vl5it,
it will be notified of the termination of the receiving process and
the terminating signal's number will be m ade available to the
parent process; see Vl5it(S) .

3. If the parent process of the receiving process is not executing a
V15it, the receiving process will be transformed into a zombie
process (see ez1l(S) for definition of zombie process) .

4. The parent process ID of each of the receiving process' existing
child processes and zombie processes will be set to 1. This
means the initialization process (see intro(S)) inherits each of
these processes.

5. An accounting record will be written on the accounting file if the
system's accounting routine is enabled; see 11cct(S) .

6. If the receiving process' process ID, tty group ID, and process
group ID are equal, the signal SIGHUP will be sent to all of the
processes that have a process group ID equal to the process
group ID of the receiving process.

7. A "core image" will be made in the current working directory
of the receiving process if fig is one for which an asterisk
appears in the above list "nd the following conditions are met:

- The effective user ID and the real user ID of the receiving
process are equal.

- An ordinary filenamed core exists and is writable or can be
created. If the file must be created, it will h ave a mode of 0666
modified by the file creation mask (see um5sk (S)) , a file owner
ID that is the sam.e as the effective user ID of the receiving pro­
cess, a file group ID that is the same as the effective group ID ot
the receiving process

The SIG_IGN value causes the process to ignore a signal. The signal
sig is to be ignored. Note that the signal SIGKILL cannot be
ignored.

A function 11ddre81 value causes to process to catch a signal. Upon
receipt of the signal sig, the receiving process is to execute the
signal-catching function pointed to by func. The signal number •ig
will be passed as the only argument to the signal-catching function.
There are the following consequences:

l. Upon return from the signal-catching function, the receiving
process will resume execution at the point it was interrupted and
the value of func Cor the caught sign&! will be set to SIG_DFL
unless the signal is SIGILL, SIG1RAP, SIGCLD, or SIGPWR.

March 24, 1984 Page 2

SIGNAL (S) SIGNAL (S)

2. When a signal that is to be caught occurs during a read, a write,
an open, or an ioctl system call on a slow device (like a termi­
nal; but not a file) , during a pauee system call, or during a wGit
system call that does not return immediately due to the
existence of a previously stopped or zombie process, the signal
catching function will be executed and then the interrupted sys­
tem call will return a - 1 to the calling process with ermo set to
EINTR.

3. Note that the signal SIGKILL cannot be caught.

A call to eignGI cancels a pending signal sig except for a pending SIG­
KILL signal.

Signal will fail if one or more of the following are true:

Sig is an illegal signal number, including SIGKILL. [EINVALj

Func points to an illegal address. [EFAULTI

Return Value

Upon successful completion, 1ignGI returns the previous value of
func for the specified signal rig. Otherwise, a value of - 1 is
returned and ermo is set to indicate the error.

See Also

kill(C) , kill (S) , pause(S) , ptrace(S) , wait(S) , setjmp(S) .

Warning

Two other signals that behave differently than the signals described
above exist in this release of the system; they are:

SIGCLD
SIGPWR

18 Death of a child (not reset when caught)
19 Power fail (not reset when caught)

There is no guarantee that, in future releases of XENIX, these signals
will continue to behave as described below; they a.re included only
for compatibility with other versions of XENIX. Their use in new
programs is strongly discouraged.

For t.hese signals, func is assigned one of three values: SIG_DFL,
SIG_IGN, or a. function Gddreae. The actions prescribed by these
values of are as follows:

SIG_DFL • ignore signal
The signal is to be ignored.

March 24, 1984 Page 3

SIGNAL (S) SIGNAL (S)

Notes

SIQJGN - ignore signal
The signal is to be ignored. Also, if eig is SIGCLD, the
calling process' child processes will not create zombie
processes when they terminate; see ezit(S) .

function addreeB - cat-ch signal
It the signal is SIGPWR, the action to be taken is the
same as that described above for func equal to function
addrue. The same is true it the signal is SIGCLD except,
that while the process is executing the signal-catching
function any received SIGCLD signals will be queued and
the signal-catching function will be continually reentered
until the queue is empty.

The SIGCLD affects two other system calls (wait(S) , and ezit(S))
in the following ways:

wait It the func value of SIGCLD is set to SIG_IGN and a wait
is executed, the wait will block until all or the calling pro­
cess' child processes terminate; it will then return a value
of - I with errno set to ECHILD.

ezit It in the exiting process' parent process the func value or
SIGCLD is set to SIQJGN, the exiting process will not
create a zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent or the proceeding processes. A process that
may be piped into in this manner (and thus become the parent or
other processes) should take care not to set SIGCLD to be caught.

The defined constant NSIG in signal.h standing for the number or
signals is always at least one greater than the actual number.

March 24, 1984 Page 4

)

SIGSEM (S)

Name

sigsem - Signals a proce·ss·waiting on ·a semaphore.

Syntax

sigsem(sem_num) ;
int sem_num;

Description

SIGSEM (S)

Sig1em signals a process that is waiting on the semaphore 1em_11um
that it may proceed and use . the resource governed by the sema­
phore. Sig1em is used in conjunction with wait1em(S) to allow syn­
chronization or processes wishing to access a resource. One or more
processes m ay waiuem on the given semaphore and will be put to
sleep until the process which currently has access to the resource
issues a 1ig1em call. Ir there are any waiting processes, rig1em causes
the process which is next in line on the semaphore's queue to be
rescheduled Cor execution;· The semaphore's queue is organized in
first in first out (FIFO) order.

See Also

creatsem(S) , opensem(S) , waitsem(S)

Diagnostics

Sig1em returns the value (int) -1 if an error occurs. IC 1em_num does
not refer to a semaphore type file, ermo is set to ENOTNAM. It
•em_num has not been previously opened by open1em, ermo is set to
EBADF. IC the process issuing a sigsem call is not the current
"owner" or the semaphore (i.e., if the process has not issued a
wa.itsem call before the sigsem) , errno is set to ENAVAIL.

March 24, 1984 Page
'
t

SINH (S}

Name

sinh, cosh, tanh - Performs hyperbolic functions.

Syntax

finclude <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

Description

S/NH (S}

These functions compu� the designa�d hyperbolic functions for real
arguments.

Diagnostics

Si'nla and eotla return a huge value of appropria� sign when the
correct value would overflow.

March 24, U184 Page 1

SLEEP (S)

Name

sleep - Suspends execution for an interval.

Syntax

unsigned sleep (seconds)
unsigned seconds;

Description

SLEEP (S)

The current process is suspended from execution for the number of
seconds specified by the argument. The actual suspension time may
be less than that requested for because scheduled wakeups occur at
fixed 1-second intervals, and any caught signal will terminate the
eleep following execution of that signal's catching routine. Also, the
suspension time may be longer than requested by an arbitrary
amount due to the scheduling of other activity in the system. The
value returned by sleep will be the "unslept" amount (the requested
time minus the time actually slept) in case the caller had an alarm
set to go off earlier than the end of the requested 1leep time, or
premature arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing
until it (or some other signal) occurs. The previous state of the
alarm signal is saved and restored. The calling program m ay have
set up an alarm signal before calling eleep; if the tlleep time exceeds
the time till such alarm signal, the process sleeps only until the
alarm signal would have occurred, and the caller's alarm catch rou­
tine is executed just before the 1leep routine returns, but if the eleep
time is less than the time till such alarm, the prior alarm time is
reset to go off at the same time it would have gone off without the
intervening 1leep.

See Also

alarm(S) , nap(S) , pause(S) , signal(S)

March 24, 1984 Page 1

SS/GNAL (S) SS/GNAL (S)

Name

ssigna.l, gsignal - Implements software signals.

Syntax

#include <signal.h>

int (*ssignal (sig, action))()
int sig, (*action)();

int gsignal (sig)
int sig;

Description

Slignal and geignal implement a software facility similar to lignal(S) .
This facility is used by the standard C library to enable the user to
indicate the disposition of error conditions, and is also m ade avail­
able to the user for his own purposes.

Software signals made available to users are associated with integers
in the inclusive range 1 through 15. An action for a software signal
is eltabliehed by a call to elignal, and a software signal is raiecd by a
call to gngnal. Raising a software signal causes the action esta­
blished for that signal to be taken.

The first argument to 11ignal is a number identifying the type of sig­
nal for which an action is to be established. The second argument
defines the action; it is either the name of a (user defined) action
function or one of the manifest constants SIG_DFL (default) or
SIG_IGN (ignore) . Slignal returns the action previously established
for that signal type; if no action has been established or the signal
number is illegal, 11ignal returns SIG_DFL.

Gsignal ra.ises the signal identified by its argument, •ig:

If an action function has been established for lig, then that
action is reset to SIG_DFL and the action function is entered
with argument 1ig. Gsignal returns the value returned to it by
the action function.

If the action for ng is SIG_IGN , glignal returns the value 1 and
takes no other action.

If the action for eig is SIG_DFL , glignal returns the value 0 and
takes no other action.

If sig has an illegal value or no action was ever specified for
1ig, g•ignal returns the value 0 and takes no other action.

March 24, 1984 Page 1

SSJGNAL (S) SSJGNAL (S)

Notes
There are some additional signals with numbers outside the range 1
through 15 that are used by the standard C library to indicate error
conditions. Thus, some signal numbers outside the range 1 through
15 are legal, although their use may intertere with the operation or
the standard C library.

March 24, 1984 Page 2

STA T (S) STA T (S)

Name

stat, !stat - Gets file status.

Syntax

#include <sysltypes.h>
#include <syslstat.h>

int stat (path, buf)
char *path;
struct stat *buf;

int fstat (flldes, buf)
int fildes;
struct stat *bur;

Description

Path points to a pathname naming a file. Read, write or execute
permission of the named file is not required, but all directories listed
in the pathname leading to the file must be searchable. Stat obtains
information about the named file.

Similarly, /stat obtains information about an open file known by the
file descriptor filtle•, obtained from a successful open, creat, tlup,
fcntl, or pipe system caJI.

Buf is a pointer to a 1tat structure into which information is placed
concerning the file.

The contents of the structure pointed to by buf include the following
members:

ushort
ino_t
dev_t

dev_t

short
ushort
ushort
off_t
time_t
time_t
time_t

March 24, 1984

st_mode;
st_ino;
st_dev;

st_rdev;

st_nlink;
st_uid;
st_gid;
st_size;
st_atime;
st_mtime;
st_ctime;

/* File mode; see mknotl(S) *I
/* Inode number *I
/* ID of device containing *I
/* a directory entry for this file *I
/* ID of device *I
/* This entry is defined only for *I
/* special files *I
/* Number of links *I
/* User ID of the file's owner *I
/* Group ID of the file's group *I
/* File size in bytes *I
/* Time of last access *I
/* Time of last data modification *I
/* Time of last file status change *I
/* Times measured in seconds since *I
/* 00:00:00 GMT, Jan. 1 , 1970 *I

Page 1

STAT (S) STAT(S)

st_atime Time when file data was last accessed. Changed by the
following 11ystem calls: creat(S) , mknod(S) , pipe(S) ,
uiime(S) , an d read(S) .

st_mtime Time when data was last modified. Changed by the fol­
lowing system calls: creat(S) , mknod(S) , pipe(S) ,
utime(S) , and write(S) .

st_ctime Time when file status was last changed. Changed by the
following system calls: chmod(S) , chown(S) , creat(S) ,
link (S) , mknod(S) , pipe (S) , utime(S) , and torite(S) .

s�_rdev Device indentification. In the case of block and character
special files this contains the device major and minor
numbers; in the case of shared memory and semaphores,
it contains the type code. The file
/usr/includefsysftypes.h contains the macros major()
and minor() for extracting major and minor numbers
from 3t_rdev. See fusrfinclude/sysfstat.h for the sema­
phore and shared memory type code values s_INSEM and
S_INSHD.

Stat will fail i f one or more of the following are true:

A component of the path prefix is not a directory. IENOTDIR]

The named file does not exist. IENOENT]

Search permission is denied for a component of the path prefix.
IEACCESJ

Buf or path points to an invalid address. IEFAULT]

Fnat will fail if one or more of the following are true:

Filde3 is not a valid open file descriptor. I EBADF]

Buf points to an invalid address. IEFAULT]

Return Value

Upon successful completion a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also

chmod(S) , chown(S) , creat(S), link(S) , mknod(S) , time(S),
unlink(S)

March 24, 1984 Page 2

SIDIO (S) STDIO (S)

Name

stdio - Performs standard buffered input and output.

Syntax

#include <stdio.h>
F1LE *stdin, *stdout, *stderr;

Description

The ttdio library contains an efficient, user-level 1/0 buffering
scheme. The in-line m acros getc(S) and putc(S) h andle characters
quickly. The macros getchar, putchar, and the higher-level routines
fgetc , fgete, fprintf, fputc, fpute, fread, ftcanf, fwn'te, gett, getw, print/,
putt, putw, and ecanf all use getc and putc; they can be freely inter­
mixed.

A file with associated buffering is called a "stream " and is declared
to be a pointer to a defined type FILE . Fopen(S) creates certain
descriptive data for a stream and returns a pointer to designate the
stream in all further transactions. Normally, there are three open
streams with constant pointers declared in the "include" file and
associated with the standard open files:

stdin
stdout
stderr

Standard input file
Standard output file
Standard error file

A constant "pointer" NULL designates the null stream .

An integer constant EOF i s returned upon end-of-file or error by
most integer functions that deal with streams (see the individual
descriptions for details) .

Any program that uses this package must include the header file of
pertinent macro definitions, as follows:

#include < stdio.h >

Most of the functions and constants mentioned in this section of the
manual are declared in that "include" file and are described else­
where. The constants and the following "functions" are imple­
mented as m acros (rede claration of these names is perilous) : getc,
getehar, putc, putchar, feof, ferror, and fileno.

March 24, 1984 Page 1

SID/O { S) SID/O { S)

See Also

open(S) , close{ S) , read{S) , write{S) , ctermid(S) , cuserid{S) ,
fclose (S) , ferror(S) , fopen(S) , fread(S) , fseek{ S) , getc{S) , get.s{S) ,
popen(S) , printf{ S) , putc(S) , put.s(S), scanf(S) , setbuf(S) ,
system(S) , tmpnam (S)

Diagnostics

Invalid stream pointers can cause grave disorder, possibly including
program termination. Individual function descriptions describe the
possible error conditions.

\1 arch 24, 1984 Page 2

ST/ME (S)

Name

stime - Sets the time.

Syntax

#include <sysftypes.h>
finclude <sys/timeb.h>

time_t stime (tp)
long •tp;

Description

STJME (S)

Stime sets the system's idea of the time and date. Tp points to the
value of time as measured in seconds from 00:00:00 GMT January 1 ,
1970.

Stime will fail if the effective user ID of the calling process is not
super-user. [EPERM]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also

time(S)

March 24, 1984 Page 1

STRING (S) STRING (S)

Name

string, strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr,
strrchr, strpbrk, strspn, strcspn, strtok, strdup - Perform string
operations.

Syntax

char *strcat (s 1, s2)
char *sl, *s2;

char *stmcat (sl, s2, n)
char *sl, *s2;
int n;

int strcmp (sl , s2)
char *sl, *s2;

int stmcmp (sl , s2, n)
char *sl, *s2;
int n;

char *stn:py (sl, s2)
char *sl, *s2;

char *stmcpy (sl, s2, n)
char *sl, *s2;
int n;

int strlen (s)
char *s;

char *strchr (s, c)
ch·ar *s, c;

char *strrchr (s , c)
char *s, c;

char *strpbrk (sl, s2)
char *sl, *s2;

int strspn (sl, s2)
char *sl, *s2;

int stn:spn (sl, s2)
char *sl, *s2;

char *strtok (sl, s2)
char *sl, *s2;

char *strdup (s)
char *s;

March 24, 1984 Page' I

STRING (S) STRING (S)

Description

These functions operate on null-terminated strings. They do not
check for overflow of any receiving string.

Streat appends a copy of string •I to the end of string d. Stmcat
copies at most 11 characters. Both return a pointer to the null·
terminated result.

Stremp compares its arguments and returns an integer greater than,
equal to, or less than 0, ac.cording as d is lexicographically greater
than, equal to, or less than 11. Strncmp makes the same comparison
but looks at at most " characters.

Strep1J copies string ee to 11, stopping after the null character has
been moved. StmcP1J copies exactly 11 characters, truncating or null·
padding •D; the target may not be null-terminated if the length of II
is 11 or more. Both return d.

Strle11 returns the number of nonnull characters in •·

Strehr (etrrehr) returns a pointer to the first (last) occurrence of
character c in string 1 , or NULL i f c does not occur in the string.
The null character terminating a string is considered to be part of the
string.

Strpbrk returns a pointer to the first occurrence in string r1 of any
character from string ee, or NULL if no character from •I exists in
11.

Stnpn (ttrcepn) returns the length of the initial segment of string d
which consists entirely of characters from (not from) string 111.

Strtok considers the string 11 to consist of a sequence of zero or
more text tokens separated by spans of one or more characters from
the separator string efJ. The first call (with pointer tJ1 specified)
returns a pointer to the first character of the first token, and will
have written a NULL character into d immediately following the
returned token. Subsequent calls with zero for the first argument,
will work through the string 11 in this way until no tokens remain.
The separator string efJ m ay be different from call to call. When no
token remains in s1, a NULL is returned.

Strdup returns a pointer to a duplicate copy of the string pointed to
by '· The duplicate string is automatically allocated storage using a
mal/oc(S) system call. This call allocates the exact number of bytes
needed to store the string and its terminating null character.

March 24, 1 984 Page 2

)

STRING (S) S1RING (S)

Notes

Strcmp uses native character comparison, whieh is signed on some
machines, unsigned on others.

All string movement is perf'ormed character by character starting at
the lert. Thus overlapping moves toward the lert will work as
expected, but overlapping moves to the right may yield surprises.

March 24, 1 984 Page '3

SWAB (S)

Name

swab - Swaps bytes.

Syntax

swab (trom, to, nbytes)
ehar •;rom, •to;
ini nbytes;

Deseripiion

SWAB (S)

SwtJb copies nbrter pointed io by /rom io the position pointed io by
to, exchanging adjacent even and odd bytes. It is useful for tran­
sporting binary data between JDacbines that differ in the ordering or
bytes. Nb,ter should be even.

March 24, 1984 Page 1

)

SYNC (S) SYNC (S)

Name

sync - Updates the super-block.

Synta.x

sync ()

Description

S'!Jflc causes all information in memory that should be on disk to be
written out. This includes modified super-blocks, modified inodes,
and delayed block 1/0.
It should be used by programs which examine a file system, for
example f•ck (C), 4/(C) , etc.

The writing, although scheduled, is not necessa.rily complete upon
return from I'IJfiC.

See Also

sync(C)

March 24, l!l84

SYSTEM (S)

Name

system - Executes a shell command.

Syntax

#include <stdio.h>

int system (string)
char •string;

Description

SY.S'1EM (S)

System passes the Btring to a new invocation of a shell (see 1A(C)) .
The shell reads and executes the .t""ng as if it had been typed as a
command at a terminal, then returns the exit status of the command
to the calling process. The calling process waits until the shell has
returned a status before proceeding with execution.

See Also

sh(C), exec(S)

Diagnostics

Syetem stops if it can't execute sh(C) .

March 24, 1984 Page 1

1ERMCAP (S) 1ERMCAP (S)

Name

tgetent, tgetnum, tgetrlag, tgetstr, tgoto, tputs - Performs terminal
functions.

Syntax

char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)
char *id;

tgetnag(id)
char *id;

char *tgets tr (i d, area)
char *id, **area;

char *tgoto (em, destcol, destline)
char •em;

tputs(cp, arrent, outc)
register char *Cp;
int arrent;
int (*Cute)() ;

Description

These functions extract and use capabilities from the terminal capa­
b ility data. base termeap(M) . These are low level routines; see
eureee(SJ for a. higher level package.

Tgetent extracts the entry for terminal name into the hurter at bp. Bp
should be a. character buffer of size 1024 and must be retained
through all subsequent calls to tgetnum, tgetflag, and tgetetr. Tgetent
returns - 1 if it cannot open the termeap file, 0 if the terminal name
given does not have an entry, and I if all goes well. It will look in
the environment for a. TERMCAP variable . Ir found, and the value
does not begin with a. slash, and the terminal type name is the same
as the environment string TERM, the TERMCAP string is used
instead of reading the term cap file. Ir it does begin with a. slash, the
string is used as a. pathname rather than feteftermeap. This can speed
up entry into programs that call tgetent, as well as to help debug new
terminal descriptions or to make one for your terminal if you can't

March 24, 1984 Page 1

TERMCAP (S) TERMCAP (S)

write the file fetcftumcap.

Tgetnum gets the numeric value or capabili� id, returning - 1 if is
not given for the terminal. Tgetfll!.g returns 1 if the specified capabil­
i� is present in the terminal's entry, 0 if it is not. Tgett/tr gets the
string value or capabili� id, placing it in the buffer at are11., advanc­
ing the area pointer. It decodes the abbreviations for this field
described in termcap(M), except for cursor addressing and padding
information.

Tgoto returns a cursor addressing string decoded from em to go to
column dutcol in line deetline. It uses the external variables UP (from
the qp capabili�) and BC (if be is given rather than bs) if necessary
to avoid placing \n, CNTRL-D or NULL in the returned string. (Pro­
grams which call tgoto should be sure to turn off the TAB3 bit (see
tty(M)) , since tgoto may now output a tab. Note that programs
using termcap should in general turn off TAB3 anyway since some
terminals use CNTRL-1 for other functions, such as nondestructive
space.) H a %sequence is given which is not understood, then tgoto
returns ' 'OOPS''.

Tputs decodes the leading padding information of the string cp; a/fcnt
gives the number of lines affected by the operation, or I if this is
not applicable, outc is a routine which is called with each character in
turn. The external variable oepeed should contain the output speed
of the terminal as encoded by etty(C). The external variable PC
should contain a pad character to be used (from the pc capabili�) if
a NULL is inappropriate.

Files

/usr/lib/libtermcap.a - ltermcap library
/etcftermcap data base

See Also

curses(S) , termcap(M) , t�(M)

Credit

This utili� was developed at the Universi� of California at Berkeley
and is used with permission.

Notes

These routines can be linked by using the linker option - ltermeap.

March 24, 1984 Page 2

TIME (S)

Name

time, ftime - Gets -time and date.

Syntax

time_t time ((long *) 0)

time_t time (tloc)
time_t *tloc;

findude < sys/types.h >
#include < sys/timeb.h>

ftime(tp)
struct timeb •tp;

Description

TIME (S)

7ime returns the current system time in seconds since 00:00:00
GMT, January 1, 1970.

If tloc (taken as an integer) is nonzero, the return value is also
stored in the location to which tloc points.

Ftime returns the time in a structure (see below under Return
Value.)

Time will fail if t/oc points to an illegal address. JEFAULTJ Likewise,
ftime will fail if tp points to an illegal address.] EFAULT]

Return Value

Upon successful completion, time returns the value of time. Other­
wise, a value of - 1 is returned and ermo is set to indicate the error.

The ftime entry fills in a structure pointed to by its argument, as
d�fined by <sys/timeb.h>:

/•
• Structure returned by ftime system call
•I

struct timeb {
time_t time;

};

unsigned short m illitm;
short timezone;
short dstrlag;

March 24, 1984 Page I

TIME (S) TIME (S)

The structure contains the time since the epoch in seconds, up to
1000 milliseconds ol more-precise intA:rval, the local time zone
(measured in minutes of time westward from Greenwich), and a flag
that, if nonzero, indicates that Daylight Saving time applies locally
during the appropriate part of the year.

·

See Also

date(C) , stime(S) , ctime(S)

�farch 24, 1984 Page 2

TIMES (S)

Name

times - Gets process and child process times.

Syntax

#include <times.h>

long times (butl'er)
struct tmbuf {

long uti me;
long stime;
long cutime;
long cstime;

} butl'er;

Description

TIMES (S)

Ttme1 fills the structure pointed to by buffer with time-accounting
information. This information comes from the calling process and
ea.ch of its terminated child processes for which it ha.s executed a.
wait(S) .

All times a.re in clock ticks where a. tick is some fraction of a. second
defined in machine (M) .

Utime is the CPU time used while executing instructions in the user
space or the calling process.

Stime is the CPU time used by the system on behalf of the calling
process.

Cutime is the sum of the utimes and cutimes of the child processes.

CBtime is the sum of the 1times and utimes of the child processes.

Ttmea will fa.il if bulfer points to an illegal address. !EFAULTj

Return Value

Upon successful completion, timet returns the elapsed real time, in
clock ticks, since an arbitrary point in the past, such a.s the system
start-up time. This point does not change from one invocation of
timee to another. If time1 fails, a. - I is returned and errno is set to
indicate the error.

See Also

exec(S), fork(S) , time(S) , wa.it(S) , machine(M)

March 24, 1984 Page I

TMPFILE (S) TMPFILE (S)

Name

tmpfile - Creates a temporary file.

Syntax

#include <stdio.h>

F1LE *tmpfile ()

Description

Tmpfile creates a temporary file and returns a corresponding FILE
pointer. Arrangements are made so that the file will automatically
be deleted when the process using it terminates. The file is opened
for update.

See Also

ereat(S) , unlink(S) , fopen(S) , mktemp(S) , tmpna.m(S)

March 24, 1984 Page 1

TMPNAM (S)

Name

tmpnam - Creates a name for a temporary file.

Syntax

#include <stdio.h>

char *tmpnam (s)
char *s;

Description

TMPNAM (S)

Tmpnam generates a Cilename that can safely be used Cor a tem­
porar; file. If { int) 8 is zero, tmpnam leaves its result in an internal
static area and returns a pointer to that area. The next call to
tmpnam will destroy the contents of the area. If (int) s is nonzero, 8
is assumed to be the address of an array of at least L_tmpnam
bytes; tmpnam places its result in that array and returns 8 as its
value.

Tmpnam generates a different filename each time it is called.

Files created using tmpnam and either fopen or creat are only tem­
porary in the sense that they reside in a directory intended for tem­
porary use, and their names are unique. It is the user's responsibil­
ity to use unlink (S) to remove the file when its use is ended.

See Also

creat(S) , unlink(S) , fopen(S) , mktemp(S)

Notes

If called more than 17,576 times in a single process, .tmpnam will
start recycling previously used names.

Between the time a filename is created and the Cile is opened, it is
possible for some other process to create a file with the same name.
This can never happen if that other process is using tmpnam or
mktemp, and the filenames are chosen so as to render duplication by
other means unlikely.

March 24, 1984 Page I

TRIG (S) TRIG (S)

Name

sin, cos, tan, a.sin, acos, atan, atan2 - Performs trigonometric func­
tions.

Syntax

finclude <ma.th.h>

double sin (x)
double x;

double cos (x)
double x;

double asin (x)
double x;

double a.cos (x)
double x;

double ata.n (x)
double x;

double ata.n2 (y, x)
double x, y;

Description

Sin, cos and tan return trigonometric functions of radian arguments.
The magnitude or the argument should be checked by the caller to
make sure the result is meaningful.

A1in returns the arc sin in the range - 1r /2 to 1r /2.

AcoB returns the arc cosine in the range 0 to 1r .

Atan returns the arc tangent of :z in the range - 1r /2 to 1r /2.

Atan.e returns the arc tangent of 11/ :z in the range - 1r to 1r .

Diagnostics

Arguments or magnitude greater than 1 cause aBin and tJCOB to
return value 0.

Notes

These routines can be linked with the linker option - lm.

March 24, 1984 Page 1

)

TTYNAME (S)

Name

ttyname, isatty - Finds the name or a terminal.

Syntax

char •ttyname (fildes)

int is atty (fildes)

Description

TTYNAME (S)

nyname returns a pointer to the null-terminated pathname or the
terminal device associated with rile descriptor fildu.

[Batty returns 1 if fildea is associated with a terminal device, 0 other­
wise.

Files

/dev/*

Diagnostics

nyname returns a null pointer (0) if fildes does not describe a termi­
nal device in directory /dev.

Notes

The return value points to static data whose content is overwritten
by each call.

March 24, 1984 Page 1

UL/M/T(S) UL/MIT(S)

Name

ulimit - Gets and sets user limits.

Syntax

long ulimit (cmd, newlimit)
int cmd;
long newlimit;

Description

This function provides for control over process limits. The cmd
values available are:

2

Gets the process' file size limit. The limit is in units or disk
blocks and is inherited by child processes. Files of any size can
be read.

Sets the process' file size limit to the value of new!imit. Any
process may decrease this limit, but only a process with an
effective user ID of super-user ma.y increase the limit. Ulimit
will fail and the limit will be unchanged if a process with an
effective user ID other than super-user a.ttempts to increase its
file size limit. IEPERM]

3 Gets the ma.ximum possible break value. See 1brk(S) .

Return Value

Upon successful completion, a nonnega.tive value is returned. Oth·
erwise, a value of - 1 is returned and ermo is set to indicate the
error.

See Also

sbrk(S), chsize(S) , write(S)

Notes

The file limit is only enforced on writes to regular files. Tapes, disks,
and other devices of a.ny size can be written.

Ma.rch 27, HJ84 Page 1

)

UMA.SK (S)

Name

uma.sk - Sets and gets file creation mask.

Syntax

int umask (cmask)
int cmask;

Description

UMA.SK (S)

Umtul: sets the process' file mode creation mask to cmael: and
returns the previous value of the m ask. Only the low-order ll bits of
cmael: and the file mode creation mask are used.

Return Value

The previous value of the file mode creation mask is returned.

See Also

mkdir(C) , mknod(C), sh(C), chmod(S) , mknod(S) , open(S)

March 24, 1984 Page 1

UMOUNT (S) UMOUNT (S)

Name

umount - Unmounts a file system.

Syntax

int umount (spec)
char *spec;

Description

Umount requests that a previously mounted file system contained on
the block special device identified by 1pec be unmounted. Spec i s a
pointer to a pathname. After unmounting the file system, the direc­
tory upon which the file system was mounted reverts to its ordinary
interpretation.

Umount may be invoked only by the super-user.

Umount will Ca.il iC one or mo.re oC the following are true:

The process' effective user ID is not super-user. [EPERM]

Spec does not exist. [ENXIO]

Spec is not a. block special device. [ENOTBLK]

Spec is not mounted. [EINVAL]

A file on 1pec is busy. [EBUSY]

Spec points outside the process' allocated address space.
[EFAULT]

Return Value

Upon successful completion a value or 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also

mount(C) , mount(S)

March 24, 1984 Page 1

UNAME (S)

Name

uname - Gets name of current XENIX system.

Syntax

#include <sys/utsname.h>

int uname (name)
stn1ct utsname *name;

Description

UNAME (S)

Uname stores information identifying the current XENIX system in
the structure pointed to by name.

Uname uses the structure defined in <sysfutsname.h>:

struct utsname {

};

char sysnam e [9] ;
char nodename[9] ;
char release[9] ;
char version[9] ;
unsigned short sysorigin;
unsigned short sysoem;
long sysserial;

Uname returns a null-terminated character string naming the current
XENIX system in the character array syename. Similarly, nodename
contains the name that the system is known by on a com m unications
network. Release and verBion further identify the operating system.
Syeorigin and eyeeom identify the source of the XENIX version. Sys­
Berial is a software serial number which m ay be zero if unused.

Uname will fail if name points to an invalid address. [EFAULTJ

Return Value

Upon successful completion, a nonnegative value is returned. Oth­
erwise, - 1 is returned and errno is set to indicate the error.

March 24, 1984 Page I

UNAME (S)

See Also

una.me(C)

Notes

Not a.Il fields ma.y be set on a. pa.rticula.r system.

Ma.rch 24, 1984

UNAME (S)

Pa.ge 2

UNGETC (S)

Name

ungetc - Pushes character back into input stream.

Syntax

#include <stdio.h>

int ungetc (c, stream)
char c ;
F1LE •stream;

Description

UNGETC (S)

Ungetc pushes the character c back on a.n input stream. The charac­
ter will be returned by the next getc call on that stream. Ungetc
returns c.

One character of pushba.ck is guaranteed provided something ha.s
been read from the stream a.nd the stream is actually buffered.
Attempts to push EOF are rejected.

Fseek(S) erases a.ll memory or pushed back characters.

See Also

fseek(S) , getc(S), setbuf(S)

Diagnostics

Ungetc returns EOF if it can't push a. character back.

March 24, 1984 Page 1

UNLINK (S) UNL/NK (S)

Name

unlink - Removes directory entry.

Syntax

int unlink (path)
char *path;

Description

Unlink removes the directory entry named by the pathname pointed
to by path.

The named file is unlinked unless one or more of the following are
true:

A component oC the path prefix is not a directory.]ENOTDIRJ

The named file does not exist.]ENOENTJ

Search permission is denied for a component of the path prefix.
JEACCESJ

Write permission is denied on the directory containing the link
to be removed. JEACCESJ

The named file is a directory and the effective user ID of the
process is not super-user. JEACCESJ

The entry to be unlinked is the mount point Cor a mounted file
system . JEBUSYJ

The entry to be unlinked is "." or " .. " in the root directory of a
mounted filesystem.]EBUSYJ

The entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed.]ETXTBSYJ

The directory entry to be unlinked is part of a read-only file sys­
tem.]EROFSJ

Path points outside the process' allocated address space.
JEFAULTj

When all links to a file have been removed anrl no process has the
file open, the space occupied by the file is Creed and the file ceases to
exist. Ir one or more processes have the file open when the last link
is removed, the removal is postponed until all references to the file
have been closed.

March 24, 1984 Page 1

)

UNLINK (S) UNLINK (S)

Return Value

Upon successful completion, a value or 0 is returned. Otherwise, a
value or - 1 is returned and ermo is set to indicate the error.

See Also

rm(C) , close (S) , link(S) , open(S)

March 24, 1984 Page 2

USTAT(S) USTA T(S)

Name

ustat - Gets file system statistics.

Syntax

#include <sysftypes.h>
#include <ustat.h>

int ustat (dev, but)
int dev;
struct us tat *but;

Description

Ustat returns information about a mounted file system. Defl is a
device number identifying a device containing a mounted file system.
Buf is a pointer to a ustat structure that includes the following ele­
ments:

daddr_t
ino_t
char
char

r_tfree;
r_tinode;
Uname[6] ;
Upack[6) ;

/* Total free blocks */
/* Number of free inodes */
/* Filsys name */
/* Filsys pack name */

Ustat will fail if one or more of the following are true:

Defl is not the device number of a device containing a mounted
file system. [EINVALJ

Buf
·
points outside the process' allocated address space.

[EFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also

stat(S) , filesystem(F)

Notes

When using file systems from previous versions of XENIX, fsck (C)
must be run on the file system before mounting. Otherwise the ustat
system call will not work correctly. This only needs to be done once.

March 24, 1984 Page 1

UTIME (S) UTIME (S)

Name

utime - SetB file access and modification times.

Syntax

#include <sys/types .h>
int uti me (path, times)
char *path;
struct utimbur *times;

Description

Path pointB to a pathname naming a file. Utime setB the access and
modification times or the named file.

It times is NU LL, the access and modification times or the file are set
to the current time. A process must be the owner or the file or have
write permission to use utime in this manner.

It times is not NULL, times is interpreted as a pointer to a utimbuf
structure and the access and modification times are set to the values
contained in the designated structure. Only the owner or the file or
the super-user m ay use utime this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. I, 1970.

struct utimbut {

};
time_t actime;
time_t modtime;

/* access time * /
/* modification time */

Utime will tail it one or more or the following are true:

The named file does not exist. [ENOENT]

A component of the path prefix is not a directory. [ENOTDIR]

Search permission is denied by a component or the path prefix.
[EACCES]

The effective user ID is not super-user and not the owner or the
file and times is not NU J,L. [EPERMJ

The effective user ID is not super-user and not the owner of the
file and times is NULL and write access is denied. [EACCES]

The file system containing the file is mounted read-only.
[EROFS]

March 24, 1984 Page I

UTIME (S) UT/ME (S)

Times is not NULL and points outside the process' allocated
address space. [EFAULT]

Path points outside the process' allocated address space.
[EFAULT]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also

stat(S)

March 24, 1984 Page 2

WAIT(S) WAIT(S)

Name

wait - Waits for a child process to stop or terminate.

Syntax

int wait (stat_loc)
int *stat_loc;

int wait ((int *)0)

Description

Wait suspends the calling process until it receives a signal that is to
be caught (see signal(S)) , or until any one of the calling process'
child processes stops in a trace mode (see ptrace (S)) or terminates.
If a child process stopped or terminated prior to the call on wait,
return is immediate.

If Btat_loe (taken as an integer) is nonzero, 16 bits of information
called "status" are stored in the low-order 16 bits of the location
pointed to by etat_loe. Status can be used to differentiate between
stopped and terminated child processes and if the child process ter­
minated, status identifies the cause of termination and passes useful
information to the parent. This is accomplished in the following
m anner:

If the child process stopped, the high-order 8 bits of status will
be zero and the low-order 8 bits will be set equal to 0 177.

If the child process terminated due to an ezit call, the low-order
8 bits of status will be zero and the high-order 8 bits will contain
the low-order 8 bits of the argument that the child process
passed to ezit; see ezit(S) .

If the child process terminated due to a signal, the high-order 8
bits of status will be zero and the)ow-order 8 bits will contain
the number of the signal that caused the termination. In addi­
tion, if the low-order seventh bit (i.e., bit 200) is set, a "core
image" will have been produced; see signal(S) .

I f a parent process terminates without waiting for its child processes
to terminate, the parent process ID of each child process is set to l.
This means the initialization process inherits the child processes; see
intro(S) .

Mar�h 24 , 1984 Page 1

WAIT(S) WAIT(S)

Wait will fail and return immediately it one or more of the following
are true:

The calling process has no existing unwa.ited-for child processes.
[ECHILDj

Stat_loe points to an illegal address. [EFAULTj

Return Value

If wait returns due to the receipt of a. signa.!, a value of - 1 is
returned to the calling process and ermo is set to EINTR. It wait
returns due to a. stopped or terminated child process, the process ID
of the child is returned to the calling process. Otherwise, a value of
- 1 is returned and ermo is set to indicate the error.

See Also

exec(S) , exit(S) , fork(S) , pause(S) , signal(S)

Warning

See Warning in 1ignal(S) .

March 24, 1984 Page 2

WAI TSEM (S) WAITSEM (S)

Name

waitsem, nbwaitsem - Awaits and checks access to a resource
governed by a semaphore.

Syntax

waitsern(sern_nurn) ;
int sern_nurn;

nbwaitsern(sern_nurn) ;
int sern_num;

Description

W aitsem gives the calling process access to the resource governed by
the semaphore sem_num. Ir the resource is in use by another pro­
cess, waitsem will put the process to sleep until the resource becomes
available; nbwaitsem will return the e.rror ENA VAIL. W aiuem and
nbwaiteem are used in conjunction with mgsem to allow synchroniza­
tion of processes wishing to access a resource. One or more
processes may waiteem on the given semaphore and will be put to
sleep until the process which currently has access to the resource
issues sigsem. Sigsem causes the process which is next in line on the
semaphore's queue to be rescheduled for execution. The
semaphore's queue is organized in first in first out (FIFO) order.

See Also

creatsem(S) , opensem(S) , sigsem(S)

Diagnostics

· Waitsem returns the value (int) - 1 if an error o ccurs. If sem_num
has not been previously opened by a call to openeem or creatsem,
errno is set to EBADF. If eem_num does not refer to a semaphore
type file , errno is set to ENOTNAM. All processes waiting (or
attempting to wait) on the semaphore when the process controlling
the semaphore exits without relinquishing control (thereby leaving
the resource in an undeterminate state) return with errno set to ENA­
VAIL.

March 24, 1984 Page 1

WRITE (S)

Name

write - Writes to a file.

Syntax

int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

Description

WRITE (S)

Fildee is a file descriptor obtained from a creat, open, dup, fcntl, or
pipe system call.

Wn"te attempts to write nbyte bytes from the buffer pointed to by bu/
to the file associated with the fildee.

On devices capable of seeking, the actual writing of data. proceeds
from the position in the file indicated by the file pointer. Upon
return from wn"te, the file pointer is incremented by the number of
bytes actually written.

On devices incapable of seeking, writing always takes place starting
at the current position. The value of a. file pointer associated with
such a. device is undefined.

Ir the O_APPEND flag of the file status flags is set, the file pointer
will be set to the end of the file prior to each write.

Wn"te will fail and the file pointer will remain unchanged if one or
more of the following are true:

Fildee is not a. valid file descriptor open for writing. [EBADF]

An attempt is m ade to write to a. pipe that is not open for read­
ing by any process. [EPIPE and SIGPIPE signalj

An attempt was made to write a. file that exceeds the process'
file size limit or the maximum file size. See ulimit(S) . [EFBIG]

Buf points outside the process' allocated address space.
[EFAULT]

If a. wn"te requests that more bytes be written than there is room for
(e.g., the ulimit (see ulimit(S)) or the physical end of a. medium) ,
only as many bytes as there is room for will be written. For exam­
ple, suppose there is space for 20 bytes more in a. file before reach­
ing a. limit. A write of 512 bytes will return 20. The next write of a
nonzero number of bytes will give a. failure return (except as noted

March 24, Ul84 Pal!;e 1

WRITE (S) WRITE (S)

below) .

IC the file being written is a pipe (or FIFO) , no partial writes will be
permitted. Thus, the write will fail it a write of nbyte bytes would
exceed a limit.

IC the file being written is a pipe (or FIFO) and the O,.NDELA Y flag
of the file flag word is set, then write to a full pipe (or FIFO) will
return a count of 0. Otherwise (O,.NDELA Y clear) , writes to a full
pipe (or FIFO) will block until space becomes available.

Return Value

Upon successful completion the number of bytes actually written is
returned. Otherwise, - 1 is returned and ermo is set to indicate the
error.

See Also

creat(S) , dup(S) , !seek(S) , open(S) , pipe(S), ulimit(S)

Notes

Writing a region of a file locked with loelcing causes write to hang
indefinitely until the locked region is unlocked.

March 24, 1984 Page 2

XLIST (S)

Name

xlist, fxlist - Gets name list entries from files.

Syntax

#include <a.out.h>
xlist(filename, xl)
char *filename;
struct xlist xi[];

#include < a.out.h>
#include <stdio.h>
txlist(fp, xl)
FlLE •tp;
struct xlis t xl [) ;

Description

XLIST(S)

Fzlitt performs the same function as zliet, except that /zliet accepts a
pointer to a previously opened file intead or a filename.

Xli•t examines the name list in the given executable output file and
selectively extracts a list of values. The name list structure zl con­
sists of an array of. zliet structures containing names, types, values,
and segment values (it applicable) . The list is terminated by either a
pointer to a null name or a null pointer. Each name is looked up in
the name list of the file. It the name is found, the type and value of
the name are inserted into the next two fields. The segment value (if
it exists) is inserted in the third field. It the name is not found,
both entries are set to zero. See 11.out(F) for a discussion of the xlist
structure.

X.out and a.out formats are understood, as well as 8086 relocatable
and x.out segmented formats.

It the symbol table is in a.out format, and if the symbol name given
to zlut is longer than eight characters, only the first eight characters
are used for comparison. In all other cases, the name given to zliet
must be the same length as a name list. entry in order to match.

If two or more symbols happen to match the name given to zlu�
then the type and value used will be those of the last symbol found.

See Also

a.out(F)

March 24, Ul84 Page 1

XLIST(S) XLIST(S)

Diagnostics

Xliet returns · 1 and sets all type entries to zero it the file cannot be
read, is not an object file, or contains an invalid name list. Other·
wise, :dirt returns zero. A return value or zero does 11ot indicate that
any or all or the given symbols were round.

March 24, 1984 Page 2

CONTENTS

intro
a. out
acct
ar
checklist
e«e
cpio
dir
dump filesylllem
imde
master
lllllttab
sccsfile
types
x.out

FileFonnats(F)

Introduction to file formats
FonnatofassemblerallllintcditoroutpUt
Fonnatofper-processaccowaingfile
Archive file format
List of file systems processed by fsck
Fonnatofe«eimagefile
Fonnatofcpioarchivc
Format of ad�
lncremenlaldumptapefonnat
Formatofasystcmwlume
Formatofaninode
Formatofmasterdeviceinformationtable
Formatofmounted file system table
FonnatofanSCCSfile
PrimitivcsylilemdatatypeS
Loader outpUt

1-i

) .

Index

Accountinglile acct
Assembler and link'"· .-edito..:-or-o-u7tp-u-=-t -------- a.out
Ardlivelile ar
Ardlivefile epio
Coreimagefile core
Data types, system types
Directory cUr
Dumptape dump
File formats, introduction intro
Filesystemlist checklist
File system volume file system
lnode iDocle
loa del" output s.out
Moumedfilesystemtable mnttab
sees file IICCS6le

) '
I .

/NTRO (F) INTRO (F)

Name

intro - Introduction to file formats.

Description

This section outlin�s the formats or various riles. Usually, these
structures can be found in

"the directories /usr/include or
/usr/include/sys.

March 24, 1984 Page 1

A.OUT(F) A. OUT(F)

Name

a. out - Format or assembler and link editor output.

Description

A.out is the output tile ot the assembler •• and the link editor ltl.
Both programs will make a.aut executable if there were no errore in
assembling or linking, and no unresolved external references.

The format or a.out, called the x.out or segmented x.out format, is
defined by the tiles /rmlnclutle/a.out.A and /utrlnclutle/ep/rel•,m.A.
The a.out tile has the following general layout:

1. Header.

2. Extended header.

3. File segment table (lor segmented formats) .

4. Segments (Text, Data, Symbol, and Relocation) . ·

In the segmented format, there may be several text and data seg­
ments, depending on the memory model ol the program. Segments
within the file begin on boundaries which are multiplies of 512 bytes
as defined by the file's pagesise.

See Also

as(CP) , ld(CP) , nm(CP) , strip(CP) .

March 24, 1984 Page l

ACCT (F) ACCT (F)

Name

acct - Format of per-process accounting file.

Description

Files produced as a result of calling acct(S) have records in the form
defined by <sysfacct.h> .

I n ae_Jiag, the AFORK flag is turned on by each fork(S) and turned
off by an ezee (S) . The ae_eomm field is inherited from the parent
process and is reset by any ezee. Each time the system charges the
process with a clock tick, it also adds the current process size to
ae_mem computed as follows:

(data size) + (text size) / (num her of in-core processes using
text)

The value of ae_memfae_ltimt can be viewed as an approximation to
the mean process size, as modified by text-sharing.

See Also

acct(C) , acctcom(C) , acct(S)

Notes

The ae_mem value for a short-lived command gives little information
about the actual size of the command, because ae_mem may be
incremented while a different command (e.g., the shell) is being exe­
cuted by the process.

March 24, 1984 Page 1

AR (F) AR (F)

Name

ar - Archive file format.

Description

The archive command ar is used to combine several files into one.
Archives are used mainly as libraries to be searched ,by the link edi­
tor ld(C).

A file produced by ar has a m agic number a.t the start, followed by
the constituent files, each preceded by a file header. The magic
number is 0177545 octaJ (or Oxfl'65 hexadecimal) . The header ot
each file is declared in /usr/includ!J/�.b.

Each file begins on a word boundary; a null byte is inserted between
files it necessary. Nevertheless the size given reflects the actual size
or the file exclusive or padding.

Notice there is no provision tor empty areas in an archive file.

See Also

ar(CP) , Id(CP)

March 24, 1984 Page 1

CHEOKLIST(F) OHEOKLIST(F)

Name

checklist - List of file systems processed by feck.

Description

The jetcfcltukliet file contains a list of the file systems to be checked
when feck (C) is invoked without arguments. The list contains a.t
most 15 1pecial file names. Each epecial file na.me must be on a.
separate line a.nd must correspond to a. file system.

See Also

fsck(C)

March 24, 1984 Page 1

OORE (F) OORE (F)

Name

core - Format ot core image file.

Description

XENIX writes out a core image of a terminated process when any ot
various errors oceur. See ,.gnat(S) tor the list of reasons; the most
common are memory violations, illegal instructions, bus errors, and
user-generated quit signals. The core image is called core and is
written in the process' working directory (provided it can be; normal
access controls apply) . A process with an effective user ID different
from the real user ID will not produce a core image.

The first section ot the core image is a copy of the system's per-user
data for the process, including the registers as they were at the time
ot the fault. The size of this section depends on the parameter ulize,
which is defined in /usr/inclucE/sys/param.b. The remainder
represents the actual contents ot the user's core area when the core
image was written. If the text segment is read-only and shared, or
separated from data space, it is not dumped.

The format of the information in the first section is described by the
Uler structure of the system, defined in /usr/inclucE/sys/user.h.
The locations or registers, are outlined in /usr/includefsysfreg.h.

See Also

adb{CP) , setuid(S) , signal{S)

March 24, 1984 Page 1

CPIO (F)

Name

cpio - Format or cpio archive.

Description

The ke4der structure, when the c option is not used, is:

struct {
short

char
} Hdr;

h_magic,
h_dev,
h_ino,
h_mode,
h_uid,
h_gid,
h_nlink,
h_rdev,
h_mtime[2) ,
h_namesize,
h_filesize[2);
h_name[h_namesize rounded to word);

CPJO (F)

When the c option is used, the ke4der inrormation is described by
the statement below:

sscanr(Chdr, ·�c;So�&o�&o�&o�G8o�c,6o�c,6o�&o%1 llo�&o�&o�c:s·,
&Hdr.h_magic,&Hdr.h_dev,&Hdr.hjno,&Hdr.h_mode,
&H dr .h_u id, &H dr .h_gid, &H dr .h_nlink, &H dr .h_rdev,
&Longtime,&Hdr.h_namesize ,&Longfile,Hdr.h_name);

Longtime an d Longfile are e quivalent to Hdr.k_mtime and
Hdr.k_jileeize, respectively. The contents or each file is recorded in
an element or the array or varying length structures, 4rt:kive,
together with other items describing the file. Every instance or
k_m4gie contains the constant 070707 (octal). The items k_dev
through k_mtime have meanings explained in etat(S) . The length or
the null-terminated pathname k_n4me, including the null byte, is
given by k_nameeize .

The last record or the 4rekive always contains the name TRAILER!! ! .
Special files, directories, and the trailer are recorded with k_jileeize
equal to zero.

See Also

cpio(C) , find(C), stat{ S)

March 24, 1984 Page 1

DIR (F) DIR (F)

Name

dir - Format or a directory.

Syntax

finclude <sysfdir.h>

Description

A directory behaves exactly like a.n ordinary file, except that no user
may write into a directory. The fact that a file is a directory is indi­
cated by a bit in the flag word of its inode entry (see Jile'llfem(F)) .
The structure o f a directory is given in the include file
fusr/includefsys/dir.h.

By convention, the first two entries in each directory are"dot" (.)
and "dotdot" (•.) . The first is a.n entry for the directory itself. The
second is for the parent directory. The meaning or dotdot is
modified for the root directory of the m aster file system; there is no
parent, so dotdot has the same meaning as dot.

See Also

filesystem(F)

March 24, 1984 Page 1

DUMP (F) D UMP (F)

Name

dump - Incremental dump ta.pe format.

Description

The dump and restor commands are used to write and read incre·
mental dump magnetic ta.pes.

The dump ta.pe consists of a header record, some bit mask records, a
group of records describing file system directories, a group of records
describing file system files, and some records describing a second bit
mask.

The header record and the first record of each description have the
format described by the structure included by:

finclude < dumprestor.h>

Fields in the dumprutor structure are described below.

NTREC is the number of 512 byte blocks in a physical ta.pe record.
MLEN is the number of bits in a bit map word. MSIZ is the number
of bit map words.

The TS_ entries are used in the e_tJpe field to indicate what sort of
header this is. The types and their meanings are as follows:

TS_TYPE Tape volume label.

TSJNODE A file or directory follows. The c_dinode field is a copy
of the disk inode and contains bits telling what sort of
file this is.

TS_BITS A bit mask follows. This bit mask has a one bit for
each inode that was dumped.

TS_.ADDR A subblock to a file (TS_INODE). See the description
oC c_count below.

TS_END End of tape record.

TS_CLRI A bit mask follows. This bit m ask contains a one bit
for all inodes that were empty on the file system when
dumped.

MAGIC All header blocks have this number in c_magic.

CHECKSUM Header blocks checksum to this value.

March 24, 1984 Page 1

D UMP (F) DUMP (F)

The fields o r the header structure are as follows:

c_type The type or the header.

c_date The date the dump was taken.

c_ddate The date the file system was dumped from.

c_volume The current volume number of the dump.

c_tapea The current block number of this record. This is
counting 512 byte blocks.

c_inumber The number or the inode being dumped if this is of
type TSJNODE.

c_magic This contains the value MAGIC above, truncated as
needed.

c_checksum This contains whatever value is needed to make the
block sum to CHECKSUM.

c_dinode

c_count

c_addr

This is a copy of the inode as it appears on the file
system.

This is the count of characters following that describe
the file. A character is zero if the block associated
with that character was not present on the file system,
otherwise the character is nonzero. Ir the block was
not present on the file system no block was dumped
and it is replaced as a hole in the file. If there is not
sufficient space in this block to describe a.ll of the
blocks in a file, TS...ADDR blocks will be scattered
through the file, each one picking up where the last
left off.

This is the array of characters that is used as described
above.

Each volume except the last ends with a. ta.pemark (read as an end of
file) . The last volume ends with a TS_END block and then the tape­
mark.

The structure idates describes an entry of the file where dump his­
tory is kept.

See Also

dump(C) , restor(C) , filesystem (F)

March 24, 1984 Page 2

FILESYSTEM (F)

Name

file system - Format of a system volume.

Syntax

finelude <sys/filsys .h>
finelude <sys/types.h>
finelude <sys/param.h>

Description

FILESYSTEM (F)

Every file system storage volume (e.g., a hard disk) h as a common
format for certain vital informa.tion. Every such volume is divided
into a certa.in number of 256 word (512 byte) blocks. Block 0 is
unused and is a.va.i!able to conta.in a bootstra.p progra.m or other
informa.tion.

Block 1 is the IUper-blocl:. The form at of a super-block is described
in /usr/indude/sys/filesys.h. In that include file, S_i1iu is the
a.ddress of the first da.ta. block a.fter the i-list. The i-list sta.rts just
after the super-block in block 2; thus the i-list is ,_inze- 2 blocks
long. SJ•ize is the first block not potentia.lly available for allocation
to a. file. These num hers are used by the system to check for ba.d
block numbers. If an "impossible" block number is allocated from
the free list or is freed, a diagnostic is written on the console. More­
over, the free a.rray is cleared so as to prevent further allocation
from a presuma.bly corrupted free list.

The free list for each volume is ma.inta.ined as follows. The •Jree
arra.y contains, in •Jree(1] , .. . , sJree (B_nfree- 1] , up to 49 numbers
of free blocks. SJree(OJ is the block number of the hea.d of a cha.in
of blocks constituting the free list. The first long in each free-chain
block is the number (up to 50) of free-block numbers listed in the
next 50 longs of this cha.in member. The first of these 50 blocks is
the link to the next member of the cha.in. To a.llocate a block: decre­
ment s_n/ree, and the new block is eJree(e_nfree] . If the new block
number is 0, there are no blocks left, so give an error. If ,_nfree
becomes 0, read in the block na.med by the new block number,
replace e_nfree by its first word, and copy the block numbers in the
next 50 longs into the sJree arra.y. To free a block, check if ,_nfree
is 50; if so, copy B_nfree and the sJree array into it, write it out, and
set cn/ree to 0. In a.ny event set •Jree(l_n/ree] to the freed block's
number and increment ,_n/ree.

S_tfree is the total free blocks ava.ilable in the file system.

S_ninode is the number of free i-numbers in the s_inode array. To
allocate an inode: if s_ninode is greater than 0, decrement it and
return ,_inode(B_ninodeJ . If it was 0, read the i-list and place the
num hers of all free inodes (up to 100) into the e_inode array, then

March 24, Hl84 Pa.ge 1

F/LESYSTEM (F) F/LES'YS TEM (F)

try again. To free an inode, provided ,_ninode is less than 100, place
its number into s_inode(e_ninode) and increment f_ninode. Ir
,_ninode is already 100, do not bother to enter the freed inode into
any table. This list of inodes only speeds up the allocation process.
The information about whether the inode is really free is maintained
in the inode itself.

S_tinode is the total free inodes available in the file system.

S_ftock and ,_,lock are flags maintained in the core copy of the file
system while it is mounted and their values on disk are immaterial.
The value of •Jmod on disk is also immaterial, and is used as a flag
to indicate that the super-block has changed and should be copied to
the disk during the next periodic update of file system information.

S_ronlr is a read-only flag to indicate write-protection.

S_time is the last time the super-block of the file system was
changed, and is a double-precision representation of the number of
seconds that have elapsed since 00:00 Jan. 1, U170 (GMT) . During a
reboot, the ,_time or the super-block for the root file system is used
to set the system's idea of the time.

1-numbers begin at 1, and the storage for inodes begins in block 2.
Also, inodes are 64 bytes long, so 8 of them fit into a block. There­
fore, inode i is located in block (i+ 15)/8, and begins
64X((i+ 15) (mod 8)) bytes from its start. Inode 1 is reserved for
future use. lnode 2 is reserved for the root directory of the file sys­
tem, but no other i-number has a built-in meaning. Each inode
represents one file. For the format of an inode and its flags, see
inode(F).

Files

/usr/include/sys/filsys.h

/usr/include/sys/stat.h

See Also

fsck(C), mkfs(C) , inode(F)

March 24, 1G84 Page 2

I /

JNODE (F)

Name

inode - Format or an inode.

Syntax

finclude <sysftypes.h>
finclude <sys/ino.h>

· Description

INODE (F)

An inode for a plain file o r directory in a file system h as th e struc­
ture defined by <sys/ino.h>. For the meaning or the defined
types off_t and tinu_t see tppu(F) .

Files

/usr/include/sys/ino.h

See Also

stat(S), file system (F), types(F)

March 24, 1984 Page 1

MASTER (F) MASTER (F)

Name

master - master device information table

Description

This file is used by the config(CP) program to obtain device informa­
tion that enables it to generate the configuration files. The file con­
sists of 4 parts, each separated by a line with a dollar sign ($) in
column 1. Part 1 contains device information; part 2 contains the
line discipline table; part 3 contains names of devices that have
aliases; part 4 contains tunable parameter information. Any line
with an asterisk (*) in column 1 is treated as a co.mment.

Part 1 contains lines consisting of 1 4 fields with the fields delimited
by tabs and/or blanks:

Field 1:
Field 2:
Field 3:

Field 4:

Field 5:
Field 6:
Field 7:
Field 8:
Field 9:

device name (8 chars. maximum) .
interrupt vector size (decimal, in bytes) .
device mask (octal)- each "on" bit indicates that
the driver has the corresponding handler or struc-
ture:

000400 tty structure
000200 stop handler
000100 not used
000040 not used
000020 open handler
000010 close handler
000004 read handler
000002 write handler
000001 ioctl handler.

device type indicator (octal) :
000200 allow only one or these devices
000100 not used
000040 not used
000020 required device
000010 block device
000004 character device
000002 not used
000001 not used.

handler prefix (4 chars. maximum) .
not used.
major device number for block-type device.
major device number for character-type device.
maximum number of devices per controller
(decimal) .

Field 10: not used.
Fields 11-14: maximum of four interrupt vector addresses.

March. 24, 1984

Each address is followed by a unique letter or a
blank.

Page 1

)

MASTER (F) MASTER (F)

Part 2 contains lines with 11 fields each. Each field is a maximum' or
8 characters delimited by a. blank if less than 8:

Field 1:
D evice associated with this line

Field 2:
open routine

Field 3:
close routine

Field 4:
read routine

Field 5:
write routine

Field 6:
ioctl routine

Field 7:
receiver interupt routine

Field 8:
unused- should be nulldev

Field II:
unused- should be nulldev

Field 10:
output start routine

Field 11:
unused- should be nulldev

Part 3 contains lines. with 2 fields each:

Field 1 :
Field 2:

alias name or device (8 chars. maximum).
reference name or device (8 chars. maximum;
specified in part I}.

Part 4 contains lines with 2 or 3 fields each:

Field 1:

Field 2:

Field 3:

parameter name (as it appears in description file;
20 chars. maximum}
parameter name (as it appears in the c.c file; 20
chars. maximum}
default parameter value (20 chars. maximum;
parameter specification is required it this field is
omitted}

Devices that are not interrupt-driven have an interrupt vector size o r
zero. Devices which generate interupts but are not or th e standard
character or block device mold, should be specified with a type (field
4 in part 1} which has neither the block nor char bits set.

See Also

config(CP}

March 24, 11184 Page 2

MNTTAB (F)

Name

mnttab - Format or mounted file system table.

Syntax

#include <stdio.h>
#include < mnttab.h>

Description

MNTTAB (F)

The /ek/mnttllb file contains a table of devices mounted by the
mount(C) command.

Ea.ch table entry contains the pathname or the directory on which
the device is mounted, the name or the device special file, the
read/write permissions or the special file, and the date on which the
device was mounted.

The maximum number or entries in mnttllb is based on the system
parameter NMOUNT located in /usr/sys/conf/c.c, which defines the
number or allowable mounted special files.

See Also

mount(C)

March 24, 1984 Page 1

)

SOOSFILE (F) SOOSFILE (F)

Name

sccsfile - Form at of an sees file.

Description

An sees file is an ASCII file. It consists of six logical parts: the
clleekeum, the delta table (contains information about each delta) ,
ueer name• (contains login names and/or numerical group IDs of
users who may add deltas) , ftagB (contains definitions of internal
keywords) , commentl (contains arbitrary descriptive information
about the fil�) , and the bod11 (contains the actual text lines inter­
mixed with control lines) . Each logical part of a.n sees file is
described in detail below.

Throughout an SCCS file there are lines which begin with the ASCII
SOH (start of heading) character (octal 001) . This character is
hereafter referred to a.s the control character and will be represented
graphically a.s @ . Any line described below which is not depicted a.s
beginning with the control character is prevented from beginning
with the control character. Entries or the form DDDDD represent a
five digit string (a number between 00000 and 99999) .

The checksum is the first line of an sees file. The form or the line
is:

@ hOODOO

The value of the checksum is the sum or all characters, except those
of the first line. The @ hR provides a magic number or (octal)
064001.

"Delta Table"

The delta table consists or a variable number or entries of the Corm:

@s DDDDD/DDDDD/DDDDD
@ d <type > <SOCS ID> yrfmofda. hr:mi:se <pgmr> DDDDD DDDDD
@ i DDDDD •••

@ x DDDDD • • •

@ g DDDDD •••

@ m <MR number>

@ c <comments> • • •

@ e

March 24, 1984 Page 1

SCOSFILE (F) SOOSFILE (F)

The first line (@ s) contains the number of lines
inserted/deleted/unchanged respectively. The second line (@ d)
contains the type of the delta (currently, normal: D, and removed:
R) , the sees ID of the delta, the da.te and time of creation of the
delta, the login name corresponding to the real user ID at the time
the delta wa.s created, a.nd the serial numbers of the delta and its
predecessor, respectively.

The @ i, @ x, and @ g lines contain the serial numbers of delta.s
included, excluded, and ignored, respectively. These lines are
option&!.

The @ m lines (optiona.l) each contain one MR number associated
with the delta.; the @ c lines contain comments associa.ted with the
delta.

The @ e line ends the delta table entry.

U1er Nsmer

The list of login names and/or numerical group IDs of users who
ma.y a.dd delta.s to the file, separated by new-lines. The lines contain­
ing these login names and/or numerical group IDs are surrounded by
the bracketing lines @ u and @ U. An empty list allows anyone to
make a delta.

Keywords used internally (see admin(CP) for more informa.tion on
their use) . Each flag line takes the form:

@ f <flag> <optional text>

The following flags are defined:

@ f t
@ f v
@ f i
@ f b
@ f m
@ r r
@ f c
@ f d
@ r n
@ r j
@ fl
o r q

<type of program >
<program name >

<module name >
<floor>
<ceiling>
<defaultrsid>

<lock-relea.ses>
<user defined>

The t flag defines the replacement for the identification keyword.
The v flag controls prompting for MR numbers in addition to com­
ments; if the option� tsxt is present it defines a.n MR number

March 24, 1984 Page 2

SCCSF/LE (F) SCCSFILE (F)

validity checking program. The i flag controls the warning/error
aspec.t of the "No id keywords" message. When the i flag is not
present, this message is only a warning; when the i flag is present,
this message will cause a "fatal" error (the file will not be gotten, or
the delta will not be made) . When the b flag is present the - b
option may be used with the get command to cause a branch in the
delta tree . The m flag defines the first choice for the replacement
text of the 8CC8file.F identification keyword. The f flag defines the
"floor" release; the release below which no deltas may be added.
The c flag defines the "ceiling" release; the release above which no
deltas may be added. The d flag defines the default SID to be used
when none is specified on a get command. The n flag causes delt11 to
insert a "null" delta (a delta that applies no changes) in those
releases that are skipped when a delta is made in a nev release (e.g.,
when delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped) .
The absence of the n flag causes skipped releases to be completely
empty. The j flag causes get to allow concurrent edits of the same
base SID. The I flag defines a llrt of releases that are locked against
e diting (get(CP) with the - e option). The q flag defines the
replacement for the identification keyword.

Comment.

Arbitrary text surrounded by the bracketing lines @ t and C T. The
comments section typically contains a description of the file's pur­
pose.

Bodg

The body consists or text Jines and control lines. Text lines don't
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, as follows:

@ I DDDDD
@D DDDDD
@ E DDDDD

The digit string (DDDDD) is the serial number corresponding to the
delta for the control line.

See Also

admin(CP), delta.(CP), get(CP) , prs(CP)

XenixProgr11mmer'• Guide

March 24, 1984 Page 3

TYPES (F) TYPES (F)

Name

types Primitive system dat.a types.

Syntax

finelude <syaftypea.h>

Description

The data types defined in the include file <s)'S/typeS.h> are used
in XENIX system code; some data of tbese types are aceeseible to
unr code.

The form tlt�.ddr_t is used for disk addresses except in an inode on
disk, see jile1ptem(F) . Times are encoded in seconds since 00:00:00
GMT, January 1, 11170. The major and minor parts of a device code
specify kind and unit number of a device and are installation­
dependent. Offsets are measured in bytes from the beginnin� of a
file. The ldel_t variables are used to save the processor state while
another process is runnin�.

See Also

ftlesystem(F)

March 24, Ul84 Page 1

X.OUT(F) X.OUT(F)

Name
x.out - loader output

Synopsis
#include [a.out.h]

Description
x.out is the output file of the loader Jd(CP). ld(CP) makes x.out
executable if there are no errors and no unresolved external refer­
ences. The following layout information is given in the include file
for the 68000:

struct xexec 1 I* x.out header *I
unsigned short .x.magic; I* magic oomber *I
unsigned short x...ext; I* size of header extension *I
long x.Jext; I* size of text segment *I
long x..data; I* size of initialized data *I
long x..bss; I* size of uninitialized data *I
long x..syms; I* size of symbol table *I
long .ueloc; I* relocation table length *I
long x...entry; I* entry poilt *I
char x..cpu; I* cpu type & byte/word order *I
char .uelsym; I* relocation & symbol format *I
unsigned short .uenv; I* run-time environmelt *I

l;
struct xext I

J;

long xc.Jtsize;
long x.e..drsize;
long x.e.Jbase;
long xe...dbase;
long xc..stksize;

I* x.out header extension *I
I* size of text relocation *I
I* size of data relocation *I
I* text relocation base *I
I* data relocation base *I

I* stack size (if XE..FS set) *I

The file has four sections: a header, the program's text and data,
relocatioa IDformatloa, and a symbol table, in that order. The
header optionally has a header extension as shown above. The
relocation and symbol section will be empty if the program was
loaded with the -s option of ld, or if the symbols and relocation
have been removed by strlp(CP). The sizes of each section in the
header are given as longs, but have even alignmelt. The size of
the header is not included in any of the other sizes. When an
x.out file is loaded into core for execution, three logical segments
are set up: the text segment, the data segment (with uninitialized
data, which starts off as all 0, following initialized data), and a
stack. The text segmelt begins at 0 in the core image; the header

May 10, 1984 Page 1

X.OUT(F) X.OUT(F)

is not loaded.

The layout of a symbol table entry, and the principal flag values
that distinguish symbol types, are given in the include file. If a
symbol's type is undefined external, and the value field is non­
zero, the symbol is im.erpreted by the loader, ld, as the name of a
common region whose size is indicated by the value of the symbol.
The value of a word in the text or data portions, which is not a
reference to an undefined external symbol, is exactly the value that
will appear in core when the file is executed. If a word in the text
or data portion involves a reference to an undefined external sym­
bol, as indicated by the relocation information for that word, then
the value of the word as stored in the file is an offset from the
associated external symbol.

When the file is processed by the loader and the external symbol
becomes defined, the value of the symbol will be added im> the
word in the file. If relocation information is present, it amounts to
one word per word of program text or initialized data.

FOes
/usr/include/a.out.h

NGhs)
See also as(CP), ld(CP), nm(CP), /usr/includela.out.h.

May 10, 1984 Page 2

