





The XENIX™

Development System

Programmer’s Reference

for the Apple Lisa 2"

The Santa Cruz Operation, Inc.



Information in this document is subject to change without notice and -
does not represent a commitment on the part of The Santa Cruz

Operation, Inc. and Microsoft Corporation. The software described in

this document is furnished under a license agreement or nondisclosure

agreement. The software may be used or copied only in accordance

with the terms of the agreement.

©The Santa Cruz Operation, Inc., 1984
©Microsoft Corporation, 1983

The Santa Crus Operation, Inc.

500 Chestnut Street

P.O. Box 1900

Santa Cruz, California 95061

(408) 425-7222 - TWX: 910-598-4510 SCO SACZ

UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft Corporation :
Apple, Lisa 2, and ProFile are trademarks of Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0



Contents

1

bt pumt pumt D
& WN =

NRRONNN
AW A WN -

PRLLLLL W
SN ANE WN -

~as s
WN

vanLuLan
NAWNEWN -

Introduction

Overview 1-1
UsingtheCLibrary Functions 1-—1
UsingThisManual 1-1
NotationalConventions 1-—-2

Using The Stapdard I/O Functions

Irtroduction 2-1
UsingCommandLine Arguments 2-2
UsingtheStanderdFiles 2-—4
UsingtheStream Functions 2—12
UsingMore Stream Functions  2—24
UsingtheLow—Level Functions 2-28

ScreenProcessing

Introduction 3-1

Preparing fortheScreenFunctions 3-3
UsingtheStandardScreen 3—6
Creatingand Using Windows 3—13
Using Other WindowFunctions 3—24
CombiningMovement with Acdion  3—28
Controllingthe Terminal 3—29

Characterand StringProcessing

Introduction 4-1
UsingtheCharacter Functions 4—1
UsingtheString Functions 4-7

Using ProcessControl

Introduction 5-1

UsingProcesses 5—1
CallingaProgram 5-1
StoppingaProgram 5-2
OverlayingaProgram 5-3
ExecutingaProgram Through aShell 5-5
DuplicatingaProcess 5—35



5.8
5.9
S.

coaccaae o
ONAWNE WA=

7.1
7.2
7.3
74

oo o
W EWN -

9

9.1
9.2
9.3
9.4
9.5
9.6

Waiting foraProcess 5—6
InheritingOpenFiles 5-7

10 ProgramExample 5-7

Creatingand UsingPipes

Introduction 6-1
OpeningaPipetoaNewProcess 6—1
Reading and WritingtoaProcess 6—2
ClosingaPipe 6—2
OpeningaLow—LevelPipe 6-3

Reading and WritingtoaLow—LevelPipe 6—4
ClosingaLow=LevelPipe 6—4
ProgramExamples 6-35

UsingSignals

Introduction 7-1

Usingthesignal Function 7-1
Controlling Execution with Signals 7-7
UsingSignalsinMultipleProcesses  7—11

UsingSystemResources

Introduction 8-—1
Allocating Space  8—1
LockingFiles 8-4
UsingSemaphores 8—6
UsingSharedMemory 8-12

ErrorProcessing

Introduction  9-—1
UsingStandardErrorHandling 9—1
Usingtheerrno Variable 9-2
Printing Error Messages 9-—2
UsingErrorSignals 9-3
Encountering  System

AppendixA  Assembly LanguagelInterface

Al

Introduction A-1




AppendixB  XENIXSystemCalls

B.1
B.2
B.3
B3
B4
BS
B.6

Introduction B-—1

RevisedSystemCalls B-—1

Version7 Addisions B-—1
Changestotheioctl Function B-—2
Usingthemount andchownFunctions B-2
Super—BlockFormat B—2

Separate VersionLibraries B-3



T,




Chapter 1
Introduction

1.1 Overview 1-1
1.2 Using the CLibrary Functions 1-1
1.3 Using This Manual 1-1

1.4 Notational Conventions 1-2






Introduction

1.1 Overview

This manual explains how touse the functions givenin the C language libraries
of the XENIX system. In particular, it describes the functionsof two C language
libraries: the standard C library, and the screen updating and cursor
movement library curses.

The Clibrary functions may be called by any program that needsthe resources
of the XENIX system to perform a task. The functions let programs read and
write to files in the XENIX file system, read and write to devices such as
terminals and lineprinters, load and execute other programs, receive and
process signals, communicate with other programs through pipes,share system
resources, and process errors.

1.2 Using the C Library Functions

To use the C library functions you must include the proper function call and
definitions in the program and specify the corresponding library is given when
the program is compiled. The standard C library, contained in the file ltbc.a, is
automatically specified when you compile a C language program. Other
libraries, including the screen updating and cursor movement library
containedin the file libcurees.a, must be explicitly specified when you compile a
program with the -1 option of the cc command (see Chapter 2, “Cc: a C
Compiler” in the XENIX Programmer’s Guide).

1.3 Using This Manual

This manual is intended to be used in conjunction with section S of the XENIX
Reference Manual. If you have never used the C library functions before, read
this manual first, then refer to the Reference Manual to learn about other
functions. If you are familiar with the library functions, turn to the Reference
Manual to see how these functions may differ from the onesyou already know,
then return to thismanual forexamplesof the functions.

Chapter 1 introduces the Clanguagelibraries.

Chapter 2 describes the standard input and output functions. These function
let a program read and write to the files of a XENIX file system.

Chapter 3 describes the screen processing functions. These functions let a
program use the screen processingfacilitiesof a user’s terminal.

Chapter 4 describes the character and string processing functions. These

functions let a program assign, manipulate, and compare characters and
strings.

1-1



Chapter 5 describes the process control functions. These functions let a
program execute other programs and create multiple copies of itself.

Chapter 6 describes the pipe functions. These functions let programs
communicate with one another without resorting to the creation of temporary
files.

Chapter 7 describes the signal functions. These functionsleta program process
signalsthat are normally processed by the system.

Chapter 8 describes system resource functions. These functions let a program
dynamically allocate memory, share memory with other programs, lock files
against accessby other programs, and use semaphores.

Chapter 9 describes the error processing functions. These functions let a
program process errors encountered while accessing the file system or
allocating memory.

Appendix A describes the assembly language interface with C programs and
explainsthe calling and return value conventions of Cfunctions.

Appendix B explains how to create and use new XENIX system calls.

This manual assumes that you understand the C programming language and
that you are familiar with the XENIX shell, sk. Nearly all programming
examplesin this guide are writtenin C, and all examplesshowing a shell use the
ek shell.

1.4 Notational Conventions

This manual uses a number of special symbols to describe the form of the
library function calls. The followingisa listof thesesymbolsand their meaning.

1] Bracketsindicate anoptional function argument.

Ellipses indicate that the preceding argument may be repeated
oneor more times.

*

SMALL Small capitals indicate manifest constants. These system-
dependent constants and are defined in a variety of include files.

italice Italic characters indicate placeholders for function arguments.
These must be replaced with appropriate values or names of
variables.



Chapter 2
Using the Standard I/O Functions

2.1 Introduction  2-1
2.1.1 Preparing for theI/O Functions  2-1
2.1.2 Special Names 2-1
2.1.3 SpecialMacros 2-2

2.2 Using Command Line Arguments 2-2

2.3 Using the Standard Files 2-4
2.3.1 ReadingFromthe Standard Input 2-4
2.3.2 Writingtothe Standard Output  2-7
2.3.3 Redirecting the Standard Input  2-9
2.3.4 Redirecting the Standard Output 2.9
2.3.5 PipingtheStandard Input and Output 29
2.3.6 ProgramExample 2-10

2.4 Using the Stream Functions 2-11
2.4.1 UsingFilePointers 2-11
24.2 OpeningaFile 2-12
2.4.3 Readinga Single Character 2-13
2.4.4 ReadingaStringfromaFile 2-13
2.4.5 ReadingRecordsfromaFile 2-14
2.4.6 Reading Formatted DataFromaFile 2-14
2.4.7 Writing a Single Character 2-15
2.4.8 WritingaStringtoaFile 2-16
2.49 Writing Formatted Output 2-17
2.4.10 Writing RecordstoaFile 2-17
2.4.11 Testing for the End of aFile 2-18
2.4.12 Testing ForFileErrors 2-18
2.4.13 ClosingaFile 2-19
2.4.14 ProgramExample 2-19

2.5 UsingMore StreamFunctions 2-22
2.5.1 UsingBuffered Input and Output 2-22
2.5.2 Reopening aFile 2-23



2.5.3 Setting the Buffer 2-23
2.5.4 Putting a Character Back intoaBuffer 2-24
2.5.5 FlushingaFileBuffer 2-25

2.6 Usingthe Low-Level Functions 2-25
2.6.1 UsingFileDescriptors 2-26
2.6.2 OpeningaFile 2-26
2.6.3 ReadingBytesFromaFile 2-27
2.6.4 Writing BytestoaFile 2-27
2.6.5 ClosingaFile 2-28
2.6.6 ProgramExamples 2-28
2.6.7 Using Random AccessI/O 2-31
2.6.8 Moving the Character Pointer 2-31
2.6.9 Moving the Character Pointer inaStream 2-32
2.6.10 Rewinding a File 2-33
2.6.11 Getting the Current CharacterPosition 2-33



Using the Standard I/O Functions

2.1 Introduction

Nearly all programs use some form of input and output. Some programsread from or
write to files stored on disk. Others write to devices such as line printers. Many
programsread from and write to the user’s terminal. For this reason, the standard C
library provides several predefined input and output functions that a programmer can
useinprograms.
This chapter explains how to use the /O functions in the standard C library. In
particular, itdescribes:

—  Command line arguments

—  Standardinputand output files

.~ Stream functions forordinary files
w  Low—level functionsforordinary files

—  Random access functions
2.1.1 Preparing for the /O Functions

To use the standard /O functions a program must include the file stdio.k, which
defines the needed macros and variables. To include this file, place the followingline
atthebeginningofthe program.

#include <stdio.h>

The actual functions are contained in the library file libc.a . This file is automatically
read whenever you compile a program, so no special argument is needed when you
invokethecompiler.

2.1.2 Special Names

The standard I/O library uses many names for spacial purposes. In general, these
namescanbeusedinany programthat hasincludedthe stdio. kfile.



XENIX Programmer's Reference

The following is alist of the specialnames:
stdin The name of the standard input file.

stdout The name of the standard output file.

stderr The name of the standarderror file.

EOF The value returned by the read routineson end-of-file or error.

NULL The null pointer, returned by pointer-valued functions, to indicate
anerror,

FILE The name of the file type used to decla.ré pointers tostreams.

BSIZE The size in bytes (usually 1024) suitable for an I/O buffer supplied
by the user.

2.1.3 Special Macros

The functions gete, getchar, pute, putchar, feof, ferror, and fileno are actually
macros, not functions. This means that you cannot redeclare them or use them
astargetsforabreakpoint when debugging.

2.2 Using Command Line Arguments

The XENIX system lets you passinformation to a program at the same time you
invoke it for execution. You can do this with command line arguments.

A XENIX command line is the line you type to invoke a program. A command
line argument is anything you typein a XENIX command line. A command line
argument can be a filename, an option, or a number. The first argument in any
command line must be the filename of the program you wish to execute.

When you type a command line, the system reads the first argument and loads
the corresponding program. It also counts the other arguments, stores them in
memory in the same order in which they appear on the line, and passes the
count and the locations to the main function of the program. The function can
then access the arguments by accessing the memory in which they are stored.

To access the arguments, the main function must have two parameters:
‘“‘argc”, an integer variable containing the argument count, and “argv”, an
array of pointers to the argument values. You can define the parameters by
using the lines:

2-2

Seag



Using the Standard 1/O Functions

main (arge, argv)
int arge;
char #argv|];

at the beginning of the main program function. When a program begins
execution, “argc” contains the count, and each element in “argv” contains a
pointer to one argument.

An argument is stored as a null-terminated string (i.e., a string ending with a
null character, \0). The first string (at “argv[0]”) is the program name. The
argument count is never less than 1, since the program name is always
considered the first argument.

In the following example, command line arguments are read and then echoed on
the terminal screen. Thisprogram issimilar to the XENIX echo command.

main(arge, argv) [* echo arguments */
int argc;
char *argv];

int i;

for (i = 1;i < arge; i+4)
printf(" %s%c", argvli], (i<arge-1) 7’ ’: '\n’);

}

In the example above, an extra space character is added at the end of each
argument to separate it from the next argument. This is required, since the
system automatically removes leading and trailing whitespace characters (i.e.,
spacesand tabs) when it readsthe arguments from the command line. Adding a
newline character to the last argument is for convenience only; it causes the
shell prompt to appear on the next line after the program terminates.

When typing arguments on a command line, make sure each argument is
separated from the others by one or more whitespace characters. If an
argument must contain whitespace characters, enclose that argument in
double quotation marks. For example, in the command line

display 3 4 "echo hello”

the string ““echo hello” is treated as a single argument Also enclose in double
quotation marks any argument that containscharactersrecognized by the shell
(e-8+ <, >,|,and").

You should not change the values of the ‘“argc’ and ‘“argv” variables. If
necessary, assign the argument value to another variable and change that
variable instead. You can give other functions in the program access to the
arguments by assigning their values toexternal variables.



XENIX Programmer’s Reference

2.3 Using the Standard Files

Whenever you invoke a program for execution, the XENIX system
automatically creates a standard input, a standard output, and a standard
error file to handle a program'sinput and output needs. Since the bulk of input
and output of most programs is through the user’s own terminal, the system
normally assigns the user’s terminal keyboard and screen asthe standard input
and output, respectively. The standard error file, which receives any error
messages generated by the program, isalso assigned to the terminal’sscreen.

A program can read and write to the standard input and output files with the
getchar, gets, scanf, putchar, puts, and printf functions. The standard error
file can be accessed using the stream functions described in the section *Using
Stream I/O” later in this chapter.

The XENIX system lets you redirect the standard input and output using the
shell’s redirection symbols. Thisallows a program to useother devicesand files
as its chief source of input and output in place of the terminal’s keyboard and
screen.

The following sections explains how to read from and write to the standard
input and output. It also explains how to redirect the standard input and
output.

2.3.1 Reading From the Standard Input

You can read from the standard input with the getchar, gets, and scanf
functions.

The getchar function reads one character at a time from the standard input.
The function call has the form:

¢ = getchar()
where ¢ is the variable to receive the character. It must have int type. The
‘unction normally returns the character read, but will return the end-of-file
salue EOF if theend of the file or an error isencountered.
The getchar function is typically used in a conditional loop to read a string of

‘haracters from the standard input. For example, the following function reads
‘cnt”’ number of characters from the keyboard. ‘

-4




Using the Standard I/O Functions

readn (p, cnt)

char plj;

int cnt;

{ -
1t 1,c;
i=0;

while (i<ent)
if ( pi++] = getchar()) != EOF ) {
pli] =0;
return(EOF);

return(0);

}

Note that if gete har is reading from the keyboard, it waits for characters to be
typed before returning.

The gets function reads a string of characters from the standard input and
copies the string to a given memory location. The function call hasthe form:

gets(e)

where s is a pointer to the location to receive the string. The function reads
characters until it finds a newline character, then replaces the newline
character with a null character (\0) and copies the resultingstring to memory.
The function returns the null pointer value NULL if the end of the file or an
error isencountered. Otherwise, it returns the valueof s.

The function is typically used to read a full line from the standard input. For
example, the followingprogram fragment reads aline from the standard input,
storesit in the character array “cmdIn” and calls a function (called paree) if no
error occurs.

char ¢mdIn[SIZE];
if ( gets(cmdln) != NULL )

parse();
In this case, the length of the string isassumed to be less than ““SIZE”.

Note that gete cannot check the length of the string it reads, so overflow can
occur.

The scanffunction reads one or more values from the standard input where a
value may be a character string or a decimal, octal, or hexadecimal number.
The function call hasthe form:

scanf {format, argptr ...)

2-5



XENIX Programmer’s Reference

. where format is a pointer to a string that defines the format of the values to be
read and argptr is one or more pointers to the variables that will receive the
values. There must be one argptrfor each format given in the format string.
The format may be “%s"’ for a string, ““%c” for acharacter,and “%d”, “%o”,
or “%x" for a decimal, octal, or hexadecimal number, respectively. (Other
formats are described in ecanf(S) in the XENIX Reference Manual.) The
function normally returns the number of values it read from the standard
input, but it will return the value EOF if the end of the file or an error is
encountered.

Unlike the getchar and gete functions, ecenf skips all whitespace characters,
reading only those characters which make up a value. It then converts the
characters, if necessary, into the appropriatestring or number.

The scanffunction is typically used whenever formatted input is required, i.e.,
input that must be typed in a special way or which has a special meaning. For
example, in the following program fragment ecanf reads both a name and a
number from the same line.

char name|[20];
int number;

scanf(” %s %d", name, &number);

In this example, the string “%s %d"” defines what values are to be read (a
string and a decimal number). The string is copied to the character array
“name” and the number to the integer variable “number”. Note that pointers
to these variablesare used in the call and not the actual variables themselves.

When reading from the keyboard, scanf waits for values to be typed before
returning. Each value must be separated from the next by one or more
whitespace characters (such as spaces, tabs, or even newline characters). For
example, for the function:

scanf("%s %d %c”, name, age, sex);
an acceptable input is:

John 27

M
If a value is 2 number, it must have the appropriate digits, that is, a decimal
number must have decimal digits, octal numbers octal digits, and hexadecimal
numbers hexadecimal digits.
If ecanf encounters an error, it immediately stops reading the standard input.

Before scanfcan be used again, the illegal character that caused the error must
be removed from the input using the getcharfunction.

R



Using the Standard I/O Functions

You may use the getchar, gets, and scanf functions in asingle program. Just
remember that each function reads the next available character, making that
character unavailable to the other functions.

Note that when the standard input is the terminal keyboard, the getchar, gets,
and ecanf functions usually do not return a value until at least one newline
character has been typed. This is true even if only one character is desired. If
you wish to have immediate input on a single keystroke, see the example in the
section ““Using the system Call”’ in Chapter 3.

2.3.2 Writing to the Standard Output

You can write to the standard output with the putchar, pute, and printf
functions.

The putchar function writes a single character to the output buffer. The
function call has the form:

putchar (¢)

where c is the character to be written. The function normally returns the same
character it wrote, but willreturn the value EOF if anerror is encountered.

The function is typically used in a conditional loop to write a string of
characters to the standard output. For example, the function

writen (p,cnt)
char p[);
int cnt;

int i;

for (i=0; i<=cnt; i++)
putchar( (i !=ent) ? p[i] : "\n");

}

writes ‘“‘cnt” number of characters plus a newline character to the standard
output.

The pute function copies the string found at a given memory location to the
standard output. The function call has the form:

puts(e)

where eis a pointer to the location containing the string. The string may be any
number of characters, but must end with a null character (\0). The function
writes each character in the string to the standard output and replaces the null
character at the end of the string with anewline character.



XENIX Programmer’'s Reference

Since the function automatically appends a newline character, it is typically
used when writing full lines to the standard output. For example, the following
program fragment writes one of three strings to the standard output.

char ¢;

switch(c) {

case('1'):
puts(” Continuing...”);
break;

case('2’):
puts(”All done.”);
break;

default:
puts(” Sorry, there was an error.”);

}

The string to be written dependson the value of *‘c”’.

The printf function writes one or more values to the standard output where a
value is a character string or a decimal, octal, or hexadecimal number. The
function automatically converts numbersinto the proper display format. The
function call has the form:

printf(format|, arg] ...)

where format is a pointer to a string which describes the format of each value to
be written and argis one or more variables containing the values to be written.
There must be one arg for each format in the format string. The formats may
be “%s" for a string, “%c"’ for a character, and “%d”, “%0", or “%x” for a
decimal, octal, or hexadecimal number, respectively. (Other formats are
described in print/(S) in the XENIX Reference Manual.) If a string is requested,
the corresponding arg must be a pointer. The function normally returns zero,
but will return a nonzerovalue if an error isencountered.

The prinif function is typically used when formatted output is required, i.e.,
when the output must be displayed in a certain way. For example, you may use
the function to display a name and number on the same line as in the following
example. :

char name [];
int number;

printf("%s %d", name, number);
In this example, the string “%s %d” defines the type of output to be displayed

(a string and a number separated by a space). The output values are copied
from the character array “name” and theinteger variable “number”’.



Using the Standard I/O Functions

You may use the putchar, puts, and printf functions in a single program. Just
remember that the output appears in the same order as it is written to the
standard output.

2.3.3 Redirecting the Standard Input

You can change the standard input from the terminal keyboard to an ordinary
file by using the normal shell redirection symbol, <. This symbol directs the
shell to open for reading the file whose name immediately follows the symbol.
For example, the following command line opens the file phonelist as the
standardinput to the program dial.

dial <phonelist

The dial program may then use the getchar, gets, and scanffunctions to read
characters and values from this file. Note that if the file does not exist, the shell
displaysan error message and stops the program.

Whenever getchar, gete, or scanf are used to read from an ordinary file, they
return the value EOF if the end of the file or an error is encountered. It is useful
to check for this value to make sure you donot continue to read characters after
anerror hasoccurred.

2.3.4 Redirecting the Standard Output

You can change the standard output of a program from the terminal screen to
an ordinary file by using the shell redirection symbol, >. The symbol directs
the shell to open for writing the file whose name immediately follows the
symbol. For example, the command line

dial >savephone

opens the file savephone as the standard output of the program dieland not the
*terminal screen. You may use the putckar, puts, and printf functions to write
tothefile.

If the file does not exist, the shell automatically creates it. If the file exists, but
the program does not have permission to change or alter the file, the shell
displaysan error message and does not execute the program.

2.3.5 Piping the Standard Input and Output

Another way to redefine the standard input and output is to create a pipe. A
pipe simply connects the standard output of one program to the standard input
of another. The programs may then use the standard input and output to pass
information from one to the other. You can create a pipe by using the standard
shell pipe symbol, |.

2-9



XENIX Programmer’s Reference

For example, the command line
dial | we

connects the standard output of the program dial to the standard input of the
program we. (The standard input of dial and standard output of we are not
affected.) If dial writes to its standard output with the putchar, puts, or printf
functions, we can read thisoutput with the getcharand sc anffunctions.

Note that when the program on the output side of a pipe terminates, the system
automatically places the constant value EOF in the standard input of the
program on the input side. Pipes are described in more detail in Chapter 6,
“Creating and Using Pipes”.

2.3.8 Program Example

This section shows how you may use the standard input and output files to
perform useful tasks. The cestrip (for ‘“‘control character strip”) program
defined below strips out all ASCH control characters from its input except for
newline and tab. You may use this program to display text or data files which
contain characters that may disrupt your terminal screen.

#include <stdio.h>
main() /* cestrip: strip nth characters +/

int ¢;
while ((c = getchar()) != EOF)
if (c>=""&& ¢ < 0177) ||
c=="\t || c =="\n)
putchar(c);
exit(0);

}

You can strip and display the contents of asingle file by changing the standard
input of the ccstripprogram to the desired file. The command line

cestrip <doc.t

reads the contents of the file doc.t, stripsout control characters, then writesthe
stripped file tothe standard output.

If you wish to strip several files at the same time, you can create a pipe between
the cat command and cceatrip.

To read and strip the contents of the files file!, file2, and file8, then display
them on thestandard output use the command:

2-10




Using the Standard I/O Functions

cat filel file2 filed | ccstrip

If you wish to save the stripped files, you can redirect the standard output of
ccetrip. For example, this command line writes the stripped files to the file
clean.

cat filel file2 file3 | ccstrip >clean

Note that the ezit function is used at the end of the program to ensure that any
program which executes the ccetripprogram will receive a normal termination
status(typically 0)from the program when it completes. An explanation of the
ezit function and how to execute one program under control of another is given
in Chapter 5.

2.4 Using the Stream Functions

The functions described so far have all read from the standard input and
written to the standard output. The next step is to show functions that access
files not already connected to the program. One set of standard 1/0 functions
allows a program to open and access ordinary files asif they were a “‘stream” of
characters. For thisreason,the functions are called the stream functions.

Unlike the standard input and output files, a file to be accessed by a stream
function must be explicitly opened with the fopen function. The function can
open a file for reading, writing, or appending. A program can read from a file
with the gete, fgetc, fgets, fgetw, fread, and fecanffunctions. It can write to a
file with the pute, fputc, fpute, fputw, furite, and fprintffunctions. A program
can test for the end of the file or for anerror with the feof and ferror functions.
A program can close a file with the fcloee function.

2.4.1 Using File Pointers

Every file opened for access by the stream functions has a unique pointer
associated with it called a file pointer. This pointer, defined with the predefined
type FILE found in the stdio.h file, points to a structure that contains
information about the file, such as the location of the buffer (the intermediate
storage area between the actual file and the program), the current character
positionin the buffer, and whether the file is being read or written. The pointer
can be given a valid pointer value with the fopen function as described in the
next section. (The NULL value, like FILE, is defined in the stdio.k file. )
Thereafter, the file pointer may be used to refer to that file until the file is
explicitly closed with the felose function.

Typically, a file pointer is defined with the statement:

FILE =infile;

2-11



XENIX Programmer's Reference

The standard input, output, and error files, like other opened files, have
corresponding file pointers. These file pointers are named stdin for standard
input, etdout for standard output, and stderr for standard error. Unlike other
file pointers, the standard file pointers are predefined in the stdio.A file. This
means a program may use these pointers to read and write from the standard
files without first using the fopen function to open them.

The predefined file pointers are typically used when a program needs to
alternate between the standard input or output file and an ordinary file.
Although the predefined file pointers have FILE type, they are constants, not
variables. They must not be assigned values.

2.4.2 Opening a File

The fopen function opensa given file and returns a pointer (called afile pointer)
to a structure containing the data necessary to access the file. The pointer may
then be used in subsequentstream functionsto read from or write to the file.

The function call hasthe form:

fp == fopen(filename, type)

where fp is the pointer to receive the file pointer, filename is a pointer to the
name of the file to be opened and typeis a pointer to a string that defines how
the file is to be opened. The type string may be “r” for reading, *‘w” for
writing, and “a” for appending, that is, open for writingat the end of the file.

A file may be opened for different operations at the same time if separate file
pointers are used. For example, the following program fragment opens the file
named /usr/accountefor both reading and writing.

FILE #*rp, *wp;
rp = fopen(” Jusr/accounts”,”r”);
wp = fopen(” /usr/accounts”,”a");

Opening an existing file for writing destroys the old contents. Opening an
existing file for appending leaves the old contents unchanged and causes any
data written to the file to be appended to the end.

Trying to open a nonexistent file for reading causes an error. Tryingtoopen a
nonexistent file for writing or appending causes anew file to be created. Trying
to open any file for which the program does not have appropriate permission
tauses an error.

The function normally returns a valid file pointer, but will return the value

NULL if an error opening the file isencountered. It is wise to check for the NULL
value after each call to the function to prevent reading or writing after anerror.

2-12



Using the Standard I/O Functions

2.4.3 Reading a Single Character

The getc and fgete functions return a single character read from a given file,
and return the value EOF if the end of the file or an error is encountered. The
function callshave the form:

¢ = getc (stream)
and
¢ = fgetc (stream)

where stream is the file pointer to the file to be read and ¢ is the variable to
receivethecharacter. Thereturnvalueisalwaysaninteger.

The functions are typically used in conditional loops to read a string of
charactersfrom a file. Forexample, the following program fragment continues
to read characters from the file given to it by “infile’’ until the end of the file or
anerrorisencountered.

int i;
char buf[MAX];
FILE =infile;

while ((c=getc(infile)) 1= EOF)
bufli++]=¢;

The only difference between the functionsis that getc isdefined asa macro, and
fgete as a true function. This means that, unlike gete, fgetc may be passed as
an argument in another function, used as a target for a breakpoint when
debugging, or used to avoid any side effects of macro processing.

2.4.4 Reading a String from a File

The fgets function reads a string of characters a file and copies the string to a
given memory location. The function call has the form:

fgets (s,n,stream)

where 8 is be a pointer to the location to receive the string, n is a éount of the
maximum number of characters to be in the string, and stream is the file
pointer of the file to be read. The function reads n-1charactersor upto to the
first newline character, whichever occurs first. The function appends a null
character (\0) to the last character read and then stores the string at the
specified location. The function returns the null pointer value NULL if the end
of thefile or an error is encountered. Otherwise, it returnsthe pointer s.

2-13



XENIX Programmer's Reference

The function is typically used to read a full line from a file. For example, the
following program fragment reads a string of characters from the file given by
“myfile”.

char cmdIn[MAX);
FILE smyfile;

if ( fgets( cmdln, MAYX, myfile ) I= NULL)

parse( cmdln );

In this example, fgete copies the string to the character array “cmdln”.

2.4.5 Reading Records from a File

The fread function reads one or more records from a file and copies them to a
given memory location. The function call has the form:

fread(ptr, size, niteme, etream)

where ptris a pointer to the location to receive the records, size is the size (in
bytes) of each record to be read, nitems is the number of records to be read, and
stream is the file pointer of the file to be read. The ptr may be a pointer to a
variable of any type (from a single character to a structrure). The size, an
integer, should give the numbers of bytes in each item you wish to read. One
way to ensure this is to use the sizeof function on the pointer ptr (see the
example below). The function always returns the number of records it read,
regardless of whether or not the end of the file or an error isencountered.

The functionistypically used to read binary datafrom a file. For example, the
following program fragment reads two records from the file given by
‘‘database” and copies the records into the structure “person”.

FILE *database;

struct record {
char name([20];
int age;

} person;

fread(&person, sizeof(person), 2, database);
Note that since fread does not explicitly indicate errors, the feof and ferror
functions should be used to detect end of the file and errors. These functionsare
described later in thischapter.

2.4.6 Reading Formatted Data From a File

The fsc anf function reads formatted input from a given file and copies it to the
memory location given by the respective argument pointers, just as the scanf

2-14

)
3



Using the Standard I/O Functions

functionreadsfrom the standard input. The function call hasthe form:
fscanf (stream, format, argptr ...)

where stream is the file pointer of the file to be read, format is a pointer to the
string that defines the format of the input to be read, and argptrisone or more
pointers to the variables that are to receive the formatted input. There must be
one argptrfor each format given in the format string. The format may be “%s"
for a string, “%c” for a character, and “%d"’, “%o0”, or “%x" for a decimal,
octal, or hexadecimal number, respectively. (Other formats are described in
scanf(S)in the XENIX Reference Manual.) The function normally returns the
number of argumentsit read, but willreturn the value EOF if the end of the file
or anerror isencountered.

The function istypically used to read files that contain both numbersand text.
For example, this program fragment reads a name and a decimal number from
the file given by “file”’.

FILE sfile;

int pay;

char name(20};

fscanf(file,” %s %d\n”, name, &pay);
This program fragment copiesthe name to the characterarray “name” and the
number to theinteger variable “‘pay’’.

2.4.7 Writing a Single Character

The pute and fpute functions write single characters to a given file. The
function callshave the forms:

putc (¢,stream)
and

fputc (c,otream)
where cisthe character to be written and stream is the file pointer to the file to
receive the character. The function normally returns the character written,
but will return the value EOF if an errorisencountered.
The function is defined as a macro and may have undesirable side effects
resulting from argument processing. In such cases, the equivalent function
fpute should be used.
These functions are typically used in conditional loops to write a string of

characters to a file. For example, this following program fragment writes
charactersfrom the array “name’ to the file given by “out”.

2-15



XENIX Programmer’'s Reference

FILE sout;
char name[MAX];

int i;

for (i=0; i <MAX; i++)
fputc( nameli), out);
The only difference between the pute and fpute functions is that puteis defined
as a macro and fputc as an actual function. This means that fpute, unlike pute,

may be used as an argument to another function, as the target of a breakpoint
when debugging, and toavoid the side effects of macro processing.

2.4.8 Writing a String to a File
The fpute function writes a string to a given file. The function call has the form:

fputs(e,stream)

where @ is a pointer to the string to be written and stream is the file pointer to
the file.

The function is typically used to copy strings from one file to another. For
example, in the following program fragment, gets and fpute are combined to
copy strings from thestandard input to the file given by ‘“‘out”’.

FILE *out;
char cmdIn[MAX];

if ( gets( cmdln ) != EOF )
fputs( cmdin, out);

The function normally returns zero, but will return EOF if an error is
encountered.

2-16

S

M



Using the Standard I/O Functions

2.4.9 Writing Formatted Output

The fprintffunction writes formatted output to a given file, just as the printf
functionwrites to thestandard output. The function call has the form:

fprintf (stream, format [, arg]...)

where streamis the file pointer of the file to be written to, format is a pointer to
a string which defines the format of the output, and arg is one or more
arguments to be written. There must be one argfor each format in the format
string. The formats may be “%s"” for a string, “%c” for a character, and
“%d", “%o0”, or “%x” for a decimal, octal, or hexadecimal number,
respectively. (Other formatsare described in printf(S) in the XENIX Reference
Manual.) If a string is requested, the corresponding arg must be a pointer,
otherwise, the actual variable must be used. The function normally returns
zero, but will return a nonzero number if an error is encountered.

The function is typically used to write output that contains both numbers and
text. For example, to write a name and a decimal number to the file given by
“‘outfile” use the following program fragment.

FILE *outfile;
int pay;
char name[20};

fprintf(outfile,” %s %d\n", name, pay);

The name is copied from the character array ‘‘name’ and the number from the
integer variable “‘pay”.

2.4.10 Writing Records to a File

The furite function writesone or more records to a given file. The function call
hasthe form:

fwrite (ptr, size, niteme, stream)

where ptrisa pointer to thefirst record to be written, sizeisthesize(inbytes) of
eachrecord, nitemeisthe number of recordstobe written,and streamisthe file
pointer of the file. The ptr may point to a variable of any type (from a single
character to astructure). The size should give the number of bytesin each item
to be written. One way to ensure this is to use the sizeof function (see the
example below). The function always returns the number of items actually
written to the file whether or not the end of the file or an errorisencountered.

The function is typically used to write binary data to a file. For example, the
following program fragment writestwo recordsto the file given by ““database.

2-17



XENIX Programmer’s Reference

FILE sdatabase;

struct record {
char name[20};
int age;

} person;

fwrite(&person, sizeof(person), 2, database);
The records are copied from the structure ““person”.
Since the function does not report the end of the file or errors, the feof and
ferrorfunctionsshould be used to detect these conditions.
2.4.11 Testing for the End of a File

The feof function returns the value -1 if a given file has reached its end. The
function call has the form:

feof (stream)

where stre am s the file pointer of the file. The function returns-1 only if the file
has reached its end, otherwise it returns 0. The return value is always an
integer.

The feof function is typically used after those functions whose return value is
not a clear indicator of an end-of-file condition. For example, in the following
program fragment the function checks for the end of the file after each
character isread. The reading stops assoon as feofreturns -1.

char name|10};
FILE sstream;

do
fread( name, size(name), 1, stream );
while(!feof( stream ));

2.4.12 Testing For File Errors

The ferror function tests a given stream file for an error. The function call has
the form:

ferror (stre am)
where stream is the file pointer of the file to be tested. The function returnsa

nonzero (true) value if an error is detected, otherwise it returns zero (false).
The function returns an integer value.

2-18

T




Using the Standard I/O Functions

The function is typically used to test for errors before perform a subsequent
read or write to the file. For example, in the following program fragment ferror
tests the file givenby ‘‘stream”.

char *buf;
char x[5};

while ( Herror(stream) )
fread(buf, sizeof(x), 10, stream);

If it returns zero, the next item in the file given by ““stream” is copied to “buf”’.
Otherwise, execution passes tothenextstatement.

Further use of a file after aerror is detected may cause undesirable results.

2.4.13 Closing a File

The felose function closes a file by breaking the connection between the file
pointer and the structure created by fopen. Closing a file empties the contents
of the corresponding buffer and freesthe file pointer for use by another file. The
function callhas the form:

fclose (stream)

where stream is the file pointer of the file to close. The function normally
returns0, but willreturn-1ifanerrorisencountered.

The fclose function is typically used tofree file pointerswhen they are nolonger
needed. Thisis important because usually no more than 20 files can be open at
the same time. For example, the following program fragment closes the file
given by “infile” when the file hasreached itsend.

FILE sinfile;

if ( feof(infile) )
fclose( infile );

Note that whenever a program terminates normally, the felose function is
automatically called for each open file, so no explicit call is required unless the
program must close a file before its end. Also, the function automatically calls
[fllush to ensure that everything written to the file’s buffer actually gets to the
file.

2.4.14 Program Example
This section showshow you may use thestream functions you haveseen so far

to perform useful tasks. The following program, which counts the characters,
words, and lines found in one or more files, uses the fopen, fprintf, gete, and

2-19



XENIX Programmer’s Reference

felose functions to open, close, read, and write to the given files. The program
incorporates a basic design that is common to other XENIX programs, namely it
uses the filenames found in the command line as the files to open and read, or if
no names are present, it usesthe standard input. This allows the program to be
invoked on its own, or be the receivingend of a pipe.

2-20



Using the Standard I/O Functions

#include <stdio.h>

main(arge, argv) [+ wc: count lines, words, chars */
int arge;
char #argvl);

int ¢, i, inword;

FILE #fp, #fopen();

long linect, wordct, charct;

long tlinect = 0, twordet = 0, tcharct = 0;

i=1;

fp = stdin;

do

{

if (arge > 1 &&
(fp=fopen(argvli), "r")) == NULL) {
fprintf (stderr, "wc: can’t open %s\n",
argvli]);

continue;

linect = wordct = charct = inword = 0;
while ((c = gete(fp)) != EOF) {

charct++;
if (c =="\n')
linect++;

if(c==""|c=="\t| c =="\n)
inword = 0;

else if (inword == 0) {
inword = 1;
wordct++;

}

]}Jrintf("%ﬂd %71d %71d", linect, wordct, charct);
printf(arge > 17" %s\n” : "\n", argv[i]);
fclose(fp);
tlinect += linect;
twordet += wordct;
tcharct += charct;
} while (++i < arge);
if (arge > 2)
printf("%71d %71d %71d total\n", tlinect,
twordct, tcharct);
exit(0);

The program uses “fp" as the pointer to receive the current file pointer.
Initially this is set to “‘stdin” in case no filenames are present in the command
line. If afilename is present, the program callsfopen and assigns the file pointer
to “fp”. If the file cannot be opened (in which case fopen returns NULL), the

2-21



XENIX Programmer’s Reference

program writes an error message to the standard error file “stderr” with the
fprintf function. The function prints the format string “we: can’t open %s”,
replacing the “%s” with the name pointed to by “argv[i]”.

Once a fileisopened, the program uses the getc function to read each character
from the file. As it readscharacters, the program keeps a count of the number
of characters, words, and lines. The program continues to read until the end of
the fileisencountered, that is, when getc returnsthe value EOF.

Once a file has reached its end, the program uses the printffunction to display
the character, word, and line counts at the standard output. The format string
in this function causes the counts to be displayed as long decimal numbers with
no more than 7 digits. The program then closes the current file with the fclose
function and examines the command line arguments to see if there is another
filename.

When all files have been counted, the program uses the printf function to
display a grand total at the standard output, thenstops execution with the ezit
function.

2.5 Using More Stream Functions

. The stream functions allow more control over a file than just opening, reading,
writing, and closing. The functions also let a program take an existing file
pointer and reassign it to another file (similar to redirecting the standard input
and output files) as well as manipulate the buffer that is used for intermediate
storage between the file and the program.

2.5.1 Using Buffered Input and Output

Buffered1/O is an input and output technigue used by the XENIX system to cut
down the time needed to read from and write to files. Buffered I/O lets the
system collect the characterstobe read or writtenand then transfer them all at
once rather than one character at a time. Thisreduces the number of times the
system must access the I/O devices and consequently provides more time for
running user programs. Not all files have buffers. For example, files associated
with terminals, such as the standard input and output, are not buffered. This
prevents unwanted delays when transferring the input and output. When afile
does have a buffer, the buffer size in bytes is given by the mainfest constant
BSIZE, which isdefined in the stdio.Afile.

When a filehasa buffer, the stream functionsreadfrom and writeto the buffer
instead of the file. The system keeps track of the buffer and when necessary fills
it with new characters (when reading) or flushes (copies) it to the file (when
writing). Normally, a buffer is not directly accessible to a program, however a
program can define its own buffer for a file with the setbuf function. The
functionalsolets a program change a buffered file to be an unbuffered one. The
ungete function lets a program put a character it has read back into the buffer,

2-22



Using the Standard I/O Functions
and the flusk functionletsa program flush the buffer beforeit is full.

2.5.2 Reopening a File

The freopen closes the file associated with a given file pointer, then opens anew
file and gives it the same file pointer as the old file. The function call has the
form:

freopen (newfile, type, stream)

where nzwfile is a pointer to the name of the new file, type is a pointer to the
string that defines how the file is to be opened (‘‘r” for read, “w” for writing,
and “a” for appending), and stream is the file pointer of the old file. The
function returns the file pointer stream if the new file is opened. Otherwise, it
returnsthe null pointer valueNULL.

The freopen function is used chiefly to attach the predefined file pointers
“stdin”, ‘“‘stdout”, and ‘‘stderr” to other files. For example, the following
program fragment opens the file named by “newfile” as the new standard
outputfile.

char #newfile;
FILE snfile;

nfile = freopen(newfile,”r” stdout);

Thishas the same effect as using the redirection symbolsin the commandline of
the program.

2.5.3 Setting the Buffer

The setbuf function changes the buffer associated with a given file to the
program’s own buffer. It can also change the access to the file to no buffering.
The function call has the form:

setbuf (stream, buf)

where stream is a file descriptor and bufis a pointer to the new buffer, or is the
null pointer value NULL if no buffering is desired. If a buffer is given, it must be
BSIZE bytes in length, where BSIZE is a manifest constant found in stdio. A.

The function is typically used to to create a buffer for the standard output when
it is assigned to the user’s terminal, improving execution time by eliminating
the need to write one character to the screen at a time. For example, the
following program fragment changes the buffer of the standard output the
location pointed at by ““p*’.

2-23



XENIX Programmer’s Reference

char »p;

p=malloc( BSIZE );
setbuf ( stdout, p );

The new buffer isBSIZE bytes long.

The function may also be used to change a file from buffered to unbuffered input
or output. Unbuffered input and output generally increase the total time
needed to transfer large numbers of characters to or from a file, but give the
fastest transfer speed forindividual characters.

The setbuffunction should be called immediately after opening a file and before
reading or writing to it. Furthermore, the fclose or flush function must be used
to flush the buffer before terminating the program. If not used, some data
written to the buffer may not be written to the file.

2.5.4 Putting a Character Back into a Buffer

The ungete function puts a character back into the buffer of a given file. The
function call has the form:

ungetc (¢, streem)

where ¢ is the character to put back and streamisthe file pointer of the file. The
function normally returns the same character it put back, but will return the
value EOF if anerror is encountered.

The function is typically used when scanning a file for the first character of a
string of characters. For example, the following program fragment puts the
first character that is not a whitespace character back into the buffer of the file
given by ““infile”’, allowing the subsequent call to gets to read that character as
the first character in the string.

FILE sinfile
char name[20};

while( isspace( c=getc(infile) ) )

ungete( ¢, stdin );
gets( name, stdin );

Putting a character backintothe buffer doesnot change the correspondingfile;
itonly changes thenext character to be read.

Note that the function can put a character back only if one has been previously
read. The function cannot put more than one character back at a time. This
meansif three charactersare read, then only the last character can be put back,
never the first two.

2-24




Using the Standard I/O Functions
‘Note that the value EOF must never be put backinthe buffer.

2.5.5 Flushing a File Buffer

The fflusk function empties the buffer of a give file by immediately writing the
buffercontentsto the file. The function callhasthe form:

fllush (stream)

where stream is the file pointer of the file. The function normally returns zero,
but will return the value EOF if an error isencountered.

The function is typically used to guarantee that the contentsof a partially filled
buffer are written to the file. For example, the following program fragment
empties the buffer for the file given by *‘outtty” if the error condition given by
‘“‘errfiag’ is0.

FILE souttty;
int errflag;

if (errflag === 0)
fllush( outtty );

Note that, flusk is automatically called by the felose function to empty the
buffer before closing the file. This means that no explicit call to fflush is
required if the fileis also being closed.

The function ignores any attempt to empty the buffer of a file opened for
reading.

2.8 Using the Low-Level Functions

The low-level functions provide direct access to files and peripheral devices.
They are actually direct calls to the routines used in the XENIX operating
system to read from and write to files and peripheral devices. The low-level
functions give a program the same control over a file or device as the system,
letting it access the file or device in ways that the stream functions do not.
However, low-level functions, unlike stream functions, do not provide buffering
or any other useful services of the stream functions. This means that any
program that uses the low-level functions has the complete burden of handling
input 2nd output.

The low-level functions, like the stream functions, cannot be used to read from
or write to a file until the file has been opened. A program may use the open
function to open an existing or a new file. A file can be opened for reading,
writing, or appending.

2-25



XENIX Programmer’s Reference

Once a file isopened for reading, a program can read bytes from it with the read
function. A program can write to a file opened for writing or appending with
the wri'te function. A program can close a file with the ¢loge function.

2.6.1 Using File Descriptors

Each file that hasbeen opened for access by the low-level functions hasaunique
integer called a *‘file descriptor' associated with it. A file descriptor issimilar
to a file pointer in that it identifies the file. A file descriptor is unlike a file
pointerin that it doesnot pointtoany specificstructure. Instead the descriptor
is used internally by the system to access the necessary information. Since the
system maintains all information about a file, the only access to a file for a
program is through the file descriptor.

There are three predefined file descriptors (just as there are three predefined
file pointers) for the standardinput, output, anderror files. The descriptorsare
0 for thestandard input, 1 for the standard output,and 2forthestandarderror
file. As with predefined file pointers, a program may use the predefined file
descriptors withoutexplicitly opening the associated files.

Note that if the standard input and output files are redirected, the system
changes the default assignments for the file descriptors 0 and 1 to the named
files. This is also true if the input or output is associated with a pipe. File
descriptor 2 normally remains attachedtothe terminal.

2.8.2 Opening a File

The open function opens an existing or a new file and returns a file descriptor
for that file. The function call has the form:

fd = open(name, access [,mode] );

where fdisthe integer variable toreceive the file descriptor, nameis a pointer to
astringcontaining thefilename, accessis an integer expression giving the type
of file access, and mode is an integer number giving a new file’s permissions.
The function normally returns a file descriptor (a positive integer), but will
return -lif anerrorisencountered.

The accese expression is formed by using one or more of the following manifest
constants: O_RDONLY for reading, O_WRONLY for writing, O_RDWR for both
readingand writing, O_APPEND for appending to the end of an existing file, and
O_CREAT for creating s new file. (Other constants are described in open(S) in
the XENIX Reference Manual.) The logical OR operator ( | ) may be used to
combine the constants. The mode is required only if O_CREAT is given. For
example, in the following program fragment, the function is used to open the
existing file named /usr/accounts for reading and open the new file named
Juer/tmp/scratchfor reading and writing.

2-26




Using the Standard I/O Functions

int in, out;

in = open( " /usr/accounts”, O_RDONLY );
out = open( " fusr/tmp/scratch”, O_WRONLY | O_CREAT, 0754 );

In the XENIX system, each file has 9 bits of protection information which
control read, write, and execute permission for the owner of the file, for the
owner’s group, and for all others. A three-digit octal number is the most
convenient way to specify the permissions. For example, in the example above
the octa)l number “0755” specifies read, write, and execute permission for the
owner, read and execute permission for the group, and read everyone else.

Note that if O_CREAT is given and the file already exists, the function destroys
the file’s old contents.

2.6.3 Reading Bytes From a File

The read function reads one or more bytes of data from a given file and copies
them toagiven memory location. The function call has the form:

n_read = read(fd, buf, n);

where n_readis the variable to receive the count of bytes actually read, fdisthe
file descriptor of the file, bufis a pointer to the memory location to receive the
.bytesread, and n is a count of the desired number of bytes to be read. The
function normally returns the same number of bytes as requested, but will
return fewer if the file does not have that many bytes left to be read. The
function returns 0 if the file hasreached its end, or -1if an error isencountered.

When the file is a terminal, read normally reads only up to the next newline.
The number of bytes to be read is arbitrary. The two most common valuesare
1, which means one character at a time, and 1024, which corresponds to the
physical block size on many peripheral devices.

2.6.4 Writing Bytes to a File

The write function writes one or more bytesfrom a given memory locationto a
given file. The function callhasthe form:

n_uritten = write(fd, buf, n);
where n_writtenis the variable toreceivea countof bytes actually written,fdis
the file descriptor of the file, bufis the name of the buffer containing the bytesto

be written, and nisthe number of bytestobe written.

The function always returns the number of bytes actually written. It is
considered an error if the return value is not equal to the number of bytes

2-27



XENIX Programmer’s Reference

requested to be written.

The number of bytes to be written is arbitrary. The two most common values
are 1, which means one character at a time and 512, which corresponds to the
physical block size on many peripheral devices.

2.8.5 Closing a File

The close function breaks the connectionbetween a file descriptor and an open
file, and frees the file descriptor for use with some other file. The function call
has the form:

close (fd)

where fd is the file descriptor of the file to close. The function normally returns
0, but willreturn -1if anerror isencountered.

The function is typically used to close files that are not longer needed. For
example, the following program fragment closes the standard input if the
argument count isgreater thanl.

int fd;

if (arge >1)
close( 0 );

Note that all open files in a program are closed when a program terminates
normally or when the ezit function is called, so no explicit call to close is
required.

2.6.6 Program Examples

This section shows how to use the low-level functions to perform useful tasks. It
presents three examples that incorporate the functions as the sole method of

input and output.

The first program copiesits standard input toitsstandard output.

2-28

L



Using the Standard 1/O Functions

#define BUFSIZE BSIZE
main() /* copy input to output */

char  buf| BUFSIZE J;
int n;

while ((n = read( 0, buf, BUFSIZE )} > 0)
write(1, buf, n);
exit(0);

}

The program uses the read function to read BUFSIZE bytes from the standard
input (file descriptor 0). It then uses write to write the same number of bytes it
read to the standard output(file descriptor 1). Ifthe standard input file size is
not a multiple of BUFSIZE, the last read returns asmaller number of bytesto be
written by write, andthenextcallto readreturns zero.

This program can be used like a copy command to copy the content of one file to
another. You cando thisbyredirecting the standard input and output files.

The second example shows how the read and write functions can be used to
construct higher level functions like getchar and putckar. For example, the
followingisaversionof getckarwhich performsunbuffered input:

##define CMASK 0377 /* for making chars > 0 */

getchar()/+ unbuffered single character input */

char ¢;
return((read(0, &c, 1) > 0) ? ¢ & CMASK : EOF);

The variable ‘‘c”” must be declared char, because read accepts a character
pointer. In this case, the character being returned must be masked with octal
0377 to ensure that it is positive; otherwise sign extension may make it
negative.

The second version of getchar reads input in large blocks, but hands out the
charactersone at a time:

2-29



XENIX Programmer’s Reference

ftdefine CMASK 0377  /» for making char’s > 0 */
#define BUFSIZE BSIZE

getchar()/#* buffered version */

static char buf[BUFSIZE};
static char sbufp = buf;
static intn = 0;

if(n==20){ /* buffer is empty */
n = read(0, buf, BUFSIZE);
bufp = buf;

}
return((--n >= 0) ? sbufp++ & CMASK : EOF);

}

Again, each character must be masked with the octal constant0377.

The final example is a simplified version of the XENIX utility; ¢p, a program
that copies one file to another. The main simplification is that this version
copies only one file, and does not permit the second argument to be a directory.

#define NULL 0
#define BUFSIZE BSIZE

#define PMODE 0644 /¢ RW for owner, R for group, others s/

main(arge, argv) /* cp: copy f1 to {2 +/
int argc;

char sargv]);

{

int f1, £2, n
char  buf| BUFSIZE );

if (arge 1= 3)
error(" Usage: cp from to”, NULL);

if ((f1 = open(argv[1), O_RDONLY)) ==-1)
error("cp: can’t open %s”, argv[l]);

if ((f2 = open(argv[2] O_CREAT | O_WRONLY,

MODE)) == -1)
error(” cp can’t create %s", argv[2]);

while ((n = read(f1, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) != n)

error("cp: write error”, NULL);

exit(0);

2-30

—



Using the Standard I/O Functions

error(sl, s2) /* print error message and die */
char #sl, #s2;

printf(sl, s2);
printf("\n");
exit(1);

There is a limit (usually 20) to the number of files that a program may have
open simultaneously. Therefore, any program which intends to process many
files must be prepared to reuse file descriptors by closing unneeded files.

2.8.7 Using Random Access I/O

Input and output operations on any file are normally sequential. This means
each read or write takes place at the character position immediately after the
last character read or written. The standard library, however, provides a
number of stream and low-level functions that allow a program to accessa file
randomly, that is, to exactly specify the position it wishes toread from or write
to next.

The functions that provide random access operate on a file’s “character
pointer”. Every open file has a character pointer that points to the next
character to be read from that file, or the next place in the file to receive a
character. Normally, the character pointer is maintained and controlled by the
system, but the random accessfunctionslet a program move the pointer toany
positionin the file.

2.6.8 Moving the Character Pointer

The lseek function, a low-level function, moves the character pointer in a file
opened forlow-level access to a given position. The function call has the form:

Iseek(fd, offeet, origin);
wherefdis the file descriptor of the file, offsetis the number of bytesto move the
character pointer, and origin is the number that gives the starting pointfor the
move. It may be 0 for the beginning of the file, 1for the current position, and 2
fortheend.

For example, thiscall forces the current position in the file whose descriptor is3
to move to the 512th bytefrom the beginning of the file.

Iseek( 3, (long)512, 0 )

Subsequent reading or writing will begin at that position. Note that offect must
be alonginteger andfdand origin must be integers.

2-31



XENIX Programmer's Reference

.The function may be used to move the character pointer to the end of a file to
allow appending, or to the beginning as in a rewind function. Forexample, the
call

Iseek(fd, (long)o, 2);
prepares the file for appending, and
Iseek(fd, (long)o, 0);

rewinds the file (moves the character pointer to the beginning). Notice the
“(long)0” argument; it could also be written as

oL

Using leeek it is possible to treat files more or less like large arrays, at the price
of slower access. For example, the following simple function reads any number
of bytesfrom any arbitrary place in afile:

get(fd, pos, buf, n) /+ read n bytes from position pos */
int fd, n;

long pos;

char sbuf;

Iseek(fd, pos, 0); /* get to pos */
return(read(fd, buf, n));

2.6.9 Moving the Character Pointer in a Stream

The feeekfunction, astreamfunction,movesthe character pointerin afiletoa
givenlocation. The function call hasthe form:

fseek (stream, offset, ptraname)
where stream is the file pointer of the file, offset is the number of characters to
move to the new position (it must be a long integer), and ptrname isthe starting
position in the file of the move (it must be ‘‘0” for beginning, *1”, for current
position, or *‘2" for end of the file). Thefunctionnormally returnszero, but will
return the value EOFif an error isencountered.

For example, the following program fragment moves the character pointer to
theendofthefilegivenby *‘stream”.

FILE sstream;

fseek(stream, (long)o, 2);

2-32

sy



Using the Standard I/O Functions
The function may be usedon either buffered or unbuffered files.

2.6.10 Rewinding a File

The rewsind function, a stream function, moves the character pointer to the
beginning of a given file. Thefunction call hasthe form:

rewind (stream)

where stream is the file pointer of the file. The function is equivalent to the
following function call

fseek (stream,0L,0);

Itis chiefly used as a morereadable version of the call.

2.6.11 Getting the Current Character Position
The ftell function, a stream function, returns the current position of the
character pointer in the given file. The returned position is always relative to
the beginningof the file. The function call has the form:

p = ftell (stream)
where stream is the file pointer of the file and p is the variable to receive the
position. The return value is always a long integer. The function returns the
value-1ifanerror isencountered.
The function is typically used tosave the current location in the file so that the
program can later return to that position. For example, the following program
fragment first saves the current character position in ““oldp”, then restores the
file to this position if the current character position is greater than ““800”.

FILE soutfile;
long oldp;

oldp = ftell{ outfile );

if ((ftell( outfile )) > 800)
fseek(outfile, oldp, 0);

The ftellisidentical to the function call
Iseek( fd, (long)o, 1)

where fdis the file descriptor of the givenstream file.

2-33






Chapter 3
Screen Processing

3.1 Introduction  3-1
3.1.1 ScreenProcessingOverview 3-1
3.1.2 UsingtheLibrary 3-2

3.2 Preparing the Screen  3-4
3.2.1 Initializing the Screen  3-4
3.2.2 Using Terminal Capability and Type 3-5
3.2.3 UsingDefault Terminal Modes  3-5
3.2.4 UsingDefault WindowFlags 3-6
3.2.5 UsingtheDefault Terminal Size 3-6
3.2.6 Terminating Screen Processing 3-6

3.3 Usingthe Standard Screen  3-7
3.3.1 AddingaCharacter 3-7
3.3.2 AddingaString 3-8
3.3.3 Printing Strings, Characters, and Numbers
3.3.4 Reading a Character From the Keyboard
3.3.5 ReadingaString From the Keyboard 3-9

3.3.6 ReadingStrings, Characters,and Numbers 3-10

3.3.7 Movingthe Current Position 3-11

3.3.8 Inserting a Character 3-11

3.3.9 InsertingaLine 3-11

3.3.10 Deleting a Character 3-12

3.3.11 DeletingaLine 3-12

3.3.12 Clearingthe Screen 3-13

3.3.13 Clearing aPart ofthe Screen 3-13

3.3.14 RefreshingFromthe Standard Screen  3-14

3.4 Creatingand Using Windows 3-14
3.4.1 CreatingaWindow 3-14
3.4.2 Creating a Subwindow 3-15
3.4.3 AddingandPrintingtoa Window 3-16
3.4.4 Readingand Scanning for Input 3-17

3.4.5 Moving athe Current Positionina Window 3-19



e

3.4.6 Inserting Characters 3-19

3.4.7 Deleting CharactersandLines 3-20

3.4.8 Clearingthe Screen 3-21

3.4.9 RefreshingFroma Window 3-22

3.4.10 Overlaying Windows 3-23

3.4.11 Overwritinga Screen  3-23

3.4.12 Movinga Window 3-24

3.4.13 Reading a Character From a Window 3-24
3.4.14 Touching a Window 3-25

3.4.15 Deleting a Window 3-25

Using Other Window Functions 3-26

3.51 DrawingaBox 3-26

3.5.2 DisplayingBold Characters 3-26

3.5.3 Restoring Normal Characters 3-27

3.5.4 Gettingthe Current Position 3-28

3.5.5 Setting WindowFlags 3-28
3.5.6 Scrollinga Window 3-29 ;

Combining Movement With Action 3-30

Controlling the Terminal 3-30

3.7.1 Setting a Terminal Mode  3-30

3.7.2 Clearing a Terminal Mode 3-31

3.7.3 Movingthe Terminal’s Cursor 3-32

3.7.4 Gettingthe Terminal Mode 3-32

3.7.5 Savingand Restoringthe TerminalFlags 3-33
3.7.6 Setting a Terminal Type 3-33

3.7.7 Readingthe TerminalName 3-33




Screen Processing

3.1 Introduction

This chapter explains how to use the screen updating and cursor movement
library named curses. The library provides functions to create and update
screen windows, get input from the terminal in a screen-oriented way, and
optimize the motion of the cursor on the screen.

3.1.1 Screen Processing Overview

Screen processing gives a program a simple and efficient way to use the
capabilities of the terminal attached to the program’s standard input and
output files. Screen processing does not rely on the terminal’stype. Instead the
screen processing functions use the XENIX terminal capability file
Jetc[termeap to tailor their actions for any given terminal. This makes a
screen processing program terminal-independent. The program can be run
withany terminal aslong asthat terminal is described in the fete/termcapfile.

The screen processing functions access a terminal screen by working through
intermediate ‘“‘screens” and ‘“‘windows” in memory. A screen is a
representation of what the entire terminal screen should look like. A window is
a representation of what some portion of the terminal screen should look like.
A screen can be made up of oneor more windows. A window canbe assmallasa
single character or aslarge asan entire screen. :

Before a screen or window can be used, it must be created by using the ne wwin
or subwin functions. These functions define the size of the screen or window in
terms of lines and columns. Each position in a screen or window represents a
place for a single character and corresponds to a similar place on the terminal
screen. Positionsare numbered according to line and column. For example, the
position in the upper left corner of ascreen or window isnumbered(0,0) and the
position immediately to its right is (0,1). A typicalscreen has 24 lines and 80
columns. Its upper left corner corresponds to the upper left corner of the
terminal screen. A window, on the other hand, may be any size (within the
limitsof the actual screen). Itsupper left corner can correspond toany position
on the terminal screen. For convenience, the snitecrfunction which initializes a
program for screen processing also creates a default screen , stdscr (for
“standard screen’). The stdscr may be used without first creating it. The
function also creates curscr (for “current screen”) which contains a copy of
whatis currently on theterminalscreen.

To display characters at the terminal screen, a program must write these
characters to a screen or window using screen processing functions such as
addch and waddch. If necessary, a program can move to the desired position in
the screen or window by using the move and wmove functions. Once characters
are added to a screen or window, the program can copy the characters to the
terminal screen by using the refresk or wrefresk function. These functions
update the terminal screen according to what has changed in the given screen
or window. Since the terminal screen is not changed until a program calls

3-1



refresh or wrefresh, a program can maintain several different windows, each
containing different characters for the same portion of the terminal screen.
The program can choose which window should actually be displayed before
updating.

A program can continue toadd new characters to a screen or window as needed,
and edit these characters by using functions such as insertin, deleteln, and
clear. A program can also combine windows to make a composite screen using
the overlay and overwrite functions. In each case, the refreeh or wrefresh
function is used to copy the changes to the terminal screen.

3.1.2 Using the Library
To use the curseelibrary in a program, you must add the line

##include <curses.h>

to the beginning of your program. The cureses.k file contains definitions for
types and variables used by the library.

The actual screen processing functions are in the library files libcurses.ac and
libtermeap.a. These files are not automatically read when you compile your
program, so you must include the appropriate library switches in your
invocation of the compiler. The command line must have the form:

cc file ... -lcurses -ltermecap
where file is the name of the source file you wish to compile. You may given
more than one filename if desired. You may also use other compiler options in
the command line. For example, the command

cc main.c intf.c -lcurses -ltermcap -o sample

compiles the files main.c and intf.c, and copies the executable program to the
filesample afterlinking the screen processing library filesto the program.

Note that the curses.k file automatically includes the file sgtty.k in your
program. This file must not be included twice.

The screen processing library has a variety of predefined names. These names

refer to variables, manifest constants, and types that can be used with the
library functions. The following isa list of these names.

3-2



Screen Processing

Variables

Type Name Description

WINDOW=*  curscr A pointer to the current versionof the
terminal screen.

WINDOW=*  stdscr A pointer to the default screen used
for updating when no explicit screen
isdefined.

char Def_term A pointer to the defaultterminal type
if the type cannot be determined.

bool My_term  The terminal type flag. If set, it
causes the terminal specification in
“Def_term" to be used, regardless of
thereal terminal type.

char ttytype A pointer to the full name of the

} current terminal.

int LINES The number of lineson the terminal.

int COLS The number of columns on the
terminal.

int ERR The error flag. Returned by functions
onanerror.

int OK Theokayflag. Returned by functions

on successful operation.

3-3



Types and Constants

Name  Description

reg A storage class. It is the same as
registerstorageclass.
bool Atype. Itisthe same achar type.

TRUE  Thebooleantrue value(1).
FALSE Theboolean false value (0].

3.2 Preparing the Screen

The initscr and endwin functions perform the operations required to initialize
and terminate programs that use the screen processing functions. The
following sections describe these functions and how they affect the terminal.
3.2.1 Initializing the Screen

The tnitser function initializes screen processing for a program by allocating
the required memory space for the screen processing functions and variables,

and by setting the terminal to the proper modes. The function call has the
form:

initser()
No arguments are required.
The tnitscr function must be used to prepare the program for subsequent calls
to other screen processing functions and for use of the screen processing
variables. For example, in the following program fragment initecr initializes
the screening processing functions.

#finclude <curses.h>

main ()

initser();

if ( cmpstr(ttytype,"dumb”) )
fprintf(stderr, " Terminal type can’t display screen.”);

In this example, the predefined variable “ttytype” is checked for the current
terminal type.

The function returns (WINDOW¢) ERR if memory allocation causesan overflow.

3-4

b

i



Screen Processing

3.2.2 Using Terminal Capability and Type

The initser function uses the terminal capability descriptions given in the
XENIX system’s [etc/termeap file to prepare the screen processing functions
for creating and updating terminal screens. The descriptions define the
character sequences required to perform a given operation on agiventerminal.
These sequences are used by the screen processing functions to add, insert,
delete, and move characters on the screen. The descriptions are automatically
read from the file when screen processing is initialized, so direct access by a
program is not required.

The initeer function uses the shell’s “TERM” variable to determine which
terminal capability description to use. The “TERM’ variable is usually
assigned an identifier when a user logs in. This identifier defines the terminal
type and is associated with a terminal capability description in the
[ete/termeapfile.

If the “TERM” variable has no value, the functions use the default terminal
type in the library’s predefined variable “Def_term’'. This variable initially
hasthe value *‘dumb” (for “‘dumb terminal’’), but the user may changeit to any
desired value. This must be done before calling the instscrfunction.

In some cases, it is desirable to force the screen processing functions to use the
default terminal type. This can be done by setting the library’s predefined
variable “My_term” to the value 1. The full name of the current terminal is
stored in the predefined variable ‘‘ttytype’’.

Terminal capabilities, types, and identifiers are described in detail in
termeap(F)inthe XENIX Reference Manual.

3.2.3 Using Default Terminal Modes

The instscr function automatically sets a terminal to default operation modes.
These modes define how the terminal displays characterssent to the screen and
how it responds to characters typed at the keyboard. The snitecr function sets
the terminal to ECHO mode which causes characters typed at the keyboard to
be displayed at the screen,and RAW mode which causes charactersto be used as
direct input (no editing or signal processing is done).

The default terminal modes can be changed by using the appropriate functions
described in the section “Setting a Terminal Mode” in this chapter. If the
modes are changed, they must be changed immediately after calling initser.
Terminal modes are described in detail in tty(M) in the XENIX Reference
Manual.

3-5



Note

The terminal mode functions should only be used in conjunction with
other screen processing functions. They should not be used alone.

3.2.4 Using Default Window Flags

The instecr function automatically clears the cursor, scroll, and clear flagsof
the standard screen to their default values. These flags, called the window
flags, define how the refresh function affects the terminal screen when
refreshing from the standard screen. When clear, the cursor flag prevents the
terminal’s cursor from moving back to its original location after the screen is
updated, the scroll flag prevents scrolling on the screen, and the clear flag
prevents the characters on the screenfrombeingcleared before being updated.
The flags may be changed by using the functions described in the section
““Setting Window Flags,” in this chapter.

3.2.5 Using the Default Terminal Size

The initact function sets the terminal screen size to a default number of lines
and columns. The default valuesare givenin the predefined variables*“LINES”
and ““COLS". You can change the default size of a terminal by setting the
variables to new values. Thisshould be done before the first call to initecr. If it
is done after the first call, a second call to snitecr must be made to delete the
existing standard screen and create a new one.

3.2.8 Terminating Screen Processing

The endwin function terminates the screen processing in a program by freeing
all memory resources allocated by the screen processing functions and
restoring the terminal to the state before screen processing began. The
function call has the form:

endwin()
No argumentsare required.
The endwinfunction must be used beforeleaving a program that has called the
tnitscr function to restore the terminal to its previousstate. The function is
generally the last function call in the program. For example, in the following

program fragment snitscr and endut'n form the beginning and end of the
program.

3-8

R



Screen Processing

ftinclude <curses.h>

main ()

initser();
/* Program body. +/
endwin();

Note that endwin must not be called if snitec rhas not been called. Also, endwsn
should be called before any call to the ezit function. The endwinfunction must
also be called if the gettmode and setterm functions have been called even if
instecr has not.

3.3 Using the Standard Screen

The following sections explain how to use the standard screen to display and
edit characterson the terminal screen.

3.3.1 Adding a Character

The addch function adds a given character to the standard screen and moves
the character pointer one positionto the right. The function call has the form:

addch( ch)

where ¢k gives the character to be added and must have char type. For
example, if the current position is (0, 0), the function call

addch('A’)
placestheletter “A’ at thispositionand movesthe pointer to (0, 1).

If anewline ("\n’) characterisgiven,the function deletesallcharactersfrom the
current position to the end of the line and moves the pointer one line down. If
the newline flag is set, the function deletes the characters and moves the
pointer to the beginning of the next line. If areturn (*\r’) is given, the function
moves the pointer to the beginningof the current line. Ifa tab (\t’) isgiven, the
function moves the pointer to the next tab stop, adding enough spacesto fill the
gap between the current position and the stop. Tab stops are placed at every
eight character positions.

The function returns ERR if itencounters an error, such asillegal scrolling.

3-7



3.3.2 Adding a String

The addstr function adds a string of characters to the standard screen, placing
the first character of the string at the current position and moving the pointer
one position to the right for each character in the string. The function call has
the form:

addstr( str )

where str isa character pointer to the given string. For example, if the current
positionis(0,0), the function call

addstr(" line”);

places the beginning of the string “‘line” at this position and moves the pointer
to (0,4).

If the string contains newline, return, or tab characters, thefunction performs
the same actions as described for the addchfunction. If the string does not fiton
the current line, the string is truncated.

The function returns ERR if itencounters anerror such asillegal scrolling.

3.3.3 Printing Strings, Characters, and Numbers

The printw function prints one or more valueson the standard screen, where a
value may be a string, a character, or a decimal, octal, or hexadecimalnumber.
The function callhasthe form:

printw( fmt |, arg] ...)

where fmtis a pointer to a string that defines the formatof thevalues, and argis
a value to be printed. If more than one arg is given, each must be separated
from the preceding argument with a comma (,). For each arggiven, there must
be a corresponding format given in fmt. A format may be ‘“%s” for string,
“%¢c” for character, and “%d”, “%o”, or “%x" for a decimal, octal, or
hexadecimal number, respectively. (Other formatsare described in printf(S) in
the XENIX Reference Manual.) If “%s" is given, the corresponding arg must be
a character pointer. For other formats, the actual value or a variable
containing the value may be given. '

The function is typically used to copy bothnumbersand strings tothe standard
screen at the same time. For example, if the current position is (0,0), the
function call

printw("%s %d", name, 15);

printsthe name given by the variable “name” starting at position (0,0). It then

3-8



Screen Processing

prints the number *‘15” immediately after the name.

The function returnsERR if it encounters an error such as illegal scrolling.

3.3.4 Reading a Character From the Keyboard

The getch function reads a single character from the terminal keyboard and
returns the character as a value. The function call hasthe form:

¢ = getch()
where cis the variable toreceive the character.

The function is typically used to read a series of individual characters. For
example, in the following program fragment, characters are read and stored
until a newline or the end of the file is encountered, or until the buffer size has
been reached.

char ¢, pMAX];

int i;

i=0;
while ((c=getch()) !="\n’ && ¢ 1= EOF && i <MAX)
Pli++] = ¢

If the terminal is set to ECHOmode, getch copiesthe character tothe standard
screen; otherwise, the screen remains unchanged. If the terminal is not set to
RAW or NOECHO mode, getch automatically sets the terminal to CBREAK
mode, then restores the previous mode after reading the character. Terminal
modesare described later in the chapter.

The function returnsERR if it encounters an error such asillegal scrolling.

3.3.5 Reading a String From the Keyboard

The getstr function reads a string of characters from the terminal keyboard
and copies the string to agiven location. The function call has the form: -

getstr( str)

where stris a character pointer to the variable or location to receive the string.
When typed at the keyboard, the string must end with a newline character or
with the end-of-file character. The extra character is replaced by a null
character when the string is stored. It is the programmer’s responsibility to
ensure that str has adequate space to store the typed string.

The function is typically used to read names and other textfrom the keyboard.
For example, in the following program fragment, reads a filename from the

3-9



keyboard and stores it in the array “name”.
char name|20};
getstr(name);

If the terminal is set to ECHO mode, getstr copies the string to the standard
screen. If the terminal is not set to RAW or NOECHO mode, the function
automatically sets the terminal to CBREAK mode, then restores the previous
mode after reading the character. Terminal modes are described later in the
chapter.

The function returnsERR if itencounters an error such asillegal scrolling.

3.3.8 Reading Strings, Characters, and Numbers-

The scanw function reads one or more values from the terminal keyboard and
copies the values to given locations. A value may be a string, character, or
decimal,octal, or hexadecimalnumber. The function callhasthe form:

scanw( fmt, argptr...)

where fmt is a pointer to a string defining the format of the values to be read,
and argptrisa pointer tothe variable toreceive a value. If more than one argptr
is given, each must be separated from the preceding item with a comma (,). For
each argptrgiven, there must be a corresponding format givenin fmt. Aformat
may be ““%s” for string, “%c” for character, and ““%d", “%o", or “%x" for a
decimal, octal, or hexadecimal number, respectively. (Other formats are
described in 2canf(S) in the XENIX Reference Manual.)

The function is typically used to read a combination of strings and numbers
from the keyboard. For example, in the following program fragment scanw
readsanameand a number from the keyboard.

char name[20};
int id;

scanw(" %s %d”, name, &id);

In this example, the input valuesare stored in the character array “name” and
the integer variable “‘id”".

If the terminal is set to ECHO mode, the function copies the string to the
standard screen. If the terminal is not set to RAW or NOECHO mode, the
function automatically sets the terminal to CBREAK mode, then restores the
previousmode after reading the character.

The function returnsERR if itencountersanerror such asillegal scrolling.

3-10



Screen Processing

3.3.7 Moving the Current Position

The move function moves the pointer to the given position. The function call
has the form:

move (y, 2)
where yis aninteger value giving the new row position,and zis aninteger value
giving the new column position. For example, if the current position is (0,0),
the function call

move(5,4)

moves the pointer toline 5, column 4.

The function returnsERR if itencounters an error such asillegal scrolling.

3.3.8 Inserting a Character

The inech function inserts a character at the current position and shifts the
existing character (and all characters to itsright) one position to theright. The
functioncall has the form:

insch ( ¢)
where cisthe character to be inserted.
The function is typically used to insert a series of characters into an existing
line. For example, in the following program fragment snach is used to insert the
number of characters given by “cnt” into the standard screen a the current

position.

int cnt;
char sstring;

while (ent !I=10) {

insch(string[cnt));
cnt--;

The function returnsERR if it encounters an error such asillegal scrolling.
3.3.9 Inserting a Line
The i{nsertinfunction inserts a blank line at the current position andmovesthe

existing line (and all lines below it) down one line, causing the last line to move
fithe bottom of thescreen. The function call hasthe form:

3-11



insertln()
No arguments are required.
The function is used to insert additional lines of text in the standard screen.
For example, in the following program fragment insertin is used to insert a
blank line when the countin “‘cnt” isequal to 79.

int cnt;

if (ent ==179)
insertln();

The function returns ERR if it encounters an error such asillegalscrolling.

3.3.10 Deleting a Character
The delch function deletes the character at the current position and shifts the
character to the right of the deleted character (and all characters to its right)
one position to the left. The last character on the line is replaced by a space.
The function call has the form:

delch()
No arguments are required.
The function is typically used to delete aseriesof charactersfrom the standard
screen. For example, in the following program fragment delck deletes the
character at the current position aslong as the count in “‘ent’’ isnot0.

int cnt;

while (cnt 1= 0) {

delch();
cnt-- ;

3.3.11 Deleting a Line
The deleteln function deletes the current line and shifts the line below the
deleted line (and alllinesbelowit) oneline up, leaving the last line on the screen
blank. The function call has the form:

deleteln()

Noargumentsarerequired.

3-12

R



Screen Processing

The deleteln function is used to delete existing lines from the standard screen.
For example, in the following program fragment deleteln is used to delete a line
fromthe standard screenif the count in “cnt”’ is 79.

int cnt;
if (ent ==179)
deleteln();
3.3.12 Clearing the Screen
The clear and erase functions clear all charactersfrom the standardscreen by
replacing them with spaces. The functions are typically used to prepare the
screen for new text.
The clear function clears all charactersfrom the standard screen, moves the
pointer to (0,0), and sets the standard screen’s clear flag. The flag causes the
nextcall to the refresh function to Clear all charactersfrom the terminalscreen.
The erase function clears the standard screen, but does not set the clear flag.
For example, in the following program fragment clear clears the screen if the
input valueis 12.
char c;
if ((c=getch()) == 12)
clear();
3.3.13 Clearing a Part of the Screen
The clrtobot and clrtoeol functions clear one or more characters from the
standard screen by replacing the characters with spaces. The functions are

typically used topreparea partof thestandardscreenfor new characters.

The ¢lrtobot function clears the screen from the current position to the bottom
of the screen. For example, if the current position is(10,0), the function call

clrtobot();
clearsall characters from line 10 and alllines belowline 10.
The clrtoeol function clears the standard screen from the current position to
the end of the current line. For example, if the current position is (10,10), the

function call

clrtoeol();

3-13



clearsall characters from (10,10) to (10,78). The characters at the beginning of
the line remain unchanged.

Note that both the clrtobot and clrtoeol functions do not change the current
position.

3.3.14 Refreshing From the Standard Screen

The refresh function updates the terminal screen by copying one or more
characters from the standard screen to the terminal. The function effectively
changes the terminal screen to reflect the new contents of the standard screen.
The function call has the form:

refresh()
No argumentsarerequired.

The function is used solely to display changes to the standard screen., The
function copies only those characters that have changed since the last call to
refresh and leaves any existing text on the terminal screen. For example, in the
following program fragment refreskis called twice.

addstr("The first time.\n");
refresh();

addstr("The second time.\n");
refresh();

In thisexample, the first call to refresk copies the string “The first time.” to the
terminal screen. The second call copies only the string “The second time.” to
the terminal, since the original string has not been changed.

The function returns ERR if it encounters an error such asillegalscrolling. Ifan
error is encountered, the function attempts to update as much of the screen as
possible without causing the scroll.

3.4 Creating and Using Windows

The following sections explain how to create and use windows to display and
edit text on the terminal screen.

3.4.1 Creating a Window

The newwin function creates a window and returns a pointer that may be used
in subsequentscreen processing functions. The function call has the form:

win = newwin( lines, cols, begin_y, begin_z )



Screen Processing

where win is the pointer variable to receive the return value, linesand cols are
integer values that give the total number of lines and columns, respectively, in
the window, and begin_y and begin_z are integer values that give the line and
column positions, respectively, of the upper left corner of the window when
displayed on the terminal screen. The win variable must have type
WINDOW=,

The function is typically used in programs that maintain a set of windows,
displaying different windows at different times or alternating between window
as needed. For example, in the following program fragment newwin createsa
new window and assigns the pointer to this window to the variable midscreen.

WINDOW #midscreen;
midscreen = newwin(5, 10, 9, 35);

The window has 5 lines and 10 columns. The upper left corner of the window is
placed at the position (9,35) on the terminalscreen.

If either ltnes or cols is zero, the function automatically creates a window that
has “LINES - begin_y” lines or “COLS - begin_2" columns, where *‘LINES"
and “COLS” are the predefined constants giving the total number of lines and
columns on the terminalscreen. For example, the function call

newwin(0, 0, 0, 0)

creates a new window whose upper left corner is at position (0,0) and that has
“LINES” lines and “‘COLS” columns.

Note

You must not create windows that exceed the dimensions of the actual
screen.

The newwin function returns the value (WINDOWS) ERR on an error, such as
insufficient memory for the new window.

3.4.2 Creating a Subwindow

The subwin function creates a subwindow and returns a pointer to the new
window. A subwindow is a window which shares all or .part of the character
space of another window and providesan alternate way to access the characters
in that space. The function callhasthe form:

3-15



swin == subwin( win, lines, cols, begin_y, begin_z)
where swinisthe pointer variable to receive the return value, win is the pointer
to the window to contain the new subwindow, lines and cols are integer values
that give the total number of lines and columns, respectively, in the
subwindow, and begin_y and begin_z are integer values that give the line and
column position, respectively, of the upper left corner of the subwindow when

dislayed on the terminal screen. The swin variable must have type
WINDOW«,

The function is typically used to divide a large window into separate regions.
For example, in the following program fragment subwin creates the subwindow
named “cmdmenu” in the lower partof thestandardscreen.

WINDOW #cmdmenu;

cmdmenu = subwin(stdscr, 5, 80, 19, 0);
In thisexample, changes to ‘‘cmdmenu’” affect the standard screen as well.
The subwin function returns the value (WINDOW?s) ERR on an error, such as
insufficient memory for the new window.

3.4.3 Adding and Printing to a Window

The waddch, waddstr, and wprintwfunctions add and print characters, strings,
and numbers to a given window.

The waddch function adds agiven character to the given window and movesthe
character pointerone position to theright. The function call has the form:

waddch( win, ck)
where winisa pointer to the window to receive the character, and ck gives the
character to be added; ch must have char type. For example, if the current
position in the window *“midscreen” is(0,0), the function call
waddch(midscreen, 'A’)
placestheletter “A’ at this positionand moves the pointer to (0,1).
The waddstr function adds a string of characters to the given window, placing
the first character of the string at the current position and moving the pointer
one position to the right for each character in the string. The function call has
the form:

waddstr( win, str)

where winisa pointer to the window to receive the string, and stris a character.

3-16



Screen Processing

pointer to the given string. For example, if the current position is (0,0), the
function call

waddstr(midscreen, "line”);

placesthe beginning of the string ‘‘line” at this position and moves the pointer
to(0,4).

The wprintwfunction prints one or more valueson the given window, where a
value may be a string, a character, or a decimal, octal, or hexadecimal number.
The function callhas the form:

wprintw( win, fmt |, arg ] ...)

where win is a pointer to the window to receive the values, fmtis a pointer to a
string that defines the format of the values, and argisa value to be printed. If
more than one arg is given,; each must be separated from the preceding with a
comma (,). For each arg given, there must be a corresponding format given in
fmt. Aformat may be “%s” forstring, *“%c” for character, and “%d”, “%o0”,
or “%x" for a decimal, octal, or hexadecimal number, respectively. (Other
formats are described in printf(S) in the XENIX Reference Manual.)If “%s" is
given, the corresponding arg must be a character pointer. For other formats,
the actual valueor a variable containing the valuemay begiven.

The functionis typically used to copy both numbersand stringsto the standard
screen at the same time. For example, in the following program fragment
wprintw prints a name and then the number 15 at the.current position inthe
window “midscreen”.

char #name;

wprintw(midscreen, "%s %d", name, 15);
Note that when a newline, return, or tab character is given to a waddck,
waddstr, or wprintw function, the functions perform the same actions as
described for the addch function. The functions return ERR if they encounter
errorssuch asillegal scrolling.
3.4.4 Reading and Scanning for Input
The wgetch, wgetstr, and wscanw functions read characters, strings, and
numbers from the standard input file and usually echo the values by copying

them to the given window.

The wgetch function reads a single character from the standard input file and
returnsthecharacterasavalue. The function call has the form:

¢ = wgetch( win)

3-17



where winis a pointer toa window, and e is the character variable toreceive the
character.

The function istypically used to read a series of characters from the keyboard.
For example, in the following program fragment wgetch reads characters until
acolon (:)isfound.

char ¢, dirf]MAX];

int i;

i=0;
while ((c=wgetch(cmdmenu)) ="’ &£& i <MAX])
dirfi++] = ¢;

The bgctatr function reads a string of characters from the terminal keyboard
and copies the string to a givenlocation. The function call hasthe form:

wgetstr( win, otr)

where winisa pointer toa window, and strisa character pointer to thevariable
or location to receive the string. When typed at the keyboard, the string must
end with a newline character or with the end-of-file character. The extra
character is replaced by a null character when the string is stored. It is the
programmer’s responsibility to ensure that str has adequate space for storing
the typed string.

The function is typically used to read names and other text from the keyboard.
For example, in the following program fragment wgetstr readsastringfrom the
keyboard andstoresitin the array “filename”.

char filename|20};
wgetstr(cmdmenu, filename);

The weeanw function reads one or more valuesfrom the standard input file and
copies the values to givenlocations. A value may be a string, a character, or a
decimal, octal, or hexadecimal number. The function call has the form:

wscanw( win, fmt [, argptr] ... )

where win is a pointer to a window, fmt is a pointer to a string defining the
format of the values to be read, and argptrisa pointer to the variable toreceive
a value. If more than one argptris given, each must be separated from the
preceding by a comma (,). For each argptrgiven, there must be a corresponding
formatgivenin fmt. Aformatmay be “%s" for string, “%c" forcharacter, and
“%d”, “%o"”, or “%x"” for a decimal, octal, or hexadecimal number,
respecti\;ely. (Other formats are described in scanf(S) in the XENIX Reference
Manual.

3-18



Screen Processing

The function is typically used to read a combination of strings and numbers
from the keyboard. For example, in the following program fragment wscanw
readsanameand anumber from the keyboard.

char name[20};
int id;

wscanw(midscreen, " %s %d”, name, &id);

In this example, the name is stored in the character array ‘‘name” and the
number in the integer variable *“id”. .

If the terminal is set to ECHO mode, the function copies the string to the given
window. If the terminal is not set to RAW or NOECHO mode, the function
automatically sets the terminal to CBREAK mode, then restores the previous
mode after reading the character.

The functionsreturn ERR if they encounter errors such asillegal scrolling.

3.4.5 Moving a the Current Position in a Window

The wmove function moves the current position in a given window. The
function callhas the form:

wmove (win, y, z)
where win is a pointer to a window, y is an integer value giving the new line
position, and zisan integer value giving the new column position. For example,
the function call

wmove(midscreen, 4, 4)

moves the current position in the window “midscreen” to (4,4).

The function returnsERR if it encountersan error such asillegalscrolling.

3.4.8 Inserting Characters

The winsch and winsertln functions insert characters and lines into a given
window.

The winsch function inserts a character at the current position and shifts the
existing character (and all characters to itsright) one position to theright. The
function call has the form:

winsch ( win, ¢)

where winis a pointer to a window, and cis the character tobe inserted.

3-19



The function is typically used to edit the contents of the given window. For
example, the function call

winsch(midscreen, 'X’);
inserts the character “X" at the current position in the window “midscreen”.
The winsertin function inserts a blank line at the current position and moves
the existing line (and all lines below it) down one line, causing the last line to
move off the bottom of the screen. The function call hasthe form:

winsertIn( win )
where winisa pointer to the window to receive theblank line.
The functionis used to insert lines into a window. For example, in the following
program fragment winsertln inserts a blank line at the top of the window
“¢mdmenu’’ preparingitfor a new line.

char line[80};

wmove(cmdmenuy, 3, 0);

winsertln(cmdmenu);

waddstr(¢cmdmenu, line);

Bothfunctionsreturn ERR if they encountererrorssuch as illegal scrolling.

3.4.7 Deleting Characters and Lines

The wdelch and wdeleteln functions delete characters and lines from the given
window.

The wdelchfunction deletesthe character at the current position and shifts the
character to the right of the deleted character (and all characters to its right)
one position to the left. The last character on the line is replaced with a space.
The function call has the form:

wdelch( win)

where winisa pointer toa window.

The function is typically used to edit the contents of the standard screen. For
example, the function call

wdelch(midscreen);

deletesthe character at the currentposition in the window *“midscreen”.

3-20



Screen Processing

The wdeleteln function deletes the current line and shifts the line below the
deleted line (and all linesbelow it) one line up, leaving the last line in the screen
blank. The function call has the form:

wdeleteln( win)
where win is a pointer toa window.
The function is typically used to delete existinglines from a given window. For
example, in the following program fragment wdeleteln deletes the lines in
“midscreen” until “cnt’ is equal to zero.

int ent;

while (ent 1= 0) {

wdeleteln(midscreen);
cnt--;

3.4.8 Clearing the Screen
The wclear, werase, welrtobot, and welrtoeol functions clear all or part of the
characters from the given window by replacing them with spaces. The
functionsare typically used to prepare the window for new text.
The welear function clears all characters from the window, moves the pointer
to (0,0), and sets the standard screen’s clear flag. The flag causes the next
refreeh function call to clear all characters from the terminal screen. The
function call has the form:

wclear( win )
where winisthe window to be cleared.
The werase function clears the given window, moves the pointer to (0,0), but
does not set the clear flag. It is used whenever the contents of the terminal
screen must be preserved. The function call hasthe form:

werase( win )

where winis a pointer to the window to be cleared.

The welrtobot function clears the window from the current position to the
bottom of the screen. The function call hasthe form:

wclrtobot( win )

where win is a pointer to the window to be cleared. For example, if the current

3-21



position in the window “midscreen” is(10,0), the function call
welrtobot( midscreen );
clearsallcharactersfrom line 10 and all linesbelowline 10.

The welrtoeol function clears the standard screen from the current position to
the end of the current line. The function call hasthe form:

welrtoeol( win )

where win is a pointer to the window to be cleared. For example, if the current
positionin ““midscreen” is (10, 10), the function call

welrtoeol( midscreen );

clears all characters from (10,10) to the end of the line. The characters at the
beginningof the lineremain unchanged.

Note that the welrtobot and welrtoeol functions do not change the current
position.

3.4.9 Refreshing From a Window

The wrefresh function updates the terminal screen by copying one or more
characters from the given window to the terminal. The function effectively
changes the terminal screen to reflect the new contents of the window. The
function call has the form:

wrefresh( win )
where win isa pointer to a window.

The function is used solely to display changes to the window. The function
copies only those characters that have changed since the last call to wrefresh
and leaves any existing text on the terminal screen. For example, in the
following program fragment wrefreshis called twice.

waddstr(cmdmenu, " Type a command name\n”);
wrefresh(cmdmenu);

waddstr(cmdmenu, "Command: ");
wrefresh(cmdmenu);

In this example, the first call to wrefresh copies thestring “Type a command

name” to the terminal screen. The second call copies only the string
“Command:” to the terminal, since the original string has not been changed.

3-22




Screen Processing

Note

If curscr is given with wrefresh, the function restores the actual screen
to its most recent contents. This is useful for implementing a
“redraw” feature for screens that become cluttered with unwanted
output.

The function returns ERR if it encounters an error such asillegal scrolling. Ifan
error is encountered, the function attempts to update as much of thescreen as
possible without causing the scroll.

3.4.10 Overlaying Windows

The overlay function copies all characters, except spaces, from one window to
another, moving charactersfrom their original positions in the first window to
identical positions in the second. The functioneflectively laysthe first window
over the second, letting characters in the second window that would otherwise
be covered by spacesremain unchanged. The function call has the form:

overlay( winl, win2)

where winlis a pointer to the window to be copied, and win2is a pointer to the
window to receive the copied text. The starting positions of winl and win2
must match, otherwise anerroroccurs. If winlislarger than win®,the function
copiesonly those lines and columnsin win! that fitin win2.

The function is typically used to build a composite screen from overlapping
windows. For example, in the following program fragment overlay is used to
build the standard screen from two different windows.

WINDOW #info, *cmdmenu;

overlay(info, stdscr);
overlay(cmdmenu, stdscr);
refresh();

3.4.11 Overwriting a Screen

The overwrite function copies all characters, including spaces, from one
window to another, moving charactersfrom their positions in the first window
toidentical positionsin the second. Thefunctioneffectively writesthe contents
of the first window over the second, destroying the previous contents of the
second window. The function call has the form:

3-23



overwrite( winl, win2)
where win! is a pointer to the window to be copied, and win2is a pointer to the
window to receive the copied text. If winl is larger than win2, the function
copies only those linesand columns in winIthat fit in win2.
The function is typically used to display the contents of a temporary window in

the middle of a larger window. For example, in the following program fragment
overwrite is used to copy the contents of a work window to the standard screen.

WINDOW swork;

overwrite(work, stdscr);
refresh();

3.4.12 Moving a Window
The mowin function moves a given window to a new position on the terminal
screen, causing the upper left corner of the window to occupy a given line and
column position. The function call has the form:

mvwin( win, y, 2)
where win is a pointer to the window to be moved, yis an integer value giving
the line to which the corner is to be moved, and zis an integer value giving the
column to which the corner isto be moved.
The function is typically used to move a temporary window when an existing
window under it contains information to be viewed. For example, in the
following program fragment moywin moves the window named ‘“work”’ to the
upper left corner of the terminalscreen.

WINDOW swork;

mvwin(work, 0,0);
The function returns ERR if it encounters a error such as an attempt to move
partof a window off theedge of the screen.

3.4.13 Reading a Character From a Window

The {nck and winch functions read asingle character from the current pointer
position in a window or screen.

The inck function reads a character from the standard screen. The function
call hasthe form:

3-24



Screen Processing

¢ = inch()
where cisthe character variableto receive the character read.

The winch function reads a character from a given window or screen. The
function call has the form:

¢ = winch( win)
where winis the pointer to the window containing the character to be read.
The functions are typically used to compare the actual contents of a window
with what is assumed to be there. For example, in the following program
fragment inch and winchare used to compare the charactersat position (0,0) in
the standard screen and in the window named “‘altscreen”.

char cl, ¢2;

¢l = inch();

¢2 = winch(altscreen);

if (c11=¢2)

error();

Note thatreading a character from a window does not alter the contents of the
window.
3.4.14 Touching a Window
The touchwin function makes the entire contents of a given window appear to
be modified, causing a subsequent refresh call to copy all characters in the
window tothe terminal screen. Thefunction call hasthe form:

touchwin( win }

where winis a pointer to the window to be touched.

The function is typically used when two or more overlapping windowsmake up
the terminal screen. For example, the function call

touchwin(leftscreen);

is used to touch the window named “leftscreen”. A subsequent refreeh copies
all charactersin “leftscreen’ to the terminal screen.

3.4.15 Deleting a Window

The delwin function deletes a given window from memory, freeing the sﬁace
previously occupied by the window for other windows or for dynamically

3-25



allocated variables. The function call has the form:
delwin( win)
where winis the pointer to the window to be deleted.

The function is typically used to remove temporary windows from a program
or to free memory spacefor other uses. For example, the function call

delwin(midscreen);

removes the window named ““midscreen’’.

3.5 Using Other Window Functions

The following sections explain how to perform a variety of operations on
existing windows, such as setting window flags and drawing boxes around the
window.

3.5.1 Drawing a Box

The box function draws a box around a window using the given characters to
form the horizontal and vertical sides. Thefunctioncall hasthe form:

box( win, vert, hor )

where win is the pointer to the desired window, vert is the vertical character,
and hkoris the horizontal character. Both verand Rormust have char type.

The function is typically used to distinguish one window from another when
combining windows on a single screen. For example, in the following program
fragment boz createsa box around the window in the lower half of the screen.

WINDOW scmdmenu;

cmdmenu = subwin(stdscr, 5, 80, 19, 0);
box(ecmdmenu, |, *-);

If necessary, the function will leave the corners of the box blank to prevent
illegal scrolling.

3.6.2 Displaying Bold Characters

The standout and wetandout functions set the standout character attribute,

causing characters subsequently added to the given window or screen to be
displayed asbold characters.

3-26

S



Screen Processing
The stendout function sets the standout attribute for characters added to the
standard screen. Thefunction call has the form:
standout()
Noargumentsare required.

The wetandout function sets the standout attribute of characters added to the
given window or screen. Thefunction call has the form:

wstandout( win )
where winisa pointer toa window.
The functions are typically used to make error messagesor instructionsclearly
visible when displayed at the terminal screen. For example, in the following
program fragment standout sets the standout character attribute before
adding an error message to the standard screen.

if (code = 5) {

standout();
addstr("Illegal character.\n");

Note that the actual appearence of characters with the standout attribute
depends on the given terminal. This attribute is defined by the SO and SE (or
USand UE)sequencesgivenin the terminal'stermcapentry (see termcap(M) in
the XENIX Reference Manual). '

3.5.3 Restoring Normal Characters

The standend and wetandendfunctions restore the normalcharacter attribute,
causing characters subsequently added to a given window or screen to be

displayed as normal characters.

The standend function restores the normal attribute for the standard screen.
The function call hasthe form:

standend()
No arguments are required.

The wstandend function restores the normal attribute for a given window or
screen. The function call has the form:

wstandend( win)

where winisa pointer to a window.

3-27



The functions are typically used after an error message or instructions have
been added to a screen using the standout attribute. For example, in the
following program fragment standend restores the normal attribute after an
error message has been added to the standard screen.

if (code = 5 ) {
standout();
addstr("Illegal character.\n");
standend();

3.5.4 Getting the Current Position

The getyz function copies the current line and column position of a given
window pointer to a corresponding pair of variables. The function call has the
form:

getyx( win, ¥, z)

where winisa pointer tothe window containing the pointer to be examined, yis
the integer variable to receive the line position, and z is the integer variable to
receive the column position.

The function is typically used to save the current position so that the program
can return to the position at a later time. For example, in the following
program fragment getyz saves the current line and column position in the
variables“line’’ and *‘column”.

int line, column;

getyx(stdscr, line, column);

3.5.5 Setting Window Flags

The leaveok, scrollok, and clearok functions set or clear the cursor, scroll,
and clear-screen flags. The flags control the action of the refresk function
when called for the given window.

The leaveok function sets or clears the cursor flag which defines how the
refresh function places the terminal cursor and the window pointer after
updating the screen. If the flag is set, refreek leaves the cursor after the last
character to be copied and moves the pointer to the corresponding position in
the window. If the flag is cleared, refresh moves the cursor to the same position
on the screen as the current pointer position in the window. The function call
has the form:

3-28

s



Screen Processing

leaveok( win, state )
where winis a pointer to the window containing the flag to be set, and state is a
Boolean value defining the state of the flag. If state is TRUE the flag is set; if
FALSE, the flagis cleared. Forexample, the function call

leaveok(stdscr, TRUE);
sets the cursor flag.
The scrollok function sets or clears the scroll flag for the given window. If the
flag is set, scrolling through the window is allowed. If the flagis clear, then no
scrollingisallowed. The function callhasthe form:

scrollok( win, state )
where winisa pointer toa window, and etate is a Boolean value defining how the
flag is to be set. If state is TRUE, the flag is set; if FALSE, the flagis cleared. The

flag isinitially clear, making scrolling illegal.

The clearok function sets and clears the clear flag for a given screen. The
function call has the form:

clearok( win, state )
where win is a pointer to the desired screen, and etate is a Boolean value. The
functionsetsthe flag if state isTRUE, and clearsthe flag if FALSE. For example,
the function call

clearok(stdscr, TRUE)
sets the clear flag for the standard screen.
When the clear flag is set, each refresh call to the given screen automatically
clears the screen by passing a clear-screen sequence to the terminal. This
sequence affects the terminal only; it does not change the contents of the screen.
If clearokis used to set the clear flag for the current screen “curscr”, each callto
refresh automatically clears the screen, regardlessof which window is givenin
the call.
3.5.6 Scrolling a Window

The ecroll function scrolls the contents of a given window upward by one line.
The function call has the form:

scroll( win)

where winisa pointer to the window to be scrolled. The function should be used

3-29



in special casesonly.

3.8 Combining Movement With Action

Many screen operations move the current position of a given window before
performing an action on the window. For convenience, you can combine a
number of functions with the movement prefix. This combination has the
form:

mvfunc ([ win,] y, 2|, arg]...)

where func is the name of a function, win is a pointer to the window to be
operated on (stdscr used if none is given), yis aninteger value giving the line to
move to, zisaninteger value giving the column to move to, and argisa required
argument for the given function. If more than one argument is required they
must be separated with commas(,). For example, the function call

mvaddech(10, 5, ’X");
moves the position to (10,5) and adds the character “X”. The operation is the
same as moving the position with the move function and then adding a
character with addch.
A complete list of the functions which may be used with the movement prefix is
givenin curses(S)in the XENIX Reference Manual.
3.7 Controlling the Terminal
The following sections explain how to set the terminal modes, how to move the
cursor, and how to access other aspects of the terminal. These functionsshould
only be used when using other screen processing functions.

3.7.1 Setting a Terminal Mode

The crmode, echo, nl, and rew functions set the terminal mode, causing
subsequent input from the terminal’s keyboard to be processed accordingly.

The ermode function sets the CBREAK mode for the terminal. The mode
preserves the function of the signal keys, allowing allowing signals to be sent to
aprogram from the keyboard, but disables the function of the editing keys. The
functioncall hasthe form:

crmode()

No arguments are required.

3-30

N



Screen Processing

The ecko function sets the ECHO mode for the terminal, causing each character
typed at the keyboard to be displayed at the terminal screen. The function call
hasthe form:

echo()
No arguments are required.
The nl function sets a terminal to NEWLINE mode, causing all newline

characters to be mapped to a corresponding newline and return character
combination. The function callhas the form:

nl()
Noarguments are required.
The raw function sets the RAW mode for the terminal, causing each character
typed at the keyboard to be sent as direct input. The RAW mode disables the
function of the editing and signal keys and disables the mapping of newline
characters into newline and return combinations. The function call has the
form:

raw()

No arguments are required.

3.7.2 Clearing a Terminal Mode

The nocrmode, noecko, nonl, and noraw functions clear the current terminal
mode, allowinginput tobe processed accordingtoa previousmode.

The nocrmode function clears a terminal from the CBREAK mode. The
function call has the form:

nocrmode()
No arguments are required.
The noecho function clears a terminal from the ECHO mode. This mode
prevents characters typed at the keyboard from being displayed on the
terminalscreen. The function call has the form:

noecho()
No argumentsare required.
The nonl function clears a terminal from NEWLINE mode, causing newline

characters to be mapped into themselves. This allows the screen processing
functionsto perform better optimization. The function call hastheform:

3-31



nonl() e
M

Noargumentsare required.

The noraw function clears a terminal from RAW mode, restoring normal
editing and signal generating function to the keyboard. The function call has
the form:

noraw()

No arguments are required.

3.7.3 Moving the Terminal's Cursor

The mvcur function moves the terminal’s cursor from one position to another
in an optimal fashion. The function call has the form:

mvcur ( last_y, last_z, new_y, new_z)
where last_y and last_z are integer values giving the last line and column
position of the cursor, and new_yand new_z are integer values giving the new
line and column positionof the cursor. For example, the function call ‘}

mvecur(10, 5, 3, 0)

moves the cursor from (10,5) to (3,0) on the terminal screen.

Note

The mveur function should only be used in programs that do not use
other screen processing functions. This means the function can be
used to perform optimal cursor motion without the aid of the other
functions. For programs that do use other functions, the mouve,
wmove, refresh, and wrefresh functions must be used to move the
cursor.

3.7.4 Getting the Terminal Mode

3
The gettmode function returns the current tty mode. The function call hasthe “ol »’?
form:

s = gettmode()

where sisthe variable to receive the status.

3-32



Screen Processing
The function is normally called by the snitscrfunction.

3.7.5 Saving and Restoring the Terminal Flags

The savetty function saves the current terminal flags, and the resetty function
restores the flags previously saved by the savettyfunction. These functionsare
performed automatically by instecr and endwin functions. They are not
required when performingordinary screen processing.

3.7.6 Setting a Terminal Type

The stterm function sets the terminal type to the given type. The function call
has the form:

setterm( name )
where name is a pointer to astring containing the terminal type identifier. The
function is normally called by the ¢nitecr function, but may be used in special
cases.

3.7.7 Reading the Terminal Name

Thelongname function converts a given termeapidentifier into the fullnameof
the corresponding terminal. The function callhasthe form:

longname( termbuf, name )
where termbufis a pointer to the string containing the terminal type identifier,
and name is a character pointer to the location to receive the long name. The
terminal type identifier must existin the /etc/termeapfile.
The function is typically used to get the full name of the terminal currently

being used. Note that the current terminal’s identifier is stored in the variable
“ttytype”, whichmay be used to receive a new name.

3-33



i
f




Chapter 4
Character and String Processing

4.1 Introduction  4-1

4.2 Using the Character Functions  4-1
4.2.1 Testing for an ASCHI Character 4-1
4.2.2 Converting toASCH Characters  4-2
4.2.3 Testingfor Alphanumerics  4-2
4.2.4 TestingforaLetter 4-3
4.2.5 Testingfor Control Characters 4-3
4.2.6 Testing foraDecimalDigit 4-3
4.2.7 Testing for a Hexadecimal Digit  4-4
4.2.8 Testing for Printable Characters 4-4
429 TestingforPunctuation 4-4
4.2.10 Testing for Whitespace  4-5
4.2.11 Testing for Case in Letters  4-5
4.2.12 Converting the Caseof aLetter  4-5

4.3 Usingthe String Functions 4-6
4.3.1 Concatenating Strings 4-6
4.3.2 Comparing Strings 4-7
4.3.3 CopyingaString 4-8
434 GettingaString’sLength  4-8
43.5 Concatenating CharacterstoaString 4-8
4.3.6 Comparing CharactersinStrings 4-9
4.3.7 Copying Characters toaString 4-10
4.3.8 Reading ValuesfromaString 4-10
4.3.9 WritingValuestoa String 4-11






Character and String Processing

4.1 Introduction

Character and string processing is an important part of many programs.
Programs regularly assign, manipulate, and compare characters andstringsin
order to complete their tasks. For this reason, the standard library providesa
variety of character and string processing functions. These functions give a
convenient way to test, translate, assign, and compare charactersand strings.

To use the character functions in a program the file, ctype.&, which provides

the definitions for special character macros, must be included in the program.
The line

#include <ctype.h>
must appearat the beginningof the program.
To use the string functions, no special action is required. These functionsare
defined in the standard C library and are read whenever you compile a C
program.
4.2 Using the Character Functions
The character functions test and convert characters. Many character
functions are defined as macros, and as such cannot be redefined or used as a
targetfora breakpoint when debugging.

4.2.1 Testing for an ASCH Character

The ¢2ascit function tests for characters in the ASCH character set, i.e.,
characters whose values range from 0 to127. Thefunctioncallhastheform:

isascii (¢)

where ¢ is the character to be tested. The function returns a nonzero (true)
value if the character is ASCI, otherwise it returns zero (false). For example, in
the following program fragment isascit determines whether or not the value in
‘¢’ read from the file given by *“data’’ isin the acceptable ASCIIrange.

FILE #data;

int ¢c;

¢ = fgetc(data);

if (lisascii(c))
notext();

In this example, a function named notezt is called if the character is not in
range.

41



4.2.2 Converting to ASCIl Characters

The toasciifunction converts non-ASCH characters to ASCIL The function call
has the form:

¢ = toascii (1)
where ¢ is the variable to receive the character, and ¢ is the value to be changed.
The function creates an ASCII character by truncating all but the low order 7
bits of the non-ASCII value. If the i value is already an ASCII character, no
change takesplace. For example, the function call

ascii = toascii( 160)
converts value 160 to 32, the ASCII value of the space character.
The function is typically used to prepare non-ASCII characters for display at
the standard output. For example, in the following program fragment toascss

convertseach character read from the file given by “oddstrm”.

FILE *oddstrm;
int c;

¢ = toascii( getc( oddstrm ) );
if (isprint(c) || isspace(c) )
putchar(c);
If the resulting character is printable or is whitespace, it is written to the
standard output.
4.2.3 Testing for Alphanumerics

The tealnum function testsfor letters and decimal digits, i.e., the alphanumeric
characters. The function call hasthe form:

isalnum (c)
where ¢ is the character to test. The function returns a nonzero (true)valueif
the character is an alphanumeric, otherwise it returns zero (false). For
example, the function call

isalnum('!’)
returnsanonzero value, but the call

isalnum(’>’)

returnszero.

4-2

i



Character and String Processing

4.2.4 Testing for a Letter

The tealpha function tests for uppercase or lowercase letters, i.e., alphabetic
characters. Thefunction call has the form:

isalpha (¢)
where ¢ is the character to be tested. The function returns a nonzero (true)
value if the character is a letter, otherwise it returns zero. For example, the
function call

isalpha(’a’)
returnsanonzerovalue, but the call

isalpha('1’)

returnszero.

4.2.5 Testing for Control Characters

The sscntrl function test for control characters, i.e., characters whose ASCII
values are in the range 0 to 31 or is 127. The function call has the form:

isentrl (¢)
where ¢ is the character to be tested. The function returns a nonzero (true)
value if the character is a control character, otherwise it returns zero (false).
Forexample, in the program following fragment iscntr! determines whether or
not the character in ‘c” read from the file given by “infile” is a control
character.

FILE =infile, *outfile;
int ¢;
¢ = fgetc(infile);
if ( lisentrl(c) )
fpute( c, outfile );

The fpute function isignored if the character isa control character.

4.2.8 Testing for a Decimal Digit
The tedigstfunction testsfor decimal digits. The function call has the form:

isdigit (¢)

43



where ¢ is the character to be tested. The function returns a nonzero value if
the character is a digit, otherwise it returns zero. For example, in the following
program fragment each new character in “¢” isadded to therunning total if the
character is a digit.

FILE =infile;

int ¢, num;
while ( isdigit( c=getc(infile) ) )
num = num#*10 + c-48;
4.2.7 Testing for a Hexadecimal Digit
The fezdigit function tests for a hexadecimal digit, that is, a character that is
either a decimal digit or an uppercase or lowercase letter in the range A to F.
Thefunction call has the form:
isxdigit (¢)
where ¢ is the character to be tested. The function returns a nonzero value if
the character is a digit, otherwise it returns zero. For example, in the following
program fragment sezdigst tests whether a hexadecimal digit is read from the
standard input.
int ¢;
¢ = getchar();
if ( isxdigit(c) )
hexmode();
In this example, a function named hezmode is called if a hexadecimal digit is
read.

4.2.8 Testing for Printable Characters

The seprintfunctiontestsfor printable characters, i.e., characters whose ASCII
valuesrangefrom32to 126. Thefunction call has the form:

isprint (c)

where ¢ is the character to be tested. The function returns a nonzero value if
the character is printable, otherwise it returnszero.

4.2.9 Testing for Punctuation

The fspunct function tests for punctuation characters, i.e., charactersthat are

+4

S



Character and String Processing
neither control characters nor alphanumeric characters. The function call has
the form:

ispunct (c)
where ¢isthe character to be tested. The function returnsa nonzero function if
the character isa punctuation character,otherwise it returns zero.
4.2,10 Testing for Whitespace
The iespace functiontestsfor whitespace characters, i.e, the space, horizontal
tab, vertical tab, carriage return, formfeed, and newline characters. The
function call has the form:

isspace (¢)
where ¢ is the character to be tested. The function returns a nonzero value if
the character is a whitespace character, otherwise it returnszero.
4.2.11 Testing for Case in Letters

The ssupper and islower functions test for uppercase and lowercase letters,
respectively. The function calls have the form:

~ isupper (¢)

and

islower (c)
where ¢ is the character to be tested. The function returnsa nonzero value if
the character is the proper case, otherwise it returns zero. For example, the
function call

isupper(’b’)
returns zero (false), but the call

islower('b’)

returns a nonzero (true) value.
4.2.12 Converting the Case of a Letter

The tolower and toupper functions convert the case of a given letter. The
function calls have the form:

4.5



¢ = tolower (1)
and
¢ = toupper ()

where ¢ is the variable to receive the converted letter, and 1 is the letter to be
converted. Forexample, the function call

lower = tolower('B’)

converts*‘B” to ‘b” and assignsit to the variable “lower’’,and the call
upper = toupper('b’)

converts‘‘b” to “B” and assignsit to the variable “upper”’.

The tolower function returns the character unchangedif itis not an uppercase
letter. Similarly, the toupper function returns the character unchanged if it is
nota lowercase letter.

These functionsare typically used to make the case of the characters read from
a file or standard input consistent. For example, in the following statement
tolower changes the character read from the standard input to lowercase before
it is compared.

if ( tolower( getchar() ) 1="y’)
exit(0);

This conversion allows the user to type either “Y” or ‘‘y” to prevent the
statementfrom executingthe ezitfunction.

4.3 Using the String Functions

The string functions concatenate, compare, copy, and count the number of
characters in a string. Two special string functions, sscanf and eprintf, let a
program read from and write to a string in the same way the standard input
and output can be read and written. These functions are convenient when
reading or writing whole lines containing values of several different formats.

Many string functions have two forms: a form that manipulates all characters
in the string and one that manipulates a given number of characters. Thisgives
programs very fine control over all or parts of strings.

4.3.1 Concatenating Strings

The streat function concatenates two strings by appending the characters of
onestring to the end of another. The function call has the form:

4-6

-



Character and String Processing

strcat (dst, src)

where dst is a pointer to the string to receive the new characters, and srcisa
pointer to the string containingthe new characters. The function appends the
new characters in the same order as they appear in erc, then appends a null
character (\0) to the last character in the new string. The function always
returns the pointer dst.

The function is typically used to build a string such asa full pathname from two

smaller strings. For example, in the following program fragment strcat
concatenates thestring ‘‘temp” to the contents of the character array *“dir”.

char dir[MAX] = " fusr/";

streat(dir, " temp”);

4.3.2 Comparing Strings

The stremp function compares the characters in one string to those in another
and returns an integer value showing the result of the comparison. The
function call has the form:

stremp (a1, £2)
where 81 and s2are the pointers to the strings to be compared. The function
returns zero if the strings are equal (i.e., have the same characters in the same
order). If the strings are not equal, the function returns the diflerence between
the ASCII values of the first unequal pair of characters. The value of the second
string character is always subtracted from the first. For example, the function
call
stremp(” Character A", ” Character A”);
returnszerosince thestringsare identical inevery way, butthe function call
stremp(” Character A”, " Character B”);
returns-1since the ASCIIvalue of “B” isone greater than ““A”,
Note that the stremp function continues to compare characters until a
mismatch is found. If one string is shorter than the other, the function usually
stops at the end of the shorter string. For example, the function call

stremp(” Character A”, " Character ")

returns 65, that is, the difference between the null character at the end of the
second string and the “A” in the first string. .

47



4.3.3 Copying a String

The strepy function copies a given string to a given location. The function call
hasthe form:

strepy (dst, erc)
where erc is a pointer to the string to be copied, and det is a pointer to the
location to receive the string. The function copies all characters in the source
string erc to the dst and appends a null character (\0) to the end of the new
string. If dst contained a string before the copy, that string is destroyed. The
function always returns the pointer to the new string.

For example, in the program fragment strcpy copies the string “not available”
to the location given by “name”’.

char na[] = "not available”;
char name|[20];

strcpy( name, na );
Note that the location to receive a string must be large enough to contain the
string. Thefunction cannotdetect overflow.
4.3.4 Getting a String’s Length

The strlen function returns the number of character contained in a given
string. The function call has the form:

strlen (o)

where sisapointer to astring. The countincludesallcharacters up to, but not
including, the first null character. Thereturnvalueisalwaysaninteger.

In the following program fragment, strlen is used to determine whether or not
the contentsof ““inname’’ are short enough to be stored in “name”.

char sinname;

char name[MAX];

if ( strlen(inname) < MAX)
strepy( name, inname);

4.3.5 Concatenating Characters to a String

The strncat function appends one or more characters to the end of a given
string. The function call has the form:

4-8



Character and String Processing

strncat (det, src, n)
where dst is a pointer to the string to receive the new characters, ercisa pointer
to the string containing the new characters, and n isan integer value giving the
number of characters to be concatenated. The function appends the given
number of characters to the end of the dststring, then returns the pointer dat.

In the following program fragment, strncat copies the first three charactersin
“letter” tothe end of ““cover”.

char cover[] = "cover”;
char letter{] = "letter”;

strncat( cover, letter, 3);

Thisexample creates the new string ‘‘coverlet” in ““cover”.

4.3.86 Comparing Characters in Strings
The strnemp function compares one or more pairs of characters in two given
strings and returns an integer value which gives the result of the comparison.
The function call has the form:
strnemp (81, 82, n)
where #1 and &2 are pointers to the strings to be compared, and n is an integer
value giving the number of characters to compare. The function returns zeroif
the first n characters are identical. Otherwise, the function returns the
difference between the ASCII values of the first unequal pair of characters. The
function generates the difference by subtracting the second string character
from the first.
For example, the function call
strncmp(” Character A”, "Character B”, 5)
returns zero because the first five characters are identical, but the function call
strnemp(” Character A”, "Character B”, 11)

returns-1because the value of“B’’ is one greater than “‘A".

Notethat the function continuesto compare characters until amismatchor the
end of astringisfound.

4-9



4.3.7 Copying Characters to a String

The strrcpyfunction copies a given number of characters to a given string. The
functioncallhas the form:

strncpy (det, ere, n)

where dst is a pointer to the string to receive the characters, ere is a pointer to
the string containing the characters, and n is an integer value giving the
number of characters to be copied. The function copies either the first n
characters in erc to det, or if erc has fewer than n characters, copies all
characters up to the first null character. The function always returns the
pointer det.

In the following program fragment, strncpy copies the first three charactersin
“date’ to‘‘day”’.

char buf [MAX];
char date [29) = {"Fri Dec 29 09:35:44 EDT 1982"};
char #day = buf;

strnepy( day, date, 3);

In this example, “‘day’ receives thestring “Fri’’.

4.3.8 Reading Values from a String

The escanffunction readsone or more valuesfrom a given character string and
stores the values at a given memory location. The function is similar to the
scanf function which reads values from the standard input. The function call
has the form:

sscanf (s, format, argptr ...)

where & is a pointer to the string to be read, format is a pointer to the string
defining the format of the values to be read, and argptr is a pointer to the
variable that is toreceive the values read. If more thanone argptrisgiven, they
must be separated with commas. The format string may contain the same
formats as given for scanf(see ecanf(S) in the XENIX Reference Manual). The
function always returns the number of valuesread.

The function is typically used to read values from a string containing several
values of different formats, or to read values from a program’s own input
buffer. For example, in the following program fragment eecanf reads two
values from the string pointed to by ‘‘datestr”.

4-10



Character and String Processing

char datestr[] = {"THU MAR 29 11:04:40 EST 1983"};
char month([4];
char year[5);

sscanf(datestr,” %*3s%35%+25%+85%+35%45” ,month,year);
printf(” %s, %s\n",month,year);

The first value (a three-character string) is stored at the location pointed to by
“month”, the second value (a four-character string) is stored at the location
pointed toby “year”.

4.3.9 Writing Values to a String

The sprintffunction writes one or more values to a given string. The function
call hasthe form:

sprintf (s, format |, arg] ...)

where ¢ is a pointer to the string to receive the value, format is a pointer to a
string which defines the format of the values to be written, and arg is the
variable or value to be written. If more than one arg is given, they must be
separated by commas (,). The format string may contain the same formats as
givenfor printf(see printf(S) in the XENIX Reference Manual). After all values
are written to the string, the function adds a null character (\0) to the end of
the string. The function normally returnszero, but willreturn anonzerovalue
ifanerror isencountered.

The function is typically used to build a large string from several values of
different format. For example, in the following program fragment sprintf
writes three values to the string pointed to by *‘cmd”.

char emd[100};

char *doc = " Jusr/src/cmd/cp.c”
int width = 50;

int length = 60;

sprintf(cmd,”pr -w%d -1%d %s\n",width,length,doc);
system(cmd);

In this example, the string created by sprintfis used in a call to the system
function. The first two values are the decimal numbers given by “width” and

“length”. The last value is astring (a filename) and is pointed to by doc. The
finalstring has the form:

pr -w50 -160 /usr/src/cmd/cp.c

Note that the string to receive the values must have sufficient length to store
thosevalues. Thefunctioncannot check for overflow.

4-11






‘hapter 5
[sing Process Control

Introduction 5-1

Using Processes 6-1

CallingaProgram 5-1
StoppingaProgram §-2

Starting aNew Program 5-3

Executing a Program Through aShell 5-5
Duplicating a Process 5-5

Waiting for aProcess 5-6

Inberiting Open Files 5-7

0 ProgramExample 5-7



»



Using Process Control

6.1 Introduction

This chapter describes the process control functions of the standard C library.
The functions let a program call other programs, using a method similar to
callingfunctions.

There are a variety of process control functions. The system and ezit functions
provide the highest level of execution control and are used by most programs
that need a straightforward way to call another program or terminate the
current one. The ezeel, ezecv, fork, and wait functions provide low-level
control of execution and are for those programs which must have very fine
control over their own execution and the execution of other programs. Other
process control functions such as abort and ezec are described in detail in
section Sof the XENIX Reference Manual.

The process control functions are a part of the standard Clibrary. Since this
library is automatically read when compiling a C program, no special library
argumentis required wheninvoking the compiler.

6.2 Using Processes

“Process” is the term used to describe a program executed by the XENIX
system. A process consists of instructions and data, and a table of information
about the program, such as its allocated memory, open files, and current
execution status.

You create a process whenever you invoke a program through a shell. The
system assigns a unique process ID to a program when it is invoked, and uses
this ID to control and manage the program. The unique IDs are needed in a
system running several processes at the same time.

You can also create a process by directing a program to call another program.
This causes the system to perform the same functions as when it invokes a
program through a shell. In fact, these two methods are actually the same
method; invoking a program through a shell is nothing more than directing a
program (the shell) to callanother program.

The system handles all processes in essentially the same way, so the sections
that follow should give you valuable information for writing your own
programsand an insight into the XENIX system itself.

6.3 Calling a Program

The system function calls the given program, executes it, and then returns
control to the original program. The function call has the form:

51



system (command-line)

where command-line is a pointer to a string containing a shell command line.
The command line must be exactly as it would be typed at the terminal, that is,
it must begin with the program name followed by any required or optional
arguments. For example, the call

system(” date”);

causes the system to execute the date command, which displays the current
time and date at the standard output. The call

system(”cat >response”);

causes the system to execute the cat command. In this case, the standard
output is redirected to the file reeponse, so the command reads from the
standard input and copies thisinput to the file response.

The system function is typically used in the same way as a function call to
execute a program and return to the original program. For example, in the
following program fragment system calls a program whose name isgivenin the
string “cmd”.

char *name, *cmd;

printf("Enter filename: ");
scanf("%s", name);
sprintf(cmd, "cat %s ", name);
system(cmd);

Note that the string in ““emd” is built using the sprintffunction and contains
the program name c at and an argument (the filename read by scanf). The effect
is to execute the cat command with the given filename.

When using the system function, it is important to remember that buffered
input and output functions, such as getc and putc, do not change the contentsof
their buffer until it is ready to be read or flushed. If a program usesone of these
functions, then executes a command with the eystem function, that command
may read or write data not intended for its use. To avoid this problem, the
program should clear all buffered input and output before making a call to the
eyetem function. You can do this for output with the flush function, and for
input with the setbuf function described in the section “Using More Stream
Functions” in Chapter 2.

6.4 Stopping a Program

The ezit function stops the execution of a program by returning control to the
system. Thefunction call hasthe form:

5-2



Using Process Control

exit (statue)

where status is the integer value to be sent to the system as the termination
status.

The function is typically used to terminate a program before its normal end,
such as after a seriouserror. For example, in the following program fragment
ezit stops the program and sends the integer value “2” to the system if the
Jopenfunction returns the null pointer valueNULL.

FILE sttyout;

if ( fopen(ttyout,”r”) === NULL )
exit(2);

Note that the ezit function automatically closes each open file in the program
before returning to the system. This means no explicit calls to the felose or
close functionsare required before an exit.

6.6 Starting a New Program
The ezecland ezecv functions cause the system to overlay the calling program
with the given one, allowing the calling program to terminate while the new
program continues execution.
The ezeclfunction call has the form:

execl (pathname, command-name, argptr ...)
where pathname is a pointer to a string containing the full pathname of the
command you want to execute, command-name is a pointer to a string
containing the name of the program you want to execute, and argptr is one or
more pointers to strings which contain the program arguments. Each argptr
must be separated from any other argument by acomma. The last argptrinthe
list must be the null pointer value NULL. For example, in the call

execl(” /bin/date”, "date”, NULL);

the date command, whose full pathname is *‘/bin/date”, takes no arguments,
andin the call

execl(” /bin/cat”, "cat”, filel, file2, NULL);

the cat command, whose full pathname is ‘‘/bin/cat”, takes the pointers
“file1” and “file2” as arguments.

The ezecv function call has the form:

53



execv (pathname, ptr);

where pathname is the full pathname of the program you want to execute, and
ptris pointer to an array of pointers. Each element in the array must point to a
string. The array may have any number of elements, but the first element must
point to a string containing the program name, and the last must be the null
pointer, NULL.

The ezecl and ezeco functions are typically used in programs that execute in
two or more phases and communicate through temporary files (for example a
two-pass compiler). The first part of such a program can call the second part by
giving the name of the second part and the appropriate arguments. For
example, the following program fragment checks the status of “errflag”, then
either overlays the current program with the program pass?2, or displays an
error message and quits.

char stmpfile;
int errflag;

if (errfiag == 0
exec](” fusr/bin/pass2”, "pass2”, tmpfile, NULL);
else {
fprintf(stderr, "Error %d: Quitting”, errflag);
exit(2);

The ezecv function is typically used to pass arguments to a program when the
precise number of arguments is not known beforehand. For example, the
following program fragment reads arguments from the command line
(beginning with the third one), copies the pointer of each to an element in
“‘cmd”, sets the last element in “cmd” to NULL, and executes the cat command.

char *cmd| J;

cmd[0] = "cat”;

for (i=3; i<argc; i++)
cmd[i] = argv]i];

cmd[arge] = NULL;

execv(” /bin/cat”, cmd);

The ezecl and ezecov functions return control to the original program only if
there isanerror in finding the given program (e.g., a misspelled pathname or no
execute permission). This allows the original program to check for errors and
display an error message if necessary. For example, the following program
fragment searches for the program dieplayin the /usr/bin directory.

execl(” /usr/bin/display”, "display”, NULL);
fprintf(stderr, "Can’t execute 'display’ \n");

5-4



Using Process Control

If the program display is not found or lacks the necessary permissions, the
original program resumes control and displays an error message.
Note that the ezecl and ezecv functions will not expand metacharacters (e.g.,
<,>,*,7 and []) givenin the argument list. Ifa program needsthesefeatures,
it can use ezeclor ezecvto call ashell as described in the next section.
5.8 Executing a Program Through a Shell
One drawback of the ezecland ezecv functions is that they do not provide the
metacharacter features of a shell. One way to overcome this problem is to use
ezeclto execute a shelland let the shell execute the command you want.
The function call has the form:

execl (" /bin/sh”,"sh”,"-c”, command-line, NULL);
where command-line is a pointer to the string containing the command line
needed to execute the program. The string must be exactly asit would appear if
typed at the terminal.
For example, a program can execute the command

cat *.c
(which contains the metacharacter * ) withthe call

execl(” /bin/sh”, "sh”, "—c", " cat *.c”, NULL);
In this example, the full pathname /bin/ek and command name sh start the
shell. The argument “—c’’ causes the shell to treat the argument ““cat *.c” asa
whole command line. The shell expands the metacharacter and displaysallfiles
which end with .¢, something that the cat command cannot do by itself.

6.7 Duplicating a Process

The fork function splits an executing program into two independent and fully-
functioning processes. The function call hasthe form:

fork ()
No arguments arerequired.
The function is typically used to make multiple copies of any program that
must take divergent actions as a part of its normal operation, e.g., a program
that must use the ezecl function yet still continue to execute. The original

program, called the “parent” process, continues to execute normally, just as it
would after any other function call. The new process, called the ‘‘child”

5-5



process, starts its execution at the same point, that is, just after the fork call.
(The child never goes back to the beginning of the program to start execution.)
The two processes are in effect synchronized, and continue to execute as
independent programs.

The fork function returns a different value to each process. To the parent
process, the function returns the process ID of the child. The process ID is
always a positive integer and is always different than the parent’s ID. To the
child, the function returns 0. All other variables and values remain exactly as
they were in the parent.

The return value is typically used to determine which steps the child and
parent should take next. For example, in the program segment

char scmd;

if (fork() == 0)
execl(" /bin/sh”, "sh”, "-c”, cmd, NULL);

The child’s return value, 0, causes the expression “fork() === 0", to be true,
and therefore the ezecl function is called. The parent’s return value, on the
other hand, causes the expression to be false, and the function call is skipped.
Executing the ezeclfunction causes the child to be overlayed by the program
givenby “command’’. This doesnot affect the parent.

Ifforkencounters an error and cannot create a child, it will return the value -1.
Itisagoodideato check for this value after each call.

5.8 Waiting for a Process

The wait function causes a parent process to wait until its child processes have
completed their execution before continuing its own execution. The function
call hasthe form:

wait (ptr)

where ptris a pointer to an integer variable. It receives the termination status
of the child from both the system and the child itself. The function normally
returns the process ID of the terminated child, so the parent may check it
against the value returned by fork.

The function is typically used to synchronize the execution of a parent and its
child, and is especially useful if the parent and child processes access the same
files. For example, the following program fragment causes the parent to wait
while the program named by ‘pathname” (which has overlaid the child
process) finishesits execution.

5-6



Using Process Control

int status;
char *pathname;
char *cmd| };

if (fork() == 0)
execv(pathname, cmd);
wait(&status);

The wait function always copies a status value to its argument. The status
value is actually two 8-bit values combined into one. The low-order 8 bitsis the
termination status of the child as defined by the system. Thisstatusiszerofor
normal termination and nonzero for other kinds of termination, such as
termination by an interrupt, quit, or hangup signal (see signal(S) in the XENIX
Reference Manual for a description of the various kinds of termination). The
next 8 bitsis the termination statusof the child as defined by itsown call to ezit.
If the child did notexplicitly call the function, thestatusis zero.

6.9 Inheriting Open Files

Any program called by another program or created as a child process to
aprogram automatically inherits the original program’s open files and
standard input, output, and error files. This means if the file was openin the
original program, it will be openin the new program or process.

A new program also inherits the contents of the input and output buffers used
by the open files of the original program. To prevent a new program or process
from reading or writing data that is not intended for its use, these buffers
should be flushed before calling the program or creating the new process. A
program can flush an output buffer withthe flushfunction, and aninput buffer
with eetbuf.

5.10 Program Example

This section shows how to use the process control functions to control a simple
process. The following program starts a shell on the terminal given in the
command line. The terminal is assumed to be connected to the system through
aline that hasnot been enabled for multiuser operation. .

57



#tinclude <stdio.h>
main(arge, argv)

int argc;

char #argv| J;

int status;

if (arge < 2) {
fprintf(stderr,”No tty given.0);

exit(1);
}
if (fork() ==
if (freopen(argv|1],"r",stdin) == NULL)
exit(2);
if (freopen(argv(1],”w” stdout) === NULL)
exit(2);
if (freopen(argv[1],"w",stderr) == NULL)
exit(2);

execl(" /bin/sh”,”sh” ,NULL);

wait(&status);
if (status == 512)
fprintf("Bad tty name: %s0, argv(1]);

Inthisexample, the fork function creates a duplicate copy of the program. The
child changes the standardinput, output, anderror files to the new terminal by
closing and reopening them with the freopen function. The terminal name
pointed to by “argv” must be the name of the devicespecialfile associated with
the terminal, e.g., *‘/dev/tty03”. The ezeclfunction then calls the shell which
uses the new terminal asitsstandard input, output, and error files.

The parent process waits for the child to terminate. The ezit function
terminates the process if an error occurs when reopening the standard files.
Otherwise, the process continues until the CNTRL-D key is pressed at the new
terminal.

5-8



Chapter 6
Creating and Using Pipes

6.1 Introduction 6-1

6.2 Opening aPipetoa NewProcess 6-1

6.3 Reading and Writing toaProcess 6-2

6.4 ClosingaPipe 6-2

6.5 Opening aLow-LevelPipe 6-3

6.6 Reading and Writing toa Low-Level Pipe 6-4 -
6.7 Closing a Low-Level Pipe 6-4

6.8 Program Examples 6-5






Creating and Using Pipes

8.1 Introduction

A pipe is an artifical file that a program may create and use to passinformation
toother programs. A pipe is similar to a file in that it has a file pointer and/or a
file descriptor and can be read from or written to using the input and output
functions of the standard library. Unlike a file, a pipe does not represent a
specific file or device. Instead a pipe represents temporary storage in memory
that isindependent of the program’sown memory and is controlled entirely by
the system.

Pipes are chiefly used to pass information between programs, just as the shell
pipe symbol (| ), is used to pass the output of one program to the input of
another. This eliminates the need to create temporary files to passinformation
to other programs. A pipe can also be used as a temporary storage place for a
single program. A program can write to the pipe, then read that information
back atalater time.

The standard library provides several pipe functions. The popen and pcloee
functions control both a pipe and a process. The popen function opens a pipe
and creates a new process at the same time, making the new pipe the standard
input or output of the new process. The pclose function closes the pipe and
waits for termination of the corresponding process. The pipe function, on the
other hand, gives low-level access to a pipe. The function is similar to the open
function, but opens the pipe for both reading and writing, returning two file
descriptorsinstead of one. The program can either use both sidesof the pipe or
close the one it does not need. The low-level input and output functions read
and writecan beusedtoreadfrom and write to a pipe. Pipefile descriptorsare
used in the same way asother file descriptors.

8.2 Opening a Pipe to a New Process

The popen function creates a new process and then opens a pipe to the standard
input or output file of that new process. The function call hasthe form:

popen (command, type)

where commandis a pointer to a string that contains a shell command line, and
type is a pointer to the string which defines whether the pipe is to be opened for
reading or writing by the original process. It may be “r’’ for reading or “w” for
writing. The function normally returns the file pointer to the open pipe, but
will return the null pointer valueNULL if an error isencountered.

The function is typically used in programs that need to call another program
and pass substantial amounts of data to that program. For example, in the
following program fragment popen creates a new processfor the cat command
and opens a pipe for writing.

6-1



FILE *pstrm;
pstrm = popen(” cat >response”,”w”");

The new pipe given by *‘pstrm” links the standard input of the command with
the program. Data written to the pipe will be used as input by the cat
command.

6.3 Reading and Writing to a Process

The fscanf, fprintf, and other stream functions may be used to read from or
write to a pipe opened by the popen function. These functions have the same
form as described in Chapter 2.

The fscanf function can be used to read from a pipe opened for reading. For
example, in the following program fragment fscanfreads from the pipe given
by pstrm.

FILE spstrm;
char name|20);
int number;

pstrm = popen(” cat”,"r");
fscanf(pstrm, " %s %d”, name, &number);

This pipe is connected to the standard output of the cat command, so fecanf
reads the first name and number written by cat to its standard output.

The fprintf function can be used to read from a pipe opened for writing. For
example, in the following program fragment fprintf writes the string pointed to
by “buf” to the pipe given by “‘pstrm’’.

FILE spstrm;
char buf[MAX];

pstrm = popen("wc”," W");
fprintf(pstrm,” %s” ,buf)

This pipe is connected to the standard input of the wec command, so the
command reads and counts the contents of “buf”.
6.4 Closing a Pipe

The pclose function closesthe pipe opened by the popen function. The function
call has the form:

pclose (stream)

6-2



Pstrrm Popenfrey, )response" "w”};
tne ibe give by sty gy he s andy 2Pt of gy COMInang With
the Plogram 2 Writtap h ipe Wil ), lige inpy; by the cat
COMmmangy
6.3 €ading nd Writing to a p, Ces,
be foe, ) fpn'ntf, and othe, Stre Rctiong May pbe use ©ad frop, o,
Write ¢o a %peneq by the p, Pen tion, These I‘unctio h the g,
forp, asdeser, bed i Chapter 2,
he 7, 7/ funcy; 2 be ygeq 2d from 2 pipe P ro ding, For
€xam €, in the foll, TOgram, f, Ement £, by © given
by pes
ILE *Pstrm,
Rameop].
ing number;
pst Popen Car” . n );
fsca.nf{ m, * %d”, ame, &number)
his Pipe nergeq Utpy the pay ) s 80 fuu anf
2dsthe g e b ten by o its Standa, 4 o
Jpring unet; be Used ¢, fro 2 pipa ed for Writing. For
ble, in e follg Prograp, mentfpn'affwr S the strin po.imedt
Jufry, bepip Ven by i "
E. Stem;
'ar byp; H
= en(” we”,"w”},
nt!(pstrm,"%s",bu!‘)
S cop, to the andapg inpyt of the we command, 8 th
reads dcounes the conzenzsof “byp»
ing o Pipe



Creating and Using Pipes

8.1 Introduction

A pipe isan artifical file that a program may create and use to pass information
to other programs. A pipe is similar to a file in that it has a file pointer andfor a
file descriptor and can be read from or written to using the input and output
functions of the standard library. Unlike a file, a pipe does not represent a
specific file or device. Instead a pipe represents temporary storage in memory
that isindependent of the program’sown memory and is controlledentirely by
the system.

Pipes are chiefly used to pass information between programs, just as the shell
pipe symbol { | ), is used to pass the output of one program to the input of
another. This eliminates the need to create temporary files to passinformation
to other programs. A pipe can also be used as a temporary storage place for a
single program. A program can write to the pipe, then read that information
back ata later time.

The standard library provides several pipe functions. The popen and pclose
functions control both a pipe and a process. The popen function opens a pipe
and creates a new process at the same time, making the new pipe the standard
input or output of the new process. The pclose function closes the pipe and
waits for termination of the corresponding process. The pipe function, on the
other hand, giveslow-level access to a pipe. The function is similar tothe open
function, but opens the pipe for both reading and writing, returning two file
descriptors instead of one. The program caneither useboth sidesof the pipe or
close the one it does not need. The low-level input and output functions read
and write can be used to read from and write to a pipe. Pipe filedescriptorsare
used in the same way asother file descriptors.

6.2 Opening a Pipe to a New Process

The popen function creates a new process and then opens a pipe to the standard
input or output file of that new process. The function call hasthe form:

popen (command, type)

where commandis a pointer to a string that contains a shell command line, and
type is a pointer to the string which defines whether the pipe is to be opened for
reading or writing by the original process. It may be “r”’ for reading or “‘w” for
writing. The function normally returns the file pointer to the open pipe, but
will return the null pointer value NULL if an error isencountered.

The function is typically used in programs that need to call another program
and pass substantial amounts of data to that program. For example, in the
following program fragment popen createsa new processfor the cat command
and opens a pipe for writing.

6-1



Creating and Using Pipes

The system copies the end-of-file value EOF to a pipe when the process that
made the original pipe and every process created or called by that process has
closed the writing side of the pipe. This means, for example, that if a parent
process is sending data to a child process through a pipe and closes the pipe to
signal the end of the file, the child process will not receive the end-of-file value
unlessit hasalready closed itsown writeside of the pipe.

6.8 Program Examples

This section shows how to use the process control functions with the low-level
pipe function to create functions similar to the popen and pcloee functions.

The first example is a modified version of the popen function. The modified
function identifies the new pipe with a file descriptor rather than a file pointer.
It also requires a “mode” argument rather thana “type” argument, where the
mode isOforreadingor 1for writing.

#include <stdio.h>

#define READ 0
ftdefine WRITE 1
#define tst(a, b) (mode == READ ? (b) : (a))

static  int popen_pid;
popen(cmd, mode)
char *cmd;
int mode;
{ .

int p[2};

if (pipe(p) < 0)

return(NULL);
if ((popen_pid = fork()) == 0) {

close(tst(p|WRITE], p[READ]));
close(tst(0, 1));

dup(tst(p[READ], p[WRITE]));
close(tst(p|[READ), p[WRITE)));
execl(” /bin/sh”, "sh”, "-c”, cmd, 0);
exit(1); /* sh cannot be found =/

if (popen_pid == -1)
return(NULL);

close(tst(p|READ], p[WRITE]));
) return(tst(p|WRITE], p[READ])));

The function creates a pipe with the pipe function first. It then uses the fork

6-5



function to create two copies cf the original process. Each process has its own
copy of the pipe. The child process decides whether it is supposed to read or
write through the pipe, then closes the other side of the pipe and uses ezeelto
create the new process and execute the desired program. The parent, on the
other hand, closes the side of the pipe it does not use.

The sequence of cloese functions in the child process is a trick used to link the
standard input or output of the child process to the pipe. The first close
determines which side of the pipe should be closed and closes it. If “‘mode” is
WRITE, the writing side is Closed; if READ, the reading side is closed. The
second close closes the standard input or output depending on the mode. If the
mode is WRITE, the input is closed; if READ, the output is closed. The dup
function creates a duplicate of the side of the pipe stillopen. Since the standard
input or output was closed immediately before this call, this duplicate receives
the same file descriptor as the standard file. The system always chooses the
lowest available file descriptor for a newly opened file. Since the duplicate pipe
has the same file descriptor as the standard file it becomes the standard input or
output file for the process. Finally, the last eloee closes the original pipe,leaving
only the duplicate.

The following example is a modified version of the peclose function. The

modified version requires a file descriptor as an argument rather than a file
pointer.

6-6




Creating and Using Pipes

#include <signal.h>

pclose(fd) /* close pipe fd */

int fd;

{ :
1nt r, status;
int (*hstat)(), (*istat)(), (*astat)();
extern int popen_pid;

close(fd);

istat = signal(SIGINT, SIG_IGN);
gstat = signal(SIGQUIT, SIG_IGN);
hstat = signal(SIGHUP, SIG_IGN);

while ((r = wait(&status)) == popen_pid && r l= -1)

if (r ==,-l)
status = -1;

signal(SIGINT, istat);
signal(SIGQUIT, gstat);
signal(SIGHUP, hstat);

return(status);

}

The function closes the pipe first. It then usesa while statement to waitfor the
child process given by “popen_pid”. If other child processes terminate while it
waits, it ignores them and continues to wait for the given process. It stops
waiting assoon as the given process terminates or if no child processexists. The
function returns the termination status of the child, or the value -1if there was
anerror.

The eignal function calls used in this example ensure that no interrupts
interfere with the waiting process. The first set of functions causes the process
to ignore the interrupt, quit, and hang up signals. The last set restores the
signals to their original status. The signal function is described in detail in
Chapter 7, “Using Signals”.

Note that both example functions use the external variable “popen_pid” to
store the process ID of the child process. If more than one pipe isto be opened,
the “popen_pid” value must be saved in another variable before each call to
popen, and this value must be restored before calling peloge to close the pipe.
The functions can be modified to support more than one pipe by changing the
“popen_pid” variable toan array indexed by file descriptor.

6-7






Chapter 7
Using Signals

7.1 Introduction  7-1

7.2 Using the signalFunction  7-1
7.2.1 DisablingaSignal 7-2
7.2.2 Restoring a Signal's Default Action  7-3
7.2.3 Catchinga Signal 7-4
7.2.4 Restoring a Signal  7-6
7.2.5 Program Example 7-6

7.3 Controlling Execution With Signals  7-7
7.3.1 Delaying a Signal's Action ~ 7-7
7.3.2 Using Delayed Signals With System Functions
7.3.3 Using Signals in Interactive Programs  7-9

7.4 Using Signals in Multiple Processes 7-10
7.4.1 Protecting Background Processes 7-11
7.4.2 Protecting Parent Processes 7-12

7-8



e



Using Signals

7.1 Introduction

Thischapter explains how to use C library functions to process signalssentto a
program by the XENIX system. A signalis the system’s response to an unusual
condition that occurs during execution of a program such as a user pressingthe
INTERRUPT key or the system detecting an illegal operation. A signal
interrupts normal execution of the program and initiates an action such as
terminating the program or displaying an error message.

The sigral function of the standard C library letsa program define the action of
asignal. The function can be used to disable a signal to prevent it from affecting
the program. It can alsobe used togive asignal a user-defined action.

The eignal function is often used with the setjmp and longgmp functions to
redefine and reshape the action of a signal. These functions allow programs to
save and restore the executionstateof a program, giving a program a means to
jump from one state of execution to another without a complex assembly
language interface.

To use the signal function, youmust add the line

#include <signal.h>
tothe beginning of the program. The signal.hfile defines the various manifest
constants used as arguments by the function. To use the setjmp and longjmp
functions you must add the line

#include <setjmp.h>
tothe beginning of the program. The setjmp.kfile contains the declaration for

the typej mp_buf, atemplate for saving a program’s current execution state.

7.2 Using the signal Function

The signal function changes the action of a signal from its current action to a
givenaction. The function hasthe form

signal (sigtype, ptr)

where sigtype is an integer or a mainfest constant that defines the signal to be
changed, and ptr is a pointer to the function defining the new action or a
manifest constant giving a predefined action. The function always returns a
pointer value. This pointer defines the signal’s previous action and may be used
in subsequent calls to restore the signal toits previous value.

The ptr may be “SIG_IGN” to indicate no action (ignore the signal) or

“SIG_DFL” to indicate the default action. The sigtype may be “SIGINT” for
interrupt signal, caused by pressing the INTERRUPT key, “‘SIGQUIT” for quit

7-1



XENIX Programmer's Reference

signal, caused by pressing the QUIT key, or “SIGHUP” for hangup signal,
caused by hanging up the line when connected to the system by modem. (Other
constants for other signals are given in signal(S) in the XENIX Reference
Manual.) . :

For example, the f unctioh call
signal(SIGINT, SIG_IGN)

changes the action of the interrupt signal to no action. The signal will have no
effect on the program. The default action isusually to terminate the program.

The following sections show how to use the eignal function to disable, change,
and restore signals.

7.2.1\ Disabling a Signal

You can disable a signal, i.e., prevent it from affecting a program, by using the
“SIG_IGN constant with efgnal. The function call hasthe form

signal (eigtype, SIG_IGN)

where sigtype is the manifest constant of the signal you wish to disable. For
example, the function call

signal(SIGINT, SIG_IGN);
disables the interrupt signal.

The function call is typically used to prevent a signal from terminating a
program executing in the background (e.g., a child process that is not using the
terminal for input or output). The system passes signals generated from
keystrokes at a terminal to all programs that have been invoked from that
terminal. This means that pressing the INTERRUPT key to stop a program
running in the foreground will alsostop a program running inthe background if
it has not disabled that signal. For example, in the following program fragment
signalis used to disable the interrupt signalfor the child.



Using Signals

#finclude <signal.h>
main ()
if (fork() ==

) {
signal(SIGINT, SIG_IGN);
/* Child process. */

}
/* Parent process. */

}

This call does not affect the parent process which continues to receive
interrupts as before. Note that if the parent process is interrupted, the child
process continues to execute until it reachesitsnormal end.

7.2.2 Restoring a Signal's Default Action

You canrestore asignal to its default action by using the “SIG_DFL” constant
with eignal. The function call has the form

signal (sfgtype, SIGDFL)

where sigtype is the manifest constant defining the signal you wish to restore.
For example, the function call

signal (SIGINT, SIG_DFL)
restores the interrupt signal to its default action.
The function call is typically used to restore a cignal after it has been
temporarily disabled to keep it from interrupting critical operations. For

example, in the following program fragment the second call to signal restores
the signal to its default action.

7-3



XENIX Programmer’s Reference

#include <signalh>
ftinclude <stdio.h>

main ()

FILE sfp;
char *record[BUF), filenameMAX];

signal (SIGINT, SIG_IGN);
fp = fopen(filename, " a" );
fwrite(fp, BUF, record, 512);
signal (SIGINT, SIG_DFL);

)

In this example, the interrupt signal is ignored while arecord isrecord from the
file given by “fp”.

7.2.3 Catching a Signal

Youcan catch asignal and define your ownactionforit by providing a function
that defines the new action and giving the function as an argument to signal.
The function call hasthe form

signal (sigtype, newptr)
where sigtype is the manifest constant defining the signal to be caught, and

newptr is a pointer to the function defining the new action. For example, the
function call

signal(SIGINT, catch)

changesthe action of the interrupt signal to the action defined by the function
named catch.

The function call is typically used to let a program do additional processing
before terminating. In the following program fragment, the function catch
definesthenew action forthe interrupt signal.

W

g

Lo



Using Signals

#include <signal.h>
main ()
int catch ();

printf("Press INTERRUPT key to stop.0);
signal (SIGINT, catch);
while () {

/* Body */

catch ()
{

printf("Program terminated.\n");
exit(1);

}

The catchfunction prints the message “Program terminated” before stopping
the program with the ezitfunction.

A program may redefine the action of a signal at any time. Thus, many
programs define different actions for different conditions. For example, in the
following program fragment the action of the interrupt signal depends on the
return value of a function named keytest.

#include <signal.h>
main ()
int catchl (), catch2 ();
if (keytest() == 1)
signal(SIGINT, catchl);

else
signal(SIGINT, catch2);

}

Later the program may change the signal to the other action or even a third
action.

When using a function pointer in the signal call, you must make sure that the
function name isdefined before the call. In the program fragment shown above,
catchland catch2are explicitly declared at the beginning of the main program
function. Their formal definitions are assumed to appear after the signal call.

7-5



XENIX Programmer's Reference

7.2.4 Restoring a Signal

You can restore a signal to its previous value by saving the return value of a
signal call, then using this value in a subsequent call. The function call has the
form:

signal (esgtype, oldptr)

where eigtype is the manifest constant defining the signal to be restored and
oldptris the pointer value returned by a previous eignalcall.

The function call is typically used to restore a signal when its previous action
may be one of many possible actions. For example, in the following program
fragment the previous action depends solely on the return value of a function
keytest.

#include <signal.h>
main () .

int catchl(), catch2();
int (ssavesig)();

if (keytest() === 1)
signal(SIGINT, catchl);
else
signal(SIGINT, catch2);

savesig = signal (SIGINT, SIG_IGN);

compute();
signal(SIGINT, savesig);

}

In this example, the old pointer is saved in the variable ““savesig”. This value is
restored after the function computereturns.

7.2.5 Program Example
Thissection shows how to use the signal function to create a modifed version of
the systemfunction. In this version, system disablesallinterruptsinthe parent

process until the child process has completed its operation. It thenrestoresthe
signals to their previousactions.

7-6



Using Signals

#include <stdio.h>
#include <signal.h>

system(s) /* run command string s */
char =s;

int status, pid, w;
register int (sistat)(), (*qstat)();

if ((pid = fork()) == 0) {
execl(”/bin/sh”, "sh”, "-¢”, s, NULL);
exit(127);

}

istat = signal(SIGINT, SIG_IGN);

gstat = signal(SIGQUIT, SIG_IGN);

while ((w = wait(&status)) {= pid && w I=-1)

if (w == -1)

status = -1;
signal(SIGINT, istat);
signal(SIGQUIT, gstat);
return(status);

'

Note that the parent uses the while statement to wait until the child’s process
ID “pid” isreturned by wast. If waitreturns the error code ““~1” no more child
processes are left, sothe parentreturnsthe error code asitsown status.

.7.3 Controlling Execution With Signals

Signals do not need to be used solely as a means of immediately terminating a
program. Many signals can be redefined to delay their actions or even cause
actions that terminate a portion of a program without terminating the entire
program. The following sections describe ways that signals can be caught and
used to provide control of a program.

7.3.1 Delaying a Signal’s Action

You can delay the action of a signal by catching the signal and redefining its
action to be nothing more than setting a globally-defined flag. Such a signal
does nothing to the current execution of the program. Instead, the program
continues uninterrupted until it can test the flag to see if a signal has been
received. It canthenrespondaccordingtothe valueof the flag.

The key to a delayed signal is that all functions return execution the exact point

at which the program was interrupted. If the function returns normally the
program continues execut.ion just asif nosignal occurred.

7-7



XENIX Programmer’s Reference

Delaying asignal is especially useful in programs that must not be stopped at an
arbitrary point. If, for example, a program updates a linked list, the actionof a
signal can be delayed to prevent the signal from interrupting the update and
destroying the list. For example, in the following program fragment the
function delay used to catch the interrupt signal sets the globally-defined flag
“sigflag’’ and returnsimmediately to the point of interruption.

#include <signal.h>
int sigflag;

main ()

int delay ();
int (*savesig)();
extern int sigflag;

signal(SIGINT, delay); /# Delay the signal. #/
updatelist();
savesig = signal(SIGINT, SIG_IGN); /* Disable the signal. */
if (sigflag)
/* Process delayed signals if any. */

delay ()
{ -
extern int sigflag;

sigflag=1;

}

In this example, if the signal is received while updatelist is executing, it is
delayed until after updatelist returns. Note that the interruptsignalisdisabled
before processing the delayed signal to prevent a change to ‘‘sigflag’’ when it is
beingtested.

Note that the system automatically resets a signal to its default action
immediately after the signal is processed. If your program delays a signal,
make sure that the signal is redefined after each interrupt. Otherwise, the
default action will be taken on the next occurrence of the signal.

7.3.2 Using Delayed Signals With System Functions

When a delayed signal is used to interrupt the execution of a XENIX system
function, such as reador wai't, the system forces the function to stop and return
an error code. This action, unlike actions taken during execution of other
functions, causes all processing performed by the system function to be
discarded. A seriouserror can occur if a program interprets a system function
error caused by delayed signals as a normal error. For example, if a program

7-8



XENIX Programmer’s Reference

Delaying asignalis especially useful in programsthat must not be stopped at an
arbitrary point. If, for example, a program updates a linked list, the action of a
signal can be delayed to prevent the signal from interrupting the update and
destroying the list. For example, in the following program fragment the
function delay used to catch the interrupt signal sets the globally-defined flag
“sigflag’’ and returns immediately to the point of interruption.

finclude <signal.h>
int sigflag;

main ()
int delay ();
int (ssavesig)();

extern int sigfiag;

signal(SIGINT, delay); /* Delay the signal. #/

updatelist();
savesig = signal(SIGINT, SIG_IGN); /¢ Disable the signal. */
if (sigflag)
/* Process delayed signals if any. */
}
delay ()
{

extern int sigflag;

sigflag=1;

}

In this example, if the signal is received while updatelist is executing, it is
delayed until after updatelist returns. Note that the interrupt signal is disabled
before processing the delayed signal to prevent a change to “sigflag’’ when it is
being tested.

Note that the system automatically resets a signal to its default action
immediately after the signal is processed. If your program delays a signal,
make sure that the signal is redefined after each interrupt. Otherwise, the
default action will be taken on the next occurrence of the signal.

7.3.2 Using Delayed Signals With System Functions

When a delayed signal is used to interrupt the execution of a XENIX system
function, such as reador wait, the system forces the function to stop and return
an error code. This action, unlike actions taken during execution of other
functions, causes all processing performed by the system function to be
discarded. A serious error can occur if a program interprets a system function
error caused by delayed signals as a normal error. For example, if a program

7-8



XENIX Programmer’s Reference

The longjmp function has the form

longjmp (buffer)

where buffer is the variable containing the execution state. It must contain
values previously saved with a setbf function. The function copies the values
in the buffer variable to the program counter, data and address registers, and
the process status table. Execution continuesas ifit had just returned from the
setb uffunction which saved the previous execution state. For example, in the
following program fragment setbufsaves the execution stateof the program at
the location just before the main processing loop and longjmp restores it on an
interruptsignal.

#include <signal.h>
ffinclude <setjmp.h>

main()
int onintr();

setjmp(sjbuf);
signal(SIGINT, onintr);

/* main processing loop */

}

onintr ()

printf("\nInterrupt\n”);
longjmp(sjbuf);
}

In this example, the action of the interrupt signal asdefined by onintristo print
the message “Interrupt” and restore the old execution state. When an
interrupt signal is received in the main processing loop, execution passes to
onintr which prints the message, then passes execution back to the main
program function, making it appear as though control is returning from the
eetbuffunction.

7.4 Using Signals in Multiple Processes

The XENIX system passes all signals generated at a given terminal to all
programs invoked at that terminal. This means that a program has potential
access to a signal even if that program is executing in the background or as a
child to some other program. The following sections explain how signals may
be used in multiple processes.

7-10



Using Signals

.7.4.1 Protecting Background Processes

Any program that has been invoked using the shell’s background symbol (&) is
executed as a background process. Such programs usually do not use the
terminal for input or output, and complete their taskssilently. Since these
programs do not need additional input, the shell automatically disables the
signals before executing the program. This means signals generated at the
terminal do not affect execution of the program. This ishow the shell protects
the program from signals intended for other programs invoked from the same
terminal.

In some cases, a program that has been invoked as a background process may
also attempt to catch its own signals. If it succeeds, the protection from
interruption given to it by the shell is defeated, and signals intended for other
programs will interrupt the program. To prevent this, any program which is
intended to be executed as a background process, should test the current state
of asignal before redefining its action. A program should redefine asignal only
if the signal has not been disabled. For example, in the following program
fragment the action of the interrupt signal is changed only if the signal is not
currently beingignored.

ftinclude <signal.h>
main()
{

int catch();

if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal(SIGINT, catch);

/* Program body. */
}

Thisstep lets a program continue to ignore signalsif it is already doingso, and
change the signalifit is not.

7-11



XENIX Programmer’s Reference

7.4.2 Protecting Parent Processes

A program can create and waitfor a child processthat catchesitsown signals if
andonly if the program protectsitselfby disabling all signals before calling the
wait function. By disabling the signals, the parent process prevents signals
intended for the child processesfrom terminating its call to wait. Thisprevents
serious errors that may result if the parent process continues execution before
the child processes are finished.

For example, in the following program fragment the interruptsignalisdisabled
in the parent processimmediately after the child is created.

#include <signal.h>
main ()
int (*saveintr)();

if (fork () == 0)
execl( ... );

saveintr = signal (SIGINT, SIG_IGN);
wait( &status );
signal (SIGINT, saveintr);

}

The signal’s action is restored after the wast function returns normal control to
the parent.

7-12

g



Chapter 8
Using System Resources

8.1 Introduction  8-1

8.2 Allocating Space 81
8.2.1 Allocating Spacefor a Variable  8-1
8.2.2 Allocating Space for an Array  8-2
8.2.3 Reallocating Space  8-3
8.2.4 Freeing Unused Space  8-3

83 Locking Files 8-4
8.3.1 Preparing aFilefor Locking 84
8.3.2 LockingaFile 85
8.3.3 Program Example  8-5

8.4 Using Semaphores  8-6
8.4.1 Creating aSemaphore  8-7
8.4.2 Opening a Semaphore  8-8
8.4.3 Requesting Controlof a Semaphore 8-8
8.4.4 Checking the Statusof aSemaphore 89
8.4.5 Relinquishing Control of a Semaphore  8-9
8.4.6 ProgramExample 8-10

8.5 Using Shared Data 8-12
8.5.1 Creating a Shared Data Segment 8-13
8.5.2 Enteringa Shared Data Segment 8-14
8.5.3 Leaving a Shared Data Segment 8-14
8.5.4 Getting the Current Version Number 8-15
8.5.5 Waiting for aVersion Number 8-15
8.5.6 Freeing a Shared Data Segment 8-16






Using System Resources

8.1 Introduction

This chapter describes the standard C library functions that let programs
share the resources of thie XENIX system. The functions give a program the
means to queue for the use and control of a given resource and to synchronize its
use with use by other programs.

In particular, this chapter explainshow to
~  Allocate memory for dynamically required storage °
- Lock afile to ensure exclusive use by a program
—  Use semaphores to control access toaresource

-~ Sharedataspace to allow interaction between programs

8.2 Allocating Space

Some programs require significant changes to the size of their allocated
memory space during different phases of their execution. The memory
allocation functions of the standard C library let programs allocate space
dynamically. This means a program can request a given number of bytes of
storage for its exclusive use at the moment it needs the space, then free this
space after it has finished using it.

There are four memory allocation functions: malloc, calloe, ralloc, and free.
The malloc and calloc functions are used to allocate space for the first time.
The functionsallocate a given number of bytesand return a pointer to the new
space. The realloc functionreallocates an existing space, allowing it to be used
in a different way. The free function returns allocated space to the system.

8.2.1 Allocating Space for a Variable

The malloc function allocates space for a variable containing agiven number of
bytes. The function call has the form:

malloc (size)

where size is an unsigned number which gives the number of bytes to be
allocated. For example, the function call

table = malloc (4)
allocates four bytes or storage. The function normally returns a pointer to the

starting address of the allocated space, but will return the null pointer value if
there is not enough space to allocate.

8-1



The function is typically used to allocate storage for a group of strings that vary
in length. For example, in the following program fragment malloc is used to
allocate space for ten different strings, each of different length.

int i;
char *temp, *strings[10};
unsigned isize;

for ( i=0; 1<10; i++) {
scanf(” %s", temp);
isize = strlen(temp);
string[i] = malloc(isize);

In this example, the strings are read from the standard input. Note that the
strlenfunction is used to get the size in bytesof each string.

8.2.2 Allocating Space for an Array

The calloc function allocates storage for a given array and initializes each
element in the newarray to zero. The functioncallhasthe form:

calloc (n, size)

where nisthe number of elements in the array, and sizeisthe number of bytes
in each element. The function normally returns a pointer to the starting
address of the allocated space, but will return a null pointer value if there is not
enough memory. For example, the function call

table = calloc (10,4)
allocates sufficient spacefora 10 element array. Each element has4 bytes.

The function is typically used in programs which must process large arrays
without knowing the size of an array in advance. For example, in the following
program fragment calloc is used to allocate storage for an array of values read
from thestandardinput.

int i;
char #table;
unsigned inum;

scanf("%d”, &inum);

table = calloc (inum, 4);

for (i=0; i<inum; i++) :
scanf(”%d”, tableli]);

Note that the number of elements is read from the standard input before the
elementsare read.

8-2



Using System Resources

8.2.3 Reallocating Space

The realloc function reallocates the space at agiven address without changing
the contentsof thememoryspace. Thefunction call has the form:

realloc (ptr, size)

where ptris a pointer to the starting address of the space to be reallocated, and
size is an unsigned number giving the new size in bytesof the reallocated space.
The function normally returns a pointer to the startingaddress of the allocated
space, but will return a null pointer value if there is not enough space to
allocate.

This function is typically used to keep storage as compact as possible. For
example, in the following program fragment realloc is used to remove table
entries.

main ()

char *table;
int i;
unsigned inum;

for (i=inum; i>-1; i--) {
printf(" %d0, stringsi]);
strings = realloc(strings, i*4);

In this example, an entry is removed after it has been printed at the standard
output, by reducing the size of the allocated spacefromits current length to the
lengthgiven by *“i=4”.

8.2.4 Freeing Unused Space

The free function frees unused memory space that had been previously
allocated by a malloc, calloc, or realloc function call. The function call has the
form:

free (ptr)

where ptris the pointer to the starting address of the space to be freed. This
pointer must be the return value of a malloc, calloc, or realloc function.

The function is used exclusively to free space which is no longer used or to free
space to be used for other purposes. For example, in the following program
fragment free frees the allocated space pointed to by ‘‘strings” if the first
element is equal to zero.

8-3



main ()
char stable;

if ( table[0) == -1)
free (table);

8.3 Locking Files

Locking a file is 2 way to synchronize file use when several processes may
require access to a single file. The standard C library provides one file locking
function, the locking function. This function locks any given section of a file,
preventing all other processes which wish to use the section from gaining
access. A process may lock the entire file or only a small portion. In any case,
only the locked sectionisprotected;all other sectionsmay be accessed by other
processes as usual.

File locking protects a file from the damage that may be caused if several
processes try to read or write to the file at the same time. It also provides
unhindered access to any portion of a file for a controlling process. Before a file
can be locked, however, it must be prepared usingthe openand lseek functions
described in Chapter 2, “Using the Standard 1/O Functions.” To use the
locking function, you must add the line

#include <sys/locking.h>

to the beginning of the program. The file sys/locking.h contains definitions for
the modes used with the function.

8.3.1 Preparing a File for Locking

Before a file can be locked, it must first be opened usingthe open function, then
properly positioned by using the lseek function to move the file’s character
pointer to the firstbyte to be locked.

The open function is used once at the beginning of the program to open the file.
The lseek function may be used any number of times to move the character
pointer to each new section to be locked. For example, the following statements
prepare the first 100 bytes beginning at the byte position 1024 from the
beginning of the file reservatione for locking.

fd = open(”reservations”, O_RDONLY)
Iseek(fd, 1024, 0)

8-4

S



Using System Resources

8.3.2 Locking a File

The locking function locks one or more bytes of a given file. The function call
hastheform:

locking (filedes, mode, size)

where filedes is the file descriptor of the file to be locked, mode is an integer
value which defines the type of lock to be applied to the file , eize isa long integer
value giving the size in bytes of the portion of the file section to be locked or
unlocked. The mode may be “LOCK” for locking the given bytes, or
“UNLOCK” for unlocking them. For example, in the following program
fragment locking locks 100 bytes at the current character pointer position in
thefilegivenby “fd”.

#tinclude <sys/locking.h>
main ()

i

int fd,

fd = open(”data”, 2);
locking(fd, LOCK, 100);

The function normally returns the number of bytes locked, but will return -1 if
itencountersan error.

8.3.3 Program Example

This section shows how to lock and unlock a small section in a file using the
locking function. In the following program, the function locks 100 bytesin the

file data which is opened for reading and writing. The locked portion of the file
isaccessed, then lockingis usedagainto unlock the file.

8-5



:tinclude <sys/locking.h>
main()

int fd, err;
char *data;

fd = open(”data”,2); /* Open data for R/W #/

if (fd == 1)
perror(””);
else {
Iseek(fd, 100L, 0); - /* Seek to pos 100 =/
err = lockmg(fd LK_LOCK, 100L); /t Lock bytes 100-200 */
if (err == -1) {

/* process error return */

/* read or write bytes 100 - 200 in the file #/

Iseek(fd, 100L, 0); /* Seek to pos 100 +/
locking(fd, LK_UNLCK, 100L); /* Lock bytes 100-200 +/
}

8.4 Using Semaphores

The standard C library provides a group of functions, called the semaphore
functions, which may be used to control the access to a given system resource.
These functions create, open, and request control of “semaphores.”
Semaphores are regular filesthat have names and entries in the file system, but
contain no data. Unlike other files, semaphores cannot be accessed by more
than one process at a time. A process that wishes to take control of a semaphore
away from another process must wait until that process relinquishes control.
Semaphores can be used to control a system resource, such as a data file, by
requiring that a process gain control of the semaphore before attempting to
access the resource.

There are five semaphore functions: creatsem, opensem, waitsem, nbwastsem,
and sigsem. The creatsem function createsa semaphore. The semaphore may
then be opened and used by other processes. A process can open a semaphore
with the opensem function and request control of a semaphore with the
waitsem or nbwaitsem function. Once a process has control of a semaphore it
can carry out tasks using the given resource. All other processes must wait.
When a process has finished accessing the resource, it can relinquish control of
the semaphore with the sigsem function. This lets other processes get control
of the semaphore and use the corresponding resource.

8-6



Using System Resources

8.4.1 Creating a Semaphore

The createem function creates a semaphore, returning a semaphore number
which may be used in subsequent semaphore functions. The function call has
the form:

creatsem (sem_name, mode)

where sem_name is a character pointer to the name of the semaphore, and
mode is an integer value which defines the access mode of the semaphore.
Semaphore names have the same syntax asregular file names. The names must
be unique. The functionnormally returns aninteger semaphore number which
may be usedin subsequentsemaphorefunctions to refer to the semaphore. The
function returns -1if itencountersan error, such as creating asemaphore that
already exists, or using the name of an existing regular file.

The function is typically used at the beginning of one process to clearly define
the semaphores it intends to share with other processes. For example, in the
following program fragment creatsem creates a semaphore named ‘“ttyl”
before preceding with its tasks.

main ()

int ttyl;
FILE ftt.y};

ttyl = creatsem(”ttyl”, 0777);
fttyl = fopen(”/dev/tty01”, "w");
/* Program body. */

Note that fopen is used immediately after creatsem to open the file /dev/tty01
for writing. Thisisone way to make the association between a semaphore and a
device clear.

The mode ““0777" defines the semaphore’s access permissions. The permissions
are similar to the permissions of a regular file. A semaphore may have read
permission for the owner, for users in the same group as the owner, and for all
other users. The write and execution permissions have no meaning. Thus,
“0777" means read permission for all users.

No more than one process ever need create a given semaphore; all other
processes simply open the semaphore with the opensem function. Once created
or opened, a semaphore may be accessed only by using the waitsem,
nbwaitsem, or stgsem functions. The creatsem function may be used more
than once during execution of a process. In particular, it can be used toreset a
semaphore if a process fails to relinquish control before terminating.

8.7



8.4.2 Opening a Semaphore

The opensem function opens an existing semaphore for use by the given
process. The function call has the form:

opensem (eem_name)

where sem_name is a pointer to the name of the semaphore. This must be the
same name used when creating the semaphore. The function returns a
semaphore number that may be used in subsequent semaphore functions to
refer to the semaphore. The function returns -1 if it encounters an error, such
as trying to open a semaphore that does not exist or using the name of an
existing regular file. ’

The function is typically used by a process just before it requests control of a
given semaphore. A process need not use the function if it also created the
semaphore. For example, in the following program fragment opensem is used
toopen the semaphore named semaphore 1.

main ()
int seml;

if ( (seml = opensem("semaphorel”})) != -1)
waitsem(sem1);

In this example, the semaphore number is assigned to the variable ‘‘sem1”. If
the number is not -1, then “sem1” is used in the semaphore function waitsem
which requests control of the semaphore.

A semaphore must not be opened more than once duringexecution of a process.

8.4.3 Requesting Control of a Semaphore

The waitsem function requests control of a given semaphore for the calling
process. If the semaphore is available, control is given immediately.
Otherwise, the process waits. The function call has the form:

waitsem (sem_num)

where sem_num is the semaphore number of the semaphore to be controlled. If
the semaphore is not available (if it is under control of another process), the
function forces the requesting process to wait. If other processes are already
waiting for control, the request is placed next in a queue of requests. When the
semaphore becomes available, the first process to request control receives it.
When this process relinquishes control, the next process receives control, and so
on. The function returns -1 if it encounters an error such as requesting a

8-8



Using System Resources

semaphore that does not exist or requesting a semaphore that is locked to a
dead process.

The function is used whenever a given process wishes to access the device or
system resource associated with the semaphore. For example, in the following
program fragment wastsem signals the intention to write to the file given by
(lttyl".

main ()

int ttyl;
FILE fttyl;

waitsem( ttyl );
fprintf( fttyl, " Changing tty driver\n");

The function waits until current controlling process relinquishes control of the
semaphore before returning tothe next statement.

8.4.4 Checking the Status of a Semaphore

The nbwastsem function checks the current status of a semaphore. If the
semaphore is not available, the function returns an error value. Otherwise, it
gives immediate control of the semaphore to the calling process. The function
call hasthe form:

nbwaitsem (sem_num)

where sem_num is the semaphore number of the semaphore tobe checked. The
function returns -1 if it encounters an error such as requesting a semaphore
that does not exist. The function also returns ~1 if the process controlling the
requested semaphore terminates without relinquishing control of the
semaphore.

The function is typically used in place of wastsem to take control of a
semaphore.
8.4.5 Relinquishing Control of a Semaphore
The sigsem function causes a process to relinquish control of a given semaphore
and tosignal this fact to all processes waiting for the semaphore. The function
call hasthe form:

sigsem (sem_num)
where sem_num is the semaphore number of the sesmaphore to relinquish. The

semaphore must have been previously created or opened by the process.
Furthermore, the process must have been previously taken control of the

89



semaphore with the waitsem or nbwaitsem function. The function returns-1if
it encounters an error such as trying to take control of a semaphore that does
not exist.

The function is typically used after a process has finished accessing the
corresponding device or system resource. Thisallows waiting processestotake
control. For example, in the following program fragment sigsem signals the
end of control of the semaphore “tty1”.

main ()

int ttyl;
FILE temp, fttyl;

waitsem( ttyl );

while ((c=fgetc(temp)) != EOF)
fputc(c, fttyl);

sigsem( ttyl );

This example also signals the end of the copy operation to the semaphore’s
corresponding device, givenby ‘‘ftty1”.

Note that a semaphore can become locked to a dead process if the process fails
to signal the end of the control before terminating. In such a case, the
semaphore must be reset by using the cre atsem function.

8.4.6 Program Example

This section shows how to use the semaphore functionsto control the accessof a
system resource. The following program creates five different processes which
vie for control of a semaphore. Each process requestscontrol of the semaphore
five times, holding control for one second, then releasing it. Although, the
program performs no meaningful work, it clearly illustrates the use of
semaphores. )

8-10



#define
char
int

int

main()

}
doit(id)
{

err(s)
char #s;

Using System Resources

NPROC 5
semf[] = "_kesemDXOOOXX";

sem_num;
holdsem = 5;

register i, chid;

mktemp(semf);
if ((sem_num = creatsem(semf, 0777)) < 0)
err(” creatsem”);
for (i = 1; i < NPROC; ++i) {
if((chid = fork()) < 0)
err(" No fork”);
else if(chid == 0) {
if((sem_num = opensem(semf)) < 0)
err("opensem”);
doit(i);
exit(0);

zoit(o);
for (i=1; i < NPROC; ++i)
while(wait((int *)0) < 0)

unlink(semf);

while(holdsem—) {
if(waitsem(sem_num) < 0)
err(” waitsem”);
printf(” %d\n”, id);
sleep(1);
if(sigsem(sem_num) < 0)
err("sigsem”);

perror(s);
exit(1);

8-11



The program contains a2 number of global variables. The array ‘“semf”
contains the semaphore name. The nameisused by the creatsemand opensem
functions. The variable “sem_num” is the semaphore number. This is the
value returned by creatsem and opensem and eventually used in waiteem and
stgsem. Finally, the variable “holdsem” contains the number of times each
processrequests control of the semaphore.

The main program function uses the mktemp function to create a unique name
for the semaphore and then uses the name with creatsem to create the
semaphore. Once the semaphore is created, it begins to create child processes.
These processes will eventually vie for control of the semaphore. Aseach child
process is created, it opens the semaphore and calls the dost function. When
control returns from dost the child process terminates. The parent processalso
calls the doit function, then waits for termination of each child process and
finally deletes the semaphore with the unlink function.

The doit function calls the waitsem function to request control of the
semaphore. The function waits until the semaphore is available, it then prints
the process ID to the standard output, waits one second, and relinquishes
control using the s gsem function.

Each step of the program is checked for possible errors. If an error is
encountered, the program calls the errfunction. This function prints an error
message and terminates the program.

8.5 Using Shared Data

Shared memory is 2 method by which one process shares its allocated data
space with another. Shared memory allows processes to pool information in a
central location and directly access that information without the burden of
creatingpipes or temporary files.

The standard C library providesseveral functions toaccessand control shared
memory. The edget function createsand/or adds a shared memory segment to
a given process’s data space. To access a segment, a process must signal its
intention with the sdenterfunction. Once a segment has completed itsaccess, it
can signal that it is finished using the the segment with the edleave function.
The edfree function is used to remove a segment from a process’s data space.
The edgetv and sdwaity functions are used to synchronize processes when
several are accessing the segment at the same time.

Touse the shared data functions, you must add the line
##include <sd.h>

at the beginning of the program. The #d.k file contains definitions for the
mainfest constants and other macrosused by the functions.

8-12



Using System Resources

8.5.1 Creating a Shared Data Segment

The sdget function creates ashared data segment for the current process, or if
the segment already exists, attaches the segment to the data space of the
current process. The function call hasthe form:

sdget (patk, flag [, eize, mode ] )

where path is a character pointer to a valid pathname, flag is an integer value
which defines how the segment should be created or attached, eize is an integer
value which defines the size in bytes of the segment to be created, and mode is
aninteger value which defines the access permissions to be given to the segment
if created. The eize and mode values are used only when creating a segment.
The flag may be SD_RDONLY for attaching the segment for reading only,
SD_WRITE for attaching the segment for reading and writing, SD_CREAT for
creating the segment given by patk if it does not already exist, or SO_UNLOCK
for allowing simultaneous access by multiple processes. The values can be
combined by logically ORing them. The SD_UNLOCK value is used only if the
segment is created. The function returns the address of the segment if it has
been successfully created or attached. Otherwise, the function returns -1 if it
encountersan error.

The function is most often used to create a segment to be shared by another
process. The function may then be used in the other process to attach the
segment to its data space. For example, in the following program fragment
sdgetcreates asegmentand assignsthe addressofthe segment to‘‘shared”.

ffinclude <sd.h>
main ()
char #shared, *spath;

shared = sdget( spath, SD_CREAT, 512, 0777 );
}

When the segment is created, the size *512’’ and the mode “0777"’ are used to
define the segment’s size in bytes and access permissions. Access permissions
are similar to permissions given to regular files. A segment may have read or
write permission for the owner of the process, for users belonging to the same
group as the owner, and for all other users. Execute permission for a segment
has no meaning. For example, the mode “0777” means read and write
permission for everyone, but 0660’ means read and write permissions for the
owner and group processes only. When first created, a segment is filled with
zeroes.

Note that the SD_UNLOCK flag used on systems without hardware support for
shared data may severely degrade the execution performance of the program.

8-13



8.5.2 Entering a Shared Data Segment

The edentersignals a process’sintention to accessthe contents of ashared data
segment. A process cannot effectively access the contents of the segment unless
it entersthe segment. The function callhasthe form:

sdenter (addr, flag)

where addr is a character pointer to the segment to be accessed, and flag is an
integer value which defines how the segment isto be accessed. The flagmay be
SD_RDONLY for indicating read only access to the segment, or SD_NOWAIT for
returning an error if the segment is locked and another process is currently
accessing it. These valuesmay also be combined by logically ORing them.

The function normally waits for the segment to become available before
allowing access to it. A segment is not available if the segment has been created
without SD_UNLOCK flag and another process is currently accessing it.

In general, it isunwise tostay in a shared data segment any longer than it takes
to examine or modify the desired location. The edleave function should be used
after each access. When in a shared data segment, a program should avoid
using system functions. System functions can disrupt the normal operations
required to support shared data and may cause some data to be lost. In
particular, if a program creates a shared data segment that cannot be shared
simultaneously, the program must not call the fork function when it is also
accessing that segment.

8.5.3 Leaving a Shared Data Segment

The edleave function signals a process’s intention to leave a shared data
segment after reading or modifying its contents. The function call has the
form:

sdleave (addr)
where addr is a pointer with type char to the desired segment. The function
returns -1 if it encounters an error, otherwise it returns 0. The return value is
always aninteger.

The function should be used after each accessof the shared data to terminate
the access. If the segment’s lock flag isset, the function must be used after each
access to allow other processes to access the segment. For example, in the
following program fragment edleave terminates each access to the segment
givenby ‘‘shared”.

8-14



Using System Resources

#finclude <sd.h>

main ()

char #shared;

while ( *x+4 1= 0) {
sdenter(shared);

/* write to segment */
sdleave(shared);

8.5.4 Getting the Current Version Number

The edgetv function returns the current version number of the given data
segment. The function call has the form:

sdgetv (addr)

where addr is a character pointer to the desired segment. A segment’s version
number is initially zero, but it is incremented by one whenever a process leaves
the segment using the edleave function. Thus, the version number isa record of
the number of times the segment has been accessed. The function’s return
valueisalwaysaninteger. It returns-1ifit encountersan error.

The function is typically used to choose an action based on the current version
number of the segment. For example, in the following program fragment
edgetv determines whether or not sdenter should be used to enter the segment
given by “shared”.

#$%include <sd.h>

main ()

char #shared;

if (sdgetv(shared) > 10)
sdenter(shared);

In this example, the segment is entered if the current version number of the
segmentis greater than‘‘10".

8.5.5 Waiting for a Version Number

The sdwarty function causes a process to wait until the version number for the
given segment is no longer equal to a given version number. The function call

8-15



hasthe form:

sdwaitv (addr, vnum)
where addrisa character pointer to the desired segment, and vnumis aninteger
value which defines the version number to wait on. The function normally
returns the new version number. It returns -1 if it encounters an error. The
return value isalwaysan integer.
The function is typically used to synchronize the actions of two separate
processes. For example, in the following program fragment the program waits
while the program corresponding to the version number “radical_change”
performsits operationsin the segment.

#tinclude <sd.h>

main ()

int radical_change = 3;

if ( sdwait ( sdseg, radical_change ) == -1)
fprintf(stderr, "Cannot find segment\n”);

Ifanerror occurs while waiting,an error message is printed.

8.5.8 Freeing a Shared Data Segment

The edfree function detaches the current process from the given shared data
segment. The function call has the form:

sdfree (addr)

where addr is a character pointer to the segment to be set free. The function
returnsthe integer value 0, if the segment is freed. Otherwise, it returns -1,

If the process is currently accessing the segment, sdfree automatically calls
edle ave toleave the segment before freeing it.

The contents of segments that have been freed by all attached processes are

destroyed. To reaccess the segment, a process must recreate it using the sdget
function and SD_CREAT flag.

8-16




Chapter 9
Error Processing

9.1 Introduction 9-1

9.2 Using the Standard Error File 9-1
9.3 Usipg theerrno Variable 9-1

9.4 Printing Error Messages 9-2

9.5 Using Error Signals 9-3

9.6 EncounteringSystemErrors 9-3






Error Processing

9.1 Introduction

The XENIX system automatically detects and reports errors that occur when
using standard C library functions. Errors range from problems with accessing
files to allocating memory. In most cases, the system simply reports the error
and lets the program decide how to respond. The XENIX system terminates a
program only if a serious error has occurred, such as a violation of memory
space.

This chapter explains how to process errors, and describes the functions and
variablesa program may use respond to errors.

9.2 Using the Standard Error File

The standard error file is a special output file that can be used by a program to
display error messages. The standard error file is one of three standard files
(standard input, output, and error) automatically created for the program
when it isinvoked.

The standard error file, like the standard output, is normally assigned to the
user’s terminal screen. Thus, error messages written to the file are displayedat
the screen. The file can also be redirected by using the shell’s redirection
symbol (>) For example, the following command redirects the standard error
file to the file erroriiet.

dial 2>errorlist
In this case, subsequent error messagesare written to the given file.

The standard error file, like the standard input and standard output, has
predefined file pointer and file descriptor values. The file pointer stderr may
be used in stream functions to copy data to the error file. The file descriptor 2
may be used in low-level functionsto copy data to the file. For example, in the
following program fragment stderr is used to write the message “Unexpected
end of file’” to the standard error file.

if ( (c=gescazr()) == EOF) _
fprintf(stderr, "Unexpected end of file.\n");

The standard error file is not aflected by the shell’s pipe symbol (|). This means
that even if the standard output of a program is piped to another program,
errors generated by the program will still appear at the terminal screen (or in
the appropriate file if the standard error isredirected).

9.3 Using the errno Variable

The errno variable is a predefined external variable which contains the error

9-1



number of the most recent XENIX system function error. Errors detected by
system functions, such as access permission errors and lack of space, cause the
system to set the errno variable to a number and return control to the
program. The error number identifies the error condition. Thevariablemay
be used in subsequent statements to processthe error.

The errno variable is typically used immediately after a system function has
returned an error. In the following program fragment, errno is -used to
determine the courseofactionafter an unsuccessful callto the openfunction.

if ( (fd=open("accounts”, O_RDONLY)) == -1)
switch (errno) {

case(EACCES):

fd = open(” /usr/tmp/accounts” ,O_RDONLYY);

break;
- default:
exit(errno);

}

In this example, if errno is equal to EACCES (a manifest constant), permission
to open the file accounte in the current directory is denied, so the file isopened
in the directory /uer/tmp instead. If the variable is any other value, the
program terminates.

To use the errno variable in a program, it must be explicitly defined as an
external variable with int type. Note that the file errno.A contains manifest
constant definitions for each error number. These constants may be used in
any program in which the line

#include <errno.h>

is placed at the beginning of the program. The meaning of each manifest
constant is described in Intro(S) in the XENIX Reference Manual.

9.4 Printing Error Messages o

The perror function copies a short error message describing the most recent
system function error to the standard error file. The function call hasthe form:

perror (s)

where ¢ is a pointer to a string containing additional information about the
error. ’

The perror function places the given string before the error message and
separates the two with a colon (:). Each error message corresponds to the
current value of the errno variable. For example, in the following program
fragment pe rror displays the message

9-2



Error Processing

accounts: Permission denied.
iferrnoisequal to the constant EACCES.

if ( errno == EACCES ) {

perror(”accounts”);

fd = open ("/usr/tmp/accounts”, O_RDONLY);
}

All error messages displayed by perror are stored in an array named
sys_errno, an external array of character strings. The perror function uses
the variable errno as the index to the array element containing the desired
message.

9.5 Using Error Signals

Some program errors cause the XENIX system to generateerror signals. These
signals are passed back to the program that caused the error and normally
terminate the program. The most common error signals are SIGBUS, the bus
error signal, SIGFPE, the floating point exception signal, SIGSEGV, the segment
violation signal, SIGSYS, the system call error signal, and SIGPIPE, the pipe
error signal. Other signals are described in signal(S) in the XENIX Reference
Manual.

A program can, if necessary, catch an error signal and perform its own error
processing by using the signalfunction. This function, as described in Chapter
7, “Using Signals” can set the action of a signal to a user-defined action. For
example, the function call

signal(SIGBUS, fixbus);

sets the action of the bus error signal to the action defined by the user-supplied
function fizbus. Such a function usually attempts to remedy the problem, or at
least display detailed information about the problem before terminating the
program.

For details about how to catch, redefine, and restore thesesignals, see Chapter
7.

9.6 Encountering System Errors

Programs that encounter serious errors, such as hardware failures or internal
errors, generally do not receive detailed reports on the cause of the errors.
Instead, the XENIX system treats these errors as ‘‘system errors’’, and reports
them by displaying a system error message on the system console. This section
briefly describes some aspects of XENIX system .rrors and how they relate to
user programs. For a complete list and description of XENIX system errors, see
meesages(M) in the XENIX Reference Manual.

9-3



Most system errors occur during calls to system functions. If the system error is
recoverable, the system will return an error value to the program and set the
errno variable to an appropriate value. No other information about the error
is available.

Although the system lets two or more programs share a given resource, it does
not keep close track of which program is using the resource at any given time.
When an error occurs, the system returns an error value to all programs
regardless of which caused the error. No information about which program
caused the error is available.

System errors that occur during routine /O operations initiated by the XENIX
system itself generally do not affect user programs. Such errors cause the
system to display appropriate system error messages on the system console.

Some system errors are not detected by the system until after the
corresponding function has returned successfully. Such errors occur when data
written to a file by a program has been queued for writing to disk at a more
convenient time, or when a portion of data to be read from disk is found to
already be inmemory and theremainingportionis not read until later. Insuch
cases, the system assumes that the subsequent read or write operation will be
carried out successfully and passes control back to the program along with a
successful return value. If operation is not carried out successfully, it causes a
delayederror.

When a delayed error occurs, the system usually attempts toreturnanerroron
the next call to a system function that accesses the same file or resource. If the
program has already terminated or does not make a suitable call, then the error
isnot reported.

9-4

=,



Appendix A
AssemblyLanguage Interface

A.l Eﬂmu é.
1. isters and Renirn Values1
A s






Assembly Language Interface

Al Introduction

‘When mixing MC68000 assembly language routines and compiled C routines, there
areseveralthingstobe awareof:

e RegistersandReturn Values
e CallingSequence

e  StackProbes

With an understanding of these three topics, you should be able to write both C
programs that call MC68000 assembly language routines and assembly language
routinesthat call compiled Croutines.

A.l1.1 Registers and Return Values

Function return values are passed inregisters if possible. The setof machineregisters
used is calledthe save set, and includes the registers from d2 —d7 anda2 —a7that are
modified by a routine. The compiler assumesthat these registers are preservedbythe
callee, and saves them itself when it is generating code for the callee (whena C
compatible routine is called by another routine, we refertothe calling routine asthe
caller. We refer to the called routine asthe callee.) Note that a6 and a7 are in effect
savedbyalink instructionat procedurcentry.

The function return value is indD. The current floating point implementation returns
the high order 32 bits of doubles in d!, and the low order 32 bits ind0. Functions that
returnstructure values (not pointersto the values) dosoby loading 40 with a pointertoa
staticbuffercontainingthe structurevalue.

Thismakesthefollowing twofunctionsequivalent:

struct foo proc ()t
struct foo this;

rctum (this);
]

struct foo *proc ()!
struct foo this;
static struct foo temp;

tcmp = this;
return (&temp);

1
I

This implementation allows recursive reentrancy (as long as the explicit form is not
used, since the first sequence is indivisible but not the second). However, this
implementation does nor permit multitasking reentrancy. Notethatthe latterincludes
theXENIX signal(3)call.

Setjmp(3) and longjmp(3) can not be implemented as they are on the PDP—11,
because each procedure saves only the registers from the save set that it will modify.
This makes it difficult to get back the current values of the register variables of the

A-1



XENIX Programmer’s Reference

procedure that is being setjmpedto. Hence, register variable values afteralongjmpare
the same as before a comesponding setjmp is called. If you need local variables to
changebetweenthecall of setjmp andlongjmp, they cannotbe register variables.

A.l.2 Calling Sequence

The calling sequence is straightforward: arguments are pushed onthe stack from the
lasttofirst:i.e., fromrighttoleftasyoureadtheminthe Csource. Thepushquantumis
4 bytes, so if you are pushing a character, you must extend it appropriately before
pushing. Structures and floating point numbers that are larger than4 bytes are pushed
in increments of 4 bytes sothatthey end up inthe same order in stack memory asthey
arein any othermemory. Thismeanspushingthelast word firstandlongword padding
the last word (the first pushed) if necessary. The caller is responsible for removing his
ownarguments. Typically, an

addql #constant,sp

is done. It is not really important whether the caller actually pushes and pops his
arguments or just storesthem in a static area at the top of the stack, but the debugger,
adb, examines the addgl or addw from the sp todecide how many arguments there
were.

A.13 Stack Probes

XENIX is designed to dynamically allocate stack for local variables, function
arguments, return addresses, etc. To do this, the XENIX kernel checks the offending
instruction when a memory fault occurs. If it is a stack reference, the kernel maps
enough stack memory for the instructionto complete its execution successfully. Then
the procedure continues execution where it left off. Generally, this means restarting
the offending memory reference instruction (usually a push or store). Unfortunately,
theMC68000doesnotprovide awaytorestartinstructions.

Therefore, we needto perform a special instruction, which we call a stack probe, that
potentially causcs the memory fault, but that has noeffect other thanthe memory fault
itself. The kernel can then allocate any needed stack memory, ignore the factthatthe
stack probe instruction did not complete, and continue on to the next instruction.
When we perform a stack probe and a memory fault occurs, the kernel allocates
additionalmemory forthe stack. The stackprobeinstructionf or68000XENIX is

tstb —value(sp)

Value mustbe negative: since anegativeindexfrom thestack pointerisabove thetopof
the stack— an otherwise absurd reference— XENIX knows that this instruction can
onlybeastackprobe.

Forthe general case, usethe following procedure entry sequence:

procedure_entry: .
link a6,#—savesize
tstb —pushsize—slop—8(sp)

Anyregistersamong d2—d7 and a2—aSthatareusedinthis procedure aresaved with a
moveml instructionafter this sequence. The number of registers savedin the moveml
needs to be accounted for in the push size. Thus, pushsize is the sum of the number of

A-2

i



Assembly Language Interface

bytes pushed as temporaries, save areas, and arguments by the whole procedure. The

8 bytes are the space for the return address and frame pointer save (by the link
instruction) of anested call. The slop istolerance so that extremely short runtimes that
use little stack do not need to perform a stack probe. Thetolerance is intentionally kept
small to conserve memory, so make sure you understand what you are doing before

youconsider leavingouta stack probein yourassemblyprocedures.

1n most cases, unless you are pushing hugé structures or doing tricks with the stack
withinyourprocedure, youcanusethe following instruction for your stackprobe:

tstb - 100(sp)
This makes sure that enough space has been allocated for most of the usual things you
mightdowiththe stackandisenough forthe XENIXruntimesthat donotperform stack

probes. Note that you do not need to consider space allocated by the link instructionin
thisstackprobe, sinceitisalready addedby indexing of fthe stack pointer.



Assembly Language Interface

Al Introduction

When mixing MC68000 assembly language routines and compiled C routines, there
areseveralthingstobe awareof:

o  RegistersandReturn Values
e CallingSequence

e  StackProbes

With an understanding of these three topics, you should be able to write both C
programs that call MC68000 assembly language routines and assembly language
routines that call compiled Croutines.

A.l.1 Registers and Return Values

Function return values are passed in registers if possible. The set of machine registers
used is called the save set, and includes the registers from d2 —d7 anda2 —a7that are
modificd by aroutine. The compiler assumesthat these registers are preserved by the
callee, and saves them itself when it is generating code for the callee (whena C
compatible routine is called by another routine, we refer to the calling routine asthe
caller. We refer to the called routine as the callee.) Note that a6 and a7 are in effect
savedbya link instructionatprocedureentry.

‘The function return value is ind). The current floating point implementation returms
the high order 32 bits of doublesind I, and the low order 32 bits ind0. Functionsthat
returnstructure values (not pointerstothe values)do soby loading d0witha pointertoa
static buffercontaining the structure value.

Thismakesthe followingtwo functionsequivalent:

struct foo proc ()i
struct foo this;

rcmm (this);
1
)

struct foo *proc ()!
swuct foo this;
static struct foo temp;

!.emp = this;
return (&temp);
t

This implementation allows recursive reentrancy (as long as the explicit form is not
used, since the first sequence is indivisible but not the second). However, this
implementation does nof permit multitasking reentrancy. Note that the latter includes
the XENIX signal(3)call.

Setjmp(3) and longjmp(3) can not be implemented as they are on the PDP—11,
because each procedure saves only the registers from the save set that it will modify.
This makes it difficult to get back the cusrent values of the register variables of the

A-1



Appendix B
XENIX System Calls

B.1 Introduction B-1

B.2 ExecutableFile Format B-1

B.3 Revised System Calls B-1

B.4 Version 7 Additions B-1

B.5 Changes totheioct] Function B-2

B.6 Pathname Resolution B-2

B.7 Using the mountand chownFunctions B-2
B.8 Super-Block Format B-2

B.9 Separate Version Libraries B-3






XENIX System Calls

B.1 Introduction

Thisappendixlistssome of the differences between XENIX 2.3, XENIX 3.0, UNIX
V7, and UNIX System 3.0. Itisintended to aid users who wish to convert system
callsin existing application programsfor use on other systems.

B.2 Executable File Format

Both XENIX 3.0 and UNIX System 3.0 execute only those programs with the
z. out executable file format. The format is similar to the old a.outformat, but
contains additional information about the executablefile,such astextand data
relocation bases, target machine identification, word and byte ordering, and
symbol table and relocation table format. The z.out file also contains the
revision number of the kernel which is used duringexecution to control access
to system functions. To execute existing programs in a.out format, you must
first convert to the z.out format. The format is described in detailin a.out(F)in
the XENIX Reference Manual.

B.3 Revised System Calls

Some system calls in XENIX 3.0 and UNIX System 3.0 have been revised and do
not perform the same tasks as the corresponding callsin previous systems. To
provide compatibilty for old programs, XENIX 3.0 and UNIX System 3.0
maintain both the new and the old system calls and automatically check the
revision information in the z.o0ut header to determine which versionof a system
call should be made. The following table lists the revised system calls and their
previousversions.

System Call# XENIX2.3function System 3function

35 ftime unused
38 unused clocal
39 unused setpgrp
40 unused cxenix
57 unused utssys
62 clocal fentl
63 cxenix ulimit

i
The czeniz function provides access to system calls unique to XENIX System
3.0. The clocalfunction provides access to all calls unique to an OEM.

B.4 Version 7 Additions

XENIX 3.0 maintains a number of UNIX V7 features that were dropped from
UNIX System 3.0. In particular, XENIX 3.0 continues to support the dup2and

B-1



ftime functions. The ftime function, used with the ctime function, provides the
default value for the time zone when the TZ environmentvariable has not been
set. This means a binary configuration program can be used to change the
default time zone. Nosourcelicense is required.

B.5 Changes to the ioctl Function

XENIX 3.0 and UNIX System 3.0 have a full set of XENIX 2.3-compatible soct!
calls. Furthermore, XENIX 3.0 has resolved problems that previously hindered
UNIX System 3.0 compatibility. For convenience, XENIX 2.3-compatible soct!
calls can be executed by a UNIX System 3.0 program. The available XENIX 2.3
ioctl calls are: TIOCSETP, TIOCSETN, TIOCGETP, TIOCSETC, TIOCGETC,
TIOCEXCL, TIOCNXCL, TIOCHPCL, TIOCFLUSH, TIOCGETD, and TIOCSETD.

B.6 Pathname Resolution

If a null pathname is given, XENIX 2.3 interprets the name to be the current
directory, but UNIX System 3.0 considers the name to be an error. XENIX 3.0
usestheversion number in the z.out header todetermine what action to take.

If the symbol ‘..” is given as a pathname when in a root directory that has been
defined using the chroot function, XENIX 2.3 moves to the next higher
directory. XENIX 3.0 also allows the *..”” symbol, but restricts its use to the
super-user.

B.7 Using the mount and chown Functions

Both XENIX 3.0 and UNIX System 3.0 restrict theuseof the mountsystemcallto
the super-user. Also, both allow the owner of a file to use chown function to
change the file ownership.

B.8 Super-Block Format

Both UNIX System 3.0 and UNIX System 5.0 have new super-block formats.
XENIX 3.0 uses the System 5.0 format, but uses a different magic number for
each revision. The XENIX 3.0 super-block has an additional field at the end
which can be used to distinguish between XENIX 2.3 and 3.0 super-blocks.
XENIX 3.0 checks this magic number at boot time and during a mount. If a
XENIX 2.3 super-block is read, XENIX 3.0 converts it to the new format
internally. Similarly, if a XENIX 2.3 super-block is written, XENIX 3.0 converts
it back to the old format. This permits XENIX 2.3 kernels to be run on file
systems also usable by UNIX System 3.0.



XENIX System Calls

B.8 Separate Version Libraries

XENIX 3.0 and UNIX System 3.0 support the construction of XENIX 2.3
executable files. These systems maintain both the new and old versions of
system calls in separate libraries and include files.

B-3



£



idex

'te/termcap file 3-1

ldeh funection 3-7

ldstr function 3-8
'gc,argument count variable
defining 2-2

described 2-2

‘gv,argument value array
defining 2-2

described 2-2

isembly language interface,
described A-1

»x function 3-26

3IZE, buffer size

value 2-2

iffered 1/0

character pointer 2-30
creating 2-22

described 2-22

flushing a buffer 2-24
returning a character 2-24

ttes

reading from a file 2-27
reading from a pipe 6-U
writing to a file 2-26
writing to a pipe 6-4
calling conventions
described A-1

language libraries
described 1-1

use in program 1-1

311 sequence A-1

alloc function 8-2

CBREAK mode 3-30
Character functionms,
described 4-1
Character pointer
described 2-31
moving 2-31
moving 2-31
moving to start 2-33
reporting position 2-33
Characters
alphabetic 4-3
alphanumeric U4-2
ASCII 4-1
control 4-3
converting to ASCII 4-2
converting to
lowercase 4-5
converting to
uppercase 45
decimal digits 4-3
hexadecimal digit 4-4
lowercase 4-5
printable 4-4
printable 4-5
processing, described 4-1
punctuation 4-4
reading from a file 2-13
reading from standard
input 2-4
uppercase i4-5
writing to a file 2-15
writing to standard
output 2-7

1-1



Programmer's Reference

process,
ribed 5-5
function 3-13
k function 3-28
function 2-28
ot function 3-13
ol function 3-13
d line arguments 2-2
d line arguments,
age order 2-=2
d line
ribed 2-2
at ion
rogram 1=1
em function 8-7
function 3-30
h file 4-1
y» the screen
essing library 1-1
.h file 3=2
ing, restrictions 2-2
function 3-12
ln function 3-12
function 3-25
nction 6-6
unction 3-30
ode 3-=31
ode 3-5
-file value, EOF 2-2
-file
ing 2-18
function 3-6
nd-of=file value 2-2
function 3-13
variable
ned 9-2
ribed 9-1

Errors
catching signals 9-3
delayed 9-4
errno variable 9-1
error constants 9-2
error numbers 9-1
printing error
messages 9-2
processing 9-1
routine system 170 9-4
sharing resources 9-4
signals 9-3 .
standard error file 9-1
system 9-3
testing files 2-18
execl function 65-3
execv function 65-3
exit function 5=2
fclose function 2-19
feof function 2-18
ferror function 2-18
fflush function 2-25
fgetc function 2-13
fgets function 2-13
File descriptors
creating 2-26
described 2-26
freeing 2-28
pipes 6-1
predefined 2-25
File pointers
creating 2-11
defining 2-11
described 2-11
file descriptors 2-25
FILE type 2-11
freeing 2-19



NULL value 2-11

pipes 6-1

predefined 2-12

recreating 2-23
FILE, file pointer type 2-2
Files

buffers 2-21

buffers 2-22

buffers 2-23

buffers 2-24

closing 2-19

closing low-level

access 2-28

inherited by processes 5-7

locking 8-4

opening 2-12

opening for low-level

access 2-26

random access 2-31

reading bytes 2-27

reading characters 2-13

reading formatted data 2-

14

reading records 2-14

reading strings 2-13

reopening 2-23

testing end-of-file

condition 2-18

testing for errors 2-18

writing bytes 2-27

writing characters 2-15

writing formatted

output 2-17

writing records 2-17

writing strings 2-16
fopen function 2-12

fork function 65-5
Formatted input
reading from a file 2-14
reading from a pipe 6-2
reading from standard
input 2-4
Formatted output
writing to a file 2-17
writing to a pipe 6-2
writing to standard
output 2-7
fprintf function 2-17
fputc function 2-15
fputs function 2-16
fread function 2-14
free function 8-3
freopen function 2-23
fscanf function 2-14
fseek function 2-32
ftell function 2-33
fwrite function 2-17
gete function 2-13
getch function 3-9
getchar function 2-4
gets function 2-5
getstr function 3-9
gettmode function 3-32
getyx function 3-28
inch function 3-24
initser function 3-4
insch function 3-11
insertln function 3-11
isalnum function U4-2
isaplha function 4-3
isascii function 4-1
isentrl function 4-3
isdigit function U4-3



Programmer's Reference

r function 4-5
t function U4-4
t function U=l
e function U5
r function U-5
it function 44
k function 3-28
» Standard C library
1=1
ses.a, screen
essing library
1-1
ses.a, the screen
essing library 3-2
mcap.a, the terminal
ary 3-2
g files
ribed 8-4
aration 8-4
locking.h file 8-4
z function 8-5
p function T7-10
ne function 3-33
vel functions
ssing files 2-26
~ibed 2-25
descriptors 2-26
om access 2-31
"unction 2-31
, special 1/0
:lons 2-1
function 8-1
allocation functions,
*ibed 8-1

rating arrays 8-2
rating dynamically 8-1

allocating variables 8-1 Y
freeing allocated J
space 8-3
reallocating 8-3
move function 3-11
mveur function 3-32
mvwin function 3-24
nbwaitsem function 8-9
NEWLINE mode 3-31
newwin function 3-14
nl function 3-30
nocrmode function 3-31
noecho function 3-31
nonl function 3-31
noraw function 3-31
Notational conventions,
described 1-2
NULL, null pointer
value 2-2 i
open function 2-26
opensem function 8-8
overlay function 3-23
overwrite function 3-23
Parent process,
described 5-5
pclose function 6-2
perror function 9-2
pipe function 6-3
Pipes
closing 6-2
closing low-level
access 6-4
described 6-1
file descriptor 6-3
file descriptors 6-1
file pointer 6-1 o
file pointers 6-1 B



low-level between
processes 6«6
opening for low=level
access 6-3
opening to a new
process 6-1
process ID 6-1
reading bytes 6-U
reading from 6-2
shell pipe symbol 6-1
Wwriting bytes 6-U
writing to 6-2
popen function 6-1
printf function 2-8
printw function 3-8
Process control functions,
described 5-1
Process ID
described 5-1
Process
termination status 5-2
Processes
background 7-11
calling a system
program 5-1
child 5-5
communication by pipe 6-1
described 5-1
ID 5-1
multiple copies 5-5
overlaying 5-3
parent 5-5
restoring an execution
state 7-10
saving the execution
state 7-9
splitting 5-5

terminating 5-2
termination status 5-7
under shell control 5-5
waiting 5-6
Programs, invoking 2-2
pute function 2-15
putchar function 2-7
puts function 2-7
Random access functions
character pointer 2-31
described 2-31
raw function 3-30
RAW mode 3-31
RAW mode 3-5
read function 2-27
realloc function 8-3
Records
reading from a file 2-14
writing to a file 2-17
Redirection symbol
input 2-9
output 2-9
pipe 2-9
refresh function 3-1U
restty function 3-33
Return values A-2
rewind function 2-33
Routine entry sequence A-1
Routine exit sequence A-2
savetty function 3-33
scanf function 2-U4
scanw function 3-10
Screen processing functions,
described 3-1
Screen processing library,
described 1-1
Screen processing
/etc/termcap file 3-1



‘rogrammer's Reference

g characters 3-16
Ig characters 3-T7

g strings 3-16

Ig strings 3-8

g values 3-16

g values 3-8
characters 3-26

ing a screen 3-13
ing a screen 3-21
.ing subwindows 3-15
ing windows 3-14
nt position 3-1

'nt position 3-28
s.h file 3-2

1t terminal 3-5

ing a window 3-25
ing characters 3-12
ing characters 3-20
ing lines 3-12

ing lines 3-20

ibed 3-1

alizing 3-4

ting characters 3-11
ting characters 3-19
ting lines 3-11
ting lines 3-19
rses.a file 3=2
rmcap.a file 3-2
ent prefix 3-30

g a window 3-24

g the position 3-11
g the position 3-19
1 characters 3-=27
aying a window 3-23
riting a window 3-23
fined names 3-2

ng characters 3-17

reading
reading
reading
reading
reading

characters 3-9
strings 3-17
strings 3-9
values 3-10
values 3=-17

refreshing a screen 3=22
refreshing the screen 3-14

screen 3-1
scrolling 3-29

sgtty.h

standard
terminal
terminal
terminal
terminal
terminal

file 3=2

screen 3=7
capabilities 3-1
cursor 3=32
modes 3=30
modes 3=5

size 3-6

terminating 3-6
using 3-4
window 3-1

window f

lags 3-28

window flags 3-6

Screen

describe
position

scroll function
scrollok function 3-28
sdenter function 8-14
sdfree function 8-16
sdget function 8-13
sdgetv function 8-15
sdleave function
sdwaitv function 8-15
Semaphore functions,

d 3-1
3-1
3-29

8-14

described 8-6

Semaphores

checking

status 8-9



creating 8-7
described 8-6
opening 8-8
relinquishing control 8-9
requesting control 8-8
setbuf function 2-23
setjmp function 7-9
setjmp.h file,
described T7-1
sgtty.h file 3-2
Shared data
attaching segments 8-13
creating segments 8-13
described 8-12
entering segments 8-14
freeing segments 8-16
leaving segments 8-14
version number 8-15
waiting for segments 8-15
Shell
called as a separate
process 55
signal function 7-1
signal.h file,
described T7-1
Signals
catching T-U4
catching 9-3
default action 7-3
delaying an action 7-=7
described 7-1
disabling T7=2
on program errors 9=3
redefining 7-4
restoring 7-3
restoring 7-6
SIGINT constant 7-1

SIGQUIT constant 7-1
SIG_DFL constant 7-1
SIG_IGN constant T-1
to a child process 7T-12
to background
processes T-11
with interactive
programs T7-9
with multiple
processes T7-=10
with system functions 7-8
sigsem function 8-9
sprintf function 4-11
sscanf function U4-10
Stack order A-1
Standard C library,
described 11
Standard error
described 2-4
Standard files
described 2-4
predefined file
descriptors 2-26
predefined file
pointers 2-11
reading and writing 2-4
redirecting 2-4
redirecting 9-1
Standard I/0 file 2-1
Standard 1/0 functions 2-1
Standard input
described 2-4
reading 2-4
reading characters 2-4
reading formatted
input 2-4
reading strings 2-5



rogrammer's Reference

ecting 2-9
i output

ibed 2-4
ecting 2-9
d Output
ng 2=T7
i output
ng characters 2«7
ng formatted
t 2-8
ng strings 2-7
i function 3-27
t function 3-26
standard error file
er 2=2

standard error file
er 2=12

the standard error
9-1

standard input file
er 2=2

standard input file
er 2-12

file

ibed 2-1

ding 2-1

standard output file
er 2-2

standard output file
er 2-12

function U4-6
function A4-7
function 4-8
functions,

ibed 2-11

functions

sing files 2-12

accessing standard S,
files 2-11
file pointers 2-11
random access 2-31
String functions,
described 4-6
Strings
comparing U-7
comparing 4-9
concatenating U4-6
concatenating U-8
copying 4-10
copying U-8
length 4-8
printing to U-11
processing, described 4-1
reading from a file 2-13
reading from standard _
input 2-5 j
scanning 4-10
writing to a file 2-16
writing to standard
output 2-7
strlen function U-8
strncat function 4-8
strnemp function U4-9
strncpy function 4-10
stterm function 3-33
subwin function 3-15
sys/locking.h file 8-U4
System errors
described 9-3
reporting 9-4
system function 5-1
System programs
calling as a separate
process 5-1 2



System resource functions,
described 8-1
System
resources 8-1
sys_errno array,
described 9-3
TERM variable 3-5
Terminal screen 3-1
Terminal
capabilities 3-1
capability description 3-5

cursor 3-32

modes 3-30

modes 3-31

modes 3-5

type 3-5
termination status,

described 5-T7
termination status

processes 5-2
toascii function U4-2
tolower function #§-5
touchwin function 3-25
toupper function U4-5
Unbuffered I/0

creating 2-22

described 2-22

low-level functions 2-25
ungetc function 2-2U4
Variables

allocating for arrays 8-2

memory allocation 8-1
waddch function 3-16
waddstr function 3-16
wait function 65-6
waitsem function 8-8

wclear function 3-21
welrtobot function 3-21
welrtoeol function 3-21
wdelch function 3-20
wdeleteln function 3-20
werase function 3-21
wgetch function 3-17
wget str function 3-18
winech function 3-24
Window

border 3-26

deleting 3-25

described 3-1

flags 3-6

position 3-1
Windows

creating 3-14

flags 3-28

moving 3-24

overlaying 3-23

overwriting 3-23

reading a character 3-2U4

updating 3-25
winsch function 3-19
winsertln function 3-19
wmove function 3-19
wprintw function 3-17
wrefresh function 3-22
write function 2-27
wscanw function 3-18
wstandend function 3-27
wstandout function 3-26






CONTENTS

Programming Contnands (CP)
intro Introduces programming commands
adb Invokesageneral—purpose debugger
admin Creates andadministers SCCS files
ar Maintainsarchivesand libraries
as Invokesthe XEN1Xassembler
cb Beautifies Cprograms
cc Invokes the Ccompiler
cdc Changesthedeltacommentary of
anSCCSdelta
comb CombinesSCCS deltas
config Configure a XENLX system
cref Makes across—referencelisting
ctags Createsatagsfile
delta Makesadelta(change)toan
SCCSfile
get Getsa versionof anSCCS file
gets Getsastring fromthestandard
input
hdr Displayssclected partsof
object files
help Asks forhelpabout SCCS commands
1d Invokesthelinkeditor
lex Generatesprogramsforlexical
analysis
lint ChecksClanguage usage and syntax
lorder Finds orderingrelation foran
object
mé Invokes amacroprocessor
make Maintains, updates, and
. Tegeneratesprograms
mkstr Createsanerrormessage file
from C source
nm Prints name list
prof Displaysprofiledata
prs PrintsanSCCS file
ranlib Convertsarchivestorandom
libraries
ratfor Invokes RATFOR preprocessor
regcmp Compilesregularexpressions
rmdel RemovesadehafromanSCCS
file
sact Printscurrent SCCS file
editing
scesdiff Comparestwo versionsofan
SCCSfile
size Printsthe size ofanobject file
spline Interpolates smooth curve

1-i



strings

Findstheprimtablestringsinan
object

Removes symbols andrelocation bits
Timesacommand
Sortsafiletopologically
Undoesa previousgetofan
SCCSfile

ValidatesanSCCS file
Cross—referencesCprograms
Extracts strings from Cprograms
Invokesacompiler—compiler




Index

Archivesand libraries ar
Assembler as
Ccompiler cc
Clanguageusageandsyntax lint
Cprogram, formatting cb
Compilercompiler yace
Debugger adb
Errormessage file mkstr
Execution, time time
Graphics, interpolatingcurves spline
Lexicalanalyzers lex
Linkeditor Id
Macroprocessor m4
Objectfile, printable strings strings
Objectfile, size size
Object file, displaying hdr
Objectfile, symbolsandrelocation strip
Ordering relations lorder
Programlisting, cross—reference xref
Program listing, cross—ref erence cref
Programmaintenance make
Rational FORTRAN ratfor
Regularexpressions regemp
SCcsfiles, combining comb
SCCS files, comments cde
SCCs files, comparing scesdilf
SCCs files, creatingnewversions delta
SCcsfiles, editing sact
SCCsfiles, printing prs
SCCsfiles, removing rmdel
SCCsfiles, restoring unget
SCCs files, retrieving versions get
SCCsfiles, creatingandmaintaining admin
Sccsfiles, validating val
SCCS, commandhelp help
Sorting topologically tsort
Standardinput, reading strings gets
Strings, extracting xstr
System, XENIX configuration config

Tagsfile







INTRO(CP) INTRO (CP)

Name

intro ~ Introduces XENIX Software Development commands.

Description

This section describes use of the individual commands available in
the XENIX Software. Development System. Each individual com-
mand is labeled with the letters CP to distinguish it from commands
available in the XENIX Timesharing-and Text Processing Systems.
These letters are used for easy reference from other documentation.
For example, the reference cc(CP) indicates a reference to a discus-
sion of the cc command in this section, where the letter *‘C’’ stands
for ““command’’ and the letter ‘‘P’* stands for “Programming’’.

Syntax

Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

name |options] {emdarg)
where:
name The filename or pathname of an executable file

option A single letter representing a command option By con-
vention, most options are preceded with a dash.
Option letters can sometimes be grouped together as
in — abed or alternatively they are specified individu-
ally as in — a — b—- c — d . The method of specifying
options depends on the syntax of the individual com-
mand. .In the latter method of specifying options,
arguments can be given to the options. For example,
the — f option for many commands often takes a fol-
lowing filename argument.

emdarg A pathname or other command argument not begin-

ning with a dash. It may also be a dash alone by itself
indicating the standard input.

See Also
getopt(C), getopt(S)
Diagnostics

Upon termination, each command returns 2 bytes of status, one sup-
plied by the system and giving the cause for termination, and (in the

Marct: 24, 1984 Page i



INTRO (CP) INTRO (CP)

case of ‘‘normal” termination) one supplied by the program (see
wait(S) and ezit(S)). The former byte is 0 for normal termination;
the latter is customarily 0 for successful execution and nonzero to
indicate troubles such as erroneous parameters, or bad or inaccessi-
ble data. It is called variously ‘‘exit code’’, ‘‘exit status’’, or ‘‘return
code’’, and is described only where special conventions are involved.

Notes

Not all commands adhere to the above syntax.

March 24, 1984 Page 2

s



ADB(CP) ADB (CP)

Name
adb — debugger

yntax
adb [—w] [ objfil | corfil | |

Description
Adb is a general purpose debugging program. It may be used to
examine files and to provide a controlled environment for the exe—
cution of XENIX programs.

Obijfil is normally an executable program file, preferably containing
a symbol table; if not then the symbolic features of adb cannot be
used although the file can still be examined. The default for objfil
is a.out. Corfil is assumed to be a core image file produced after
executing objfil; the default for corfil is core.

Requests to adb are read from the standard input and responses are
to the standard output. If the —w flag is present then both obifil
and corfil are created if necessary and opened for reading and
writing so that files can be modified using adb. Adb ignores
QUIT; INTERRUPT causes return to the next adb command.

in general requests to adb are of the form:
[address] [, count ][ command] ;]

If address is present then dot is set to address. Initially dot is set
to 0. For most commands count specifies how many times the
command will be executed. The default count is 1. Address and
count are expressions.

The interpretation of an address depends on the context it is used
in. If a subprocess is being debugged then addresses are inter—
preted in the usual .way in the address space of the subprocess.
For further details of address mapping see ADDRESSES.

EXPRESSIONS
. The value of dot.
+ The value of dot incremented by the current increment.

-

The value of dot decremented by the current increment.
" The last address typed.

integer If the integer begins with O it is an an octal number. It is
a hexadecimal number if preceded by Ox or 0X. It is a
decimal number when preceded by 0d, OD, Ot, or OT;
otherwise the current input radix (default decimal).

*cccc’  The ASCH value of up to 4 characters. \ may be used to

May 10, 1984 Page 1



ADB (CP) ADB(CP)

escape a '.

< name The value of name, which is either a variable name or a
register name. Adb maintains a number of variables (see
VARIABLES) named by single letters or digits. If name is
a register name then the value of the register is obtained
from the system header in corfil.

symbol A symbol is a sequence of upper or lower case letters,
underscores or digits, not starting with a digit. The value
of the symbol is taken from the symbol table in objfil. An
initial - or = will be prepended to symbol if needed.

- symbol
In C, the ‘true name’ of an external symbol begins with
an underscore (). It may be necessary to use this name
to distinguish it from the internal or hidden variables of a

program. .
(exp) The value of the expression exp.
Monadic operators
sexp  The contents of the location addressed by exp in corfil.
@exp The cohtents of the location addressed by exp in objfil.
—exp Integer negation.
“exp  Bitwise complement.

Dyadic operators are left associative and are less binding than
monadic operators.

el +e2 Integer addition.

el —e2 Integer subtracticn.

else2 Integer multiplication.

el%e2 Integer division.

el &e2 Bitwise conjunction.

elle2  Bitwise disjunction.

el#e2 EIl rounded up to the next multiple of 2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of
modifiers. The following verbs are available. (The commands ‘?’
and ‘' may be followed by ‘x’; see ADDRESSES for further
detajls.)

i Locations starting at address in objfil are printed according

May 10, 1984 Page 2

e



ADB (CP) ADB(CP)
to the format f.
If Locations starting at address in corfil are printed according
to the format f.
=f The value of address itself is printed in the styles indi—
cated by the format f.

A format consists of one or more characters that specify a style of
printing. Each format character may be preceded by a decimal
integer that is a repeat count for the format character. While step—
ping through a format dot is incremented temporarily by the
amount given for each format letter. If no format is given then the
last format is used. The format letters available are as follows.

o 2

04

£
N

ol - Y =]
NN

Ao TR M
- b BN S

May 10, 1984

Print 2 bytes in octal. All octal numbers output
by adb are preceded by 0.

Print 4 bytes in octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

Print 2 bytes in hexadecimal. All hexadecimal
numbers output by adb are preceded by Ox.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the following
escape convention. Character values (00 to 040
are printed as @ followed by the corresponding
character in the range 0100 to 0140. The char—
acter @ is printed as @@.

Print the addressed characters until a zero char—
acter is reached.

Print a string using the @ escape convention. n
is the length of the string including its zero ter—
minator.

Print 4 bytes in date format (see ctime(S)).

Print as MC68000 instructions. n is the number
of bytes occupied by the instruction. This style
of printing causes variables 1 and 2 to be set to
the offset parts of the source and destination
respectively.

Print the value of dot in symbolic form. Symbols

Page 3



ADB(CP) ADB (CP)

are checked to ensure that they have an
appropriate type as indicated below,

/ local or global data symbol
?  local or global text symbol
= local or global absolute symbol
p 2 Print the addressed value in symbolic form using

the same rules for symbol lookup as a.

t 0  When preceded by an integer tabs to the next
appropriate tab stop. For example, 8t moves to
the next 8 —space tab stop.

r O  Print a space.

n 0  Print a newline.

"..” 0 Print the enclosed string.

‘ Dot is decremented by the current increment.
Nothing is printed. ’

+ Dot is incremented by 1. Nothing is printed.

- Dot is decremented by 1. Nothing is printed.

newline If the previous command temporarily incremented dot,
make the increment permanent. Repeat the previous
command with a count of 1.

[?/1 value mask
Words starting at dot are masked with mask and compared
with value until a match is found. If L is used then the
match is for 4 bytes at a time instead of 2. If no match is
found then dor is unchanged; otherwise dot is set to the
matched location. If mask is omitted then —1 is used.

[?/]w value ...
Write the 2—byte value into the addressed location. If the
command is W, write 4 bytes. Odd addresses are not
allowed when writing to the subprocess address space.

[2/]m b1 el fi[2/] :

New values for (b1, el, f1) are recorded. If less than
three expressions are given then the remaining map
parameters are left unchanged. If the ‘?° or /" is followed
by ‘s’ then the second segment (b2, e2,f2) of the map—
ping is changed. If the list is terminated by ‘?’ or /' then
the file (objfil or corfil respectively) is used for subsequent
requests. (So that, for example, ‘‘m? will cause /' to
refer to objfil.)

>name Dot is assigned to the variable or register named.

May 10, 1984 Page 4



ADB(CP) ADB(CP)

! A shell is called to read the rest of the line following !".

$modifier
Miscellaneous commands. The available modifiers are:
<f Read commands from the file f and return.
>f Send output to the file f, which is created if it
does not exist; > ends the output diversion.

r Print the general registers and the instruction
addressed by pc. Dot is set to pe.

b Print all breakpoints and their associated counts
and commands.

c C stack backtrace. If address is given then it is

taken as the address of the current frame.
(instead of a6). If count is given then only the
first count frames are printed.

e The names and values of external variables are
printed.

w Set the page width for output to address (default
80).

5 Set the limit for symbol matches to address

(default 255).

Set the current input radix to octal.

Set the current input radix to decimal. EXPRES—

SIONS.

Set the current input radix to hexadecimal.

Exit from adb.

Print all non zero variables in hexadecimal.

Print the address map.

(- -]

H oo M

smodifier
Manage a subprocess. Available modifiers are:

be Set breakpoint at address. The breakpoint is
executed count—1 times before causing a stop.
Each time the breakpoint is encountered the
command c is executed. If this command sets
dot to zero then the breakpoint causes a stop.

d Delete beeakpoint at address .

Run objfil as a subprocess. If address is given
explicitly then the program is entered at this
point; otherwise the program is entered at its
standard entry point. count specifies how many
breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on

May 10, 1984 Page 5



ADB (CP) ADB(CP)

the same line as the command. An argument
starting with < or > causes the standard input or
output to be established for the command. All
signals are turned on on entry to the subprocess.

cs The subprocess is continued with signal s c s, see
signal(S). If address is given then the subpro—
cess is continued at this address. If no signal is
specified then the signal that caused the subpro—
cess to stop is sent. Breakpoint skipping is the
same as for r.

85 As for ¢ except that the subprocess is single
stepped count times. If there is no current sub—
process then objfil is run as a subprocess as for r.
In this case no signal can be sent; the remainder
of the line is treated as arguments to the subpro—
cess.

k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set ini—
tially by adb but are not used subsequently. Numbered variables
are reserved for communication as follows.

0 The last value printed. A
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the corfil.
If corfil does not appear to be a core file then these values are set
from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.
s The stack segment size.
t The text segment size.
ADDRESSES

The address in a file associated with a written address is deter—
mined by a mapping associated with that file. Each mapping is
represented by two triples (b1, el, f1) and (b2, e2, f2) and the file
address corresponding to a written address is calculated as follows.

bl <address<el = file
address =address +f1—bl, otherwise,

May 10, 1984 Page 6



ADB(CP) ADB(CP)

b2<=<address<e2 => file
address =address +f2—b2,

otherwise, the requested address is not legal. In some cases (e.g.,
for programs with separated 1 and D space) the two segments for a
file may overlap. if a ? or / is followed by an  then only the
second triple is used.

The initial setting of both mappings is suitable for normal a.out
and core files. If either file is not of the kind expected then, for
that file, b1 i set to 0, el is set to the maximum file size and f] is
set to 0; in this way the whole file can be examined with no
address translation.

So that adb may be used on large files all appropriate values are
kept as signed 32 bit integers.

Files
/dev/mem
/dev/swap
a.out
core

See Also
ptrace(S), a.out(F), core(F)

DIAGNOSTICS
The message ‘adb’ when there is no current command or format.
Comments about inaccessible files, syntax errors, abnormal termi—
nation of commands, etc.

Exit status is 0, unless last command failed or returned nonzero
status.

Notes :
A breakpoint set at the entry point is not effective on initial entry to
the program. '

When single stepping, system calls do not count as an executed
instruction.

Local variables whose names are the same as an external variable
may foul up the accessing of the external.

May 10, 1984 Page 7



ADMIN (CP) ADMIN (CP)

Name

admin - Creates and administers SCCS files.

Syntax

admin [- n] [- i[name]] [-rrel] [- t[nam.e]]] (- ffiag|flag-val]
- dflag[flag-val]] |- alogin] [~ elogin [~ m[mrlist]
- y[comment]] [~ h] [~ z] files

Description

Admin is used to create new SCCS files and to change parameters of
existing ones. Arguments to edminmay appear in any order. They
consist of options, which begin with — , and named files (note that
SCCS filenames must begin with the characters s.). .If a named file
doesn’t exist, it is created, and its parameters are initialized accord-
ing to the specified options. Parameters not initialized by a option
are assigned a default value. If a named file does exist, parameters
corresponding to specified options are changed, and other parameters
are leftas is.

If a directory is named, admin behaves as though each file in the
directory were specified as a named file, except that nonSCCS files
(last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If the dash — is given, the
standard input is read; each line of the standard input is taken to be
the name of an SCCS file to be processed. Again, nonSCCS files and
unreadable files are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed since the effects of the arguments apply
independently to each named file.

-n This option indicates that a new SCCS file is to be
created.
~ i[name] The name of a file from which the text for a new

sccs file is to be taken. The text constitutes the
first delta of the file (see — r below for delta
numbering scheme). If the i option is used, but the
filename is omitted, the text is obtained by reading
the standard input until an end-of-file is encoun-
tered. If this option is omitted, then the SCCS file is
created empty. Only one SCCS file may be created
by an admin command on which the i option is sup-
plied. Using a single admin to create two or more
SCCS files require that they be created empty (no
~ i option). Note that the — i option implies the
— n option.

March 24, 1984 Page 1



ADMIN (CP)

— rrel

— t[name)

— fflag

March 24, 1984

ADMIN ( CP)

The release into which the initial delta is inserted.
This option may be used only if the — i option is
also used. If the — r option is not used, the initial
delta is inserted into release 1. The level of the ini-
tial delta is always 1 (by default initial deltas are
named 1.1).

The name of a file from which descriptive text for
the SCCS file is to be taken. If the — t option is
used and admin is creating a new SCCS file (the — n
and/or — i options also used), the descriptive text
filename must also be supplied. In the case of exist-
ing SCCS files: a — t option without a filename
causes removal of descriptive text (if any) currently
in the SCCS file, and a — t option with a filename
causes text (if any) in the named file to replace the
descriptive text (if any) currently in the SCCS file.

This option specifies a flag, and possibly a value for
the flag, to be placed in the SCCS file. Several f
options may be supplied on a single admin com-
mand line. The allowable flags and their values are:

Allows use of the — b option on a get(CP)
command to create branch deltas.

ccel  The highest release (i.e., ‘“‘ceiling’’), a number

less than or equal to 9999, which may be
retrieved by a get(CP) command for editing.
The default value for an unspecified ¢ flag is
9999.

ffloor The lowest release (i.e., “‘floor’’), a number

greater than 0 but less than 9999, which may
be retrieved by a get(CP) command for edit-
ing. The default value for an unspecified f flag
“is 1.

dSID  The default delta number (SID) to be used by

a get(CP) command.

Causes the ‘‘No id keywords (ge6)”” message
issued by get( CP) or delta(CP) to be treated as
a fatal error. In the absence of this flag, the
message is only a warning. The message is
issued if no SCCS identification keywords (see
get(CP)) are found in the text retrieved or
stored in the SCCS file.

Allows concurrent get(CP) commands for edit-
ing on the same SID of an SCCS file. This
allows multiple concurrent updates to the same
version of the SCCS file.

Page 2



ADMIN (CP)

~ d|fleg)

March 24, 1984

st

qtezt

mmod

ttype

v[pgm|

ADMIN (CP)

A liet of releases to which deltas can no longer
be made (get — e against one of these
“locked’’ releases fails). The list has the fol-
lowing syntax:

<list> == <range> | <list> , <range>
<range> := RELEASE NUMBER|a

The character a in the list is equivalent to
specifying all releases for the named SCCS file.

Causes delta(CP) to create a ‘‘null’”’ delta in
each of those releases (if any) being skipped
when a delta is made in a new release (e.g., in
making delta 5.1 after delta 2.7, releases 3 and
4 are -skipped). These null deltas serve as
‘‘anchor points’” so that branch deltas may
later be created from them. The absence of
this flag causes skipped releases to be nonex-
istent in the SCCS file preventing branch deltas
from being created from them in the future.

User-definable text substituted for all
occurrences of the keyword in SCCS file text
retrieved by get( CP).

Module name of the SCCS file substituted for
all occurrences of the admin.CP keyword in
Sccs file text retrieved by get(CP). If the m
flag is not specified, the value assigned is the
name of the SCCS file with the leading s.
removed.

Type of module in the SCCS file substituted for
all occurrences of

keyword in SCCS file text retrieved by
get(CP).

Causes delta(CP) to prompt for Modification
Request (MR) numbers as the reason for
creating a delta. The optional value specifies
the name of an MR number validity checking
program (see delta(CP)). (If this flag is set
when creating an SCCS file, the m option must
also be used even if its value is null).

Causes removal (deletion) of the specified flag from
an SCCS file. The — d optidn may be specified only
when processing existing SCCS files. Several — d
options may be supplied on a single admin com-
mand. See the — f option for allowable flag names.

Page 3



ADMIN ( CP)

~ alogin

- elogin

— y|commen

— m[misf

March 24, 1984

ADMIN (CP)

st A list of releases to be ‘‘unlocked”. See the

— f option for a description of the 1 flag and
the syntax of a list.

A login name, or numerical XENIX group ID, to be
added to the list of users which may make deltas
(changes) to the SCCS file. A group ID is equivalent
to specifying all login names common to that group
ID. Several a options may be used on a single
admin command line. As many logins, or numerical
group IDs, as desired may be on the list simultane-
ously. If the list of users is empty, then anyone
may add deltas.

A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e options may be used on a
single admin command line.

The comment text is inserted into the SCCS file as a
comment for the initial delta in a2 manner identical
to that of delta(CP). Omission of the — y option
results in a default comment line being inserted in
the form:

YY/MM DD HH:MM:SS by login

The — y option is valid only if the ~ i and/or ~ n
options are specified (i.e., a new SCCS file is being
created).

The list of Modification Requests (MR) numbers is
inserted into the SCCS file as the reason for creating
the initial delta in a manner identical to delta(CP).
The v flag must be set and the MR numbers are
validated if the v flag has a value (the name of an
MR number validation program). Diagnostics will
occur if the v flag is not set or MR validation fails.

Causes admin to check the structure of the SCCS file
(see eccsfile(F)), and to compare a newly computed
checksum (the sum of all the characters in the SCCS
file except those in the first line) with the checksum
that is stored in the first line of the SCCs file.
Appropriate error diagnostics are produced.

This option inhibits writing on the file, nullifying
the effect of any other options supplied, and is
therefore only meaningful when processing existing
files.

Page 4



ADMIN (CP) ADMIN (CP)

-2 The ScCs file checksum is recomputed and stored in
the first line of the SCCS file (see — h, above).

Note that use of this option on a truly corrupted file e
may prevent future detection of the corruption. )

Files

The last component of all SCCS filenames must be of the form
s.file-name. New SCCS files are created read-only (444 modified by
umask) (see chmod(C)). Write permission in the pertinent directory
is, of course, required to create a file. All writing done by admin is
to a temporary x-file, called x.filename, (see get(CP)), created with
read-only permission if the edmin command is creating a new SCCS
file, or with the same mode ‘as the SCCS file if it exists. After suc-
cessful execution of admin, the SCCS file is removed (if it exists),
and the x-file is renamed with the name of the SCCS file. This
ensures that changes are made to the SCCS file only if no errors
occurred.

It is recommended that directories containing SCCS files be mode
755 and that SCCS files themselves be read-only. The mode of the
directories allows only the owner to modify SCCS files contained in
the directories. The mode of the SCCS files prevents any
modification at all except by SCCS commands. \)

If it should be necessary to patch an SCCS file for any reason, the
mode may be changed to 644 by the owner allowing use of a text
editor. Care must be taken! The edited file should always be pro-
cessed by an admin - h to check for corruption followed by an
admin - z to generate a proper checksum. Another admin - h is
recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called z.filename),

which is used to prevent simultaneous updates to the SCCS file by
different users. See get(CP) for further information.

See Also
delta(CP), ed(C), get(CP), help(CP), prs(CP), what(C), scesfile(F)

Diagnostics g

Use help(CP) for explanations.

March 24, 1984 . Page 5



AR (CP) AR (CP)

Name

ar -

Syntax

Maintains archives and libraries.

ar key [ posname ] afile name ...

Description

ar maintains groups of files combined into a single archive file. Its
main use is to create and update library files as used by the link edi-
tor, though it can be used for any similar purpose.

When ar creates an archive, it always creates the header in the for-
mat of the local system.

Key is one character from the set drqtpmx, optionally concatenated
with one or more of vuaibel. afile is the archive file. The namees are
constituent files in the archive file. The meanings of the key charac-
ters are:

d

r

Deletes the named files from the archive file.

Replaces the named files in the archive file. If the optional
character u is used with r, then only those files with modified
dates later than the archive files are replaced. If an optional
positioning character from the set abi is used, then the poerame
argument must be present and specifies that new files are to be
placed after (a) or before (b or i) posname. Otherwise new files
are placed at the end.

Quickly appends the named files to the end of the archive file.
Optional positioning characters are invalid. The command does
not check whether the added members are already in the
archive. Useful only to avoid quadratic behavior when creating
a large archive piece by piece.

Prints a table of contents of the archive file. If no names are
given, all files in the archive are tabled. If names are given,
only those files are tabled.

Prints the named files in the archive.
Moves the named files to the end of the archive. If a position-
ing character is present, then the posname argument must be

present and, as in r, specifies where the files are to be moved.

Extracts the named files. If no names are given, all files in the
archive are extracted. In neither case does x alter the archive

March 20, 1984 Page 1



AR (CP) AR (CP)

Files

file.

Verbose. Under the verbose option, ar gives a file-by-file
description of the making of a new archive file from the old
archive and the constituent files. When used with t, it gives a
long listing of all information about the files. When used with
x, it precedes each file with a name.

Create. Normally ar will create afile when it needs to. The
create option suppresses the normal message that is produced
when cofile is created.

Local. Normally ar places its temporary files in the directory
Jtmp. This option causes them to be placed in the local direc-

tory.

/tmp/v® . Temporary files

See Also

1d(CP), lorder(CP), ar(F)

Notes

If the same file is mentioned twice in an argument list, it may be put
in the archive twice.

March 20, 1984 Page 2

—n



AS(CP) AS(CP)

Name
as — assembler

Syntax
as| —1][ —o objfile |[ —g | file.s
Description
As assembles the named file. If the argument —1 is used, an

assembly listing is produced and written to file.L. This includes the
source, the assembled code, and any assembly errors.

The output of the assembly is left on the file objfile; if that is
omitted, file.o is used. If the optional —g flag is given, undefined
symbols will be treated as externals. Arguments may appear in
any order, except that —o must immediatly precede. objfile. The
optional flag —e (externals only) prevents local symbols from being
extended into objfile’s symbol table.
Files
/tmp/A68tmpr* temporary

See Also
1d(CP), nm(CP), adb(CP), a.out(F)

May 10, 1984 Page 1



CB (CP) CB (CP)

Name

cb - Beautifies C programs.

Syntax

cb [file]

Description

Cb places a copy of the C program in file (standard input if file is
not given) on the standard output with spacing and indentation that
displays the structure of the program.

March 24, 1984 Page 1



CC(CP) CC(CP)

Name

cc — C compiler
Syntax

cc [ option ] ... file ...
Description

Cc is the XENIX M68000 C compiler. Arguments whose names
end with ‘.c’ are taken to be C source programs; they are com—
piled, and each object program is left on the file whose name is
that of the source with ‘.0’ substituted for ‘.c’. The ‘.0’ file is
. normally deleted, however, if a single C program is compiled and
loaded all at one go.

In the same way, arguments whose names end with ‘s’ are taken
to be assembly source programs and are assembled, producing a
‘.0’ file.

The following options are interpreted by cc. See I/d(CP) for

load—time options.

—c Suppress the loading phase of the compilation, and force
an object file to be produced even if only one program is
compiled.

-0 Invoke an object—code optimizer.

-S Compile the named C programs, and leave the
assembler—language output on cormresponding files
suffixed ‘.s’.

—o output
Name the final output file output. If this option is used
the file ‘a.out’ will be left undisturbed.

—Dname=def

~Dname Define the name to the preprocessor, as if by ‘#define’.
{f no definition is given, the name is defined as 1.

—Uname Remove any initial definition of name.

-Idir  ‘#include’ files whose names do not begin with /' are
always sought first in the directory of the file argument,
then in directories named in —I options, then in direc—
tories on a standard list.

~t1 replace the compiler phase with a program called c68
from the current directory.

-t2 replace the object code optimizer phase with a program
called c680 from the current directory.

May 10, 1984 Page 1



CC(CP) cC(Ccp)

-K Do not generate stack probes. Stack probes are necessary
for XENIX user programs to assure proper stack growth.

Other arguments
are taken to be either loader option argumecnts, or C—
compatible object programs, typically produced by an
earlier cc run, or perhaps libraries of C—compatible
routines. These programs, together with the results of
any compilations specified, are loaded (in the order
given) to produce an executable program with name

a.out.

Flles

file.c input file

file.o object file

a.out loaded output

file.[isx] temporaries for cc

Nlib/cpp preprocessor

/ib/c68 compiler for cc

/Nlib/c680 optional optimizer

Aib/crt0.0 runtime startoff

/ib/libc.a standard library, see intro(S)

Jusr/include standard directory for ‘#include’ files
See Also

B. W. Kemighan and D. M. Ritchie, The C Programming
Language, Prentice—Hall, 1978

D. M. Ritchie, C Reference Manual

adb(CP), 1d(CP)

DIAGNOSTICS

The diagnostics produced by C itself are intended to be self—
explanatory. Occasional messages may be produced by the
assembler or the loader. Of these, the most mystifying are from
the assembler, as(C), which produces line number reports based on
the generated code, which is only loosely related to the source
linenumber. Running the compiler with the —S option and assem—
bling the result by hand may help you resolve the difficulty.

May 10, 1984 Page 2



CDC (CP) CDC (CP)

Name

cdc - Changes the delta commentary of an SCCS delta.

Syntax

cdc - SID |- m(mrlist]] [~ y[comment]] files

Description

Cde changes the delta commentary for the SID specified by the — r
option, of each named SCCS file.

Delta commentary is defined to be the Modification Request (MR)
and comment information normally specified via the delta(CP) com-
mand (— m and — y options). |

If a directory is named, cde behaves as though each file in the direc-
tory were specified as a named file, except that nonSCCS files (last
component of the pathname does not begin with 8.) and unreadable
files are silently ignored. If a name of — is given, the standard input
is read (see Warning); each line of the standard input is taken to be
the name of an SCCS file to be processed.

Arguments to ede, which may appear in any order, consist of options
and file names.

All the described options apply independently to each named file:

— rSID Used to specify the SCCS IDentification (SID)
string of a delta for which the delta commen-
tary is to be changed.

- m[mdlist] It the sCCS file has the v flag set (see
admin(CP)) then a list of MR numbers to be
added and/or deleted in the delta commentary
of the SID specified by the — r option may be
supplied. A null MR listhas no effect.

MR entries are added to the list of MRs in the
same manner as that of delta(CP). In order to
delete an MR, precede the MR number with
the character ! (see Examples). If the MR to
be deleted is currently in the list of MRs, it is
removed and changed into a ‘“comment’’ line.
A list of all deleted MRs is placed in the com-
ment section of the delta commentary and pre-
ceded by a comment line stating that they were
deleted.

March 24, 1984 Page 1



CDC (CP) | CDC (CP)

If - mis not used and the standard input is a
terminal, the prompt MRs? is issued on the
standard output before the standard input is
read; if the standard input is not a terminal,
no prompt is issued. The MRs? prompt always
precedes the comments? prompt (see -y
option).

MRs in a list are separated by blanks and/or
tab characters. An unescaped newline charac-
ter-terminates the MR list.

Note that if the v flag has a value (see
admin(CP)), it is taken to be the name of a
program (or shell procedure) which validates
the correctness of the MR numbers. If a
nonzero exit status is returned from the MR
number validation program, ecde terminates
and the delta commentary remains unchanged.

— y[comment]  Arbitrary text used to replace the comment(s)
already existing for the delta specified by the
— r option. The previous comments are kept
and preceded by a comment line stating that
they were changed. A null comment has no
effect.

If — y is not specified and the standard input is
a terminal, the prompt ‘‘comments?’ is issued
on the standard output before the standard
input is read; if the standard input is not a ter-
minal, no prompt is issued. An unescaped
newline character terminates the comment text.

In general, if you made the delta, you can change its delta
commentary; or if you own the file and directory you can
modify the delta commentary.
Examples
The following:

cdc - r1.6 — m"bl78-12345 !bl77-54321 bl79-00001” — ytrouble
s.file

adds b178-12345 and bl79-00001 to the MR list, removes bl77-54321

from the MR list, and adds the comment troulle to delta 1.6 of
s.file. *

March 24, 1984 Page 2



©DC (CP) CDC (CP)

The following interactive sequence does the same thing.
cdc - rl.6 s.file
MRs? 1bl77-54321 b178-12345 b179-00001
comments? trouble
‘Warning
If scCs file names are supplied to the ¢dz command via the standard
input (-~ on the command line), then the — m and - y options must
also be used.
Files
x-file  See delta(CP)

z-file  See delta(CP)

See Also
admin( CP), delta(CP), get(CP), help(CP), prs(CP), scesfile(F)

Diagnostics

Use Aelp(CP) for explanations.

March 24, 1984 Page 3



COMB (CP) COMB (CP)

Name

comb - Combines SCCS deltas.

Syntax

comb [- o] [- s] [~ psid] [~ clist] files

Description

Comb provides the means to combine one or more deltas in an SCCS
file and make a single new delta. The new delta replaces the previous
deltas, making the SCCS file smaller than the original.

Comb does not perform the combination itself. Instead, it generates
a shell procedure that you must save and execute to reconstruct the
given SCCS files. Comb copies the generated shell procedure to the
standard output. To save the procedure, you must redirect the out-
put to a file. The saved file can then be executed like any other shell
procedure (see ek(C)).

When invoking comb, arguments may be specified in any order. All
options apply to all named SCCS files. If a directory is named, comb
behaves as though each file in the directory were specified as a
named file, except that nonSCCS files (last component of the path-
name does not begin with s.) and unreadable files are silently
ignored. If a name of —~ is given, the standard input is read; each
line of the standard input is taken to be the name of an SCCS file to
be processed; nonSCCS files and unreadable files are silently ignored.

The options are as follows. Each is explained as though only one
named file is to be processed, but the effects of any option apply
independently to each named file.

- pSID The SCCS [Dentification string (SID) of the oldest delta to
be preserved. All older deltas are discarded in the recon-
structed file.

— clist A list (see get(CP) for the syntax of a list) of deltas to be
preserved. All other deltas are discarded.

-0 For each get - e generated, this argument causes the recon-
structed file to be accessed at the release of the delta to be
created, otherwise the reconstructed file would be accessed
at the most recent ancestor. Use of the - o option may
decrease the size of the reconstructed SCCS file. It may also
alter the shape of the delta tree of the original file.

March 24, 1984 Page 1



COMB (CP) COMB ( CP)

-5 This argument causes comb to generate a shell procedure
that will produce a report for each file giving the filename,
size (in blocks) after combining, original size (also in
blocks), and percentage change computed by:

100 * (original - combined) / original

Before any SCCS files are actually combined, you should use this

option to determine exactly how much space is saved by the combin-

ing process.

If no options are specified, comb will preserve only leaf deltas and
the minimal number of ancestors needed to preserve the tree.

Files

comb????? Temporary files

See Also
admin(CP), delta(CP), get(CP), help(CP), prs(CP), scesfile(F)

Diagnostics

Use kelp(CP) for explanations.

Notes
Comb may rearrange the shape of the tree of deltas. It may not save

any space; in fact, it is possible for the reconstructed file to be larger
than the original.

March 24, 1984 Page 2



CONFIG (CP) CONFIG (CP)

Name

config - configure a XENIX system

Syntax

[etc/config [- t] [ 1 file] [~ c file] [- m file] dfile

Description

Config is a program that takes a description of a XENIX system and
generates a file which is a C program defining the configuration
tables for the various devices on the system.

The — c option specifies the name of the configuration table file; c.c
is the default name.

The — m option specifies the name of the file that contains all the
information regarding supported devices; /etc/master is the default
name. This file is supplied with the XENIX system and should not be
modified unless the user fully understands its construction.

The — t option requests a short table of major device numbers for
character and block type devices. This can facilitate the creation of
special files.

The user must supply dfile; it must contain device information for
the user’s system. This file is divided into two parts. The first part
contains physical device specifications. The second part contains
system-dependent information. Any line with an asterisk (*) in
column 1 is a comment. :

All configurations are assumed to have a set of required devices
which must be present to run XENIX such as the system clock.
These devices muét not be specified in dfile.

First Part of dfile

Each line contains two fields, delimited by blanks and/or tabs in the
following format:

devname number

where dewname is the name of the device (as it appears in the
fetc/master device table), and number is the number (decimal) of
devices associated with the corresponding controller; number is
optional, and if omitted, a default value which is the maximum
value for that controller is used.

March 24, 1984 Page 1

S



CONFIG (CP) CONFIG (CP)

There are certain drivers that may be provided with the system, that
are actually pseudo-device drivers; that is, there is no real hardware
associated with the driver. Drivers of this type are identified on
their respective manual entries.

Second Part of dfile
The second part contains three different types of lines. Note that all
specifications of this part are required, although their order is arbi-
trary.

1. Root/pipe device specification

Each line has three fields:

root devname minor
pipe  devname minor

where minor is the minor device number (in octal).
2. Swap device specification
One line that contains five fields as follows:
swap devname minor swplo nswap

where swplo is the lowest disk block (decimal) in the swap area and
newap is the number of disk blocks (decimal) in the swap area.

3. Parameter specification

A number of lines of two fields each as follows (number is decimal):

buffers number
inodes number
files number
mounts number
swapmap number
pages number
calls number
procs number
maxproc number
texts number
clists number
locks number
timezone number
daylight Oorl
Example

Suppose we wish to configure a system with the following devices:
one HD disk drive controller with 1 drive
one FD floppy disk drive controller with 1 driver

March 24, 1984 Page 2



CONFIG (CP) CONFIG ( CP)

We must also specify the following parameter information:
root device is an HD (pseudo disk 3)
pipe device is an HD (pseudo disk 3)
swap device is an HD (pseudo disk 2)
with a swplo of 1 and an nswap of 2300
number of buffers is 50
number of processes is 50
maximum number of processes per user ID is 15
number of mounts is 8
number of inodes is 120
number of files is 120
number of calls is 30
number of texts is 35
number of character buffers is 150
number of swapmap entries is 50
number of memory pages is 512
number of file locks is 100
timezone is pacific time
daylight time is in effect
The actual system configuration would be specified as follows:

hd 1
fd 1
root hd 3
pipe hd 3

swap hd 2 0 2300
* Comments may be inserted in this manner

buffers 50

procs 150
maxproc 15
mounts 8
inodes 120
files 120
calls 30
texts 35
clists 150

swapmap 50
pages (1024/2);

locks 100
timezone (8+60)
daylight 1
Files
/[etc/master default input master device table
c.c default output configuration table file
See Also
master(F)

March 24, 1984 ‘Page 3



CONFIG (CP) CONFIG ( CP)

Diagnostics
Diagnostics are routed to the standard output and are self-
explanatory.

Notes

The — t option does not know about devices that have aliases. How-
ever, the major device numbers are always correct.

March :24, 1984 Page 4



CREF(CP) - CREF (CP)

Name

cref - Makes a cross-reference listing.

Syntax

cref | — acilnostux123 | files

Description

Cref makes a cross-reference listing of assembler or C programs. The
program searches the given files for symbols in the appropriate C or
assembly language syntax.

The output report is in four columns:

1. Symbol

2. Filename

3. Current symbol or line number
4. Text as it appears in the file

Cref uses either an ignore file or an only file. If the — i option is
given, the next argument is taken to be an ignore file; if the — o
option is given, the next argument is taken to be an only file. Ignore
and only files are lists of symbols separated by newlines. All sym-
bols in an ignore file are ignored in columns 1 and 3 of the output.
If an only file is given, only symbols in that file will appear in
column 1. Only one of these options may be given; the default set-
ting is — i using the default ignore file (see FILES below). Assem-
bler predefined symbols or C keywords are ignored.

The — s option causes current symbols to be put in column 3. In the
assembler, the current symbol is the most recent name symbol; in C,
the current function name. The — ] option causes the line number
within the file to be put in column 3.

The — t option causes the next available argument to be used as the
name of the intermediate file (instead of the temporary file
Jtmp/crt??). This file is created and is not removed at the end of
the process.

The cref options are:

a  Uses assembler format (default)

¢ Uses C format

i Uses an ignore file (see above)

I  Puts line number in column 3 (instead of current symbol)

March 24, 1984 Page 1



CREF (CP) CREF (CP)

n  Omits column 4 (no context)

o Uses an only file (see above)

s Current symbol in column 3 (default)

t  User-supplied temporary file

u Prints only symbols that occur exactly once
x  Prints only C external symbols

1 Sorts output on column 1 (default)

2 Sorts output on column 2

3  Sorts output on column 3

Files
[usr/lib/cref/+ Assembler specific files

See Also
as(CP), cc(CP), sort{C), xref(CP)

Notes
Cref inserts an ASCII DEL character into the intermediate file after

the eighth character of each name that is eight or more characters
long in the source file.

March 24, 1984 Page 2



CTAGS (CP) CTAGS (CP)

Name

ctags — Creates a tags file.

Syntax

ctags [-u] [ - w] [ - x| name ...

Description

Ctage makes a tags file for #i(C) from the specified C sources. A tags
file gives the locations of specified objects {in this case functions) in
a group of files. Each line of the tags file contains the function
name, the file in which it is defined, and a scanning pattern used to
find the function definition. These are given in separate fields on the
line, separated by blanks or tabs. Using the tage file, vs can quickly
find these function definitions.

If the - x flag is given, ctags produces a list of function names, the
line number and file name on which each is defined, as well as the
text of that line and prints this on the standard output. This is a sim-
ple index which can be printed out as an off-line readable function
index.

Files whose name ends in .c or .h are assumed to be C source files
and are searched for C routine and macro definitions.

Other options are:

— w Suppresses warning diagnostics.

— u Causes the specified files to be updated in tags; that is, all refer-
ences to them are deleted, and the new values are appended to
the file. (Beware: this option is implemented in a way which is
rather slow; it is usually faster to simply rebuild the tages file.)

The tag masin is treated specially in C programs. The tag formed is

created by prepending M to the name of the file, with a trailing .c

removed, if any, and leading pathname components also removed.

This makes use of ctags practical in directories with more than one
program.

Files

tags Output tags file

See Also
ex(C), vi(C)

‘March 24, 1984 Page 1



CTAGS (CP) CTAGS (CP)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 24, 1984 Page 2



DELTA ( CP) DELTA(CP)

Name

delta - Makes a delta (change) to an SCCS file.

Syntax
" delta |- rSID] [- s] [- n] [- glist] [~ m[mrlist]] [~ y[comment])
- p| files

Description

Delta is used to permanently introduce into the named SCCS file
changes that were made to the file retrieved by get(CP) (called the
g-file, or generated file).

Delta makes a delta to each SCCS file named by files. If a directory
is named, deltsa behaves as though each file in the directory were
specified as a named file, except that nonSCCS files (last component
of the pathname does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read
(see Warning); each line of the standard input is taken to be the
name of an SCCS file to be processed.

Delta may issue prompts on the standard output depending upon
certain options specified and flags (see admin(CP)) that may be
present in the SCCS file (see — m and — y options below).

Options apply independently to each named file.

- rSID Uniquely identifies which delta is to be made to the
scCS file. The use of this keyletter is necessary
only if two or more versions of the same SCCS file
have been retrieved for editing (get — €) by the
same person (login name). The SID value specified
with the — r keyletter can be either the SID specified
on the get command line or the SID to be made as
reported by the get command (see get(CP)). A
diagnostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command
line.

-8 Suppresses the issue, on the standard output, of the
created delta’s SID, as well as the number of lines
inserted, deleted and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally
removed at completion of delta processing).

March 24, 1984 Page 1



DEL TA(CP)

— glist

~ m[mrief

— y[commeny

Files

DELTA (CP)

Specifies a list (see get(CP) for the definition of list)
of deltas which are to be tgnored when the file is
accessed at the change level (SID) created by this
delta. :

If the SCCS file has the v flag set (see admin(CP))
then a Modification Request (MR) number must be
supplied as the reason for creating the new delta.

If — mis not used and the standard input is a termi-
nal, the prompt MRs? is’issued on the standard out-
put before the standard input is read; if the standard
input is not a terminal, no prompt is issued. The
MRs? prompt always precedes the eomments?
prompt (see — y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped newline character ter-
minates the MR list.

Note that if the v flag has a value (see admin(CP)),
it is taken to be the name of a program (or shell
procedure) which will validate the correctness of the
MR numbers. If a nonzero exit status is returned
from MR number validation program, delta ter-

‘minates (it is assumed that the MR numbers were

not all valid).

Arbitrary text used to describe the reason for mak-
ing the delta. A null string is considered a valid
comment

If — y is not specified and the standard input is a
terminal, the prompt comments? is issued on the
standard output before the standard input is read; if
the standard input is not a terminal, no prompt is
issued. An unescaped newline character terminates
the comment text.

Causes delta to print (on the standard output) the
SCCS file differences before and after the delta is
applied. Differences are displayed in a diff{C) for-
mat.

All files of the form ¢-file are explained in Chapter 5, ‘“SCCS: A
Source Code Control System” in the XENIX Programmer’s Guide. The
naming convention for these files is also described there.

g-file

March 24, 1984

Existed before the execution of delta; removed after
completion of delta.

Page 2



DELTA ( CP)

pfile

q-file

x-file

z-file

d-file

[usr/bin/bdiff

Warning

DELTA (CP)

Existed before the execution of delta; may exist
after completion of delta.

Created during the execution of delts; removed after
completion of delta.

Created during the execution of delta; renamed to
SCCS file after completion of delta.

Created during the execution of delta; removed dur-
ing the execution of delta.

Created during the execution of delta; removed after
completion of delta.

Program to compute differences between the
‘‘retrieved”’ file and the g- file.

Lines beginning with an SOH ASCI! character (binary 001) cannot be
placed in the SCCS file unless the SOH is escaped. This character has
special meaning to SCCS (see sccefile(F)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should
be avoided when the get generates a large amount of data. Instead,
multiple getfdelts sequences should be used.

If the standard input (- ) is specified on the delta command line, the
— m (if necessary) and — y options must also be present. Omission
of these options causes an error to occur.

See Also

admin(CP), bdiff(C), get{ CP), help(CP), prs(CP), sccsfile(F)

Diagnostics

Use kelp(CP) for explanations.

March 24, 1984

Page 3

s



DELTA (CP)

vst (see get(CP) for the definition of Iist)
rhich are to be ignored when the file is
t the change level (SID) created by this

Cs file has the v flag set (see admin(CP))
fodification Request (MR} number must be
. as the reason for creating the new delta.

is not used and the standard input is a termi-

e prompt MRs? is'issued on the standard out-

:fore the standard input is read; if the standard

is not a terminal, no prompt is issued. The

! prompt always precedes the comments?
apt {see ~ y keyletter).

s in a list are separated by blanks and/or tab
wracters. An unescaped newline character ter-
mates the MR list.

{ote that if the v flag has a value (see admin(CP)),
t is taken to be the name of a program {or shell
procedure) which will validate the correctness of the
MR numbers. If a nonzero exit status is returned
from MR number validation program, delta ter-
‘minates (it is sssumed that the MR numbers were
not all valid).

Arbitrary text used to describe the reason for mak-
ing the delta. A null string is considered a valid
comment.

If — y is not specified and the standard input is a
terminal, the prompt cemments? is issued on the
standard output before the standard input is read; if
the standard input is not a terminal, no prompt is
issued. An unescaped newline character terminates
the comment text.

Causes delta to print (on the standard output) the
sccs file differences before and after the delta is
applied. Differences are displayed in a diff{C) for-
mat,

" the form #-file are explained in Chapter 5, *“SCCS: A
le Control System” in the XENIX Programmer’s Guide. The
1vention for these files is also described there.

Existed before the execution of delta; removed after
completion of delta.

Page 2

GE?(CP)



GET(CP) GET(CP)

gets for editing on the same SID until delta is executed or
the j (joint edit) flag is set in the SCCS file (see
admin(CP)). Concurrent use of get — e for different
SIDs is always allowed.

If the g-file generated by get with an — e option is
accidentally ruined in the editing process, it may be
regenerated by reexecuting the get command with the
— k option in place of the — e option.

SCCS file protection specified via the ceiling, floor, and
authorized user list stored in the SCCS file (see
admin(CP)) are enforced when the — e option is used.

-b Used with the — e option to indicate that the new delta
should have an SID in a new branch. This option is
ignored if the b flag is not present in the file (see
admin(CP)) or if the retrieved delta is not a leaf delta.
(A leaf delta is one that has no successors on the SCCS
file tree.)

Note: A branch delta may always be created from a non-
leaf delta.

— ilist A list of deltas to be included (forced to be applied) in
the creation of the generated file. The list has the follow-
ing syntax:

<list> == <range> | <list> , <range>
<range> ::=SID |SID - SID

SID, the SCCS Identification of a delta, may be in any
form described in Chapter 5, ““SCCS: A Source Code
Control System,’’ in the XENIX Programmer’s Guide.

~ xlist A list of deltas to be excluded (forced not to be applied)
in the creation of the generated file. See the — i option
for the list format.

-k Suppresses replacement of identification keywords (see
below) in the retrieved text by their value. The — k
option is implied by the ~ e option.

- 1[p Causes a delta summary to be written into an [-file. If
— lp is used then an l-file is not created; the delta sum-
mary is written on the standard output instead. See
FILES for the format of the I-file.

-p Causes the text retrieved from the SCCS file to be written
on the standard output. No g-file is created. All output
that normally goes to the standard output goes to file
descriptor 2 instead, unless the — s option is used, in
which case it disappears.

March 24, 1984 Page 2



GET (CP) GET(CP)

-8 Suppresses all output normally written on the standard
output. However, fatal error messages (which always go
to file descriptor 2) remain unaffected.

- m Causes each text line retrieved from the SCCS file to be
preceded by the SID of the delta that inserted the text
line in the SCCS file.. The format is: SID, followed by a
horizontal tab, followed by the text line.

-n Causes each generated text line to be preceded with the
%M % identification keyword value (see below). The for-
mat is: %M % value, followed by a horizontal tab, fol-
lowed by the text line. When both the — m and ~ n
options are used, the format is: %M % value, followed by
a horizontal tab, followed by the — m option generated
format.

-8 Suppresses the actual retrieval of text from the SCCS file.
It is primarily used to generate an [-file, or to verify the
existence of a particular SID.

-t Used to access the most recently created (top) delta in a
given release (e.g., — rl), or release and level (e.g.,
- rl.2).

— aseq-no. The delta sequence number of the SCCS file delta (ver-
sion) to be retrieved (see sccafile(F)). This option is
used by the comb(CP) command; it is not particularly
useful should be avoided. If both the —r and - a
options are specified, the — a option is used. Care
should be taken when using the — a option in conjunc-
tion with the — e option, as the SID of the delta to be
created may not be what you expect. The — roption can
be used with the — a and — e options to control the nam-
ing of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with
the SID being accessed and with the number of lines retrieved from
the SCCS file.

If the — e option is used, the SID of the delta to be made appears
after the SID accessed and before the number of lines generated. If
there is more than one named file or if a directory or standard input
is named, each filename is printed (preceded by a newline) before it
is processed. If the — i option is used included deltas are listed fol-
lowing the notation ‘‘Included’’; if the — x option is used, excluded
deltas are listed following the notation ‘‘Excluded’’.

Identification Keywords

Identifying information is inserted into the text retrieved from the
sccs file by replacing identification keyworde with their value

March 24, 1984 Page 3



DELTA (CP)
GET( CP)
(see get(CP) for the definition of list)
ch are to be fgnored when the file is e used ip the
he change level (SID) created by this
3% in ‘the fi
the Sacs g1

file has the v flag set (see admin(CP))

ification Request (MR) number must be

the reason for creating the new delta. .
85%) of the

ot used and the standard input is a termi-
ompt MRs? is issued on the standard out-
the standard input is read; if the standard
ot a terminal, no prompt is issued. The
'ompt always precedes the comments?

see — y keyletter).
a list are separated by blanks and/or tab
rs. An unescaped newline character ter- :e))
. ;)‘ .
file (see

the MR list.
1at if the v flag has a value (see admin(CP)),
ken to be the name of a program (or shell

ure) which will validate the correctness of the
If a nonzero exit status is returned
t iden-

smbers.
MR number validation program, delta ter-
es (it is assumed that the MR numbers were
“this .

ended }

{t valid).
trary text used to describe the reason for mak-
the delta, A null string is considered a valid ).
s for
ntal-

ment.

-y is not specified and the standard input is a

minal, the prompt comments? is issued on the 'I(C)
iles,

ndard output before the standard input is read; if
e standard input is not a terminal, no prompt is
sued. An unescaped newline character terminates

e comment text.
Jauses delta to print (on the standard output) the

3CCS file differences before and after the delta is
applied. Differences are displayed in a diff{C) for-

M Y I

mat.

: form ¢-file are explained in Chapter § ‘‘SCCS: A
Jontrol System” in the XENIX Programmer’s Guide. The
ntion for these files is also described there.

Existed before the execution of delta; removed after

completion of delta.
Page 2



GET(CP) GET (CP)

implied, the g-file’s mode is 644; otherwise the mode is 444. Only
the real user need have write permission in the current directory.

The (- file contains a table showing which deltas were applied in gen-
erating the retrieved text. The {-file is created in the current direc-
tory if the —.1 option is used; its mode is 444 and it is owned by the
real user. Only the real user need have write permission in the
current directory.

Lines in the [-file have the following format:

a. A blank character if the delta was applied;
* otherwise
b. A blank character if the delta was applied or wasn’t applied
and ignored;
* if the delta wasn’t applied and wasn’t ignored
c¢. A code indicating a ‘‘special’’ reason why the delta was or
was not applied:
“I": Included
“X’: Excluded
“C": Cut off (by a — c option)
Blank
SCCs identification (SID)
Tab character
Date and time (in the form YY/MM/DD HH:MM:SS) of crea-
tion
Blank

Login name of person who created delts

Ty aee

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an
— e option along to delta. Its contents are also used to prevent a
subsequent execution of get with an — e option for the same SID
until delta is executed or the joint edit flag, j, (see admin(CP)) is set
in the SCCS file. The p-file is created in the directory containing the
sccs file and the effective user must have write permission in that
directory. Its mode is 644 and it is owned by the effective user. The
format of the p-file is: the gotten SID, followed by a blank, followed
by the SID that the new delta will have when it is made, followed by
a blank, followed by the login name of the real user, followed by a
blank, followed by the date-time the get was executed, followed by a
blank and the — i option if it was present, followed by a blank and
the — x option if it was present, followed by a newline. There can
be an arbitrary number of lines in the p-file at any time; no two lines
can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous
updates. Its contents are the binary (2 bytes) processID of the com-
mand (i.e., get) that created it. The 2-file is created in the directory
containing the SCCS file for the duration of get. The same protection
restrictions as those for the p-fille apply for the z-file. The z-file is

March 24, 1984 Page 5



GET(CP) GET(CP)

created mode 444.

See Also

admin(CP), delta(CP), help(CP), prs(CP), what(C), scesfile(F)

Diagnostics

Use hkelp(CP) for explanations.

Notes

If the effective user has write permission (either explicitly or impli-
citly) in the directory containing the SCCS files, but the real user
doesn’t, then only one file may be named when the — e option is
used.

-

March 24, 1984 Page 6



GETS (CP) GETS (CP)

Name

gets — Gets a string from the standard input.

Syntax

gets | string |

Description
Gets can be used with ¢sh(CP) to read a string from the standard
input. If string is given it is used as a default value if an error
occurs. The resulting string (either string or as read from the stan-

dard input) is written to the standard output. If no stning is given
and an error occurs, gets exits with exit status 1.

See Also
line(C), csh(CP)

March 24, 1984 Page 1



HDR (CP) HDR (CP)

Name

hdr - Displays selected parts of object files.

Syntax
hdr | - dhprsSt ] file ...

Description

Hdr displays object file headers, symbol tables, and text or data relo-
cation records in human-readable formats. It also prints out seek
positions for the various segments in the object file.

A.out, x.out, and x.out segmented formats and archives are under-
stood. :

The symbol table format consists of six fields. In a.out formats the
third field is missing. The first field is the symbol’s index or position
in the symbol table, printed in decimal. The index of the first entry
is zero. The second field is the type, printed in hexadecimal. The
third field is the s_seg field, printed in hexadecimal. The fourth
field is the symbol’s value in hexadecimal. The fifth field is a single
character which represents the symbol's type as in nm(CP), except C
common is not recognized as a special case of undefined. The last
field is the symbol name.

If long form relocation is present, the format consists of six fields.
The first is the descriptor, printed in hexadecimal. The second is the
symbol ID, or index, in decimal. This field is used for external relo-
cations as an index into the symbol table. It should reference an
undefined symbol table entry. The third field is the position, or
offset, within the current segment at which relocation is to take
place; it is printed in hexadecimal. The fourth field is the name of
the segment referenced in the relocation: text, data, bss or EXT for
-external. The fifth field is the size of relocation: byte, word (2
bytes), or long. The last field will indicate, if present, that the relo-
cation is relative.

If short form relocation is present, the format consist of three fields.
The first field is the relocation command in hexadecimal. the second
field contains the name of the segment referenced; text or data. The
last field indicates the size of relocation: word or long.

Options and their meanings are:
—~ h Causes the object file header and extended header to be printed

out. Each field in the header or extended header is labeled.
This is the default option.

March 24, 1984 Page 1



HDR (CP) HDR (CP)

- d Causes the data relocation records to be printed out.
— t Causes the text relocation records to be printed out.
— r Causes both text and data relocation to be printed.

— p Causes seek positions to be printed out as defined by macros in
the include file, <a.out.h>.

— 8 Prints the symbol table.

— S Prints the file segment table with a header. (Only applicable to
x.out segmented executable files.)

See Also
aout(F), nm(CP)

March 24, 1984 Page 2



HELP(CP) HELP (CP)

Name

help - Asks for help about'SCCS commands.

Syntax \)

help | .args]

Description

Help finds information to explain a message from an SCCS command

or explain the use of a command. Zero or more arguments may be

supplied. If no arguments are Biven, kelp will prompt for one.

The arguments may be either message numbers (which normally

appear in parentheses following messages) or command names.

There are the following types of arguments:

type 1 Begins with nonnumerics, ends in numerics. The non-
numeric prefix is usually an abbreviation for the program
or set of routines which produced the message (e.g., geB,
for message 6 from the get command).

type 2 Does not contain numerics (as a command, such as get) )

type 3 Is all numeric (e.g., 212)

The response of the program will be the explanatory information
related to the argument, if there is any.

When all else fails, try “‘help stuck’’.

Files

-fusrflib/help Directory containing files of message text

March 24, 1984 Page 1



LD(CP) LD(CP)

Name
1d — link editor

Syntax
Id [ option ] file ...

Description

Ld combines several object programs into one, resolves external
references, and searches libraries. Ld combines the given object
files, producing an object module which can be either executed or
become the input for a further /4 run (in the latter case, the —r
option must be given to preserve the relocation records). The
output of /d is left by default in the file x.out. This file is made
executable only if no errors occurred.

The files given as arguments are concatenated in the order
specified. The default entry point of the output is the beginning of
the first routine in the first file. The C compiler, cc , calls Id
automatically unless given the —c option. The command line that
cc passes to ld is

1d /lib/ert0.0 files cc—options —le

If any argument is a library, it is searched exactly once at the point
it is encountered in the argument list. Only those routines defining
an unresolved external reference are loaded. If a routine from a
library references another routine in the library, and the library has
not been processed by ranlib(CP), the referenced routine must
appear after the referencing routine in the library. Thus the order
of programs within libraries may be important. If the first member
of a library is named ‘_.SYMDEF’, then it is understood to be a
dictionary for the library

as produced by ranlib; the dictionary is searched iteratively to
satisfy as many references as possible.

The symbols ‘_etext’, ‘_edata’ and ‘_end’ (‘etext’, ‘edata’ and ‘end’
in C) are reserved, and if referred to, are set to the first location
above the program, the first location above initialized data, and the
first location above all data, respectively. It is erroneous to define
these symbols.

If no errors occur and there are no unresolved external references,
then short form relocation information is attached and the file is
made executable. This short form relocation information is
sufficient to allow the file to be used for another pass of id , to
change the text and data base addresses. At the same time, the —n

May 10, 1984 Page 1



LD(CP)

LD{CP)

s —i , or —F options can be used to produce different types of
executable files.

Ld understands several options. Except for —1, they should appear
before the names of all object file arguments.

-u

-pP

May 10,

‘Strip’ the output to save space by removing the symbol
table and relocation records. Note that stripping impairs
the usefulness of the debugger. This information can also
be removed later with strip(CP).

Do not attach the short form of relocation. This does not
imply removing the symbol table, as with —s .

Take the following argument as a symbol and enter it as
undefined in the symbol table. This is useful for loading
wholly from a library, since initially the symbol table is
empty and an unresolved reference is needed to force the
loading of the first routine.

Discard all symbols except those that are undefined exter—
nal.

The same as —U, except also retain the following list of
global symbols. The list consists of the next command
line arguments and is terminated by the end of the com—
mand line, by — alone, or by any further option beginning
with a —,

The same as —g, except that the list of global symbols is
taken from the file named by the following argument. If
the next argument is — alone, the standard input is read.
The symbols may be separated by any type of whitespace.

This option is an abbreviation for the library name
‘/lib/libx.a’, where x is a string. If the library does not
exist, Id then tries ‘/usr/lib/libx.a’. A library is searched
when its name is encountered, so the placement of a —1 is
significant. Note that —l1 with no argument, defaults to
~lc . If the processor on which Id is running is not the
same as the target processor, then it is possible that —p
may be implied. In the case of the MC68000 target, —p
fusr/lik/mlib is implied.

Take the following argument as the directory in which —Lx
libraries will be found.

Do not preserve local (non.globl) symbols in the output

1984 Page 2



LD (CP)

May 10,

LD (CP)

symbol table; only enter external symbols. This option
saves some space in the output file.

Save local symbols except for those whose names begin
with ‘L’. This option is used by cc(CP) to discard inter—
nally generated labels while retaining symbols local to
routines.

Generate (long form) relocation records in the output file
so that the output file can be the subject of ancther /d run.
This flag also prevents final definitions from being given
to common symbols and suppresses the ‘undefined sym—
bol’ diagnostics.

Force definition of common storage even if the —r flag is
present.

Arrange that when the output file is executed, the text
portion will be read—only and shared among all users
executing the file. This involves moving the data areas up
to the first possible page boundary following the end of
the text. A warning is issued if the current machine docs
not support this option.

Identical to —nn except that the text and data positions are
reversed.

Identical to whichever of —nn and —nr is the default for
the current machine.

When the output file is executed, the program text and
data areas are given separate address spaces. The only
difference between this option and —n is that with —i the
data may start at a boundary unrelated to the position of
the text. A warning is issued if the current machine does
not support this option.

The name argument after —o is used as the name of the Id
output file, instead of x.out.

The following argument is taken to be the name of the
entry point of the loaded program. The base of the text
segment is the default.

The next argument is a decimal number that sets the size
of the data segment.

The next argument is taken to be a hexadecimal number
that sets the pagesize, or rounding size, for use with the
—n option. With —i, it specifies the base of the data

1984 Page 3



LD(CP) LD (CP)

segment. With —nn, it is used to compute the base of the
data segment. With —nr, it is used to compute the base
of the text segment.

-R The next argument is taken to be a hexadecimal number
that is used as the base address for text relocation. With
—i or —nn , it also specifies the text base address; with
—nr it specifies the data base address.

-F The next argument is taken to be a hexadecimal number
that specifies the size of the stack required by the object
file when executing. This only has meaning on those
processors that cannot expand the stack dynamically.

Files
/lib/lib*.a libraries
/ust/mlib/lib*.a  more libraries
x.out output file
See Also

as(CP), ar(CP), cc(CP), ranlib(CP), strip(CP), x.out(F)

May 10, 1984 Page 4



LEX(CP) LEX(CP)

Name

lex - Generates programs for lexical analysis.

Syntax

lex [~ ctvn] [ file ] ...

Description
Lez generates programs to be used in simple lexical analysis of text.

The input files (standard input default) cont3in strings and expres-
sions to be searched for, and C text to be executed when strings are
found.

A file lex.yy.c is generated which, when loaded with the library,
‘copies the input to the output except when a string specified in the
file is found; then the corresponding program text is executed. The
actual string matched is left in yytezt, an external character array.
Matching is done in order of the strings in the file. The strings may
contain square brackets to indicate character classes, as in [abx- z]
to indicate a, b, x, y, and z; and the operators ® +, and ! mean
respectively any nonnegative number of, any positive number of,
and either zero or one occurrences of, the previous character or
character class. The character . is the class of all ASCH characters
except newline. Parentheses for grouping and vertical bar for alter-
nation are also supported. The notation r{d,c} in a rule indicates
between d and e instances of regular expression r. It has higher pre-
cedence than | but lower than *, ¢, +, and concatenation. The
character “ at the beginning of an expression permits a successful
match only immediately after a newline, and the character $ at the
end of an expression requires a trailing newline. The character / in
an expression indicates trailing context; only the part of the expres-
sion up to the slash is returned in gytezt, but the remainder of the
expression must follow in the input stream. An operator character
may be used as an ordinary symbol if it is within * symbols or pre-
ceded by \. Thus [a- zA~ Z]+ matches a string of letters.

Three subroutines defined as macros are expected: input() to read a
character; unput{c) to replace a character read; and output({c) to
place an output character. They are defined in terms of the standard
streams, but you can override them. The program generated is
named yylex(), and the library contains a main() which calls it. The
action REJECT on the right side of the rule causes this match to be
rejected and the next suitable match executed; the function
yymore() accumulates additional characters into the same yytest; and
the function yyless(p) pushes back the portion of the string matched
beginning at p, which should be between yytezt and yytezt+ yyleng.
The macros input and output use files yyin and yyout to read from

March 26, 1984 Page 1



LEX(CP) LEX(CP)

and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text
and is copied; if it precedes 9F%it is copied into the external defini-
tion area of the lex.yy.c file. All rules should follow a 983 as in
YACC. Lines preceding 925 which begin with a nonblank character
define the string on the left to be the remainder of the line; it can be
called out later by surrounding it with {J. Nete that curly brackets
do not imply parentheses; only string substitution is done.

Example
D [0- 9]
%% :
if printf("IF statement\n”);

[a~ z]+ printf("tag, value %s\n",yytext);
0{D}+ printf("octal number %s\n",yytext);
{D}+  printf("decimal number %\n",yytext);
"4+ +" printf("unary op\n");
"4 ? printf("binary op\n”);
b7 b { loop:

while (input() !='*);

switch (input())

case '/’: break;
case ¥ unput('¥);
default: go to loop;

}

The external names generated by lez all begin with the prefix yy or
YY.

The options must appear before any files. The option — c indicates
C actions and is the default, — t causes the lex.yy.c program to be
written instead to standard output, — v provides a one-line summary
.of statistics of the machine generated, — n will not print out the —
summary. Multiple files are treated as a single file. If no files are
specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set in
the definitions section:

% n
number of positions is n (default 2000)

% n
number of states is n (500)

% n

number of parse tree nodes is n (1000)

.March 26, 1984 Page 2

—



LEX(CP) LEX(CP)

% n

number of transitions is s (3000)
The use of one or more of the above automatically implies the — v
option, unless the ~ n option is used.
See Also

yace(CP)
Xenix Software Development Guide

March 26, 1984 Page 3



LINT(CP) LINT(CP)

Name

lint - Checks C language usage and syntax.

Syntax
lint [~ abchlnpuvx] file ...

Description

Lint attempts to detect features of the C program file that are likely
to be bugs, nonportable, or wasteful. It also checks type usage more
strictly than the C compiler. Among the things which are currently
detected are unreachable statements, loops not entered at the top,
automatic variables declared and not used, and logical expressions
whose value is constant. Moreover, the usage of functions is
checked to find functions which return values in some places and
not in others, functions called with varying numbers of arguments,
and functions whose values are not used.

If more than one file is given, it is assumed that all the files are to be
loaded together; they are checked for mutual compatibility. If rou-
tines from the standard library are called from file, lint checks the
function definitions using the standard lint library Ilibe.ln. If lint is
invoked with the — p option, it checks function definitions from the
portable lint library llibport.In.

Any number of lint options may be used, in any order. The follow-
ing options are used to suppress certain kinds of complaints:

— a Suppresses complaints about assignments of long values to vari-
ables that are not long.

~ b Suppresses complaints about break statements that cannot be
reached. (Programs produced by lez or yacc will often result in
a large number of such complaints.)

— ¢ Suppresses complaints about casts that have questionable porta-
bility.
— h Does not apply heuristic tests that attempt to intuit bugs,

improve style, and reduce waste.

u Suppresses complaints about functions and external variables
used and not defined, or defined and not used. (This option is
suitable for running lint on a subset of files of a larger program.)

v Suppresses complaints about unused arguments in functions.

— x Does not report variables referred to by external declarations
but never used.

March 24, 1984 Page 1

-



LINT(CP) LINT(CP)

The following arguments alter lint’s behavior:

— n Does not check compatibility against either the standard or the
portable lint library.

— p Attempts to check portability to other dialects of C.

— llibname
Checks functions definitions in the specified lint library. For
example, — Im causes the library llibm.ln to be checked.

The - D, — U, and - I options of cc(CP) are also recognized as
separate arguments.

Certain conventional comments in the C source will change the
behavior of lint:

/*NOTREACHED*/
At appropriate points stops comments about unreachable
code.

/‘VARARGSn‘/
Suppresses the usual checking for variable numbers of argu-
ments in the following function declaration. The data types
of the first n arguments are checked; a missing n is taken to
be 0.

/‘ARGSUSED */
Turns on the — v option for the next function.

/*LINTLIBRARY*/
Shuts off complaints about unused functions in this file.

Lint produces its first output on a per source file basis. Complaints
regarding included files are collected and printed after all source files
have been processed. Finally, information gathered from all input
files is collected and checked for consistency. At this point, if it is
not clear whether a complaint stems from a given source file or from
one of its included files, the source filename will be printed followed
by a question mark.

Files
[usr/lib/lint[12] Program files
[usr/lib/llibe.In, Jusr/lib/llibport.In, Jusr/lib/llibm.In,

Jusr/lib/llibdbm.In, fusr/lib/llibtermlib.In
Standard lint libraries (binary format)

March 24, 1984 Page 2



LINT(CP) LINT(CP)

Jusr/lib/llibe, /usr/lib/llibport, Jusr/lib/llibm, /usr/lib/llibdbm,
/Jusr/lib/llibtermlib
Standard lint libraries (source format)

/Jusr/tmp/*lint* Temporaries

See Also
cc(CP)

Notes

Ezit(S), and other functions which do not return, are not under-
stood. This can cause improper error messages. '

March 24, 1984 Page 3



LORDER (CP) LORDER (CP)

Name

lorder - Finds ordering relation for an object library.

Syntax

lorder file ...

Description
Lorder creates an ordered listing of object filenames, showing which
files depend on variables declared in other files. The file is one or
more object or library archive files (see ar(CP)). The standard out-
put is a list of pairs of object filenames. The first file of the pair
refers to external identifiers defined in the second. The output may
be processed by tsort(CP) to find an ordermg of a library suitable for
one-pass access by {d( CP).

Example
The following command builds a new library from existing .o files:

ar cr library ‘lorder *.o |tsort*

Files

*symref, *symdef Temp files

See Also
ar(CP), 1d(CP), tsort( CP)

Notes
Object files whose names do not end with .0, even when contained

in library archives, are overlooked. Their global symbols and refer-
ences are attributed to some other file.

March 24, 1984 Page 1



M4 (CP) M4 (CP)

Name

m4 - Invokes a macro processor.

Syntax

m4 [ options ] [ files ]

Description

M4 is a macro processor.intended as a front end for Ratfor, C, and
other languages. Each of the argument files is processed in order; if
there are no files, or if a filename is — , the standard input is read.
The processed text is written on the standard output.

The options and their effects are as follows:

- e Operates interactively. Interrupts are ignored and the output is
unbuffered.

~ 8 Enables line sync output for the C preprocessor (#line ...)

- Bint
Changes the size of the push-back and argument collection
buffers from the default of 4,096.

— Hint
Changes the size of the symbol table hash array from the
default of 199. The size should be prime.

— Sint
Changes the size of the call stack from the default of 100 slots.
Macros take three slots, and nonmacro arguments take one.

— Tint
Changes the size of the token buffer from the default of 512
bytes.

To be eflective, these flags must appear before any filenames and
before any — D or - U flags:

— Dname|=zal)
Defines name to val or to null in val’s absence.

— Uname
Undefines name.

March 24, 1984 Page 1

s



My (CP) M4 (CP)

Macro Calls
Macro calls have the form:
name(argl,arg2, ..., argn)

The ( must immediately follow the name of the macro. If a defined
macro name is not followed by a (, it is deemed to have no argu-
ments. Leading unquoted blanks, tabs, and newlines are ignored
while collecting arguments. Potential macro names consist of alpha-
betic letters, digits, and underscore _, where the first character is not
a digit.

"Left and right single quotation marks are used to quote strings. The
value of a quoted string is the string stripped of the quotation marks.

When a macro name is recognized, its arguments are collected by
searching for a matching right parenthesis. Macro evaluation
proceeds normally during the collection of the arguments, and any
commas or right parentheses which happen to turn up within the
value of a nested call are as effective as those in the original input
text. After argument collection, the value of the macro is pushed
back onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be
redefined, but once this is done the original meaning is lost. Their
values are null unless otherwise stated.

define The second argument is installed as the value of the
macro whose name is the first argument. Each
occurrence of $n in the replacement text, where n is a
digit, is replaced by the n-th argument. Argument 0 is
the name of the macro; missing arguments are replaced
by the null string; $# is replaced by the number of
arguments; $* is replaced by a list of all the arguments
separated by commas; $@ is like $*, but each argument
is quoted (with the current quotation marks).

undefine Removes the definition of the macro named in its argu-
ment.

defn Returns the quoted definition of its argument(s). It is
useful for renaming macros, especially built-ins.

pushdef Like define, but saves any previous definition.

popdef Removes current definition of its argument(s), expos-

ing the previous one if any.

ifdef If the first argument is defined, the value is the second
argument, otherwise the third. If there is no third
argument, the value is null. The word XENIX is
predefined in M4.

March 24, 1984 Page 2



M (CP)

shift

changequote

changecom

divert

undivert

divnum

dnl

ifelse

incr

decr

eval

March 24, 1984

M4 (CP)

Returns all but its first argument. The other arguments
are quoted and pushed back with commas in between.
The quoting nullifies the effect of the extra scan that
will subsequently be performed.

Changes quotation marks to the first and second argu-
ments. The symbols may be up to five characters long.
Changequote without arguments restores the original
values (i.e., * 9

Changes left and right comment markers from the
default # and newline. With no arguments, the com-
ment mechanism is effectively disabled. With one
argument, the left marker becomes the argument and
the right marker becomes newline. With two argu-
ments, both markers are affected. Comment markers
may be up to five characters long.

M4 maintains 10 output streams, numbered 0-9. The
final output is the concatenation of the streams in
numerical order; initially stream 0 is the current
stream. The divest macro changes the current output
stream to its (digit-string) argument. Output diverted
to a stream other than 0 through 9 is discarded.

Causes immediate output of text from diversions
named as arguments, or all diversions if no argument.
Text may be undiverted into another diversion.
Undiverting discards the diverted text.

Returns the value of the current output stream.

Reads and discards characters up to and including the
next newline.

Has three or more arguments. If the first argument is
the same string as the second, then the value is the
third argument. If not, and if there are more than four
arguments, the process is repeated with arguments 4, 5,
6 and 7. Otherwise, the value is either the fourth
string, or if it is not present, null.

Returns the value of its argument incremented by 1.
The value of the argument is calculated by interpreting
an initial digit-string as a decimal number.

Returns the value of its argument decremented by 1.

Evaluates its argument as an arithmetic expression,
using 32-bit arithmetic. Operators include +, -, *, /,
% ° (exponentiation), bitwise & |, %, and ~; relation-
als; parentheses. Octal and hex numbers may be
specified as in C. The second argument specifies the

Page 3



Mj (CP)

len

index

substr

translit

include

sinclude

syscmd

sysval

maketemp

mdexit

m4wrap

errprint

dumpdef

traceon

traceof f

March 24, 1984

M4 (CP)

radix for the result; the default is 10. The third argu-
ment may be used to specify the minimum number of
digits in the result.

Returns the number of characters in its argument.

Returns the position in its first argument where the
second argument begins (zero origin), or - 1 if the
second argument does not occur.

Returns a substring of its first argument. The second
argument is a zero origin number selecting the first
character; the third argument indicates the length of
the substring. A missing third argument is taken to be
large enough to extend to the end of the first string.

Transliterates the characters in its first argument from
the set given by the second argument to the set given
by the third. No abbreviations are permitted.

Returns the contents of the file named in the argu-
ment.

Identical to snclude, except that it says nothing if the
file is inaccessible.

Executes the XENIX command given in the first argu-
ment. No value is returned.

Is the return code from the last call to syscmd.

Fills in a string of XXXXX in its argument with the
current process ID.

Causes immediate exit from m4. Argument 1, if given,
is the exit code; the defaultis 0.

Argument 1 will be pushed back at final EOF; example:
m4wrap( ‘cleanup( ) 9

Prints its argument on the diagnostic output file.

Prints current names and definitions, for the named
items, or for all if no arguments are given.

With no arguments, turns on tracing for all macros
(including built-ins). Otherwise, turns on tracing for
named macros.

Turns off trace globally and for any macros specified.

Macros specifically traced by traceon can be untraced
only by specific calls to traceoff.

Page 4



MAKE (CP)

Name

MAKE ( CP)

make - Maintains, updates, and regenerates groups of programs.

Syntax

make [- f makefile] [-p] [-i] [- k] [-5] [-1 [-n] [- e
-t [1 q [-d [ names| [ b [~ e]

Description

The following is a brief description of all options and some special

names:

—~ f makefile Description filename. Makefile is assumed to be the

March 24, 1984

name of a description file. A filename of — denotes
the standard input. The contents of makefile override
the built-in rules if they are present.

Prints out the complete set of macro definitions and
target descriptions.

Ignores error codes returned by invoked commands.
This mode is entered if the fake target name .1GNORE
appears in the description file.

Abandons work on the current entry, but continues on
other branches that do not depend on that entry.

Silent mode. Does not print command lines before
executing. This mode is also entered if the fake target
name .SILENT appears in the description file.

Does not use the built-in rules.

No execute mode. Prints commands, but does not
execute them. Even lines beginning with an @ are
printed.

Compatibility mode for old makefiles.

Environment variables override assignments within
makefiles.

Touches the target files (causing them to be up-to-
date) rather than issues the usual commands.

Debug mode. Prints out detailed information on files
and times examined.

Page 1



MAKE (CP) MAKE (CP)

-q Question. The make command returns a zero or
nonzero status code depending on whether the target
file is or is not up-to-date.

.DEFAULT If a file must be made but there are no explicit com-
mands or relevant built-in rules, the commands associ-
ated with the name .DEFAULT are used if it exists.

.PRECIOUS Dependents of this target will not be removed when
quit or interrupt are hit.

SILENT Same effect as the — s option.
.IGNORE Same effect as the — i option.

Make executes commands in makefile to update one or more target
names. Name is typically a program. If no — f option is present,
makefile, Makeflle, s.makefile, and s.Makefile are tried in order.
If makefile is — , the standard input is taken. More than one — f
makefile argument pair may appear.

Make updates a target only if it depends on files that are newer than
the target. All prerequisite files of a target are added recursively to
the list of targets. Missing files are deemed to be out of date.

Makefile contains a sequence of entries that specify dependencies.
The first line of an entry is a blank-separated, nonnull list of targets,
then a :, then a (possibly null) list of prerequisite files or dependen-
cies. Text following a ; and all following lines that begin with a tab
are shell commands to be executed to update the target. The first
line that does not begin with a tab or # begins a new dependency or
macro definition. Shell commands may be continued across lines
with the <backslash><newline> sequence. (#) and newline sur-
round comments.

The following makefile says that pgm depends on two files a.o and
b.o, and that they in turn depend on their corresponding source files
(a.c and b.c) and a common file incl.h:

pgm: a.0 b.o
cc a0 b.o - o pgm
a.0: inclh ac

cc - ¢ ac
b.o: incl.h b.c
cc - ¢ b.c

Command lines are executed one at a time, each by its own shell. A
line is printed when it is executed unless the — s option is present,
or the entry .SILENT: is in makefile, or unless the first character of
the command is @. The — n option specifies printing without execu-
tion; however, if the command line has the string $(MAKE) in it, the

March 24, 1984 Page 2



MAKE (CP) MAKE (CP)

line is always executed (see discussion of the MAKEFLAGS macro
under Environment). The — t (touch) option updates the modified
date of a file without executing any commands.

Commands returning nonzero status normally terminate make. If
the — i option is present, or the entry JGNORE: appears in makefile,
or if the line specifying the command begins with
<tab> <hyphen>, the error is ignored. If the — k option is
present, work is abandoned on the current entry, but continues on
other branches that do not depend on that entry.

The ~ b option allows old makefiles (those written for the old ver-
sion of make) to run without errors. The difference between the old
version of make and this version is that this version requires all
dependency lines to have a (possibly null) command associated with
them. The previous version of make assumed if no command was
specified explicitly that the command was null.

Interrupt and quit cause the target to be deleted unless the target
depends on the special name .PRECIOUS.

FEnvironment

The environment is read by make. All variables are assumed to be
macro definitions and processed as such. The envircnment variables
are processed before any makefile and after the internal rules; thus,
macro assignments in a makefile override environment variables.
The — e option causes the environment to override the macro
assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as
containing any legal input option (except — f, — p, and — d) defined
for the command line. Further, upon invocation, make *‘invents’’
the variable if it is not in the environment, puts the current options
into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This proves
-very useful for ‘“‘super-makes”. In fact, as noted above, when the
- n option is used, the command $(MAKE) is executed anyway;
hence, one can perform a make — n recursively on a whole software
system to see what would have been executed. This is because the
— n is put in MAKEFLAGS and passed to further invocations of
$(MAKE). This is one way of debugging all of the makefiles for a
software project without actually doing anything.

Macros

Entries of the form stnng! = string2 are macro definitions. Subse-
quent appearances of $(stringl[:substi=[subst2]]) are replaced by
stnng2. The parentheses are optional if a single character macro
name is used and there is no substitute sequence. The optional
:eubstI=subst? is a substitute sequence. If it is specified, all nono-
verlapping occurrences of subet! in the named macro are replaced by

March 24, 1984 Page 3



MAKE (CP) MAKE (CP)

subst?2. Strings (for the purposes of this type of substitution) are
delimited by blanks, tabs, newline characters, and beginnings of
lines. An example of the use of the substitute sequence is shown
under Libranes.

Internal Macroe

There are five internally maintained macros which are useful for
writing rules for building targets:

$* The macro $* stands for the filename part of the current
dependent with the suffix deleted. It is evaluated only for
inference rules.

$@ The $@ macro stands for the full target name of the current
target. It is evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the
.DEFAULT rule. It is the module which is out of date with
respect to the target (i.e., the ‘‘manufactured”’ dependent
filename). Thus, in the .c.orule, the $< macro would evalu-
ate to the .c file. An example for making optimized .o files
from .c files is:

.c.o:
cc—c-0 $*c

or:

.c.0:
cc-c-0 8<

$? The $? macro is evaluated when explicit rules from the
makefile are evaluated. It is the list of prerequisites that are
out of date with respect to the target; essentially, those
modules which must be rebuilt.

$% The $% macro is only evaluated when the target is an archive
library member of the form lib{file.o). In this case, $@ evalu-
ates to lib and $%evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper
case D or F is appended to any of the four macros the meaning is
changed to ‘‘directory part’’ for D and ‘‘file part’’ for F. Thus,
$(@ D) refers to the directory part of the string $@. If there is no
directory part ./ is generated. The only macro excluded from this
alternative form is $?.

Suffizes

Certain names (for instance, those ending with .0) have default

March 24, 1984 Page 4



MAKE ( CP) MAKE (CP)

dependents such as .c, .s, ete. If no update commands for such a
file appear in makefile, and if a default dependent exists, that prere-
quisite is compiled to make the target. In this case, make has infer-
ence rules which allow building files from other files by examining
the suffixes and determining an appropriate inference rule to use.
The current default inference rules are:

.c .c” .sh .sh”™ .c.o .c™.0 .¢”.c 5.0 .s7.0 .y.0 .y.0 .lLo .I".0
.y.c.y.c lc.ca.c.a.s".a.h"h

The internal rules for make are contained in the source file rules.c
for the make program. These rules can be locally modified. To print
out the rules compiled into the make on any machine in a form suit-
able for recompilation, the following command is used:

make ~ fp - 2> /dev/null </dev/null

The only peculiarity in this output is the (null) string which printf(S)
prints when handed a null string.

A tilde in the above rules refers to an SCCS file (see sccefile(F)).
Thus, the rule .c™.0 would transform an SCCS C source file into an
object file (.0). Because the s. of the SCCS files is a prefix it is
incompatible with make’s suffix point-of-view. Hence, the tilde is a
way of changing any file reference into an SCCS file reference.

A rule with only one suffix (i.e. .c:) is the definition of how to build
z from z.c. In effect, the other suffix is null. This is useful for
building targets from only one source file (e.g., shell procedures,
simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES.
Order is significant; the first possible name for which both a file and
arule exist is inferred as a prerequisite.
The default list is:

SUFFIXES: 0 .c .y Jd s
Here again, the above command for printing the internal rules will
display the list of suffixes implemented on the current machine.

Multiple suffix lists accumulate; .SUFFIXES: with no dependencies
clears the list of suffixes.

Inference Rules
The first example can be done more briefly:
pgm: a0 b.o

cc a.0 b.o - o pgm
a.0 b.o: inclL.h

March 24, 1984 Page 5



MAKE (CP) MAKE (CP)

This is because make has a set of internal rules for building files.
The user may add rules to this list by simply putting them in the
makefile.

Certain macros are used by the default inference rules to permit the
inclusion of optional matter in any resulting commands. For exam-
ple, CFLAGS, LFLAGS, and YFLAGS are used for compiler options to
¢¢(CP), lez(CP), and yacc(CP) respectively. Again, the previous
method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create
a file with suffix .o from a file with suffix .c is specified as an entry
with .c.o: as the target and no dependents. Shell commands associ-
ated with the target define the rule for making a .o file from a .c file.
Any target that has no slashes in it and starts with a dotis identified
as a rule and not as a true target.

Librames

If a target or dependency name contains parentheses, it is assumed
to be an archive library, the string within parentheses referring to a
member within the library. Thus lib(file.o) and $(LIB)(file.o) both
refer to an archive library which contains file.o. (This assumes the
LIB macro has been previously defined.) The expression
$(LIB)(filel.o file2.0) is not legal. Rules pertaining to archive
libraries have the form .XX.a where the XX is the suffix from which
the archive member is to be made. An unfortunate byproduct of the
current implementation requires the XX to be different from the
suffix of the archive member. Thus, one cannot have lib(file.o)
depend upon file.o explicitly. The most common use of the archive
interface follows. Here, we assume the source files are all C type
source:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
@echo lib is now up to date
ca
$(cC) - ¢ $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*0

In fact, the .c.a rule listed above is built into meke and is unneces-
sary in this example. A more interesting, but more limited example
of an archive library maintenance construction follows:

lib: lib(filel.0) lib(file2.0) lib(file3.0)
$(CC) - ¢ $(CFLAGS) $(?:.0=.c)
ar rv lib §?
rm $? @echo lib is now up to date
.c.a3;

Here the substitution mode of the macro expansions is used. The
$? list is defined to be the set of object filenames (inside lib) whose

March 24, 1984 Page 6



MAKE (CP) _ MAKE (CP)

C source files are out of date. The substitution mode translates the
.0 to .c. (Unfortunately, one cannot as yet transform to .c”) Note
also, the disabling of the .c.a: rule, which would have created each
object file, one by one. This particular construct speeds up archive
library maintenance considerably. This type of construct becomes
very cumbersome if the archive library contains a mix of assembly
programs and C programs.

+Files
[Mm)akefile

s.[Mm]akefile

See Also
sh(C)

Notes

Some commands return nonzero status inappropriately; use — i to
overcome the difficulty. Commands that are directly executed by the
shell, notably ¢d(C), are ineffectual across newlines in make. The
syntax (lib(filel.o file2.0 file3.0) is illegal. You cannot build
lib{file.o) from file.o. The macro $(a:.o=.c") is not available.

March 24, 1984 Page 7

st



MKSTR ( CP) MKSTR (CP)

Name

mkstr — Creates an error message file from C source.

Syntax

mkstr [- | messagefile prefix file ...

Description

Meketr is used to create files of error messages. Its use can make pro-
grams with large numbers of error diagnostics much smaller, and
reduce system overhead in running the program as the error mes-
sages do not have to be constantly swapped in and out.

Meketr will process each specified file, placing a massaged version of
the input file in a file whose name consists of the specified prefiz and
the original name. The optional dash (- ) causes the error messages
to be placed at the end of the specified message file for recompiling
part of a large mkstred program.

A typical mkstr command line is
mkstr pistrings xx *.c

This command causes all the error messages from the C source files
in the current directory to be placed in the file ptetnngs and processed
copies of the source for these files to be placed in files whose names
are prefixed with zz.

To process the error messages in the source to the message file,
mkstr keys on the string ‘error(” in the input stream. Each time it
occurs, the C string starting at the ‘™ is placed in the message file
followed by a null character and a newline character; the null charac-
ter terminates the message so it can be easily used when retrieved,
the newline character makes it possible to sensibly catthe error mes-
sage file to see its contents. The massaged copy of the input file
then contains a lseek pointer into the file which can be used to
retrieve the message. For example, the command changes

error("Error on reading”, a2, a3, a4);
into

error(m, a2, a3, a4);
where m is the seek position of the string in the resulting error mes-
sage file. The programmer must create a routine error which opens

the message file, reads the string, and prints it out. The following
example illustrates such a routine.

March 24, 1984 Page 1



MKSTR (CP) MKSTR (CP)

Example

char efilname|] = "/usr/lib/pi_strings”;
int efil = .1;

error(al, a2, a3, ad)
char buf[256];
if (efil < 0) {
efil = open(efilname, 0);
if (efil < 0) {

perror(efilname);

exit{C);

if (Iseek(efil, (long) al, 0) |read(efil, buf, 256) <= 0)
goto oops;
printf(buf, a2, a3, a4);
}

See Also
Iseek(S), xstr(CP)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

All the arguments except the name of the file to be processed are
unnecessary.

March 24, 1984 Page 2



NM (CP) NM(CP)

Name

nm — Prints name list.
Syntax

nm [ —gnoOprucv || file ... |
Description

nm prints the name list (symbol table) of each object file in the
argument list. If an argument is an archive, a listing for each
object file in the archive will be produced. If no file is given, the
symbols in x.out are listed.

Each symbol name is preceded by its value in hexadecimal (blanks
if undefined) and one of the letters U (undefined), A (absolute), T
(text segment symbol), D (data segment symbol), B (bss segment
symbol), or C (common symbol). If the symbol is local (non—
external) the type letter is in lowercase. The output is sorted
alphabetically.

Options are:
-g Print only global (external) symbols.
-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line
rather than only once.

-0 Print symbol values in octal.

-p Don’t sort; print in symbol—table order.
-r Sort in reverse order.

-u Print only undefined symbols.

—c Print only C program symbols (symbols which begin with
«.") as they appeared in the C program.
-v Also describe the object file and symbol table format.

Files

x.out  Default input file
See Also

ar(CP), ar(F), x.out(F)

May 10, 1984 Page 1



PROF (CP) PROF(CP)

Name
prof — display profile data

sym;xrof[ —a [ =1][ ~tow| —high ]]] file |

Description

Prof interprets the file mon.out produced by the monitor subrou—
tine. Under default modes, the symbol table in the named object
file (x.out default) is read and correlated with the mon.out profile
file. For each external symbol, the percentage of time spent exe—
cuting between that symbol and the next is printed (in decreasing
order), together with the number of times that routine was called
and the number of milliseconds per call.

If the —a option is used, all symbols are reported rather than just
external symbols. If the —I option is used, the output is listed by
symbol value rather than decreasing percentage.

if the —v option is used, all printing is suppressed and a graphic
version of the profile is produced on the standard output for display
by the plot(C) filters. The numbers low and high, by default O and
100, cause a selected percentage of the profile to be plotted with
accordingly higher resolution.

In order for the number of calls to a routine to be tallied, the —p
option of cc must have been given when the file containing the
routine was compiled. This option also arranges for the mon.out
file to be produced automatically.

Files .
mon.out for profile
x.out  for namelist

See Also
monitor(S), profil(S), cc(CP) , plot(C)

Notes
Beware of quantization errors.

If you use an explicit call to monitor(S) you will need to make sure
that the buffer size is equal to or smaller than the program size.

May 10, 1984 Page 1



PRS (CP )' PRS (CP)

Name

prs - Prints an SCCS file.

Syntax
prs [~ d[dataspec]] [~ r[SID]] [~ €] [~ 1] [~ a] files

Description

Prs prints, on the standard output, all or part of an SCCS file (see
sccefile(F)) in a user supplied format. If a directory is named, prs
behaves as though each file in the directory were specified as a
named file, except that nonSCCS files (last component of the path-
name does not begin with s.), and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each
line of the standard input is taken to be the name of an SCCS file or
directory to be processed; nonSCCS files and unreadable files are
silently ignored.

Arguments to pre, which may appear in any order, consist of
options, and filenames.

All the described options apply independently to each named file:

— d|dataspec] Used to specify the output data specification. The
dataepec is a string consisting of SCCS file data key-
worde (see Dota Keywords) interspersed with optional
user-supplied text.

- r[sID) Used to specify the SCCS /Dentification (SID) string
of a delta for which information is desired. If no
SID is specified, the SID of the most recently created
delta is assumed.

-e Requests information for all deltas created earlier
than and including the delta designated via the — r
option.

-1 Requests information for all deltas created later than
and including the delta designated via the —r
option.

-a Requests printing of information for both removed,
i.e., delta type = R, (see rmdel( CP)) and existing,
i.e., delta type = D, deltas. If the — a option is not
specified, information for existing deltas only is pro-
vided.

March 24, 1984 Page 1



PRS (CP) PRS(CP)

Data Keywords

Data keywords specify which parts of an SCCS file are to be retrieved
and output. All parts of an SCCS file (see sccefile(F)) have an asso-
ciated data keyword. There is no limit on the number of times a i W)
data keyword may appear in a dataspec. o

The information printed by pre consists of the user-supplied text and
appropriate values (extracted from the SCCS file) substituted for the
recognized data keywords in the order of appearance in the dataspec.
The format of a data keyword value is either simple, in which key-
word substitution is direct, or multiline, in which keyword substitu-
tion is followed by a carriage return.

User-supplied text is any text other than recognized data keywords.
A tab is specified by \t and carriage return/newline is specified by \n.

March 24, 1984 Page 2

P



PRS (CP)

PRS (CP)

TABLE 1. SCCS Files Data Keywords

KeywordDala Item

:Dt:
:DL:
:Li:
:Ld:
:Lu:
:DT:
HH
:R:
:L:
:B:
HH
:D:
:Dy:
:Dm:
:Dd:
:T:
:Th:
:Tm:
:Ts:
P:
:DS:
:DP:
:DI:
:Dn:
:Dx:
:Dg:
:MR:
:C:
:UN:
:FL:
:Y:
:MF:
:MP:
:KF:
:BF:

X
:LK:
:Q:
M:
:FB:
:CB:
:Ds:
:ND:
:FD:
:BD:
:GB:
W
A
:Z:
:F:
:PN:

Delta information

Delta line statistics

Lines inserted by Delta
Lines deleted by Delta
Lines unchanged by Delta
Delta type

SCCS ID string (SID})
Release number

Level number

Branch number
Sequence number

Date Delta created

Year Delta created
Month Delta created
Day Delta created

Time Delta created
Hour Delta created
Minutes Delta created
Seconds Delta created
Programmer who created Delta
Delta sequence number
Predecessor Delta seq-no.
Seq-no. of deltas incl., excl., ignored
Deltas included (seq #)
Deltas excluded (seq #)
Deltas ignored (seq #)
MR numbers for delta
Comments for delta
User names

Flag list

Module type flag

MR validation fag

MR validation pgm name
Keyword error/waming flag
Branch flag

Joint edit flag

Locked releases

User defined keyword
Module name

Floor boundary

Ceiling boundary
Default SID

Null delta flag

File descriptive text
Body

Gotten body

A form of wha§C) string
A form of what(C) string
what(C) string delimiter
SCCS filename

SCCS file pathname

¢ :Dt: = :DT: :I: :D: :T: :P: :DS: :DP:

March 24, 1984

File Section
Delta Table

LI T T T2 T R T TR TR R T TR T T BT

.User Names
Flags
»

¥ ¥ M O3 ¥ N ENW NN YN

Comments
Body
»

N/A
N/A
N/A
N/A
N/A

Value F
See belows
:Liz/:Ld:/:Lu:
nnnnn
nnrnn
pnnnn
DorR
:R:.:L:.:B:.:S:
nnnn
nnnn
nnnn

nnnn
:Dy:/:Dm:/:Dd:
nn

nn
D
:The::Tm:::Ts:
nn
nn
on
logname
nnnn
nnnn
:Dn:/:Dx:/:Dg:
:DS: :DS:...
:DS: :DS:...
:DS: :DS: ...
text
text
text
text
text
yes or no
text
yes or no
yes or no
yes or no
R: ...
text
text
:R:
:R:
HY
yes or no
text
text
text
1Z::M:\t:l:
222 Y :M: 2l
e (#)
text
text

Page 3

mmmmmKZmemmmmmmmmmmmZKZmemmmmmmmmmmmmmmmmmmmmmmmmg



PRS (CP) PRS (CP)

Examples

The following:

prs — d"Users and/or user IDs for :F: are:\n:UN:" s.file \)
may produce on the standard output:

Users and/or user IDs for s.file are:

xyz

131

abe

prs — d"Newest delta for pgm :M:: :I: Created :D: By :P:" - r
s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas
As 3 special eoer:

prs s.file
may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000

MRs:

bl78-12345

bl79-54321

COMMENTS:

this is the comment line for s.file initial delta

for each delta table entry of the ‘D’ type. The only option allowed
to be used with the special caee is the — a option.

Files

See Also

admin(CP), delta(CP), get(CP), help(CP), sccsfile(F)

Diagnostics .

Use hkelp(CP) for explanations.

March 24, 1984 Page 4



RANLIB(CP) RANLIB(CP)

Name
ranlib — Converts archives to random libraries.

Syntax
ranlib archive ...

Description
Ranlib converts each archive to a form that can be loaded more
rapidly by the loader, by adding a table of contents named
—SYMDEF to the beginning of the archive. It uses ar(CP) to
reconstruct the archive, so sufficient temporary file space must be
available in the file system containing the current directory.

See Also
1d(CP), ar(CP), copy(C), settime(C)

Notes
Because generation of a library by ar and randomization by ranlib
are separate, phase errors are possible. The loader [d wams when
the modification date of a library is more recent than the creation
of its dictionary; but this means you get the waming even if you
only copy the library. On XENIX 68K use of ranlib is optional.

May 10, 1984 Page 1



RATFOR (CP) RATFOR (CP)

Name

ratfor -~ Converts Rational FORTRAN into standard FORTRAN.

Syntax

ratfor [ option ... ] [ filename ... |

Description

Ratfor converts a rational dialect of FORTRAN into ordinary irra-
tional FORTRAN. Ratfor provides control flow constructs essentially
identical to those in C:

statement grouping:
~ { statement; statement; statement }

decision-making: .
if (condition) statement | else statement |
switch (integer value) {
) case integer:  statement

.["default: | statement

loops:
while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [ until (condition) ]
break [n]
next [n]

and some additional syntax to make programs easier to read and write:

Free form input: )
multiple statements/line; automatic continuation

Comments:
# this is a comment

Translation of relationals:
>, >=, etc., become .GT., .GE., etc.

Return (expression)
returns expression to caller from function

Define:
define name replacement

March 26, 1984 Page 1



RATFOR (CP) RATFOR (CP)

Include:
include filename

The option — h causes quoted strings to be turned into 27H con-
structs. — C copies comments to the output, and attempts to format
it neatly. Normally, continuation lines are marked with an & in
column 1; the option — 6x makes the continuation character x and
places it in column 6.

March 26, 1984 Page 2



REGCMP (CP) REGCMP (CP)

Name

regemp ~ Compiles regular expressions.

Syntax

regemp (- | files

Description

Regemp, in most cases, precludes the need for calling regemp (see
regez(S)) from C programs. This saves on both execution time and
program size. The command regemp compiles the regular expres-
sions in file and places the output in file .i. If the — option is used,
the output will be placed in file .c. The format of entries in file is a
name (C variable) followed by one or more blanks followed by a
regular expression enclosed in double quotation marks. The output
of regemp is C source code. Compiled regular expressions are
represented as extern char vectors. File.i files may thus be included
into C programs, or fde.c files may be compiled and later loaded. In
the C program which uses the regemp output, regez(abe,line) applies
the regular expression named abec to line. Diagnostics are self-
explanatory.

Examples
name "(|A- 2a- z]|A- Za- 20- 9_]*)$0”
telno  "\({0,1)([2- 9][01][1- 8])$0\){0,1} **

"([2- 9][0- 9){2)$1[ - ]{0,1)
o g

In the C program that uses the regemp output,
regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

See Also

regex(S)

March 26, 1984 ' Page 1




RMDEL (CP) RMDEL (CP)

Name

rmdel - Removes a delta from an SCCS file.

Syntax
rmdel ~ rSID files

Description

Rmdel removes the delta specified by the SID from each named SCCS
file. The delta to be removed must be the newest (most recent)
delta in its branch in the delta chain of each named SCCS file. In
addition, the SID specified must not be that of a version being edited
for the purpose of making a delta. That is, if a p-file exists for the
named SCCS file, the SID specified must not appear in any entry of
the p-file(see get(CP)).

If a directory is named, rmdel behaves as though each file in the
directory were specified as a named file, except that nonSCCS files
(last component of the pathname does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to be
the name of an SCCS file to be processed; nonSCCS files and unread-
able files are silently ignored.

Files
x-file See delta(CP)
z-file See delta(CP)

See Also
delta( CP), get(CP), help(CP), prs(CP), scesfile(F)

Diagnostics

Use help(CP) for explanations.

March 24, 1984 Page 1



SACT(CP)

Name

SACT(CP)

sact - Prints current SCCS file editing activity.

Syntax

sact files

Description

Sact informs the user of any impending. deltas to a named SCCS file.
This situation occurs when get(CP) with the — e option has been
previously executed without a subsequent execution of delta(CP). If
a directory is named on the command line, sact behaves as though
each file in the directory were specified as a named file, except that
nonSCCS files and unreadable files are silently ignored. If a name of
— is given, the standard input is read with each line being taken as
the name of an SCCS file to be processed.

The output for each named file consists of five fields separated by

spaces.

Field 1

Field 2

Field 3

Field 4
Field 5

See Also

Specifies the SID of a delta that currently exists in the
SCCS file to which changes will be made to make the
new delta

Specifies the SID for the new delta to be created

Contains the logname of the user who will make the
delta i.e., executed a get for editing

Contains the date that get — e was executed

Contains the time that get — e was executed

delta( CP), get(CP), unget(CP)

Diagnostics

Use help(CP) for explanations.

March 24, 1984

Page 1



SCCSDIFF (CP) SCCSDIFF ( CP)

Name

scesdiff - Compares two versions of an SCCS file.

Synt.ax.

scesdiff — rSID1 - rSID2 [- p] [~ sn) files

Description

Secediff compares two versions of an SCCS file and generates the
differences between the two versions. Any number of SCCS files
may be specified, but arguments apply to all files.

— rSID?  SID1 and SID? specify the deltas of an SCCS file that are
to be compared. Versions are passed to bdiff{C) in the
order given.

-p Pipe output for each file through pr(C).

- sn n is the file segment size that bdiff will pass to diff{ C).
This is useful when diff fails due to a high system load.

Files

/tmp/get????? Temporary files

See Also
bdiff(C), get(CP), help(CP), pr(C)

Diagnostics
file: No differences If the two versions are the same.

Use help(CP) for explanations.

March 24, 1984 Page 1



SIZE ( OP) SIZE (CP)

Name

size - Prints the size of an object file.

Syntax

size [ object ... |

Description
Size prints the (decimal) number of bytes required by the text, data,
and bss portions, and their sum in decimal and hexadecimal, of each
object-file argument. If no file is specified, a.out is used.

See Also
a.out({F)

March 24, 1984 Page 1



SPLINE ( CP) SPLINE (CP)

Name

spline - Interpolates smooth curve.

Syntax

spline [ option | ...

Description

Spline takes pairs of numbers from the standard input as abcissas and

ordinates of a function. It produces a similar set, which is approxi-

mately equally spaced and includes the input set, on the standard
output. The cubic spline output has two continuous derivatives, and
enough points to look smooth when plotted.

The following options are recognized, each as a separate argument.

— a Supplies abscissas automatically (they are missing from the
input); spacing is given by the next argument, oris assumed to
be 1 if next argument is not a number.

— k The constant k used in the boundary value computation
L4 ’ L] ’

Yo =kyr, ..., Yo =kin
is set by the next argument. By default k¥ = 0.

— n Spaces output points so that approximately n intervals occur
between the lower and upper z limits. (Default n = 100.)

~ p Makes output periodic, i.e. matches derivatives at ends. First
and last input values should normally agree.

—x Next 1 (or 2) arguments are lower (and upper) z limits. Nor-
mally these limits are calculated from the data. Automatic
abcissas start at lower limit (default 0).
Diagnostics
When data is not strictly monotone in z, spline reproduces the input
without interpolating extra points.
Notes

A limit of 1000 input points is silently enforced.

March 26, 1984 Page 1



STRINGS (CP) STRINGS (CP)

Name

strings ~ Finds the printable strings in an object file.

Syntax

strings [~ | [~ o] [ — number] file ...

Description

Stringe looks for ASCIl strings in a binary file. A string is any
sequence of four or more printing characters ending with a newline
or a null character. Unless the — flag is given, stn'ngs only looks in
the initialized data space of object files. If the — o flag is given, then
each string is preceded by its decimal offset in the file. If the
~ number flag is given then number is used as the minimum string
length rather than 4.

Stringe is useful for identifying random object files and many other
things.

See Also
hd(C), od(C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

R

March 24, 1984 Page 1



STRIP (CP) STRIP (CP)

Name

strip - Removes symbols and relocation bits.

Syntax

strip name ...

Description
Strip removes the symbol table and relocation bits ordinarily attached
to the output of the assembler and link editor. This is useful for
saving space after a program has been debugged.
The effect of strip is the same as use of the — 8 option of Id.
If name is an archive file, stnp will remove the local symbols from
any a.out format files it finds in the archive. Certain libraries, such
as those residing in /lib, have no need for local symbols. By delet-
ing them, the size of the archive is decreased and link editing perfor-
mance is increased.

Files

/tmp/stm* Temporary file

See Also
14(CP)

March 26, 1984 Page 1



TIME (CP) TIME ( CP)

Name

time -~ Times a command.

Syntax

time command

Description
The given command is executed; after it is complete, time prints the
elapsed time during the command, the time spent in the system, and
the time spent in execution of the command. Times are reported in
seconds.

The times are printed on the standard error.

See Also

times(S)

March 24, 1984 Page 1



TSORT( CP) TSORT (CP)

Name

tsort - Sorts a file topologically.

Syntax

tsort | file |

Description

Teort produces on the standard output a totally ordered list of items
consistent with a partial ordering of items mentioned in the input
file. If no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by
blanks. Pairs of different items indicate ordering. Pairs of identical
items indicate presence, but not ordering.

See Also
lorder(CP)

Diagnostics
Odd data: There is an odd number of fields in the input file.

Notes

The :sort algorithm is quadratic, which can be slowif you have a large
input list.

March 24, 1984 Page 1



UNGET (CP) UNGET ( CP)

Name

unget - Undoes a previous get of an SCCS file.

Syntax

unget |- rSID] [- s] [~ n] files

Description

Unget undoes the effect of a get —~ e done prior to creating the
intended new delta. If a directory is named, unget behaves as
though each file in the directory were specified as a named file,
except that nonSCCS files and unreadable files are silently ignored.
If a name of — is given, the standard input is read with each line
being taken as the name of an SCCS file to be processed.

Options apply independently to each named file.

- rSID Uniquely identifies which delta is no longer intended.
(This would have been specified by get as the ‘“‘new
delta’’.) The use of this option is necessary only if two
or more versions of the same SCCS file have been
retrieved for editing by the same person (login name).
A diagnostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command line.

-8 Suppresses the printout, on the standard output, of the
intended delta’s SID.

-n Causes the retention of the file which would normally
be removed from the current directory.

See Also
delta(CP), get(CP), sact{ CP)

Diagnostics

Use help(CP) for explanations.

March 24, 1984 Page 1



VAL (CP) VAL (CP)

Name

val ~ Validates an SCCS file.

Syntax
val —

val [~ s] [~ rSID] [~ mname] [~ ytype] files

Description

Val determines if the specified file is an SCCS file meeting the
characteristics specified by the optional argument list. Arguments to
val may appear in any order. The arguments consist of options,
which begin with a — ;, and named files.

Val has a special argument, — , which causes reading of the standard
input until an end-of-file condition is detected. Fach line read is
independently processed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each
command line and file processed and also returns a single 8-bit code
upon exit as described below.

The options are defined as follows. The effects of any option apply
independently to each named file on the command line:

-8 The presence of this argument silences the diagnos-
tic message normally generated on the standard out-
put for any error that is detected while processing
each named file on a given command line.

~ rSID The argument value SID (SCCS [Dentification
String) is an SCCS delta number. A check is made
to detetmine if the SID is ambiguous (e. g., rl is
ambiguous because it physically does not exist but
implies 1.1, 1.2, etc. which may exist) or invalid (e.
g, rl.0 or rl.1.0 are invalid because neither case
can exist as a valid delta number). If the SID is
valid and not ambiguous, a check is made to deter-
mine if it actually exists.

— mname The argument value naeme is compared with the
Sccs %M % keyword in file.

— Ytype The argument w_lalue type is compared with the SCCS
9Y % keyword in file. .

March 24, 1984 Page 1



VAL (CP) VAL (CP)

The 8-bit code returned by val is a disjunction of the possible errors,
i. e, can be interpreted as a bit string where (moving from left to
right) set bits are interpreted as follows:

bit 0 == Missing file argument

bit 1 == Unknown or duplicate option

bit 2 == Corrupted SCCS file

bit 3 == Can't open file or file not SCCS

bit 4 = SID is invalid or ambiguous

bit § == SID does not exist

‘bit 6 == %Y %, ~ y mismatch

bit 7 = 99M% - m mismatch

Note that val can process two or more files on a given command line
and in turn can process multiple command line (when reading the
standard input). In these cases an aggregate code is returned; a logi-
cal OR of the codes generated for each command line and file pro-
cessed.

See Also
admin(CP), delta(CP}, get{CP), prs(CP)

Diagnostics

Use hkelp(CP) for explanations.

Notes

Val can process up to 50 files on a single command line.

March 24, 1984 Page 2



XREF (CP) XREF (CP)

Name

xref — Cross-references C programs.

Syntax

xref [ file ... ]

Description

Xref reads the named files or the standard input if no file is specified
and prints a cross reference consisting of lines of the form

identifier filename line numbers ...
Function definition is indicated by a plus sign (+) preceding the line
number.
See Also
cref(CP)

March 24, 1984 Page 1



XTR (CP) XSTR (CP)

Name

xstr - Extracts strings from C programs.

Syntax
xstr [- c] [-] [ file ]

Description

Xotr maintains a file etnnge into which strings in component parts of
a large program are hashed. These strings are replaced with refer-
ences to this common area. This seryes to implement shared con-
stant strings, most useful if they are also read-only.

The command
xstr - ¢ name

will extract the strings from the C source in name, replacing string
references by expressions of the form (&xstr[number]) for some
number. An appropriate declaration of zetris prepended to the file.
The resulting C text is placed in the file z.c, to then be compiled.
The strings from this file are placed in the stn'nge data base if they
are not there already. Repeated strings and strings which are suffices
of existing strings do not cause changes to the data base.

After all components of a large program have been compiled, a file
zs.c declaring the common zstr space can be created by a command
of the form '

xstr -c namel name2 name3 ...
This zs.c file should then be compiled and loaded with the rest of the
program. If possible, the array can be made read-only (shared) sav-
ing space and swap overhead.
Xotrcan also be used on a single file. A command

Xstr name

creates files z.c and ze.c as before, without using or affecting any
etringe file in the same directory.

It may be useful to run zetr after the C preprocessor if any macro
definitions yield strings or if there is conditional code which contains
strings which may not, in fact, be needed. Xstr reads from its stan-
dard input when the argument - is given. An appropriate command
sequence for running zstr after the C preprocessor is:

March 24, 1984 Page 1



XSTR (CP) XSTR (CP)

cc - E name.c |xstr - ¢ -
cc - ¢ Xx.c
mv X.0 name.o
Xatr does not touch the file stringe unless new items are added, thus
make can avoid remaking zs.0 unless truly necessary.
Files
strings Data base of strings
x.c Massaged C source

xs.c C source for definition of array *‘xstr”

Jtmp/xs®* Temp file when *‘xstr name’’ doesn’t touch stringe

See Also
mkstr(CP)

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

Notes
It a string is a suffix of another string in the data base, but the

shorter string is seen first by zetr , both strings will be placed in the
data base when just placing the longer one there will do.

March 24, 1984 Page 2



YACC|(CP) : YACC (CP)

Name

yace - Invokes a compiler-compiler.

Syntax

yace [ — vd] grammar

Description

Yace converts a context-free grammar into a set of tables for a sim-
ple automaton which executes an LR(1) parsing algorithm. The
grammar may be ambiguous; specified precedence rules are used to
break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to pro-
duce a program yyparse. This program must be loaded with the lexi-
cal analyzer program, yylez, as well as main and yyerror, an error
handling routine. These routines must be supplied by the user;
lez(CP) is useful for creating lexical analyzers usable by yace.
If the — v flag is given, the file y.output is prepared, which contains
a description of the parsing tables and a report on conflicts generated
by ambiguities in the grammar.
If the - d flag is used, the file y.tab.h is generated with the gdefine
statements that associate the yace-assigned ‘‘token codes’ with the
user-declared ‘‘token names’’. This allows source files other than
y-tab.c to access the token codes.

Files
y.output
y.tab.c
y.tab.h Defines for token names

yace.tmp, yacc.acts Temporary files

[usr/lib/yaccpar Parser prototype for C programs

See Also

lex(CP)

March 26, 1984 Page 1



YACC (CP) YACC (CP)

Diagnostics
The number of reduce-reduce and shift-reduce conflicts is reported
on the standard output; 2 more detailed report is found in the

y-output file. Similarly, if some rules are not reachable from the
start symbol, this is also reported.

Notes

Because filenames are fixed, at most one yacc process can be active
in a given directory at a time.

March 26, 1984 Page 2



‘;;/:
N



CONTENTS

intro
a64l,164a

abont

abs

access
.acct

alarm

assert

atof, atoi, atol
bessel, jO, j1,jn,
yO,yl,yn
bsearch

chdir
chmod
chown

chroot

chsize

close

conv, toupper,
tolower, toascii
creat

creatsem

crypt, setkey, encrypt
ctermid

ctime, localtime,
gmtime, asctime,
tzset

ctype, isalpha,
isupper, islower,
isdigit, isxdigit,
isalnum, isspace,
ispunct, isprint,
isgraph, iscntrl,
isascii

curses

cuserid

dbm, dbminit, fetch,
store, delete,
firstkey, nextkey

SystemServices(S)

Introduces system servicesand
error numbers
Convertsbetweenlong integerand
base64ASCl

GeneratesanlOT fault
Retumns aninteger absolute value
Determines accessibility of afile
Enablesordisablesprocess
accounting
Setsaprocess’alarmclock
Helps verify validity of programs
Converts ASClitomumbers

Performs Bessel functions
Performsabinary search
Changesthe working directory
Changesmode of afile
Changestheownerand group
ofafile
Changestherootdirectory
Changesthe sizeofafile
Closesafiledescriptor

Translatescharacters
Createsanewfileorrewritesan
existingone

Createsan instance ofa

binary semaphore
Performsencryption funcéions
Generatesafilename for
aterminal

ConvertsdateandtimetoASCH

Classifiescharacters
Performs screenand cursor
functions
Readsdefaultentries

Pexformsdatabase functions



defopen, defread
dup,dup2

ecwt, fovt

execl, execv, execle,
execve, execlp, execvp
exit

exp, log, pow, sqrt

fclose, fitush
fentl

ferror, feof,
clearerr, fileno,
floor, fabs, ceil,
finod

fopen, freopen, fdopen
fork

fread, forite
frexp,ldexp, modf

fseek, ftell,rewind
gamma

getc, getchar,
fgetc, getw

getcwd

getenv

getgrent, getgrgid,
getgrmam, setgrent,
endgrent

getlogin

getopt

getpass
getpid, getpgzrp,
getppid

getpw

getpwent, getpwuid,
getpwnam, setpwent,
endpwent

gets,fgets

getuid, geteuid,
getgid, getegid

hypot
ioctl
kill

Readsdefaultentries
Duplicatesanopenfile
descriptor

Performs output conversions

Exccutesafile
Terminatesaprocess
Performsexponential, logarithm, .

" power, square root functions

Closesorflushesastream
Controlsopenfiles

Determines stream status

Performsabsolute value, floor,
ceiling, andremainderfunctions
Opensastream
Createsanewprocess
Performsbufferedbinary
inputand output
Splitsfloating—point numberinto
amantissaandaneaponemnt
Repositionsastream
Performsloggammafunctions

Getscharacterorword froma
stream

Getspathnameofcurrent
workingdirectory

Getsvalue forenvironment name

Getgroupfileentry
Getsloginname
Getsoptionletterfrom argument
vector

Readsapassword

Gets process, process group, and
parentprocessiDs i
Getsname from UID

Getspasswordfileertry
Getsastring fromastream

Getsrealuser, cffective user, real
groupandeffective grouplDs
DeterminesEuclideandistance
Controlscharacter devices
Sendsasignaltoaprocessorora
groupof processes



i3tol,ltol3

link
lock
locking

logname
Isearch

Iseek

malloc, free,
realloc, calloc
mknod

mktemp
monitor
mount
nap

nice
nlist
open
opensem
pause

perror, sys.errlist,
SyS eI, ermo

pipe

popen, pclose
printf, fprintf, sprintf Formatsoutput
profil

ptrace

putc, putchar,
fputc, putw
putpwent
puts, fputs
gsort

rand, srand
rdchk

read
regex, regcmp

regexp
sbrk

scanf, fscanf, sscanf
sdenter, sdleave

sdget

Convertsbetween3—byteintegersand
longintegers
Linksafiletoanexistingfile
Locksaprocessinprimary memory
Locksafileregion for

readingor writing
Findsloginnameofuser
Performslinearsearchandupdate
Movesread/vritefilepointer

Allocatesmainmemory

Makes adirectory, ora special
orordinaryfile

Makesaunique filename
Preparesexecutionprofile
Mountsafilesystem

Suspends execution fora short
interval

Changespriority ofaprocess
Getsentriesfromnamelist
Opensfileforreading or writing
Opensasemaphore
Suspendsaprocessuntilasignal
occurs

Sendssystemerrormessages
Createsaninterprocesschannel
Initiatesl/Otoorfromaprocess

Createsanexecutiontimeprofile
Tracesaprocess

Putsacharacterorwordona
stream

Writesa file password entry
Putsastringona stream
Performsasort
Generatesarandom number
Checkstoseeifthereis
datatoberead

Reads fromafile
Compilesandexecutes regular
expressions
Performsregularexpressioncompile
andmatch functions
Changesdata segment space
allocation

Convertsand formatsinput
Synchronizes accesstoa shared
datasegment

Attachesand detachesashared
datasegment

1-iii



sdgetv, sdwaitv
setbuf

setjmp, longjmp
setpgIp

setuid, setgid
shutdn

signal
sigsem

sinh, cosh, tanh
sleep

ssignal, gsignal
stat, fstat
stdio

stime

string, strcat,
sumcat, sucmp,
strncmp, SUcpy,
strnepy, strien,
strchr, strrchr,
strpbrk, strspn,
strcspn, anok
swab

sync

system

termcap, tgetert,
tgesaum, tgetflag,
tgetstr, tgoto, tputs
time, fi

times

tmpfile
tmpnam

trig,sin, cos, tan,
asin, acos, atan, atan2
ttyname, isatty

ulimit

umask

umount
uname

ungetc
unlink
ustat
utime

1-iv

Synchronizesshared dataaccess
Assignsbufferingtoastreamn
Performsa nonlocal"goto”
SetsprocessgroupiD
SetsuscrandgroupiDs
Flushesblockl/Oandhalts
theCPU

Specifies whattodoupon
receiptofasignal
Signalsaprocess waitingon
asemaphore
Peformshyperbolic functions
Suspendsexecutionforan
interval

Implementssoft waresignals
Getsfilestatus

Performs standard buffered
inputandoutput

Setsthetime

Performsstringoperations

Swapsbytes
Updatesthe super—block
Executesa shellcommand

Performsterminal functions
Getstimeanddate

Performstrigonometricfunctions

. Findsthename of aterminal

Getsandsctsuserlimits
Setsandgetsfile creation
mask
Unmountsafilesystem
Getsnameof current XEN1X
system
Pushescharacterbackinto
input stream
Removesdirectoryentry
Getsfilessystem statistics
Setsfileaccessand



wait

waitsem, nbwaitsem

write
xlist, fxlist

modificationtimes

Waits forachildprocessto
stopor terminate
Awaitsandchecksaccessto
aresourcegoverenedby
asemaphore

Writestoafile
Getsnamelistentriesfrom files






Index

Absolute value, integer
Absolute value, real

Accounting

acosfunction

Alarmclock

asctime function

asin function

atan function

atan2 function

atoi function

atol function

Binarysearch

brkfunction

cabsfunction

calloc function

hypot
malloc

ceil function

Characters, classification

clearerr function

floor
ctype

ferror

Conversion, 3—byteintegersand long integers
Conversion, byte swapping
Conversion, date and timetoASCl
Conversion, integerandbase 64 ASCII
Conversion, ASCIItomumbers.

Conversions, output

13tal
swab

ctime

a6l

atol

ecvt

Conversions, realtomantissaandexponent
Conversions, toASClI characters

cos function

frexp
conv

trig

cosh function

sinh

Database, functions

dbm

dbminit function

dbm

Default entries

defopen

defread function

defopen

deletefunction

dbm

Devices, controls

foctl

dup2 function

dup

encrypt function

crypt

Encryption

endgrent function

crypt
getgrent

endpwent function

getpwent

Environment, value

getenv

ermovariable

perror

Ermrormessages

Error numbers

execl function

perror
intro
exec

execle function

exec

execlp function

exec




Execution, files exec
Execution, nonlocal *‘gota™ setjmp
Execution, profiling monitor
Execution, shell system
execvfunction exec
execvefunction exec
execvpfunction exec
fabsfunction floor
fcwvt function ecvt
fdopenfunction fopen
feof function ferror
fetch function dbm
fflush function fclose
fgetc function getc
fgetsfunction gets
Filesystem, mounting mount
File system, statistics ustat
File system, unmounting umoant
File, accessandmodificationtimes utime
File, accessibility access
File, check forreading rdchk
File, closing close
File, control fentl
File, creation creat
File, creation mknod
File, creationmask umask
File,duplication dup
File, errorand status ferror
File, linking link
File, loclsingregions locking
File,mode chmod
File, opening open
File ,ownership chown
File,reading read
File,removal unlink
File, size chsize
File, status stat
File,temporary tmpfile
File, userandgrouplD setuid
File,writing write
Filename, creation mktemp
Filename, temporary tmpnam
fileno funckon ferror
Files, repositioning Iseek
firstkey function dbm
Floor, ceiling, andremainder functions fioor
fmodfunction ‘floor

fprintffunction

printf




fputc function

fputs function

putc
puts

freefunction

malloc

freopenfunction

fscanffunction

fstat function

fopen
scanl
stat

fiell function

fseek

ftime function

fwritefunction

time
fread

fxlist function

gevtfunction

getchar function

getegid

geteuid

getgid

getgrgidfunction

xlist
ecvt
getc
getuid
getuid
getuid
getgrent

getgrnam function

getgrent

getpgrpfunction

getppidfunction

getpid
getpid

getpwnamfunction
getpwuid function

getpwent
getpwent

getw function

gmtime function

getc
ctime

Group, fileentries

gsignal function

isalnum function

getgrent
ssignal

isalphafunction

isascii function

isatty function

iscntrlfunction

isdigitfunction

isgraph function

islower function

isprint function

ispunct function

isspacefunction

isupper function

isxdigitfunction

jOfunction

31 function

jn function

164a function

Idexpfunction

Librarynames

Library, screenand cursorfunctions
Library, standard inputand output

Linear search

intro
curses

stdic

localtimefunction

Isearch
ctime




log function exp
logl Ofunction exp
Loginname cuserid
Loginname,user logname
Login, name getlogin
longjmpfunction setjmp
hol3function 13tal
Mathematics, Besselfunctions besse)
Mathematics, Euclideandistance hypot
Mathematics, exponential and logarithm functions exp
Mathematics, hyperbolicfunctions sinh
Mathematics, log gamma function gamma
Mathematics, trigonometric functions trig
Memory, allocation malloc
Message, errors assert
modffunction frexp
Namelist nlist .
Namelist xlist
nbwaitsemfunction waitsem
nextkey function dbm
Option, fromargument vector getopt
Password, file ertries getpwent
Password, fileentries putpwent
Password, foruserID getpw
Password, input getpass
pclosefunction popen
Pipe, creating pipe
Pipe, openingandclosing popen
pow function exp
Process, alarmclock alarm
Process, creation fork
Process, e xecution priority nice
Process, executiontime profile profil
Process,executiontimes times
Process, groupID setpgrp
Process, limits ulimit
Process, locking inmemory lock
Process, memory allocation sbrk
Process,realand effectivelDs getuid
Process, suspensionuntilsignal pause
Process, temporary suspension nap
Process, temporary suspension sleep
Process, termination abort
Process, termination exit
Process, termination kill
Process, trace ptrace
Process, waiting forchild process wait
Process, IDs getpid




putchar function putc
putw function putc
Random numbers rand
realloc function malloc
regcmpfunction regex
Regularexpressions regex
rewind function fseek
Rootdirectory chroot
sdfree function sdget
sdleavefunction sdenter
sdwaitv function sdgetv
Semaphore, creation creatsem
Semaphore, opening . _opensem
Semaphore, signaling sigsem
Semaphore, waiting forresource waitsem
setgidfunction setuid
setgrent function getgrent
setkey function crypt
setpwent function getpwent
Shared data, attachingand detaching sdget
Shared data, enteringandleaving sdenter
Shared data, sychronized access sdgetv
Signal, processing signal
Signal, software ssigmal
sinfunction trig
Sorting qsort
sprinf function printf
sqrtfunction exp
srand function rand
sscanf function scanf
storefunction dbm
swrcat function string
strchrfunction string
stremp function string
strcpy function string
strespn function string
strdupfunction string
Stream, buffered inputand output fread
Stream, buffers setbuf
Stream, characterinput gete
Stream, character output putc
Stream, closing andflushing fclose
Stream, formatted input scanf
Stream, formatted output printf
Stream, opening fopen
Stream, repositioning fseek
Stream, returningcharacter to ungetc
Stream, stringinput gets




Stream, string output puts
Swrings, operations string
strlen function string
strmcat function string
strmemp function string
stmcpy funceion string
strpbrkfunction string
strrchrfunction string
strspnfunction string
stritokfunction string
System, currentname uname
System, stopping shutdn
System, super—block sync
System, time stime
sysemlistvariable perror
sysnerrvariable perror
tanfunction trig
tanh functioon sinh
Terminal, capability functions fermcap
Terminal, filenames ctermid
Teeminal, name ttyname
tgetflag function termcap
tgetnum function termcap
tgetstrfunction termcap
tgotofunction termcap
Timeanddate time
toascii function conv
tolower function conv
toupperfunction conv
tputs function termcap
tzset function ctime
Workingdirectory chdir
Workingdirectory, pathname getcwd
yOfunction bessel
y1 function bessel
ynfunction bessel

S



INTRO(S) INTRO (8)

Name

intro ~ Introduces system services, library routines and error
numbers.

Syntax
#include <errno.h>

Description

This section describes all system services. System services include
all routines or system calls that are available in the operating system
kernel. These routines are available to a C program automatically as
part of the standard library libc. Other routines are available in a
variety of libraries. On 8086/88 and 286 systems, versions for
Small, Middle, and Large model programs are provided (that is,
three of each library).

To use routines in a program that are not part of the standard library
libc, the appropriate library must be linked. This is done by specify-
ing ~ Iname to the compiler or linker, where name is the name listed
below. For example — Im, and - ltermecap are specifications to the
linker to search the named libraries for routines to be linked to the
object module. The names of the available libraries are:

¢ The standard library containing all system call interfaces,
Standard I/O routines, and other general purpose services.

m The standard math library.

termcap Routines for accessing the termcap data base describing ter-
minal characteristics.

curses Screen and cursor manipulation routines.
dbm . Data base management routines.

Most services that are part of the operating system kernel have one
or more error returns. An error condition is indicated by an other-
wise impossible returned value. This is almost always — 1; the indi-
vidual descriptions specify the details. An error number is also
made available in the external variable ermo. Errno is not cleared
on successful calls, so it should be tested only after an error has
been indicated.

All of the possible error numbers are not listed in each system call
description because many errors are possible for most of the calls.
The following is a complete list of the error numbers and their
names as defined in <error.h>.

March 24, 1984 Page 1



INTRO(S) INTRO (S)

t EPERM Not owner
Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also
returned for attempts by ordinary users to do things allowed
only to the super-user.

2 ENOENT No such file or directory
This error occurs when a filename is specified and the file
should exist but doesn’t, or when one of the directories in a
pathname does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid
in kil or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the
user has elected to catch, occurred during a system call. If exe-
cution is resumed after processing the signal, it will appear as if
the interrupted system call returned this error condition.

5 EIO I/O error
Some physical 1/O error. This error may in some cases occur on
a call following the one to which it actually applies.

6 ENXIO No such device or address
I/0O on a special file refers to a subdevice which does not exist,
or beyond the limits of the device. It may also occur when, for
example, a tape drive is not on-line or no disk pack is loaded on
adrive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a
member of the ezec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic
number (see a.out(F)).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respec-
tively write) request is made to a file which is open only for
writing (respectively reading).

10 ECHILD No child processes
A wait, was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes

A fork, failed because the system’s process table is full or the
user is not allowed to create any more processes.

March 24, 1984 Page 2

P



INTRO(S) INTRO (S)

12

13

14

15

16

17

18

19

20

21

22

ENOMEM Not enough space

During an ezec, or sbrk, a program asks for more space than the
system is able to supply. This is not a temporary condition; the
maximum space size is a system parameter. The error may also
occur if the arrangement of text, data, and stack segments
requires too many segmentation registers, or if there is not
enough swap space during a fork.

EACCES Permission denied
An attempt was made to access a file in a way forbidden by the
protection system.

EFAULT Bad address
The system encountered a hardware fault in attempting to use
an argument of a system call.

ENOTBLK Block device required
A nonblock file was mentioned where a block device was
required, e.g., in mount.

EBUSY Device busy

An attempt to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an
active file (open file, current directory, mounted-on file, active
text segment). It will also occur if an attempt is made to enable
accounting when it is already enabled.

EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.,
link.

EXDEV Cross-device link
A link to a file on another device was attempted.

ENODEV No such device
An attempt was made to apply an inappropriate system call to a
device; e.g., read a write-only device.

ENOTDIR Not a directory
A nondirectory was specified where a directory is required, for
example in a path prefix or as an argument to chdir(S).

EISDIR Is a directory
An attempt to write on a directory.

EINVAL Invalid argument

Some invalid argument (e.g., dismounting a nonmounted dev-
ice; mentioning an undefined signal in signal, or kill; reading or
writing a file for which lseek has generated a negative pointer).
Also set by the math functions described in the (S) entries of
this manual.

March 24, 1984 Page 3



INTRO(S) INTRO ()

23

24

25
26

27

28

29

30

31

32

33

34

35

36

ENFILE File table overflow
The system’s table of open files is full, and temporarily no more
opens can be accepted.

EMFILE Too many open files
No process may have more than 20 file descriptors open at a
time.

ENOTTY Not a typewriter

ETXTBSY Text file busy

An attempt to execute a pure-procedure program which is
currently open for writing (or reading). Also an attempt to open
for writing a pure-procedure program that is being executed.

EFBIG File too large
The size of a file exceeded the maximum file size
(1,082,201,088 bytes) or ULIMIT; see ulimit(S).

ENOSPC No space left on device
During a wnite to an ordinary file, there is no free space left on
the device.

ESPIPE Illegal seek
An lseek was issued to a pipe.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

EMLINK Too many links
An attempt to make more than the maximum number of links
(1000) to a file.

EPIPE Broken pipe

A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned
if the signal is ignored.

EDOM Math arg out of domain of func
The argument of a function in the math package is out of the
domain of the function.

ERANGE Math result not representable
The value of a function in the math package is not representable
within machine precision.

EUCLEAN File system needs cleaning
An attempt was made to mount(S) a file system whose super-
block is not flagged clean.

EDEADLOCK Would deadlock
A process’ attempt to lock a file region would cause a deadlock

March 24, 1984 Page 4

.



INTRO (8) INTRO ()

between processes vying for control of that region.

37 ENOTNAM Notaname file
A creatsem(S), opensem(S), waitsem(S), or sigsem(S) was issued
using an invalid semaphore identifier.

38 ENAVAIL Not available

An opensem(S), waitsem(S) or sigsem(S) was issued to a sema-
phore that has not been initialized by a call to ereatsem(S). A
sigsem was issued to a semaphore out of sequence; i.e., before
the process has issued the corresponding waiteem to the sema-
phore. An nbuwaitsem was issued to a semaphore guarding a
resource that is currently in use by another process. The sema-
phore on which a process was waiting has been left in an incon-
sistent state when the process controlling the semaphore exits
without relinquishing control properly; i.e., without issuing a
waitsem on the semaphore.

39 EISNAM A name file
A name file (semaphore, shared data, etc.) was specified when
not expected.
Definitions
Process ID
Each active process in the system is uniquely identified by a positive
integer called a process ID. The range of this ID is from 0 to 30,000.
Parent Process ID
A new process is created by a currently active process; see fork(S).
The parent process ID of a process is the process ID of its creator.
Process Group ID
Each active process is a member of a process group that is identified
by a positive integer called the process group ID. This ID is the pro-
cess ID of the group leader. This grouping permits the signaling of
related processes; see kili(S).
Tty Group ID
Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This grouping

is used to terminate a group of related process upon termination of
one of the processes in the group; see ezit(S) and eignal(S).

March 24, 1984 Page 5



INTRO(S) INTRO(S)

Real UserID and Real Group ID

Each user allowed on the system is identified by a positive integer
called a real user ID.

Each user is also a member of a group. The group is identified by a
positive integer called the real group ID.

An active process has a real user ID and real group ID that are set to
the real user ID and real group ID, respectively, of the user responsi-
ble for the creation of the process.

Effective User ID and Effective Group ID

An active process has an effective user ID and an effective group ID
that are used to determine file access permissions (see below). The
effective user ID and effective group ID are equal to the process’ real
user ID and real group ID respectively, unless the process or. one of
its ancestors evolved from a file that had the set-user-ID bit or set-
group ID bitset; see ezec(S).

Super-User
A process is recognized as a super-uger process and is granted special
privileges if its effective user ID is 0.

Special Processes

The processes with a process ID of 0 and a process ID of 1 are special
processes and are referred to as proc0 and procl.

Proc0 is the scheduler. Proc! is the initialization process (init).
Procl is the ancestor of every other process in the system and is
used to control the process structure.

Filename

Names consisting of up to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be selected from the set of all character values
excluding 0 (null) and the ASCII code for a / (slash).

Note that it is generally unwise to use % ?, [, or ] as part of
filenames because of the special meaning attached to these characters
by the shell. Likewise, the high order bit of the character should not
be set.

March 24, 1984 Page 6



§) INTRO(S)

sl User ID and Real Group ID

«<h user allowed on the system is identified by a positive integer
lled a resl user ID.

Sach user is slso 3 member of a group. The group is identified by a
positive integer called the real group ID.

An active process has a real userID and real group ID that are set to
the real user ID and real group ID, respectively, of the user responsi-~
ble for the creation of the process.

Effective User 1D and Effective Group ID

An active process has an effective user ID and an effective group ID
that are used to determine file access permissions (see below). The
effective user ID and effective group ID are equal to the process’ real
user ID and real group ID respectively, unless the process or. one of
its ancestors evolved from 3 file that had the set-user-ID bit or set~
groupID bit set; see ezec(S).

Super-User
A process is recognized as a super-user process and is granted special
privileges if its effective user ID is 0.

Special Procesecs

The processes with a process ID of 0 and a process ID of 1 are special
processes and are referred to as proc0 and procl.

Proc0 is the scheduler. Procl is the initialization process (inst).
Procl is the ancestor of every other process in the system and is
used to control the process structure.

Filename

Names consisting of up to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be selected from the set of all character values
excluding 0 (null) and the ASCII code for a / (slash).

Note that it is generally unwise to use = ?, [, or ] as part of
filenames because of the specisl meaning attached to these characters

by the shell. Likewise, the high order bit of the character should not
be set.

Page 6



INTRO ()

big of
iate BCCESS
~nroPr

AM Nog Name fiJe
sem(S), aPensem( g), aitsem(s) . #9sem(s) ¥3s issyeq
invgliq Sémaphore iden tifier,

Not availabje
m(S), wa:'taem(s) or m}mm(S) Was issueq ¢4 a sema.
has not been injtialize 4 by a ¢ca) to Ereateerm| S). A

3 semaphore out of Sequence; ie, before
hag Issued the corresponding Yaitserm ¢ the sem,.
nbwas‘taem Was jssyeq to 3 Semaphgpe 8uarding , N
is currently in yse by anothe, Process. Ty, sema. 1

en the Proces ONtrollin Semaphore exitg
ishing contro] Properly: ;e withoy Issuing ,
Mapho
fle

stem jgs Unigye}y identifieq by a POsitiye
he Fange of thjs D is from 0to 30,000,

Urrently active Process; gop Jork(s),
3 is the Process Ip of its creator,

Procesg 8roup that jg iden tified
¥ group Ip_ 18 ID s the pro.
Uping Permits ¢he signaﬁng of

Page 8

"a termina} &Toup thag is
"&roup Ip_ This Erouping
€SS upop termination of

and ignal( S).



A64L (S) A64L (S)

Name

a64], 164a - Converts between long integer and base 64 ASCII.

Syntax

long 284l (s)
char *s;

char *164a (1)
longl;

Description

These routines are used to maintain numbers stored in base 64
AscCIl. This is a notation by which long integers can be represented
by up to six characters; each character represents a “‘digit’’ in a radix
64 notation.

The characters used to represent ‘‘digits'’ are . for 0, / for 1, 0
through 9 for 2 through 11, A through Z for 12 through 37, and a
through z for 38 through 63.

A64l takes a pointer to a null-terminated base 64 representation and

returns a corresponding long value. L64a takes a long argument and
returns a pointer to the corresponding base 64 representation.

Notes

The value returned by l64a is a pointer into a static buffer, the con-
tents of which are overwritten by each call.

March 24, 1984 Page 1



ABORT(S) ABORT(S)

Name

abort - Generates an IOT fault.

Syntax

abort ()

Description

Abort causes an I/O trap signal (SIGIOT) to be sent to the calling
process. This usually results in termination with a core dump.

Abort can return control if the calling process is set to catch or
ignore the SIGIOT signal; see signal(S).

See Also
adb(CP), exit(S), signal(S)

Diagnostics

If an aborted process returns control to the shell ( 84(C)), the shell
usually displays the message ‘‘abort — core dumped’’.

March 24, 1984 Page 1



ABS(S) ABS (8)

Name

abs - Returns an integer absolute value.

Syntax
int abs (i)
int i;
Description

Abe returns the absolute value of its integer operand.

See Also

fabe in floor(S)
Notes

If the largest negative integer supported by the hardware is given,
the function returns’it.unchanged.

March 24, 1984 Page 1



ACCESS (8) ACCESS (8)

Name

access - Determines accessibility of a file.

Syntax

int access (path, amode)
char *path;
int amode;

Description

Path points to a pathname naming a file. Access checks the named
file for accessibility according to the bit pattern contained in amode,
using the real user ID in place of the effective user ID and the real
group ID in place of the effective group ID. The bit pattern for
amode can be formed by adding any combination of the following:

04 Read
02 Write

01 Execute (search)
00 Check existence of file

Access to the file is denied if one or more of the following are true:
A component of the path prefix is not a directory. [ENOTDIR]

Read, write, or execute (search) permission is requested for a
null pathname. [ENOENT)

The named file does not exist. [ENOENT)

Search permission is denied on a component of the path prefix.
|EACCES)

Write access is requested for a file on a read-only file system.
|EROFS] .

Write access is requested for a pure procedure (shared text) file
that is being executed. |[ETXTBSY)

Permission bits of the file mode do not permit the requested
access. [EACCES]

Path points outside the process’ allocated address space.
[EFAULT|

Access checks the permissions for the owner of a file by checking the
‘‘owner’’ read, write, and execute mode bits. For members of the
file's group, the ‘‘group’’ mode bits are checked. For all others, the
‘‘other’” mode bits are checked.

March 24, 1984 Page 1



ACCESS (8) ACCESS (8)

Return Value

If the requested access is permitted, a value of 0 is returned. Other-
wise, a value of — 1 is returned and errno is set to indicate the error.

See Also
chmod(S), stat(S)

Notes

The super-user (root) may access any file, réga.rdless of permission
settings.

March 24, 1984 Page 2



ACCT(8) ACCT(S)

Name

acct - Enables or disables process accounting.

Syntax
int acct (path)
char *path;

Description
Acct is used to enable or disable the system’s process accounting
routine. If the routine is enabled, an accounting record will be writ-
ten on an accounting file for each process that terminates. A process
can be terminated by a call to ezit or by receipt of a signal which it
does not ignore or catch; see ezit(S) and eignal(S). The effective
user ID of the calling process must be super-user to use this call.

Path points to the pathname of the accounting file. The accounting
file format is given in acct(F).

The accounting routine is enabled if path is nonzero and no errors
occur during the system call. It is disabled if path is zero and no
errors occur during the system call.

Acet will fail if one or more of the following are true:

The effective user ID of the calling process is not super-user.
|[EPERM)|

An attempt is being made to enable accounting when it is
already enabled. [EBUSY]|

A component of the path prefix is not a directory. [ENOTDIR)

One or more components of the accounting file’s pathname do
not exist. [ENOENT]

A component of the path prefix denies search permission.
[EACCES]

The file named by path is not an ordinary file. |EACCES]

Mode permission is denied for the named accounting file.
|[EACCES)

The named file is a directory. |[EACCES)

The named file resides on a read-only file system. [EROFS]

March 24, 1984 Page 1

Ry



ACCT(S) ACCT(5)

Path points to an illegal address. [EFAULT]
Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a

value of - 1 is returned and errno is set to indicate the error.

See Also

accton(C), acctcom(C), acct{F)

March 24, 1984 Page 2



ALARM (S) ALARM (S)

Name

alarm - Sets a process’ alarm clock.

Syntax
unsigned alarm (sec)
unsigned sec;
Description
Alarm sets the calling process’ alarm clock to sec seconds. After sec
‘“‘real-time’’ seconds have elasped, the alarm clock sends a SIGALRM

signal to the process; see signal(S).

Although alarm does not wait for the signal after setting the alarm
clock, pause(S) may be used to make the calling process wait.

Alarm requests are not stacked; successive calls reset the calling pro-
cess’ alarm clock.

If sec is 0, any previously made alarm request is canceled.

Return Value

Alarm returns the amount of time previously remaining in the cal-
ling process’ alarm clock.

See Also

pause(S), signal(S)

March 24, 1984 Page 1



ASSERT(S) ASSERT(S)

Name

assert — Helps verify validity of program.

Syntax
#include <assert.h>

assert (expression);

Description

This macro is useful for putting diagnostics into programs under
development. When it is executed, if ezpreseion is false, it prints

Assertion failed: file name, line ran
on the standard error file and exits. Name is the source filename
and nnn the source line number of the aesert statement.
Notes

To suppress calls to aesert, use the option ‘- DNDEBUG' when
compiling the program; see cc(CP)).

March 24, 1984 : Page 1



ATOF (8) ATOF (S)

Name

atof, atoi, atol - Converts ASCII to numbers.

Syntax

double atof (nptr)
char ®nptr;

int atoi (nptr)
char *nptr;

long atol (nptr)
char *nptr;
Description
These functions convert a string pointed to by naptr to floating,
integer, and long integer numbers respectively. The first unrecog-
nized character ends the string.
Atof recognizes a string of the form:
[ +]- ] digits. digits ][ e] E[ + | - ] digits ]
where the digits are continguous decimal digits. Any number of tabs
and spaces may precede the string. The + and - signs are optional.

Either e or E may be used to mark the beginning of the exponent.

Ator and atol recognize strings of the form:

[ 4]~ ] digits
where the digits are contiguous decimal digits. Any number of tabs
and spaces may precede the string. The + and - signs are
optional.
See Also
scanf(S)
Notes

There are no provisions for overflow.

March 24, 1984 Page 1



BESSEL (S) BESSEL (S)

Name

bessel, j0, j1, jn, ¥0, y1, yn - Performs Bessel functions.

Syntax
finclude <math.h>

double jO (x)
double x;

double j1 (x)
double x;

double jn (n, x);
double x;

double y0 (x)
double x;

double y1 (x)
double x;

double yn (n, x)
intn;
double x;
Description
These functions calculate Bessel functions of the first and second
kinds for real arguments and integer orders.
Notes

Negative arguments cause y0, yI, and yn to return a huge negative
value.

March 24, 1984 Page 1



BSEARCH (S) BSEARCH ()

Name

bsearch - Performs a binary search.

Syntax

char *bsearch (key, base, nel, width, compar)
char *key;

char *base;

int nel, width;

int (*compar)();

Description

Beearch is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating the location
at which a datum may be found. The table must be previously
sorted in increasing order. The first argument is a pointer to the
datum to be located in the table. The second argument is a pointer
to the base of the table. The third is the number of elements in the
table. The fourth is the width of an element in bytes. The last argu-
ment is the name of the comparison routine. It is called with two
arguments which are pointers to the elements being compared. The
routine must return an integer less than, equal to, or greater than 0,
depending on whether the first argument is to be considered less
than, equal to, or greater than the second.

Return Value

If the key cannot be found in the table, a value of 0 is returned.

See Also
1search(S), qsor(S)

March 24, 1984 Page 1



CHDIR (S) CHDIR (S)

Name

chdir - Changes the working directory.

Syntax

int chdir (path)
char *path;

Description
Path points to the pathname of a directory. Chdir causes the named
directory to become the current working directory, the starting point

for path searches for pathnames not beginning with /.

Chdir will fail and the current working directory will be unchanged if
one or more of the following are true:

A component of the pathname is not a directory. |[ENOTDIR]
The named directory does not exist. [ENOENT]

Search permission is denied for any component of the path-
name. [EACCES]

Path points outside the process’ allocated address space.
[EFAULT)

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -~ 1 is returned and ermo is set to indicate the error.

See Also
chroot(S)

March 24, 1984 Page 1



CHMOD (S) CHMOD (S)

Name

chmod - Changes mode of a file.

Syntax -

int chmod (path, mode)
char *path;
int mode;

Description

Path points to a psthname naming a file. Ckmod sets the access per-
mission portion of the named file’s mode according to the bit pattern
contained in mode.

Access permission bits for mode can be formed by adding any combi-
nation of the following:

04000 Set user ID on execution
02000 Set group ID on execution
01000 Save text image alter execution
00400 Read by owner

00200 Write by owner

00100 Execute (or search if a directory) by owner
00040 Read by group

00020 Write by group

00010 Execute (or search) by group
00004 Read by others

00002 Write by others

00001 Execute (or search) by others

To change the mode of a file, the effective user ID of the process
must match the owner of the file or must be super-user.

If the effective user ID of the process is not super-user, mode bit
01000 (save text image on execution) is cleared.

If the effective user ID of the process is not super-user or the
effective group ID of the process does not match the group ID of the
file, mode bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing, then mode bit 01000
prevents the system from abandoning the swap-space image of the
program-text portion of the file when its last user terminates. Thus,
when the next user executes the file, the text need not be read from
the file system but can simply be swapped in, saving time. Many
systems have relatively small amounts of swap space, and the same-
text bit should be used sparingly, if at all.

March 24, 1984 Page 1

.



CHMOD (8) CHMOD (S)

Chmod will fail and the file mode will be unchanged if one or more
of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]
The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

e effective user ID does not match the owner of the file and
effective user ID is not super-user. |EPERM]

med file resides on a read-only file system. [EROFS]

'uts outside the process’ allocated address space.

letion, a value of 0 is returned. Otherwise, a
e and ermo is set to indicate the error.

i

March 24, 1984 Page 2



CHOWN () CHOWN (S)

Name

chown - Changes the owner and group of a file.

Syntax
int chown (path, owner, group)
char *path;
int owner, group;
Description
Path points to a pathname naming a file. The owner ID and group
ID of the named file are set to the numeric values contained in

owner and group respectively.

Only processes with an effective user ID equal to the file owner or
super-user may changé the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID
and set-group-ID bits of the file mode, 04000 and 02000 respectively,
will be cleared.

Chown will fail and the owner and group of the named file will
remain unchanged if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]
The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The effective user ID does not match the owner of the file, and
the effective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. |[EROFS]

Path points outside the process’ allocated address space.
[EFAULT|

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also
chmod(S)

March 24, 1984 Page 1

e

N



CHROOT (S) CHROOT(S)

. Name

chroot - Changes the root directory.

Syntax

int chroot (path)
char *path;

Description
Path points to a pathname naming a directory. Chroot causes the
named directory to become the root directory, the starting point for
path searches for pathnames beginning with /.

To change the root directory, the effective user ID of the process
must be super-user.

The *‘..”” entry in the root directory is interpreted to mean the root
directory itself. Thus, ““..”’ cannot be used to access files outside the
root directory.

Chroot will fail and the root directory will remain unchanged if one
or more of the following are true:

Any component of the pathname is not a directory. [ENOTDIR)
The named directory does not exist. [ENOENT)
The effective user ID is not super-user. |EPERM]
Path points outside the process’ allocated address space.
[EFAULT]|
Return Value
Upon successful completion, a value of 0 isreturned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.
See Also
chdir(S), chroot{C)

March 24, 1984 Page 1



CHSIZE (S) CHSIZE (S)

Name

chsize - Changes the size of a file.

Syntax

int chsize (fildes, size)
int fildes;
long size;

Description

Fides is a file descriptor obtained from a creat, open, dup, fentl, or
pipe system call. Cheize changes the size of the file associated with
the file descriptor fildes to be exactly &ize bytes in length. The rou-
tine either truncates the file, or pads it with an appropriate number
of bytes. If size is less than the initial size of the file, then all allo-
cated disk blocks between size and the initial file size are freed.

The maximum file size as set by ulimit(S) is enforced when cheize is
called, rather than on subsequent writes. Thus cheize fails, and the
file size remains unchanged if the new changed file size would
exceed the wlimit.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise,
the value - 1 is returned and ermo is set to indicate the error.

See Also
creat( S), dup(S), lseek(S), open(S), pipe(S), ulimit(S)

Notes

In general if cheize is used to expand the size of a file, when data is
‘written to the end of the file, intervening blocks are filled with zeros.
In a few rare cases, reducing the file size may not remove the data
beyond the new end-of-file.

March 24, 1984 Page 1

e ani



CLOSE(S) CLOSE (S)

Name

close - Closes a file descriptor.

Syntax
int close (fildes)
int fildes;
Description

Fides is a file descriptor obtained from a creat, open, dup, fend, or
pipe system call. Close closes the file descriptor indicated by fildes.

Close will fail if fildee is not a valid open file descriptor. [EBADF]
Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a

value of - 1 is returned and ermo is set to indicate the error.

See Also
creat(S), dup(S), exec(S), fentl(S), open(S), pipe(S)

March 24, 1984 Page 1



CONV (8) CONV ()

Name

conv, toupper, tolower, toascii - Translates characters.

Syntax
#include <ctype.h>

int toupper (c)
intc;

int tolower (c)
intc;

int _toupper (c)

intc;

int _tolower (c)
intc;

int toascii (c)
intc;

Description

Toupper and tolower convert the argument ¢ to a letter of opposite
case. Arguments may be the integers — 1 through 255 (the same
values returned by gete(S)). If the argument of toupper represents a
lowercase letter, the result is the corresponding uppercase letter. If
the argument of tolower represents an uppercase letter, the result is
the corresponding lowercase letter. All other arguments are returned
unchanged.

_toupper and _tolower are macros that accomplish the same thing as
toupper and tolower but have restricted argument values and are fas-
ter. _toupper requires a lowercase letter as its argument; its result is
the corresponding uppercase letter. _tolower requires an uppercase
letter as its argument; its result is the corresponding lowercase letter.
All other arguments cause unpredictable results.

Toaecii converts integer values to ASCII characters. The function
clears all bits of the integer that are not part of a standard ASCII
character; it is intended for compatibility with other systems.

See Also

ctype(S)

March 24, 1984 Page 1



CONV (S) CONV (8)

Notes

Because _toupper and _tolower are implemented as macros, they
should not be used where unwanted side effects may occur. Remov-
ing the _toupper and _tolower macros with the gundef directive
causes the corresponding library functions to be linked instead. This
allows any arguments to be used without worry about side effects.

March 24, 1984 Page 2



CLOSE (S)

N
Closes » file descriptor.
tides)
descriptor obtained from s creat, open, dup, fend, or y
. Qlose closes the file descriptor indicated by fildes. .
fildes is not a valid open file descriptor. [EBADF] e
oy
3]
‘ompletion, a value of 0 is returned. Otherwise, a .
irned and errno is set to indicate the error. ar
See
¢(8S), fentl(S), open(8), pipe(S) e B
n i We
& beEi”
g €xee
::’;o files
;!!-0 ae that
ENOTDW'\
{OBNT
pe path prefix-

e the Ble
¥

Page !

Page 1



CREAT(S) CREAT(S)

The named file resides or would reside on a read-only file sys-
tem. [EROFS]

The file is a pure procedure (shared text) file that is being exe-
cuted. [ETXTBSY]

The file exists and write permission is denied. [EACCES]
The named file is an existing directory. |EISDIR]
Twenty file descriptors are currently open. [EMFILE]
Path points outside the process’ allocated address space.
[EFAULT]
Retum Value
Upon successful completion, a nonnegative inbeg;r, namely the file

descriptor, is returned. Otherwise, a value of - 1 is returned and
errno is set to indicate the error.

See Also

close(S), dup(S), Iseek(S), open(S), read(S), umask(S), write(S)

Notes

Open(S) is preferred to ereat.

March 24, 1984 Page 2



CREATSEM () CREATSEM (S)

Name

creatsem — Creates an instance of a binary semaphore.

Syntax

sem_num == creatsem(sem_name,mode);
int sem_num,mode
char *sem_name;

Description

Creatsem defines a binary semaphore named by sem_name to be used
by waitsem(S) and sigeem(S) to manage mutually exclusive access to
a resource, shared variable, or critical section of a program.
Creatsem returns a unique semaphore number sem_num which may
then be used as the parameter in waitsem and eigsem calls. Sema-
phores are special files of 0 length. The filename space is used to
provide unique identifiers for semaphores. Mode sets the accessibil-
ity of the semaphore using the same format as file access bits.
Access to a semaphore is granted only on the basis of the read
access bit; the write and execute bits are ignored.

A semaphore can be operated on only by a synchronizing primitive,
such as waitsem or sigseem, by creatsem which initializes it to some
value, or by opensem which opens the semaphore for use by a pro-
cess. Synchronizing primitives are guaranteed to be executed
without interruption once started. These primitives are used by
associating a semaphore with each resource (including critical code
sections) to be protected.

The process controlling the semaphore should issue
sem_num = creatsem("semaphore”, mode);

to create, initialize, and open the semaphore for that process. All
other processes using the semaphore should issue

sem_num = opensem(”semaphore”)

to access the semaphore’s identification value. Note that a process
cannot open and use a semaphore that has not been initialized by a
call to creatsem, nor should a process open a semaphore more than
once in one period of execution. Both the creating and opening
prc use waitsem and sigeem to use the semaphore sem_num.

See Also

opensem(S), waitsem(S), sigsem(S).

March 24, 1984 Page 1

R



CREATSEM (S) CREATSEM (S)

Diagnostics

Creatsem returns the value - 1 if an error occurs. If the semaphore
named by sem_name is already open for use by other processes,
errno is set to EEXIST. If the file specified exists but is not a sema-
phore type, errno is set to ENOTNAM. If the semaphore has not
been initialized by a call to creatsem, ermo is set to ENAVAIL.

Notes

After a creatsem you must do a waitsem to gain control of a given
resource. )

March 24, 1984 Page 2



CRYPT(S) CRYPT(S)

Name

crypt, setkey, encrypt - Performs encryption functions.

Syntax

char *crypt (key, salt)
char *key, *salt;

setkey (key)
char *key;

encrypt (block, edflag)
char *block;
int edflag;

Description

Crypt is the password encryption routine. It is based on the NBS
Data Encryption Standard (DES), with variations intended (among
other things) to frustrate use of hardware implementations of the
DES for key search.

The first argument to crypt is a user’s typed password. The second is
a 2-character string chosen from the set [a-zA-Z0-9./]; this salt
string is used to perturb the DES algorithm in one of 4096 different
ways, after which the password is used as the key to encrypt repeat-
edly a constant string. The returned value points to the encrypted
password, in the same alphabet as the salt. The first two characters
are the salt itself.

The setkey and encrypt entries provide access to the actual DES algo-
rithm. The argument of setkey is a character array of length 64 con-
taining only the characters with numerical value 0 and 1. If this
string is divided into groups of 8, the low-order bit in each group is
ignored, leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of
length 64 containing zeroes and ones. The argument array is
modified in place to a similar array representing the bits of the argu-
ment after having been subjected to the DES algorithm using the key
set by eetkey. If edflag is 0, the argument is encrypted; if nonzero, it
is decrypted.

See Also

passwd(C), getpass(S), passwd(M)

March 24, 1984 Page 1



* CRYPT(S) CRYPT(S)

Notes

The return value from crypt points to static data that is overwritten
by each call.

March 24, 1984 Page 2



CTERMID (S) CTERMID (S)

Name

ctermid - Generates a filename for a terminal.

Syntax
#include <stdio.h>

char *ctermid(s)
char ®s;

Description

Ctermid returns a pointer to a string that, when used used as a
filename, refers to the controlling terminal of the calling process.

If (int)e is zero, the string is stored in an internal static area, the
contents of which are.overwritten at the next call to ctermid, and the
address of which is returned. If (int)s is nonzero, then s is assumed
to point to a character array of at least I,_ctermid elements; the
string is placed in this array and the value of o is returned. The
manifest constant L_ctermid is defined in <stdio.h>.

Notes
The difference between ctermid and tiyname(S) is that #yname must
be given a file descriptor and it returns the actual name of the termi-
nal associated with that file descriptor, while ctermid returns a magic
string (/dev/tty) that will refer to the terminal if used as a filename.
Thus ttyname is useless unless the process already has at least one
file open to a terminal.

See Also

ttyname(S)

March 24, 1984 Page 1

v



“q) CTIME (S)

‘e, asctime, tzset - Converts date and time

dme pointed to by clock (such as returned by
Al and returns a pointer to a 26-character string in
/m:

16 01:03:52 1973\n\0

.y, fields in this string are padded with spaces to keep the
constant length.

ame and gmtime return pointers to structures containing the

: as a variety of individual quantities. These quantities give the

e on a 24-hour clock, day of month (1-31), month of year (0-

.1), day of week (Sunday = 0), year (since 1900), day of year (0-

365), and a flag that is nonzero if daylight saving time is in effect.

Localtime corrects for the time zone and possible daylight savings

time. Gm&me converts directly to Greenwich time (GMT), which is
the time the XENIX system uses.

Asctime converts the times returned by localtime and gm#me to a
26-character ASCII string and returns a pointer to this string.

March 24, 1984 Page 1



CTIME(S) CTIME (S)

The structure declaration for tm is defined in /usr/include/time.h.

The external long variable #mezone contains the difference, in
seconds, between GMT and local standard time (e.g., in Eastern
Standard Time (EST), timezone is 5*60*60); the external integer vari-
able daylight is nonzero if and only if the standard U.S.A. Daylight
Savings Time conversion should be applied. The program knows
about the peculiarities of this conversion in 1974 and 1975.

If an environment variable named TZ is present, aesctime uses the
contents of the variable to override the default time zone. The
value of TZ must be a three-letter time zone name, followed by a
number representing the difference between local time (with optional
sign) and Greenwich time in hours, followed by an optional three-
letter name for a daylight time zone. For example, the setting for
New Jersey would be ESTSEDT. The effects of setting TZ are thus to
change the values of the external variables timezone and dayight. In
addition, the time zone names contained in the external variable

char *tzname[2] = {"EST", "EDT"};
are set from the environment vaTiable. The function tzeet sets the
external variables from TZ ; it is called by aectime and may also be
called explicitly by the user.
See Also

time(S), getenv(S), environ(M)
Notes

The return values point to static data those content is overwritten by
each call.

March 24, 1984 Page 2



CTYPE (S)

Name

CTYPE(S)

ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,
ispunct, isprint, isgraph, iscntrl, isascii — Classifies characters.

Syntax

finclude <ctype.h>

int isalpha (c)

int c;

Description

These macros classify ASClI-coded integer values by table lookup.
Each returns nonzero for true, zero for false. /sascit is defined on
all integer values; the rest are defined only where fsaseis is true and
on the single non-ASCII value EOF (see stdio(S)).

sealpha
feupper
selover
tedigit
sezdigit
tealnum

t1espace

tepunct

ieprint

tagraph

secntrl

fza8cit

March 24, 1984

¢ is a letter

¢ is an uppercase letu?r

¢ is a Jowercase letter

¢ is a digit [0-9]

¢ is a hexidecimal digit [0-9], |[A-F] or [a-f]
¢ is an alphanumeric

¢ is a space, tab, carriage return, newline, vertical
tab, or form feed

¢ is a punctuation character (neither control nor
alphanumeric)

¢ is a printing character, octal 40 (space) through
octal 176 (tilde)

¢ is a printing character, like ieprint except false for
space

¢ is a delete character (octal 177) or ordinary con-
trol character (less than octal 40).

¢ is an ASCII character, code less than 0200

Page 1



CTYPE (8)

See Also
ascii(M)

March24, 1984

CTYPE(S)

Page 2



CURSES (8) CURSES (S)

Name

curses — Performs screen and cursor functions.

Syntax

cc | flags ] files — lcurses — ltermlib [ libraries

Description

These routines give the user a method of updating screens with rea-
sonable optimization. They keep an image of the current screen,
and the user sets up an image of a new one. Then the refresh() tells
the routines to make the current screen look like the new one. In
order to initialize the routines, the routine initscr() must be called
before any of the other routines that deal with windows and screens

are used.

The routines are linked with the loader option -lcurses.

See Also

termcap(F), stty(S), setenv(S)

Functions

addch&ch)
addstr(str)
box(win,vert,hor)
crmode()

clear()
clearok(scr,boolf)
clrtobot()
clrtoeol( )
delwin(win)
echo()

erase()

getch()

getstr(str)
gettmode()
getyx(win,y,x)
inch()

initscr()
leaveok(win,boolf)

Adds a character to stdscr
Adds a string to stdscr

Draws a box around a window
Sets cbreak mode

Clears stdscr

Sets clear flag for scr

Clears to bottom on etdscr
Clears to end of line on stdscr
Delete win

Sets echo mode

Erase stdscr

Gets a char through stdscr
Gets a string through stdscr
Gets tty modes

Gets (y,x) coordinates

Gets char at current (y,x) co-ordinates
Initializes screens

Sets leave flag for win

longname(termbuf,name) Gets long name from termbuf

move(y,x)

Moves to (y,x) on stdscr

mvcur(lasty,lastx,newy,newx)Actually moves cursor
newwin(lines, cols,begin_y,begin_x)Creates a new window

March 27, 1984

Page 1



CURSES (S) CURSES (S)

nl() Sets newline mapping
nocrmode() Unsets cbreak mode

noecho() Unsets echo mode

nonl() Unsets newline mapping
noraw() Unsets raw mode

overlay(winl, win2) Overlays winl on win2
overwrite(winl,win2) Overwrites winl on top of win2
printw(fmt,argl,arg2,...) Printfs on stdscr

raw() Sets raw mode

refresh() Makes currentscreen look like stdecr
restty() Resets tty flags to stored value
savetty() Stored current tty flags
scanw(fmt,argl,arg2,...) Scanf through stdscr

scroll(win) Scrolls win one line

scrollok( win,boolf) Sets scroll flag

setterm(name) Sets term variables for name
unctrl(ch) Printable version of ch
waddch(win, ch) Adds char to win
waddstr(win,str) Adds string to win

wclear(win) " Clear vin

wclrtobot(win) Clears to bottom of win
weclrtoeol(win) Clears to end of line on win
werase( win) Erase win

wgetch(win) Gets a char through win
wgetstr(win,str) Gets a string through win
winch(win) Gets char at current (y,x) in win
wmove(win,y,x) Sets current (y,x) co-ordinateson uin
wprintw(win,fmt,argl,arg2,...)Printf on win

wrefresh(win) Makes screen look like win

wscanw(win,fmt,argl,arg2,...)Scanf through win
Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

March 27, 1984 Page 2



CURSES (S)

ind cursor functions.

ltermlib | libraries |

a method of updating screens with rea-
keep an image of the current screen,
e of anew one. Then the refresh() tells
‘rent screen look like the new one. In
:s, the routine initacr() must be called
1es that deal with windows and screens

1e loader option -lcurses.

a character to stdser

a string to stdscr

i a box around a window
Sreak mode

stdscr

ear flag for scr

to bottom on etdscr

to end of line on atdscr
win

ho mode
tdscr
shar through stdecr

string through stdscr
modes

x) coordinates

ir at current (y,x) co-ordinates
s screens

e flag for win

g name from termbuf
v (¥,x) on stdscr

lly moves cursor
Creates a new window

Page 1

USERID {S)

the login name
., thig represen-
ress of which is
to an array of at
ft in this array.
0.h>.

18 NULL; if & is

results of a user’s
:quent call to the

Page 1



DBM (8) DBM(S)

Name

dbminit, fetch, store, delete, firstkey, nextkey - Performs database
functions. :

Syntax
typedef struct { char «dptr; int dsize; } datum;

dbminit(file)
char #file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkey( );

datum nextkey(key);
datum key;

Description

These functions maintain key/content pairs in a database. The func-
tions will handle very large (a billion blocks) databases and will
access a keyed item in one or two file system accesses. The func-
tions are obtained with the loader option — ldbm.

Keys and contents are described by the datum typedef. A datum
specifies a string of deize bytes pointed to by dptr. Arbitrary binary
data, as well as normal ASCII strings, are allowed. The database is
stored in two files. One file is a directory containing a bit map and
has ‘‘.dir” as its suffix. The second file contains all data and has
‘.pag’’ as its suffix.

Before a database can be accessed, it must be opened by dbmsnist. At
the time of this call, the files fle.dir and file.pag must exist. (An
empty database is created by creating zero-length ‘‘.dir’’ and ‘‘.pag”’
files.)

Once open, the data stored under a key is accessed by fetch and data
is placed under a key by store. A key (and its associated contents) is
deleted by delete. A linear pass through all keys in a database may
be made, in an (apparently) random order, by use of firstkey and
neztkey. Firstkey will return the first key in the database. With any
key neztkey will return the next key in the database. This code will

March 24, 1984 Page 1



DBM (S) DBM (S)

Name

dbminit, fetch, store, delete, firstkey, nextkey — Performs database
functions. '

Syntax
typedef struct { char «dptr; int dsize; } datum;

dbminit(file)
char #file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkey();

datum nextkey(key);
datum key;

Description

These functions maintain key/content pairs in a database. The func-
tions will handle very large (a billion blocks) databases and will
access a keyed item in one or two file system accesses. The func-
tions are obtained with the loader option — ldbm.

Keys and contents are described by the datum typedef. A datum
specifies a string of desze bytes pointed to by dptr. Arbitrary binary
data, as well as normal ASCII strings, are allowed. The database is
stored in two files. One file is a directory containing a bit map and
has ‘‘.dir"’ as its suffix. The second file contains all data and has
‘‘_pag’’ as its suffix.

Before a database can be accessed, it must be opened by dbminst. At
the time of this call, the files fle.dir and file.pag must exist. (An
empty database is created by creating zero-length ‘‘.dir’’ and ‘‘.pag”’
files.)

Once open, the data stored under a key is accessed by fetch and data
is placed under a key by store. A key (and its associated contents) is
deleted by delete. A linear pass through all keys in a database may
be made, in an (apparently) random order, by use of firstkey and
neztkey. Firstkey will return the first key in the database. With any
key neztkey will return the next key in the database. This code will

March 24, 1984 Page 1

Y



DEFOPEN (8S) DEFOPEN (S)

Name

defopen, defread -~ Reads default entries.

Syntax

int defopen(fillename)
char #filename;

char +defread(pattern)
char *pattern;

Description

Defopen and defread are a pair of routines designed to allow easy
access to default definition files. XENIX is normally distributed in
binary form; the use of default files allows OEMS or site administra-
tors to customize utility defaults without having the source code.

Defopen opens the default file named by the pathname in filename.
Defopen returns null if it is successful in opening the file, or the
fopen failure code (errmo) if the open fails.

Defread reads the previously opened file from the beginning until it
encounters a line beginning with pattern. Defread then returns a
pointer to the first character in the line after the initial pattern, If a
trailing newline character is read it is replaced by a null byte.

When all items of interest have been extracted from the opened file
the program may call defopen with the name of another file to be
searched, or it may call defopen with NULL, which closes the default
file without opening another.

Files
The XENIX convention is for a system program zyz to store its
defaults (if any) in the file Jetc/default/xyz.

‘ Diagnostics

Defopen returns zero on success and nonzero if the open fails. The
return value is the errno value set by fopen(S).

Defread returns NULL if a default file is not open, if the indicated

pattern could not be found, or if it encounters any line in the file
greater than the maximum length of 128 characters.

March 24, 1984 Page 1



DUP(S) DUP(S)

Name

dup, dup2 - Duplicates an open file descriptor.

Syntax

int dup (fildes)
int fildes;

dup2(fildes, fildes2)
int fildes, fildes2;
Description
Fildes is a file descriptor obtained from a creat, open, dup, fent, or
pipe system call. Dup returns a new file descriptor having the follow-
ing in common with the original:
Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file
pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across ezec system
calls. See fentl(S).

Dup returns the lowest available file descriptor. Dup?2 causes fildes?
to refer to the same file as fildes. If fildes2 already referred to an
open file, it is closed first.

Dup will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. |[EBADF)

Twenty file descriptors are currently open. [EMFILE]

Return Value
Upon successful completion a nonnegative integer, namely the file
descriptor, is returned. Otherwise, a value of - 1 is returned and
ermo is set to indicate the error.

See Also
creat(S), close(S), exec(S), fentl(S), open(S), pipe(S)

March 24, 1984 Page 1



ECVT(S) ECVT(S)

Name

ecvt, fevt, gevt — Performs output conversions.

Syntax

char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gevt (value, ndigit, buf)
double value;
char *buf;

Description

Ecvt converts the value to a null-terminated string of ndigit ASCII
digits and returns a pointer to the string. The position of the
decimal point relative to the beginning of the string is stored
indirectly through decpt (negative means to the left of the returned
digits). If the sign of the result is negative, the word pointed to by
eign is nonzero, otherwise it is zero. The low-order digit is rounded.

Feot is identical to ecw, except that the correct digit has been
rounded for FORTRAN F format output of the number of digits
specified by ndigits.

Geot converts the value to a null-terminated ASCII string in duf and
returns a pointer to buf. It attempts to produce ndigit significant
digits in FORTRAN F format if possible, otherwise E format, ready
for printing. Trailing zeros may be suppressed.

See Also

printf(S)
Notes

The return values point to static data whose content is overwritten
by each call.

March 24, 1984 Page 1



EXEC(S) EXEC (S)

Name

execl, execv, execle, execve, execlp, execvp - Executes a file.

Syntax

int execl (path, argo, argl, ..., argn, 0)
char *path, *arg0, *argl, ..., *argn;

int execv (path, argv)
char *path, *argv[ ;

int execle (path, arg0, argl, ..., argn, 0, envp)
char *path, *arg0, *argl, ..., *argn, *envp| J;

int execve (path, argv, envp);
char *path, *argv[ ], *envp| J;

int execlp (file, arg0, argl, ..., argn, 0)
char *file, *arg0, *argl, ..., *argn;

int execvp (file, argv)
char *file, *argv| ];

Description

Ezec in all its forms transforms the calling process into a new pro-
cess. The new process is constructed from an ordinary, executable
file called the ‘“new process file’” . There can be no return from a
successful ezec because the calling process is overlaid by the new
process.

Path points to a pathname that identifies the new process file.

Fide points to the new process file. The path prefix for this file is
obtained by a search of the directories passed as the environment line
“PATH = (see environ(M)). The environment is supplied by the
shell (see s4(C)).

Arg0, argl, ..., argn are pointers to null-terminated character
strings. These strings constitute the argument list available to the
new process. By convention, at least arg0 must be present, and it
must point to a string that is the same as path (or its last com-
ponent).

Argv is an array of character pointers to null-terminated strings.
These strings constitute the argument list available to the new pro-
cess. By convention, arge must have at least one member, and it
must point to a stfing that is the same as path (or its last com-
ponent). Argv is terminated by a null pointer.

March 24, 1984 Page 1



EXEC(S) EXEC (S)

Envp is an array of character pointers to null-terminated strings.
These strings constitute the environment for the new process. Envp
is terminated by a null pointer.

File descriptors open in the calling process remain open in the new
process, except for those whose close-on-exec flag is set; see
fentl(S). For those file descriptors that remain open, the file pointer
is unchanged.

Signals set to terminate the calling process will be set to terminate
the new process. Signals set to be ignored by the calling process will
be set to be ignored by the new process. Signals set to be caught by
the calling process will be set to terminate new process; see
signal(S).

If the set-user-ID mode bit of the new process file is set (see
chmod(S)), ezec sets the effective user ID of the new process to the
owner ID of the new process file. Similarly, if the set-group-ID
mode bit of the new process file is set, the effective group ID of the
new process is set to the group ID of the new process file. The real
user ID and real group ID of the new process remain the same as
those of the calling process.

Profiling is disabled for the new process; see profil(S).

The new process also inherits the following attributes from the cal-
ling process:

Nice value (see nice(S))

Process ID

Parent process ID

Process group ID

tty group ID (see ezit(S) and eignal(S))
Trace flag (see ptrace(S) request 0)
Time left until an alarm clock signal (see alarm(S))
Current working directory

Root directory

File mode creation mask (see umaek(S))
File size limit (see ulimit(S))

utime, stime, cutime, and cstime (see times(S))

March 24, 1984 Page 2

N



EXEC(S) EXEC(S)

From C, two interfaces are available. Ezeel is useful when a known
file with known arguments is being called; the arguments to ezecl are
the character strings constituting the file and the arguments. The
first argument is conventionally the same as the filename (or its last
component). A 0 argument must end the argument list.

The ezecv version is useful when the number of arguments is unk-
nown in advance. The arguments to ezecv are the name of the file
to be executed and a vector of strings containing the arguments.
The last argument string must be followed by a 0 pointer.

When a C program is executed, it is called as follows:

main(arge, argv, envp)
int arge;
char #sargv, *senvp;

where arge is the argument count and argv is an array of character
pointers to the arguments themselves. As indicated, arge is conven-
tionally at least one and the first member of the array points to a
string containing the name of the file.

Argu is directly usable in another ezecv because argo|arge] is 0.

Envp is a pointer to an array of strings that constitute the environment
of the process. Each string consists of a name, an ‘“‘='’, and a null-
terminated value. The array of pointers is terminated by a null
pointer. The shell s4(C) passes an environment entry for each glo-
bal shell variable defined when the program is called. See
environ(M) for some conventionally used names. The C run-time
start-off routine places a‘ copy of envp in the global cell environ,
which is used by ezecv and ezec! to pass the environment to any sub-
programs executed by the current program. The ezec routines use
lower-level routines as follows to pass an environment explicitly:

execle(file, arg0, argl, . .., argn, 0, environ);
execve(file, argv, environ);

Ezeclp and ezecvp are called with the same arguments as ezec! and
ezecy, but duplicate the shell’s actions in searching for an executable
file in a list of directories. The directory list is obtained from the
environment.

Ezec will fail and return to the calling process if one or more of the
following are true:

One or more components of the new process file’s pathname do
not exist. [ENOENT]

A component of the new process file’s path prefix is not a direc-
tory. |ENOTDIR]

March 24, 1984 Pace 2



EXEC (S)

EXEC(8)
Name
i’: execl, execv, execle, execve, execlp, execvp - Executes 3
BN
ew pr
T‘; P Syntax
T] .
15 int exec! (path, arg0, argl, ..., argn, 0)
char *path, *arg0, *argl, ..., *argn;
z int execv (path, argv)
char *path, *argv| ];
]
d int execle (path, arg0, argl, ..., argn, 0, envp)
char *path, *arg0, *argl, ..., *argn, *envp| J;
. int execve (path, argv, envp);
char *path, *argv( ], *envp| |;
int execlp (file, arg0, argl, ..., argn, 0)
char *file, *arg0, *argl, ..., *argn;
int execvp (file, argv,
char *file, *argv{ J;
h, arg
' Description
Return Ezec in all its forms transforms the calling process into a n
1 cess. The new process is constructed from an ordinary, ex:
rety file called the ‘‘new process file’’ . There can be no return
successful ezec because the calling process is overlaid by t
process.
L . . .pe .
See Al Path points to a pathname that identifies the new process file.
e File points to the new process file. The path prefix for this
obtained by a search of the directories passed as the environm
“PATH == (see environ(M)). The environment is supplied
shell (see sh(C)).
Arg0, argl, .., argn are pointers to null-terminated ch
! strings. These strings constitute the argument list available
new process. By convention, at least arg0 must be present,
) must point to a string that is the same as path (or its last
i ponent).
¥

Argv is an array of character pointers to null-terminated s
These strings constitute the argument list available to the nev
cess. By convention, argr must have at least one member, :
must point to a string that is the same as patk (or its last
ponent). Argov is terminated by a null pointer.

:? March 24, 1984 P.



EXIT(S) EXIT(S)

Name

exit - Terminates a process.

Syntax

exit (status)
int status;

Description

Ezit terminates the calling process. All of the file descriptors open in
the calling process are closed.

If the parent process of the calling process is executing a wait, it is
notified of the calling process’ termination and the low-order 8 bits
(i.e., bits 0377) of status are made available to it; see wait(S).

If the parent process of the calling process is not executing a wast,
the calling process is transformed into a ‘‘zombie process.” A zom-
bie process is a process that only occupies a slot in the process table,
it has no other space allocated either in user or kernel space. The
process table slot that it occupies is partially overlaid with time
accounting information (see <sys/proc.h>) to be used by times(S).

The parent process ID of all of the calling process’ existing child
processes and zombie processes is set to 1. This means the initiali-
zation process (see intro(S)) inherits each of these processes.

An accounting record is written on the accounting file if the system’s
accounting routine is enabled; see acet(S).

If the process ID, tty group ID, and process group ID of the calling
process are equal, the SIGHUP signal is sent to each processes that
has a process group ID equal to that of the calling process.

See Also

signal(S), wait(S)

‘Warning

See Waming in signal(S)

March 24, 1984 Page 1



EXP(S) _ EXP(S)

Name
exp, log, pow, sqrt, logl0 - Performs exponential, logarithm,
power, square root functions.

Syntax
#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

double logl 0 (x)
double x;
Description
Ezp returns the exponential function of z.
L og returns the natural logarithm of 2.
vy

Pow returns z”.

Sgrt returns the square root of z.

See Also
intro(S), hypot(S), sinh(S)

Diagnostics

Ezp and pow return a huge value when the correct value would
overflow. A truly outrageous argument may also result in errmo
being set to ERANGE . Log returns a huge negative value and sets
errno to EDOM when z is nonpositive. Pow returns a huge negative
value and sets errno to EDOM when z is nonpositive and y is not an
integer, or when z and y are both zero. Sg¢rt returns 0 and sets errno
to EDOM when z is negative.

March 24, 1984 Page 1



FCLOSE (8) FCLOSE (S)

Name

fclose, flush - Closes or flushes a stream.

Syntax
#include <stdio.h>

int fclose (stream)
FILE *stream;

int fllush (stream)
FILE *stream;

Description
Fclose causes any buffers for the named stream to be emptied, and
the file to be closed. Buffers allocated by the standard input/output
system are freed.

Felose is performed automatically upon calling ezit(S).

Fflush causes any buffered data for the named output stream to be
written to that file. The stream remains open.

These functions return 0 for success, and EOF if any errors were
detected.

See Also
close(S), fopen(S), setbuf(S)

March 24, 1984 Page 1



FONTL ()

Name

FCNTL (S)

fentl - Controls open files.

Syntax

#include <fentl.h>

int fentl (fildes, cmd, arg)
int fildes, cmd, arg;

Description

Fend provides for control over open files. Fildes is an open file
descriptor obtained from a creat, open, dup, fentl, or pipe system call.

The e¢mds available are:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL

F_SETFL

March 24, 1984

Returns a new file descriptor as follows:

Lowest numbered available file descriptor greater than
or equal to aryg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file
descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share
the same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across ezec(S) system
calls.

Gets the close-on-exec flag associated with the file
descriptor fildes. If the low-order bit is O the file will
remain open across ezec, otherwise the file will be
closed upon execution of ezee.

Sets the close-on-exec flag associated with fildes to the
low-order bit of arg (0 or 1 as above).

Gets file status flags.

Sets file status flags to arg. Only certain flags can be
set. .

Page 1



FONTL (S)

»ne or more of the following is true:
not a valid open file descriptor. |[EBADF)

3 F_DUPFD and 20 file descriptors are currently open.
JE]

is F_DUPFD and erg is negative or greater than 20.
TAL]
e

uccessful completion, the value returned depends on emd as

DUPFD A new file descriptor
_GETFD  Value of flag (only the low-order bit is defined)
F_SETFD Value other than - 1
F_GETFL Value of file flags
F_SETFL Value other than - 1
;herwise, a value of - 1 is returned and errno is set to indicate the
TOr.
Also
close(S), exec(S), open(S)

March 24, 1984 Page 2



FERROR (S) FERROR (S)

Name

ferror, feof, clearerr, fileno - Determines stream status.

Syntax
#include <stdio.h>

int feof (stream)
FILE *stream;

int ferror (stream)
FILE *stream

clearerr (stream)
FILE *stream

int fileno(stream)
FILE *stream;
Description

Feof returns nonzero when end-of-file is read on the named input o
stream, otherwise zero. 3

Ferror returns nonzero when an error has occurred reading or writ-
ing the named stream, otherwise zero. Unless cleared by clearerr,
the error indication lasts until the stream is closed.

Cleaserr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream,
see open(S).

Feof, ferror, and fileno are implemented as macros; they cannot be
redeclared.

See Also
open(S), fopen(S)

March 24, 1984 Page 1



FERROR (S) FERROR (S)

Name

ferror, feof, clearerr, fileno - Determines stream status.

Syntax
#include <stdio.h>

int feof (stream)
FILE *stream;

int ferror (stream)
FILE *stream

clearerr (stream)
FILE *stream

int fileno(stream)
FILE *stream;
Description

Feof returns nonzero when end-of-file is read on the named input
stream, otherwise zero.

Ferror returns nonzero when an error has occurred reading or writ-
ing the named stream, otherwise zero. Unless cleared by clearerr,
the error indication lasts until the stream is closed.

Clearerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the etream,
see open(S).

Feof, ferror, and fileno are implemented as macros; they cannot be
redeclared.

See Also

open(S), fopen(S)

March 24, 1984 Page 1



mLOSE(s)

!mpﬁed) and
nput/oucput

feam to be

TOrs were

FOPEN (S)

a stream.

stream)

by filename and associates a stream with
to be used to identify the stream in sub-

aving one of the following values:

titing at end of file, or create for writing

:ading and writing)

‘reate for update at end of file

: named file in place of the open stream. It
lue of stream. The original stream is closed,
ihe open call ultimately succeeds.

sed to attach the preopened constant names

err to specified files.

tream with a file descriptor obtained from open,
). The type of the stream must agree with the
e. The type must be provided because the stan-
no way to query the type of an open file descrip-

the new stream.
Page 1

o



FOPEN (8S) FOPEN (S)

When a file is opened for update, both input and output may be
done on the resulting stream. However, output may not be directly
followed by input without an intervening feeek or rewind, and input
may not be directly followed by output without an intervening feeek,
rewind, or an input operation which encounters the end of the file.

See Also

open(S), fclose(S)
Diagnostics

Fopen and freopen return the pointer NULL if filename cannot be
accessed.

March 24, 1984 Page 2



FORK (S) . FORK(S)

Name

fork - Creates a new process.

Syntax
int fork ()

Description
Fork causes creation of a new process. The new process (child pro-
cess) is an exact copy of the calling process (parent process) except
for the following:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the pro-
cess ID of the parent process).

The child process has its own copy of the parent’s file descrip-
tors. Each of the child’s file descriptors shares a common file
pointer with the corresponding file descriptor of the parent.

The child process’ utime, stime, cuttime, and cstime are set to O;
see times(S).

The time left on the parent’s alarm clock is not passed on to the
child.

Fork returns a value of 0 to the child process.

Fork returns the process ID of the child process to the parent pro-
cess. .

Fork will fail and no child process will be created if one or more of
the following are true:

The system-imposed limit on the total number of processes
under execution would be exceeded. [EAGAIN]

The system-imposed limit on the total number of processes
under execution by a single user would be exceeded. [EAGAIN]

Not enough memory is available to create the forked image.
|ENOMEM]
Return Value

Upon successful completion, fork returns a value of 0 to the child
process and returns the process ID of the child process to the parent

March 24, 1984 Page 1




FORK (S) FORK (S)

process. Otherwise, a value of - 1 is returned to the parent process,
no child process is created, and errno is set to indicate the error.

See Also
exec(S), wait(S)

March 24, 1984 Page 2



FREAD (S) FREAD (8)

Name

fread, fwrite - Performs buffered binary input and output.

Syntax
#include <stdio.h>

int fread ((char *) ptr, sizeof (*ptr), nitems, stream)
FILE *stream;

int fwrite ((char *) ptr, sizeof (*ptr), nitems, stream)
FILE *stream;

Description
Fread reads, into a block beginning at ptr, nitems of data of the type
of *ptr from the named input etream. It returns the number of items
actually read.
Funite appends at most nitems of data of the type of *ptr beginning at
ptr to the named output stream. It returns the number of items
actually written.

See Also

read(S), write(S), fopen(S), getc(S), putc(S), gets(S), puts(S),
printf(S), scanf(S)

March 24, 1984 Page 1



FREXP (S) FREXP(S)

Name
frexp, ldexp, modf - Splits floating-point number into a mantissa
and an exponent.
Syntax
double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;

double modf (value, iptr)
double value, *iptr;

Description
Frezp returns the mantissa of a double value as a double quantity,.z,
of magnitude less than 1, and stores an integer n such that value =
2*2**n indirectly through eptr.

Ldezp returns the quantity value*(2**ezp).

Modf returns the positive fractional part of value and stores the
integer part indirectly through sptr.

March 24, 1984 Page 1



FSEEK (S) FSEEK (S)

Name

fseek, ftell, rewind - Repositions a stream.

Syntax
#include <stdio.h>
int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

longftell (stream)
FILE *stream;

rewind(stream)
FILE *stream;

Description
Feeek sets the position of the next input or output operation on the
stream. The new position is at the signed distance offset bytes from
the beginning, the current position, or the end of the file, according
as ptrname has the value 0, 1, or 2.

Feeek undoes any effects of ungete(S).

After fseek or rewind, the next operation on an update file may be
either input or output.

Ftell returns the current value of the offset relative to the beginning
of the file assocCiated with the named stream. The offset is measured
in bytes.

Rewind(stream) is equivalent to fseck(stream, OL, 0).

See Also
lseek(S), fopen(S)

Diagnostics

Feeek returns nonzero for improper seeks, otherwise zero.

March 24, 1984 Page 1



GAMMA (S) GAMMA (S)

Name

gamma - Performs log gamma function.

Syntax

#include <math.h>
extern int signgam;

double gamma (x)
double x;

Description

Gamma returns In[[(|z|)|. The sign of I'(|z|) is returned in the
external integer signgam. The following C program fragment might

be used to calculate I':

y = gamma (x);
if (y > 88.0)
error ();
y = exp (y) * signgam;

Diagnostics

For negative integer arguments, a huge value is returned, and ermno
is set to EDOM.

March 24, 1984 Page 1



GETC(S) GETC(S)

Name

getc, getchar, fgetc, getw - Gets character or word from a stream.

«Syntax
#include <stdio.h>

int getc (stream)
FILE *stream;

Q)
int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

Description
Getc returns the next character from the named input stream.
Getchar( ) is identical to getc(stdin).
Fgetc behaves like gete, but is a genuine function, not a macro; it
may therefore be used as an argument. Fgetec runs more slowly than
gete, but takes less space per invocation.
Getw returns the next word from the named input etream. It returns
the constant EOF upon end-of-file or error, but since that is a valid

integer value, feof and ferror(S) should be used to check the success
of getw. Getw assumes no special alignment in the file.

See Also
ferror(S), fopen(S), fread(S), gets(S), putc(S), scanf(S)

Diagnostics
These functions return the integer constant EOF at the end-of-file or
upon a read error.

Notes
Because getc is implemented as a macro, stream arguments with side

effects are treated incorrectly. In particular, “‘getc( *f++ )"’ doesn’t
work properly.

March 24, 1984 Page 1



GETCWD (S) GETCWD ()

Name

getcwd — Gets pathname of current working directory.

Syntax
len = getcwd (pnbuf, maxlen);
int len;
char *pnbuf;
int maxlen;

Description

Getcwd determines the pathname of the current working directory
and places it in prbuf. The length excluding the terminating NULL is
returned. Mazlen is the length of pnbuf. If the length of the (null-
terminated) pathname exceeds mazlen, it is treated as an error.

Diagnostics

A length <=0 is returned on error.
Notes

mazien (and pnbuf ) must be 1 more than the true maximum length
of the pathname.

March 24, 1984 Page ‘1



GETENV (S) GETENV (S)

Name

getenv — Gets value for environment name.

Syntax
char *getenv (name)
char *name;

Description
Getenv searches the environment list (see environ(M)) for a string of
the form name=value and returns value if such a string is present,
otherwise 0 ( NULL ).

See Also
sh(C), exec(S)

March 24, 1984 Page 1



GETGRENT (S) : GETGRENT (S)

Name
getgrent, getgrgid, getgrnam, setgrent, endgrent — Get group file
entry.
Syntax
#include <grp.h>
struct group *getgrent ( );

struct group *getgrgid (gid)
int gid;

struct group *getgmam (name)
char *name;

int setgrent ( );
int endgrent ( );

Description

Getgrent, getgrgid and getgmam each return pointers. The format of
the structure is defined in fusr/include/grp.h.

The members of this structure are:
gr_name The name of the group.
gr_passwd The encrypted password of the group.
gr_gid The numerical group ID.

gr_mem Null-terminated vector of pointers to the indivi-
dual member names.

Getgrent reads the next line of the file, so successive calls may be
used to search the entire file. Getgrgid and getgrnam search from the
beginning of the file until a matching gid or name is found, or end-
of-file is encountered.

A call to setgrent has the effect of rewinding the group file to allow
repeated searches. Endgrent may be called to close the group file
when processing is complete.

Files

/Jetc/group

March 24, 1984 Page 1



GETGRENT (S) GETGRENT (S) -

See Also
getlogin(S), getpwent(S), group(M)

Diagnostics

A null pointer (0) is returned on end-of-file or error.
Notes

All information is contained in a static area, so it must be copied if it
is to be saved.

March 24, 1984 Page 2

Ry



GETLOGIN ( S) GETLOGIN (S)

Name

getlogin — Gets login name.

Syntax

char *getlogin ( );

Description
Getlogin returns a pointer to the login name as found in /etc/utmp.
It may be used in conjunction with getpwnam to locate the correct
password file entry when the same user ID is shared by several login
names.
If getlogin is called within a process that is not attached to a terminal
device, it returns NULL. The correct procedure for determining the
login name is to call cuserid, or to call getlogin and if it fails, to call
getpwuid.

Files

/etc/utmp

See Also

cuserid(S), getgrent(S), getpwent(S), utmp(M)

Diagnostics

Returns NULL if name not found.
Notes

The return values point to static data whose content is overwritten
by each call.

March 24, 1984 Page 1



GETOPT(S) GETOPT(S)

Name

getopt ~ Gets option letter from argument vector.

Syntax
ffinclude <stdio.h>

int getopt (argc, argv, optstring)
int argc;

char **argv;

char *optstring;

extern char *optarg;

extern int optind;

Description

Getopt returns the next option letter in argo that matches a letter in
optstring. Optstring is a string of recognized option letters; if a letter
is followed by a colon, the option is expected to have an argument
that may or may not be separated from it by whitespace. Optarg is
set to point to the start of the option argument on return from

getopt.

Getopt places in optind the argv index of the next argument to be
processed. Because optind is external, it is normally initialized to
zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first nonoption
argument), getopt returns EOF. The special option -- may be used to
delimit the end of the options; EOF will be returned, and -- will be
skipped.
Diagnostics
Getopt prints an error message on stderr and returns a question mark
(?) when it encounters an option letter not included in optstnng.
Examples
The following code fragment shows how one might process the argu-

ments for a command that can take the mutually exclusive options a
and b, and the options f and o, both of which require arguments:

March 24, 1984 Page 1



GETOPT(S) GETOPT (S)

main (arge, argv)
int argc;
char **argv;

int c;
extern int optind;
extern char *optarg;

while ((¢ = getopt (arge, argv, "abf:o:")) != EOF)
switch (¢c) {
case 'a;
if (bflg)
errflg+ +
else
aflgt+ +;
break;
case 'b’:
if (aflg)
errflig4 +;
else
bproc();
break;
case 'f":
ifile = optarg;
break;
case o’
ofile = optarg;
bufsiza = 512;
break;
ot
errfig+ +;

case

}

if (errflg) {
fprintf (stderr, "usage: . . . 7);
exit (S);

for( ; optind < argec; optind+ +) {
if (access (argv[optind], 4)) {

March 24, 1984 Page 2



GETPASS () GETPASS (S)

Name

getpass — Reads a password.

Syntax
. char *getpass (prompt)

char *prompt;

Description
Getpass reads a password from the file /dev/tty, or if that cannot be
opened, from the standard input, after prompting with the null-
terminated string prompt and disabling echoing. A pointer is
returned to a null-terminated string of at most eight characters.

Files
[dev/tty

See Also

crypY(S)

Notes

The return value points to static data whose content is overwritten
by each call.

March 24, 1984 Page 1

o



GETPID () GETPID (S)

Name
getpid, getpgrp, getppid - Gets process, process group, and parent
process IDs.
Syntax
int getpid ()
int getpgrp ()

int getppid ()

Description
Getpid returns the process ID of the calling process.
Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

See Also
exec(S), fork(S), intro(S), setpgrp(S), signal(S)

March 24, 1984 Page 1



GETPW (S) GETPW (8)

Name

getpw — Gets password for a given user ID.

Syntax
getpw (uid, buf)
int uid;
char *buf;

Description
Getpw searches the password file for the uid, and fills in buf with the
corresponding line; it returns nonzero if uid could not be found.
The line is null-terminated. Uid must be an integer value.

Files

[etc/passwd

See Also

getpwent(S), passwd(M)

Diagnostics

Returns nonzero on error.
Notes

This routine is included only for compatibility with prior systems and
should not be used; see getpwent(S) for routines to use instead.

March 24, 1984 Page 1



GETPWENT (S) GETPWENT(S)

Name
getpwent, getpwuid, getpwnam, setpwent, endpwent — Gets pass-
word file entry.
Syntax
ginclude <pwd.h>
struct passwd *getpwent ( );

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

int setpwent ( );

int endpwent ( );

Description
Getpwent, getpwuid and getpwnam each returns a pointer to a struc-
ture containing the fields of an entry line in the password file. The
structure of a password entry is defined in /usr/include/pwd.h.

The fields have meanings described in passwd(M). (The
pw_comment field is unused.)

Getpwent reads the next line in the file, so successive calls can be
used to search the entire file. Getpwuid and getpwnam search from
the beginning of the file until 2 matching uid or neme is found, or
EOF is encountered.

A call to setpwent has the effect of rewinding the password file to
allow repeated searches. Endpwent may be called to close the pass-
word file when processing is complete.

Files

[Jetc/passwd

See Also

getlogin(S), getgrent(S), passwd(M)

March 24, 1984 Page 1



GETPWENT(S) GETPWENT(S)

Diagnostics

Null pointer (0) returned on EOF or error.

Notes

All information is contained in 2 static area so it must be copied if it
is to be saved.

March 24, 1984 Page 2



GETS (S) GETS (S)

Name

gets, fgets — Gets a string from a stream.

Symntax
#include <stdio.h>

char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;
int n;
FILE ®*stream;

Description
Gets reads a string into # from the standard input stream stdin. The
function replaces the newline character at the end of the string with
a null character before copying to s. Gets returns a pointer to s.
Fgete reads characters from the etream until a newline character is
encountered or until n— 1 characters have been read. The characters
are then copied to the string s. A null character is automatically

appended to the end of the string before copying. Fyets returns a
pointer to .

See Also
ferror(S), fopen(S), fread(S), getce(S), puts(S), scanf(S)
Diagnostics
Gets and fgete return the constant pointer NULL upon end-of-file or

error.

Notes

Gets deletes the newline ending its input, but fgets keeps it.

March 24, 1984 Page 1



GETUID (S) GETUID (S)

Name
getuid, geteuid, getgid, getegid — Gets real user, effective user, real
group, and effective group IDs.
Syntax
int getuid ()
int geteuid ()
int getgid ()

int getegid ()

Description
Getuid returns the real user ID of the calling process.
Geteuid returns the effective user ID of the calling process.
Getgid returns the real group ID of the calling brocess.

Getegid returns the effective group ID of the calling process.

See Also
intro(S), setuid(S)

March 24, 1984 Page 1




HYPOT(S)

Name

hypot, cabs - Determines Euclidean distance.

Syntax
#include <math.h>

double hypot (x, y)
double x, y;

double cabs (z)

struct {double x, y;} z;
Description

Hypot and cabe return

sqri{x*x + y*y)

Both take precautions against unwarranted overflows.

See Also
sgrtin exp(S)

March 24, 1984

HYPOT(S)

Page 1



10CTL (S) JOCTL (S)
Name

ioctl - Controls character devices.

" mtax

#include <sys/ioctl.h>

ioctl(fildes, request, arg)
int flldes;

Description

Joct! performs a variety of functions on character special files (dev-

ices). The writeups of various devices in Section M discuss how soct!
applies to them.

octl will fail if one or more of the following are true:
Fildes is not a valid open file descriptor. [EBADF]

Fides is not associated with a character special device.
[ENOTTY]

Regquest or arg is not valid. See #y(M). [EINVAL)

Return Value

If an error has occurred, a value of - 1 is returned and errno is set
to indicate the error.

See Also

tty(M)

March 24, 1984 Page 1

R—



KILL (S) KILL (S)

Name

kill - Sends a signal to a process or a group of processes.

Syntax

int kill (pid, sig)
int pid, sig;

Description

Kill sends a signal to a process or a group of processes. The process
or group of processes to which the signal is to be sent is specified by
pid. The signal that is to be sent is specified by eig and is either one
from the list given in eignal(S), or 0. If &g is 0 (the null signal),
error checking is performed but no signal is actually sent. This can
be used to check the validity of pid.

The effective user ID of the sending process must match the
effective user ID of the receiving process unless, the effective user ID
of the sending process is super-user, or the process is sending to
itself.

The processes with a process ID of 0 and a process ID of 1 are special
processes (see sntro(S)) and will be referred to below as proc0 and
procl respectively.

If pid is greater than zero, eig will be sent to the process whose pro-
cess ID is equal to pid. Pid may equal 1.

If pid is 0, &g will be sent to all processes excluding proc0 and proct
whose process group ID is equal to the process group ID of the
sender.

If pid is - 1 and the effective user ID of the sender is not super-user,
eig will be sent to all processes excluding proc0 and proc! whose real
user ID is equal to the effective user ID of the sender.

If pid is — 1 and the effective user ID of the sender is super-user, &g
will be sent to all processes excluding proc0 and procl.

If pid is negative but not ~ 1, sig will be sent to all processes whose
process group ID is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the follow-
ing are true:

Sig isnot a valid signal number. [EINVAL]

No process can be found corresponding to that specified by pid.
[ESRCH]|

March 24, 1984 Page 1



KILL (S) KILL ()

The sending process is not sending to itself, its effective user ID
is not super-user, and its effective user ID does not match the
real user ID of the receiving process. |EPERM]

Return Value '

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also

kill(C), getpid(S), setpgrp(S), signal(S)

March 24, 1984 Page 2



LSTOL (S) LSTOL (S)

Name

13tol, 1t0l3 - Converts between 3-byte integers and long integers.

Syntax

13tol (Ip, cp, n)
long *Ip;

char *cp;

int n;

1tol3 (cp, Ip, n)
char *cp;

long *Ip;

int n;

Description

LStol converts a. list of n 3-byte integers packed into a character
string pointed to by ¢p into a list of long integers pointed to by Ip.

LtolS performs the reverse conversion from long integers (Ip) to 3-
byte integers (¢p).

These functions are useful for file system maintenance where the
block numbers are 3 bytes long.

See Also

filesystem(F)

March 24, 1984 Page 1



LINK (S) LINK (S)

Name

link - Links a new filename to an existing file.

Syntax
int link (pathl, path2)
char *pathl, *path2;

Description
Path! points to a pathname naming an existing file. Path2 points to
a pathname giving the new filename to be linked. Link makes a new
link by creating a new directory entry for the existing file using the
new name. The contents of the existing file can then be accessed

using either name.

Link will fail and no link will be created if one or more of the fol-
lowing are true:

A component of either path prefix is not a directory. [ENOTDIR]
A component of either path prefix does not exist. [ENOENT]

A component of either path prefix denies search permission.
[EACCES]

The file named by path! does not exist. [ENOENT)
The link named by path2 already exists. [EEXIST)

The file named by path! is a directory and the effective user ID
is not super-user. [EPERM]

The link named by path2 and the file named by pathl are on
different logical devices (file systems). |[EXDEV]

Path2 points to a null pathname. [ENOENT)

The requested link requires writing in a directory with a mode
that denies write permission. [EACCES]

The requested link requires writing in a directory on a read-only
file system. [EROFS]

Path points outside the process’ allocated address space.
[EFAULT]

March 24, 1984 Page 1




LINK (S) LINK (S)

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, &
value of - 1 is returned and errno is set to indicate the error.

See Also
In(C)

March 24, 1984 : Page 2



LOCK (S) LOCK (S)

Name

£ lock - Locks a process in primary memory.

Syntax
lock(flag)

Description

If the flag argument is nonzero, the process executing this call will
not be swapped except if it is required to grow. If the argument is
zero, the process is unlocked. This call may only be executed by the
super-user.

Notes
Locked processes interfere with the compaction of primary memory
and can cause deadlock. Systems with small memory configurations

should avoid using this call. It is best to lock process soon after
booting because that will tend to lock them into one end of memory.

March 24, 1984 Page 1



LOCKING (S) LOCKING ()

Name

locking - Locks or unlocks a file region for reading or writing.

Syntax

locking(fildes, mode, size);
int fildes, mode;

long size;

Description

Locking allows a specified number of bytes in a file to be controlled
by the locking process. Other processes which attempt to read or
write a portion of the file containing the locked region may sleep
until the area becomes unlocked depending upon the mode in which
the file region was locked. A process that attempts to write to or
read a file region that has been locked against reading and writing by
another process (using the LK_LOCK or LK_NBLCK mode) will sleep
until the region of the file has been released by the locking process.
A process that attempts to write to a file region that has been locked
against writing by another process (using the LK_RLCK or
LK_NBRLCK mode) will sleep until the region of the file has been
released by the locking process, but a read request for that file region
will proceed normally.

A process that attempts to lock a region of a file that contains areas
that have been locked by other processes will sleep if it has specified
the LK_LOCK or LK_RLCK mode in its lock request, but will return with
the error EACCES if it specified LK_NBLCK or LK_NBRLCK.

Fides is the value returned from a successful creat, open, dup, or pipe
system call.

Mode specifies the type of lock operation to be performed on the file
region. The available values for mode are:

LK_UNLCK 0
Unlocks the specified region. The calling process releases a
region of the file it had previously locked.

LK_LOCK 1
Locks the specified region. The calling process will sleep until
the entire region is available if any part of it has been locked by
a different process. The region is then locked for the calling
process and no other process may read or write in any part of
the locked region. (lock against read and write).

March 24, 1984 Page 1



LOCKING (S) ' LOCKING (S)

LK_NBLCK 2
Locks the specified region. If any part of the region is already
locked by a different process, return the error EACCES instead
of waiting for the region to become available for locking (non-
blocking lockrequest).

LK_RLCK 3
Same as LK_LOCK except that the locked region may be read by
other processes (read permitted lock).

LK_NBRLCK 4
Same as LK_NBLCK except that the locked region may be read
by other processes (nonblocking, read permitted lock).

Size is the number of contiguous bytes to be locked or unlocked.
The region to be locked starts at the current offset in the file. If eize
is 0, the entire file (up to a maximum of 2 to the power of 30 bytes)
is locked or unlocked. Size may extend beyond the end of the file,
in which case only the process issuing the lock call may access or add
information to the file within the boundary defined by sige.

The potential for a deadlock occurs when a process controlling a
locked area is put to sleep by accessing another process’ locked area.
Thus calls to locking, read, or wn'te scan for a deadlock prior to sleep-
ing on a locked region. An error return is made if sleeping on the
locked region would cause a deadlock.

Lock requests may, in whole or part, contain or be contained by a
previously locked region for the same process. When this occurs, or
when adjacent regions are locked, the regions are combined into a
single area if the mode of the lock is the same (i.e.; either read per-
mitted or regular lock). If the mode of the overlapping locks differ,
the locked areas will be assigned assuming that the most recent
request must be satisfied. Thus if a read only lock is applied to a
region, or part of a region, that had been previously locked by the
same process against both reading and writing, the area of the file
specified by the new lock will be locked for read only, while the
remaining region, if any, will remain locked against reading and writ-
ing. There is no arbitrary limit to the number of regions which may
be locked in a file. There is however a system-wide limit on the
total number of locked regions. This limit is 200 for XENIX systems.

Unlock requests may, in whole or part, release one or more locked
regions controlled by the process. When regions are not fully
released, the remaining areas are still locked by the process. Release
of the center section of a locked area requires an additional locked
element to hold the separated section. If the lock table is full, an
error is returned, and the requested region is not released. Only the
process which locked the file region may unlock it. An unlock
request for a region that the process does not have locked, or that is
already unlocked, has no effect. When a process terminates, all
locked regions controlled by that process are unlocked.

March 24, 1984 Page 2



LOCKING () LOCKING (S)

If a process has done more than one open on a file, all locks put on
the file by that process will be released on the first close of the file.

Although no error is returned if locks are applied to special files or
pipes, read/write operations on these types of files will ignore the
locks. Locks may not be applied to a directory.

See Also
creat( S), open(S), read(S), write(S), dup(S), close(S), Iseek(S)

Diagnostics

Locking returns the value (int) -1 if an error occurs. If any portion
of the region has been locked by another process for the LK_LOCK
and LK_RLCK actions and the lock request is to test only, errno is set
to EACCES. If the file specified is a directory, errno is set to
EACCES. If locking the region would cause a deadlock, ermo is set
to EDEADLOCK. If there are no more free internal locks, ermois set
to EDEADLOCK. .

March. 24, 1984 Page 3



LOGNAME (8) LOGNAME (8)

Name

logname - Finds login name of user.

Syntax

char *logname( );

Deacription

Logname returns a pointer to the null-terminated login nameé. It
uses the string found in the LOGNAME variable from the user’s
environment. :

Files

[ete/profile

See Also

env(C), login(M), profile(M), environ(M) !

March 24, 1884 Page 1



LSEARCH (S) LSEARCH ()

Name

Isearch - Performs linear search and update.

Syntax

char *lsearch (key, base, nelp, width, compar)
char *key;

char *base;

int *nelp;

int width;

int (*compar)();

Description

Lgearch is a linear search routine generalized from Knuth (6.1)
Algorithm Q. It returns a pointer into a table indicating the location
at which a datum may be found. If the item does not occur, it is
added at the end-of the table. The first argument is a pointer to the
datum to be located in the table. The second argument is a pointer
to the base of the table. The third argument is the address of an
integer containing the number of items in the table. It is incre-
mented if the item is added to the table. The fourth argument is the
width of an element in bytes. The last argument is the name of the
comparison routine. It is called with two arguments which are
pointers to the elements being compared. The routine must return
zero if the items are equal, and nonzero otherwise.

Notes
Unpredictable events can occur if there is not enough room in the

table to add a new item.

See Also
bsearch(S), gsort(S)

March 24, 1984 Page 1



LSEEK (S) LSEEK (S)

Name

lseek — Moves read/write file pointer.

Syntax
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;
Description
Fildee is a file descriptor returned from a creat, open, dup, or feat
system call. Leeek sets the file pointer associated with fildes as fol-
lows:
If whence is 0, the pointer is set to offset bytes.
If whence is 1, the pointer is set to its current location plus offeet.

If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as meas-
ured in bytes from the beginning of the file is returned.

Leeek will fail and the file pointer will remain unchanged if one or
more of the following are true:

Fides is not an open file descriptor. [EBADF]
Fildes is associated with a pipe or fifo. |ESPIPE]
Whence is not 0, 1 or 2. |EINVAL and SIGSYS signal]
The resulting file pointer would be negative. |[EINVAL]
Some devices are incapable of seeking. The value of the file pointer
associated with such a device is undefined.
Return Value
Upon successful completion, a nonnegative integer indicating the file

pointer value is returned. Otherwise, a value of - 1 is returned and
errno is set to indicate the error.

March 24, 1984 Page 1



« LSEEK (S) LSEEK ()

See Also
creat(S), dup(’S), fentl(S), open(S)

1984 Page 2



MALLOC (8) MALLOC (S)

Name

malloc, free, realloc, calloc - Allocates main memory.

Syntax
char *malloc (size) unsigned size;

free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned elem, elsize;

Description

Malloc and free provide a simple general-purpose memory allocation
package. Malloc returns a pointer to a block of at least eize bytes
beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by
malloc; this space is made available for further allocation, but its
contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by
malloc is overrun or if some random number is handed to free.

Malloc allocates the first contiguous reach of free space found in a
circular search from the last block allocated or [reed, coalescing adja-
cent free blocks as it searches. It calls sbrk (see sbrk(S)) to get
more memory from the system when there is no suitable space
ajready free.

Realloc changes the size of the block pointed to by ptr to size bytes
and returns a pointer to the (possibly moved) block. The contents
will be unchanged up to the lesser of the new and old sizes.

Realloc also works if ptr points to a block freed since the last call of
malloc, realloc, or calloc; thus sequences of free, malloc and realloc
can exploit the search strategy of malloc to do storage compaction.

Calloc allocates space for an array of nelem elements of size eleize.
The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of

March 24, 1984 Page 1

e



MALLOC (S) MALLOC (S)

object.

Diagnostics

Malloe, realloc and calloc return a null pointer (0) if there is no
available memory or if the area has been detectably corrupted by
storing outside the bounds of a block. When realloc returns 0, the
block pointed to by ptr may be destroyed.

March 24, 1984 Page 2



MEKNOD (S) MEKNOD ()

Name

mknod - Makes a directory, or a special or ordinary file.

Syntax

int mknod (path, mode, dev)
char *path;
int mode, dev;

Description

Mknod creates a new file named by the pathname pointed to by path.
The mode of the new file is initialized from mode. Where the value
of mode is interpreted as follows:

0170000 File type; one of the following:
0010000 Named pipe special
0020000 Character special
0040000 Directory
0050000 Name special file
0060000 Block special
0100000 or 0000000 Ordinary file

0004000 Set user ID on execution
0002000 Set group ID on execution
0001000 Save text image after execution

0000777 Access permissions; constructed from the following
0000400 Read by owner
0000200 Write by owner
0000100 Execute (search on directory) by owner
0000070 Read, write, execute (search) by group
0000007 Read, write, execute (search) by others

Values of mode other than those above are undefined and should not
be used.

The file’s owner ID is set to the process’ effective user ID. The file’s
groupID is set to the process’ effective group ID.

The low-order 9 bits of mode are modified by the process’ file mode
creation mask: all bits set in the process’ file mode creation mask are
cleared. See umask(S). If mode indicates a block, character, or
name special file, then dev is a configuration dependent specification
of a character or block 1/O device. If mode does not indicate a
block, character, or name special file, then dev is ignored. For block
and character special files, dev is the special file’s device number.
For name special files, dev is the type of the name file, either a

March 24, 1984 Page 1



MKNOD (5) MKNOD (S)

shared memory file or a semaphore.

Mknod may be invoked only by the super-user for file types other
than named pipe specizal.

Mknod will fail and the new file will not be created if one or more of
the following are true:

The process’ effective user ID isnot super-usel;. |EPERM]
A component of the path prefix is not a directory. [ENOTDIR]
A component of the path prefix does not exist. [ENOENT]

The directory in which the file is to be created is located on a
read-only file system. [EROFS]

The named file exists. [EEXIST]

Path points outside the process’ allocated address space.
[EFAULT]

Return Value

Upon successful completion a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also

mkdir(C), mknod(C), chmod(S), creatsem(S), exec(S), sdgey(S),
umask(S), filesystem(F)

Notes
Semaphore files should be created with the creatsem(S) system call.

Share data files should be created with the sdget(S) system call.

March 24, 1684 Page 2



MKTEMP (S) MKTEMP (5)

Name

mktemp - Makes a unique filename.

Syntax
char *mktemp( template)
char *template;

Description
Mktemp replaces template with a unique filename, and returns a
pointer to the name. The template should look like a filename with
six trailing X's, which will be replaced with the current process ID
preceded by a zero.

See Also

getpid(S)

March 24, 1984 Page 1



MONITOR () MONITOR (8)

Name

monitor - Prepares execution profile.

Syntax
monitor (lowpe, highpe, buffer, bufsize, nfunc)
int (*lowpe)( ), (*highpe)( );

short buffer| ];
int bufsize, nfunc;

Description

Monitor is an interface to' profil(S). Lowpe and highpe are the
addresses of two functions; buffer is the address of a user-supplied
array of bufeize short integers. Monitor arranges to record a histo-
gram of periodically sampled values of the program counter, and of
counts of calls of certdin functions, in the buffer. The lowest
address sampled is that of lowpe and the highest is just below highpe.
At most rfunc call counts can be kept; only calls of functions com-
piled with the profiling option — p of ¢c¢(CP) are recorded. For the
results to be significant, especially where there are small, heavily
used routines, it is suggested that the buffer be no more than a few
times smaller than the range of locations sampled.
To profile the entire program, it is sufficient to use

extern etext();

monitor(2, etext, buf, bufsize, nfunc);

Etezt lies just above all the program text.

To stop execution monitoring and write the results on the file
mon.out, use

monitor(0);

prof(CP) can then be used to examine the results.

Files

mon.out

See Also
cc(CP), prof(CP), profil(S)

March 24, 1984 Page 1



MONITOR (S) MONITOR (8)

Notes
An executable program created by cc — p automatically includes calls

for monstor with default parameters; monitor needn’t be called expli-
citly except to gain fine control over profiling.

March 24, 1984 Page 2




MOUNT(S) MOUNT(S)

Name

mount - Mounts a file system.

Syntax
int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

Description
Mount requests that a removable file system contained on the block
special file identified by spec be mounted on the directory identified
by dir. Spec and dir are pointers to pathnames.

Upon successful completion, references to the file dir will refer to
the root directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on
the mounted file system; if 1, writing is forbidden, otherwise writing
is permitted according to individual file accessibility.
Mount may be invoked only by the super-user.
Mount will fail if one or more of the following are true:
The effective user ID is not super-user. |[EPERM]
Any of the named files does not exist. |[ENOENT)
A component of a path prefix is not a directory. [ENOTDIR|
Spee is not a block special device. [ENOTBLK]
The device associated with spec does not exist. [ENXIO]

Dir is not a directory. [ENOTDIR]

Spec or dir points outside the process’ allocated address space.
[EFAULT]

Dir is currently mounted on, is someone’s current working
directory or is otherwise busy. [EBUSY]

The device associated with spec is currently mounted. [EBUSY]

March 24, 1984 Page 1



MOUNT(S) MOUNT(S)

Return Value

Upon successful completion a value of 0 is returned. Otherwise, a
value of - 1 is returned and ermo is set to indicate the error.

See Also

mount{C), umount(S)

March 24, 1984 Page 2



NAP(S) | NAP(S)

Name

nap - Suspends execution for a short interval.

Syntax
long nap( period)
long period;

Description
The current process is suspended from execution for at least the
number of milliseconds specified by period, or until a signal is
received.

Return Value
On successful completion, a long integer indicating the number of
milliseconds actually slept is returned. If the process recieved a signal
while napping, the return value will be -1, and errno will be set to
EINTR.

Notes
This function is driven by the system clock, which in most cases has
a granularity of tens of milliseconds.

See Also
sleep(S)

March 24, 1984 Page 1



NICE (5) NICE(S)

Name
.

nice - Changes priority of a process.

Syntax
int nice (incr)
int incr;

Description
Nice adds the value of iner to the nice value of the calling process.
A process’ nice value is a positive number for which a higher value
results in lower CPU priority.
A maximum nice value of 39 and a minimum nice value of 0 are
imposed by the system. Requests for values above or below these
limits result in the nice value being set to the corresponding limit.
Nice will not change the nice value if incr is negative and the
effective user ID of the calling process is not super-user. [EPERM]

Return Value
Upon successful completion, nice returns the new nice value minus
20. Note that nice is unusual in the way return codes are handled. It
differs from most other system calls in two ways: the value — 1 is a
valid return code (in the case where the new nice value is 19), and
the system call either works or ignores the request; there is never an
error.

See Also

nice( C), exec(S)

March 24, 1984 Page 1



NLIST(S) NLIST(S)

Name

nlist - Gets entries from name list.

Syntax

#include <a.out.h>
nlist (filename, nl)
char ®*filename;
struct nlist nl[ J;

Description

Nlist examines the name list in the given executable output file and
selectively extracts a list of values. The name list consists of an
array of structures containing names, types and values. The list is
terminated with a null name. Each name is looked up in the name
list of the file. If the name is found, the type and value of the name
are inserted in the next two fields. If the name is not found, both
entries are set to 0. See a.out(F) for a discussion of the symbol
table structure.

See Also
a.out(F), xlisy(S)

Diagnostics

Niiet return - 1 and sets all type entries to 0 if the file cannot be
read, is not an object file, or contains an invalid name list. Other-
wise, nlist returns 0. A return value of 0 does not indicate that any
or all symbols were found.

March 24, 1984 Page 1



OPEN (8)

Name

OPEN (8)

open - Opens file for reading or writing.

Syntax

#include <fentl.h>
int open (path, oflag|, mode])

char *path;

int oflag, mode;

Description

Path points to a pathname naming a file. Open opens a file descrip-
tor for the named file and sets the file status flags according to the
value of oflag. Oflag values are constructed by or-ing flags from the
following list (only one of the first three flags below may be used):

O_RDONLY
O_WRONLY
O_RDWR

O_NDELAY

March 24, 1984

Open for reading only.
Open for writing only.
Open for reading and writing.

This flag may affect subsequent reads and writes.
See read(S) and wnite(S).

When opening a FIFO with O_RDONLY or
O_WRONLY set:

If O_NDELAY is set:
An open for reading-only will return without
delay. An open for writing-only will return an
error if no process currently has the file open for
reading.

If O_NDELAY is clear:
An open for reading-only will block until a pro-
cess opens the file for writing. An open for
writing-only will block until a process opens the
file for reading.

When opening a file associated with a communication
line:

If O_NDELAY is set:

The open will return without waiting for carrier.

Page 1

S



OPEN () OPEN (S)

If O_NDELAY is clear:
The open will block until carrier is present.

O_APPEND If set, the file pointer will be set to the end of the file
prior to each write.

O_CREAT If the file exists, this flag has no effect. Otherwise,
the file’s owner ID is set to the process’ effective user
ID, the file’s group ID is set to the process’ effective
group ID, and the low-order 12 bits of the file mode
are set to the value of mode modified as follows (see
creat(S)):

All bits set in the process’ file mode creation
mask are cleared. See umask(S).

The ‘‘save text image after execution bit” of the
mode is cleared. See chmod(S).

O_TRUNC If - the file exists, its length is truncated to 0 and the
mode and owner are unchanged.

O_EXCL If O_EXCL and O_CREAT are set, open will fail if the
file exists.

O_SYNCW Every write to this file descriptor will be synchro-
nous, that is, when the write system call completes
data is guaranteed to have been written to disk.

Upon successful completion a nonnegative integer, the file descrip-
tor, is returned.

The file pointer used to mark the current position within the file is
set to the beginning of the file.

The new file descriptor is set to remain open across ezec system
calls. See fentl(S).

No process may have more than 20 file descriptors open simultane-
ously.

The named file is opened unless one or more of the following are
true:

A component of the path prefix is not a directory. [ENOTDIR|

O_CREAT is not set and the named file does not exist.
[ENOENT]

A component of the path prefix denies search permission.
[EACCES|

March 24, 1984 Page 2



OPEN (S) OPEN (8)

Oftag permission is denied for the named file. [EACCES]

The named file is a directory and oflag is write or read/write.
[EISDIR]

The named file resides on a read-only file system and oflag is
write or read/write. [EROFS)]

Twenty file descriptors are currently open. [EMFILE]
The named file is a character special or block special file, and
the device associated with this special file does not exist.

[ENXIO]

The file is a pure procedure (shared text) file that is being exe-
cuted and oflag is write or read/write. [ETXTBSY]

Path points outside the process' allocated address space.
[EFAULT]

O_CREAT and O_EXCL are set, and the named file exists.
[EEXIST)

O_NDELAY is set, the named file is a FIFO, O_WRONLY is set,
and no process has the file open for reading. [ENXIO]

Return Value
Upon successful completion, a nonnegative integer, namely a file

descriptor, is returned. Otherwise, a value of - 1 is returned and
errno is set to indicate the error.

See Also
* close(S), creat(S), dup(S), fentl(S), lseek(S), read(S), write(S)

March 24, 1984 Page 3

e



OPENSEM (S) . OPENSEM (S)

Name

opensem - Opens a semaphore.

Syntax

sem_num == opensem(sem_name);
int sem_num;
char *sem_name;

Description

Opensem opens a semaphore named by sem_name and returns the
unique semaphore identification number sem_num used by wastsem
and sigsem. Creatsem should always be called to initialize the sema-
phore before the first attempt to open it, or to reset the semaphore if
it has become inconsistent due to an exiting process neglecting to do
a sigsem after issuing a waitsem.

See Also

creatsem(S), waitsem(S), sigsem(S)

Diagnostics

Opensem returns the value — 1 if an error occurs. If the semaphore
named does not exist, errno is set to ENOENT. If the file specified is
not a semaphore file (i.e., a file previously created by a process using
a call to creatsem), errno is set to ENOTNAM. If the semaphore has
become invalid due to inappropriate use, errmois set to ENOTAVAIL.

March 24, 1984 Page 1



PAUSE (S) PAUSE (S)

Name

pause - Suspends a process until a signal occurs.

Syntax

int pause ( );

Description

Pause suspends the calling process until it receives a signal. The sig-
nal must be one that is not currently set to be ignored by the calling
process.

If the signal causes termination of the calling process, pause will not
return.

If the signal is caught by the calling process and control is returned
from the signal catching function (see signal(S)), the calling process
resumes execution from the point of suspension; with a return value
of - 1 from pauee and errno set to EINTR.

See Also

alarm(S), kill(S), signal(S), wait(S)

March 24, 1984 Page 1



PERROR(S) PERROR(S)

Name
perror, sys_errlist, sys_nerr, errno — Sends system error messages.

Syntax
perror (s)
char *s;
int sys_nerr;
char *sys errlisq |;

int errno;

Description
Perror produces a short emor message on the standard error,
describing the last error encountered during a system call from a C
program. First the argument string s is printed, then a colon, then
the message and a newline. To be of most use, the argument
string should be the name of the program that incurred the error.
The error number is taken from the external variable errno, which
is set when emors occur but not cleared when corect calls are
made.

To simplify variant formatting of messages, the vector of message
strings sys_errlist is provided; errno can be used as an index in this
table to get the message string without the ncwline. Sys_nerr is the
number of entrics provided for in the table; it should be checked
because new error codes may be added to the system before they
are added to the table.

See Also
intro(S)

May 10, 1984 Page 1



PIPE(S) PIPE(S)

Name

pipe - Creates an interprocess pipe.

Syntax
int pipe (fildes)
int fildes([2];

Description
Pipe creates an 1/O mechanism called a pipe and returns two file
descriptors in the array fildes. Fildes[0] is opened for reading and
fildee[1] is opened for writing. The descriptors remain open across
fork(S) system calls, making communication between parent and
child possible.
Writes up to 5120 bytes of data are buffered by the pipe before the
writing process is blocked. A read on file descriptor fildes[0]
accesses the data written to fildes|1] on a first-in-first-out basis.

No process may have more than 20 file descriptors open simultane-
ously.

Pipe will fail if 19 or more file descriptors are currently open.
|[EMFILE]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also

sh(C), read(S), write(S), fork(S), popen(S)

March 24, 1984 Page 1



POPEN (S) POPEN ()

Name

popen, pclose - Initiates I/O to or from a process.

.Syntax
#include <stdio.h>

FILE *popen (command, type)
char ®*command, *type;

int pclose (stream)
FILE *stream;

Description

The arguments to popen are pointers to null-terminated strings con-
taining, respectively, a shell command line and an I/O mode, either
“r” for reading or ‘“‘w’' for writing. Popen creates a pipe between
the calling process and the command to be executed. The value
returned is a stream pointer that can be used (as appropriate) to
write to the standard input of the command or read from its stan-
dard output.

A stream opened by popen should be closed by pelose, which waits
for the associated process to terminate and returns the exit status of
the command. Because open files are shared between processes, a
type “‘r’’ command may be used as an input filter, and a type ‘“‘w"
as an output filter.

See Also

pipe(S), wait(S), fclose(S), fopen(S), system(S)

Diagnostics .

Popen returns a null pointer if files or processes cannot be created,
or if the shell cannot be accessed.

Pelose returns — 1 if stream is not associated with a popened com-
mand.

Notes
Only one stream opened by popen can be in use at once. Buffered
reading before opening an input filter may leave the standard input

of that filter mispositioned. Similar problems with an output filter
may be forestalled by careful buffer flushing; see fcloee(S).

March 24, 1984 Page 1



PRINTF (S) PRINTF (S)

Name

printf, fprintf, sprintf - Formats output.

Syntax
#include <stdio.h>

int printf (format | , arg] ... )
char *format;

int fprintf (stream, format | , arg] ... )
FILE *stream;
char *format;

int sprintf (s, format | , arg] ... }
char *s, format;

Description

Printf places output on the standard output stream stdout. Fpnntf
places output on the named output stream. Spnrff places output,
followed by the null character (\0) in consecutive bytes starting at s;
it is the user’s responsibility to ensure that enough storage is avail-
able. Each function returns the number of characters placed (not
including the \0 in the case of spnntf), or a negative value if an out-
put error was encountered.

Each of these functions converts, formats, and prints its args under
control of the format. The format is a character string that contains
two types of objects: plain characters, which are simply copied to the
output stream, and conversion specifications, each of which results
in fetching of zero or more args. The results are undefined if there
are insufficient args for the format. If the formatis exhausted while
args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %
After the 93 the following appear in sequence:

Zero or more flags, which modify the meaning of the conver-
sion specification.

An optional decimal digit string specifying a minimum feld
width. If the converted value has fewer characters than the field
width, it will be padded on the left (or right, if the left-
adjustment flag described below has been given) to the field
width.

A precision that gives the minimum number of digits to appear

for the d, o, u, x, or X conversions, the number of digits to
appear after the decimal point for the e and f conversions, the

March 24, 1984 Page 1



PRINTF () PRINTF ()

maximum number of significant digits for the g conversion, or
the maximum number of characters to be printed from a string
in s conversion. The precision takes the form of a period (.)
followed by a decimal digit string: a null digit string is treated as
zero.

An optional 1 specifying that a following d, o, u, x, or X conver-
sion character applies to a long integer arg.

A character that indicates the type of conversion to be applied.
A field width or precision may be indicated by an asterisk (*) instead
of a digit string. In this case, an integer arg supplies the field width
or precision. The arg that is actually converted is not fetched until
the conversion letter is seen, so the args specifying field width or
precision must appear before the arg (if any) to be converted.
The flag cha.racu_ars and their meanings are:

- The result of the conversion will be left-justified within

the field.

+ The result of a signed conversion will always begin with a
sign (+ or-).

blank If the first character of a signed conversion is not a sign,

a blank will be prepended to the result. This implies that
if the blank and + fiags both appear, the blank flag will
be ignored.

# This flag specifies that the value is to be converted to an
‘“‘alternate form.”” For ¢, d, s, and u conversions, the flag
has no effect. For o conversion, it increases the precision
to force the first digit of the result to be a zero. For x
(X) conversion, a nonzero result will have Ox (0X)
prepended to it. For e, E, f, g and G conversions, the
result will always contain a decCimal point, even if no
digits follow the point (normally, a decimal point appears
in the result of these conversions only if a-digit follows
it). For g and G conversiens, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,0,u,x,X The integer arg is converted to signed decimal, unsigned
octal, decimal, or hexadecimal notation (x and X),
respectively; the letters abcdef are used for x conversion
and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer digits,
it will be expanded with leading zeroes. The default pre-
cision is 1. The result of converting a zero value with a
precision of zero is a null string (unless the conversion is

March 24, 1984 Page 2



PRINTF (S) PRINTF (8)

o, x, or X and the # flag is present).

f The float or double arg is converted to decimal notation
in the style *“[— ]ddd.ddd"’, where the number of digits
after the decimal point is equal to the precision
specification. If the precision is missing, six digits are
output; if the precision is explicitly 0, no decimal point
appears.

e,E The float or double arg is converted in the style
“- ]d.dddes dd”, where there is one digit before the
decimal point and the number of digits after it is equal to
the precision; when the precision is missing, 6 digits are
produced; if the precision is zero, no decimal point
appears. The E format code will produce a number with
E instead of e introducing the exponent. The exponent
always contains exactly two digits.

2 G The float or double arg is printed in style f or e (or in
style E in the case of a G format code), with the precision
specifying the number of significant digits. The style used
depends on the value converted: style e will be used only
if the exponent resulting from the conversion is less than
— 4 or greater than the precision. Trailing zeroes are
removed from the result; a decimal point appears only if
it is followed by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and
characters from the string are printed until a null charac-
ter (\0) is encountered or the number of characters indi-
cated by the precision specification is reached. If the pre-
cision is missing, it is taken to be infinite, so all charac-
ters up to the first null character are printed.

% Print 2 93 no argument is converted.

In no case does a nonexistent or small field width cause truncation
of a field; if the result of a conversion is wider than the field width,
the field is simply expanded to contain the conversion result. Char-
acters generated by printf and fprintf are printed as if putckar had
been called (see putc(S)).

March 24, 1984 Page 3



PRINTF (S) PRINTF (8)

Examples

To print a date and time in the form ‘“‘Sunday, July 3, 10:02", where
weekday and month are pointers to null-terminated strings:

printf("%s, % %4, %2d:%.2d", weekday, month, day, hour,
min);

To print  to five decimal places:

printf("pi = %5f", 4*atan(1.0));

‘See Also
ecvt(S), pute(S), scanf(S)

March 24, 1984 . Page 4



PROFIL (S) PROFIL (S)

Name

profil - Creates an execution time profile.

Syntax

profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

Description

Buff points to an area of core whose length (in bytes) is given by
bufeiz. After this call, the user’s program counter is examined each
clock tick, where a clock tick is some fraction of a second given in
machine(M). Offset is subtracted from it, and the result multiplied
by scale. If the resulting number corresponds to a word inside buff,
that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with
binary point at the left: 0177777 (octal) gives a 1-1 mapping of pc’s
to words in buff; 077777 (octal) maps each pair of instruction words
together. 02(octal) maps all instructions onto the beginning of buff
(producing a noninterrupting core ¢lock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered
ineffective by giving a bufaz of 0. Profiling is turned off when an
ezec is executed, but remains on in child and parent both after a
fork. Profiling will be turned off if an update in buff would cause a
memory fault.

See Also
prof(CP), monitor(S)

March 24, 1984 : Page 1



PTRACE (S) PTRACE (S)

Name

ptrace — Traces a process.

Syntax

int ptrace (request, pid, addr, data);
int request, pid, data;

Description

Ptrace provides a means by which a parent process may control the
execution of a child process. Its primary use is in the implementa-
tion of breakpoint debugging; see adb(CP). The child process
behaves normally until it encounters a signal {see signal(S) for the
list), at which time it enters a stopped state and its parent is notified
via wait(S). When the child is in the stopped state, its parent can
examine and modify its ““memory image' using ptrace. Also, the
parent can cause the child either to terminate or continue, with the
possibility of ignoring the signzl that caused it to stop.

The addr argument is dependant on the underlying machine type,
specifically the process memory model. On systems where the
memory management mechanism provides a uniform and linear
address space to user processes, the argument is declared as:

int #addr;

which is sufficient to address any location in the process’ memory.
On machines where the user address space is segmented (even if the
particular program being traced has only one segment allocated), the
form of the addr argument is:

struct {
int offset;
int segment;
} *addr;

which allows the caller to specify segment and offset in the process
address space.

The request argument determines the precise action to be taken by
ptrace and is one of the following:

0 This request must be issued by the child process if it
is to be traced by its parent. It turns on the child’'s
trace flag that stipulates that the child should be left in
a stopped state upon receipt of a signal rather than the
state specified by func; see signal(S). The pid, addr,
and date arguments are ignored, and a return value is

March 27, 1984 Page 1



PTRACE (S)

PIRACE (8)

not defined for this request. Peculiar results will
ensue if the parent does not expect to trace the child.

The remainder of the requests can only be used by the parent pro-
cess. For each, pid is the process ID of the child. The child must be
in a stopped state before these requests are made.

1,2

4,5

March 27, 1984

The word at location addr in the address space of the
child is returned to the parent process. If I and D
space are separated, request 1 returns a word from I
space, and request 2 returns a word from D space. If
I and D space are not separated, either request 1 or
request 2 may be used with equal results. The data
argument is ignored. These two requests will fail if
addr is not the start address of a word, in which case a
value of — 1 is returned to the parent process and the
parent’s errno is set to EIO.

With this request, the word at location addr in the
child’s USER area in the system’s address space (see
<sys/user.h>) is returned to the parent process.
The date argument is ignored. This request will fail if
addr is ‘not the start address of a word or is outside
the USER area, in which case a value of -1 is
returned to the parent process and the parent’s errno
is set to EIO.

With these requests, the value given by the data argu-
ment is written into the address space of the child at
location addr. If I and D space are separated, request
4 writes a word into I space, and request 5 writes a
word into D space. If I and D space are not separated,
either request 4 or request 5 may be used with equal
results. Upon successful completion, the value written
into the address space of the child is returned to the
parent. These two requests will fail if addr is a loca-
tion in a pure procedure space and another process is
executing in that space, or addr is not the start address
of a word. Upon failure a value of - 1 is returned to
the parent process and the parent’s errno is set to EIO.

With this request, a few entries in the child’s USER
area can be written. Data gives the value that is to be
written and addr is the location of the entry. The few
entries that can be written follow:

- The general registers

- Any floating-point status registers

- Certain bits of the processor status

Page 2



PTRACE (8)

Errors

PTRACE (S)

This request causes the child to resume execution. If
the dats argument is 0, all pending signals including
the one that caused the child to stop are canceled
before it resumes execution. If the data argumentis a
valid signal number, the child resumes execution as if
it had incurred that signal and any other pending sig-
nals are canceled. In a linear address space memory
model, the value of addr must be (int ¢)1, or in a seg-
mented address space the segment part of addr must
be zero and the offset part of addr must be (int #)1.
Upon successful completion, the value of data is
returned to the parent. This request will fail if data is
not 0 or a valid signal number, in which case a value
of - 1 is returned to the parent process and the
parent’s errno is set to EIO.

This request causes the child to terminate with the
same consequences as ezit(S).

Execution continues as in request 7; however, as soon
as possible after execution of at least one instruction,
execution stops again. The signal number from the
stop is SIGTRAP. This is part of the mechanism for
implementing breakpoints. The exact implementation
and behaviour is somewhat CPU dependant.

As indicated, these calls (except for request 0) can be used
only when the subject process has stopped. The wait system
call is used to determine when a process stops; in such a
case the termination status returned by wast has the value
0177 to indicate stoppage rather than genuine termination.

To prevent security violations, ptrace inhibits the set-user-id
facility on subsequent ezec(S) calls. If a traced process calls
ezec, it will stop before executing the first instruction of the
new image showing signal SIGTRAP.

Ptrace will in general fail if one or more of the following are true:

Request is an illegal number. [EIO]

Pid identifies a child that does not exist or has not executed a
ptrace with request 0. [ESRCH]

Notes

The implementation and precise behaviour of this system call is
inherently tied to the specific CPU and process memory model in
use on a particular machine. Code using this call is likely to not be

March 27, 1984

Page 3



PTRACE (S) PTRACE(S)

portable across all implementations without some change. Please
note that IBM-PC performs no memory mapping.

System calls cannot be single-stepped. If a ptrace call requests a sin-
gle step through a system cal), the traace bit is cleared, and the user : ”’)
program will run to completion or until it encounters an explicitly set
breakpoint. :

See Also

adb(CP), exec(S), signal(S), wait(S), machine(M)

March 27, 1984 Page 4



PUTC (S) PUTC (S)

Name

putc, putchar, fputc, putw — Puts a character or word on a stream.

Syntax
#include <stdio.h>

int pute (c, stream)
char c;
FILE *stream;

putchar (c)

int fputc (c, stream)
FILE *stream,;

int putw (w, stream)
int w;
FILE *stream;

Description

Putc appends the character ¢ to the named output stream. It returns
the character written.

Putchar(c) is defined as pute( ¢,stdout ).

Fpute behaves like pute, but is a genuine function rather than a
macro; it may therefore be used as an argument. Fpute runs more
slowly than pute, but takes less space per invocation.

Putw appends the word (i.e., integer) w to the output stream. Putw
neither assumes nor causes special alignment in the file.

The standard stream stdout is normally buffered if and only if the
output does not refer to a terminal; this default may be changed by
setbuf(S). The standard stream stderr is by default unbuffered
unconditionally, but use of freopen (see fopen(S)) will cause it to
become unbuffered; setbuf, again, will set the state to whatever is
desired. When an output stream is unbuffered information appears
on the destination file or terminal as soon as written; when it is
buffered many characters are saved up and written as a block. See

fRush is fclose(S).

See Also

fclose(S), ferror(S), fopen(S), fread(S), gete(S), printf(S), puts(S)

March 24, 1984 Page 1



PUTC (S) PUTC(S)

Diagnostics
These functions return the constant EOF upon error. Since this is a
valid integer, ferror(S) should be used to detect putw errors.

Notes

Because putc is implemented as a macro, the stream argument with
side effects is not treated correctly.

March 24, 1984 Page 2

i



PUTPWENT (S) PUTPWENT(S)

Name

putpwent - Writes a password file entry.

Syntax
#include <pwd.h>
int putpwent (p, f)
struct passwd *p;
FILE °*f;
Description
Putpwent is the inverse of getpwent(S). Given a pointer to a passwd

structure created by getpwent (or getpwuid or getpwnam), putpwent
writes a line on the stream f. The line matches the format of

Jetc/passwd

See Also

passwd(M), getpwent(S)
Diagnostics

Putpwent returns nonzero if an error was detected during its opera-
tion, otherwise zero.

March 24, 1984 Page 1



PUTS (S) PUTS (S)

Name

puts, fputs — Puts a string on a stream.

Syntax
#include <stdio.h >

int puts (s)
char *s;

int fputs (s, stream)
char %s;
FILE *stream;

Description

Pute copies the null-terminated string e to the standard output
stream stdout and appends a newline character.

Fpute copies the null-terminated string & to the named output stream.

Neither routine copies the terminating null character.

Diagnostics

Both routines return EOF on error.

See Also
ferror(S), fopen(S), fread(S), gets(S), printf(S), putc(S)

Notes

Puts appends a newline, fputs does not.

March 24, 1984 Page 1

g



QSORT(S) QSORT(S)

Name

gsort — Performs a sort.

Syntax

gsort (base, nel, width, compar)
char *base;

int nel, width;

int (*compar)( );

Description

Qeort is an implementation of the quicker-sort algorithm. The first
argument is a pointer to the base of the data; the second is the
number of elements; the third is the width of an element in bytes;
the last is the name of the comparison routine. It is called with two
arguments which are pointers to the elements being compared. The
routine must return an integer less than, equal to, or greater than 0
according to how much the first argument is to be considered less
than, equal to, or greater than the second.

See Also
sort{C), bsearch(S), Isearch(S), string(S)

March 24, 1984 Page 1



RAND (S) RAND ()

Name

rand, srand - Generates a random number.

«Syntax

srand (seed)
unsigned seed;

int rand ( )

Description

Rand uses a multiplicative congruential random number generator
with period 252 t5 return successive pseudo-random numbers in the
range from 0 to 2°— 1.

The generator is reinitialized by calling srand with 1 as argument. It
can be set to a random starting point by calling erend with an
unsigned integer in argument seed.

March 24, 1984 Page 1



RDCHK () RDCHEK (S)

Name

rdchk — Checks to see if there is data to be read.

Syntax

rdchk(fdes);
int fdes;

Description
Rdchk checks to see if a process will block if it attempts to read the
file designated by fdes. Rdchk returns 1 if there is data to be read or

if it is the end of the file (EOF). In this context, the proper
sequence of calls using rdchk is:

if (rdchk(fildes) > 0)
read(fildes, buffer, nbytes);
See Also
read(S)

Diagnostics

Rdchk returns -1 if an error occurs (e.g., EBADF), 0 if the process
will block if it issues a read and 1 if it is okay to read. EBADF is
returned if a rdchk is done on a semaphore file or if the file specified
doesn’t exist. :

March 24, 1984 Page 1



READ () READ (S)

Name

read - Reads from a file.

Syntax

int read (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

Description

Fildes is a file descriptor obtained from a creat, open, dup, fentl, or
pipe system call.

Read attempts to read nbyte bytes from the file associated with fildes
into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file
given by the file pointer associated with fildes. Upon return from
read, the file pointer is incremented by the number of bytes actually
read.

Devices that are incapable of seeking always read from the current
position. The value of a file pointer associated with such a file is
undefined.

Upon successful completion, read returns the number of bytes actu-
ally read and placed in the buffer; this number may be less than
nbyte if the file is associated with a communication line (see soctl(S)
and tty(M)), or if the number of bytes left in the file is less than
nbyte bytes. A value of 0 is returned when an end-of-file has been
reached.

When attempting to read from an empty pipe (or FIFO):

If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data is written to
the file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data _
currently available: )

If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data becomes
available.

March 24, 1984 Page 1



READ (S) READ (S)

Read will fail if one or more of the following are true:
Fildee is not a valid file descriptor open for reading. [EBADF)

Buf points outside the allocated address space. [EFAULT)

Return Value
Upon successful completion a nonnegative integer is returned indi-
cating the number of bytes actually read. Otherwise, a - 1 is
returned and errno is set to indicate the error.

See Also
creat(S), dup(S), fentl(S), ioctl(S), open(S), pipe(S),_tty(M)

Notes

Reading a region of a file locked with locking causes read to hang
indefinitely until the locked region is unlocked.

March 24, 1984 Page 2



REGEX (8) REGEX (S)

Name

regex, regemp —~ Compiles and executes regular expressions.

Syntax

char *regemp(stringl,string?, ...],0);
char ®*stringl, *string?2, ...;

char *regex(re,subject[,ret0, .. .]);
char *re, *subject, *ret0, ...;

Description

Regemp compiles a regular expression and returns a pointer to the
compiled form. Malloc(S) is used to create space for the compiled
expression. It is the user’s responsibility to free unneeded space so
allocated. A zero return from regemp indicates an incorrect argu-
ment. Regemp(CP) has been written to generally preclude the need
for this routine at execution time.

Regez executes a compiled pattern against the subject string. Addi-
tional arguments are passed to receive values back. Regez returns
zero on failure or a pointer to the next unmatched character on suc-
cess. A global character pointer _loc! points to where the match
began. Although regemp and regez were derived from the editor,
ed(C), the syntax and semantics have been changed slightly. The
following are the valid symbols and their associated meanings.

[]*.*  These symbols retain their current meaning.
$ Matches the end of the string, \n matches the newline.

- Within brackets the minus means through. For example,
[a- 2] is equivalent to [abed...xyz]. The - can appear as
itself only if used as the last or first character. For exam-
ple, the character class expression []— ] matches the char-
acters ] and — .

+ A regular expression followed by 4+ means "one or more
times”. For example, [0- 9]+ is equivalent to
[0- 9][0- 9]*.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times
the preceding regular expression is to be applied. m is the
minimum number and u is a number, less than 256, which
is the maximum. If only m is present (e.g., {m}), it indi-
cates the exact number of times the regular expression is

March 24, 1984 Page 1

S



REGEX(S) REGEX (S)

to be applied. {m,}is analogous to {m,infinity}. The plus
(+4) and star (*) operations are equivalent to {1,} and {0,}
respectively.

(...)%n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+ I)th argu-
ment following the subject argument. At present, at most
ten enclosed regular expressions are allowed. Regez makes
its assignments unconditionally.

(...) [Parentheses are used for grouping. An operator, e.g. %,
+, {}, can work on a single character or a regular expres-
sion enclosed in parenthesis. For example, (2*(cb+ )*)$0.

By necessity, all the above defined symbols are special. They must,
therefore, be escaped to be used as themselves.

Examples
Ezample 1:
char *cursor, *newcursor, *ptr;

newcursor = regex((ptr=regcmp(”"\n",0)),cursor);
free(ptr);

This example will match a leading newline in the subject string
pointed at by cursor.

Ezample 2:

char ret0[9);
char *newcursor, *name;

name = regemp("([A- Za- z][A- za- z0- 9_]{0,7})$0",0);
newcursor = regex(name,”123Testing321" ret0);

This example will match through the string ‘‘Testing3”’ and will
return the address of the character after the last matched character
(cursor+ 11). The string ‘‘Testing3'’ will be copied to the character
array ret0.

Ezample 8:
#include "file.i”
char *string, *newcursor;

newcursor = regex(name,string);

This example applies a precompiled regular expression in file.i (see
regemp(CP)) against string.

March 24, 1984 Page 2



REGEX (S) REGEX (S)

See Also
ed(C), regemp(CP), malloc(S)

i

Notes

The user program may run out of memory if regemp is called itera-
tively without freeing the vectors no longer required. The following
user-supplied replacement for malloc(S) reuses the same vector sav-
ing time and space:

J* user’s program */
malloc(l;)”
{

static int rebuf[256];
return &rebuf;

e

March 24, 1984 Page 3



REGEXP ()

Name

REGEXP(S)

regexp - Performs regular expression compile and match functions.

* Syntax

#define INIT <declarations>

#define GETC{ ) <getc code>

#define PEEKC( ) <peekc code>

#define UNGETC(¢) <ungetc code >

#define RETURN(pointer) <return code >

#define ERROR(val) <error code>

ginclude <regexp.h>

char *compile(instring, expbuf, endbuf, eof)
char ®instring, *expbuf, *endbuf;

int step( string, expbuf)
char *string, *expbuf;

Description

This entry describes general purpose regular expression matching
routines in the form of ed(C), defined in /usr/include/regexp.h.
Programs such as ed(C), sed(C), grep(C), be(C), ezpr(C), etc.,
which perform regular expression matching use this source file. In
this way, only this file need be changed to maintain regular expres-

sion compatibility.

The interface to this file is unpleasantly complex. Programs that
include this file must have the following five macros declared before
the “‘#include <regexp.h>'' statement. These macros are used by

the compile routine.

GETC()

PEEKC( )

March 27, 1984

Returns the value of the next character in the
regular expression pattern. Successive calls to
GETC( ) should return successive characters of
the regular expression.

Returns the next character in the regular
expression. Successive calls to PEEKC()
should return the same character (which
should also be the next character returned by
GETC()).

Page 1



REGEXP (S). REGEXP(S)

UNGETC( ¢) Cause the argument ¢ to be returned by the
next call to GETC( ) (and PEEKC()). No more
that one character of pushback is ever needed
and this character is guaranteed to be the last
character read by GETC(). The value of the
macro UNGETC( ¢) is always ignored.

RETURN( pointer) This macro is used on normal exit of the com-
pile routine. The value of the argument
pointer is a pointer to the character after the
last character of the compiled regular expres-
sion. This is useful to programs which have
memory allocation to manage.

ERROR( val) This is the abnormal return from the compile
routine. The argument val is an etror number
(see table below for meanings). This call
should never return.

Error Meaning

11 Range endpoint too large

16 Bad number

25 \digit"’ out of range

36 Illegal or missing delimiter

41 : No remembered search string

42 \( \} imbalance

43 Too many \(

44 More than 2 numbers given in \{ \}
45 } expected after \

48 First number exceeds second in \{ \}
49 (] imbalance

50 Regular expression overflow

The syntax of the compile routine is as follows:
compile(instring, épruf, endbuf, eof)

The first parameter instring is never used explicitly by the compile
routine but is useful for program that pass down different pointers to
input characters. It is sometimes used in the INIT declaration (see
below). Programs which call functions to input characters or have
characters in an external array can pass down a value of ((char *) 0)
for this parameter.

The next parameter ezpbuf is a character pointer. It points to the
place where the compiled regular expression will be placed.

The parameter endbuf is one more that the highest address that the
compiled regular expression may be placed. If the compiled expres-
sion cannot fit in (endbuf- ezpbuf) bytes, a call to ERROR(50) is
made.

March 27, 1984 Page 2



REGEXP (S) REGEXP(S)

The parameter eof is the character which marks the end of the regu-
lar expression. For example, in ed(C), this character is usually a /.

Each programs that includes this file must have a #define statement
for INIT. This definition will be placed right after the declaration for
the function compde and the opening curly brace ({). It is used for
dependent declarations and initializations. It is most often used to
set a register variable to point the beginning of the regular expres-
sion so that this register variable can be used in the declarations for
GETC( ), PEEKC() and UNGETC(). Otherwise it can be used to
declare external variables that might be used by GETC(), PEEKC()
and UNGETC(). See the example below of the declarations taken
from grep(C). .

There are other functions in this file which perform actual regular
expression matching, one of which is the function step. The call to
step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be
checked for a match. This string should be null terminated.

The second parameter ezpbuf is the compiled regular expression
which was obtained by a call of the function compile.

The function step returns one, if the given string matches the regular
expression, and zero if the expressions do not match. If there is a
match, two external character pointers are set as a side effect to the
call to step. The variable set in step is loc1. This is a pointer to the
first character that matched the regular expression. The variable
loc2, which is set by the function advance, points the character after
the last character that matches the regular expression. Thus if the
regular expression matches the entire line, loc1 will point to the first
character of string and loc2 will point to the null at the end of etring.

Step uses the external variable aref which is set by compile if the reg-
ular expression begins with . If this is set then etep will only try to
match the regular expression to the beginning of the string. If more
than one regular expression is to be compiled before the the first is
executed the value of ciref should be saved for each compiled
expression and ercf should be set to that saved value before each
call to step.

The function advance is called from step with the same arguments as
step. The purpose of step is to step through the strng argument and
call advance until advance returns a one indicating a match or until
the end of strng is reached. If one wants to constrain string to the
beginning of the line in all cases, step need not be called, simply call
advance.

When advance encounters a * or \{ \} sequence in the regular
expression it will advance its pointer to the string to be matched as

March 27. 1984 Page 3



REGEXP(S) REGEXP (S)

far as possible and will recursively call itself trying to match the rest
of the string to the rest of the regular expression. As long as there
is no match, advance will back up along the string until it finds a
match or reaches the point in the string that initially matched the *
or \{ \}. It is sometimes desirable to stop this backing up before the
initial point in the string is reached. If the external character pointer
loce is equal to the point in the string at sometime during the back-
ing up process, advance will break out of the loop that backs up and
will return zero. This is used be ed(C) and sed(C) for substitutions
done globally (not just the first occurrence, but the whole line) so,
for example, expressions like 8/y®//g do not loop forever.

The routines ecmp and getrange are simple and are called by the rou-
tines previously mentioned.
Examples

The following is an example of how the regular expression macros
and calls look from grep(C):

fdefine INIT register char *sp == instring;
#define GETC( ) *sp+ +)

#define PEEKC( ) *sp)

#define UNGETC(c) (- - sp)

#define RETURN(¢) return;

#define ERROR(¢) regerr()

#include <regexp.h>
compile( *argv, expbuf, &expbuf|ESIZE], '\0');
if(step(linebuf, expbuf))
succeed();
Files

[usrfinclude/regexp.h

See Also
ed(C), grep(C), sed(C).

Notes
The handling of drcf is kludgy.

The routine ecmp is equivalent to the standard I/O routine strnemp
and should j:e replaced by that routine.

March 27, 1984 Page 4



SBRK (S) SBRK (S)

Name

sbrk, brk - Changes data segment space allocation.

Syntax

char *sbrk (iner)
int incr;

Description

Sbrk is used to dynamically change the amount of space allocated for
the calling process’ data segment; see ezec(S). The change is made
by resetting the process’ break value. The break value is the address
of the first location beyond the end of the data segment. The
amount of allocated space increases as the break value increases.

Sbrk adds sncr bytes to the break value and changes the allocated
space accordingly. Incrcan be negative, in which case the amount of
allocated space is decreased.

Sbrk will fail without making any change in the allocated space if
such a change would result in more space being allocated than is
allowed by a system-imposed maximum (see ulimit(S)). [ENOMEM|

Return Value
Upon successful completion, ebrk and brk return pointers to the

beginning of the allocated space. Otherwise, a value of - 1 is
returned and ermo is set to indicate the error.

See Also
exec(S)

March 27, 1984 Page 1



SCANF (8) SCANF (S)

Name

scanf, fscanf, sscanf - Converts and formats input.

Syntax
#include <stdio.h>

int scanf (format [ , pointer ] ... }
char *format;

int fscanf (stream, format | , pointer ] ... )
FILE *stream;
char *format;

int sscanf (s, format | , pointer ] ... )
char *s, *format;

Description

Scanf reads from the standard input stream stdin. Fscanf reads from
the named input stream. Secanf reads from the character string e.
Each function reads characters, interprets them according to a for-
mat, and stores the results in its arguments. Each expects, as argu-
ments, a control string format described below, and a set of pointer
arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which
are used to direct interpretation of input sequences. The control
string may contain:

1. Blanks, tabs, or newlines, which cause input to be read up to the
next nonwhitespace character.

2. An ordinary character (not 99, which must match the next char-
acter of the input stream.

3. Conversion specifications, consisting of the character % an
optional assignment suppressing character ®*, an optional numeri-
cal maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the
corresponding argument, unless assignment suppression was indi-
cated by *. An input field is defined as a string of nonspace charac-
ters; it extends to the next inappropriate character or until the field
width, if specified, is exhausted.

The conversion character indicates the interpretation of the input

field; the corresponding pointer argument must usually be of a res-
tricted type. The following conversion characters are allowed:

March 24, 1984 Page 1



SCANF (S) SCANF(S)

%% A single %is expected in the input at this point; no assignment
is done. :

d A decimal integer is expected; the corresponding argument
should be an integer pointer.

o An octal integer is expected; the corresponding argument should
be an integer pointer.

x A hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

s A character string is expected; the corresponding argument
should be a character pointer pointing to an array of characters
large enough to accept the string and a terminating \0, which
will be added automatically. The input field is terminated by a
space character or a newline.

¢ A character is expected; the corresponding argument should be
a character pointer. The normal skip over space characters is
suppressed in this case; to read the next nonspace character, use
%ds. If a field width is given, the corresponding argument
should refer to a character array; the indicated number of char-
acters is read.

e, A floating-point number is expected; the next field is converted
accordingly and stored through the corresponding argument,
which should be a pointer to a float. The input format for
floating-point numbers is an optionally signed string of digits,
possibly containing a decimal point, followed by an optional
exponent field consisting of an E or an e, followed by an option-
ally signed integer.

{ Indicates a string that is not to be delimited by space characters.
The left bracket is followed by a set of characters and a right
bracket; the characters between the brackets define a set of char-
acters making up the string. If the first character is not a caret
("), the input field consists of all characters up to the first char-
acter that is not in the set between the brackets; if the first char-
acter after the left bracket is a *, the input field consists of all
characters up to the first character that is in the set of the
remaining characters between the brackets. The corresponding
argument must point to a character array.

The conversion characters d, o, and x may be capitalized and/or pre-
ceded by 1 to indicate that a pointer to long rather than to int is in
the argument list. Similarly, the conversion characters e and f may
be capitalized and/or preceded by 1 to indicate that a pointer to dou-
ble rather than to float is in the argument list. The character h will,
some time in the future, indicate short data items.

Seanf conversion terminates at EOF, at the end of the control string,
or when an input character conflicts with the control string. In the

March 24, 1984 Page 2



SCANF (S) SCANF(S)

latter case, the offending character is left unread in the input stream.
This is very important to remember, because subtle errors can
occur when not taking this into account.
Seanf returns the number of successfully matched and assigned B
. input items; this number can be zero in the event of an early conflict :
between an input character and the control string. If the input ends
before the first conflict or conversion, EOF is returned.
Examples
The call:

int i; float x; char name[50];
scanf ("%d%4%s", &i, &x, name);

with the input line:
25 54.32E- 1 thompson

will assign to ¢ the value 25, to z the value 5.432, and name will
contain thompson\0. Or:

int i; float x; char name[50];
scanf ("%2d% %*d%]1234567890]", &i, &x, name);

with input:
56789 0123 56a72

will assign 68 to 1, 789.0 to z, skip 0123, and place the string 56\0 in
name. The next call to getchar (see gete(S)) will return a.

See Also
atof(S), getc(S), printf(S)

Diagnostics

These functions return EOF on end of input and a short count for
missing or illegal data items.

Notes

The success of literal matches and suppressed assignments is not
directly determinable.

Trailing whitespace (including a newline) is left unread unless
maiched in the control string.

March 4, 1984 Page 3



SDENTER(S) SDENTER(S)

Name .
sdenter, sdleave — Synchronizes access to a shared data segment.

Syntax
#include <sd.h>

int sdenter(addr,flags)
char *addr;
int flags;

int sdleave(addr)
char *addr;

Description
Sdenter is used to indicate that the current process is about to
access the contents of a shared data segment. The actions per—
formed depend on the value of flags. Flags values are formed by
OR- ing together entries from the following list:

SD.NOWAIT  If another process has called sdenter but not
sdleave for the indicated segment, and the seg—
ment was oot created with the SD_.UNLOCK flag
set, return an ermor instead of waiting for the
segment to become free.

SD_WRITE Indicates that the process intends to modify the
data. If SD_WRITE isn't specified changes made
to data are pot guarenteed to be reflected in other
proceses. )

Sdleave is used to indicate that the current process is done modi—
fying the contents of a shared data segment.

Only changes made between invocatations of sdenter and sdleave
are guaranteed to be reflected in other processes. Sdenter and
sdleave are very fast; consequently, it is recommended that they be
called frequently rather than leave sdenter in effect for any period
of time. In particular, system calls should be avoided between
sdenter and sdleave calls.

The fork system call is forbidden between calls to sdenter and
sdleave if the scgment was created without the SD_.UNLOCK flag.

May 10, 1984 Page 1



SDENTER(S) SDENTER(S)

Return Value
Successful calls return 0. Unsuccessful calls return —1, and errno
is set to indicate the error.
sdget(S), sdgetv(S) ;

May 10, 1984 Page 2



SDGET(S) SDGET(S)

Name

sdget = Attachs and detachs a shared data segment.

Syntax
finclude <sd.h>

char ssdget(path, flags, [size, mode])
char spath; -

int flags, mode;

long size;

int sdfree(addr);
char saddr;

Description

Sdget attachs a shared data segment to the data space of the current
process. The actions performed are controlled by the value of flage.
Rlage values are constructed by OR-ing flags from the following list:

SD_RDONLY
Attach the segment for reading only.

SD_WRITE Attach the segment for both reading and writing.

SD_CREAT If the segment named by path exists, this flag has no
. effect. Otherwise, the segment is created according to
the values of size and mode. Read and write access to
the segment is granted to other processes based on the
permissions passed.in mode, and functions the same as
those for regular files. Execute permission is meaning-

less. The segment is initialized to contain all zeroes.

SD_UNLOCK
If the segment is created because of this call, the seg-
ment will be made so that more than one process can
be between sdenter and sdleave calls.

Sdfree detachs the current process from the shared data segment that
is attached at the specified address. If the current process has done
an sdenter but not a edleave for the specified segment, an sdleave will
be done before detaching the segment.

When no process remains attached to the segment, the contents of

that segment disappear, and no process can attach to the segment
without creating it by using the SD_CREAT flag in sdget.

March 24, 1984 Page 1



SDGET(S) SDGET(S)

Return Value

On successful completion, the address at which the segment was
attached is returned. Otherwise, -1 is returned, and errno is set to
indicate the error.

Notes

Use of the SD_UNLOCK flag on systems without hardware support
for shared data may cause severe performance degradation.

See Also
sdenter(S), sdgetv(S)

March 24, 1984 . Page 2



SDGETV(S) SDGETV (S)

Name

sdgetv, sdwaitv — Synchronizes shared data access.

Syntax
#include <sd.h>
int sdgetv(addr)
int sdwaitv(addr, vnum)

char saddr;
int vnum,;

Description
Sdgetv and edwaity may be used to synchronize cooperating processes
that are using shared data segments. The return value of both rou-
tines is the version number of the shared data segment attached to
the process at address addr. The version number of a segment
changes whenever some process does an sdleave for that segment.
Sdgeto simply returns the version number of the indicated segment.
Sdwaitv forces the current process to sleep until the version number
for the indicated segment is no longer equal to vnum. -

Return Value
Upon successful completion, both edgetv and sdwaito return a positive
integer that is the current version number for the indicated shared
data segment. Otherwise, a valye of -1 is returned, and errno is set
to indicate the error.

See Also
sdenter(S), sdge(S)

March 24, 1984 Page 1



SETBUF (S) SETBUF (S)

Name

setbuf - Assigns buffering to a stream.

Syntax
#include <stdio.h>
setbuf (stream, buf)
FILE *stream;
char *buf;

Description
Setbuf is used after a stream has been opened but before it is read or
written. It causes the character array buf to be used instead of an
automatically allocated buffer. If buf is the constant pointer NULL,
input/output will be completely unbuffered.
A manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ);

A buffer is normally obtained from malloe(S) upon the first gete(S)
or pute(S) on the file, except that output streams directed to termi-
nals, and the standard error stream stderr are normally not buffered.
A common source of error is allocation of buffer space as an

‘‘automatic’’ variable in a code block, and then failing to close the
stream. in the same block.

See Also
fopen(S), getc(S), malloc(S), pute(S)

March 24, 1984 Page 1



SETIMP (S) SETIMP(S)

Name

setjmp, longjmp — Performs a nonlocal ‘‘goto™.

Syntax
#include <setjmp.h>

int setjmp (env)
jmp_buf env;

“int longjmp (env, val)
jmp_buf env;

Description

These routines are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

Setjmp saves its stack environment in env for later use by longjmp. It
returns value 0.

Longimp restores the environment saved by the last call of setymp. It
then returns in such a way that execution continues as if the call of
setymp had just returned the value val to the corresponding call to
setymp. The routine which calls setyjmp must not itself have returned
in the interim. Longimp cannot return the value 0. If longjmp is
invoked with a second argument of 0, it will return 1. All accessible
data have values as of the time longjmp was called. The only excep-
tion to this are register variables. The value of register variables are
undefined in the routine that called setjmp when the corresponding
longjmp is invoked.

‘See Also

signal(S)

March 24, 1984 Page 1



SETPGRP (S) SETPGRP (S)

Name

setpgrp — Sets process group ID.

Syntax
int setpgrp ()
Description

Setpgrp sets the process group ID of the calling process to the process
ID of the calling process and returns the new process group ID.

Return Value

Setpgrp returns the value of the new process group ID.

See Also
exec(S), fork(S)I, getpid(S), intro(S), kill(S), signal(S)

March 24, 1984 Page 1




SETUID (8S) SETUID (S)

Name

setuid, setgid - Sets user and group IDs.

. Syntax

int setuid (uid)
int uid;

int setgid (gid)
int gid;
Description

Setuid is used to set the real user ID and effective user ID of the cal-
ling process.

Setgid is used to set the real group ID and effective group ID of the
calling process.

It the effective user ID of the calling process is super-user, the real
user (group) ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but
its real user (group) ID is equal to uid (gid), the effective user
(group) ID is set to uid (gid).
Setuid will fail if the real user (group) ID of the calling process is not
equal to wd (gid) and its effective user ID is not super-user.
[EPERM]|

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a
value of — 1is returned and errno is set to indicate the error.

See Also
getuid(S), intro(S)

March 24, 1984 Page 1



SHUTDN (S) SHUIDN (S)

Name

shutdn - Flushes block I/O and halts the CPU.

Syntax
#include <sys/filsys.h>

shutdn (sblk)
struct filsys #»sblk;

Description

Shutdn causes all information in core memory that should be on disk
to be written out. This includes modified super-blocks, modified
inodes, and delayed block 1/0O. The super-blocks of sll writable file
systems are flagged ‘clean’, so that they can be remounted without
cleaning when XENIX is rebooted. Shutdn then prints ‘“Normal Sys-
tem Shutdown’’ on the console and halts the CPU. ‘

If sblk is nonzero, it specifies the address of a super-block which will
be written to the root device as the last I/O before the halt. This
facility is provided to allow file system repair programs to supercede
the system’s copy of the root super-block with one of their own.
Shutdn locks out all other processes while it is doing its work. How-
ever, it is recommended that user processes be killed off (see
k1(S)) before calling shutdn as some types of disk activity could
cause file systems to not be flagged ‘“clean’’.

The caller must be the super-user.

See Also
fsck(C), haltsys(C), shutdown(C), mount(S), kill(S)

March 24, 1984 Page 1



SIGNAL (S)

Name

SIGNAL (S)

signal - Specifies what to do upon receipt of a signal.

Syntax

#include <signal.h>

int (*signal (sig, func))()

int sig;
int (*func)( );

Description

Signal allows the calling process to choose one of three ways in
which it is possible to handle the receipt of a specific signal. Sig
specifies the signal and func specifies the choice.

Sig can be assigned any one of the following except SIGKILL:

SIGHUP 01
SIGNT 02
SIGQUIT 03+
SIGILL 04+
SIGTRAP 05+
SIAOT 06+
SIGEMT 07+
SIGFPE 08+
SIGKILL 09
SIGBUS 10+
SIGSEGV 11+
SIGSYS 12+
SIGPIPE 13

SIGALRM 14
SIGTERM 15

SIGUSR1 16
SIGUSR2 17
SIGCLD 18
SIGPWR 19

Hangup

Interrupt

Quit

Illegal instruction (not reset when caught)
Trace trap (not reset when caught)
1/O trap instruction

Emulator trap instruction
Floating-point exception

Kill (cannot be caught or ignored)
Bus error

Segmentation violation

Bad argument to system call

Write on a pipe with no one to read it
Alarm clock

Software termination signal
User-defined signal 1

User-defined signal 2

Death of a child (see Warming below)
Power fail (see Warning below)

See below for the significance of the asterisk in the above list.

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a func-
tion addrese. The actions prescribed by these values of are described

below.

The SIG_DFL value causes termination of the process upon receipt
of a signal. Upon receipt of the signal sig, the receiving process is to
be terminated with the following consequences:

March 24, 1984

Page 1



SIGNAL (S) SIGNAL (S)

1. All of the receiving process’ open file descriptors will be closed.

2. If the parent process of the receiving process is executing a wait,
it will be notified of the termination of the receiving process and
the terminating signal’s number will be made available to the
parent process; see wait(S).

3. If the parent process of the receiving process is not executing a
wait, the receiving process will be transformed into a zombie
process (see ezit(S) for definition of zombie process).

4. The parent process ID of each of the receiving process’ existing
child processes and zombie processes will be set to 1. This
means the initialization process (see intro(S)) inherits each of
these processes.

5. An accounting record will be written on the accounting file if the
system'’s accounting routine is enabled; see acct(S).

6. If the receiving process’ process ID, tty group ID, and process
group ID are equal, the signal SIGHUP will be sent to all of the

processes that have a process group ID equal to the process -

group ID of the receiving process.

7. A ‘‘core image’’ will be made in the current working directory
of the receiving process if eig is one for which an asterisk
appears in the above list and the following conditions are met:

-~ The effective user ID and the real user ID of the receiving
process are equal.

- An ordinary filenamed core exists and is writable or can be
created. If the file must be created, it will have a mode of 0666
modified by the file creation mask (see umask(S)), a file owner
ID that is the same as the effective user ID of the receiving pro-
cess, a file group ID that is the same as the effective group ID of
the receiving process

The SIG_IGN value causes the process to ignore a signal. The signal
sig is to be ignored. Note that the signal SIGKILL cannot be
ignored.

A function address value causes to process to catch a signal. Upon
receipt of the signal eig, the receiving process is to execute the
signal-catching function pointed to by func. The signal number sig
will be passed as the only argument to the signal-catching function.
There are the following consequences:

1. Upon return from the signal-catching function, the receiving
process will resume execution at the point it was interrupted and
the value of func for the caught signa! will be set to SIG_DFL
unless the signal is SIGILL, SIGTRAP, SIGCLD, or SIGPWR.

March 24, 1984 Page 2



SIGNAL (S) SIGNAL (S)

2. When asignal that is to be caught occurs during a read, a wnie,
an open, or an toctl system call on a slow device (like a termi-
nal; but not a file), during a pause system call, or during a wait
system call that does not return immediately due to the
existence of a previously stopped or zombie process, the signal
catching function will be executed and then the interrupted sys-
tem call will return a - 1 to the calling process with errmo set to
EINTR.

3. Note that the signal SIGKILL cannot be caught.

A call to signal cancels a pending signal eig except for a pending SIG-
KILL signal.

Signal will fail if one or more of the following are true:
Sig is an illegal signal number, including SIGKILL. [EINVAL]

Fune points to an illegal address. [EFAULT]

Return Value

Upon successful completion, signal returns the previous value of
fune for the specified signal eig. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

See Also

kill( C), kill(S), pause(S), ptrace(S), wait(S), setjmp(S).

Warning

Two other signals that behave differently than the signals described
above exist in this release of the system; they are:

SIGCLD 18 Death of a child (not reset when caught)
SIGPWR 19 Power fail (not reset when caught)

There is no guarantee that, in future releases of XENIX, these signals
will continue to behave as described below; they are included only
for compatibility with other versions of XENIX. Their use in new
programs is strongly discouraged.

For these signals, func is assigned one of three values: SIG_DFL,
SIG_IGN, or a function address. The actions prescribed by these
values of are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

March 24, 1984 Page 3



SIGNAL ()

SIGNAL (S)

SIG_IGN - ignore signal

The signal is to be ignored. Also, if &g is SIGCLD, the
calling process’ child processes will not create zombie
processes when they terminate; see ezi(S).

function addrees - catch signal

If the signal is SIGPWR, the action to be taken is the
same as that described above for func equal to function
address. The same is true if the signal is SIGCLD except,
that while the process is executing the signal-catching
function any received SIGCLD signals will be queued and
the signal-catching function will be continually reentered
until the queue is empty.

The SIGCLD affects two other system calls (wast(S), and ezit(S))

in the fo

wast

ezt

When pr
pipeline

llowing ways:

If the func value of SIGCLD is set to SIG_IGN and a wast
is executed, the wast will block until ll of the calling pro-
cess’ child processes terminate; it will then return a value
of — 1 with errno set to ECHILD.

If in the exiting process’ parent process the func value of
SIGCLD is set to SIG_IGN, the exiting process will not
create a zombie process.

ocessing a pipeline, the shell makes the last process in the
the parent of the proceeding processes. A process that

may be piped into in this manner (and thus become the parent of
other processes) should take care not to set SIGCLD to be caught.

Notes

The defined constant NSIG in signal.h standing for the number of
signals is always at least one greater than the actual number.

March 24, 1984

Page 4




SIGSEM (S) SIGSEM ()

Name

sigsem — Signals a process waiting on a semaphore.

Syntax

sigsem(sem_num);
int sem_num;

Description

Sigeem signals a process that is waiting on the semaphore sem_num
that it may proceed and use the resource governed by the sema-
phore. Sigsem is used in conjunction with waiteem(S) to allow syn-
chronization of processes wishing to access a resource. One or more
processes may waitsem on the given semaphore and will be put to
sleep until the process which currently has access to the resource
issues a sigsem call. If there are any waiting processes, sigsem causes
the process which is next in line on the semaphore’s queue to be
rescheduled for execution. The semaphore’s queue is organized in
first in first out (FIFO) order.

See Also

creatsem(S), opensem(S), waitsem(S)

Diagnostics

Sigeem returns the value (int) -1 if an error occurs. If sem_num does
not refer to a semaphore type file, ermo is set to ENOTNAM. If
sem_num has not been previously opened by opensem, ermo is set to
EBADF. If the process issuing a sigsem call is not the current
‘‘owner” of the semaphore (ie., if the process has not issued a
waitsem call before the sigsem), errno is set to ENAVAIL.

March 24, 1984 Page 'l



SINH (S) SINK (8)

Name

sinh, cosh, tanh - Performs hyperbolic functions,

Syntax
#include <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

Description

These functions compute the designated hyperbolic functions for real
arguments.

Diagnostics

Sinh and cosh return a huge value of appropriate sign when the
correct value would overflow.

March 24, 1984 Page 1



SLEEP (S) SLEEP(S)

Name

sleep - Suspends execution for an interval.

Syntax

unsigned sleep (seconds)
unsigned seconds;

Description

The current process is suspended from execution for the number of
seconde specified by the argument. The actu3l suspension time may
be less than that requested for because scheduled wakeups occur at
fixed 1-second intervals, and any caught signal will terminate the
sleep following execution of that signal’s catching routine. Also, the
suspension time may be longer than requested by an arbitrary
amount due to the scheduling of other activity in the system. The
value returned by sleep will be the ““unslept’”’ amount (the requested
time minus the time actually slept) in case the caller had an alarm
set to go off earlier than the end of the requested sleep time, or
premature arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing
until it (or some other signal) occurs. The previous state of the
alarm signal is saved and restored. The calling program may have
set up an alarm signal before calling eleep; if the eleep time exceeds
the time till such alarm signal, the process sleeps only until the
alarm signal would have occurred, and the caller’s alarm catch rou-
tine is executed just before the sleep routine returns, but if the eleep
time is less than the time till such alarm, the prior alarm time is
reset to go off at the same time it would have gone off without the
intervening sleep.

See Also
alarm(S), nap(S), pause(S), signal(S)

March 24, 1984 Page 1



SSIGNAL (S) SSIGNAL (S)

Name

ssignal, gsignal - Implements software signals.

Syntax
#include <signal.h>

int (*ssignal (sig, action))( )
int sig, (*action)( );

int gsignal (sig)
int sig;

Description

Seignal and geignal implement a software facility similar to eignal(S).
This facility is used by the standard C library to enable the user to
indicate the disposition of error conditions, and is 3lso made avail-
able to the user for his own purposes.

Software signals made available to users are associated with integers
in the inclusive range 1 through 15. An action for a software signal
is established by a call to esignal, and a software signal is raised by a
call to geignal. Raising a software signal causes the action esta-
blished for that signal to be taken.

The first argument to seignal is a number identifying the type of sig-
nal for which an action is to be established. The second argument
defines the action; it is either the name of a (user defined) action
function or one of the manifest constants SIG_DFL (default) or
SIG_IGN (ignore). Ssgnal returns the action previously established
for that signal type; if no action has been established or the signal
number is illegal, ssignal returns SIG_DFL.

Geignal raises the signal identified by its argument, eig:
If an action function has been established for eig, then that
action is reset to SIG_DFL and the action function is entered
with argument sig. Geignal returns the value returned to it by
the action function.

If the action for sig is SIG_IGN , geignal returns the value 1 and
takes no other action.

If the action for eig is SIG_DFL , geignal returns the value 0 and
takes no other action.

If eig has an illegal value or no action was ever specified for
8ig, gsignal returns the value 0 and takes no other action.

March 24, 1984 Page 1



SSIGNAL (S) SSIGNAL (S)
Notes

There are some additional signals with numbers outside the range 1
through 15 that are used by the standard C library to indicate error
conditions. Thus, some signal numbers outside the range 1 through
15 are legal, although their use may interfere with the operation of
the standard C library.

March 24, 1984 Page 2



STAT(S) STAT(S)

Name

stat, fstat - Gets file status.

Syntax

#include <sys/types.h>
#include <sys/stat.h>

int stat (path, buf)
char *path;
struct stat *buf;

int fstat (fildes, buf)
int fildes;
struct stat *buf;

Description

Path points to a pathname naming a file. Read, write or execute

permission of the named file is not required, but all directories listed
in the pathname leading to the file must be searchable. Stat obtains
information about the named file.

Similarly, fstat obtains information about an open file known by the
file descriptor fildes, obtained from a successful open, creat, dup,
fentl, or pipe system call.

Buf is a pointer to a stat structure into which information is placed
concerning the file.

The contents of the structure pointed to by buf include the following
members:

ushort st_mode;  /* File mode; see mknod(S) */

ino_t st_ino; /* Inode number */
dev_t st_dev; /* 1D of device containing */

/* a directory entry for this file */
dev_t st_rdev; /* 1D of device */

/* This entry is defined only for */
/* special files */
short  st_nlink; /* Number of links */

ushort st_uid; /* User ID of the file’'s owner */
ushort st_gid; /* Group ID of the file’s group */
offl_t  st_size; /* File size in bytes */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last data modification */
time_t st_ctime; /* Time of last file status change */

/* Times measured in seconds siace */
/* 00:00:00 GMT, Jan. 1, 1970 */

March 24, 1984 Page 1



STAT(S)

st_atime

st_mtime

st_ctime

st_rdev

STAT(S)

Time when file data was last accessed. Changed by the
following system calls: creat(S), mknod(S), pipe(S),
ulime(S), and réad(S).

Time when data was last modified. Changed by the fol-
lowing system calls: creat(S), mknod(S), pipe(S),
utime(S), and write(S).

Time when file status was last changed. Changed by the
following system calls: chmod(S), chown(S), creat(S),
link(S), mknod(S), pipe(S), utime(S), and write(S).

Device indentification. In the case of block and character
special files this contains the device major and minor
numbers; in the case of shared memory and semaphores,
it contains the type code. The file
fusr/include/sys /types.h contains the macros major()
and minor() for extracting major and minor numbers
from st_rdes. See [usr/include/sys/stat.h for the sema-
phore and shared memory type code values S_INSEM and
S_INSHD.

Stat will fail ifone or more of the following are true:

A com

ponent of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search

permission is denied for a component of the path prefix.

|EACCES)

Buf or

path points to an invalid address. [EFAULT]

Fatat will fail if one or more of the following are true:

Fidee is not a valid open file descriptor. |EBADF)

Buf po

Return Value

ints to an invalid address. |EFAULT]

Upon successful completion a value of 0 is returned. Otherwise, a

value of -
See Also

chmod(S),
unlink(S)

March 24, 1984

1 is returned and errno is set to indicate the error.

chown(S), creat(S), link(S), mknod(S), time(S),

" Page 2



SIDIO(S) STDIO(S)

Name

stdio - Performs standard buffered input and output.

Syntax

#include <stdio.h>
FILE *stdin, *stdout, *stderr;

Description

The etdio library contains an efficient, user-level 1/O buffering
scheme. The in-line macros getc(S) and putc(S) handle characters
quickly. The macros getchar, putchar, and the higher-level routines
fgete, fgets, fprintf, fpute, fpute, fread, [ecanf, funte, gets, getw, printf,
pute, putw, and scanf all use getc and putc; they can be freely inter-
mixed.

A file with associated buffering is called a ‘‘stream’’ and is declared
to be a pointer to a defined type FILE . Fopen(S) creates certain
descriptive data for a stream and returns a pointer to designate the
stream in all further transactions. Normally, there are three open
streams with constant pointers declared in the ‘‘include’ file and
associated with the standard open files:

stdin Standard input file
stdout Standard output file
stderr Standard error file

A constant “pointer’’ NULL designates the null stream.

An integer constant EOF is returned upon end-of-file or error by
most integer functions that deal with streams (see the individual
descriptions for details).

Any program that uses this package must include the header file of
pertinent macro definitions, as follows:

ftinclude <stdio.h>

Most of the functions and constants mentioned in this section of the
manual are declared in that “‘include’ file and are described else-
where. The constants and the following ‘‘functions’ are imple-
mented as macros (redeclaration of these names is perilous): getc,
getchar, pute, putchar, feof, [error, and fileno.

March 24, 1984 Page 1

i



STDIO (S) STDIO(S)

See Also

open(S), close(S), read(S), write(S), ctermid(S), cuserid(S),
fclose(S), ferror(S), fopen(S), fread(S), fseek(S), getc(S), gets(S),
popen(S), printf(S), pute(S), puts(S), scanf(S), setbuf(S),
system(S), tmpnam(S)

Diagnostics
Invalid stream pointers can cause grave disorder, possibly including

program termination. Individual function descriptions describe the
possible error conditions.

March 24, 1984 Page 2



STIME (S) STIME (S)

Name

stime - Sets the time.

Syntax

#include <Isys/ types.h>
#include <sys/timeb.h>

time_t stime (tp)
long *tp;

Description
Stime sets the system's idea of the time and date. Tp points to the
value of time as measured in seconds from 00:00:00 GMT January 1,
1970.
Stime will fail if the effective user ID of the calling process is not
super-user. [EPERM]

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also

time(S)

March 24, 1984 Page 1




STRING (S) STRING (S)

Name

string, strcat, strncat, stremp, strncmp, strepy, strnepy, strlen, strchr,
strrchr, strpbrk, strspn, strespn, strtok, strdup - Perform string
operations.

Syntax

char *strcat (s1, s2)
char *sl, *s2;

char *strncat (s1, s2, n)
char *sl, *s2;
int n;

int stremp (s1, s2)
char *s}i, *s2;

int strnemp (sl, s2, n)
char *sl, *s2;
int n;

char *strcpy (sl, s2)
char®sl, *s2;

char *strncpy (s1, s2, n)
char *sl, *s2;

int n;

intstrlen (s)
char *s;

char *strchr (s, c)
char *s, c;

char *strrchr (s, c)
char *s, c;

char *strpbrk (s1, s2)
char *sl1, *s2;

int strspn (sl, s2)
char *sl, *s2;

int strespn (sl, s2)
char *sl, *s2;

char *strtok (s1, s2)
char *sl, *s2;

char *strdup (s)
char *s;

March 24, 1984 Page'1l



STRING (S) STRING (8)

Description

These functions operate on null-terminated strings. They do not
check for overflow of any receiving string. :

Streat appends a copy of string #2 to the end of string el. Strncat
copies at most n characters. Both return a pointer to the null-
terminated result.

Stremp compares its arguments and returns an integer greater than,
equal to, or less than 0, according as 8l is lexicographically greater
than, equal to, or less than ¢2. Strncmp makes the same comparison
but looks at at most n characters.

Strepy copies string 82 to el, stopping after the null character has
been moved. Strnepy copies exactly n characters, truncating or null-
paddmg 82; the target may not be null-terminated if the length of ¢2
is n or. more. Both return of.

Strlen returns the number of nonnull characters in s.

Strchr (sterckr) returns a pointer to the first (last) occurrence of
character ¢ in string s, or NULL if ¢ does not occur in the string.
The null character terminating a string is considered to be part of the
string.

Strpbrk returns a pointer to the first occurrence in string el of any
character from stnng 82, or NULL if no character from a2 exists in
el.

Strspn (strcepn) returns the length of the initial segment of string &1
which consists entirely of characters from (not from) string 2.

Strtok considers the string &1 to consist of a sequence of zero or

- more text tokens separated by spans of one or more characters from
the separator string 62. The first call (with pointer s specified)
returns a pointer to the first character of the first token, and will
have written a NULL character into s/ immediately following the
returned token. Subsequent calls with zero for the first argument,
will work through the string 1 in this way until no tokens remain.
The separator string 2 may be different from call to call. When no
token remains in el, a NULL is returned.

Strdup returns a pointer to a duplicate copy of the string pointed to
by s. The duplicate string is automatically allocated storage using a
malloc( S) system call. This call allocates the exact number of bytes
needed to store the string and its terminating null character.

March 24, 1984 . Page 2



STRING (S) STRING ()

Notes

Stremp uses native character comparison, which is signed on some
machines, unsigned on others.

All string movement is performed character by character starting at

the left. Thus overlapping moves toward the left will work as
expected, but overlapping moves to the right may yield surprises.

March 24, 1984 Page 3



SWAB () SWAB (S)

Name

swab - Swaps bytes.

Syntax

swab (from, to, nbytes)
char *{rom, %to;

int nbytes;

Description
Swab copies nbytes pointed to by from to the position pointed to by
to, exchanging adjacent even and odd bytes. It is uselul for tran-

sporting binary data between machines that differ in the ordering of
bytes. Nbytes should be even.

March 24, 1984 Page 1

p—



SYNC(S) SYNC (S)

Name

sync - Updates the super-block.

Syntax

sync ()

Description

Syne causes all information in memory that should be on disk to be
written out. This includes modified super-blocks, modified inodes,
and delayed block I/O.

It should be used by programs which examine a file system, for
example feck(C), df(C), ete.

The writing, although scheduled, is not necessarily complete upon
return from sync. :

See Also

sync(C)

March 24, 1984 Page{l



SYSTEM (S) SYSTEM (S)

Name

system — Executes a shell command.

Syntax
#include <stdio.h>
int system (string)
char *string;

Description
System passes the string to a new invocation of a shell (see 84(C)).
The shell reads and executes the stmng as if it had been typed as a
command at a terminal, then returns the exit status of the command
to the calling process. The calling process waits until the shell has
returned a status before proceeding with execution.

See Also
sh(C), exec(S)

Diagnostics

System stops if it can’t execute ek(C).

March 24, 1984 Page 1



TERMCAP ( S) TERMCAP ( S)

Name

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs — Performs terminal
functions. -

Syntax

char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)
char *id;

tgetflag(id)
char *id;

char #tgetstr (id, area)
char *id, **area;

char *tgoto (cm, destcol, destline)
char *cm;

tputs(cp, affcnt, outc)
register char *cp;

int affcnt;

int (*outc)();

Description

These functions extract and use capabilities from the terminal capa-
bility data base termcap(M). These are low level routines; see
curses(S) for a higher level package.

Tgetent extracts the entry for terminal name into the buffer at bp. Bp
should be a character buffer of size 1024 and must be retained
through all subsequent calls to tgetnum, tgetflag, and tgetstr. Tgetent
returns ~ 1 if it cannot open the termcap file, 0 if the terminal name
given does not have an entry, and 1 if all goes well. It will look in
the environment for a TERMCAP variable. If found, and the value
does not begin with a slash, and the terminal type name is the same
as the environment string TERM, the TERMCAP string is used
instead of reading the termcap file. If it does begin with a slash, the
string is used as a pathname rather than fetcftermcap. This can speed
up entry into programs that call tgetent, as well as to help debug new
terminal descriptions or to make one for your terminal if you can’t

March 24, 1984 Page 1



TERMCAP (S) TERMCAP (S)

write the file fetcpenmncap.

Tgetnum gets the numeric value of capability ¢d, returning - 1 if is
not given for the terminal. Tgetflag returns 1 if the specified capabil-
ity is present in the terminal’s entry, 0 if it is not. Tgetstr gets the
string value of capability d, placing it in the buffer at aree, advanc-
ing the ares pointer. It decodes the abbreviations for this field
described in termcap(M), except for cursor addressing and padding
information.

Tgoto returns a cursor addressing string decoded from ¢m to go to
column destcol in line destline. It uses the external variables UP (from
the up capability) and BC (if bc is given rather than bs) if necessary
to avoid placing \n, CNTRL-D or NULL in the returned string. (Pro-
grams which call tgoto should be sure to turn off the TABS3 bit (see
tty(M)), since tgoto may now output a tab. Note that programs
using termcap should in general turn off TAB3 anyway since some
terminals use CNTRL-I for other functions, such as nondestructive
space.) If a 96sequence is given which is not understood, then tgoto
returns ‘“OOPS”.

Tputs decodes the leading padding information of the string ¢p; affent
gives the number of lines affected by the operation, or 1 if this is
not applicable, outc is a routine which is called with each character in
turn. The external variable ospeed should contain the output speed
of the terminal as encoded by stty(C). The external variable PC
should contzin a pad character to be used (from the pc capability) if
a NULL is inappropriate.

Files
fust/lib/libtermeap.a - ltermcap library
[ete/termeap data base

See Also

curses(S), termcap(M), tty(M)
Credit
This utility was developed at the University of California at Berkeley

and is used with permission.

Notes

These routines can be linked by using the linker option ~ ltermcap.

March 24, 1984 Page 2



TIME (S) TIME (S)

Name

time, ftime - Gets time and date.

Syntax
time_t time ((long *) 0)

time_t time (tloc)
time_t *tloc;

#include <sys/types.h>
#include <sys/timeb.h>

fime(tp)
struct timeb *tp;

Description

Time returns the current system time in seconds since 00:00:00
GMT, January 1, 1970.

If tloc (taken as an integer) is nonzero, the return value is also
stored in the location to which tloc points.

Ftime returns the time in a structure (see below under Return
Value.)

Time will fail if tloc points to an illegal address. [EFAULT) Likewise,
ftime will fail if tp points to an illegal address. [EFAULT]

Return Value

Upon successful completion, time returns the value of time. Other-
wise, a value of — 1 is returned and ermo is set to indicate the error.

The ftime entry fills in a structure pointed to by its argument, as
defined by <sys/timeb.h>:

/t
+ Structure returned by ftime system call
*
struct timeb {
time_t time;
unsigned short millitm;
short timezone;
short dstflag;

March 24, 1984 Page 1



TIME (S) TIME (S)
The structure contains the time since the epoch in seconds, up to
1000 milliseconds of more-precise interval, the local time 3zone
(measured in minutes of time westward from Greenwich), and a flag

that, if nonzero, indicates that Daylight Saving time applies locally
during the appropriate part of the year.

See Also

date(C), stime(S), ctime(S)

March 24, 1984 Page 2



TIMES (S) TIMES (S)

Name

times - Gets process and child process times.

Syntax
#include <times.h>

long times (buffer)
struct tmbaf {
long utime;
long stime;
long cutime;
long cstime;
} buffer;

Description
Times fills the structure pointed to by buffer with time-accounting
information. This information comes from the calling process and
each of its terminated child processes for which it has executed a

vait(S).

All times are in clock ticks where a tick is some fraction of a second
defined in machine (M).

Utime is the CPU time used while executing instructions in the user
space of the calling process.

Stime is the CPU time used by the system on behalf of the calling
process.

Cutime is the sum of the ufimes and cutimes of the child processes.
Cetime is the sum of the etimes and cstimes of the child processes.

Times will fail if buffer points to an illegal address. |[EFAULT)]

Return Value
Upon successful completion, times returns the elapsed real time, in
clock ticks, since an arbitrary point in the past, such as the system
start-up time. This point does not change from one invocation of

timee to another. If times fails, a ~ I is returned and errno is set to
indicate the error.

See Also

exec(S), fork(S), time(S), wait(S), machine(M)

March 24, 1984 Page 1



TMPFILE (S) TMPFILE ( S)

Name

tmpfile - Creates a temporary file.

Syntax
#include <stdio.h>

FILE *tmpfile ()

Description
Tmpfile creates a temporary file and returns a corresponding FILE
pointer. Arrangements are made so that the file will automatically

be deleted when the process using it terminates. The file is opened
for update.

See Also

creat(S), unlink(S), fopen(S), mktemp(S), tmpnam(S)

March 24, 1984 Page 1



TMPNAM (S) TMPNAM (S)

Name

tmpnam - Creates a name for a temporary file.

Syntax
#include <stdio.h>

char *tmpnam (s)
char ®s;

Description

Tmpnam generates a filename that can safely be used for a tem-
porary file. If (int)s is zero, tmpnam leaves its result in an internal
static area and returns a pointer to that area. The next call to
tmpnam will destroy the contents of the area. If (int)sis nonzero, &
is assumed to be the address of an array of at least L_tmpnam
bytes; tmpnam places its result in that array and returns s as its
value.

Tmpnam generates a different filename each time it is called.
Files created using tmpnam and either fopen or creat are only tem-
porary in the sense that they reside in a directory intended for tem-
porary use, and their names are unique. Itis the user’s responsibil-
ity to use unlink (S) to remove the file when its use is ended.

See Also
creat(S), unlink(S), fopen(S), mktemp(S)

Notes

If called more than 17,576 times in a single process, tmpram will
start recycling previously used names.

Between the time a filename is created and the file is opened, it is
possible for some other process to create a file with the same name.
This can never happen if that other process is using tmpnam or
mktemp, and the filenames are chosen so as to render duplication by
other means unlikely.

March 24, 1984 Page 1



TRIG () TRIG (S)

Name
sin, cos, tan, asin, acos, atan, atan2 - Performs trigonometric func-
tions.

Syntax
#include <math.h>

double sin (x)
double x;

double cos (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double x, y;
Description
Sin, coe and tan return trigonometric functions of radian arguments.
The magnitude of the argument should be checked by the caller to
make sure the result is meaningful.
Asin returns the arc sin in the range - /2 to 7 /2.
Acoe returns the arc cosine in the range 0 to «.

Atan returns the arc tangent of z in the range - 7 /2 to 7 /2.

Atan2 returns the arc tangent of y/z in the range - 7 to .

Diagnostics

Arguments of magnitude greater than 1 cause aein and acos to
return value 0.

Notes

These routines can be linked with the linker option - Im.

March 24, 1984 Page 1

p—

e



TTYNAME (S) TTYNAME (S)

Name

ttyname, isatty - Finds the name of a terminal.

Syntax
char *ttyname (fildes)
int isatty (fildes)

Description

Ttyname returns a pointer to the null-terminated pathname of the
terminal device associated with file descriptor fildes.

Jaatty returns 1 if fildes is associated with a terminal device, 0 other-

wise.

Files
[dev/*

Diagnostics

Tyneme returns a null pointer (0) if fildes does not describe a termi-
nal device in directory /dev.

Notes

The return value points to static data whose content is overwritten
by each call.

March 24, 1984 Page 1



ULIMIT(S) ULIMIT(S)

Name

ulimit - Gets and sets user limits.

Syntax
long ulimit (cmd, newlimit)
int cmd;
long newlimit;

Description

This function provides for control over process limits. The cmd
values available are:

1 Gets the process’ file size limit. The limit is in units of disk
blocks and is inherited by child processes. Files of any size can
be read.

2  Sets the process’ file size limit to the value of newlimit. Any
process may decrease this limit, but only a process with an
effective user ID of super-user may increase the limit. Ulimit
will fail and the limit will be unchanged if a process with an
effective user ID other than super-user attempts to increase its
file size limit. |[EPERM]

3  Gets the maximum possible break value. See sbrk(S).

Return Value
Upon successful completion, a nonnegative value is returned. Oth-
erwise, a value of - 1 is returned and ermo is set to indicate the
error.

See Also
sbrk(S), chsize(S), write(S)

Notes

The file limit is only enforced on writes to regular files. Tapes, disks,
and other devices of any size can be written.

March 27, 1984 Page 1



UMASK (S) UMASK (8)

Name

umask - Sets and gets file creation mask.

Syntax
int umask (cmask)
int cmask;

Description
Umaek sets the process’ file mode creation mask to cmask and
returns the previous value of the mask. Only the low-order 9 bits of
emaek and the file mode creation mask are used.

Return Value

The previous value of the file mode creation mask is returned.

See Also
mkdir(C), mknod(C), sh(C), chmod(S), mknod(S), open(S)

March 24, 1984 Page 1



UMOUNT () UMOUNT (S)

Name

umount -~ Unmounts a file system.

T

N r

Syntax
int umount (spec)
char *spec;
Description
Umount requests that a previously mounted file system contained on
the block special device identified by spec be unmounted. Spec is a
pointer to a pathname. After unmounting the file system, the direc-
tory upon which the file system was mounted reverts to its ordinary
interpretation.
Umount may be invoked only by the super-user.
Umount will fail if one or more of the following are true:
The process’ effective user ID is not super-user. |EPERM]
Spec does not exist. [ENXIO] )
Spec is not a block special device. [ENOTBLK]
Spec is not mounted. [EINVAL)
A file on epec is busy. [EBUSY)]
Spec points outside the process’ allocated address space.
[EFAULT]
Return Value
Upon successful completion a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also
mount{C), mount(S)

March 24, 1984 Page 1



UNAME (S) UNAME (S)

Name

uname - Gets name of current XENIX system.

Syntax
#include <sys/utsname.h>

int uname (name)
struct utsname *name;

Description

Uname stores information identifying the current XENIX system in
the structure pointed to by name.

Uname uses the structure defined in <sys/utsname.h>:

struct utsname {
char  sysname|(9];
char  nodename[9];
char  release(9];
char  version|9];
unsigned short sysorigin;
unsigned short sysoem;
long  sysserial;
k
Uname returns a null-terminated character string naming the current
XENIX system in the character array sysname. Similarly, nodename
contains the name that the system is known by on a communications
network., Release and version further identify the operating system.
Syeorigin and syseom identify the source of the XENIX version. Sys-
senal is a software serial number which may be zero if unused.

Uname will fail if name points to an invalid address. [EFAULT)

Return Value

Upon successful completion, a nonnegative value is returned. Oth-
erwise, — 1 is returned and errno is set to indicate the error.

March 24, 1984 Page 1



UNAME (S)

See Also

uname(C)

Notes

Not all fields may be set on a particular system.

March 24, 1984

UNAME (S)

Page 2



UNGETC () _ UNGETC (8S)

Name

ungetc — Pushes character back into input stream.

Syntax
#include <stdio.h>
int ungete (¢, stream)

char c;
FILE *stream;

Description
Ungete pushes the character ¢ back on an input stream. The charac-
ter will be returned by the next gete call on that stream. Ungete
returns c.

One character of pushback is guaranteed provided something has
been read from the stream and the stream is actually buffered.
Attempts to push EOF are rejected.

Feeek(S) erases all memory of pushed back characters.

See Also
fseek(S), getc(S), setbuf(S)

Diagnostics

Ungete returns EOF if it can’t push a character back.

March 24, 1984 Page 1



UNLINK (S) UNLINK (S)

Name

unlink - Removes directory entry.

Syntax

int unlink (path)
char *path;

Description

Unlink removes the directory entry named by the pathname pointed
to by path.

The named file is unlinked unless one or more of the following are
true:

A component of the path prefix is not a directory. |[ENOTDIR]
The named file does not exist. [ENOENT)

Search permission is denied for a component of the path prefix.
[EACCES]

Write permission is denied on the directory containing the link
to be removed. [EACCES]

The named file is a directory and the effective user ID of the
process is not super-user. |[EACCES)

The entry to be unlinked is the mount point for a mounted file
system. |EBUSY]

63

The entry to be unlinked is ‘*.”’ or in the root directory of a

mounted filesystem. [EBUSY]

The entry to be unlinked is the last link to a pure procedure
{shared text) file that is being executed. [ETXTBSY]

The directory entry to be unlinked is part of a read-only file sys-
tem. [EROFS]

Path points outside the process’ allocated address space.
[EFAULT]

When all links to a file have been removed and no process has the
file open, the space occupied by the file is freed and the file ceases to
exist. If one or more processes have the file open when the last link
is removed, the removal is postponed until all references to the file
have been closed.

March 24, 1984 Page 1

R—y



UNLINK (S) UNLINK (S)

Returmn Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.

See Also
rm(C), close(S), link(S), open(S)

March 24, 1984 Page 2



USTAT(S) USTAT(S)

Name

ustat — Gets file system statistics.

Syntax

#include <sys/types.h>
#include <ustat.h>

int ustat (dev, buf)
int dev;
struct ustat *buf;

Description

Ustat returns information about a mounted file system. Dey is a
device number identifying a device containing a mounted file system.
Buf is a pointer to a ustat structure that includes the following ele-

ments:
daddr_t f_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char  f_fname[6); /* Filsys name */
char  f_fpack|6]; /* Filsys pack name */

Ustat will fail if one or more of the following are true:

Devis not the device number of a device containing a mounted
file system. [EINVAL)

Buf points outside the process' allocated address space.
[EFAULT)
Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the error.
See Also
stat(S), filesystem(F)

Notes
When using file systems from previous versions of XENIX, feck(C)

must be run on the file system before mounting. Otherwise the ustat
system call will not work correctly. This only needs to be done once.

March 24, 1984 Page 1

e



UTIME (S) UTIME (S)

Name

utime - Sets file access and modification times.

Syntax

#include <sys [types.h>
int utime (path, times)
char *path;

struct utimbuf *times;

Description

Path points to a pathname naming a file. Utime sets the access and
modification times of the named file.

If times is NULL, the access and modification times of the file are set
to the current time. A process must be the owner of the file or have
write permission to use utime in this manner.

If Wmee is not NULL, timee is interpreted as a pointer to a utimbuf
structure and the access and modification times are set to the values
contained in the designated structure. Only the owner of the file or
the super-user may use utime this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. 1, 1970.

struct  utimbuf {
time_t actime; /* access time */
time_t modtime;  /* modification time */
%
Utime will fail if one or more of the following are true:
The named file does not exist. [ENOENT]
A component of the path prefix is not a directory. [ENOTDIR]

Search permission is denied by a component of the path prefix.
[EACCES)

The effective user ID is not super-user and not the owner of the
file and times is not NULL. [EPERM]

The effective user ID is not super-user and not the owner of the
file and timee is NULL and write access is denied. [EACCES]

The file system containing the file is mounted read-only.
[EROFS)

March 24, 1984 Page 1



UTIME () UTIME (S)

Times is not NULL and points outside the process’ allocated
address space. [EFAULT)

Path points outside the process’ allocated address space.
[EFAULT)

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a
value of - 1 is returned and ermmo is set to indicate the error.

See Also
stat(S)

March 24, 1984 Page 2



WAIT(S) WAIT(S)

Name

wait — Waits for a child process to stop or terminate.

Syntax

int wait (stat_loc)
int *stat_loc;

int wait ((int *)0)

Description

Wait suspends the calling process until it receives a signal that is to
be caught (see eignal(S)), or until any one of the calling process’
child processes stops in a trace mode (see ptrace(S)) or terminates.
If a child process stopped or terminated prior to the call on wait,
return is immediate.

If stat loc (taken as an integer) is nonzero, 16 bits of information
called ‘‘status’’ are stored in the low-order 16 bits of the location
pointed to by etat_loc. Statue can be used to differentiate between
stopped and terminated child processes and if the child process ter-
minated, status identifies the cause of termination and passes useful
information to the parent. This is accomplished in the following
manner:

If the child process stopped, the high-order 8 bits of status will
be zero and the low-order 8 bits will be set equal to 0177.

If the child process terminated due to an ezit call, the low-order
8 bits of status will be zero and the high-order 8 bits will contain
the low-order 8 bits of the argument that the child process
passed to ezit; see ezit(S).

If the child process terminated due to a signal, the high-order 8
bits of status will be zero and the low-order 8 bits will contain
the number of the signal that caused the termination. In addi-
tion, if the low-order seventh bit (i.e., bit 200) is set, a ‘“‘core
image'’ will have been produced; see signal(S).

If a parent process terminates without waiting for its child processes
to terminate, the parent process ID of each child process is set to 1.
This means the initialization process inherits the child processes; see
intro(S).

March 24, 1984 Page 1



WAIT(S) WAIT(S)

Wast will fail and return immediately if one or more of the following
are true:

The calling process has no existing unwaited-for child processes.
|[ECHILD)]

Stat_loc points to an illegal address. [EFAULT]

Return Value
If wait returns due to the receipt of a signal, a value of - 1 is
returned to the calling process and errno is set to EINTR. If wait
returns due to a stopped or terminated child process, the process ID

of the child is returned to the calling process. Otherwise, a value of
- 1is returned and errno is set to indicate the error.

See Also

exec(S), exit(S), fork(S), pause(S), signal(S)

Warning

See Warning in signal(S).

March 24, 1984 Page 2



WAITSEM (S) WAITSEM (S)

Name

waitsem, nbwaitsem - Awaits and checks access to a resource
governed by a semaphore.

Syntax

waitsem(sem_num);
int sem_num;

nbwaitsem(sem_num);
int sem_num;

Description

Waitsem gives the calling process access to the resource governed by
the semaphore sem_num. If the resource is in use by another pro-
cess, waitsem will put the process to sleep until the resource becomes
available; nbwaitsem will return the error ENAVAIL. Waitsem and
nbwastsem are used in conjunction with sigeem to allow synchroniza-
tion of processes wishing to access a resource. One or more
processes may waitsem on the given semaphore and will be put to
sleep until the process which currently has access to the resource
issues sigeem. Sigsem causes the process which is next in line on the
semaphore’s queue to be rescheduled for execution. The
semaphore’s queue is organized in first in first out (FIFO) order.

See Also

creatsem(S), opensem(S), sigsem(S)

Diagnostics

-Waitsem returns the value (int) -1 if an error occurs. If sem_num
has not been previously opened by a call to opensem or creatsem,
errno is set to EBADF. If sem_num does not refer to a semaphore
type file, errmo is set to ENOTNAM. All processes waiting (or
attempting to wait) on the semaphore when the process controlling
the semaphore exits without relinquishing control (thereby leaving
the resource in an undeterminate state) return with ermo set to ENA-
VAIL.

March 24, 1984 Page 1



WRITE (S) WRITE (S)

Name

write - Writes to a file.

Syntax

int write (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

Description

Fides is a file descriptor obtained from a creat, open, dup, featl, or
pipe system call.

Write attempts to write nbyte bytes from the buffer pointed to by buf
to the file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file pointer. Upon
return from wnte, the file pointer is incremented by the number of
bytes actually written.

On devices incapable of seeking, writing always takes place starting
at the current position. The value of a file pointer associated with
such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer
will be set to the end of the file prior to each write.

Wnite will fail and the file pointer will remain unchanged if one or
more of the following are true:

Fides is not a valid file descriptor open for writing. [EBADF]

An attempt is made to write to a pipe that is not open for read-
ing by any process. |EPIPE and SIGPIPE signal]

An attempt was made to write a file that exceeds the process’
file size limit or the maximum file size. See wlimit(S). |[EFBIG)

Buf points outside the process’ allocated address space.
[EFAULT]

If a wn'te requests that more bytes be written than there is room for
(e.g., the ulimit (see ulimit(S)) or the physical end of a medium),
only as many bytes as there is room for will be written. For exam-
ple, suppose there is space for 20 bytes more in a file before reach-
ing a limit. A write of 512 bytes will return 20. The next write of a
nonzero number of bytes will give a failure return (except as noted

March 24, 1984 Page 1



WRITE (S) WRITE (S)

below).
If the file being written is a pipe (or FIFO), no partial writes will be
permitted. Thus, the write will fail if a write of nbyte bytes would
exceed a limit.
If the file being written is a pipe (or FIFO) and the O_NDELAY flag
of the file flag word is set, then write to a full pipe (or FIFO) will
return a count of 0. Otherwise (O_NDELAY clear), writes to a full
pipe (or FIFO) will block until space becomes available.

Return Value
Upon successful completion the number of bytes actually written is
returned. Otherwise, — 1 is returned and errno is set to indicate the
error.

See Also
creat(S), dup(S), lseek(S), open(S), pipe(S), ulimit(S)

Notes

Writing a region of a file locked with locking causes wnte to hang
indefinitely until the locked region is unlocked.

March 24, 1984 Page 2



XLIST(S) XLIST(S)

Name

xlist, fxlist - Gets name list entries from files.

Syntax

#include <a.out.h>
xlist(filename, x1)
char *filename;
struct xlist x1[ ];

#include <a.out.h>
ffinclude <stdio.h>
xlisy(fp, x1)

FILE #fp;

struct xlist x1[ ];

Description

Fzlist performs the same function as zliet, except that fzlist accepts a
pointer to a previously opened file intead of a filename.

Xlist examines the name list in the Biven executable output file and
selectively extracts a list of values. The name list structure 2! con-
sists of an array of zlief structures containing names, types, values,
and segment values (if applicable). The list is terminated by either a
pointer to a null name or a null pointer. Each name is looked up in
the name list of the file. If the name is found, the type and value of
the name are inserted into the next two fields. The segment value (if
it exists) is inserted in the third field. If the name is not found,
both entries are set to zero. See a.out(F) for a discussion of the xlist
structure.

X.out and a.out formats are understood, as well as 8086 relocatable
and x.out segmented formats.

If the symbol table is in a.out format, and if the symbol name given

to zliet is longer than eight characters, only the first eight characters

are used for comparison. In all other cases, the name given to zlist

must be the same length as a name list.entry in order to match.

If two or more symbols happen to match the name given to zlist,

then the type and value used will be those of the last symbol found.
See Also

a.out(F)

March 24, 1984 Page 1



XLIST(S) XL1ST(8)
Diagnostics
Xliet returns -1 and sets all type entries to zero if the file cannot be
read, is not an object file, or contains an invalid name list. Other-

wise, zlist returns zero. A return value of zero does not indicate that
any or all of the given symbols were found.

March 24, 1984 Page 2






CONTENTS

intro
a.out
acct

checklist
core
cpio

file sysem

master
mmttab
sccsfile
types
x.out

FileFormars{F)

introductiontofile formats

Format of assemblerand link editor output
Format of per—processaccourtingfile
Archive fileformat

List of file systems processed by fsck
Formatof coreimage file

Format of cpioarchive

Formatof adirectory

Incremental dumptape format

Format of a systemvolume
Formatofaninode

Formatof masterdeviccinformationtable
Formatof mounted file systemtable
FormatofanSCCSfile
Primitivesystemdatatypes
Loaderoutput



©



Index

Accountingfile

acct

Assemblerand link editoroutput

Archivefile

8.out

Archivefile

Coreimagefile

core

Datatypes, sy stem

Directory

dir

dump

Dumptape
File formats, introduction
Filesystemlist

intro

checklist

File system volume
Inode

loader output

filesystem
inode

X.00t

Mountedfile systemtable

mnitab

sccsfile







INTRO(F) INTRO (F)

Name

intro - Introduction to file formats.

Description
This section outlines the formats of various files. Usually, these

structures can be found in ‘the directories fusrfinclude or
[Jusrfinclude/sys.

March 24, 1984 Page 1



A.OUT(F) A.OUT(F)
Name

a.out - Format of assembler and link editor output.

Description
A.out is the output file of the assembler a¢ and the link editor Id.
Both programs will make a.out executable if there were no errors in
assembling or linking, and no unresolved external references.
The format of a.out, called the x.out or segmented x.out format, is
defined by the files Assfincludefs.out.h and jusrfincludefoysfrelogm.h.
The a.out file has the following general layout:
1.  Header.
2.  Extended header.
3.  File segment table (for segmented formats).
4. Segments (Text, Data, Symbol, and Relocation).
In the segmented format, there may be several text and data seg-
ments, depending on the memory model of the program. Segments
within the file begin on boundaries which are multiplies of 512 bytes
as defined by the file’s pagesize.

See Also

as(CP), 14(CP), nm(CP), strip(CP).

March 24, 1984 Page 1

s



ACCT (F) : ACCT (F)

Name

acct - Format of per-process accounting file.

Description

Files produced as a result of calling acct(S) have records in the form
defined by <sys/accth>.

In ac_flag, the AFORK flag is turned on by each fork(S) and turned
off by an ezec(S). The ac_comm field is inherited from the parent
process and is reset by any ezec. Each time the system charges the
process with a clock tick, it also adds the current process size to
ac_mem computed as follows:

(data size) + (text size) / (number of in-core processes using
text)

The value of ac_memfac_stime can be viewed as an approximation to
the mean process size, as modified by text-sharing.

See Also
acct{C), acctcom(C), acc{S)

Notes

The ac_mem value for a short-lived command gives little information
about the actual size of the command, because ac_mem may be
incremented while a different command (e.g., the shell) is being exe-
cuted by the process.

March 24, 1984 Page 1



AR (F) AR (F)

Name

ar - Archive file format.

Description
The archive command cr is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link edi-
tor 1d(C).
A file produced by ar has a magic number at the start, followed by
the constituent files, each preceded by a file header. The magic
number is 0177545 octal (or OxfT65 hexadecimal). The header of
each file is declared in /usr/include/ar.h.
Each file begins on a word boundary; a null byte is inserted between
files if necessary. Nevertheless the size Biven reflects the actual size
of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

See Also
ar(CP), 1d(CP)

March 24, 1984 Page 1

S



CHECKLIST (F) CHECKLIST(F)

Name

checklist - List of file systems processed by fack.

Description
The fetefchecklist file contains a list of the file systems to be checked
when feck(C) is invoked without arguments. The list contains at
most 15 epecial file names. Each epecial file name must be on a
separate line and must correspond to a file system.

See Also
fsck(C)

March 24, 1984 ' Page 1



CORE (F) CORE (F)

Name

core - Format of core image file.

Description

XENIX writes out a core image of a terminated process when any of
various errors occur. See signal(S) for the list of reasons; the most
common are memory violations, illegal instructions, bus errors, and
user-generated quit signals. The core image is called core and is
written in the process’ working directory (provided it can be; normal
access controls apply). A process with an effective user ID different
from the real user ID will not produce a core image.

The first section of the core image is a copy of the system’s per-user
data for the process, including the registers as they were at the time
of the fault, The size of this section depends on the parameter ueize,
which is defined in /usr/include/sys/param.h. The remainder
represents the actual contents of the user’s core area when the core
image was written. If the text segment is read-only and shared, or
separated from data space, it is not dumped.

The format of the information in the first section is described by the
user structure of the system, defined in fusr/include/sys/user.h.
The locations of registers, are outlined in /usr/include/sys/reg.h.

See Also
adb(CP), setuid(S), signal(S)

March 24, 1984 Page 1



CPIO (F) CPIO(F)

Name

cpio - Format of cpio archive.

Description
The header structure, when the c option is not used, is:

struct {

short h_magic,
h_dev,
h_ino,
h_mode,
h_uid,
h_gid,
h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2];

char. h_name[h_namesize rounded to word);

} Hdr;

When the ¢ option is used, the header information is described by
the statement below:

sscanf (Chdr, %6 0 926 0 %6 0 %26 0 %5 0 %6 0 %26 0 746 0 %1 110 %26 0 96 0 %™,
&Hdr.h_magic,&Hdr.h_dev,&Hdr.h_ino,&Hdr.h_mode,
&Hdr.h_uid,&Hdr.h_gid,&Hdr.h_nlink,&Hdr.h_rdev,
&Longtime, &Hdr.h_namesize,&Longfile, Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mfime and
Hdr.h_filesize, respectively. The contents of each file is recorded in
an element of the array of varying length structures, archive,
together with other items describing the file. Every instance of
h_magic contains the constant 070707 (octal). The items h_dev
through hA_mtime have meanings explained in stat(S). The length of
the null-terminated pathname k_name, including the null byte, is
given by h_nameeize.

The last record of the archive always cont3ins the name TRAILER!!!.
Special files, directories, and the trailer are recorded with k_filesize
equal to zero.

See Also

cpio( C), find(C), stay(S)

March 24, 1984 ¢ Page 1



DIR (F) DIR (F)

Name

dir - Format of a directory.

Syntax

#include <sys/dir.h>

Description

A directory behaves exactly like an ordinary file, except that no user
may write into a directory. The fact that a file is a directory is indi-
cated by a bit in the flag word of its inode entry (see filesystem(F)).
The structure of a directory is given in the include file
{usr/include/sys /dir.h.

By convention, the first two entries in each directory are‘‘dot” (.)
and “‘dotdot” (..). The first is an entry for the directory itself. The
second is for the parent directory. The meaning of dotdot is
modified for the root directory of the master file system; there is no
parent, so dotdot has the same meaning as dot.

See Also

filesystem(F)

March 24, 1984 : Page 1

P

e



DUMP (F) DUMP(F)

Name

dump - Incremental dump tape format.

Description

The dump and restor commands are used to write and read incre-
mental dump magnetic tapes.

The dump tape consists of a header record, some bit mask records, a
group of records describing file system directories, a group of records
describing file system files, and some records describing a second bit
mask.

The header record and the first record of each description have the
format described by the structure included by:

#include <dumprestor.h>
Fields in the dumprestor structure are described below.
NTREC is the number of 512 byte blocks in a physical tape record.
MLEN is the number of bits in a bit map word. MSIZ is the number

of bit map words.

The TS_ entries are used in the ¢_type field to indicate what sort of
header this is. The types and their meanings are as follows:

TS_TYPE Tape volume label.

TS_INODE A file or direcbw follows. The c_dinode field is a copy
of the disk inode and contains bits telling what sort of
file this is.

TS_BITS A bit mask follows. This bit mask has a one bit for
each inode that was dumped.

TS_ADDR A subblock to a file ( TS_INODE). See the description
of ¢_count below.

TS_END End of tape record.

TS_CLRI A bit mask follows. This bit mask contains a one bit
for all inodes that were empty on the file system when
dumped.

MAGIC All header blocks have this number in ¢c_magie.

CHECKSUM Header blocks checksum to this value.

March 24, 1984 Page 1



DUMP(F)

DUMP(F)

The fields of the header structure are as follows:

c_type
c_date
c_ddate
c_volume

c_tapea

c_inumber

c_magic

c_checksum

c_dinode

c_count

c_addr

The type of the header.

The date the dump was taken.

The date the file system was dumped from.
The current volume number of the dump.

The current block number of this record. This is
counting 512 byte blocks.

The number of the inode being dumped if this is of
type TS_INODE.

This contains the value MAGIC above, truncated as
needed.

This contains whatever value is needed to make the
block sum to CHECKSUM.

This is a copy of the inode as it appears on the file
system.

This is the count of characters following that describe
the file. A character is zero if the block associated
with that character was not present on the file system,
otherwise the character is nonzero. If the block was
not present on the file system no block was dumped
and it is replaced as a hole in the file. If there is not
sufficient space in this block to describe all of the
blocks in a file, TS_ADDR blocks will be scattered
through the file, each one picking up where the last
left off.

This is the array of characters that is used as described
above.

Each volume except the last ends with a tapemark (read as an end of
file). The last volume ends with a TS_END block and then the tape-

mark.

The structure idates describes an entry of the file where dump his-

tory is kept.

See Also

dump(C), restor(C), filesystem(F)

March 24, 1984

Page 2




FILESYSTEM (F) FILESYSTEM (F)

Name

file system - Format of a system volume.

Syntax

ginclude <sys/filsys.h>
ginclude <sys/types.h>
#include <sys/param.h>

Description

Every file system storage volume (e.g., a hard disk) has a common
format for certain vital information. Every such volume is divided
into a certain number of 256 word (512 byte) blocks. Block 0 is
unused and is available to contain a bootstrap program or other
information.

Block 1 is the euper-block. The format of a super-block is described
in /usr/include/sys/filesys.h. In that include file, S isize is the
address of the first data block after the i-list. The i-list starts just
after the super-block in block 2; thus the i-list is s_seize~ 2 blocks
long. S_feize is the first block not potentially available for allocation
to a file. These numbers are used by the system to check for bad
block numbers. If an “‘impossible’’ block number is allocated from
the free list or is freed, a diagnostic is written on the console. More-
over, the free array is cleared so as to prevent further allocation
from a presumably corrupted free list.

The free list for each volume is maintained as follows. The e_free
array contains, in e_free]1}, ..., o_free[s_nfree- 1], up to 49 numbers
of free blocks. S_free[€] is the block number of the head of a chain
of blocks constituting the free list. The first long in each free-chain
block is the number (up to 50) of free-block numbers listed in the
next 50 longs of this chain member. The first of these 50 blocks is
the link to the next member of the chain. To allocate a block: decre-
ment _nfree, and the new block is s_free[s_nfree]. If the new block
number is 0, there are no blocks left, so give an error. If s_nfree
becomes 0, read in the block named by the new block number,
replace a_nfree by its first word, and copy the block numbers in the
next 50 longs into the s_free array. To free a block, check if s_nfree
is 50; if so, copy s_nfree and the &_free array into it, write it out, and
set g_nfree to 0. In any event set o_free[s_nfree] to the freed block’s
number and increment &_nfree.

S_tfree is the total free blocks available in the file system.
S_ninode is the number of free i-numbers in the s_inode array. To
allocate an inode: if s_ninode is greater than 0, decrement it and

return s_inode|a_ninode]. If it was 0, read the i-list and place the
num bers of all free inodes (up to 100) into the s_inode array, then

March 24, 1984 Page 1



FILESYSTEM (F) FILESYSTEM (F)

try again. To free an inode, provided e_ninode is less than 100, place
its number into ¢ _inode[s_ninode] and increment e_ninode. If
e_ninode is already 100, do not bother to enter the freed inode into
any table. This list of inodes only speeds up the allocation process.
The information about whether the inode is really free is maintained
in the inode itself.

S_tinode is the total free inodes available in the ﬁie system.

S_fock and e_slock are flags maintained in the core copy of the file
system while it is mounted and their values on disk are immaterial.
The value of ¢_fmod on disk is also immaterial, and is used as a flag
to indicate that the super-block has changed and should be copied to
the disk during the next periodic update of file system information.

S_ronly is a read-only flag to indicate write-protection.

S_time is the last time the super-block of the file system was
changed, and is a double-precision representation of the number of
seconds that have elapsed since 00:00 Jan. 1, 1870 (GMT). During a
reboot, the s_time of the super-block for the root file system is used
to set the system’s idea of the time.

I-numbers begin at 1, and the storage for inodes begins in block 2.
Also, inodes are 64 bytes long, so 8 of them fit into a block. There-
fore, inode i is located in block (i+15)/8, and begins
64X((¢+ 15) (mod 8)) bytes from its start. Inode 1 is reserved for
future use. Inode 2 is reserved for the root directory of the file sys-
tem, but no other i-number has a built-in meaning. Each inode
represents one file. For the format of an inode and its flags, see
inode(F).
Files
[usr/include/sys/filsys.h

[usr/include /sys/stat.h

See Also
fsck(C), mkfs(C), inode(F)

March 24, 1084 Page 2



INODE (F) INODE (F)

Name

inode - Format of an inode.

Syntax
#include <sys/types.h>
#include <sys/ino.h>

* Description
An inode for a plain file or directory in a file system has the struc-
ture defined by <sys/ino.h>. For the meaning of the defined
types off_t and time_t see types(F).

Files

Jusr/include/sys/ino.h

See Also
stat(S), filesystem (F), types(F)

March 24, 1984 Page 1



MASTER (F)

Name

MASTER (F)

master - master device information table

Description

This file is used by the config(CP) program to obtain device informa-
tion that enables it to generate the configuration files. The file con-
sists of 4 parts, each separated by a line with a dollar sign ($) in
column 1. Part 1 contains device information; part 2 contains the
line discipline table; part 3 contains names of devices that have
aliases; part 4 contains tunable parameter information. Any line
with an asterisk (*) in column 1 is treated as a comment.

Part 1 contains lines consisting of 14 fields with the fields delimited
by tabs and/or blanks:

Field 1:
Field 2:
Field 3:

Field 4:

Field 5:
Field 6:
Field 7:
Field 8:
Field 9:

Field 10:
Fields 11-14:

March 24, 1984

device name (8 chars. maximum).
interrupt vector size (decimal, in bytes).
device mask (octal)- each ‘‘on’’ bit indicates that
the driver has the corresponding handler or struc-
ture:

000400 tty structure

000200 stop handler

000100 not used

000040 not used

000020 open handler

000010 close handler

000004 read handler

000002 write handler

000001 ioctl handler.
device type indicator (octal):

000200 allow only one of these devices

000100 not used

000040 not used

000020 required device

000010 block device

000004 character device

000002 not used

000001 not used.
handler prefix (4 chars. maximum).
not used.
major device number for block-type device.
major device number for character-type device.
maximum number of devices per -controller
(decimal).
not used.
maximum of four interrupt vector addresses.
Each address is followed by a unique letter or a
blank.

Page 1

A



MASTER (F) MASTER (F)

Part 2 contains lines with 11 fields each. Each field is a maximum of
8 characters delimited by a blank if less than 8:

Field 1:

Device associated with this line
Field 2:

open routine
Field 3:

close routine
Field 4:

read routine
Field 5:

write routine
Field 6:

ioctl routine
Field 7:

receiver interupt routine
Field 8:

unused- should be nulldev
Field 9:

unused- should be nulldev
Field 10:

output start routine
Field 11:

unused- should be nulldev
Part 3 contains lines with 2 fields each:
Field 1: alias name of device (8 chars. maximum).
Field 2: reference name of device (8 chars. maximum;

specified in part 1).

Part 4 contains lines with 2 or 3 fields each:

Field I1: parameter name (as it appears in description file;
20 chars. maximum)

Field 2: parameter name (as it appears in the c.c file; 20
chars. maximum)

Field 3: default parameter value (20 chars. maximum;
parameter specCification is required if this field is
omitted)

Devices that are not interrupt-driven have an interrupt vector size of
zero. Devices which generate interupts but are not of the standard
character or block device mold, should be specified with a type (field
4 in part 1) which has neither the block nor char bits set.

See Also

config(CP)

March 24, 1984 Page 2



MNTTAB (F) ' MNTTAB(F)

Name

mnttab -~ Format of mounted file system table.

Syntax
#include <stdio.h>
#include <mnttab.h>
Description

The ftc/mnttab file contains a table of devices mounted by the
mount(C) command.

Each table entry contains the pathname of the directory on which
the device is mounted, the name of the device special file, the
read/write permissions of the special file, and the date on which the
device was mounted.

The maximum number of entries in mnttab is based on the system
parameter NMOUNT located in fusr/sys/conf/c.c, which defines the
number of allowable mounted special files.

See Also

mount{C)

March 24, 1984 Page 1



SCCSFILE (F) SCCSFILE (F)

Name

scesfile - Form at of an SCCS file.

Description

An SCCS file is an ASCII file. It consists of six logical parts: the
checksum, the delta table (contains information about each delta),
user names (contains login names and/or numerical group IDs of
users who may add deltas), flags (contains definitions of internal
keywords), comments (contadins arbitrary descriptive information
about the filc), and the body (contains the actual text lines inter-
mixed with control lines). Each logical part of an SCCS file is
described in detail below.

Throughout an SCCS file there are lines which begin with the ASCI
SOH (start of heading) character (octal 001). This character is
hereafter referred to as the control character and will be represented
graphically as @. Any line described below which is not depicted as
beginning with the control character is prevented from beginning
with the control character. Entries of the form DDDDD represent a
five digit string (a number between 00000 and 99999).

Checkaum

The checksum is the first line of an SCCS file. The form of the line
is:

@ hDDDDD
The value of the checksum is the sum of all characters, except those
of the first line. The @ hR provides a magic number of (octal)
064001.
"Delta Table”
The delta table consists of a variable number of entries of the form:
@s DDDDD/DDDDD/DDDDD
@d <type> <SOCS ID> yr/mo/da bhrmise <pgmr> DDDDD DDDDD
@i DDDDD ...
@x DDDDD ...

@gDDDDD ...
@m <MR number>

@ c <comments> ...

Qe

March 24, 1984 Page 1



SCCSFILE (F) SCCSFILE (F)

The first line (@s) contains the number of lines
inserted/deleted/unchanged respectively. The second line (@d)
contains the type of the delta (currently, normal: D, and removed:
R), the SCCS ID of the delta, the date and time of creation of the
delta, the login name corresponding to the real user ID at the time
the delta was created, and the serial numbers of the delta and its
predecessor, respectively.

The @i, @ x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @ m lines (optional) each contain one MR number associated
with the delta; the @ ¢ lines contain comments associated with the
delta.

The @ e line ends the delta table entry.

User Namee

The list of login names and/or numerical group IDs of users who
may add deltas to the file, separated by new-lines. The lines contain-
ing these login names and/or numerical group IDs are surrounded by
the bracketing lines @u and @ U. An empty list allows anyone to
make a delta.

Flags

Keywords used internally (see admin(CP) for.more information on
their use). Each flag line takes the form:

Qf <flag> <optional text>
The following flags are defined:

@ft <type of program>
@fv <program name>
efi

@fb

@fm <module name>
@ff <floor>

@fc <ceiling>

@fd <default-sid>
@fn

@fj

@fl <lock-releases>
@fq <user defined>

The t flag defines the replacement for the identification keyword.

The v flag controls prompting for MR numbers in addition to com-
ments; if the optional text is present it defines an MR number

March 24, 1984 Page 2



SCCSFILE (F) SCCSFILE (F)

validity checking program. The i flag controls the warning/error
aspect of the ‘‘No id keywords” message. When the i flag is not
present, this message is only a warning; when the i flag is present,
this message will cause a *‘fatal” error (the file will not be gotten, or
the delta will not be made). When the b flag is present the - b
option may be used with the get command to cause a branch in the
delta tree. The m flag defines the first choice for the replacement
text of the sccsfileF identification keyword. The f flag defines the
‘‘floor’’ release; the release below which no deltas may be added.
The ¢ flag defines the ‘‘ceiling’’ release; the release ahove which no
deltas may be added. The d flag defines the default SID to be used
when none is specified on a get command. The n flag causes delta to
insert a “null’” delta (a delta that applies no changes) in those
releases that are skipped when a delta is made in a new release (e.g.,
when delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped).
The absence of the n flag causes skipped releases to be completely
empty. The j flag causes get to allow concurrent edits of the same
base SID. The | flag defines a list of rcleases that are locked against
editing (get(CP) with the — e option). The q flag defines the
replacement for the identification keyword. .

Comments
Arbitrary text surrounded by the bracketing lines @t and @ T. The
comments section typically contains a description of the file’s pur-
pose.
Body
The body consists of text lines and control lines. Text lines don’t
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, as follows:

@I1DDDDD

@D DDDDD

@EDDDDD

The digit string (DDDDD) is the serial number corresponding to the
delta for the control line.

Sce Also
admin(CP), delta(CP), ge{ CP), prs(CP)

XenixProgrammer’s Guide

March 24, 1984 Page 3



TYPES (F) TYPES (F)

Name

types ~ Primitive system data types.

Syntax
#include <sys/types.h>

Description

The data types defined in the include file <sys/types,h> are used
in XENIX system code; some data of these types are accessible to
user code.

The form daddr_t is used for disk addresses except in an inode on
disk, see filesystem(F). Times sre encoded in seconds since 00:00:00
GMT, January 1, 1970. The major and minor parts of a device code
specify kind and unit number of a device and are installation-
dependent. Ofisets are measured in bytes from the beginning of a
file. The label_t variables are used to save the processor state while
another process is running.

See Also
filesystem(F)

March 24, 1984 Page 1



X.OUT(F) . X.0OUTr(F)

Name
x.out — loader output

Synopsis
#include [a.out.h]

Description
x.out is the output file of the loader Id(CP). 1d(CP) makes x.out
executable if there are no errors and no unresolved external refer—
ences. The following layout information is given in the include file
for the 68000:

struct xexec { I* x.out header */
unsigned short x_magic; /* magic pumber */
unsigned short x_ext; I* size of header extension */

long  xtext; /* size of text segment */

long x.data; /* size of initialized data */

long x_bss; /* size of uninitialized data */
long X_syms; I* size of symbol table */

long  xreloc; * relocation table length */

long  xentry; /* entry point */

char  xcpu; /* cpu type & byte/word order */

char  xrelsym; /* relocation & symbol format */

unsigned short x renv;  /* run—time environment */
I
struct  xext { /* x.out header extension */

long xetrsize; /* size of text relocation */

long xedrsize; /* size of data relocation */

long xetbase; /* text relocation base */

long xedbase; /* data relocation base */

long xestksize; /* stack size (if XE FS set) */
» .
The file has four sections: a header, the program’s text and data,
relocation information, and a symbo} table, in that order. The
header optionally has a header extension as shown above. The
relocation and symbol section will be empty if the program was
loaded with the —s option of 1d, or if the symbols and relocation
have been removed by strip(CP). The sizes of each section in the
header are given as longs, but have even alignment. The size of
the header is not included in any of the other sizes. When an
x.out file is loaded into core for execution, three logical segments
are set up: the text segment, the data segment (with uninitialized
data, which starts off as all 0, following initialized data), and a
stack. The text scgment begins at O in the core image; the header

May 10, 1984 Page 1



X.0UT (F) X.OUT(F)

is not loaded.

The layout of a symbol table entry, and the principal flag values

that distinguish symbol types, are given in the include file. If a TN
symbol’s type is undefined external, and the value field is non— ¥
zero, the symbol is interpreted by the loader, Id, as the name of a T
common region whose size is indicated by the value of the symbol.

The value of a word in the text or data portions, which is not a

reference to an undefined external symbol, is exactly the value that

will appear in core when the file is executed. if a word in the text

or data portion involves a reference to an undefined external sym—

bol, as indicated by the relocation information for that word, then

the value of the word as stored in the file is an offset from the

associated external symbol.

When the file is processed by the loader and the external symbol
becomes defined, the value of the symbol will be added into the
word in the file. If relocation information is present, it amounts to
one word per word of program text or initialized data.

Files
Just/include/a.out.h

Nates )
See also as(CP), W(CF), nm(CP), /ust/include/a.out.h. a

May 10, 1984 Page 2



