

The XENIX"

Development System

Programmer’s Guide

for the Apple Lisa 2"

The Santa Cruz Operation, Inc.

Information in this document is subject to change without notice and
does not represent a commitment on the part of The Santa Cruz
Operation, Inc. and Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance
with the terms of the agreement.

©The Santa Cruz Operation, Inc., 1984
©Microsoft Corporation, 1983

The Santa Crus Operation, Inc.

500 Chestnut Street

P.O. Box 1900

Santa Cruz, California 95061

(408) 425-7222 - TWX: 910-598-4510 SCO SACZ

UNIX is a trademark of Bell Laboratories
XENIX is a trademark of Microsoft Corporation
Apple, Lisa 2, and ProFile are trademarks of Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

E‘*'m-./

Contents

(N e N)

—
=)} w W N -

—

)
-]

—— N w
SRs 5 - S WN -

wn

NN RIRNR NN NNNN NN N
e

—
=

Www W
WO N =

th &

Introduction

Overview 1

Creating C Language Programs |
Creating Other Programs 2
Creating and Maintaining
Libraries 2

Maintaining Program Source
Files 3

Creating Programs With Shell
Commands 3

Using This Guide 4
Notational Conventions 5

Cc: A Compiler

Iatroduction 1

Invoking the C Compiler 2
Compiling a Source File 3
Compiling Several Source
Files 4

Using Object Files 5
Naming the Output File 6
Compiling Without Linking 6
Linking to Library

Functions 7

Optimizing a Source File 8
Producing an Assembly Source
File 9

Stripping the Symbol Table 9
Profiling a Program 10
Saving a Preprocessed Source
File 10

Defining a Macro 10
Defining the Include
Directories 11

Emror Messages 12

Lint: A C Program Checker

Introduction 1

. Invoking lint 1

Checking for Unused Variables
and Functions 2

Checking Local Variables 3
Checking for Unreachable

W ww

w W
—— O
—-o

4.7
49
4.10
4.11

(7]

LwLnn
W -

5.8

[TV
EoRY]

Statements 4

Checking for Infinite Loops S
Checking Function Return
Values 5

Checking for Unused Return
Values 6

Checking Types 6

Checking Type Casts 7
Checking for Nonportable
Character Use 8

Checking for Assignment of
longs to ints 8

Checking for Strange
Constructions 9

Checking for Usc of Older C
Syntax 10

Checking Pointer Alignment 11
Checking Expression Evaluation
Order 11

Embedding Directives 12
Checking For Library
Compatibility 13

Make: A Program Maintainer

Introduction |

Creating a Makefile 1
Invoking Make 3

Using Pseudo—Target Names S
Using Macros 6

Using Shell Environment
Variables 8

Using the Built—In Rules 9
Changing the Built—in Rules 11
Using Libraries 13
Troubleshooting 14

Using Make: An Example 15

SCCS: A Source Code Contral System

Introduction 1

Basic Information 1

Creating and Using S—files §
Using Identification

Keywords 14

Using S—file Flags 17
Modifying S—file

Information 19

Printing from an S—file 22
Editing by Several Users 24

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

=

1
7.2
73
7.4
7.5
7.6

NN
L-N- -8

8.1
8.2
83
84
85
8.6
8.7
8.8
8.9

8.10

Protecting S—files 25
Repairing SCCS Files 28
Using Other Command Options 30

Adb: A Program Debugger

Introduction 1
Invocation 1

The Current Address — Dot |
Formats 2

Debugging C Programs 3
Maps 7

Advanced Usage 8
Patching 11

Notes 12

Figures 13

Adb Summary 26

As: An Assembler

Introduction 1

Command Usage |

Invocation Options 1

Source Program Format 2

Symbols and Expressions 4

Instructions and Addressing
Modes 10

Assembler Directives 13

Operation Codes 17

Emror Messages 18

Lex: A Lexical Analyzer

Introduction 1

Lex Source Format 3
Lex Regular Expressions 4
Invoking lex S
Specifying Character
Classes S

Specifying an Arbitrary
Character 6
Specifying Optional
Expressions 7
Specifying Repeated

. Expressions 7

Specifying Alternation and
Groupiag 7

Specifying Context

Sensiti ity 8

8.11 Specifying Expression
Repetition 9

8.12 Specifying Definitions 9

8.13 Specifying Actions 9

8.14 Handling Ambiguous Source
Rules 13

8.15 Specifying Left Context
Sensitivity 16

8.16 Specifying Source
Definitions 18

8.17 Lex and Yacc 20

8.18 Specifying Character Sets 24

8.19 Source Format 25

9 Yacc: A Compiler—Compiler

9.1 Inwoduction 1

9.2 Specifications 4

9.3 Actions 7

9.4 Lexical Analysis 9

9.5 How the Parser Works 11

9.6 Ambiguity and Conflicts 16

9.7 Precedence 21

9.8 Error Handling 24

9.9 The Yacc Environment 26

9.10 Preparing Specifications 27

9.11 Input Style 27

9.12 Left Recursion 28

9.13 Lexical Tie—ins 29

9.14 Handling Reserved Words 30

9.15 Simulating Emror and Accept in
Actions 31

9.16 Accessing Values in Enclosing
Rules 31

9.17 Supporting Arbitrary Value
Types 32

9.18 A Small Desk Calculator 33

9.19 Yacc Imput Syntax 36

9.20 An Advanced Example 38

9.21 Old Features 44

Appendix A C Language Portability

A.l Introduction 1

A.2 Program Portability 2

A.3 Machine Hardware 2

A4 Compiler Differences 7

A.5 Program Environment Differences 11
A.6 Portability of Data 12

A7 Lint 12

1-iv

A.8 Byte Ordering Summary 13

Appendix B M4: A Macro Processor

B.1 Introduction 1

B.2 Invoking m4 1

B.3 Defining Macros 2

B.4 Quoting 3

B.5 Using Arguments S

.6 Using Arithmetic Built—ins 6
Manipulating Files 7
Using System Commnands 7
Using Conditionals 8

0 Manipulating Strings 8

1 Pricting 10

b b \D 00

Chapter 1
Introduction

1.1 Overview 1-1

1.2 Creating C Language Programs 1-1

1.3 Creating Other Programs 1-1

1.4 Creating and Maintaining Libraries 1-2

1.5 Maintaining Program Source Files 1-2

1.6 Creating Programs With Shell Commands 1-3
1.7 Using This Guide 1-3

1.8 Notational Conventions 1-4

i

Introduction

1.1 Overview

This guide explains how to use the XENIX Software Development system to
create and maintain C and assembly language programs. The system provides
a broad spectrum of programs and commands to help you design and develop
applications and system software. These programs and commands let you
create C and assembly language programs for execution on the XENIX system.
They also let you debug these programs, automate their creation, and maintain
versionsof the programsyou develop.

The following sections introduce the programs and commands of the XENIX
Software Development System and explain the steps you can take to develop
programs for the XENIX system. Most of the programs and commands in these
introductory sections are fully explained later in this guide. Some commands
mentioned here are part of the XENIX Timesharing System and are explained in
the XENIX User’s Guide and XENIX Operations Guide.

1.2 Creating C Language Programs

All C language programs start as a collection of C program statementson files.
The XENIX system provides a number of text editors that let you create source
files easily and efficiently. The most convenient editor is the screen-oriented
editor vi. Vi provides many editing commands that let you easily insert,
replace, move, and search for text. All commands can be invoked from
command keys or from a command line. The program has also has a variety of
options that let you modify its operation.

Once a C language program has been written to asource file, you can create an
executable program using the cc command. The cc command invokes the
XENIX C compiler which compiles the source file. This command also invokes
other XENIX programs to prepare the compiled program for execution.

You can debug an executable C program with the XENIX debugger adb. Adb
provides a direct interface to the machine instructions that make up an
executable program.

If you wish to check a program before compilation, you can use lint, the XENIX
C program checker. Lint checks the content and construction of C language
programs for syntactical and logical errors. It also enforces a strict set of
guidelines for proper C programming style. Liatis normally used in the early
stagesof program development to check forillegal and improper usageof the C
language.

‘1.3 Creating Other Programs

The C programming language can meet the needs of most programming
projects. In cases where finer control of execution is required, you Ir:ay create

1-1

XENIX Programmers Guide

assembly language programs using the XENIX assembler as. As assembles
source files and produces relocatable object files that can be linked to your C
language programs with ld. The !d program is the XENIX linker. It links
relocatable object files created by the C compiler or assembler and produces
executable programs. Note that the cc command automatically invokes the
linker and the assembler so use of either isoptional.

You can create source files for lexical analyzers and parsers using the program
generators lez and yacc. The lez program is the XENIX lexical analyzer
generator. It generates lexical analyzers, written in C program statements,
from given specification files. Lexical analyzers are used in programs to pick
patterns out of complex input and convert these patterns into meaningful
values or tokens. The yecc program is the XENIX parser generator. It
generates parsers, written in C program statements, from given specification
files. Parsers are used in programs to convert meaningful sequences of tokens
and values into actions. Lezand yacc areoften used together to make complete
programs.

You can preprocess C and assembly language source files, or even lez and yace
source files using the m4 macro processor. The m{ program performs several
preprocessing functions, such as converting macros to their defined values and
including the contentsof filesinto a source file.

1.4 Creating and Maintaining Libraries

You can create libraries of useful C and assembly language functions and
programs using the ar and ranlib programs. Ar, the XENIX archiver, can be
used to create libraries of relocatable object files. Ranlib, the XENIX random
library generator, converts archive libraries to random libraries and places a
table of contentsat the front of each library.

The lorder command finds the ordering relation in an object library. The
tsort command topologically sorts name lists so that forward dependencies are
apparent.

1.6 Maintaining Program Source Files

You can automate the creation of executable programs from C and assembly
language source files and maintain your source files using the make program
and the SCCS commands.

The make program is the XENIX program maintainer. It automates the steps
required to create executable programs and provides a mechanism for ensuring
up to date programs. It is used with small, large, and medium-scale
programming projects.

The Source Code Control (SCCS) commands let you maintain different versions
of asingle program. The commands compress all versions of a source fileintoa

1-2

e

Introduction

single file containing a list of differences. These commands also restore
compressed files to their original size and content.

Many XENIX commandslet you carefully examine a program’s source files. The
ctags command creates a tags file so that C functions can be quickly foundina
set of related C source files. The mkstr command creates an error message file
by examininga C source file.

Other commands let you examine object and executable binary files. The nm
command prints the list of symbol names in a program. The hd command
performs a hexadecimal dump of given files, printing files in a variety of
formats, one of which is hexadecimal. The od command performs an octal
dump of given files. adb (see chapter 6), allows disassembly of your program.
The size command reports the size of an object file. The strings command
finds and prints readable text {strings) in an object or other binary file. The
strip command removes symbols and relocation bitsfrom executable files. The
sum command computes check sum for a file and counts blocks. It is used in
looking for bad spots in a file and for verifying transmission of data between
systems. The xstr command extracts strings from C programs to implement
shared strings.

1.8 Creating Programs With Shell Commands

In some cases, it is easier to write a program as a series of XENIX shell
commands than itis to create a C language program. Shell commands provide
much of the same control capability as the C language and give direct access to
all the commands and programs normallyavailable to the XENIX user.

The csh command invokes the C-shell, a XENIX command interpreter. The C-
shell interprets and executes commands taken from the keyboard or from a
command file. It has a C-like syntax which makes programming in this
command language easy. It also has an aliasing facility, and a command history
mechanism.

1.7 Using This Guide

This guide is intended for programmers who are familiar with the C
programming language and with the XENIX system.

C language programmers should read Chapters2, 3, and 6 for anexplanation of
how tocompileand debug Clanguage programs.

Assembly language programmers should read Chapter 7 for an explanation of
the XENIX assembler and Chapter 6 for an explanation of how to debug
programs.

Programmers who wish to automate the compilation process of their programs
should read Chapter 4 for an explanation of the make program. Programmers

1-3

XENIX Programmers Guide

who wish to organize and maintain multiple versions of their programs should
read Chapter 5 for an explanation of the Source Code Control System (SCCS)
commands.

Special project programmers who need a convenient way to produce lexical
analyzers and parsers should read Chapters 8 and 9 for explanations of the lez
and yacc program generators,

Chapter 1 introduces the XENIX software development programs provided
with this package.

Chapter 2 explains how to compile C language programs using the cc
command.

Chapter 3 explains how to check C language programs for syntactic and
semantic correctness using the C program checker lint.

Chapter 4 explains how to automate the development of a program or other
projectusing the make program.

Chapter 5 explains how to control and maintain all versions of a project’s
source files using the SCCS commands.

Chapter 6 explains how to debug C and assembly language programs using the
XENIX debugger adb.

Chapter 7 explains how to assemble assembly language programs using the
XENIX assembler as.

Chapter 8 explainshow to create lexical analyzers usingthe program generator
lez.

Chapter 9 explainshow to create parsersusingthe program generator yace.

Appendix A explains how to write C langugae programs that can be compiled
on other XENIX systems.

Appendix B explains how to use to create and process macros using the m4
Macro processor.
1.8 Notational Conventions

This guide uses a number of special symbols to describe the syntax of XENIX
commands. The followingisa list of these symbols and their meaning.

[] Bracketsindicate anoptional command argument.

Ellipses (three dots) indicate that the preceding
argument may be repeated one or more times.

1-4

M

SMALL
bold

stalice

Introduction

Small capitalsindicate a key to be pressed.
Boldface charactersindicate a command name.

Italic characters indicate a placeholder for a command
argument. When typing a command, a placeholder
must be replaced with an appropriate filename,
number, or option.

Chapter 2
Cc: A C Compiler

2.1 Introduction 2-1

2.2 Invoking the C Compiler 2-2

2.3 CompilingaSourceFile 2-2

2.4 Compiling Several SourceFiles 2-3
2.5 Using ObjectFiles 2-4

2.6 Namingthe OQutputFile 2-5

2.7 Compiling WithoutLinking 2-6

2.8 LinkingtoLibrary Functions 2-6

2.9 OptimizingaSourceFile 2-7

2.10 Producing an Assembly Source File .2-8
2.11 Stripping the Symbol Table 2-8

2.12 Profiling aProéram 2-9

2.13 Saving aPreprocessed Source File 2-9
2.14 Defining a Macro 2-10

2.15 Defining the Include Directories 2-10

2.16 Error Messages 2-11

Cc: A C Compiler

2.1 Introduction

This chapter explains how to use the cc command to create executable
programs from C language source files. The command compiles C source files
by invoking the XENIX C compiler, the C preprocessor, and in some cases the C
optimizer. It then invokes other programs, such as the XENIX assembler a# and
linker Id, to complete the creation of the executable program.

The cc command accepts as C source files any file containing a complete C
program or one or more complete C functions. The command processes the
source files in five phases: preprocessing, assembly source generation,
optimization (if necessary), machine code generation, and linking.

In the preprocessing phase, the cc command invokes the C preprocessor, which
searches the source file for C directives. The preprocessor replaces each
directive with a corresponding value or meaning. For example, it replaces each
occurrence of a macro name with its defined value and each include directive
with the contents of its corresponding include file. It then copies the expanded
version of the source file to a temporary file. The preprocessor also allows
conditional compilation.

In the assembly source generation phase, the cc command invokes the C
compiler which translates the C program statementsin the temporary file into
equivalent assembly language instructions. These instructions form a
complete assembly language source file that performs the same tasks as the
statementsin the C source file. The compiler copies the assembly instructions
to a temporary file.

Inthe optional optimization phase, the cc-O commandinvokesthe C optimizer
which modifies the temporary assembly language file, making it smaller and
faster without altering the tasks its performs. Programs of all sizes benefit
from optimization.

In the machine code generation phase, the command invokes the XENIX
assembler as which assembles the temporary assembly language file. The
assembler creates an *‘object file’’ containing relocatable machine instructions
that can be prepared for execution. If more than one source file is processed, a
permanent object file is created for each source file.

In the linking phase, the command invokes the XENiX linker {d, which resolves
all unresolved references to variables and functions in the object file. If
necessary, [dsearches the appropriate program libraries to link the contentsof
other object filesto thegivenfile. The linker then writesthelinked instructions
to a file. This file, called an "executable binary” file, contains the program’s
machine instructions in executable binary form. The file z.0ut is used by
default.

This chapter assumes that you are familiar with the C programming language
and that you can create C program source files using a XENIX text editor.

XENIKX Programmer's Guide

2.2 Invoking the C Compiler

You can invoke the C compiler with the cc command. The command has the
form

cc [option] ... filename ...

where option is a command option, and filename is the name of a C language

* source file, an assembly language source file, or an object file. You may give
more than one option or filename, if desired, but you must separate each item
with one or more whitespace characters.

The cc command options let you control and modify command operation. For
example, you can direct the command to skip the optimization phase or createa
permanent copy of the file created during the assembly source generation
phase. The options also let you specify additional information about the
compilation, such as which program libraries to examine and what the name of
the executable file should be. The options are described in detail in the
following sections.

The cc command lets you name three different kinds of files: C source, assembly
language source, and object files. A file's contents are identified by the filename
extension. C source files have the extension .c. Assembly language source files
have the extension .s. Object files have the extension .0. The command delays
processing of each type of file until the appropriate phase. Thus C source files
are processed immediately, assembly language files -are processed in the
machine code generation phase, and object files are processed in the linking
phase. An assembly language source file may be created by hand using a XENIX
text editor, or created using the cc command’s assembly source generation
phase (see the —S option later in this chapter). An object file must be the output
of the XENIX assembler or the cc command’s machine code generation phase
(see the —c option).

2.3 Compiling a Source File

You can compile a source file containing a complete C program by giving the
name of the file when you invoke the cc command. The command reads and
compiles the statements in the file, links the compiled program with the
standard C library, then copies the program to the default output file z.out

To compiie asource program, type:

cc filename
where filename is the name of the file containing the program. The program
must be complete, that is, it must contain a2 main program function. It may
contain calls to functionsexplicitly defined by the program or by the standard
Clibrary. For example, assume the the following program is stored in the file
named matn.c.

2-2

-

Cc: A C Compiler

finclude <stdio.h>
main ()
int x,y;

scanf(" %d + %d”, &x, &y);
printf("%d\n”, x+y);
}

To compile thisprogram, type
cc main.c

The command first invokes the C preprocessor which adds the statements in
the file Jusr/include/stdio.h to the beginning of the program. It then compiles
these statements and the rest of the program statements. Next, the command
links the program with the standard C library which contains the binary code
for the scanf and printf functions. Finally, it copies the program to the file
z.0ut.

Youcanexecute the newprogramby typingthe command
x.out

The program waits until you enter a sum, then prints the value of that sum.
For example, if you type““3+ 5" the program displays*8”.

Note that when the command creates the z.out file, it gives the file the
permissions defined by your current file creation mask.

2.4 Compiling Several Source Files

Large source programs are often split into several files to make it easier to
update and edit. You can compile such a program by giving the namesof all the
files belonging to the program when you invoke the cc command. The
command reads and compiles each file in turn, then links all object files together
and copies the new program tothe file z.out.

To compile several source files, type

cc filename ...
where each filename is separated from the next by whitespace. One of these
files (and no more than one) must contain a program function named "main”.

The others may contain functions that are called by this main function or by
other functionsin the program.

2-3

XENIX Programmer's Guide

For example, suppose the following main program function isstored in the file
main.

#include <stdio.h>
extern int add();

main ()
int x,y,z;

scanf ("%d + %d", &x, &y);
z = add (x, y);
printf ("%d \n”, z);

}

Assumethat the following functionisstoredinthefileadd.c:

add (a, b)
int a, b;

return (a2 + b);

}

You can compile these filesand create an executable program by typing
cc main.c add.c

The command compiles the statements in masn.c, then compiles the
statementsin add.¢. Finally, it links the two together (along with the standard
C library) and copies the program to z.out. This program, like the program in
the previoussection, waits for asum, then printsthe value of the sum.

Compiling several source files at a time causes the command to create object
files to hold the binary code generated for each source file. These object files are
then used in the linking phase to create an executable program. The object files
have the same basename as the source file, but are given the .o file extension.
For example, when you compile the two source files above, the compiler
produces the object files main.o and add.o. These files are permanent files, i.e.,
the command does not delete them after completing its operation. The
command deletes the object file only if you compile a singlesource file.

2.6 Using Object Files

. You can use an object file created by the cc command in any later invocation of
the command. When you specify an object file, the command does nothing with
it until the linking phase, that is, the command doesnot compile or assemble
thefile.

2-4

R

Cc: A C Compiler

Sourece files containing functions do not need to be recompiled each time they
are linked to a new program. The generated object files can be used instead,
saving the programmer the time it takes to compile each source file. This is
another reason large programs are often split into several modules.

To create a program from both source files and object files, give the object
filenames along with the source filenames in the command invocation. Make
sure the filenames are separated by whitespace characters. For example,
assume that the following main program function is stored in the file mult.c:

#include <stdio.h>

main ()

{

int x,y,2,i;

scanf("%d * %d”, &x, &y);
for (i=0; i<y; i++)

z = add (z,x) ;
printf("%d \n”, z);

}

This program uses the add function compiled in the previous section. Since the
object file containing this function is named add.o, you can compile this
programand link the object file to it by typing

cc mult.c add.o
The compiler compiles the statements in mult.c and producesanobject file for
it, then the compiler links the add. o file to the new file and stores the executable

program in z.out. This program waits for you to enter the values to be
multiplied, multiplies the values, then displays the result.

2.6 Naming the Output File

You can change the name of the executable program file from z.out to any valid
filename by using the —o (for *‘output’’) option. The option has the form:

-0 filename
where filename is a valid filename or a full pathname. If a filename isgiven, the
program fileis stored in the current directory. If a full pathname is given, the
file is stored in the given directory. If a file with that name already exists, the
compiler removesthe oldfile before creatingthenewone.

Forexample, the command

cc main.c add.o -o addem

XENIX Programmer's Guide

causes the compiler to create anexecutable program file adde mfrom the source

file main.c and object file add.o. You can execute thisprogram by typing
addem

The permissions defined by the file creation mask apply to this file just as they
do to z.0ut,

Note that the —o option does not affect the z.out file. This means that the cc
command does not change the current contents of this file if the —o option has
been given.

2.7 Compiling Without Linking
You can compile a source file without linking it by using the —c (fcr *“compile’)
option. This option is useful if you wish to have an object file available for later
programs but have no current program that uses it. The option has the form:

—c filename

where filename is the name of the source file. You may give more than one
filename if you wish. Make sure each name is separated from the next by a
space.

For example, to make object files for the source files main.c, add.¢,and mult.c,
type

cc —c main.c add.c mult.c
The command compiles each file in turn and copies the compiled source to the
files main.o, add.o, and mult.o.
2.8 Linking to Library Functions
A library is a file that contains useful functions in object file fofmat. You can
link a source file to these functions by linking it to the library with the I (for
“library”) option. The option, used by the linker during the linking phase,
causes the linker to search the given library for the functions called in the
source file. If the functions are found, the linker links them to thesource file.
The option hasthe form

cc -lname

where name is a shortened version of the library’s actual filename. The actual
filename has the form

Cc: A C Compiler

libname.a

Spaces between the name and option are not permitted. The linker builds the
library’s filename from the given name, then searches the /iib directory for the
library. If not found, it searches the fuer/lib directory.

For example, the command
cc main.c -lcurses
links thelibrary libcurece. ato the source file masn.c.

A library is a convenient way to store a large collection of object files. The
XENIX system provides several libraries. The most common is the standard C
library. This library is automatically linked to your program whenever you
invoke the compiler. Other libraries, such as libcurses.a, must be explicitly
linked using the -1 <libname> option. Without the -1 flag, cc and 1d would
identify a library by inspecting its first byte. The XENIX libraries and their
functionsaredescribed in detailin the XENIX Programmer’s Reference Guide.

Note that you can create your own libraries with the XENIX ar and ranlib
programs. These commands let you copy object files to alibrary file and then
prepare thelibrary for searching by the linker. These commands are described
inthe XENIX Reference Manual.

In general, the linker does not search a library until the -1 option is
encountered, so the placement of the option is important. The option must
.follow thenamesof source filescontaining callstofunctionsin the givenlibrary.
2.9 Optimizing a Source File

You can optimize a source file, that is, make its corresponding assembly source
file more efficient, by using the —O (for “‘optimize”) option. For example, the
command

cc -O main.c

optimizesthe source file main.c.

Optimization only applies to compiled files; the compiler cannot optimize
assembly source or object files. Furthermore, the —O option must appear
before the names of the files you wish to optimize. Files preceding the option
are notoptimized. For example, the command

cc add.c -O main.c

optimizes main.c but not add.c.

XENIX Programmer's Guide

You may cornbine the —O and —c options to compile and optimize source files
without linking the resulting object files. For example, the command

cc -0 —c main.c add.c
createsoptimized object files from the source filesmain.cand add.c.
Although optimization is very useful for large programs, it takes more time

than regular compilation. In general, it should be used in the last stage of
program development, after the program has been debugged.

2.10 Producing an Assembly Source File

You can direct the compiler to save a copy of the temporary assembly source
file by using the —S (for “source’) option. The option causes the command to
copy the temporary assembly source file to a permanent file. This permanent
file has the same basename as the source file, but is given the file extension .s.

For example, the command
cc ~S add.c

compiles the source file add.c and creates an assembly language instruction file
add.s.

The —S option applies to source files only; the compiler cannot create a source
file from an existing object file. Furthermore, the option must appear before
the namesof the files for which the assembly source is to be saved.

2.11 Stripping the Symbol Table

You can reduce the size of a program by using the —s, option. This option
causes the cc command to strip the symbol table. The symbol table contains
*information about code relocation and program symbols and is used by the
XENIX debugger adb to allow symbolic references to variables and functions
when debugging. The information in this table is not required for normal
execution and can be stripped when the program has been completely
debugged.

The —s option strips the entire table, leaving machine instructionsonly.
For example,the command
cc -s main.c add.c

creates aexecutable program that containsnosymboltable. It also createsthe
object files main. o and add. o which contain no symbol tables.

et

Cc: A C Compiler

The —s option may be combined with the —~O option to create an optimized and
stripped program. An optimized and stripped program has the smallest size
possible.

Note that you can also strip a program with the XENIX command strip. See
the XENIX Reference Manualfor details.

2.12 Profiling a Program

You can examine the flow of execution of a program by adding “profiling’’ code
to the program with the —p option. The profiling code automatically keeps a
record of the number of times program functionsare called during execution of
the program. This record is written to the mon.out file and can be examined
with the prof command.

Forexample, the command
cc —p main.c

adds profiling code to the program created from the source file main.c. The
profiling code automatically calls the monitor function which creates the
mon.out file at normal termination of the program. The prof command and
monitor function are described in detail in prof(CP) and monitor(S) in the
XENIX Reference Manual.

2.13 Saving a Preprocessed Source File
You can save a copy of the temporary file created by the C preprocessor by
using the —P (for “preprocessing’’) option. The temporary file is identical to
the sourece file except that all macro nameshave been expanded and all include
directives have been replaced by the specified files. The command copies this
temporary file to a permanent file which has the same basename as the source
fileand the filename extension ..
For example, the command

cc —P main.c
creates a preprocessed file for thesource file main.c.
You may also display a copy of the preprocessed source file by using the ~E

option. This option invokes the C preprocessor only and directs the
preprocessor to send the preprocessed file to the standard out put.

2-9

XENKX Programmer's Guide

2.14 Defining a Macro

Youcan definethevalueor meaning of a macrousedin a source fileby using the
~D (for “define’’) option. The option lets you assign a value to a macro when
you invoke the compiler and is useful if you have used if directives in your
sourcefiles.
Theoptionhasthe form

-Dneme=def

where name is the name of the macro and def is its value or meaning. For
example, the command

cc -DNEED=2 main.c
sets the macro “NEED” to the value “2”. The command compiles the source
file main.c, replacing every occurrence of “NEED” with “2”". If a nameisgiven
but nodefinition, the compiler assignsthe value 1 by default.
You can also remove the initial definition of a macro by using the —U (for
“‘undefine”) option. Removing the initial definition is required if you wish to
use the-Doptiontwice in thesame commandline. The option hasthe form

cc -Uname
where nemeisthe macro name. For example, in the command

cc -DNEED=2 main.c -UNEED -DNEED=3 add.c

the -U optionsremoves the previous definition of “NEED” and allows a new
one.

2.15 Defining the Include Directories

You can explicitly define the directories containing include files by using the -1
(for ““include’) option. This option adds the given directory to the list of
directories containing include files. These directories are automatically
searched whenever you give an include directive in which the filename is
enclosedinanglebrackets. Theoptionhasthe form

-Idirectoryname

where directoryname is a valid pathname to a directory containing include
files. For example, the command

¢c ~Imyinclude main.c

2-10

Cc: A C Compiler

causes the compiler to search the directory myinclude for include fiies
requested by the source file main.c.

The directories are searched in the order they are given and only until the given
include file is found. The /uar/include directory is the default include directory
andisalwayssearched first.

2.18 Error Messages

The cc command itself produces error messages. It also lets the XENIX C
compiler, C preprocessor, C optimizer, assembler, and linker programs detect
and announce any errors found in the source files or command options. The
error messages are usually preceded by the name of the program which
detected theerror. If theerrorissevere, the cc command terminates and leaves
all files unchanged. Otherwise, it proceeds with the compilation and linking of
the given source filesifyouhavegiventhe appropriate commands.

Most error messages are generated by the C compiler. This displays messages
about errors found during compilation such as incorrect syntax, undefined
variables, and illegal use of operators. Error messages from the compiler begin
with the name of the source file and list the number of the line containing the
error.

The XENIX linker also gznerates many error messages. It displays messages
about errors found during linking such as undefined symbols and misnamed
libraries. The preprocessor, optimizer, and assembler also display messages if
errors are found. For example, the preprocessor displays an error message if it
cannot find an include file.

For convenience, you should use the XENIX C program checker lint before
compiling your C source files. Lint perforins detailed error checking on a source
file and provide a list of actual errors and possible problems which may affect
execution of the program. See Chapter 3, “‘Lint: A C Program Checker” for a
description of lint.

Chapter 3
Lint: A C Program Checker

3.1 Introduction 3-1

3.2 Invokinglint 3-1

3.3 Checking for Unused Variables and Functions 3-2
3.4 CheckingLocal Variables 3-3

3.5 CheckingforUnreachableStatements 3-4
3.6 CheckingforlnfiniteLoops 3-4

3.7 CheckingFunction Return Values 3-5

3.8 Checkingfor Unused Return Values 3-6

3.9 Checking Types 3-6

3.10 Checking Type Casts 3-7

3.11 Checking for Nonportable Character Use 3-7
3.12 Checking for Assignment of longstoints 3-7
3.13 Checking for Strange Constructions 3-8

3.14 Checking for Useof Older C Syntax 3-9

3.15 Checking Pointer Alignment 3-10

3.16 Checking Expression EvaluationOrder 3-10

3.17 Embedding Directives 3-11

3.18 Checking For Library Compatibility 3-12

Lint: A C Program Checker

3.1 Introduction
This chapter explains how to use the C program checker lint. The program
examines C source files and warns of errors or misconstructions that may cause
errors during compilation of the file or during execution of the compiled file.
In particular, lint checksfor:
Unused functions and variables
Unknown values in local variables
Unreachable statements and infinite loops
Unused and misused return values
Inconsistent types and type casts
Mismatched types in assignments
Nonportable and old fashioned syntax
Strange constructions
Inconsistent pointer alignment and expression evaluation order
The lint program and the C compiler are generally used together to check and
compile C language programs. Although the C compiler compiles C language
source files, it does not perform the sophisticated type and error checking
required by many programs, though syntax is gone over. The lint program,
provides additional checking of source files without compiling.
3.2 Invoking lint
You caninvoke lintprogramby typing
' lint [option] ... filename ... lib ...
where option isa command option that defines how the checker should operate,
filename is the name of the C language source file to be checked, and lib is the
name of a library to check. You can give more than one option, filename, or
library name in the command. If you give two or more filenames, lint assumes
that the files belong to the same program and checks the files accordingly. For
example, the command

lint main.c add.c

treats main.c and add.c as two partsof a complete program.

XENIX Programmer’s Guide

If lint discovers errors or inconsistencies in a source file, it produces messages
describing the problem. The message has the form

filename (num): description

where filename is the name of the source file containing the problem, num is the
number of the line in the source containing the problem, and description is a
description of the problem. For example, the message

main.c (3): warning: x unused in function main

shows that the variable "x", defined in line three of the source file masn.c, isnot
used anywhere in the file.

3.3 Checking for Unused Variables and Functions

The lint program checks for unused variables and functions by seeing if each
declared variable and function is used in at least once in the source file. The
program considers a variable or function used if the name appears in at least
one statement. It is not considered used if it only appears on the left side of on
assignment. For example, in the following program fragment

main ()
int x,y,z;

x=1; y=2; z=x+y;

thevariables ““x’*and *‘y’’ are considered used, but variable “*z” is not.

Unused variables and functions often occur during the development of large
programs. It is not uncommon for a programmer to remove all references to a
variable or function from a source file but forget to remove its declaration.
Such unused variables and functionsrarely cause working programsto fail, but
do make programs larger, harder to understand and change. Checking for
unused variables and functions can also help you find variables or functions
that you intended to used but accidentally have left out of the program.

Note that the lint program does not report a variable or function unusedifit is
explicitly declared with the externstorageclass. Suchavariableor functionis
assumed to be used in anothersource file.

You can direct lint to ignore all the external declarations in a source file by
usingthe —x (for “‘external’’)option. The option causes the program checker to
skip any declarationthatbeginswith theextern storage class.

The option is typically used tosave time when checkinga program, especially if
allexternal declarationsareknownto be valid.

3-2

Lint: A C Program Checker

Some programming styles require functions that perform closely related tasks
to have the same number and type of arguments regardless of whether or not
these arguments are used. Under normal operation, lintreports any argument
not used as an unused variable, but you can direct lint to ignore unused
arguments by using the —v option. The —v option causes lint to ignore all
unused function arguments except for those declared with register storage
class. The program considers unused arguments of this class to be a
preventable waste of the register resources of the computer.

You can direct lint to ignore all unused variables and functions by using the —u
(for *unused”) option. This option prevents lint from reporting variables and
functions it considers unused.

This option is typically used when checking a source file that contains just a
portion of a large program. Such source files usually contain declarations of
variables and functions that are intended to be usedin other source filesand are
not explicitly used within the file. Since lint can only check the given file, it
assumes thatsuch variablesor functionsare unused andreportsthem as such.

3.4 Checking Local Variables

The lint program checks all local variables to see that they are set to a value
before being used. Since local variables have either automatic or register
storage Class, their values at the start of the program or function cannot be
.known. Usingsuch avariablebefore assigning avaluetoitisanerror.

The program checks the local variables by searching for the first assignment in
which the variable receives a value and the first statement or expression in
which the variable is used. If the first assignment appears later than the first
use, lint considers the variable inappropriately used. For example, in the
program fragment

char ¢

if(¢ != EOT)
¢ = getchar();

lintwarnsthat the the variable ‘‘c’ isused before it is assigned.

If the variable is used in the same statement in which it is assigned for the first
time, lint determines the order of evaluation of the statement and displaysan
appropriate message. For example, inthe program fragment

int i,total;

scanf(” %d”, &i);
total = total + i;

lint warns thatthevariable “total” is used before itisset since it appearsonthe

3-3

XENIX Programmer's Guide
rightside of thesamestatementthat assignsitsfirstvalue.

3.5 Checking for Unreachable Statements

The lint program checks for unreachable statements, that is, for unlabeled
statements that immediately follow a goto, break, continue, or return
statement. During execution of a program, the unreachable statements never
receive execution control and are therefore considered wasteful. For example,
inthe program fragment

int x,y;

return (x+y);
exit (1);

the function call ezit after thereturnstatement is unreachable.

Unreachable statements are common when developing programs containing
large case constructions or loops containing break and continue statements.

During normal operation, lint reports all unreachable break statements.
Unreachable break statements are relatively common (some programs created
by the yacc and lez programs contain hundreds), so it may be desirable to
suppress these reports. You can direct [intto suppress the reportsby usingthe
—boption.

Note that lint assumes that all functions eventually return control, so it does
not report as unreachable any statement that follows a function that takes
. control and never returnsit. For example:

exit (1);
return;

the call to ezit causes the return statement to become an unreachable
statement, butlintdoes not reportit assuch.

3.8 Checking for Infinite Loops

The lint program checks for infinite loops and for loops which are never
executed. For example, the statement

while (1) { }
and

for ;) {}

are both considered infinite loops. While the statements

3-4

Lint: A C Program Checker

while (0) { }
or

for (0;0;) { }
arenever executed.

1t is relatively common for valid programs to have such loops, but they are
generally considered errors.

3.7 Checking Function Return Values
The lint program checks that a function returns a meaningful value if
necessary. Some functionsreturnvalues which are never used; some programs
incorrectly use function values that have never been returned. Lint addresses
these problems in a number of ways.

. Within a function definition, the appearance of both

return (expr);

and

return ;

statements is cause for alarm. In this case, lint produces the following error
message:

function name contains return(e) and return
It is difficult to detect when a function return is implied by the flow of control

reaching the end of the given function. This is demonstrated with a simple
example:

f(a)
if (a)
& ()

return (3);

}

Note that if the variable ““a” tests false, then fwill call the function g and then
return with no defined return value. This will trigger a report from lint. If g,
like ezit, never returns, the message will still be produced whenin fact nothing
is wrong. In practice, potentially serious bugs can be discovered with this
feature. It also accountsfor asome of the noise messages produced by Isat.

3-5

XENIX Programmer’s Guide

3.8 Checking for Unused Return Values

The lint program checks for cases where a function returns a value, but the
value is usually ignored. Lint considersfunctionsthat return unused values to
be inefficient, and functions that return rarely used values to be aresult of bad

programming style.

Lint also checks for cases where a function does not return a value but the value
isused anyway. Thisisconsideredaseriouserror.

| 3.9 Checking Types

Lint enforces the type checking rules of C more strictly than the C compiler.
The additional checking occursin four major areas:

1. Acrosscertain binary operatorsandimplied assignments
2. Atthestructure selection operators

3. Between the definition and uses of functions

4. Intheuseofenumerations

There are a number of operatorsthat have animplied balancing between types
of operands. The assignment, conditional, and relational operators have this
property. The argument of a return statement, and expressions used in
initialization also suffer similar conversions. In these operations, char, short,
int, long, unsigned, float, and double types may be freely intermixed. The
typesof pointers must agreeexactly,except that arraysof x’s can be intermixed
with pointerstox’s.

The type checking rules also require that, in structure references, the left
operand of a pointer arrow symbol (->) be a pointer to a structure, the left
operand of a period (.) be a structure, and the right operand of these operators
be a member of the structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the typeschar, short, int,
and unsigned. Pointers can also be matched with the associated arrays. Aside
from these relaxations in type checking, all actual arguments must agree in
type with their declared counterparts.

For enumerations, checks are made that enumeration variables or members
are not mixed with other types or other enumerations, and that the only
operations applied are assignment (=), initialization, equals (==); and not-
equals(!=). Enumerationsmay also be function arguments and return values.

3-6

Lint: A C Program Checker

3.10 Checking Type Casts

The type cast feature in C was introduced largely as an aid to producing more
portable programs. Consider the assignment

p=1;

where *‘p” is a character pointer. Lint reports this assuspect. But consider the
assignment

p = (char #)1;

in which a cast has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this, and has clearly
signaled his intentions. On the other hand, if this code is moved to another
machine, it should be looked at carefully. The —c option controls the printing
of comments about casts. When —c¢ is in effect, casts are not checked and all
legal casts are passed without comment, no matter how strange the type mixing
seems to be.

3.11 Checking for Nonportable Character Use

Lint flags certain comparisons and assignments as illegal or nonportable. For
example, the fragment

char ¢;

11‘((c = getchar()) <0} ...

works on some machines, but fails on machines where characters always take
[{PS2)

on positive values. The solution is to declare ‘¢’ an integer, since getchar is
actually returning integer values. In any case, {int issues the message:

nonportable character comparison
A similar issue arises with bitfields. When assignments of constant values are
made to bitfields, the field may be too small to hold the value. Thisisespecially
true where on some machines bitfields are considered as signed quantities.
While it may seem counter-intuitive to consider that a 2-bit field declared of
type int cannot hold the value 3, the problem disappears if the bitfield is
declared tohavetypeunsigned.

3.12 Checking for Assignment of longs to ints

Bugs may arise from the assignment of a long to an int, because of a loss in

3-7

XENIX Programmer’s Guide

accuracy in the process. This may happen in programs that have been
incompletely converted by changing type definitions with typedef. When a
typedef variable is changed from int to long, the program can stop working
because some intermediate results may be assigned to integer values, losing
accuracy. Since there are a number of legitimate reasons for assigning longs to
integers, you may wish to suppress detection of these assignments by using the
—aoption.
3.13 Checking for Strange Constructions
Several perfectly legal, but somewhat strange, constructions are flagged by
tint. The generated messages encourage better code quality, clearer style, and
may even point out bugs. For example, in the statement

*pt++;
the star (*) doesnothing and lint prints:

null effect

The programfragment

unsigned x ;
if (x <0)...

isalso strangesincethetestwillnever succeed. Similarly, the test
if (x >0) ...
isequivalentto
if(x!=0)
which may not be the intended action. In these cases, lint prints the message:

degenerate unsigned comparison

If you use
if(1!=0)...
then lintreports

constant in conditional context
since the comparison of 1 with 0 gives a constant result.

Another construction detected by lfntinvolves operator precedence. Bugs that
arise from misunderstandings about the precedence of operators can be

3-8

Lint: A C Program Checker
accentuated by spacing and formatting, making such bugs extremely hard to
find. For example, the statements

if(x&077 ==0) ...
or
x<<2+ 40

probably do not do what isintended. Thebest solution is to parenthesize such
expressions. Lintencouragesthisby printing anappropriate message.

Finally, lint checks variables that are redeclared in inner blocks in a way that
conflicts with their use in outer blocks. Thisislegal, but isconsidered bad style,
usually unnecessary, and frequently a bug.

If you do not wish these heuristic checks, you can suppressthem by using the —-h
option.

3.14 Checking for Use of Older C Syntax

Lint checks for older C constructions. These fall into two classes: assignment
operators and initialization.

The older forms of assignment operators (e.g., =+, =-, ...) can cause
ambiguous expressions, such as

a=-1;

which could be taken aseither

or

The situation is especially perplexing if this kind of ambiguity arises as the
result of a macro substitution. The newer, and preferred operators (e.g., +=,
-=) have no such ambiguities. T o encourage the abandonment of the older
forms, lintchecks for occurrences of these old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int x 1;

toinitialize “‘x” to 1. This causessyntactic difficulties. For example

39

XENIX Programmer’s Guide

int x (-1);
looks somewhat like the beginning of a function declaration

int x (y){ ...

and the compiler must read past *‘x’’ to determine what the declaration really
is. The problem is even more perplexing when the initializer involves a macro.
The current C syntax places an equal sign between the variable and the
initializer:

intx = -1;

Thisformisfree ofany possible syntactic ambiguity.

3.15 Checking Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal
on others, due to alignment restrictions. For example, on some machines it is
reasonable to assign integer pointers to double pointers, since double precision
values may begin on any integer boundary. On other machines, however,
double precision values must begin on even word boundaries; thus, not all such
assignments make sense. Lint tries to detect cases where pointers are assigned
to other pointers, and such alignment problems might arise. The message

possible pointer alignment problem

resultsfrom thissituation.

3.18 Checking Expression Evaluation Order

In complicated expressions, the bestorder in which to evaluate subexpressions
may be highly machine-dependent. For example, on machines in which the
stack runs up, function arguments will probably be best evaluated from right
to left; on machines with a stack running down, left to right is probably best.
Function calls embedded as arguments of other functions may or may not be
treated in thesame way as ordinary arguments. Similar issues arise with other
operators that have side effects, such as the assignment operators and the
increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly
compromised, the C language leaves the order of evaluation of complicated
expressions up to the compiler, and various C compilers have considerable
differences in the order in which they will evaluate complicated expressions. In
particular, if any variable is changed by a side effect, and also used elsewhere in
the same expression, the resultisexplicitly undefined.

3-10

Lint: A C Program Checker

Lint checks for the important special case where a simple scalar variable is
affected. Forexample, the statement

afi] = bli++];
will draw the comment:

warning: i evaluation order undefined

3.17 Embedding Directives

There are occasions when the programmer is smarter than lint. There may be
valid reasons for illegal type casts, functions with a variable number of
arguments, and other constructions that lint flags. Moreover, as specified in
the above sections, the flow of control information produced by lint often has
blind spots, causing occasional spurious messages about perfectly reasonable
programs. Some way of communicating with lint, typically to turn off its
output, is desirable. Therefore, a number of words are recognized by lint when
they are embedded in comments in a C source file. These words are called
directives. Lintdirectivesare invisible to the compiler.

The first directive discussed concerns flow of control information. If a
particular place in the program cannot be reached, this can be asserted at the
appropriate spot in the program with the directive:

/+ NOTREACHED +/

Similarly, if you desire to turn off strict type checking for the next expression,
use the directive:

/+ NOSTRICT +/

The situation reverts to the previous default after the next expression. The —v
option can be turned on forone function with the directive:

/+ ARGSUSED +/

Comments about a variable number of arguments in calls to a function can be
turned off by preceding the function definition with the directive:

/* VARARGS #+/
In some cases, it is desirable to check the first several arguments, and leave the
later arguments unchecked. Do this by following the VARARGS keyword

immediately with a digit giving the number of arguments that should be
checked. Thus:

3-11

XENIX Programmer’s Guide

/* VARARGS2 s/
causesonly the first twoargumentsto be checked. Finally, the directive
/* LINTLIBRARY «/

at the head of a file identifies this file as a library declaration file, discussed in
the next section.

3.18 Checking For Library Compatibility
Lint accepts certain library directives, such zs

-ly

and tests the source files for compatibility with these libraries. This testing is
done by accessing library description files whose names are constructed from
the library directives. These files all begin with the directive

/+ LINTLIBRARY ¢/

which is followed by a series of dummy function definitions. The critical parts
of these definitions are the declaration of the function return type, whether the
dummy function returns a value, and the number 2nd types of arguments to
the function. The “VARARGS" and “ARGSUSED"” directives can be used to
specify features of the library functions.

Lint library files are processed like ordinary source files. The only difference is
that functions that are defined in a library file, but are not used in a source file,
draw no comments. Lint does not simulate afulllibrary search algorithm, and
checks toseeif the source files contain redefinitionsof library routines.

By default, lint checks the programs it is given against a standard library file,
which contains descriptions of the programs that are normally loaded whena C
program is run. When the —p option is in effect, the portable library file is
checked containing descriptions of the standard I/O library routines which are
expected to be portable across various machines. The —~n option can be used to
suppress all library checking.

Lint library files are named " /usr/lib/ll*". The programmer may wish to
examine the lint libraries directly to see what lint thinks a function should
passed and return. Printed out, lint libraries also make satisfactory skeleton
quick-reference cards.

3-12

i

Chapter 4
Make: A Program Maintainer

4.1 Introduction 4-1

4.2 Creating aMakefile 4-1

43 Invoking Make 4-3

4.4 Using Pseudo-Target Names 4-4

4.5 Using Macros 4-5

4.6 Using ShellEnvironment Variables 4-8
4.7 Usingthe Built-In Rules 4-9

4.8 Changing the Built-in Rules 4-10

49 UsingLibraries 4-12

4.10 Troubleshooting 4-13

4.11 Using Make: An Example 4-13

Make: A Program Maintainer

4.1 Introduction

The make program provides an easy way to automate the creation of large
programs. Make reads commands from a user-defined “makefile” that lists
the filestobe created, the commands that create them, and the filesfrom which
they are created. When you direct make to create a program, it verifies that
each file on which the program depends is up to date, then creates the program
by executing the given commands. If a file is not up to date, make updates it
before creating the program. Make updates a program by executing explicitly
given commands, or one of the many built-in commands.

This chapter explains how to use make to automate medium-sized
programming projects. It explains how to create makefilesfor eachproject,and
how to invoke make for creating programs and updating files. For more
detailsabout the program,see make (CP)inthe XENIX Reference Manual.

4.2 Creating a Makefile

A makefile contains one or more lines of text called dependency lines. A
dependency line shows how a given file depends on other files and what
commands are required to bring a file up to date. A dependency line has the
form

target ... : [dependent .| [; command ...

where targetis the filename of the file to be updated, dependent is the filename
of the file on which the target depends, and command is the XENIX command
needed to create the target file. Each dependency line must have at least one
command associated withit,evenifit isonly thenull command (;).

Youmay give more than one target filename or dependent filename if desired.
Each filename must be separated from the next by at least one space. The
target filenames must be separated from the dependent filenames by a colon (:).
Filenames must be spelled as defined by the XENIX system. Shell
metacharacters, such asstar (*) and question mark (?), can also be used.

You may give a sequence of commands on the same line as the target and
dependent filenames, if you precede each command with a semicolon (;). You
can give additional commands on following lines by beginning each line with a
tab character. Commands must be given exactly as they would appear on a
shell command line. The at sign (@) may be placed in front of a command to
prevent make from displaying the command before executing it. Shell
commands, such as ¢d(C), must appear on single lines; they must not contain
the backslash (\) and newline character combination.

Youmay add a comment to a makefile by starting the comment with a number

sign (#) and ending it with a newline character. All characters after the
number sign are ignored. Comments may be place at the end of a dependency

41

XENIX Programmer's Guide

line if desired. If a command contains a number sign, it must be enclosed in
double quotation marks ().

If a dependency line is too long, you can continue it by typing a backslash (\)
and a newline character.

The makefile should be kept in the same directory asthegivensourcefiles. For
convenience, the filenames makefile, Makefile, s.makefile, and e.Makefile
are provided as default filenames. These names are used by make if no explicit
name is given at invocation. You may use one of these namesfor your makefile,
or choose one of your own. If the filename begins with the s. prefix, make
assumes that it is an SCCS file and invokes the appropriate SCCS command to
retrieve the lastest version of the file.

To illustrate dependency lines, consider the following example. A program
named prog is made by linking three object files, 2.0, y.0, and z.0. These object
files are created by compiling the C language source files z.c, y.¢, and z.c.
Furthermore, the files z.c and y.c contain the line

finclude "defs”

This means that prog depends on the three object files, the object files depend
on the C source files, and two of the source files depend on the include file defe.
You can represent these relationshipsin a makefile with the following lines.

prog: Xx.0 y.o .0
¢ X.0 y.0 2.0 —O prog
x.0: x.c defs

cc -¢ x.c
y.0: y.c defs

cc -¢ y.c
z.0: 2.c

cc -c z.c

In the first dependency line, progis the target file and 2.0, y.0, and z.0are its
dependents. The command sequence

€C X.0 y.0 2.0 =0 prog

on the next line tells how to create progif it is out of date. The programisoutof
dateifanyoneofitsdependents hasbeen modifiedsince progwaslast created.

The second, third, and fourth dependency lines have the same form, with the
2.0, y.0, and z.0 files as targets and z.¢, y.c, 2.¢, and defe files as dependents.
Each dependency line has one command sequence which defines how to update
the giventargetfile.

42

Make: A Program Maintainer

4.3 Invoking Make

Once you have a makefile and wish to update and modify one or more target
files in the file, you can invoke make by typing its name and optional
arguments. The invocation hasthe form

make [option] ... [macdef] ... [target] ...

where option is a program option used to modify program operation, macdefis
a macro definition used to give a macro a value or meaning, and target is the
filename of the file to be updated. It must correspond toone of the target names
in the makefile. All arguments are optional. If you give more than one
argument, you must separate them with spaces.

You can direct make to update the first target file in the makefile by typing
just the program name. In this case, make searches for the files makefile,
Makefile, e.makefile, and s.Makefile in the current directory, and uses the
first one it finds as themakefile. For example, assumethat the current makefile
containsthedependency linesgivenin the last section. Thenthe command

make

compares the current date of the prog program with the current date each of
the object files z.0, y.0, and z.0. It recreates prog if any changes have been
made to any object file since prog waslast created. It also compares the current
dates of the object files with the dates of the four source files z.¢, p.¢, z.¢, or
defs, and recreates the object files if the source files have changed. It does this
before recreating prog so that the recreated object files can be used torecreate
prog. If none of the source or object files have been altered since the last time
progwas created, make announcesthisfactandstops. No filesare changed.

You can direct make to update a given target file by giving the filename of the
target. For example,

make x.0

causes make to recompile the z.0 file, if the z.c or defsfiles have changed since
the object file waslast created. Similarly, the command

make x.0 z.0
causes make to recompile 2.0 and z.0 if the corresponding dependents have

been modified. Make processes target names from the command linein aleft to
rightorder.

4-3

XENIX Programmer’s Guide
Youcanspecify the name of the makefile you wish maketouse by giving the—f
option in the invocation. Theoption has the form

~f filename

where filename is the name of the makefile. You must supply a full pathname if
the fileisnotin the current directory. For example, the command

make -f makeprog
reads the dependency lines of the makefile named makeprog found in the
current directory. You can direct make to read dependency lines from the
standard input by giving ‘=" asthe filename. Make reads the standard input

until the end-of-filecharacter isencountered.

You may use the program options to modify the operation of the make
program. The following list describessomeof theoptions.

-p Prints the complete set of macro definitions and dependency lines
in a makefile.

- Ignoreserrors returned by XENIX commands.

-k Abandons work on the current entry, but continues on other
branchesthat donot depend on that entry.

-s Executes commands without displaying them.
-r Ignoresthe built-in rules.
-n Displays commands but does not execute them. Make even

displayslines beginning with the at sign (@).

- Ignores any macro definitions that attempt to assign new values to
the shell’s environment variables.

-t Changes the modification date of each target file without recreating
the files.

Note that make executes each command in the makefile by passing it to a
separate invocation of a shell. Because of this, care must be taken with certain
commands (e.g., cd and shell control commands) that have meaning only
within a single shell process; the results are forgotten before the next line is
executed. Ifan error occurs, make normally stops the command.

4.4 Using Pseudo-Target Names

It is of ten useful to include dependency lines that have pseudo-target names,
i.e., names for which no files actually exist or are produced. Pseudo-target

44

R

Make: A Program Maintainer

namesallow make toperformtasksnot directly connected withthe creation of
a program, such as deleting old files or printing copies of source files. For
example, the following dependency line removes old copies of the given object
files when the pseudo-target name ‘‘cleanup” is given in the invocation of
make.

cleanup :
rm X.0 y.0 2.0

Since nofile exists for a given pseudo-target name, the target is always assumed
tobe out of date. Thus theassociated command isalwaysexecuted.

Make also has built-in pseudo-target names that modify its operation. The
pseudo-target name “.IGNORE™ causes make to ignore errors during
execution of commands, allowing make to continue after an error. Thisis the
same as the —i option. (Make also ignores errors for a given command if the
commandstring beginswith a hyphen (-).)

The pseudo-target name “.DEFAULT" defines the commands to be executed
either when no built-in rule or user-defined dependency line existsfor the given
target. You may give any number of commands with this name. If
“ DEFAULT” is not used and an undefined ta.rget is given, make prints a
message and stops.

The pseudo-target name “.PRECIOUS” prevents dependents of the current
target from being deleted. when make is terminated using the INTERRUPT or
QUITkey,and the pseudo-target name **.SILENT"” hasthesameeflect as the —s
option.

4.5 Using Macros

Animportant feature of amakefileisthat it can contain macros. Amacroisa
short name that represents a filename or command option. The macros can be
defined when you invoke make, or in the makefile itself.

A macro definition is a line containing a name, an equal sign (=), and a value.
The equal sign must not be preceded by a colon or a tab. The name (string of
letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign (leading
blanks and tabs are stripped.) The following are valid macro definitions:

2 = xyz
abc = -1l -ly
LIBES =

The last definition assigns “LIBES” the null string. A macro that is never
explicitly defined has the null string asits value.

45

XENIX Programmer's Guide

A macro is invoked by preceding the macro name with a dollar sign; macro
names longer than one character must be placed in parentheses. The name of
the macro is either the single character after the dollar sign or a name inside
parentheses. The following are valid macro invocations.

$(CFLAGS)

$2

$(xy)

$Z

$(2)
Thelasttwoinvocationsareidentical.

Macrosare typically used asplaceholdersforvaluesthat may change from time
to time. For example, the following makefile uses a macro for the names of
object files to be link and one for thenamesof the library.

OBJECTS = x.0 y.o z.0
LIBES == -lin
prog: $(OBJECTS)
cc $(OBJECTS) $(LIBES) —o prog

If thismakefile is invoked with the command
make

it will load the three object files with the lez library specified with the ~lln
option.

Youmay include a macro definition in a command line. A macro definitionina
command line has the same form as a macro definition in a makefile. If spaces
are to be used in the definition, double quotation marks must be used toenclose
the definition. Macros in a command line override corresponding definitions
found in the makefile. For example, the command

make "LIBES=-lIn -Im”
loads assigns the library options—Hn and —Im to “LIBES.
You can modify all or part of the value generated from a macro invocation
without changing the macro itself by using the “substitution sequence”. The
sequence has the form

name : st] =[st2|
where name is the name of the macro whose value is to be modified, st1is the
character or characters to be modified, and #t2is the character or charactersto

replace the modified characters. If #t2 is not given, st! is replaced by a null
character.

4-6

\.;/

Make: A Program Maintainer

The substitution sequence is typically used to allow user-defined
metacharactersin a makefile. For example, suppose that ‘“.x” is to be used asa
metacharacter for a prefix and suppose that a makefile contains the definition
FILES = progl.x prog2.x prog3.x
Then the macro invocation
$(FILES : .x=.0)
generates the value
progl.o prog2.o progd.o
The actual value of “FILES” remains unchanged.

Make hasfive built-in macros that can be used when writing dependency lines.
The following is a list of these macros.

$+ Contains the name of the current target with the suffix removed.
Thus if the current target is prog.o, $* contains prog. It may be
usedindependency lines that redefine the built-inrules.

$@ Contains the full pathname of the current target. It may be used in
dependency lines with user-defined target names.

$< Contains the filename of the dependent that.is more recent than the
given target. It may be used in dependency lines with built-in target
namesor the .DEFAULT pseudo-target name.

$ Containsthe filenames of the dependents that are more recent than
the given target. It may be used in dependency lines with user-
defined target names.

$% Contains the filename of a library member. It may be used with

target library names (see the section “Using Libraries” later in this
chapter). In this case, $@ contains the name of the library and $%
containsthe name of thelibrary member.

You can change the meaning of a built-in macro by appending the D or F
descriptor to its name. A built-in macro with the D descriptor contains the
name of the directory containing the given file. If the file is in the current
directory, the macro contains “.”. A macro with the F descriptor containsthe
name of the given file with the directory name part removed. The D and F
descriptor must not be used with the $? macro.

4-7

XENIX Programmer’s Guide

4.8 Using Shell Environment Variables

Make provides access to current values of the shell’s environment variables
such as *“HOME", “PATH", and “LOGIN”. Make automatically assigns the
value of each shell variable in your environment to a macro of the same name.
You can access a variable’s value in the same way that you access the value of
explicitly defined macros. For example, in the following dependency line,
“$(HOME)" hasthe same value as the user’s“HOME" variable.

Pro cc $(HOME)/x.0 $(HOME)/y.o /usr/pub/z.0

Make assigns the shell variable values after it assigns values to the built-in
macros, but before it assigns values to user-specified macros. Thus, you can
override the value of a shell variable by explicitly assigning a value to the
corresponding macro. For example, the following macro definition causes
make to ignore the current value of the “HOME" variable and use /usr/pub
instead.

HOME = /usr/pub

If a makefile contains macro definitions that override the current values of the
shell variables, you can direct make to ignore these definitions by using the —e
option.

Make has two shell variables, “MAKE” and “MAKEFLAGS”, that

correspond to two special-purpose macros.

The “MAKE” macro provides a way to override the —n option and execute
selected commandsin amakefile. When “MAKE" isusedina command, make
will always execute that command, even if—nhasbeen given in the invocation.
The variable may be set toany value or command sequence.

The “MAKEFLAGS” macro contains one or more make options, and can be
used in invocations of make from within a makefile. You may assign any
make options to “MAKEFLAGS” except —f, ~p, and —d. If you do not assign a
value to the macro, make automatically assigns the current options to it, i.e.,
the options given in the current invocation.

The “MAKE" and “MAKEFLAGS" variables, together with the —n option,
are typically used to debug makefiles that generate entire software systems.
For example, in the following makefile, setting ‘‘MAKE” to “make” and
invoking this file with the —n options displays all the commands used to
generate the programs progl, prog2, and prog$ without actually executing
them.

48

RN

Make: A Program Maintainer

system : progl prog2 prog3
@echo System complete.

progl : progl.c
$(MAKE) $(MAKEFLAGS) progl

prog2 : prog2.c
$(MAKE) $(MAKEFLAGS) prog2

prog3 : prog3.c
$(MAKE) $(MAKEFLAGS) prog3

4.7 Using the Built-In Rules

Make provides a set of built-in dependency lines, called built-in rules, that
automatically check the targets and dependents given in a makefile, and create
up-to-date versions of these files if necessary. The built-inrules are identical to
user-defined dependency lines except that they use the suffix of the filename as
the target or dependent instead of the filename itself. For example, make
automatically assumes that allfileswiththesuffix.ohave dependent files with
the suffixes.c and . s.

When no explicit dependency line for a given file isgiven in a makefile, make
automatically checks the default dependents of the file. It then forms the name
of the dependents by removing the suffix of the given file and appending the
predefined dependent suffixes. If the given file is out of date with respect to
these default dependents, make searches for a built-in rule that defines how to
create an up-to-date version of the file, then executesit. There are built-in rules
for the following files.

Object file
C source file
Ratfor source file
Fortran source file
Assembler source file
Yace-C source grammar

r Yacc-Ratfor source grammar
Lex source grammar

~& & atias

For example, if the file z.0 is needed and there is an z.c in the description or
directory, it is compiled. If there is also an 2., that grammar would be run
through lezbefore compiling the result.

The built-in rules are designed to reduce the size of your makefiles. They
provide the rules for creating common files from typical dependents.
Reconsider the example given in the section “Creating a Makefile’. In this
example, the program prog depended on three object files 2.0, y.0, and z.o0.
These files in tur: depended on the C language source files z.c, y.¢, and z.c.

+9

XENIX Programmer's Guide

The files z.¢ and y.¢ also depended on the include file defs. In the original
example each dependency and corresponding command sequence was explicitly
given. Many of these dependency lines were unnecessary, since the built-in
rules could have been used instead. The following is all that is needed to show
the relationships between these files.

prog: X.0 y.0 2.0
cC X.0 Y.0 2.0 —O Prog

x.0 y.o: defs

In this makefile, prog depends on three object files, and an explicit command is
given showing how to update prog. However, the second line merely shows that
two objects files depend on the include file defs. No explicit command sequence
isgiven on how to update these files if necessary. Instead, make usesthe built-
in rules to locate the desired C source files, compile these files, and create the
necessary object files.

4.8 Changing the Built-in Rules

You can change the built-in rules by redefining the macros used in these linesor
by redefining the commands associated with the rules. You can display a
complete list of the built-in rules and the macros used in the rulesby typing

make —fp - 2> /dev/null </dev/null
The rulesand macrosare displayed at the standard output.

The macros of the built-in dependency lines define the names and optionsof the
compilers, program generators, and other programs invoked by the built-in
commands. Make automatically assigns a default value to these macros when
you start the program. You can change the values by redefining the macro in
your makefile. For example, the followingbuilt-inrule containsthree macros,

“CC",“CFLAGS", and “LOADLIBES”.

.C:

$(CC) $(CFLAGS) $< $(LOADLIBES) -0 $@

You can redefine any of these macros by placing the appropriate macro
lefinitionat the beginningof the makefile.

You can redefine the action of a built-in rule by giving a new rule in your
nakefile. Abuilt-in rule has the form

suffiz-rule :
command

vhere suffiz-rule is a combination of suffixes showing the relationship of the
mplied target and dependent, and command is the XENIX command required

-10

et

Make: A Program Maintainer
to carry out the rule. If more thanone command isneeded, they are given on
separate lines.

The new rule must begin with an appropriate suffiz-rule. The available suffiz-
rulesare

.c .c
.sh .sh
.c.o .c.0
c.c .5.0
.5.0 .y-o
.y.o Jo
Jd.o y-c
y-c de
.c.a .c.a
.5.a .h.h

Atilde () indicates an SCCS file. A single suffix indicates a rule that makesan
executable file from the given file. For example, the suffix rule *.c” is for the
built-in rule that creates an executable file from a C source file. A pair of
suffixes indicates a rule that makes one file from the other. For example, “.¢c.0”
isfor therule that createsan object file (. o) file from a corresponding C source
file (.¢).

Any commandsintherulemay use the built-in macros provided by make. For
example, the following dependency line redefines the actionof the .c.orule.

..0:
cc68 $< —c $+.0

If necessary, you can also create new suffiz-rulesby adding alist of new suffixes
to a makefile with *“.SUFFIXES”. This pseudo-target name defines the suffixes

that may be used to make suffiz-rulee for the built-in rules. The line has the
form

SUFFIXES: suffiz ...

where suffizis usually a lowercase letter preceded by a dot (.). If more thanone
suffix isgiven, you must usespacesto separate them.

The order of the suffixes is significant. Each suffix isa dependent of the suffixes
preceding it. For example, the suffix list

SUFFIXES: 0 .c.y .l s

causes prog.c to be a dependent of prog.o, and prog.y to be a dependent of
prog.c.

You can create new suffiz-rules by combining dependent suffixes with the suffix
of the intended target. The dependent suffix must appear first.

411

KENIX Programmer's Guide

f a “.SUFFIXES" list appears more than once in a makefile, the suffixes are
ombined into a single list. If a “.SUFFIXES" is given that has no list, all
uffixesare ignored.

1.8 Using Libraries

fou can direct make to use a file contained in an archive library asa target or
lependent. To do this you must explicitly name the file you wish to access by
ising alibrary name. Alibrary name has the form

lib(member-name)

there lib is the name of the library containingthe file,and member-name is the
ameofthe file. Forexample, thelibrary name

libtemp.a(print.o)
efers to theobject file print. oin thearchivelibrary libtemp.a.

"ou can create your own built-in rules for archive libraries by adding the .a
uffix to the suffix list, and creating new suffix combinations. For example, the
ombination ‘‘.c.a” may be used for a rule that defines how to create a library
1ember from a C source file. Note that the dependent suffix in the new
ambination must be different than the suffix of the ultimate file. For example,
1e combination “.c.a” can beusedfor arule that creates.ofiles, but notfor one
1at creates.c files.

'he most common use of the library naming convention is to create a makefile
1at automatically maintains an archive library. For example, the following
ependency lines define the commands required to create a library, named Uib,
>»ntaining up to date versionsof the files file 1.0, file2.0,and file8.o.

lib:
lib(file1.0) lib(file2.0) lib(file3.0)
@echo lib is now up to date
.c.a
$(CC) -c $§(CFLAGS) $<
arrv $@ $+0
rm -f $+.0

he .c.aruleshowshow to redefine a built-in rule for alibrary. In the following

:ample, the built-in rule is disabled, allowing the first dependency to create
ielibrary.

12

AN

Make: A Program Maintainer

lib:
lib(filel.0) lib(file2.0) lib(file3.0)
$(CC) —c $(CFLAGS) $(?:.0=.c)
arrv lib §?
rm $7
@echo lib is now up to date
.c.aj

In this example, a substitution sequence is used to change the value of the *$?”
macro from the names of the object files *‘filel.o”, “‘file2.0”, and “file3.0” to
“filel.c”, “file2.c”’,and “file3.c”".

4.10 Troubleshooting

Most difficulties in using make arise from make’s specific meaning of
dependency. Ifthe file z.c hastheline

#include " defs”
then the object file z.0 depends on defe; the source file z.¢ does not. (If defeis
changed, it is not necessary to do anything to the file z.¢, while it isnecessary to

recreate z.0.)

To determine which commands make will execute, without actually executing
them, use the —n option. For example, the command

make -n

prints out the commands make would normally execute without actually
executing them.

The debugging option —d causes make to print out a very detailed description
of what it is doing, including the file times. The output is verbose, and
recommended only as a last resort.

If a change to a file is absolutely certain to be benign (e.g., adding a new
definition to an include file), the —t (touch) option can save alot of time. Instead
of issuing a large number of superfluous recompilations, make updates the
modification timeson the affected file. Thus, the command

make -ts

which stands for touch silently, causes the relevant filesto appear up to date.

4.11 Using Make: An Example

As an example of the use of make, examine the mak -iiie, given in Figure 4-1,
used tomaintainr the make itself. The code for mak- isspread over a number

413

XENIX Programmer's Guide

of Csourcefilesand a yacc grammar.

Make usually printsout each command before issuing it. The followingoutput
resultsfromtyping thesimple command

make
inadirectory containingonly the source and makefile:

cc —c vers.c
cc -c main.c

cc ~c doname.c

cc —c misc.c

cc —c files.c

cc —-c dosys.c

yacc gram.y

mv y.tab.c gram.c

cc —c gram.c

cc vers.o main.o ... dosys.o gram.o -o make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammarswere mentioned by name in the
makefile, make found them by using its suffix rules and issued the needed
commands. The string of digitsresults from the size make command.

The last few targets in the makefile are useful maintenance sequences. The
print target prints only the files that have been changed since the last make
print command. A zero-length file, print, is maintained to keep track of the
time of the printing; the $7 macroin the command line then picks up only the
names of the files changed since print was touched. The printed output can be
sentto adifferent printer or to afile by changingthedefinition of the P macro.

414

Make: A Program Maintainer

Figure 4-1. Makefile Contents

Description file for the make command

Macro definitions below

P =lpr

FILES = Makefile vers.c defs main.c doname.c misc.c files.c dosys.c\
gram.y lex.c

OBJECTS = vers.o main.o ... dosys.o gram.o

LIBES=
LINT = lint -p
CFLAGS = -0

fttargets: dependents
< TAB>actions

make: $§(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) —o make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm #%.0 gram.c
~du

install:
@size make [usr/bin/make
cp make Jusr/bin/make ; rm make

print: $(FILES) # print recently changed files
pr$? | 8P
touch print

test:
make —dp | grep -v TIME > lzap
fusr/bin/make -dp | grep -v TIME >2zap
diff 1zap 2zap
rm 1zap 2zap

lint : dosys.c doname.c files.c main.c misc.c vers.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c vers.c gram.c
rm gram.c

arch:
ar uv /sys/source/s2/make.a $(FILES)

4-15

Chapter 5
SCCS: A Source
Code Control System

5.1 Introduction 5-1

5.2 BasicInformation 5-1
5.2.1 FilesandDirectories 5-1
5.2.2 DeltasandSIDs 5-2
5.2.3 ScCSWorkingFiles 5-3
5.24 SCCSCommand Arguments 5-4
5.2.5 File Administrator 5-4

5.3 Creating and Using S-files 5-5
5.3.1 CreatinganS-file 55
5.3.2 Retrieving aFilefor Reading 5-6
5.3.3 Retrieving aFilefor Editing 5-7
5.3.4 SavingaNew VersionofaFile 5-8
5.3.5 Retrieving a Specific Version 59
5.3.6 ChangingtheRelease NumberofaFile 5-9
5.3.7 CreatingaBranch Version 5-10
5.3.8 Retrieving aBranch Version 5-10
5.3.9 Retrieving the MostRecent Version 5-11
5.3.10 DisplayingaVersion 5-11
5.3.11 Saving aCopy of a New Version 5-12
5.3.12 Displaying Helpful Information 5-12

5.4 UsingIdentification Keywords 5-13
54.1 InsertingaKeywordintoaFile 5-13
5.4.2 Assigning Valuesto Keywords 5-14
5.4.3 ForcingKeywords 5-14

5.5 Using S-fileFlags 5-15
5.5.1 Setting S-fileFlags 5-15
5.5.2 UsingtheiFlag 5-15
5.5.3 UsingthedFlag 5-16

5.6

5.7

5.8

5.9

5.5.4 UsingthevFlag 5-16
5.5.5 RemovinganS-fileFlag 5-16

Modifying S-file Information 5-16

5.6.1 AddingComments 517

5.6.2 Changing Comments 5-17

5.6.3 Adding Modification Requests 5-18
5.6.4 Changing Modification Requests 5-18
5.6.5 AddingDescriptive Text 5-19

Printing from an S-file 5-20

65.7.1 Using aData Specification 5-20

5.7.2 Printing a Specific Version 5-20

5.7.3 PrintingLater and Earlier Versions 5-21

Editing by SeveralUsers 5-21

5.8.1 Editing Different Versions 5-21
5.8.2 Editing a Single Version 5-22
5.8.3 SavingaSpecific Version 5-22

Protecting S-files 5-23

5.9.1 Adding a User to the User List 5-23
5.9.2 RemovingaUserfromaUserList 5-23
5.9.3 SettingtheFloorFlag 5-24

5.9.4 SettingtheCeilingFlag 5-24

59.5 LockingaVersion 5-24

5.10 Repairing SCCSFiles 5-25

5.10.1 Cbheckingan S-file 5-25

5.10.2 Editing an S-file 525

5.10.3 Changing an S-file's Checksum 5-26
5.10.4 Regenerating a G-file for Editing 526
5.10.5 RestoringaDamaged P-file 5-26

5.11 Using Other Command Options 526

5.11.1 Getting Help With SCCS Commands 5-26
5.11.2 Creating aFile With the Standard Input 5-27
5.11.3 Starting Ata Specific Release 5-27

5.11.4 Addinga Comment tothe First Version 5-27
5.11.5 Suppressing Normal Output 5-28

5.11.6 Including and Excluding Deltas 5-28

" Listing the Deltas of a Version 5-29
3 MappingLinestoDeltas 5-30

} NamingLines 5-30

|0 Displaying a List of Differences 5-30
{1 DisplayingFile Information 5-30

|2 Removing aDelta 5-31

|3 Searchingfor Strings 5-31

14 Comparing SCCSFiles 5-32

SCCS: A Source Code Control System

6.1 Introduction

The Source Code Control System (SCCS) is a collection of XENIX commands
that create, maintain, and control special files called SCCS files. The SCCS
commandslet you create and store multiple versionsof a program or document
in a single file, instead of one file for each version. The commands let you
retrieve any version you wish at any time, make changes to this version, and
save the changesas a new versionof the file in theSCCSfile.

The SCCS system is useful wherever you require a compact way to store
multiple versions of the same file. The SCCS system provides an easy way to
update any given version of a file and explicitly record the changesmade. The
commands are typically used to control changes to multiple versions of source
programs, but may also be used to control multiple versions of manuals,
specifications, and other documentation.

This chapter explains how tomake SCCSfiles, how to update the filescontained
in SCCS files, and how to maintain the SCCS files once they are created. The
following sections describe the basic information you need to start using the
SCCS commands. Later sectionsdescribe the commandsin detail.

5.2 Basic Information

This section provides some basic information about the SCCS system. In
particular, it describes)

— Filesand directories

— DeltasandSIDs

— SCCsworking files

— SCCScommand arguments

— File administration

5.2.1 Files and Directories

Allsccsfiles (also called s-files) are originally created from text files containing
documentsor programs created by a user. The text files must have been created
using a XENIX text editor such as vi. Special characters in the files are allowed
only if they are also allowed by the given editor. '

To simplify s-file storage, all logically related files (e.g., files belonging to the
same project) should be kept in the same directory. Such directories should
contain s-files only, and should have read and examine permissionforeveryone,
and write permission for theuseronly.

5-1

XENIX Programmer’s Guide

Note that you must not use the XENIX link command to create multiple copies
of an s-file.

5.2.2 Deltas and SIDs

Unlike an ordinary text file, an SCCS file (or s-file for short) contains nothing
more than lists of changes. Each list corresponds to the changes needed to
construct exactly one version of the file. The lists can then be combined to
create the desired versionfromthe original.

Each list of changes is called a “‘delta”. Each delta has an identification string
called an ““SID". The SID is a string of at least two, and at most four, numbers
separated by periods. The numbers name the version and define how it is
related to other versions. For example, the first delta is usually numbered 1.1
and thesecond 1.2.

The first number in any SIDis called the “release number’. The release number
usually indicates a group of versionsthat are similar and generally compatible.
The second number in the SID is the “level number”. It indicates major
differences between files in the same release.

An SID may also have two optional numbers. The “branch number”, the
optional third number, indicates changes at a particular level, and the
“sequence number”, the fourth number, indicates changes at a particular
branch. For example, the SIDs 1.1.1.1 and 1.1.1.2 indicate two new versions
that contain slight changes to the original delta 1.1

An s-file may at any time contain several different releases, levels, branches,
and sequences of the same file. In general, the maximum number of releases an
s-file may contain is 9999, that is, release numbersmay range from 1 to 9999.
Thesamelimitappliestolevel, branch, andsequencenumbers.

When you create a new version, the SCCS system usually creates a new SID by
incrementing the level number of the original version. If you wish to create a
new release, you must explicitly instruct the system to do so. A change to a
release number indicates a major new version of the file. How to create a new
version of a file and changerelease numbers is described later.

The SCCS system creates a branch and sequence number for the SID of a new
version, if the next higher level number already exists. For example, if you
change version 1.3 to create a version 1.4 and then change 1.3 again, the SCCS
system createsa new version named 1.3.1.1.

Version numbers can become quite complicated. In general, it is wise to keep
the numbers as simple as possible by carefully planning the creation of each
new version. '

;
=7

SCCS: A Source Code Control System

5.2.3 SCCS Working Files

The SCCS system uses several different kinds of files to complete its tasks. In
general, these files contain either actual text, or information about the
commands in progress. For convenience, the SCCSsystemnames these filesby
placing a prefix before the name of the original filefrom which all versions were
made. Thefollowing isalist of the working files.

s-file

x-file

g-file

p-file

z-file

I-file

A permanent file that contains all versions of the given text file.
The versions are stored as deltas, that is, lists of changes to be
applied to the original file to create the givenversion. The name of
ans-fileisformed by placing the file prefix s. atthe beginningof the
originalfilename.

A temporary copy of the s-file. It is created by SCCS commands
which change the s-file. It is usedinstead of the s-file to carry out the
changes. When all changes are complete, the SCCSsystem removes
the original s-file and gives the x-file the name of the original s-file.
The name of the x-file is formed by placing the prefix z. at the
beginningof theoriginalfile.

An ordinary text file created by applying the deltasin a given s-file
to the original file. The g-file represents a copy of the given version
of the original file, and as such receives the same filename as the
original. When created, a g-file is placed in the current working
directory of the user who requested the file.

A special file containing information about the versions of an s-file
currently being edited. The p-file is created when a g-file is
retrieved from the s-file. The p-file exists until all currently
retrieved files have been saved in the s-file; it is then deleted. The
p-file contains one or more entries describing the SID of the
retrieved g-file, the proposed SID of the new, edited g-file, and the
login name of the user who retrieved the g-file. The p-file name is
formed by placing the prefix p. at the beginning of the original
filename.

A lock file used by SCCS commands to prevent two users from
updating a single SCCS file at the same time. Before a command
modifes an SCCS file, it createsa z-file and copies its own processID
to it. Any other command which attempts to access the file while
the z-file is present displays an error message and stops. When the
original command has finished its tasks, it deletes the z-file before
stopping. The z-file name is formed by placing the prefix z. at the
beginningof the original filename.

A special file containing a list of the deltas required to create agiven

version of a file. The l-file name is formed by placing the prefix [. at
the beginning of the original filename.

5-3

XENIX Programmer’s Guide

d-file A temporary copy of the g-file used to generate a new delta.

q-file A temporary file used by the delta command when updating the p-
file. The file is not directly accessible.

In general, a user never directly accesses x-files, z-files, d-files, or q-files. If a
system crash or similar situation abnormally terminates a command, the user
may wish delete these files to ensure proper operation of subsequent SCCS
commands.

5.2.4 sCcCS Command Arguments

Almost all SCCS commands accept two types of arguments: options and
filenames. These appear in the SCCS command line immediately after the
command name.

An option indicates a special action to be taken by the given SCCS command.
An option is usually a lowercase letter preceded by a minus sign (~). Some
optionsrequire an additional name or value.

A filename indicates the file to be acted on. Thesyntaxfor SCCS filenamesis like
other XENIX filename syntax. Appropriate pathnames must be given if
required. Some commands also allow directory names. In this case, all files in
the directory are acted on. If the directory contains non-SCCS and unreadable
files, these are ignored. A filename must not begin with a minus sign (-).

The special symbol — may be used to cause the given command to read alist of
filenames from the standard input. These filenames are then used as names for
the files to be processed. The list must terminate with an end-of-file character.

Any options given with a command apply to all files. The SCCS commands
process the options before any filenames, so the options may appear anywhere
on the command line.

Filenames are processed left toright. Ifa commandencountersa fatal error, it
stops processing the current file and, if any other files have been given, begins
processing the next.

5.2.5 File Administrator

Every SCCS file requires an administrator to maintain and keep the file in
order. The administrator is usually the user who created the file and therefore
owns it. Before other users can access the file, the administrator must ensure
that they have adequate access. Several SCCS commands let the administrator
define who hasaccess to the versionsin a given s-file. These are described later.

5-4

SCCS: A Source Code Control System

6.3 Creating and Using S-files

The s-file is the key element in the SCCS system. It provides compact storage
for all versions of a given file and automatic maintenance of the relationships
between the versions.

This section explains how to use the admin, get, and delta commands to
create and use s-files. In particular, it describes how to create the first version

of a file, how to retrieve versionsfor reading and editing, and how to save new
versions.

5.3.1 Creating an S-file

You can create an s-file from an existing text file using the —i (for “initialize’’)
optionof the ad min command. The command has the form

admin -ifilename e.filename
where -ifilename gives the name of the text file from which the s-file is to be
created, and e.filename isthe name of the new s-file. The name must begin with
. and must be unique; no other s-file in the same directory may have the same
name. For example, suppose the file named demo.c contains the short C
language program

#include <stdio.h>

main ()

printf(" This is version 1.1 \n");

To create an s-file, type
admin -idemo.c s.demo.c

Thiscommand createsthe s-file s.demo.c, and copies the first delta describing
the contents of demo.c to thisnew file. The first deltaisnumbered1.1.

After creating an s-file, the original text file should be removed using therm
command, sinceitisno longer needed. If you wish toview the text fileor make
changes to it, you can retrieve the file using the get command described in the
next section.

When first creating an s-file, the admin command may display the warning
message

No id keywords (em7)

5-5

XENIX Programmer’s Guide

In general, this message can be ignored unless you have specifically included
keywords in your file (see the section, “Usingldentification Keywords" later in
this chapter).

Note thatonly a user with write permission in the directory containing the s-file
may use the admin command on that file. This protects the file from
administration by unauthorized users.

5.3.2 Retrieving a File for Reading

Youcanretrieve a file for reading from a given s-file by using the get command.
The command hasthe form

get e.filename ...

where s.filenameisthe nameof the s-file containing the text file. Thecommand
retrievesthe lastest version of the text file and copies it to a regular file. The file
has the same name as the s-file but with the ¢. removed. It also has read-only
file permissions. For example, suppose the s-file e.demo.c contains the first
version of the short C program shown in the previous section. To retrieve this
program, type

get s.demo.c

The command retrieves the program and copies it to the file named demo.c.
Youmay then display the file just as you d o any other text file.

The command also displays a message which describes the SID of the retrieved
file and its size in lines. For example, after retrieving the short C program from
e.demo.c,the command displays the message

1.
6 lines

You may also retrieve more than one file at a time by giving multiple s-file
names in the command line. For example, the command

get s.demo.c s.def.h

retrieves the contents of the s-files e.de mo.c and e.def.h and copies them to the
text files demo.c and def.h. When giving multiple s-file names in a command,
you must separate each with at least one space. When the get command
displays information about the files, it placesthe corresponding filename before
the relevent information.

5-6

SCCS: A Source Code Control System

5.3.3 Retrieving a File for Editing

You can retrieve a file for editing from a given s-file by using the —e (for
“‘editing”) option of the get command. The command has the form

get —e 8. filename ...

where . filename isthe name of the s-file containing the text file. Youmay give
more than one filename if you wish. If you do, you must separate each name
witha space.

The command retrieves the lastest version of the text file and copies it to an
ordinary text file. The file has the same name as the s-file but with the e.
removed. It has read and write file permissions. For example,suppose the s-file
s.demo.c contains the first version of a C program. To retrieve this program,

type
get —e s.demo.c

The command retrieves the program and copies it to the file named demo.c.
Youmay edit the file just as you do any other text file.

If you give more than one filename, the command creates files for each
corresponding s-file. Since the —e option applies to all the files, you may edit
eachone.

After retrieving a text file, the command displays a message giving the SID of
the file and its size in lines. The message also displays a proposed SID, that is,
the SID for the new version after editing. For example, after retrieving the six-
line Cprogram in s.demo.c, the command displays the message

1.1
new delta 1.2
6 lines

The proposed SID is 1.2. If more than one file is retrieved, the corresponding
lename precedes the relevant information.

Note that any changes made to the text file are not immediately copied to the
corresponding s-file. To save these changes you must use the delta command
described in the nextsection. Tohelp keep track of the current file version, the
get command creates another file, called a p-file, that contains information
about the text file. This file is used by a subsequent delta command when
saving the new version. The p-file has the same name as the s-file but begins
witha p.. The user must not access the p-file directly.

57

XENIX Programmer's Guide

5.3.4 Saving a New Version of a File

You can save a new version of a text file by using the delta command. The
command has the form

delta s.filename

where ¢.filename is the name of the s-file from which the modified text file was
retrieved. For example, tosave changes made to a C program in the file demo.e
(which was retrieved from the file s.demo.c), type

delta s.demo.c

Before saving the new version, the delta command asks for comments
explaining the nature of the changes. It displays the prompt

comments?

You may type any text you think appropriate, up to 512 characters. The
comment must end with a newline character. If necessary, you can start a new
line by typing a backslash (\) followed by a newline character. If you do not
wish to include a comment, just type anewline character.

Once you have given a comment, the command uses the information in the
corresponding p-file to compare the original version with the new version. A
list of all the changes is copied to the s-file. Thisisthe new delta.

After a command has copied the new delta to the s-file, it displays a message
showing the new SID and the number of lines inserted, deleted, or left

unchanged in the new version. For example, if the C program has been changed
to

ftinclude <stdio.h>
main ()
inti=2;

printf(" This is version 1.%d 0, i);

the command displays the message
1.2
3 inserted
1 deleted
5 unchanged

Once a new version is saved, the next get command retrieves the new version.

5-8

SCCS: A Source Code Control System

The command ignores previous versions. If you wish to retrieve a previous
version, you must use the —r option of the get command as described in the
next section.

5.3.5 Retrieving a Specific Version

You can retrieve any version you wish from an s-file by using the —r (for
“retrieve’’) of the get command. The command has the form

get [—e | -rSID e.filename ...
where —e is the edit option, ~rSID gives the SID of the version to be retrieved,
and s.filename is the name of the s-file containing the file to be retrieved. You
may give more than one filename. The names must be separated withspaces.
The command retrieves the given version and copies it to the file having the
same name as s-file but with the s. removed. Thefile hasread-only permission
unlessyou also give the —e option. If multiple filenamesare given, one text file
of thegiven version isretrieved from each. For example, the command

get —rl.1 s.demo.c
retrievesversion 1.1 from thes-file s.demo.c, but the command

get —e —rl.1 s.demo.c s.def.h
retrieves for editing a version 1.1 from both s.demo.c and s.def.h. If you give
the number of a version that does not exist, the command displays an error
message.
You may omit the level number of a version number if you wish, that is, just
give a release number. If you do, the command automatically retrieves the
most recent version having the same release number. For example, if the most
recent version in the file s.demo.c isnumbered 1.4, the command

get —rl s.demo.c
retrieves the version 1.4. If there is no version with the givenrelease number,
the commandretrievesthemost recent version in the previous release.
5.3.6 Changing the Release Number of a File
You can direct the delta command to change the release number of a new
version of a file by using the —roption of the get command. In thiscase,the get

command has the form

get ~e —rrel-num s.filename ...

5-9

XENIX Programmer’s Guide

where —e isthe required edit option, -rrel-num gives the new release numberof
the file, and o.filename gives the name of the s-file containing the file to be
retrieved. The new release number must be an entirely new number, thatis, no
existing versionmayhavethisnumber. Youmay give more than one filename.

The command retrieves the most recent version from the s-file, then copies the
new release number to the p-file. On the subsequent delta command, the new
versionissaved using the new releasenumber and level number 1. For example,
if the most recent version in the s-file s.demo.c is 1.4, the command

get —e -r2 s.demo.c

causes the subsequent delta tosave a new version 2.1, not 1.5. The new release
number applies to the new version only; the release numbers of previous
versions are not affected. Therefore, if you edit version 1.4 (from which 2.1 was
derived) and save the changes, you create a new version 1.5. Similarly, if you
edit version 2.1, you create a new version 2.2,

As before, the get command also displays a message showing the current
version number, the proposed version number, and the size of the file in lines.
Similarly, the subsequent delta command displays the new version number
and the number of linesinserted, deleted, andunchangedin the new file.
5.3.7 Creating a Branch Version
You can create a branch version of a file by editing a version that has been
previously edited. A branch version is simply a version whose SID contains a
branch and sequence number.
Forexample,if version 1.4 already exists, the command

get —e -r1.3 s.demo.c
retrievesversion 1.3 for editing and gives 1.3.1.1as the proposed SID.
In general, whenever get discovers that you wish to edit a version that already
has a succeeding version, it uses the first available branch and sequence
numbers for the proposed SID. For example, if you edit version 1.3 a third time,
getgives1.3.2.1 as the proposed SID.
You can save a branch version just like any other version by using the delta
command.

5.3.8 Retrieving a Branch Version

You can retrieve a branch version of a file by using the —r option of the get
:ommand. For example, the command

»-10

SCCS: A Source Code Control System

get -r1.3.1.1 s.demo.c
retrievesbranch version1.3.1.1.
Youmay retrieve a branch version for editing by using the —e option of the get
command. When retrieving for editing, get creates the proposed SID by
incrementing the sequence number by one. For example, if you retrieve
branch version 1.3.1.1for editing, get gives 1.3.1.2 asthe proposed SID.

As always, the command displays the version number and file size. Ifthe given
branch version does not exist, the command displays an error message.

You may omit the sequence number if you wish. In this case, the command
retrieves the most recent branch version with the given branch number. For
example, if the most recent branch version in the s-file s.def.h is 1.3.1.4, the
command

get -r1.3.1 s.def.h

retrievesversion1.3.1.4.

5.3.9 Retrieving the Most Recent Version

You can alwaysretrieve the most recent version of a file by using the —t option
with the get command. For example, the command

get -t s.demo.c
retrieves the most recent version fromthe file s.demo.c. Youmay combine the
—rand -t options to retrieve the mostrecent version of a givenreleasenumber.
For example, if the most recent version with release number 3 is 3.5, then the
command

get -r3 -t s.demo.c
retrieves version 3.5. Ifabranch version existsthat ismore recent than version
3.5 (e.g., 3.2.1.5), then the above command retrieves the branch version and
ignoresversion 3.5.

5.3.10 Displaying a Version

You can display the contents of a version at the standard output by using the
—poptionof the get command. Forexample, the command

get —p s.demo.c

displays the most recent version in the s-file s.demo.¢ at the standard output.
Similarly, the command

5-11

XENIX Programmer's Guide

get -p -r2.1 s.demo.c
displaysversion 2.1at thestandard output.
The ~p option is useful for creating g-files with user-supplied names. This
option also directs all output normally sent to the standard output, such as the
SID of the retrieved file, to the standard error file. Thus, the resulting file
containsonly the contentsof the givenversion. For example, the command

get -p s.demo.c D>version.c
copies the most recent version in the s-file s.demo.c to the file version.c. The
SID of the file and itssize is copied to the standard error file.
5.3.11 Saving a Copy of a New Version
The delta command normally removes the edited file after saving it in the
s-file. You can save a copy of this file by using the —n option of the delta
command. Forexample, the command

delta -n s.demo.c

firstsavesa new versionin the s-file e.demo.c, thensavesacopyof thisversion
in the file demo.c. You may display the file as desired, but you cannot edit the
file.

5.3.12 Displaying Helpful Information

An SCCS command displays an error message whenever it encounters an error
in afile. Anerror message hasthe form

ERROR | filename |: message (code)

where filename is the name of the file being processed, meesage is a short
descriptionof the error, and c ode isthe error code.

You may use the error code as an argument to the help command to display
additional information about the error. The command has the form

help code
where code is the error code given in an error message. The command displays
one or more lines of text that explain the error and suggest a possible remedy.
For example, the command

help col

displaysthe message

§-12

SCCS: A Source Code Control System

col:

"not an SCCS file”

A file that you think is an SCCS file
does not begin with the characters ”s.”.

The help command can be used at any time.

6.4 Using Identification Keywords

The SCCS system provides several special symbols, called identification
keywords, which may be used in the text of a program or document to represent
a predefined value. Keywords represent a wide range of values, from the
creation date and time of a given file, to the name of the module containing the
keyword. When a user retrieves the file for reading, the SCCS system
automatically replaces any keywords it finds in a given version of a filz with the
keyword’s value.

This section explains how keywords are treated by the various SCCS
commands, and how you may use the keywords in your own files. Only a few
keywords are described in this section. For a complete list of the keywords, see
the section get(CP) in the XENIX Reference Manual.

5.4.1 Inserting a Keyword into a File

You may insert a keyword into any text file. A keyword issimply an uppercase
letter enclosed in percent signs (%). No special characters are required. For
example, “%]I%" is the keyword representing the SID of the current version,

and“%H%" isthekeywordrepresentingthe current date.
When the program is retrieved for reading using the get command, the
keywords are replaced by their current values. For example, if the “%M%”,
“%I1%%", and “%9H" keywords are used in place of the module name, the SID,
and the currentdatain a program statement

char header(100) = {" %M% %1% %H% "};
then these keywords are expanded in the retrieved version of the program

char header(100) = {" MODNAME 2.3 07/07/77 "};

The get command does not replace keywords when retrieving a version for
editing. The system assumes that you wish keep the keywords (and not their
values) when you save the new version of the file.

To indicate that a file has no keywords, the get, delta, and ad min commands
display the message

5-13

XENIX Programmer's Guide

No id keywords (cm7)

This message is normally treated as a warning, letting you know that no
keywords are present. However, you may change the operation of the system to
make thisafatalerror, as explained later in this chapter.

5.4.2 Assigning Values to Keywords

The values of most keywords are predefined by the system, but some, such as
the value for the “%M%" keyword can be explicitly defined by the user. To
assign a value to a keyword, you must set the corresponding s-file flag to the
desired value. You can do thisby using the —foption ofthe ad min command.

For example, toset the Z6MN% keyword to “‘cdemo”, you must set the m flagas
in the command

admin -fmcdemo s.demo.c

This command records “cdemo” as the current value of the 9%9M% keyword.
Note that if you do not set the m flag, the SCCS system uses the name of the
originaltext file for M % by default.

The t and q flags are also associated with keywords. A description of these flags
and the corresponding keywords can be found in the section get(CP) in the
XENIX Reference Manual. Youcan changekeywordvaluesatany time.

5.4.3 Forcing Keywords

If a version is found to contain no keywords, you can force a fatal error by
setting the i flag in the given s-file. The flag causes the delta and admin
commandstostop processing of the givenversion and report anerror. Theflag
isuseful for ensuring thatkeywordsare used properly in a given file.

To set the i flag, you must use the —f option of the ad min command. For
example, the command

admin -fi s.demo.c
sets the i flag in the s-file s.demo.c. If the given version does not contain
keywords, subsequent delta or ad min commands that access this file print an
error message.
Note that if you attempt to set the i flag at the same time asyou create an s-file,

and if theinitialtextfilecontainsnokeywords,the ad min command displaysa
fatal error message and stops without creating the s-file.

5-14

SCCS: A Source Code Control System

6.6 Using S-file Flags

An sfile flag is a special value that defines how a given SCCS command will
operate on the corresponding s-file. The s-file flags are stored in the s-file and
areread by each SCCS command before it operates on the file. S-file flags affect
operations such as keyword checking, keyword replacement values, and
default values for commands.

Thissectionexplains how to set and use s-file flags. It also describes the action
of commonly-used flags. For a complete description of all flags, see the section
admin(CP) in the XENIX Reference Manual.

5.5.1 Setting S-file Flags

You can set the flags in a given s-file by using the —f option of the admin
command. The command hastheform

admin -fflag s.filename

where -fflaggivesthe flag to be set, and s. filename gives the nameof the s-file in
whichtheflagisto beset. Forexample, the command

admin -fi s.demo.c
setstheiflaginthes-file e.demo.c.
Note that some s-file flags take values when they are set. For example, the m
flag requires that a module name be given. When a value is required, it must
immediately follow the flag name, asin the command

admin -fmdmod s.demo.c

whichsetsthe m flagto the module name *“dmod”’.

5.5.2 Using thei Flag

Theiflag causestheadmin and delta commandstoprinta fatalerror message
and stop, if no keywords are found in the given text file. The flag is used to
prevent a version of a file, which contains expanded keywords, from being
saved as a new version. (Savingan expanded version destroys the keywords for
all subsequent versions).

When the i flag is set, each new version of a file must contain at least one
keyword. Otherwise, the version cannot besaved.

5-15

XENIX Programmer’'s Guide

5.5.3 Using the d Flag

The d flag gives the default SID for versions retrieved by the get command.
The flagtakes anSID asitsvalue. For example, the command

admin -fd1.1 s.demo.c
sets the default SID to 1.1. A subsequent get command which doesnot use the
—r option will retrieveversionl.1.
5.5.4 Using the v Flag
The v flag allows you to include modification requests in an s-file. Modification
requests are names or numbers that may be used as a shorthand means of
indicating the reason for each new version.
When the v flag is set, the delta command asks for the modification requests
just before asking for comments. The v flag also allows the —m option to be
used in the deltaand ad min commands.

5.5.5 Removing an S-file Flag

You can remove an s-file flag from an s-file by using the —d option of the admin
command. The commandhastheform

admin -dflag s.filename
where -dflag gives the name of the flag to be removed and s.filename is the
name of the s-file from which the flag is to be removed. For example, the
command

admin -di s.demo.c

removes theiflag from thes-file s.demo.c. Whenremoving a flag which takesa
value, only the flag name isrequired. For example, the command

admin ~dm s.demo.c
removes the m flag from thes-file.

The —d and -i options must not be used at the same time.

5.6 Modifying S-file Information

Every s-file contains information about the deltas it contains. Normally, this
information ismaintained by the SCCS commands and is not directly accessible

5-16

SCCS: A Source Code Control System

by the user. Some information, however, is specific to the user who createsthe
s-file, and may be changed as desired to meet the user’s requirements. This
information is kept in two special parts of the s-file called the “delta table”

and the “description field”.

The deltatable contains information abouteach delta, such astheSID and the
date and time of creation. It also contains user-supplied information, such as
comments and modification requests. The description field contains a user-
supplied description of the s-file and its contents. Both partscan be changed or
deleted at any time to reflect changes to the s-file contents.

5.6.1 Adding Comments

You can add comments to an s-file by using the —y option of the delta and
admin commands. Thisoptioncausesthe given text to be copied tothes-fileas
the comment for the new version. The comment may be any combination of
letters, digits, and punctuation symbols. No embedded newline characters are
allowed. If spaces are used, the comment must be enclosed in double quotes.
The complete command must fit on one line. For example, the command

delta -y” George Wheeler” s.demo.c
savesthecomment*‘George Wheeler” inthes-file s.demo.c.
The ~y option is typically used in shell procedures as part of an automated
approach to maintaining files. When the option is used, the delta command
does not print the corresponding comment prompt, so no interaction is

required. If more than one s-file is given in the command line, the given
comment applies to them all.

5.6.2 Changing Comments

Youcanchange the commentsin a given s-file by using the cdc command. The
command hasthe form

cdc -rSID e.filename
where -rSID gives the SID of the version whose comment is to be changed, and
s.filename isthe name of the s-file containing the version. The command asks
for anew comment by displaying the prompt

comments?
You may type any sequence of characters up to 512 characters long. The
sequence may contain embedded newline charactersif they are preceded by a

backslash (\). The sequence must be terminated with a newline character. For
example, the command

5-17

XENIX Programmer’s Guide

cdc -r3.4 s.demo.c
prompts for a new comment for version 3.4.

Although the command does not delete the old comment, it is no longer directly
accessible by the user. The new comment contains the login name of the user
who invoked the cdec command and the time the comment was changed.

5.6.3 Adding Modification Requests

You can add modification requests to an s-file, when the v flag is set, by using
the —m option of the delta and ad min commands. A modification request isa
shorthand method of describing the reason for a particular version.
Modification requests are usually names or numbers which the user has chosen
torepresent aspecific request.

The —m option causes the given command to save the requests following the

option. A request may be any combination of letters, digits, and punctuation

symbols. If you give more than one request, you must separate them with

spaces and enclose the request in double quotes. For example, the command
delta —-m"error35 optimizel0” s.demo.c

copies the requests ‘‘error35” and *‘optimize 10" to s.demo.c, while saving the
new version.

The —-m option, when used with the admin command, must be combined with
the i option. Furthermore, the v flag must be explicitly set with the —foption.
Forexample, the command

admin -idef.h -m"error0” -fv s.def.h
inserts the modificationrequest ‘“‘error0 in the new file s. def..
The delta command does not prompt for modification requestsif you use the
~m option.
5.6.4 Changing Modification Requests
You can change modification requests, when the v flag is set, by using the edc
command. The command asks for alist of modification requests by displaying
the prompt

MRs?
You may type any number of requests. Each request may have any

combination of letters, digits, or punctuation symbols. No more than 512
characters are allowed, and the last request must be terminated with a newline

5-18

s

—

SCCS: A Source Code Control System
character. If you wish to remove a request, you must precede the request with
an exclamation mark (!). For example, the command

cdc -r1.4 s.demo.c
asksfor changesto the modification requests. Theresponse
MRs? error36 lerror35

adds the request “error36' andremoves “‘error35”.

5.6.5 Adding Descriptive Text

You can add descriptive text to an s-file by using the —t option of the admin
command. Descriptive text is any text that describes the purpose and reason
for the given s-file. Descriptive text is independent of the contentsof the s-file
and canonly be displayed using the prs command.

The —t option directs the admin to copy the contents of a given file into the
description field of thes-file. The command hasthe form

admin -tfilename e.filename
where -t filename givesthe name of the file containing the descriptive text, and
e.filename is the name of the s-file toreceive the descriptive text. The file to be
insertedmay containany amount of text. For example, the command

admin -tcdemo s.demo.c

inserts the contents of the file cdemo into the description field of the s-file
s.demo.c.

The —t option may alsobe used t oinitialize the description field when creating
the s-file. For example, the command

admin -idemo.c ~tcdemo s.demo.c

inserts the contents of the file cdemointo the new s-file s.demo.c. If —t is not
used, the description field of the new s-fileisleftempty.

You can remove the current descriptive text in an s-file by using the —t option
without a filename. For example, the command

admin -t s.demo.c

removesthe descriptive text from the s-file s.demo.c.

5-19

XENIX Programmer's Guide

6.7 Printing from an S-file

This section explains how to use the prs command to display information
contained in an s-file. The prs command hasa variety of options which control
the display format and content.

5.7.1 Using a Data Specification

You can explicitly define the information to be printed from an s-file by using
the —d option of the prs command. The command copies user-specified
information to the standard output. The command has the form

prs ~dspec e.filename

where —dspec is the data specification, and a.filename is the name of the s-file
from which the information isto be taken.

The data specification is a string of data keywords and text. A datakeyword is
an uppercase letter, enclosed in colons (:). It representsa value contained in the
given s-file. For example, the keyword :I: represents the SID of a given version,
:F: represent the filename of the given s-file, :C: represents the comment line
associated with a given version. Data keywords are replaced by these values
when the information isprinted.
For example, the command

prs —d” version: :I: filename: :F: " s.demo.c
may produce the line

version: 2.1 filename: s.demo.c
A complete list of the data keywords is given in the section pre(CP) in the
XENIX Reference Manual.

5.7.2 Printing a Specific Version

You can print information about a specific version in a given s-file by using the
—r option of the prs command. The command has the form

prs —rSID e.filename

where —rSID gives the SID of the desired version, and s.filename is the name of
the s-file containing the version. For example, the command

prs -r2.1 s.demo.c

520

SCCS: A Source Code Control System

printsinformation about version 2.1 in the s-file s.demo.c.

If the —r option is not specified, the command prints information about the
mostrecently created delta.

5.7.3 Printing Later and Earlier Versions

You can print information about a group of versions by using the -1 and —e
options of the prs command. The -1 option causes the command to print
information about all versionsimmediately succeeding the givenversion. The
—e option causes the command to print information about all versions
immediately preceding the given version. For example, the command

prs -rl.4 -e s.demo.c

printsall information about versions which precede version 1.4 {e.g., 1.3, 1.2,
and1.1). The command

prs -rl.4 -1 sabc

prints information about versions which succeed version 1.4 (e.g., 1.5, 1.6, and
2.1).

If both optionsaregiven, informationabout all versionsis printed.

5.8 Editing by Several Users

The SCCS system allows any number users to access and edit versions of a given
s-file. Since users are likely to access different versions of the s-file at the same
time, the system is designed to allow cencurrent editing of different versions.
Normally, the system allows only one user at a time to edit a given version, but
you can allow concurrent editing of the same versicn by setting the j flag in the
givens-file.

The following sections explain how to perform concurrent editing and how to
save edited versions when you have retrieved more than one version for editing.

5.8.1 Editing Different Versions

The SCCS system allows several different versions of a file to be edited at the
same time. This means a user can edit version 2.1 while another user edit
version 1.1. There is no limit to the number of versions which may be edited at
any given time.

When several users edits different versions concurrently, each user must begin

work in his own directory. If users attempt to share a directory and work on
versions from the same s-file at the same time, the get command will refuse to

5-21

XENIX Programmer’s Guide
retrieveaversion.

5.8.2 Editing a Single Version

You can let a single version of a file be edited by more than one user by setting
the j flagin the given s-file. The flag causes the get command to check the p-file
and create anew proposed SID if the given version is already being edited.

You can set the flag by using the —f option of the admin command. For
example, the command

admin —{j s.demo.c
setsthe flag forthes-files.demo.c.

When the flag is set, the get command uses the next available branch SID for
each new proposed SID. For example, suppose a user retrieves for editing
version 1.4 in the file s.demo.c, and that the proposed version is 1.5. If another
user retrieves version 1.4 for editing before the first user has saved his changes,
the the proposed version for the new user will be 1.4.1.1, since version 1.5 is
already proposed and likely to be taken. In no case will a version edited by two
separate usersresult in asingle new version.

5.8.3 Saving a Specific Version
When editing two or more versions of a file, you can direct the del ta command
to save a specific version by using the —r option to give the SID of that version.
The commandhas the form

delta -rSID s.filename

- where -rSID gives the SID of the version being saved, and e.filename is the name

of the s-file to receive the new version. The SID may be the SID of the version
you have just edited, or the proposed SID for the new version. For example, if
you have retrieved version 1.4 for editing (and no version 1.5 exists), both
commands

delta -r1.5 s.demo.c
and

delta -r1.4 s.demo.c

saveversion 1.5.

SCCS: A Source Code Control System

5.9 Protecting S-files

The SCCS system usesthe normal XENIX system file permissions to protect
s-files from changes by unauthorized users. In addition to the XENIX system
protections, the SCCS system provides two ways to protect the s-files: the “user
list” and the “protection flags”. The user list is a list of login names and group
IDs of users who are allowed to access the s-file and create new versions of the
file. The protection flags are three special s-file flags that define which versions
are currently accessible to otherwise authorized users. The following sections
explain how to set and use the user list and protection flags.

5.9.1 Adding a User to the User List

You can add a user or a group of users to the user list of a given s-file by using
the —a option of the admin command. The option causes the given name to be
added to the user list. The user list defines who may accessand edit the versions
in the s-file. The command has the form

admin -aneme e.filename
where —aname gives the login name of the user or the group name of a group of
userstobeaddedto thelist,and s.filename givesthe name of the s-file to receive
, the new users. For example, the command

admin -ajohnd -asuex -amarketing s.demo.c

adds the users “‘johnd”” and “suex’’ and the group “marketing”’ to the user list
of thes-file s.demo.c.

If you create an s-file without giving the —a option, the user list is left empty,
and all users may access and edit the files. When youexplicitly give a user name
or names,onlythoseuserscanaccess thefiles.
5.9.2 Removing a User from a User List
You can remove a user or a group of users from the user list of a given s-file by
using the —e option of the admin command. The option is similar to the —a
option but performsthe opposite operation. The command has the form

admin ~ename e.fillename
where —ename gives the login name of a user or the group name of a group of
users to be removed from the list, and s.filename is the name of the s-file from

which the names are to be removed. For example, the command

admin -ejohnd -emarketing s.demo.c

5-23

XENIX Programmer’s Guide

removes the user “johnd” and the group “marketing” from the user list of the
s-file s.demo.c.
5.9.3 Setting the Floor Flag
The floor flag, f, definestherelease number of thelowest versiona user may edit
in a given s-file. You can set the flag by using the —f option of the admin
command. For example, the command
admin ~f2 s.demo.c
setsthefloor torelease number 2. If youattempt toretrieveany versionswitha
release number less than 2, an error will result.
5.9.4 Setting the Ceiling Flag
"The ceiling flag, c, defines the release number of the highest version a user may
edit in a givens-file. You can set the flag by using the —f option of the admin
command. For example, the command
admin -fc5 s.demo.c
setsthe ceiling torelease number 5. If you attempt to retrieve any versions with
arelease number greater than 5, an error will result.
5.9.5 Locking a Version
The lock flag, 1, lists by release number all versions in a given s-file which are
locked against further editing. You can set the flag by using the —f flag of the
admin command. The flag must be followed by one or more release numbers.
Multiple release numbers must be separated by commas (,). For example, the
command
admin -f13 s.demo.c
locksall versions withrelease number 3 against further editing. Thecommand
admin -14,5,9 s.def.h

locks all versions with release numbers4, 5, and 9.

Note that the special symbol “a™ may be used to specify all release numbers.
The command

admin -fla s.demo.c

locksall versionsin the file s.de mo. c.

5-24

SCCS: A Source Code Control System

5.10 Repairing SCCS Files

The SCCS system carefully maintains all SCCS files, making damage to the files
very rare. However, damage can result from hardware malfunctions, which
cause incorrect information to be copied to the file. The following sections
explain how to check for damage to SCCS files, and how to repair the damage or
regenerate the file.

5.10.1 Checking an S-file

You can check a file for damage by using the —h option of the admin command.
This option causes the checksum of the given s-file to be computed and
compared with the existing sum. An s-file’s checksum is an internal value
computed from the sum of all bytes in the file. If the new and existing
checksums are not equal, the command displays the message

corrupted file (co6)
indicating damage to the file. For example, the command
admin -h s.demo.c

checksthe s-file s.demo.c for damage by generating a new checksumfor thefile,
and comparing the new sum withthe existingsum.

Youmay give more thanone filename. If you do, the command checkseach file
in turn. Youmay also give the name of a directory, in which case, the command
checksallfilesin the directory.

Since failure to repair a damaged s-file can destroy the file’s contents or make
the file inaccessible, it is a good idea to regularly check all s-files for damage.

5.10.2 Editing an S-file

When an s-file is discovered to be damaged, it is a good idea to restore a backup
copy of the file from a backup disk rather than attempting to repair the file.
(Restoring a backup copy of a file is described in the XENIX Operations Guide.)
If thisis not possible, the file may be edited using a XENIX text editor.

To repair a damaged s-file, use the description of an s-file given in the section
eccefile (F) in the XENIX Reference Manual, to locate the part of the file which
is damaged. Use extreme care when making changes; small errors can cause
unwanted results.

5-25

XENIX Programmer's Guide

5.10.3 Changing an S-file’'s Checksum

.Afterrepairing a damaged s-file, you must change the file's checksum by using
the —z option of the admin command. For example, to restore the checksum of
the repairedfile s.demo.c, type

admin -2 s.demo.c

The commandcomputesand saves the new checksum, replacing the old sum.

5.10.4 Regenerating a G-file for Editing

You can create a g-file for editing without affecting the current contents of the
p-file by using the —k option of the get command. The option has the same
affect as the —e option, except that the current contents of the p-file remain
unchanged. The option is typically used to regenerate a g-file that has been
accidentally removed or destroyed before it has been saved vsing the delta
command.

5.10.5 Restoring a Damaged P-file

The —~g option of the get command may be used to generate a new copy of a
p-file that has been accidentally removed. For example, the command

get —e —g s.demo.c

creates a new p-file entry for the most recent version in s.demo.c. If the file
demo.c already exists, it willnot be changed by thiscommand.

5.11 Using Other Command Options

Many of the SCCS commands provide options that control their operztion in
useful ways. Thissection describestheseoptionsandexplainshow youmay use
them to perform useful work.

5.11.1 Getting Help With SCCS Commands

You can display helpful information about an SCCS command by giving the
name of the command as an argument to the help command. The help
command displays a short explanation of the command and command syntax.
For example, the command

help rmdel

displaysthe message

5-26

SCCS: A Source Code Control System

rmdel:
rmdel -rSID name ...
5.11.2 Creating a File With the Standard Input

Youcandirectadmin tousethestandardinput asthesourceforanews-fileby
usingthe—ioption without afilename. For example, the command

admin -i s.demo.c <demo.c

causes admin to create a new s-file named s.demo.c which uses the text file
demo.c asits first version.

This method of creating a new s-file is typically used to connect admin to a
pipe. Forexample, the command

cat modl.c mod2.c | admin -i s.mod.c
creates a new s-file 8.mod.c which contains the first version of the concatenated
files mod1.cand mod2.c.
5.11.3 Starting At a Specific Release
The admin command normally starts numbering versions with release
number 1. You can direct the command to start with any givenrelease number
by usingthe—r option. The command hasthe form

admin ~rrel-num s.filename

where -rrel-num givesthevalue of the starting release number, and e.filename
isthenameofthes-fileto be created. For example, the command

admin -idemo.c -r3 s.demo.c

startswithreleasenumber 3. Thefirst versionis3.1.

5.11.4 Adding a Comment to the First Version

You can add a comment to the first version of file by using the -y option of the
ad min command when creating the s-file. Forexample, the command

admin -idemo.c -y” George Wheeler” s.demo.c

.inserts the comment “George Wheeler” in the new s-file s.demo.c.

5-27

XENIX Programmer’s Guide

The comment may be any combination of letters, digits, and punctuation
symbols. If spaces are used, the comment must be enclosed in double quotes.
The complete command must fit on one line.

If the —y option is not used when creating an s-file, a comment of the form

date and time created YY/MMW/DD HHMMSS by logname

is automatically inserted.

5.11.5 Suppressing Normal Output

Youcan suppress the normal display of messages created by the get command
by using the —s option. The option preventsinformation, such as the SID of the
retrieved file, from being copied to the standard output. The option does not
Suppress error messages.

The ~s option is often used with the —p option to pipe the output of the get
command to other commands. For example, the command

get -p -s s.demo.c |lpr
copiesthemostrecentversionin thes-file s.demo.c tothelineprinter.
You canalsosuppress the normal output of the delta command by using the —s
option. This option suppresses all output normally directed to the standard
output, except for the normal comment prompt.
5.11.8 Including and Excluding Deltas
You can explicitly define which deltas you wish to include and which you wish
to exclude when creating a g-file, by using the —i and —x options of the get
command.
The -i option causes the command toapply the givendeltas when constructing
*a version. The ~x option causes the command to ignore the given deltas when
constructing a version. Both options must be followed by one or more SIDs. If
multiple SIDs are given they must be separated by commas (,). A range of SIDs
may be given by separating two SIDs with a hyphen (). For example, the
command
get ~i1.2,1.3 s.demo.c
causes deltas 1.2 and 1.3 tobe used toconstructthe g-file. The command

get -x1.2-1.4 s.demo.c

causes deltas 1.2 through 1.4 tobe ignored “hen constructingthe file.

5-28

-

SCCS: A Source Code Control System

The —i option is useful if you wish to automatically apply changes to a version
while retrieving it for editing. For example, the command

get —e —i4.1 -r3.3 s.demo.c

retrievesversion 3.3 for editing. When the file isretrieved, the changesin delta
4.1 are automatically applied to it, making the g-file the same as if version 3.3
had been edited by hand using the changes in delta 4.1. These changescanbe
saved immediately by issuingadeltacommand. Noeditingisrequired.

The —x option is useful if you wish to remove changes performed on a given
version. Forexample, the command

get —e —-x1.5 -r1.6 s.demo.c

retrieves version 1.6 for editing. When the fileisretrieved, the changesin delta
1.5 are automatically left out of it, making the g-file the same as if version 1.4
had been changed according to delta 1.6 (withno intervening delta 1.5). These
changes can be saved immediately by issuing a delta command. No editing is
required.

When deltas are included or excluded using the —~i and —x options, get
comparesthem with the deltasthat are normally used in constructing the given
version. If two deltas attempt to change the same line of the retrieved file, the
command displays a warning message. The message shows the range of linesin
which the problem may exist. Corrective action, if required, is the
responsibility of the user.

5.11.7 Listing the Deltas of a Version
You can create a table showing the deltas required to create a given version by
using the ~1 option. This option causes the get command to create an l-file

- which contains the SIDs of all deltas used to create the given version.

The option is typically used to create a history of a given version’s
development. For example, the command

get -1 s.demo.c

creates a file named l.demo.c containing the deltasrequired to create the most
recent version of demo.c.

You can display the list of deltas required t o create a version by using the ~Ip
option. The option performs the same function as the —I options except it
copies the list to the standard output file. For example, the command

get -lp -r2.3 s.demo.c

copies the list of deltasrequired to create version 2.3 of demo. ¢ to the standard

5-29

XENIX Programmer's Guide

output.

Note that the —1 option may be combined with the —g option to create a list of
deltas without retrieving the actual version.

5.11.8 Mapping Lines to Deltas

Youcanmap each linein agiven version to itscorresponding delta by using the
-m option of the get command. Thisoption causes each line in a g-file to be
preceded by the SID of the delta that caused that line to be inserted. The SID is
separated from the beginning of the line by a tab character. The -m optionis
typically used to review the history of each line in a given version.

5.11.9 Naming Lines

You can name each line in a given version with the current module name (i.e.,
shevalue of the %M % keyword) by using the —n option of the get command.
This option causes each line of the retrieved file to be preceded by the value of
he %9M% keywordand atab character.

Che —n option is typically used to indicate that a given line isfrom the given
ile. When both the ~m and —n options are specified, each line begins with the
%M% keyword.

).11.10 Displaying a List of Differences

fou can display a detailed list of the differences between a new version of a file
.nd the previous version by using the —p option of the delta command. This
ption causes the command to display the differences, in a format similar to the
utputofthe XENIX diff command.

.11.11 Displaying File Information

"ou can display information about agiven version by usingthe —g optionof the
et command. This option suppresses the actual retrieval of a version and
auses only the information about the version, such as the SID and size, to be

isplayed.

'he —g option is often used with the —r option to check for the existence of a
iven version. For example, the command

get -g -r4.3 s.demo.c

isplaysinformation about version 4.3 in the s-file 6. demo.c. If the version does
>t exist, the command displaysan error message.

30

SCCS: A Source Code Control System

5.11.12 Removing a Delta

You can remove a delta from an s-file by using the rmdel command. The
command hasthe form

rmdel ~rSID s.filename

where-rSIDgives the SID of the delta to beremoved, and s.filenameisthename
of the s-file from which the delta is to be removed. The delta must be the most
recently created delta in the s-file. Furthermore, the user must have write
permission in the directory containing the s-file, and must either own the s-file
or be the user who created the delta.

For example, the command

rmdel -r2.3 s.demo.c
removes delta 2.3from the s-file s.demo.c.
The rmdel command will refuse to remove a protected delta, that is, a delta
whose release number is below the current floor value, above the current ceiling
value, or equal to a current locked value (see the section ‘‘Protecting S-files"
given earlier in this chapter). The command will alsorefuse to remove a delta

which is currently being edited.

The rmdel command should be reserved for those cases in which incorrect,
globalchanges were made to ans-file.

Note that rmdel changes the type indicator of the given delta from “D” to
“R". Atypeindicator defines the type of delta. Type indicators are described
infullin thesection delta(CP) in the XENIX Reference Manual.
5.11.13 Searching for Strings
You can search for strings in files created from an s-file by using the what
command. This command searches for the symbol #(@) (the current value of
the 96Z% keyword) in the given file.It then prints, on the standard output, all
text immediately following the symbol, up to the next double quote (”), greater
than (>), backslash (\), newline, or (non-printing) NULL character. For
example, if the s-file 8.demo.c contains the following line

char id|] = " %Z%%M%:%1%" ;
and the command

get -r3.4 s.prog.c

_isexecuted, then the command

5-31

XENIX Programmer’s Guide

what prog.c
displays
prog.c:
prog.c:3.4

You may also use what to search files that have not been created by SCCS
commands.

5.11.14 Comparing SCCS Files
You can compare two versions from a given s-file by using the scesdiff
command. This command prints on the standard output the differences
between two versionsof thes-file. The command hasthe form

scesdiff -rSID1 -rSID2 e.filename
where -rS/D1 and -rS/D2 give the SIDs of the versions to be compared, and
e.filename is the name of the s-file containing the versions. The version SIDs
must be given in the order in which they were created. For example, the
command

scesdiff -r3.4 -r5.6 s.demo.c

displays the differences between versions 3.4 and 5.6. The differences are
displayed in a form similar to the XENIX diff command.

5-32

Chapter 6
Adb: A Program Debugger

6.1 Introduction 1!

6.2 Invocation 1

6.3 TheCurrentAddress—Dot 1
6.4 Formats 2

6.5 DebuggingCPrograms 3
6.5.1 DcbuggingaCorelmage 3
6.5.2 MultipleFunctions 4
6.53 SettingBreakpoints 5
6.5.4 OtherBreakpointFacilities 7

6.6 Maps 7

6.7 AdvancedUsage 8
6.7.1 FormattedDump 9
6.7.2 DirectoryDump 10
6.7.3 llistDump 11
6.7.4 Converting Values 11

6.8 Patching 11
6.9 Notes 12
6.10 Figures 13
6.11 AdbSummary 26
6.11.1 Command Summary 26

6.11.2 Incomplete FormnatSummary 27
6.11.3 ExpressionSummary 27

y

Adb: A Program Debugger

6.1 Introduction

Adbisanindispensabletool for debuggingprogramsor crashed systems. Itallowsyou
to look at core files resulting from aborted programs, print output in a variety of
formats, patch files, andrun programs with embedded breakpoints. This chapterisan
introductiontoad bwithexamplesofitsuse. Itexplainsthe various formattingoptions,
techniques for debugging C programs, and gives examples of printing file system
information, andof patching.

6.2 Invecation

Theadbinvocationsyntaxisasfollows:
adb objectfile corefile

where objectfile is anexecutableXENIX fileand core file is a core image file. Often this
willlook like:

adb a.out core
ormoresimply:
adb

where the defaults are a.out and core, respectively. The filename minus (—) means
ignore thisargumentasin:

adb — core

Adbhas requests for examining locations in either file. A question mark (?) request
examines the contents of objectfile; a slash (/) request examines the corefile. The
general form of theserequestsis:

address ? formar
or
address | format

6.3 The Current Address — Dot

Adb maintains a poirnter to the current address, called dot, similar in function to the
current pointerinthe editor, ed(C). When anaddress is entered, the current address is
settothat location, sothat:

01262
setsdottooctal 126andprintsthe instruction at thataddress. Therequest
.,10/d

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the

lastitem printed. Whenused withthe questionmark (?) or slash (/)request, the current

address can be advanced by typing a newline; it can be decremented by typing a caret

0.

Addressesare represented by expressions. Expressionsare madeupofdecimal, octal,

and hexadecimal integers, and symbols from the programundertest. These may be
6—1

XENIX Programmer’s Guide

combined with the following operators:
+ Addition

- Subtraction

*

Mutltiplication
Integerdivision

Bitwise AND

L

i Bitwiseinclusive OR
Rounduptothe nextmultiple

- Not
Note that all arithmetic within adb is 32—bit arithmetic. When typing a symbolic
address for a C program, type either “‘name’’ or “‘_name’’; adb recognizes both
forms. Because adb will find only one instance of ‘‘name’’ and *‘_name’’ (generally
the first to appear in the source) one will mask the other if they both appear inthe same
source file.

6.4 Formats

To print data, you can specify a collection of letters and characters that describe the
format of the printout. Formats are remembered in the sense that typing a request
without one will cause the new printout to appear in the previous format. The
following are the most commonly used fonmat letters; fora completelist seeadb(CP)

1 byte in octal
c 1 byte as a character
o 1 word in octal
d 1 word in decimal
X 1 word in hexadecimal
D 2 words (1 longword) in decimal
X 2 words (1 longword) in hexadecimal
i machine instruction
s a null terminated character string
a the value of dot
u 1 word in unsigned decimal
n print a newline
r print a blank space
" backup dot

equestis:
address | ,count] command | modifier }

which setsthecurrentaddress (dot)toaddress andexecutesthe command counstimes.
6-2

R

Adb: A Program Debugger

Thefollowingtableillustratessome generaladbcommandmeanings:
Command Meaning

Print contents from a.out file
Print contents from core file
Print value of "dot”
Breakpoint control

$ Miscellaneous requests
Request separator

! Escape to shell

. ll'-..q

Adb catches signals, soa usercannotuse a quitsignaltoexitfromadb. The request $q
or$Q(or <CONTROL~D>)must beusedtoexitfromadb.

6.5 Debugging C Programs

The following subsections describe use of adb in debugging the C programs givenin
the numbered figures attheendof this chapter. Refertothese figuresasyouwork your
way through theexamples.

6.5.1 Debugging a Core Image

Considerthe C program inFigure 1. Thisprogramillustrates acommon errormadeby
C programmers. The object of the program is to change the lowercase ‘‘t”’ to
uppercase ‘‘T"’ inthe string pointed toby “‘charp’’ and then write the character string
tothefileindicatedby argument 1. Thebugshownis thatthe character “T’" is storedin
the pointer ‘‘charp’’ instead of the string pointed to by ‘‘charp.’’ Executing the
program produces a core file because of an out—of—bounds memory reference.
(Notethata core filemay notbe produced onall systems.)

Adbisinvokedbytyping:
adb a.out core

Thefirstdebuggingrequest
$c

is used to give a C backtrace through the subroutines called. As shown inFigure 2,
only one function, main, was called andthe arguments “‘argc’’ and ‘‘argv’’ have hex
values 0x2 and Ox1£f190 respectively. Both of these values look reasonable; 0x2 =
two arguments, Ox1{ff%0 = address on stack of parameter vector. These values may
bedifferent on your system duetoadifferentmapping of memory .

Thenextrequest
$r

prints out the registers including the program counter and an interpretation of the
instructionatthatlocation.

Therequest:

XENIX Programmer’s Guide

Se
printsoutthe values ofallexternal variables.

Amap existsfor eachfile handledby adb. Themap forthea.outfile isreferencedwith
a question mark (?), whereas the map for the core file is referenced with a slash (/).
Furthermore, a good ruleofthumbistouse questionmarkforinstructionsand slash for
datawhen looking atprograms. To print out informationaboutthemaps, type:

$Sm
Thisproducesareportofthe contents of the maps.
Inourexample, itisusefultoseethe contents of the string pointedtoby “‘charp.’’ This
isdonebytyping

*charp/s
which meansuse ‘‘charp’’ as a pointer in the core file and print the information as a
character string. This printout shows that the character buffer was incorrectly
overwritten and helps identify the error. Printing the locations around ‘‘charp’’ shows

thatthe buffer is unchanged but that the pointer is destroyed. Similarly, we could print
informationaboutthe argumentstoa function. Forexample

0x1f190,3/X

printsthe hex valuesofthe three consecutive cellspointedtoby *‘argv’’ inthe function
main. Notethatthese valuesaretheaddressesof theargumentstomain. Therefore:

Ox11£ffb6/s

prints the ASCII value of the first argument. Another way to print this value would
havebeen

¥

The quotationmark () meansditto, i.e., thelastaddress typed, in this case ‘ ‘Ox1 ¢
;'* the star (*) instructsadbtousethe address fieldof thecorefileasapointer.

Therequest
=x

prints the current address inhex (and not its contents). This hasbeen settothe address
ofthe first argument. The current address, dot, isusedbyadb toremember its curent
location. Dot allows the userto reference locations relative to the current address, for
example:

.—1od
6.5.2 Maultiple Functions

Consider the Cprogramillustrated inFigure 3. Thisprogramcalls functionsf, g ,andA
untilthe stack isexhaustedandacoreimage is produced.

Again, enteradbbytyping
adb

which assumes the names a.out and core for the executable file and core image file,
respectively. Therequest

6—4

Adb: A Program Debugger

$c

fills a page of backtrace referencestof, g, and h. Figure 4 shows an abbreviated list.

Pressing the INTERRUPT key terminates the output and brings you back to the adb

request level. Additionally, some versions of adb will automatically quit after fifteen
levelsunlesstold otherwisewith the command:

Jevelcount$c
Therequest
,5%¢
printsthe fivemostrecent activations.

Notice thateach function (f, g, and 4) has a counter that counts the number of times
each hasbeencalled.

Therequest
fent/D

prints the decimal value of the counter for the function f. Similarly, ‘‘gent’”” and
“‘hent’” could be printed. Notice that because “‘fent”’, “‘gent’’, and “‘hent’” are int
variables, and on the MC68000 int is implemented as long, toprint its value you must
usetheDtwo~—word format.

6.5.3 Setting Breakpoints

Consider the C program in Figure S. This program changestabs into blanks. We will
runthis program underthe control of adb (see Figure 6) bytyping:

adb a.out —
Breakpointsareset intheprogramas:
address:d [request]
Therequests

settab+8:b

fopen+8:b

tabpos+8:b
set breakpoints at the start of these functions. C does not generate statement labels.
Therefore, it is currently not possible to plant brealspoints at locations other than
function entry points withoutknowledge of thecode generatedby the Ccompiler. The
above addressesareenteredas

symbol +8

sothat they will appear inany C backtrace, because the first two instructions of each
functionare used to set up the local stack frame. Note that some of the functions are
from the Clibrary.

Toprintthe location of breakpoints, type:
$b

The display indicates a countfield. A breakpoint is bypassed count—1 times before
causing a stop. The command fieldindicates the adbrequeststobe executed each time

6~-5

XENIX Programmer’s Guide

the breakpointisencountered. Inourexample nocommardfieldsarepresent.

By displaying the original instructions at the function seftab we see that the breakpoint
is set after the tstb instruction, which is the stack probe. We can display the
inswuctions using the adbrequest:

settab,5%ai

This request displays five instructions starting at setzab with the addresses of each
locationdisplayed. Another variation is

settab, 57
which displaystheinstructions with only the starting address.

Note that we accessed theaddressesfromthea. out file withthe question (?) command.
In general, when asking for a printout of multiple items adb advances the current
address the number of bytes necessary to satisfy the request. In the above example,
five instructions were displayed and the current address was advanced 18 (decimal)
bytes.
Torunthe programtype:

By
Todelete abreakpoint, for instance the entrytothe functionsetrab, type:

settab+8:d
Tocontinue executionoftheprogram from the breakpointtype:

ic
Once the programhas stopped (in this case at the breakpoint forfopen), adb requests
canbe usedtodisplaythe contentsof memory. Forexample

$c
displaysastacktraceor
tabs,6/4X

prints six lines of four locations each from the array called ‘‘tabs”’. By thistime (at
location fopen) inthe C program, sefrabhas been called and should have set a one in
every eighthlocationof* ‘tabs’’.

The XENIX quit and interrupt signals act onadb itselfratherthan onthe program being
debugged. If such a signal occurs then the program being debugged is stopped and
control is returned to adb. The signal is saved by adb and is passed on to the test

programif
I
istyped. Thiscanbeuseful when testing interrupt handling routines. The signalisnot
passed ontothetest program if
c 0
istyped.

St

Adb: A Program Debugger

6.5.4 Other Breakpoint Facilities

Arguments andchangesof standard inputandoutput are passed toa program as:
ir argl arg2 ...<infile >outfile
This request kills any existing program under test and starts the a. our afresh.
The programbeing debugged canbe single—steppedby typing:
s
If necessary, this request starts up the program being debugged and stops after
executingthe first instruction.
Adballowsaprogramtobe executedbeginning ata specific addressbytyping:
address:t
The count fieldcanbe used to skipthefirst nbreakpointswith:
M
Therequest
JAiC
may alsobeused for skipping the first nbreakpoints whencontinuing aprogram.
Aprogram canbe continuedatanaddress different fromthebreakpointby typing:
address:c
Theprogram being debuggedrunsasaseparateprocessand canbekilledby typing:
k

6.6 Maps

XENIX supports several executable file formats. These are usedto tell the loader how
to load the program file. Nonshared program files are the most common and are
generatedbya Ccompilerinvocationsuch as:

cc pgm.c
Asshared fileis produced by a C compilercommand line of theform

cc —npgm.c
Notethat separateinstruction/datafilesare not supported onthe MC68000.

Adbinterpretsthese different file formats and provides accessto the dif ferent segments
through a setof maps. Toprintthemapstype:

$m

In nonshared files, both text (instructions) and data are intermixed. This makes it
impossible for adb to differentiate data from instructions and some of the printed
symbolic addresses look incorrect; for example, printing data addresses as offsets
from routines.

Insharedtext, the insiructions are separated fromdataandthe

XENIX Programmer’s Guide

"%

accessesthedatapart ofthea.ou?file. Thisrequesttellsedbtousethesecondpartofthe
mapinthea.outfile. Accessing datainthe core file showsthedataafter it wasmodified
by the execution of the program. Notice also that the data segment may have grown
during program execution. Inshared files the corresponding core file docs not contain
the programtext.

Figure 7 shows the display ofthree maps for the same programlinked as anonshared
andsharedrespectively. The b, e, andffieldsare used by adbtomap addresses into file
addresses. Thef1 field isthe length of theheader at the beginning of the file (Ox34 bytes
for ana.out file and 0x800 bytes for a core file). The f2 field is the displacement from
thebeginning of the file to the data. Forunshared files withmixed text anddatathis is
the same asthe length ofthe header; for shared files this isthe length of the headerplus
the sizeofthetextportion.

The b and e fields are the starting and ending locations for a segment. Given an
address, A, the locationinthe file (either a.outor core)is calculated as:

bl=<A=el = file address = (A—bl)+£I
b2<As=e2 = file address = (A—b2)+12

Ausercanaccesslocationsbyusingtheadbdefined variables. The
$v
request printsthe variablesinitialized by ad b:

b Base address of data segment
d Length of the data segment

s Length of the stack

t Length of the text

m Execution type

In Figure 7 those variables not present are zero. These variables can be used in
expressions suchas

<b
in the address field. Similarly, the value of the variable can be changed by an
assignmentrequest suchas

02000>b

which sets “‘b’* to octal 2000. These variables are useful to know if the file under
examinationis anexecutableorcore image file.

Adbreadsthe header of the core image file to find the values for these variables. Ifthe
secondfile specified doesnotseemtobe acorefile, orifitismissing, thentheheaderof
theexecutablefileisused instead.

6.7 Advanced Usage

With adb it is possible to combine formatting requests to provide elaborate displays.
Below are several examples.

Adb: A Program Debugger

6.7.1 Formatted Dump

Theline
<b,—1/404"8Cn
prints four octal words followed by their ASCIL interpretation from the data space of
thecoreimage file. Broken down, therequest piccesmean:
<b Thebascaddressofthedatasegment.

<b,—1 Printfromthebaseaddresstotheend—of —file. Anegative countisused
here and elsewhere to loop indefinitely oruntil some error condition (like
end—of—file)isdetected.

The format‘ ‘404°8Cn"’ isinterpreted as follows:
40 Print fouroctallocations.

4 Backup the current address four locations (to the original start of the
field).
8C Print eight consecutive characters using an escape convention; each

characterinthe range octal 0t0037 isprintedasanat —sign(@)followed
by the comresponding character in the range octal 014010 0177. An at—

signisprintedas“‘@@’".
n Printanewline.
Therequest:
<b,<d/404°8Cn

could have been used instead to allow printing to stop at the end of the data segment
(<dprovidesthedatasegment sizeinbytes).

The formatting requests can be combined with adb’s ability to read in a script to
producea core imagedumpscript. Adbisinvokedwiththe commandline

adb a.out core < dump
toreadinascript filecontaining requestsnameddump. Anexample ofsuchascriptis:

XENIX Programmer’s Guide

1203w
4095%s
Sv
=3n

$Sm
=3n"C Stack Backtrace”

3C

=3n"C External Variables”
Se

=3n"Registers”

Sr

08s

=3n"Data Segment”
<b,—1/80na

Therequest
1208w

sets the width of the output to 120 characters (normally, the width is 80 characters).
Adbattemptstoprintaddressesas:

symbol + offset
Therequest
40958s

increases the maximum permissible offset to the nearest symbolic address from 255
(defauh)to4095. The equal signrequest (=)canbeusedtoprint literalstrings. Thus,
headingsare provided inthisdump program withrequestssuch as:

=3n"C Stack Backuace”

This spacesthreelines and printsthe literal string. Therequest
Sv

printsallnonzeroadbvariables. Therequest
03s

sets the maximum off'set for symbol matches to zero, thus suppressing the printing of
symbolic labels in favor of hexadecimal values. Note that this is only done for the
printing of the data segment. Therequest

<b,—1/8ona
prints a dump from the base of the data segment to the end—of—file with an octal
address fieldand eight octalnumber sperline.
Figure9showstheresultsof somefonmattingrequestsonthe C program of Figure 8.

6.7.2 Directory Dump

Figure 10 illustrates another set of requests to dumpthe contents of a directory (which
ismadeupofaninteger ‘‘inumber’’ followedby a 14—charactername):

6-10

_Adb:APrommDebnmr

adb dir -
=n8t"Inum"8t"Name”
0,—1? u8tl4cn

Inthisexample, ‘‘u’’ prints the inumber as an unsigned decimal integer, ‘“8t** means
thatad b will space to the next multiple of 8 onthe output line, and “‘14c** prints the
14—character filename.

6.7.3 1list Dump

Similarly the contents of the ilistofa file system (e.g., /dev/iroot)canbe dumped with
the following setofrequests:

adb /dev/root —

02000>b

"m <b

<b, —1?"flags"8ton"links,uid, gid"8t3bn",size"8tbrdn"addr"8t8un"times"8t2Y2na

Inthisexamplethevalue of thebase forthemapwas changedto02000bytyping
m<b

sincethatisthe startof an ilist within a file system. The request ‘‘brd”* above was used
to print the 24—bit size field as a byte, a space, and adecimal integer. The last access
time and last modify time are printed with the ‘“2Y"’ operator. Figure 10 shows
portionsoftheserequestsasappliedtoadirectory andfilesystem.

6.7.4 Converting Values

Adbmaybeusedtoconvert valuesfromonerepresentationtoanother. Forexample
072 = odx

prints
072 58 0x3a

which are the octal, decimal and hexadecimal representations of 072 (octal). The
format is remembered so that typing subsequent numbers prints them in the given
formats. Charactervaluescanbeconvertedina similarway; forexample

'a’ = co
prints
a 0141

1tmay alsobe used to evaluate expressions. However, be forewarned that all binary
operators have the same precedence, a precedence that is lower than that for unary
operators.

6.8 Patching

Patching files withadb is accomplished with the write (w or W) request. This is often
used in conjunction with the locate , (# or L)request. Therequest syntax for land w are
similar: 6~11

XENIX Programmer’s Guide

N value
Therequestlisusedto match on2 bytes; Lisusedfor4 bytes. Therequest wisusedto
write 2 bytes, whereas W writes 4 bytes. The walue field in either locate or write
requestsis anexpression. Therefore, decimal and octal numbers, or character strings

are supported.
Inordertomodify afile, adbmustbe called withthe —wswitch:

adb —w filel file2

When called with this option, file! and file2 are created if necessary and opened for
bothreadingand writing.

For example, consider the C program shown in Figure 8. We can change the word
"This" to "The " inthe executable file for this program, ex7, by using the following
requests:

adb —w ex7 —

N 'Th’

W 'The’
Therequest

n

starts at dot and stops at the first match of ‘‘Th"* having set dot to the address of the
location found. Notethe use of the questionmark (?)to writetothex.ourfile. The form

2%

wouldhave beenused for asharedfile.

Morefrequentlytherequestistypedas:
21 °Th"; s

This locatesthe first occurrence of ‘ ‘Th’* andprintsthe entire string. Executionofthis
request setsdottothe address ofthe characters “Th”’.

Asanother example of theutility of the patching facility,, considera Cprogramthathas
an internal logic flag. The flag could be set by the user through adband the program
run. Forexample:

adb x.out —
:s argl arg2
flag/w 1

c

The :srequest is normally used to single— step through a process or start a process in
single—stepmode. Inthiscase it startsx.our as a subprocess with arguments ‘‘argl”’
and ‘‘arg2"’. If there is a subprocess running, adb writes to it rather than to the file so
the wrequestcauses ‘‘flag2’’ tobe changed inthe memory of the subprocess.

6.9 Notes

Belowisalistof some thingsthatusers should beaware of:
The stack frame is allocated by teh first two instructions at the beginning of
every C routine. Thus, putting breakpoints at the entry point of routines
means that the function appears not to have been called when the breakpoint
6-12

Adb: A Program Debugger

occurs. Try placing the breakpoint at ‘routine’” + instead.

1. When printing addresses, ADB uses ither text or data symbols from the
x.out file. This sometimes causes unexpected symbol names to be printed
with data (. g., ‘‘sawr5+022""). This does not happen if question mark (?)
isusedfo text(instructions)andslash (/) fordata.

2. Local variablescannotbe addressed.

6.10 Figures

Figure 1: C programwith pointerbug

#include <stdio.h>
struct buf!
int fildes;
int nleft;
char *nextp;
char butf512];
ibb;
struct buf *obuf;

char *charp = "this is a sentence.”;

main(argc,argv)

int a gc;

char **argv;

|

' char cc;
FILE *file;

if(argec < 2) !
printf("Input file missing\n");
exit(8);

t
3

if((file = fopen(a gv(1],"w") == NULLY
print{("%s : can't open\n”, arg l]);
exit(8);

L

charp = 'T";

printf("debug 1 %s\n",charp);

while(cc= *charp + +)
putc(cc.file);

fAush(file);

XENIX Programmer’s Guide

Figure2: Adboutputfor C programoffigurel

adb

$c

start+44: main (0x2, OxIFFF90)

$r

do 0x0 a0 0x54

dl 0x8 al Ox1FFF90
d2 0x0 a2 0x0

d3 0x0 a3 0x0

d4 0x0 ad 0x0

ds 0x0 a5 0x0

dé 0x0 a6 O0x1FFFIC
d7 0x0 sp Ox1FFF74
ps 0x0

pc 0x80E4 _main+160: movb (a0),—1.(a6)
Se

_environ: Ox1FFF9C
-ertmo: Ox19

_bb: 0x0
_obuf: 0x0
-charp: 0x55

—iob: 0x9B1C

—sobuf: 0x64656275

Jastbu: 0x96F8

—sibuf: 0x0

allocs: 0x0

.allocp: 0x0

_alloct: 0x0

allocx: 0x0

—end: 0x0

_edata: Ox0

$m

Tmap ‘x.out’

bl = 0x8000 el = 0x970C fl = 0x20
b2 = 0x8000 e2 = 0x970C f2 = 0x20
/map ‘=’

bl = 0x0el = 0x1000000 £l = 0x0

b2 = 0x0e2 = 0x0f2 = 0x0

*charp/s
0x5S:
data address not found
Ox11190,3/X
Ox1FFF90: Ox1FFFEO Ox1FFFB6. 0x0
0x1{Ib0/s
Ox1FFFBO: x.out
Is
0x1FFFBO: x.out
=X

Ox1FFFBO
.—10/d
Ox1FFFAG: 65497

6—14

S

Adb: A Program Debugger

6—15

XENIX Programmer’s Guide

Figure3: Multiple functionCprogram

int fent,gent,hent;
h(x,y)
{

int hi; register int hr;
hi = x+1;

hr = x~y+1;
hent++ ;

hj:
f(hr,hi);

int gi; register int gr;
gi=q-p
gr=q-pth
gent++ ;

g
h(gr,gi);

int fi; register int fr;
fi = a+2*b;

fr = a+b;

fort++ ;

fi:
g(fr.fi);

f(1,1);

6-16

Figured: Adboutputfor C programof Figure3

adb

$c
h+46:
-£+48:
£+70:
_h+46:
-g+48:
£+70:
.h+46:
-g+48:
<INTERRUPT>
adb
+5%¢
.h+46:
-g+48:
£+70:
h+46:
£g+48:
feot/D
fent:
gent’D
-gent:
heat/D
hent:

$q

bbade br bode b ke

blade b b

(0x2, 0x92D)
(0x92C, 0x92B)
(0x92D, 0x1258)
(0x2, 0x92B)
(0x92A, 0x929)
(0x92B, 0x1254)
(0x2, 0x929)
(0x928, 0x927)

(0x2, 0x92D)
(0x92C, 0x92B)
(0x92D, . 0x1258)
(0x2, 0x92B)
(0x92A, 0x929)

Adb: A Program Debugger

6—17

XENIX Programmer’s Guide

FigureS: C programtodecodetabs
#include <stdio.h>

#define MAXLINE 80
#define YES 1
#define NO 0
#decfine TABSP 8

char inpuf] = "dara”;
char ibuf{S18}
int tabs MAXLINE};

main()
I

int col, *ptab;
char c;

ptab = tabs;
settab(ptab); /*Set initial tab stops */
col = I;
if(fopen(input,ibuf) < 0) !
printf("%s : not found\n",input);
exit(8);

|
while((c = getch(ibuf)) 1= —1) !
switch(c) (
case "t /* TAB %/
while(tabpos(col) != YES) !

/* put BLANK ¥/
putchar(’ °);
col++;

1
i

break;

case \n": #NEWLINE */
putchar("\n');
col =];
brcak;

default:
putchar(c);
col++ ;

L

b

L
I

}* Tabpos return YES if col is a tab stop */

tabpos(col)
int col;
i
if(col > MAXLINE)
return(YES);
clse
return(tabs] coll);

e

Adb: A Program Debugger

¥ Settab — Set initial tab stops */
settab(tabp)
int ¥abp;
1

int i;

for(i = 0; i<= MAXLINE; i++)

(i%TABSP) ? (tabs]i] = NO) : (tabsi] = YES);

]

/¥ getch(ibuf) — Just do a getc call, but not a macro */
getch(ibuf)

FILE *ibuf;

i

' retum(getc(ibuf));

t

6—19

XENIX Programmer’s Guide

Figure6: AdboutputforC programofFigure 5

adb x.out
settab+8:b
fopen+8:b
getch+8:b
tabpos-+8:b
$b
breakpoints
count bkpt command
1 tabpos+8
1 -getch+8
1 Sopen+8
1 settab+8
settab,5%ia
_settab: link a6, #OxFFFFFFFC
settab+4: tstb -132.(a?)
settab+8: moveml #<>,—(a7)
.settab+12: cirl -4 (a6)
_settab+16: cmpl #0x50,—4.(a6)
.settab+24:
settab,52§
settab: link a6, #OxFFFFFFFC
tstb -132.(a7?)
moveml #<>,—(a?7)
cirl -4.(ab)
cmpl #0x50,-4.(26)
ir
x.out:running
int settab+8: moveml #<>,—(a7)
settab+8:d
H
x.out:running
ls)crcakpoim fopen+8: jsr —findio
main+52: Sfopen (0x9750, 0x9958)
start+44: _main (Ox1, Ox1FFF98)
tabs,6/4X
tabs: Oxl 0x0 0x0 0x0
0x0 0x0 0x0 0x0
Ox1 0x0 0x0 0x0
0x0 0x0 0x0 0x0
Ox1 0x0 0x0 0x0
0x0 0x0 0x0 0x0

-20

—

Figore7: Adboutputformaps

adb x.out.unshared core.unshared
$m
?map ‘x.out.unshared’

bl = 0x8000 el = 0x83E4
b2 = 0x8000 e2 = 0x83E4
/map ‘core.unshared’

bl = 0x8000 el = 0x8800
b2 = Ox1EBOOO €2 = 0x200000
$v

variables

b = 0x8000

d = 0x800

e = 0x8000

m = 0x107

s = 0x15000

$q

adb x.out.shared core.shared

$m

?map ‘x.out.shared’

bl = 0x8000 el = 0x8390

b2 = 0x10000 e2 = 0x10054

/map ‘core.shared’

bl = 0x10000 el = 0x10108

ls>2 = 0x1EB000 e2 = 0x200000
v

variables

b = 0x10390

d = 0x800

e = 0x8000

m = 0x108

s = 0x15000

$q

Adb: A Program Debugger

fl = 0x34
2 = 0x34
fl = 0x800
f2 = 0x1000
fl = 0x34
f2 = 0x3B0
fl = 0x800
f2 = 0x1000

6-21

XENIX Programmer’s Guide

Figure8: Simple C program illustratingformattingand patching

char arlf] = "This is a character string”;

int one =1 0,
int number = 456; g
long Inum =]234; ’
float fpt = 1.25;

char sr2f] = “This is the second character string”;

main()
{
one = 2;

k
b

6-22

Adb: A Program Debugger

Figure9: Adboutput illustratingfancyformats

adb x.out.shared core.shared

<b,—1/8ona

_strl: 052150 064563 020151 071440 060440 061550 060562 060543
_strl +16: 072145 071040 071564 071151 0671470 0 01

-number:
_number: 0 0710 0 02322 0376400 052150 064563

ste2+4: 020151 071440 072150 062440 071545 061557 067144 020143
_str2+20: 064141 071141 061564 062562 020163 072162 064556 063400

$nd:
$nd: 01 0140
<b,20/404'8Cn

strl: 052150 064563 020151 071440 This is
060440 061550 060562 060543 a charac
072145 071040 071564 071151 ter stri
0671470 0 o1 npER'AQ'@'@'@'@a

numberr 0 0710 0 02322 @‘@‘@H@‘@'@dR

fpt: 0376400 052150 064563 ? @‘@“This
020151 071440 072150 062440 is the
071545 061557 067144 020143 second ¢
064141 071141 061564 062562 haracter
020163 072162 064556 063400 string@"

$nd: 01 0140
data address not found

<b,20/404°8t8Cna

strl: 052150 064563 020151 071440 This is

strl1+8: 060440 061550 060562 060543 a charac

strl +16: 072145 071040 071564 071151 ter stri
srl+24: 0671470 0 01 nEERQ‘@WR‘@‘@a
-number:

number: O 0710 0 02322 @'@'@H@'@@dR
fpt:

fpt: 0376400 052150 064563 ? @ @"This
str2+4: 020151 071440 072150 062440 is the

str2+12: 071545 061557 067144 020143 second ¢
str2+20: 064141 071141 061564 062562 haracter
str2+28: 020163 072162 064556 063400 string@*

$nd:

$nd: 01 0140
data address not found

<b,10/2b3t"2cn

strl: 0124 0150 Th
01s1 0163 is
040 0151 i

6-23

XENIX Programmer’s Guide

-24

0163 G40
0141 040
0143 0150
0141 0162
0141 0143
0164 0145
0162 040

“egmg””

Adb: A Program Debugger

Figure10: Directory andinodedumps

adb dir —
=nt"Inode"t"Name"; 0,—17utidcn

Inode Name
0x0: 652

82 .

5971 cap.c

5323 cap

0 PP

adb /dev/root —
/dev/root — not in a.out format
02000>b
?m<b
$v
variables
b = 0x400
<b,—1?"flags"8ton"links,uid,gid"8¢3bn"size"8tbrdn"addr"8t8un"times"8t2Y2na
0x400: flags 073145
links,uid,gid 0163 0164 0141
size 0162 10356
addr 28770 8236 25956 27766 25455 8236 25956 25206
times 1976 Feb S 08:34:56 1975 Dec 28 10:55:15

0x420: flags 024555
links,uid,gid 012 0163 0164
size 0162 25461
addr 8308 30050 8294 25130 15216 26890 29806 10784
times 1976 Aug 17 12:16:51 1976 Aug 17 12:16:51

0x440: flags 05173
links,uid,gid 011 0162 0145
size 0147 29545
addr 25972 8306 28265 8308 25642 15216 2314 25970
times 1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

6—25

XENIX Programmer’s Guide

6.11 AdbSummary

6.11.1 Command Summary

Formatted printing
?format print fromx. ourfileaccording to formar
Iformar print from core fileaccordingtoformar
= format print the value of dot
?wexpr writeexpressionintox.outfile
lwexpr writeexpressionintocore file

?lexpr locateexpressioninx.outfile

Breakpoint and program control
b set breakpoint at dot 1
H continue running program ;
«d delete breakpoint
*k kill the program being debugged
H 4 run x.out file under adb control
s single step

Miscellaneous printing

$b print current breakpoints
$c C stack trace

$e external variables

$m print adb segment maps
$q exit from adb

$r general registers

$s set offset for symbol match
Sv print adb variables

Sw set output line width

Callingthe shell
i call sh (shell) to read rest of line \}

Assignmentto variables
>name assign dot to variable or register name

6-26

Adb: A Program Debugger

6.11.2 Incomplete Format Summary

date

;T 'O N ER YT D0 AN T

the value of dot

1 byte in octal

1 byte as a character

1 word in decimal

machine instruction

1 word in octal

print a newline

print a blank space

a null tenminated character string .
move to next n space tab

1 word as unsigned integer

1 word in hexadecimal

2 words (1 longword) in hexadecimal
2 words (1 longword) in decimal

backup dot
. print string

6.11.3 Expression Summary

Expressioncomponents

decimal integer
octal integer
bexadecimal
symbols
variablese.g., <b

e.g., 256

e.g., 0277

e.g., Oxff

e.g., flag 1main main.argc

registers e.g., <pc <d0 <a0

(expression)

Dyadic operators

add
subtract
mukiply

TR+

Monadicoperators

not

expression grouping

integer division

bitwise and

bitwise or

round up to the next multiple

g contents of location
- integer negation

6-27

-~

hapter 7
s: An Assembler

Introduction 1
CommandUsage 1
InvocationOptions 1

Source ProgramFormat 2
74.1 LabelField 3
7.42 OpcodeField 3
7.4.3 Operand—Field 3
744 CommentField 4

SymbolsandExpressions 4

7.5.1 Symbols 4

7.5.2 AssemblyLocationCounter 6
7.53 ProgramSections 7

7.54 Constants 7

7.5.5 Operators 8

7.5.6 Terms 9

7.5.7 Expressions 9

Instructionsand AddressingModes 10
7.6.1 InstructionMnemonics 10
7.6.2 Operand AddressingModes 11

AssemblerDirectives 13
7.7.1 .ascii.asciz 14
7.7.2 .blkb.blkw .bkkl 15
7.3 .byte .word .long 15
7.74 end 15

7.1.5 text.data .bss 16
©7.7.6 .globl.comm 16
7.1.7 .even 16

OperationCodes 17

ErrorMessages 18

As: An Assembler

7.1 Introduction

This chapter describes the use of the XENIX assembler, named as, for the Motorola
MC68000 microprocessor. It is beyond the scope of this chapter to describe the
instruction set of the MC68000 or to discuss assembly language programming in
general. For information on these topics, refer to the ‘‘MC68000 16—Bit
Microprocessor User’s Mamal’’, 3rd Edition, Englewood Cliffs: Prentice—Hall,
1982.

This chapter describesthefollowing:
— Command Usage
— SourceProgramFormat
— SymbolsandExpressions
— Instructionsand AddressingModes
~= AssemblerDirectives
— OperationCodes
- ErrorMessages

7.2 Command Usage

As canbe invoked with one or more arguments. Except for option arguments, which
must appear first on the command line, arguments may appear in any order on the
command line. The source filename argument is traditionally named with an ”.s"
extension. Exceptasspecifiedbelow, flagsmaybegrouped. Forexample

as —glo that.o this.s
willhavethe sameeffectas
as —g —| —o that.o this.s

7.3 Invocation Options

The various optionsand theirfunctionsaredescribedbelow:

—0 relname The default output name is filename .0. This can be overridden by
giving as the —o flag and giving the new filename in the argument
followingthe —o. For example

as —o that.o this.s
assemblesthe sourcerhis. sand putstheoutputinthefilerhar.o.
| Bydefauk,nooutputlisting isproduced. Alistingmaybeproducedby
giving the —1 flag. The listing filename extension is ““.L”’. The

filename forthe list fileis based ontheoutputfile. Sothe commandline
7-1

XENIX Programmer’s Guide

as —] —o output.x input.s
producesalisting named ouspur. L.

-e By default, allsymbolsgo intothe symboltable of the a.ous(F) filethat
is produced by the assembler, including locals. If you want only
symbolsthataredefined as .globl or .comm tobeincluded, usethe—e
(externalsonly) flag.

-g Bydefault, ifa symbol isundefinedinanassembly,anerrorisflagged.
This may be changed with the —g flag. If this is done, undefined
symbols willbe interpreted as external.

-V By default, the a.out file is for XENIX version 3.0 systems; the
number 2or3 specifies which versiontheoutputisintendedfor.

7.4 Soﬁrce Program Format

Anas program consistsof a series of statements, each of which occupies exactly one
line, i.e., a sequence of characters followed by the newline character. Form feed,
ASC1l <CONTROL ~L>, also serves as a line terminator. Continuation linesare not
allowed, and themaximum line lengthis 132 characters. However, several statements
may be on a single line, separated by semicolons. Remember though, that anything
after a comment character is considered a comment. The format of an as assembly
language statementis:

[label—ﬁeld] [opcode [aperands] [l commem]
Most of the fieldsmaybe omitted undercertaincircumstances. Inparticular:

1. Blanklinesarepermitted.

2. Astatementmay containonly alabelfield. Thelabel definedinthis fieldhas
the same value as if it were defined in the label field of the next statement in
theprogram. Asanexample, thetwostatements

name:
addl do,dl

areequivalent tothe single statement
name: addl do,dl1
3. Alinemay consistofonly thecomment field. Thetwo statements below are
allowed ascomments occupying fulllines:

| This is a comment field.
| So is this.

4. Mutiple statements may be put on a line by separating them with a
semicolon (;). Remember, however, that anything after a comment
character(including statement separators)isacomment.

n general, blanks ortabs are allowed anywhere ina statement; thatis, multiple blanks
re allowed in the operand field to separate symbols from operators. Blanks are

-2

As: An Assembler

significant only whenthey occur in a character string (e.g., asthe operand of an .ascii
pseudo—op) or in a character constant. At least one blank ortabmust appear between
theopcodeandthe operand fieldof a statement.

74.1 Label Field

A label is a user—defined symbol that is assigned the value of the current location
counter, both of which are enteredinto the assembler’s symboltable. The value of the
labelisrelocatable.

A label is a symbolic means of referring to a specific location within a program. 1f
presert, a label always occurs first ina statement and must be terminated by acolon. A
maximum of ten labels may be defined by a single source statement. The collection of
label definitionsinastatementiscalled the*‘label—field.”

The formatofalabel—fieldis:

symbol: fsymbol:]
Examples:
start:
name: name2: | Multiple symbols
7%: | A local symbol (see below)

74.2 OpcodeField

The opcode field of an assembly language statement identifies the statement as eithera
machine instruction, or an assembler directive (pseudo—op). One ormore blanks (or
tabs) must separate the opcode field from the operand field ina statement. Noblanks
are necessary between the label and opcode fields, but they are recommended to
improvereadabilityof programs.

A machine instruction is indicated by an instruction mnemonic. Conventionsusedin
as for instruction mnemonics are describe dina later section, along with acomplete list
of opcodes.

An assembler directive, or pseudo—op, performs some function during the assembly
process. It does notproduceany executable code, but it may assign spaceina program
fordata.

Asiscase—sensitive. Operatorsand operandsmay onlybe lowercase.
7.4.3 Operand—Field

As makes a distinction between operand—field and operand. Several machine
instructions and assemblerdirective srequireone ormore arguments, andeach ofthese
is referredtoasan “‘operand’’. In general, an operand field consists of zero, one, or
two operands, and in all cases, operands are separated by a comma. 1n other words,
the formatforan operand—fieldis:

[operand [, aperand]. .]

The format of the operand field for machine instruction statements isthe same for all
7-3

XENIX Programmer’s Guide

instructions. The format of the operand field for assembler directives depends on the
directiveitself.

7.4.4 Comment Ficld

The comment delimiter isthe verticalbar, { |), notthe semicolon, (;). The semicolonis
the statement separator. The comment field consists of all characters on a source line
following and including the comment character. These characters are ignored by the
assembler. Any character may appear in the comment field, with the exception ofthe
new line character, whichstartsanewline.

7.5 Symbols and Expressions

This section describes the various components of as expressions: symbols, numbers,
terms, and expressions.

7.5.1 Symbols

Asymbolconsistsof 1 to32characters, with the following restrictions:

1. Valid characters include A—2Z, a—z, 0—9, period (.), underscore (), and
dollarsign ($).

2. Thefirstcharactermustnot be numeric, unlessthe symbolisalocalsymbol.

There is no limit to the size of symbols, except the practical issue of running out of
symbolmemory inthe assembler. However, be aware that the current C compiler only

generates eight —character symbol names, soasymbol greaterthan eight —characters

inlengththat you think is the same-in both C and assembly may notmatch. Uppercase

and lowercase are distinct (e.g., ‘‘Name’’ and ‘‘name’’ are separate symbols). The

period (.) and dollar sign ($) characters are valid symbol characters, but they are
reserved for system software symbols such as system calls and should not appear in

user—defined symbols.

A symbol is said tobe “‘declared’’ whenthe assemblerrecognizes it as a symbol of the
program. A symbolissaidtobe ‘defined’’ whena valueis associated with it. Withthe
exception of symbolsdeclaredby a .globl directive, all symbolsaredefined whenthey
are declared. A label symbol (which represents an address inthe program)may not be
redefined; other symbols are allowed toreceivea new value.

Thereare several waystodeclarea symbol:
1. Asthelabelofastatement
2. Inadirectassignment statement
3. Asanexternal symbolviathe.globl directive

4. Asacommonsymbol viathe .commdirective

As: An Assembler

5. Asalocal symbol

7.5.1.1 Direct Assignment Statements
A direct assignment statement assigns the value of an arbitrary expression to a
specifiedsymbol. The formatof adirect assignment statement is:
symbol = [.symbal =] ... expression
Examples of valid direct assignments are:

vect.size = 4

vectora = /fffe

vectorb = vectora—vect size
CRLF = /0DOA

Any symbol defined by direct assignment may be redefined later in the program, in
which case its value is the result of the last such statement. A local symbol may be
defined by direct assignment; alabel orregistersymbol may not be redefined.

Iftheexpression is absolute, then the symbol isalso absolute, andmay betreatedas a
constart in subsequent expressions. If the expression is relocatable, however, then
symbol is also relocatable, and is considered to be declared in the same program
section as the expression. See the discussion in a later section of absolute and
relocatable expressions.

7.5.1.2 Register Symbols

Register symbols are symbols used torepresent machineregisters. Register symbols
areusually used to indicate the register in the register field of a machine instruction.
Theregister symbolsknowntotheassemblerare givenattheendof thischapter.

7.5.1.3 External Symbols

A programmay be assembled in separate modules, and then linkedtogetherto fonna
single program (see /d(CP)). External symbols may be defined in each of these
separate modules. A symbol that is declared (given a value) in one module may be
referenced inanother module by declaring the symbol tobe external inboth modules.
There are two forms of external symbols: those defined with the .globl directive and
those defined with the .eomm directive. See Section 8.7.6 formore information on
thesedirectives.

7.5.1.4 Lacal Symbols

Local symbols provide a convenient means of generating labels for branch
instructions. Use of local symbols reduces the possibility of multiply—defined

7-5

XENIX Programmer’s Guide

symbols in a program, and separates entry point symbols from local references, such
asthetopofaloop. Localsymbolscannot bereferencedbyotherobject modules.

Local symbolsare of the formn $ whererisanyinteger. Validlocal symbolsinclude:

278
3943

A local symbolisdefined andreferenced only withina single local symbol block (Isb).
Anewlocal symbol block isenteredwheneither:

1. Alabelisdeclared, or

2. Anewprogramsectionisentered.

Thereisno conflictbetween local symbols with the same name thatappearindifferent
local symbolblocks.

7.5.2 Assembly Location Connter

Theassembly location counteristheperiodcharacter (.); henceitsname “dot”’. When
used inthe operand field of any statement, dot representsthe address of the first byte of
the statement. Even in assembly directives, it represents the address of the start of the
directive. A dot appearing as the third argument in a .byte directive would have the
value of the address where the first byte was loaded; it is not updated “‘during’’ the
directive.

Forexample:
movl .,dl | load value of program counter into d1

Atthe beginning of each assembly pass, the assembler clears the location courter.
Normally, consecutive memory locations areassignedtoeachbyte of generated code.
However, the location wherethe code is storedmaybe changed byaa direct assignment
alteringthelocationcounter:

. = expression

This expression must not contain any forward references, must not change from one

pass to another, and must not have the effect of reducing the value of dot. Note that

setting dot to an absolute position may not have quite the effect you expect if you are

linking anas output file with other files, since dot ismaintainedrelativeto the origin of
the output file and not the resolved position in memory. Storage area may also be

reservedby advancing dot. For example, ifthe current value of dotis 1000, the direct

assignment statement:

TABLE: .=. + /100

wouldreserve 100 (hex) bytesof storage, with the address of the first byte as the value
of T ABLE. Thenextinstructionwouldbe storedataddress1100. Notethat

.blkb 100
isasubstantially more readable way of doingthe samething.

The :p operator, discussed in a later section, allows you to assemble values that are
location—relative, both locally (within a module) and across module boundaries,
without explicitaddressarithmetic.

7-6

As: Au Assembler

7.5.3 Program Sections

As in XENIX, programs to as are divided into two sections: text and data. These
sectionsareinterpreted as instruction space and initialized data space, respectively.

In the first pass of the assembly, as maintains a separate location counter for each
section. Thus, forcode likethe following:

text
LABEL]: movw dl,d2
.data
LABEL2: .word 27
Jext
LABEL3: addl 42,d1
data
LABELA:; byte 4

LABEL] willimmediately precedeLABEL3, andLABEL2 willimmediatelyprecede
LABELA in the output. At the end of the first pass, as rearranges all the addresses so
that the sections will be output in the following order: text, then data. The resulting
output file is an executable image with all addresses correctly resolved, with the
exception of .comm variables and undefined .globl variables. For more information
onthe fonmat of theoutputfile, consulta.cur(F).

7.5.4 Constants

Allconstamtsare considered absolute quantities whenappearinginan expression.

7.5.4.1 Numeric Constants

Any symbol beginning witha digit is assumedtobe anumber, and willbe interpretedin
thedefaultdecimalradix. Individual numbers may beevaluated inanyofthefive valid
radices: decimal, octal, hexadecimal, character, and binary. The default decimal
radix is only used on ‘‘bare’’ numbers, i.e., sequences of digits. Numbers may be
represented in other radices as defined by the following table. The other three radices

XENIX Programmer’s Guide

require aprefix:

Radix Pre | _Example

octal (up—arrow} | 17 cquals 1obase 10,
octal | 0 017 cquals 15base 10,
hex {(slash) 1Al equals 161 base 10.
hex 0x O0xAl equals 161 base 10.
char ? (quote) ‘a equals97base 10.
char ? {quote) '] equaly [0base 10,
binary | % (percent) %11011 | equals27base 10.

Letters in hex constants may be uppercase or lowercase; e. g. , /aa=/Aa=/AA=170.

1llegaldigits for a particularradix generate anerror (e.g., “018). WhiletheC character
constantsyntaxis supported,

you cannot define character constants with a number (e.g., "27) asthisismore easily
representedinoneof theotherf ormats.

7.5.5 Operators
Arn operator is either a unary operator requiring a single operand, or a binary operator
requiringtwooperands. Operatorsof eachtypeare describedbelow.

7.5.5.1 Unary Operators ’ ?

Therearethreeunaryoperatorsinas:

| Operator Funetion
i+ unary plus, has nocffect.

- unary minus,

ip program displacement

The*‘:p" operatoris a suffix that canbe applied toarclocatable expression. 1treplaces
thevalue of theexpression withthe displacement of that value from the current location
(not dot). This is implemented with displacement relocation, so that it also works

As: An Assembier

acrossmodules.

7.5.5.2 Binary Operators

Binary operatorsinclude:
Operator Description Example Value
+ Addiion 3+4 7.
- Subtraction 3—-4 —1.,0r/FFFF
- Multiplication 4%3 12.
/ Division 12/4 3.
| Logical OR %01101 | %00011 %01111
& Logical AND %01101&%00011 %00001
- Remainder 53 2.

Each operatorisassumed to work on a 32—bit number. Ifthe value of aparticular term
occupiesonly 8or 16 bits, the sign bit isextended into thehighbyte.

Sometimeserrorsin expressionscanbe fixedby breakingthe expressionsintomultiple
statements using direct assignment statements.

7.5.6 Terms

Aterm isa componernt ofanexpression. Atermmay beoneofthefollowing:
1. Anumberwhose32—bitvalueisused

2. Asymbol

3. A term preceded by a unary operator. For example, both “‘term’’ and
““"term’ "’ may be considered terms. Multiple unary operators are allowed;
e.g. ‘‘+——+A’hasthesamevalueas““A’".

7.5.7 Expressions

Expressions are combinations of terms joined together by binary operators. An
expressionisalways evaluatedtoa 32 —bit value. Iftheinstructioncalls foronly 1 byte
(e.g.,.byte), thenthelow—order8bitsareused.

Expressions are evaluated left to right with no operator precedence. Thus
“l + 2 * 3" evaluates to 9, not 7. Unary operators have precedence over binary
operators since they are considered part of a term, and both terms of a binary operator
must beevaluatedbefore thebinary operator canbeapplied.

Amissing expression or term is interpretzd as having a valueof zero. Inthis case, the
followingerror message is generated:

Invalid Expression

XENIX Programmer’s Guide

An ““Invalid Operator’* error means that a valid end—of—line character or binary
operator was not detected afterthe assemblerprocessedaterm. Inparticular, thiserror
will be generated if an expression contains a symbol with an illegal character, orif an
incorrectcommentcharacter was used.

Aty expression, whenevaluated, iseither absolute, relocatable, orextemal:

1. Anexpressionisabsolute ifits valueisfixed. Absolute expressions are those
whose terms are constants, or symbols assigned constants with an
assignment statement. Also absolute is a relocatable expression minus a
relocatable term, where bothitemsbelongtothe same program section.

2. Anexpressionis relocatable if its value is fixedrelative to a base address,
but will have an offset value whenit is linked, orloaded intocore. Alllabels
of a program defined in relocatable sections are relocatable terms, and any
expression that contains them must only add or subtract constants to their
value. For example, assume the symbol ‘“‘sym’’ was defined in a
relocatable sectionofthe program. Thenthefollowing demonstratestheuse
ofrelocatable expressions:

sym Relocatable
sym+S5 Relocatable
sym—'A Relocatable
sym*2 Notrelocatable

2—sym Not relocatable, since the expression cannot be linked by
adding sym’soffsettoit.

sym—symzZ Absolute, since the offsets added to sym and sym2 canceleach
otherout.

3. An expression is ‘“‘external’’ (i.e., or global) if it contains an external
symbol not defined in the current program. The same restrictions on
expressions containing relocatable symbols apply to expressions
containing external symbols.

An important exception is the expression sym—sym2 where both sym and
sym2 are external symbols. Expressionsofthiskindaredisallowed.

7.6 Instructions and Addressing Modes

Thissectiondescribesthe conventionsusedinasto specify instructionmnemonicsand
addressingmodes.

7.6.1 Instruoction Mnemonics

The instructionmnemonicsusedbyasare described inthe MotorolaMC68000 User’s
Manual with a few variations. Most of the MC68000 instructions can apply to byte,

7-10

—r

As: An Assembier

word or tolong operands, thus in asthe normal instruction mnemonic is suffixedwith
b, w, or I to indicate which length of operand was intended. For example, there are
threemnemonicsfortheaddinstruction: addb, addw, andaddl.

Branch and call instructions come in 3 forms: the bra, jra, bsr and jbsr fonns may
only take a label as argument. For the bra and bsr forms, the assembler will always
produce along (16—bit) pcrelative address. Forthe jraand jbsr fonms, the assembler
will produce the shortest form of binary it can. This may be 8—bit or 16—bit pc
relative, or 32—bit absolute. The 32—bit absolute is implemented for conditional
branches by inverting the sense of the condition and branching around a 32—bitjmp
instruction. The 32—bit form will be generated whenever the assembler can't figure
out how far away the addressed location is; for example, branching to an undefined
symbolora calculated value suchasbranchingtoaconstantlocation.

7.6.2 Operand Addressing Modes

These effective addressing modes specify the operand(s)of aninstruction. Fordetails
oftheeffective addressing modes, seethe ‘‘MC68000 User’s Manual. "’ Notealsothat
not all instructions allow all addressing modes. Details are given in the *“MC68000
User’sManual "’ in Appendix Bunder the specificinstruction.

In the examples that follow, whentwo examplesare given, the first example is based
on the assembly format suggested by Motorola. The second example is in what is
called ‘‘Register Transfer Language’® or RTL and is used to describe the register
transfersthat are occurring within themachine. It is provided forcompatibility. Either
syntax is accepted, andit is permissible to mix the two types of syntax within amodule
or even within a line when two effective address fields are allowed. Beware,however,
thata warning message will be generated whentheassemblernoticessuchamix.

Many of the effective address modes have other names, by which they maybe more
commonly known. In the following descriptions, this name appearsto the right of the
Motorola name inparentheses.
DataRegister Direct

addl do.d1

AddressRegister Direct
addl a0,a0

AddressRegister Indirect (indirect)

addl (ao)ldl
addl a0@,dl1

AddressRegister Indirect With Postincrement(autoinc)

movl (a7)+,dl
movl a7@+,dl

AddressRegister Indirect With Predecrement(autodec)

7-11

(ENIX Programmer’s Guide

movl dl, —(a?)
movl di,a7@-
\ddressRegister Indirect WithDisplacement(indexed)

This fonm includes asigned 16— bit displacement. These displacementsmaybe
symbolic.

movl 12(a6),d1
movl a6@(12),d1
iddressRegisterIndirect WithIndex(donble—indexed)

This form includes a signed 8—bit displacement andanindexregister. The size
oftheindexregisteris givenbyfollowing its specificationwitha ‘‘:w**ora““:1"".
Ifneitherisspecified, ‘:1"’ isassumed.

movl 12(a6,d0:w),dl

movl a6@(12,d0:w),dl
.bsoluteShortAddress

movl xx:w,dl

.bsoluteLong Address (absolute)

This isthe assumed addressing mode should the given value be aconstant. This
is not true of branch and call instructions. Note also that the second example
hereisnotRTL syntax, butis providedonly becauseitisalsoallowed.

movl xx,di
movl xx:l,dl
rogramCounter With Displacement(pcrelative)
Whenpcrelativeaddressingisused, suchas
pea name(pc)

theassembler will assemble a value thatisequalto ‘‘name—."*, wheredot(.)is
the position of the value, whether ‘‘name’” isinthe current module ornot. You
may also cause anexpressiontobepcrelative by suffixing it witha “:p*°.

movl 10(pc),dl
movl pc@(10),dl

Note that if a symbol appears in the above addressing mode (where the 10 isin
the example}), the symbol’ sdisplacement from the extension word will be used
intheinstruction.

‘ogram Counter WithIndex

jmp switchtab(pc,d0:1)
jmp pc@(switchtab,d0:1)
switchtab:

wmmediateData

7.7

As: An Assembler

Note that this is the way to get immediate data. If a number is given with no
number sign (#), you get absolute addressing. This does not hold for jsr and
jmp instructions.

movl #47,dl1
jmp somewhere
moveq #7,dl

in the movem instruction’s register mask field, a special kind of immediate is
allowed: theregisterlist. Itssyntaxisas follows:

<reg [.reg]>

Here, regisanyregister name. Register names may be given inany order. The
assembler automatically takes care of reversing the mask for the auto—
decrement addressingmode. Normalimmediatesare alsoallowed.

Assembler Directives

7--13

XENIX Programmer’s Guide

The following assembler directivesareavailableinas:

.ascii storescharacter strings

.8sciz stores null—appendedcharacter strings

.blkb

.blkw savesblocks ofbytes/words/longs

Lblkl

.byte

.word storesbytes/words/longs

Jong

.end terminates program and identifies executionaddress|

.text Text program section

.data Data program section

.bss Bssprogram section

glob} declaresexternal symbols

comm | declarescommunal symbols

.even forces locationcounterto next wordboundary

7.17.1 .ascii .asciz

The .ascii directivetranslates character strings intotheir 7—bit ASCII (represented as
8—bit bytes) equivalents for use in the source program. The format of the .ascii
directiveisasfollows:

.ascii "character—string”

where character—string contains any character valid in a character constant.
Obviously, a newline must not appear within the character string. (It can be
represented by the escape sequence ‘\n”* asdescribed below). Thequotationmark (*)
is the delimiter character, which must not appear in the string unless preceded by a
backslash (\).

The following escape sequencesare also valid as single characters:

X Value of X]
\h <backspace =, hex /08 |
\t <tab>, hex /09
\n <newline>, hex /0A
¢ <form—feed>, hex /0C
\r <return>, hex /0D
\nnn | hex value of nnn

Several examplesfollow:

HexCode Generated: Statement:
2268656C6C6F2074 .ascii "hellothere”
6865726522
7761 726E696E6720 .ascii "Warning—\G07\007\n"
2D0707200A

-14

As: An Assembier

The .asciz directive is equivalent to the .ascii directive with a zero (null) byte
automatically inserted asthe final characterofthe string. Thus, whena list ortextstring
istobe printed, a search for the nullcharactercanterminate the string. Null terminated
strings areoftenused as argumentstoXENIX systemcalls.

7.7.2 -blkb.blkw .blkl

The .blkb, .blkw, and .bkkl directives are used to reserve blocks of storage: .blkb
reserves bytes, .blkwreserves wordsand. blklreserves longs.

The formatis:
label:l .bkb expression
laktet: blkw expression
label:1 bkl expression

where expression is the number of bytes or words toreserve. 1f noargumentis givena
value of 1 isassumed. The expressionmust be absolute, and defined during pass 1 (i.e.
noforwardreferences).

This is equivalent to the statement *‘. =. +expression’’, but has a much more
transparent meaning.

7.1.3 .byte .word .long

The .byte, .word, and .Jong directives are used to reserve bytes and words and to
initialize them with values.

The formatis:
label: .byte expression)|, expression|. ..
label: word expression||, expression).. .
| label; Jong expression||, expression)|.. .

The .byte directive reserves 1 byte for each expression in the operand field and
initializes the value of the byte to be the low—order byte of the corresponding
expression. Note that mukiple expressions must be separated by commas. A blank
expressionis interpreted as zero, and noerror is generated.

Forexample,

.bytea,b,c,s reserves4 bytes.
.byte,,,, reserves S bytes, each with a value of zero.
.byte reserves 1 byte, witha value of zero.

The semantics for .word and .long are idertical, except that 16—bitor 32—bit words
arereservedand initialized. Be forewamned that the value of dot withinan expressionis
thatofthe beginningofthe statement, not of the valuebeing calculated.

7.7.4 end

The.enddirective indicatesthe physicalendofthe source program. The formatis:

7-15

XENIX Programmer’s Guide

end
The .endisnotrequired; reaching theend of filehasthe same effect.

1.7.5 .text .data .bss

These statements change the ‘‘program section’ where assembled code will be
loaded.

7.7.6 .globl .comm

Two forms ofexternal symbols are defined with the .globland .comm directives.
External symbolsaredeclared with the .globlassemblerdirective. The formatis:
.globl symbol[» Symbol]

For example, the following statements declare the array TABLE and the routine
SRCHtobe external symbols:

.globl TABLE, SRCH
TABLE: .bkw 10.
SRCH: movw TABLE,a0

External symbolsare only declared tothe assembler. Theymust be defined (i.e., given
a value) in some other statement by one of the methods mentioned above. They need
not be defined in the current program; in this case they are flagged as ‘‘undefined’” in
the symbol table. If they are undefined, they are considered to have a value of zeroin
expressions.

Itis generally a goodideato declare asymbol as . globl before using it in any way. This
is particularly important whendefining absolutes.

The other form of external symbol is defined with the .comm directive. The .comm
directive reserves storage that may be communally defined, i.e., defined mutually by
several modules. The link editor, & (CP) resolves allocation of .comm regions. The
syntax of the .commdirectiveis:

-COMm name COnstant—expr ession

which causes as to declare the name as a common symbol with a value equal to the
expression. Fortherest of the assemblythis symbolwillbetreatedas thoughit werean
undefined global. As does not allocate storage for common symbols; thistask is left to
the loader. The loader computes the maximum size of each common symbol that may
appear in several load modules, allocates storage for it in the bss section, and resolves
linkages.

1.7.7 .even

Thisdirectiveadvancesthelocationcounter if its current value is odd. Thisisuseful for
forcing storage allocation on a word boundary after a .byte or .ascii directive. Note
that many things may not be on an odd boundary in as, including instructions, and

wordandlongdata.

As: Ap Assembler

7.8 Operationr Codes

Below are all opcodesrecognizedbyas:

abcd bmi dbra movb e
addb bmis dbt movw ¢
addw bne dbvc movl ns
addl bnes dbvs movemw sbed
addgb bpl divs moveml scc
addqw bpis divu movepw scs
addql bra eord movepl seq
addxb bras €orw moveq sf
addxw bset eorl muls sge
addxl bsr exg mulu sgt
andb bsrs extw nbcd shi
andw btst extl negb sle
andl bwve jbsr negw sls
aslb bvcs jee negl sht
aslw bvs jes negxb smi
asll bvss jeq negxw sne
asrb chk jee negxl spl
astw ckb jet nop st
asrl clrw jhi notb stop
bee clrl jle notw subb
becs cmpb jls notl subw
bechg cmpw jit orb subl
belr cmpl jmi orw subgb
bes cmpmb jmp orl subqw
bess cmpmw jne pea subgl
beq cmpml jpl reset subxb
begs dbcc jra rob subxw
bge dbcs jst rolw subxl
bges dbeq jve roll svc
bgt dbf jvs rorb svs
bgts dbge lea rorw swap
bhi dbgt link rorl tas
bhis dbhi Islb roxlb trap
ble dble Islw roxlw trapv
bles dbls Isll roxll tstb
bls dblt Issh roxib tstw
blss dbmi Isrw roxrw tstl
blt dbne Isl roxrl unlk
blts dbpl

The following pscudooperations arerecognized:

7-17

XENIX Programmer’s Guide

.ascii
.asciz
.blkb
bkl
JDblkw
.bss
byte
.comm
.data
.end
.even
.globl
.long
JStext
word

Thefollowing registersarerecognized:

d0 d1 d2 d3 d4d5d6d7
a0 al a2 a3 a4 a5 a6 a7

Sp pc cc ST
7.9 Error Messages

Ifthereareerrorsinanassembly, anerrormessage appearsonthe standard erroroutput
(usually the terminal) giving the type of error and the source line number. If an
assembly listing is requested, and there are errors, the error message appears before
the offending statement. Ifthere werenoassembly errors, thenthere arenomessages,
thus indicating a successful assembly. Some diagnostics are only warnings and the
assembly is successful despitethe warnings.

The common errorcodes andtheir probable causes,appearbelow:

Invalid character
An invalid character for a character constant or character string was
encountered.

Moultiplydefinedsymbal
A symbol has appeared twice as a label, or an attempt has been made to
redefine alabel using an= statement. Thiserrormessage may alsooccur
ifthe value of a symbol changesbetweenpasses.

Offsettoolarge
Adisplacement cannot fitinthe spaceprovided for by theinstruction.

Invalidconstant
Aninvaliddigit wasencountered inanumber.

Invalid term
The expression evaluator could not find a valid temn that was either a
symbol, constant or expression. An invalid prefix to a number or a bad
symbol name inanoperand will generate this.

—

As: An Assembler

Nonrelocatable expression
A required relocatable expression was not found as an operand. It was
not provided.

Invalid operand
Anillegal addressing mode wasgiven for the instruction.

Invalid symbol
A symbol was given that does not conform to the rules for symbol
formation.

Invalid assignment
Anattempt was madetoredefine alabelwithan = statement.

Invalid opcode
A symbol in the opcode field was not recognized as an instruction
mnemonicordirective.

Bad filename
Aninvalidfilename wasgiven.

Wrongnumberofoperands
Aninswuctionhaseithertoo fewortoomany operands asrequiredbythe
syntax of the instruction.

Invalid register expression
Anoperandor operand elementthat must be aregisterisnot, or aregister
name is used where it may not be used. For example, using an address
register in a moveq inskuction, which only allows data registers will
produce this error message; as will using aregistername as a label witha
brainstruction.

Odd address
Aninstructionordataitemthatmuststart atanevenaddress doesnot.

Inconsistent effectiveaddresssyntax
Bothassembly andRTL syntax appear withinasingle module.

Nonword memoryshift
Anin—memory shiftinstructionwasgivenasizeotherthan16bits.

7-19

Chapter 8
Lex: A Lexical Analyzer

8.1 Introduction 8-1

8.2 LexSourceFormat 8-2

8.3 LexRegular Expressions 8-3

8.4 Invokinglez 8-4

8.5 Specifying Character Classes 8-5

8.6 Specifyingan Arbitrary Character 8-6
8.7 Specifying Optional Expressions 8-6
88 Specifying Repeated Expressions 8-6
89 Specifying Alternation and Grouping 8-7
8.10 Specifying Context Sensitivity 8-7
8.11 Specifying Expression Repetition &8
8.12 Specifying Definitions 8-8

8.13 Specifying Actions 8-8

8.14 HandlingAmbiguous Source Rules 8-12
8.15 Specifying Left Context Sensitivity 8-15
8.16 Specifying Source Definitions 8-17

8.17 Lexand Yacc 8-18

8.18 Specifying Character Sets 8-22

8.19 SourceFormat :8-23

Lex: A Lexical Analyzer

8.1 Introduction

Lex is a program generator designed for lexical processing of character input
streams. It accepts a high-level, problem-oriented specification for character
string matching, and produces a C program that recognizes regular
expressions. The regular expressions are specified by the user in the source
specifications given to lex. The lex code recognizes these expressions in an
input stream and partitions the input stream into strings matching the
expressions. At the boundariesbetween strings, program sections provided by
theuserareexecuted. The lex source file associates the regular expressions and
the program fragments. As each expression appears in the input to the
program written by lex, the corresponding fragment isexecuted.

The user supplies the additional code needed to complete his tasks, including
code written by other generators. The program that recognizes the expressions
is generated in the from the user’s C program fragments. Lex is not a complete
language, but rather a generator representing a new language feature added on
topof the C programming language.

Lex turnsthe user’s expressions and actions (called source in this chapter) into
a C program named yylez. The yylez program recognizes expressions in a
stream (called input in this chapter) and performs the specified actions for each
expressionasit is detected.

Consider a program to delete from the input all blanks or tabs at the ends of
lines. Thefollowing lines

%%
[\t]+$;

are all that is required. The program contains a %% delimiter to mark the
beginning of the rules, and one rule. This rule contains a regular expression
that matches one or more instances of the characters blank or tab (written \t
for visibility, in accordance with the C language convention) just prior to the
end of aline. The brackets indicate the character class made of blank and tab;
the + indicates one or more of the previous item; and the dollar sign ($)
indicates the end of the line. No action is specified, so the program generated by
lex will ignore these characters. Everything else will be copied. To change any
remaining string of blanks or tabs to asingle blank, add another rule:

%%
\t]+$
\t|+ printf(” 7);

The finite automaton generated for this source scans for both rules at once,
observesat the termination of the string of blanks or tabs whether or not there
isanewlinecharacter,and then executesthe desired rule’saction. Thefirst rule
matches all strings of blanks or tabs at the end of lines, and the second rule
matchesallremainingstrings of blanks or tabs.

8-1

XENIX Programmer's Guide

Lex can be used alone for simple transformations, or for analysis and statistics
gathering on a lexical level. Lex can also be used with a parser generator to
perform the lexical analysis phase; it is especially easy to interface lex and
yacc. Lex programs recognize only regular expressions; yacc writes parsers
that accept a large class of context-free grammars, but that require a lower
level analyzer to recognize input tokens. Thus, a combination of lex and yacc
isoften appropriate. When used as a preprocessor for a later parser generator,
lex is used to partition the input stream, and the parser generator assigns
structure to the resulting pieces. Additional programs, written by other
generators or by hand, can be added easily to programs written by lex. Yacc
users will realize that the name yylez iswhat yacc expectsits lexical analyzer to
be named, so that the use of this name by lex simplifies interfacing.

Lex generates a deterministic finite automaton from the regular expressionsin
the source. The automaton is interpreted, rather than compiled, in order to
save space. The result isstill a fast analyzer. In particular, the time taken by a
lex program to recognize and partition an input stream is proportional to the
length of the input. The number of lex rules or the complexity ofthe rulesisnot
important in determining speed, unless rules which include forward context
require a significant amount of rescanning. What does increase with the
number and complexity of rules is the size of the finite automaton, and
therefore the size of the program generated by lex.

Inthe program writtenby lex, the user’s fragments (representing the actionsto
be performed as each regular expression is found) are gathered as cases of a
switch. The automaton interpreter directs the control flow. Opportunity is
provided for the user to insert either declarations or additional statements in
the routine containing the actions, or to add subroutines outside this action
routine.

Lex is not limited to source that can be interpreted on the basis of one
character lookahead. For example, if there are tworules, onelookingfor ¢band
another for abcdefg, and the input stream is abedefh, lex will recognize aband
leave the input pointer just before cd. Such backup is more costly than the
processing of simpler languages.

8.2 Lex Source Format
The general formatof lex sourceis:

{definitions}
%%

{rules}

%%

{user subroutines}
where the definitions and the user subroutines are often omitted. The second

%% is optional, but the first is required to mark the beginningof the rules. The
absolute minimum lex program is thus

B-2

Lex: A Lexical Analyzer

%%

(no definitions, no rules) which translates into a program that copies the input
totheoutput unchanged.

In the lex program format shown above, the rules represent the user'scontrol
decisions. They make up a table in which the left column contains regular
expressions and the right column contains actions, program fragments to be
executed when the expressions are recognized. Thus the following individual
rulemight appear:

integer printf("found keyword INT");
Thislooks for the string tntegerin the input stream and prints the message
found keyword INT

whenever it appears in the input text. In this example the C library function
printf() is used to print the string. The end of the lex regular expression is
indicated by the first blank or tab character. If the action is merely a single C
expression, it can be given on the right side of the line; if it is compound, or takes
more than a line, it should be enclosed in braces. As a slightly more useful
example, suppose it is desired to change a number of words from British to
American spelling. Lex rules such as

colour printf(” color”);
mechanise printf("mechanize”);
petrol printf("gas”);

would be a start. These rulesare not quite enough, since the word petroleum
would become gaseum; a way of dealing with such problems is described in a
later section.
8.3 Lex Regular Expressions
A regular expression specifies a set of strings to be matched. It contains text
characters (that match the corresponding characters in the strings being
compared) and operator characters (these specify repetitions, choices, and
other features). The letters of the alphabet and the digits are always text
characters. Thus, the regular expression

integer
matches the string integer wherever it appears and the expression

a57D

looks for the string a57D.

83

XENIX Programmer’s Guide

Theoperator charactersare
"\N[C-te+ |08/ {}B<>

If any of these characters are to be used literally, they needed to be quoted
individually with a backslash () or as a group within quotation marks (").
The quotation mark operator (") indicates that whatever is contained between
a pair of quotation marksis to be taken astext characters. Thus

xyz" ++"
matches the string zyz++ when it appears. Note that a part of a string may be
quoted. It is harmless but unnecessary to quote anordinary textcharacter;the
expression

"xyz++"
is the same as the one above. Thus by quoting every nonalphanumeric
character being used as a text character, you need not memorize the above list

of current operator characters.

An operator character may also be turned into a text character by preceding it
with abackslash (\) asin

xyz\+\+
which is another, less readable, equivalent of the above expressions. The
quoting mechanism canalsobe used toget a blank into an expression; normally,
as explained above, blanks or tabs end a rule. Any blank character not
contained within brackets must be quoted. Several normal C escapes with the
backslash(\) are recognized:
\n newline
\t tab
\b backspace
\\ backslash
Since newline is illegal in an expression, a \n must be used; it is not required to
escape tab and backspace. Every character but blank, tab, newline and the list
aboveisalwaysa text character.
8.4 Invoking lez
There are two steps in compiling a lex source program. First, the lex source

must be turned into a generated program in the hostgeneral purpose language.
Then this program must be compiled and loaded, usually with a library of lex

8-4

g

Lex: A Lexical Analyzer

subroutines. The generated program is in a file named lex.yy.c. The 1/O
library is defined in terms of the C standard library.

The library is accessed by the loader flag —lI. So an appropriate set of
commandsis

lex source
cc lex.yy.c -l

The resulting program is placed on the usual file a.out for later execution. To
use lex with yacc see the section “Lex and Yacc” in this chapter and Chapter 9,
“Yacc: A Compiler-Compiler”””. Although the defaultlexI/O routinesuse the
C standard library, the lex automata themselves do not do so. If private
versions of input, output,and unput are given, thelibrary canbe avoided.

8.5 Specifying Character Classes
Classesof characters can be specified using brackets: [and]. The construction
[abe]

matches a single character, which may be g, b, or ¢. Within square brackets,
most operator meanings are ignored. Only three characters are special: these
are the backslash (\), the dash (-), and the caret (). The dash character

indicatesranges. For example
[2-20-9<>_]

indicates the character class containing all the lowercase letters, the digits, the
angle brackets, and underline. Ranges may be given in either order. Using the
dash between any pair of characters that are not both uppercase letters, both
lowercase letters, or both digits is implementation dependent and causes a
warning message. If it is desired to include the dash in a character class, it
should be first or last; thus

[-+0-9]
matches all the digits and the plus and minus signs.
In character classes, the caret (*) operator must appear as the first character
after the left bracket; it indicates that the resulting string is to be
complemented with respect to the computer character set. Thus

[*abe]

matches all characters except a, b, or ¢, including all special or control
characters; or

XENIX Programmer's Guide

["a-zA-Z)
is any character which is not a letter. The backslash () provides an escape
mechanism within character class brackets, so that characters can be entered
literally by preceding them with this character.
8.8 Specifying an Arbitrary Character
To match almost any character, the period (.) designates the class of all
characters except a newline. Escaping into octal is possible although
nonportable. For example

[\40-\176]
matches all printable characters in the ASCIHl character set, from octal 40
(blank) to octal 176 (tilde).
8.7 Specifying Optional Expressions

The question mark (?) operator indicates an optional element of an expression.
Thus

ab?c
matches either ac or abc. Note that the meaning of the question mark here
differsfromitsmeaningin the shell.
8.8 Specifying Repeated Expressions

Repetitions of classes are indicated by the asterisk (+) and plus (+) operators.
For example

ax

matches any number of consecutive @ characters, including zero; while a+
matches one or more instances of . For example,

|a-2z]+
matchesallstrings of lowercaseletters,and
[A-Za-z]|A-Za-20-9)+

matches all alphanumeric strings with a leading alphabetic character; thisisa
typical expression for recognizing identifiers in computer languages.

8-6

Lex: A Lexical Analyzer

8.9 Specifying Alternation and Grouping
Thevertical bar (|) operator indicates alternation. Forexample
(abled)

matcheseither abor cd. Note that parentheses are used for grouping, although
they are not necessary at the outside level. For example

abjcd

would have sufficed in the preceding example. Parentheses should be used for
more complex expressions, such as

(abled+)%(ef)*

which matches such strings as abefef, efefef, cdef, and cddd, but not abe, abed,
or abede/.

8.10 Specifying Context Sensitivity

Lex recognizes a small amount of surrounding context. The two simplest
operators for this are the caret (*) and the dollar sign ($). If the first character
of an expressionis a caret, then the expression isonly matched at the beginning
of a line (after a newline character, or at the beginning of the input stream).
This can never conflict with the other meaning of the caret, complementation
of character classes, since complementation only applies within brackets. If the
very last character is dollar sign, the expression only matched at the end of a
line (when immediately followed by newline). The latter operator is a special
case of the slash (/) operator, whichindicatestrailing context. The expression

ab/cd
matches the string ab, but only if followed by ¢d. Thus

ab$
is the same as

ab/\n
Left context is handled in lex by specifying start conditions as explained in the
section ‘‘Specifying Left Context Sensitivity”. If a rule is only to be executed
when the lex automaton interpreter is in start condition 2, the rule should be

enclosedinangle brackets:

<x>

8-7

XENIX Programmer’s Guide

If we considered being at the beginning of a line to be start condition ONE, then
the caret (*) operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

8.11 Specifying Expression Repetition

The curly braces({ and }) specify either repetitions (if they enclose numbers) or
definitionexpansion (if they enclose a name). For example

{digit}

looks for a predefined string named digit and inserts it at that point in the
expression.

8.12 Specifying Definitions

The definitions are given in the first part of the lex input, before the rules. In
contrast,

a{1,5}
looks for 1to Soccurrencesof the character a.

Finally, an initial percent sign (%) is special, since it is the separator for lex
source segments.

8.13 Specifying Actions

When an expression is matched by a pattern of text in the input, lex executes
the corresponding action. This section describes some featuresof lex which aid
in writing actions. Note that there is a default action, which consistsof copying
the input te the output. Thisis performed on all strings not otherwise matched.
Thus the lex user who wishestoabsorb the entire input, without producing any
output, must provide rules to match everything. When lex is being used with
yacc, this is the normal situation. You may consider that actions are what is
done instead of copying the input to the output; thus, in general, a rule which
merely copies can be omitted.

Oneof the simplestthingsthat canbe done is to ignore the input. Specifyinga C
null statement ; as an action causes this result. A frequent rule is

[\t\n]

which causes the three spacing characters (blank, tab, and newline) to be

8-8

Lex: A Lexical Analyzer

ignored.

Another easy way toavoid writingactionsis to.use the repeataction character,
|, which indicates that the actionfor thisruleis the actionfor the next rule. The
previousexamplecould also havebeen written

nn |

"\t I

”\n” ;
with the same result, although in a different style. The quotes around \nand \¢
are notrequired.

In more complex actions, you often want to know the actual text that matched
someexpression like:

[a-z]+

Lex leaves this text in an external character array named yytezt. Thus, to
print thename found, arule like

[a-z]+ printf(" %s”, yytext);

prints the string in yytezt. The C function printf accepts a format argument
and data to be printed; in this case, the format is print stringwhere the percent
sign (%) indicates data conversion, and the sindicate string type,and the data
are the characters in yytezt. So this just places the matched string on the
output. Thisactionisso common that itmay be written asECHO. For example

[-z]+ ECHO;
is the same as the preceding example. Since the default action is just to print
the characters found, one might ask why give a rule, like this one, which merely
specifies the default action? Such rules are often required to avoid matching
some other rule that is not desired. For example, if there is a rule that matches

read it willnormally match the instancesof readcontained:in éreador readjuet;
toavoidthis,aruleof the form

[a-2]+
is needed. Thisis explained further below.
Sometimesit is more convenient to know the end of what hasbeen found; hence
lex also provides a count of the number of characters matched in the variable,
yyleng. To count both the number of words and the number of characters in
words in the input, you might write

[a-zA-2Z]+ {words++; chars += yyleng;}

which accumulates in the variables chars the number of charactersin the words

8-9

XENIX Programmer's Guide

recognized. Thelast character in the string matched can be accessed with:

yytext[yyleng-1]

Occasionally, a lex action may decide that a rule has not recognized the correct
span of characters. Two routines are provided to aid with thissituation. First,
yymore() can be called to indicate that the next input expression recognized is
to be tacked on to the end of this input. Normally, the next input string will
overwrite the current entry in yytezt. Second, yyless(n) may be called to
indicate that not all the characters matched by the currently successful
expression are wanted right now. The argument n indicates the number of
characters in yytezt to be retained. Further characters previously matched are
returned to the input. This provides the same sort of lookahead offered by the
slash (/) operator, but in a different form.

For example, consider a language that defines a string as a set of characters
between quotation marks ("), and provides that to include a quotation mark in
a string, it must be preceded by a backslash (\). The regular expression that
matchesthisis somewhat confusing, so thatit might be preferable to write

VIl o
if (yytext|yyleng-1] == "\\))
yymore();
else
... normal user processing

which, when faced with a string such as
" abc\” def”
will first match the five characters
"abe\
and then the call to yymore() will cause the next part of the string,

"def

to be tacked on the end. Note that the final quotation mark terminating the
stringshould be picked up inthe code labeled normal processing.

The function yyless() might be used to reprocess text in various circumstances.
Consider the problem in the older C syntax of distinguishing the ambiguity of
=-a. Suppose it is desired to treat this as =- aand to print a message. A rule
might be

S

Lex: A Lexical Analyzer

=-(a-zA-Z)
printf("Operator (=-) ambiguous\n”});
yyless(yyleng-1);
.. action for =- ...

which prints a message, returns the letter after the operator to the input
stream, and treats the operator as =—.

Alternatively it might be desired to treat this as = —a. To do this, just return
the minus sign as well as the letter to the input. The following performs the
interpretation:

=-[a-2A-Z]
printf(” Operator (=-) ambiguous\n”);
yyless(yyleng-2);
... action for = ...

}

Note that the expressions for the two cases might more easily be written
=-/[A-Za-z)

inthe firstcaseand
=/-[A-Za-z]

in the second: no backup would be required in the rule action. It is not

necessary to recognize the whole identifier to observe the ambiguity. The
possibility of =-8, however, makes

=-/[" \t\n]
astill better rule.
In addition to these routines, lex also permits access to the I/O routines it uses.
They include:
1. snput() which returns the nextinput character;
2. output(c) which writesthe character c on the output; and

3. unput(c) which pushesthe character ¢ backonto theinputstream to
bereadlater by input().

By default these routines are provided as macro definitions, but the user can
override them and supply private versions. These routines define the
relationship between external files and internal characters, and must all be
retained or modified consistently. They may be redefined, to cause input or

8-11

XENIX Programmer's Guide

output to be transmitted to or from strange places, including other programs
or internal memory; but the character set used must be consistent in all
routines; a value of zero returned by snput must mean end-of-file; and the
relationship between unput and input must be retained or the lookahead will
not work. Lex does not look ahead at all if it does not have to, but every rule

- containing a slash (/) or ending in one of the following characters implies
lookahead:

+*1?s

Lookahead is also necessary to match an expression that is a prefix of another
expression. See below for a discussion of the character set used by lex. The
standard lex library imposesa 100 character limit on backup.

Another lex library routine that you sometimes want to redefine is yywrap()
which is called whenever lex reaches an end-of-file. If yywrapreturnsa 1, lex
continues with the normal wrapup on end of input. Sometimes, however, it is
convenient to arrange for more input toarrivefrom a new source. In this case,
the user should provide a yywrap that arranges for new input and returns 0.
Thisinstructs lex to continue processing. Thedefault yywrapalwaysreturns1.
This routine is also a convenient place to print tables, summaries, etc. at the
end of a program. Note that it is not possible to write a normal rule that
recognizes end-of -file; the only access to this condition is through yywrap(). In
fact, unless a private version of input() is supplied a file containing nulls cannot
be handled, since a value of 0 returned by inputistaken to be end-of-file.

8.14 Handling Ambiguous Source Rules

Lex can handle ambiguous specifications. Whenmore than one expression can
match the current input, lex chooses as follows:

+ Thelongest match is preferred.

» Among rules that match the same number of characters, the first
givenruleispreferred.

For example, suppose the following rules are given:

integer keyword action ...;
[a-z]+ identifier action ...;

If the input is integers, it is taken as an identifier, because
[2-2]+

matches 8 characters while

8-12

Lex: A Lexical Analyzer

integer

matches only 7. If the input is ¢nteger, both rules match 7 characters, and the
keyword rule isselected because it was given first. Anythingshorter (e.g., int)
does not match the expression integer, so the identifier interpretation is used.

The principle of preferring the longest match makes certain constructions
dangerous, such as the following:

For example
!."

might seem a good way of recognizing a string in single quotes. But it isan
invitation for the program toread far ahead, looking for a distant single quote.
Presented with the input

‘first * quoted string here, ‘second’ here
the above expression matches
first * quoted string here, ‘second’

which is probably not what was wanted. A better ruleisof the form
[\n}®’

which, on the above input, stops after first. The consequences of errors like
this are mitigated by the fact that the dot (.) operator does not match a
newline. Therefore, no more than one line isever matched by such expressions.
Don't try to defeat this with expressionslike

[-\n]+

or their equivalents: the lex generated program will try to read the entire input
file, causinginternal bufferoverflows.

Note that lex is normally partitioning the input stream, not searching for all
possible matches of each expression. This means that each character is
accounted for once and only once. For example, suppose it is desired to count
occurrences of both ske and ke in an input text. Some lex rulesto do this might
be

she s++;
he h++;
\n I

1

8-13

XENIX Programmer’s Guide

where the last t worules ignore everything besides he and eke. Remember that
the period (.) does not include the newline. Since shke includes ke, lex will
normally not recognize the instances of ke included in ske, since once it has
passed a she those charactersaregone.

Sometimes the user would like to override this choice. The action REJECT
means go do the next alternative. It causes whatever rule was second choice
after the current rule to be executed. The position of the input pointer is
adjusted accordingly. Suppose the user really wants to count the included
instancesof ke:

she {s++; REJECT;}
he {h++; REJECT;}
\n |

'

These rules are one way of changing the previous example to do just that. After
counting each expression, it is rejected; whenever appropriate, the other
expression will then be counted. In this example, of course, the user could note
that ehe includes Ae, but not vice versa, and omit the REJECT action on ke; in
other cases, however, it would not be possible to tell which input characters
were in both classes.

Consider the two rules

be
cd

4+ {..; REJECT;}
+ {..;REJECT;}

a
al

If the input is ab, only the first rule matches, and on adonly the second matches.
The input string accb matches the first rule for four characters and then the
second rule for three characters. In contrast, the input aced agrees with the
second rule forfour charactersand then the first rule for three.

In general, REJECT isuseful whenever the purpose of lex is not to partition the
input stream but to detect all examples of some items in the input, and the
instances of these items may overlap or include each other. Suppose a digram
table of the input is desired; normally the digrams overlap, that is the word the
is considered to contain both th and he. Assuming a two-dimensional array
named digramto be incremented, the appropriate source is

%%
[2-2][a-z] .{digram[yytextlo]][yytext[l]]++; REJECT;}

\n ;

where the REJECT is necessary to pick up a letter pair beginning at every
character, rather than at every other character.

Remember that REJECT does not rescan the input. Instead it remembers the
results of the previous scan. This means that if a rule with trailing context is

8-14

Lex: A Lexical Analyzer

found, and REJECT executed, you must not have used unput to change the
characters forthcoming from the input stream. This is the only restriction to
ability to manipulate the not-yet-processed input.

8.15 Specifying Left Context Sensitivity

Sometimes it is desirable to have several sets of lexical rules to be applied at
different times in the input. For example, a compiler preprocessor might
distinguish preprocessor statements and analyze them differently from
ordinary statements. This requires sensitivity to prior context, and there are
several ways of handling such problems. The caret (") operator, for example, is
aprior context operator, recognizing immediately precedingleft context just as
the dollar sign ($) recognizes immediately following right context. Adjacent
left context could be extended, to produce afacility similar tothatforadjacent
right context, but it is unlikely to be as useful, since often the relevant left
context appeared some time earlier, such as at the beginning of a line.

Thissection describes three meansof dealing with different environments:

1. The useofflags, when only a few rules change from one environment
to another

2. The useof start conditions with rules
3. The use multiple lexical analyzersrunning together.

In each case, there are rulesthat recognize the need to change the environment
in which the following input text isanalyzed, and set some parameter to reflect
the change. This may be a flag explicitly tested by the user’saction code; sucha
flag is the simplest way of dealing with the problem, since lex is not involved at
all. It may be more convenient, however, to have lex remember the flags as
initial conditions on the rules. Any rule may be associated with a start
condition. It will only be recognized when lex is in that start condition. The
current start condition may be changed at any time. Finally, if the setsof rules
for the different environments are very dissimilar, clarity may be best achieved
by writing several distinct lexical analyzers, and switching from one to another
asdesired.

Consider the following problem: copy the input to the output, changing the
word magicto fireton every linethatbegan with the letter a, changingmagicto
second on every line that began with the letter b, and changing magic to third
onevery linethatbegan with the letter ¢. Allother wordsandallother linesare
leftunchanged.

These rulesareso simple that the easiest way to do this jobiswith aflag:

8-15

XENIX Programmer’s Guide

int flag;

%%

“a {flag = ‘a*; ECHO;}

b {flag = b ECHO;}

“c {flag = c; ECHO;}

\n {flag = 0; ECHO;}

magic
switch (flag)
case ‘a”: printf("first”); break;
case b printf(”second”); break;
case ‘c”: printf(”third”); break;
default: ECHO; break;

}
}

should be adequate.

To handle the same problem with start conditions, eachstart condition must be
introduced to lex in the definitions section with a line reading

%Start namel name?2 ...
where the conditions may be named in any order. The word Stert may be
abbreviated to sor S. The conditions may be referenced at the headof a rule
withangle brackets. For example

<namel>expression

is a rule that is only recognized when lex is in the start condition nemel. To
enter a start condition, execute the action statement

BEGIN namel;
which changesthe start conditionto nemel. Toreturn to the initial state
BEGIN 0;

resets the initial condition of the lex automaton interpreter. A rule may be
active in several start conditions; for example:

<namel,name2,name3 >

is a legal prefix. Any rule not beginning with the <> prefix operator is always
active.

The same example asbefore can be written:

8-16

Lex: A Lexical Analyzer

%START AA BB CC

%%

‘a {ECHO; BEGIN AA;}
‘b {ECHO; BEGIN BB;}
‘¢ {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}

<AA>magic printf(” first”);
<BB>magic printf("second”);
< CC>magic printf(” third");

where the logic is exactly the same as in the previous method of handling the
problem, but lex doesthe work rather than the user's code.

8.18 Specifying Source Definitions
Remember the format of the lex source:

{definitions}
%%

{rules}

%%

{user routines}

So far only the rules have been described. You will need additional options,
though, to define variables for use in your program and for use by lex. These
can goeither in the definitions section or in the rules section.

Remember that lex is turning the rules into a program. Any source not
intercepted by lex is copied into the generated program. There are three classes
of such things:

1. Any line that is not part of a lex rule or action which begins with a
blank or tab is copied into the lex generated program. Such source
input prior to the first %% delimiter will be external to any function
in the code; if it appearsimmediately after the first %%, it appearsin
an appropriate place for declarations in the function written by lex
which contains the actions. This material must look like program
fragments, and should precede the first lex rule.

As a side effect of the above, lines that begin with a blank or tab, and
which contain a comment, are passed through to the generated
program. This can be used to include comments in either the lex
source or the generated code. The comments should follow the
conventionsof the C language.

2. Anythingincluded between lines containingonly %{ and %} is copied

out as above. The delimiters are discarded. This format permits
entering text like preprocessor statements that must begin in column

817

XENIX Programmer’s Guide

1, or copying linesthatdo notlook like programs.

3. Anything after the third %% delimiter, regardless of formats, is
copied out after the lex output.

Definitionsintended for lex are given before the first %% delimiter. Any line in
this section not contained between %{ and %}, and beginning in column 1, is
assumed to define lex substitution strings. The format of such lines is

name translation

and it causes the string given as a translation to be associated with the name.
The name and translation must be separated by at least one blank or tab, and
the name must beginwithaletter. The translation can then be called out by the
{name} syntax in arule. Using {D} for the digits and {E} for an exponent field,
forexample, might abbreviate rules to recognize numbers:

D 0-9)

E Ede][- +?{D}+

%%

{D}+ printf("integer”);
{D§+"-" {D}+({E})? |

D} Dy+({ENT | _

{D}+{E} printf("real”);

Note the first two rules for real numbers; both require a decimal point and
contain an optional exponent field, but the first requires at least one digit before
the decimal point and the second requires at least one digit after the decimal
point. To correctly handle the problem posed by a FORTRAN expression such
as 95.EQ./, which does not contain a real number, a context-sensitive rule such
as

[0-9)+/"."EQ printf(”integer”);
could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including a
character set table, a list of start conditions, or adjustments to the default size
of arrays within lex itself for larger source programs. These possibilities are
discussed in the section ““Source Format''.

8.17 Lex and Yacc

If you want to use lex with yacc, note that what lex writes isa program named
yylez(), the name required by yacc forits unalyzer. Normally, the default main
program on the lex library calls this routin~, but if yacc is loaded, and its ma.in
program is used, y acc will call yylez{). In this case, each lex rule should end
with

8-18

.“_‘.,_/

Lex: A Lexical Analyzer

return(token);

where the appropriate token value is returned. An easy way to get access to
yacc’s names for tokens is to compile the lex output file as part of the yacc
outputfile by placing the line

include "lex.yy.c”

in the last section of yacc input. Supposing the grammar to be named goodand
the lexical rules to be named betterthe XENIX command sequence can just be:

yace good
lex better
cc y.tab.c -ly -l

The yacc library (~ly) should be loaded before the lex library, to obtain a main
program which invokes the yacc parser. The generation of lex and yacc
programscanbe doneineither order.

As a trivial problem, consider copying an input file while adding 3 to every
positive number divisible by 7. Here is asuitable lex source program to do just
that:

%%
int k;
[0-9]+ {
k = atoi(yytext);
if (k%7 == 0)
printf(" %d”, k+3);
else

printf(" %d" k);

The rule [0-9]+ recognizes strings of digits; atoi() converts the digits tobinary
and stores theresultin k. The remainder operator (%) isused to check whether
k is divisible by 7; if it is, it is incremented by 3 as it is written out. It may be
objected that this program will alter such input items as 49.63 or X7.
Furthermore, it increments the absolute value of all negative numbers divisible
by 7. Toavoid this, just add afew more rules after the active one, as here:

%%
int k;
-?0-9)+ {
k = atoi(yytext);
printf("%d”, k%7 == 0 ? k+3 : k);

}
-2[0-9.]+ ECHO;
[A-Za-z][A-Z2-20-9]+ ECHO;

Numerical strings containing a decimal point or preceded by a letter will be

8-19

XENIX Programmer's Guide

picked up by one of the last two rules, and not changed. The if—else hasbeen
replacedby a C conditional expression tosavespace; theform afb:c means: if a
then belse c.

For an example of statistics gathering, here is a program which makes
histogramsof word lengths, where a word is defined asastring of letters.

int lengs{100];
%%
[a-z]+ lengslyyleng]++;
: |

%o
yywrap()
{

int i;
printf("Length No. words\n");
for(i=0; i<100; i++)
if (lengs[i] > 0)
printf(” %5d%10d\n" i,lengs[i]);
return(1);

This program accumulates the histogram, while producing no output. At the }
end of the input it prints the table. The final statement return(1); indicates
that lex is to perform wrapup. If yywrap() returns zero (false) it implies that

further input is available and the program is to continue reading and

processing. To provide a yywrap() that never returns true causes an infinite

loop.

As a larger example, here are some parts of a program written to convert
double precision FORTRAN to single precision FORTRAN. Because FORTRAN
does not distinguish between upper- and lowercase letters, this routine begins
by defining a set of classes including both cases of each letter:

a aA
b bB
c [cC]
2 izZ]
An additional class recognizes white space: e)
w [\t]*

The first rule changes double precision to real, or DOUBLE PRECISION to
REAL.

8-20

Lex: A Lexical Analyzer

{d}{O}{“}{b}{l}[{e]}{W}{p}{r}{e}_{c}{l}{S}{ iH{o}{n} {

printf(yytext[0]=="d"?
)

Care is taken throughout this program to preserve the case of the original
program. The conditional operator is used to select the proper form of the
keyword. The next rule copies continuation card indications to avoid confusing
them with constants:

I)| ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as
beginning of line, then five blanks, then anything but blank or zero.” Note the
two different meanings of the caret (“) here. There follow somerulesto change
double precision constantsto ordinary floating constants.

]+{W}{d}{W}I+ J*{W}[0-9]+
9|+{W}"." (WHd}{W} +-l iW}[OQ |
v ”{W}[0-9]+{W}{d}{w} +[r{W}o9+
/* convert constants */
for(?—yy&ext *p != 0; p+4)

if (sp == 'd' || p == D)
.p+_ e'- ady
ECHO;
}

After the floating point constant is recognized, it is scanned by the for loop to
find the letter “‘d” or “D”. The program then adds ‘e’ -’d’ " which convertsit
to the next letter of the alphabet. The modified constant, now single precision,
is written out again. There follow a series of names which must be respelled to
remove their initial “d”. By using the array yytezt the same action suffices for
all the names (only a sample of arather long listis given here).

{dHs}Hi}{n} |

{dHcHo}{s}
{d}{SEEq}ﬁ{{t}

{d}{aHtHaHn} |
(Ao Ha) (e} printf(" %s” yytext+1);

Another list of namesmust haveinitial dchanged toinitial a:

8:21

XENIX Programmer’'s Guide
{dH{1{ o}{&}

{d}{m}{a}{x}l {
yytext[0] += a’- ‘d*
ECHO;

}

And one routine must have initial d changed to initial r:

{d}1{m}{a}{c}{h} {
yytext[0] += T - d’;
} ECHO;

To avoid such names as dsinz being detected as instances of dsin, some final
rules pick up longer words asidentifiers and copy some surviving characters:

[A-Za-z][A-Za-20-9]* |
0-9]+ |

n I
ECHO;

Note that this program is not complete; it does not deal with the spacing
problemsin FORTRAN or with the use of keywords asidentifiers.

8.18 Specifying Character Sets

The programs generated by lex handle character 1/O only through the
routines input, output, and unput. Thus the characterrepresentation provided
in these routines is accepted by lex and employed to return values in yytezt.
For internal use a character is represented as a small integer which, if the
standard library is used, has a value equal to the integer value of the bit pattern
representing the character on the host computer. Normally, the letter a is
represented as the same form asthe character constant:

.

a
If this interpretation is changed, by providing I/O routines which translate the
characters, lex must be told about it, by giving a translation table. This table
must be in the definitions section, and must be bracketed by lines containing
only %ZT. Thetable contains lines of the form

{integer} {character string}

which indicate the value associated with each character. For example:

8-22

S

Lex: A Lexical Analyzer

%T

1 Aa

2 Bb
26 Zz
27 \n
28 +
29 .
30 0
31 1
39 9
%T

Thistable mapsthe lowercase and uppercase letterstogether into the integers 1
through 26, newline into 27, plus (+) and minus (-) into 28 and 29, and the digits
into 30 through 39. Note the escape for newline. If a table is supplied, every
character that is to appear either in the rules or in any valid input must be
included in the table. No character may be assigned the number 0, and no
character may be assigned a larger number than the size of the hardware
character set.

8.19 Source Format

The general form of alex source file is:

{definitions}

{rules}
%%
{user subroutines}

The definitions section contains a combination of

1. Definitions,inthe form ““name space translation”
2. Included code, in the form ‘'space code”

3. Included code,intheform

%{
code
%}

4. Start conditions, givenin the form

%S namel name2 ...

8-23

XENKX Programmer's Guide

Character set tables, in the form

%T
number space character-string

%T
Changesto internal array sizes, in theform
%x nnn

where nnn isa decimalinteger representing an array size and zselects
the parameter as follows:

Letter Parameter

positions

states

tree nodes

transitions

packed character classes
output array size

o X o oo

Linesin the rules section have the form:

ezpr

eseton action

where the action may be continued on succeeding lines by using braces to
delimit it.

Regular expressions in lex use the following operators:

X

nxn

\x
[xy]

<y>x
x$

The character”x”

An”"x",evenif xisan operator.
An"x",evenif xisanoperator.

The character xor y.

The characters x,y or z.

Any character but x.

Any character but newline.

Anx at the beginning of a line.

An x when lex isin start conditiony.

Anx at the end of a line.

"

Lex: A Lexical Analyzer

x? Anoptional x.
x* 0,1,2,...instances of x.
x+ 1,2,3, ... instances of x.

xly Anxoray.

(x) Anx.

x/y Anxbutonly iffollowed by y.

{xx} The translation of xx from the definitions section.

x{m,n} mthrough noccurrencesofx.

8-25

Chapter 9
Yacc: A Compiler-Compiler

9.1 Introduction 9-1

9.2 Specifications 9-4

9.3 Actions 9-6

9.4 Lexical Analysis 9-8

9.5 HowtheParser Works 9-10

9.6 Ambiguity and Conflicts 9-14

9.7 Precedence 919

9.8 Error Handling 9-22

99 The Yacc Environment 9-24

9.10 Preparing Specifications 9-25

9.11 InputStyle 9-25

9.12 Left Recursion 9-26

9.13 Lexical Tie-ins 9-27

9.14 Handling Reserved Words 9-27

9.15 Simulating Error and Accept in Actions 9-28
9.16 Accessing Values in Enclosing Rules 9-28

9.17 Supporting Arbitrar V'alue Types 9-29

9.18 A Small Desk Calculator 9-30

. 9.19 Yacc Input Syntax 9-32
9.20 An Advanced Example 9-34

9.21 Old Features 9-40

Yacc: A Compiler-Compiler

9.1 Introduction

Computer program input generally has some structure; every computer
program that does input can be thought of as defining an input language which
it accepts. An input language may be as complex as a programming language,
or as simple as a sequence of numbers. Unfortunately, usual input facilities are
limited, difficult to use, and often lax about checking their inputs for validity.

Yacc provides a general tool for describing the input to a computer program.
The name yacc itself stands for “yet another compiler-compiler”. The yacc
user specifies the structures of his input, together with code to be invoked as
each such structure is recognized. Yacc turns such a specification into a
subroutine that handles the input process; frequently, it is convenient and
appropriate to have most of the flow of control in the user’s application handled
by thissubroutine.

The input subroutine produced by yacc calls a user-supplied routine to return
the next basic input item. Thus, the user can specify his input in terms of
individual input characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification. The class of specifications accepted is a very
general one: LALR grammars with disambiguatingrules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., yacc hasalsobeen
used for less conventional languages, including a phototypesetter language,
several desk calculator languages, a document retrieval system, and a
FORTRAN debugging system.

Yacc providesa general tool for imposing structure on the input to a computer
program. The yacc user prepares a specification of the input process; this
includes rules describing the input structure, code to be invoked when these
rules are recognized, and a low-level routine to do the basic input. Yacc then
generates a function to control the input process. This function, called a
parser, calls the user-supplied low-level input routine (called the lexical
analyzer) to pick up the basic items (called tokens) from the input stream.
These tokens are organized according to the input structure rules, called
grammar rules; when one of these rules has been recognized, then user code
supplied for this rule, an action, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yacc is written in a portable dialect of C and the actions, and output
subroutine, are in C as well. Moreover, many of the syntactic conventions of
yacc follow C.

Theheartof theinput specification is a collection of grammar rules. Each rule

describes an allowable structure and gives it a name. For example, one
grammarrule might be:

9-1

XENIX Programmer’s Guide

date : month_name day '’

)’ year ;

Here, date, month_name, day, and year represent structures of interest in the
input process; presumably, month_name, day,and yearare defined elsewhere.
The comma (,).is enclosed in single quotation marks; this implies that the
comma istoappear literally in the input. The colon and semicolonmerely serve
as punctuation in the rule, and have no significance in controlling the input.
Thus, with proper definitions, theinput:

July 4, 1776
might be matched by the above rule.

Animportant part of the input process is carried out by the lexical analyzer.
This user routine reads the input stream, recognizing the lower level
structures, and communicates these tokens to the parser. A structure
recognized by the lexical analyzer is called a terminal symbol, while the
structure recognized by the parser is called a nonterminal symbol. To avoid
confusion, terminal symbols will usually be referred to astokens.

There is considerable leeway in deciding whether to recognize structures using
the lexical analyzer or grammar rules. For example, the rules

LI}

month_name : ’J’ 'a’ 'n’;
month_name : 'F’ ¢’ b’ ;

month_name : 'D’ ’¢’ °¢’ ;
might be used in the above example. The lexical analyzer would only need to
recognize individual letters, and month_name would be a nonterminal symbol.
Such low-level rules tend to waste time and space, and may complicate the
specification beyond yacc’s ability to deal with it. Usually, the lexical analyzer
would recognize the month names, and return an indication that a
month_name was seen; in this case, month_name would be a token.

Literal characters, such as the comma, must also be passed through the lexical
analyzer and are considered tokens.

Specification files are very flexible. It is relatively easy to add to the above
example therule

date : month '/’ day '/’ year ;
allowing
7/4/1776

asasynonym for

9-2

_—

Yacc: A Compiler-Compiler

July 4, 1776

In most cases, this new rule could be slipped in to a working system with
minimal effort, and little danger of disrupting existing input.

The input being read may not conform to the specifications. These inputerrors
are detected as early as is theoretically possible with a left-to-right scan; thus,
not only is the chance of reading and computing with bad input data
substantially reduced, but the bad data can usually be quickly found. Error
handling, provided as part of the input specifications, permits the reentry of
bad data, or the continuation of the input process after skipping over the bad
data.

In some cases, yacc fails to produce a parser when given a set of specifications.
For example, the specifications may be self contradictory, or they may require
a more powerful recognition mechanism than that available to yacc. The
former casesrepresent design errors; the latter cases can often be corrected by
making the lexical analyzer more powerful, or by rewriting some of the
grammar rules. While yacc cannot handle all possible specifications, its power
compares favorably with similar systems; moreover, the constructions which
are difficult for yacc to handle are also frequently difficult for human beings to
handle. Some usershavereported that the discipline of formulating valid yacc
specifications for their input revealed errors of conception or designearlyin the
program development.

The nextseveral sectionsdescribe:
s« The preparationof grammar rules

¢+ The preparation of the user supplied actions associated with the
grammar rules

+ Thepreparationoflexical analyzers
» The operation of the parser

+ Various reasons why yacc may be unable to produce a parser from a
specification, and what to do about it.

e Asimple mechanism for handling operator precedences in arithmetic
expressions.

« Error detectionand recovery.

o The operating environment and special features of the parsers yacc
produces.

» Some suggesticns which should improve the style and efficiency ofthe
specifications.

9-3

XENIX Programmer’s Guide

9.2 Specifications

Names refer to either tokens or nonterminal symbols. yacc requires token
names to be declared as such. In addition, for reasons discussed later, it isof ten
desirable to include the lexical analyzer as part of the specification file. It may
be useful to include other programs as well. Thus, every specification file
consists of three sections: the declarations, (grammar) rules, and programs.
The sections are separated by double percent %% marks. (The percent sign
(%) isgenerally used inyacc specificationsas an escape character.)

Inother words, a full specification file lookslike

declarations
%%

rules

%%
programs

The declaration section may be empty. Moreover, if the programs section is
omitted, the second %% mark may be omitted also; thus, the smallest legal
yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in
names or multicharacter reserved symbols. Commentsmay appear wherevera
name is legal; they areenclosedin /+... ¢/, asin C.

The rulessectionismade up of one or more grammar rules. Agrammar rule has
the form:

A :BODY;

A represents a nonterminal name, and BODY represents a sequence of zero or
more names and literals. The colon and the semicolon are yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot (.), the
underscore (_), and noninitial digits. Uppercase and lowercase letters are
distinct. The names used in the body of a grammar rule may represent tokens
or nonterminal symbols.

A literal consists of a character enclosed insingle quotationmarks (’). AsinC,

the backslash (\) is an escape character withinliterals, and allthe C escapes are
recognized. Thus

9-4

\,._/..

o

Yacc: A Compiler-Compiler

\n' Newline

\r’ Return

\" Single quotation mark
AV Backslash

A\t Tab

\b’ Backspace

\f Form feed

\xxx" "xxx” in octal

For a number of technical reasons, the ASCII NUL character (\0°or 0) should
never be used in grammar rules.

If there are several grammar rules with the same left hand side, then the
vertical bar (|) can be used to avoid rewriting the left hand side. In addition,
the semicolon at the end of a rule can be dropped beforea vertical bar. Thusthe
grammar rules

A:B C D;
A:EF ;
A:G ;

can be given to yacc as

A:B CD
|E F

| G
i
It is not necessary that all grammar rules with the same left side appear

together in the grammar rules section, although it makes the input much more
readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the
obviousway:

empty :;

Names representing tokens must be declared; this is most simply done by
writing

C¢token namel name?2 ...

inthedeclarations section. (See Sections 3, 5, and 6 for muchmore discussion).
Every nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular
importance. The parser is designed to recognize the start symbol; thus, this
symbol represents the largest, most general structure described by the
grammar rules. By default, the start symbol is taken to be the left hand side of
the first grammar rule in the rules section. It is possible, and in fact desirable, to

9-

W

XENIX Programmer’s Guide

declare the start symbol explicitly in the declarations section using the %start
keyword:

J%start symbol

The end of the input to the parser is signaled by a special token, called the
:ndmarker. If the tokens up to, but not including, the endmarker form a
structure which matches the start symbol, the parser function returns to its
:aller after the endmarker is seen; it accepts the input. Ifthe endmarker is seen
nany other context, itisanerror.

[t is the job of the user-supplied lexical analyzer to return the endmarker when
ippropriate; see section 3, below. Usually the endmarker represents some
reasonably obviousI/O status, such as the end of the file or end of the record.

3.3 Actions

With each grammar rule, the user may associate actions to be performed each
;ime the rule is recognized in the input process. These actions may return
ralues,and may obtain the values returned by previousactions. Moreover, the
exicalanalyzer can return values for tokens, if desired.

Anactionisanarbitrary Cstatement, and as such can do input and output, call
subprograms, and alter external vectors and variables, An action is specified
>y one or more statements, enclosed in curly braces { and }. Forexample
A . !(l B ’)’
{ hello(1, "abe”); }

ind

XX YYY ZZZ
{ printf(” 2 message\n");
flag = 25;}

\regrammar ruleswith actions.
[o facilitate easy communication between the actions and the parser, the
iction statements are altered slightly. The dollar sign ($) is used as a signal to

racc in this context.

o return a value, the action normally sets the pseudo-variable $$ to some
ralue. For example, an action that does nothing but return the value 1is

{88=1}
[o obtain the values returned by previous actions and the lexical analyzer, the

wction may use the pseudo-variables $1, $2, ..., which refer to the values
eturned by the components of the right side of a rule, reading from left to

1-6

Yacc: A Compiler-Compiler

right. Thus, if the rule is
A:BCD;

for example, then $2 has the value returned by C, and $3 the value returned by

Asamore concrete example, consider therule
expr : (" expr ') ;

The value returned by this rule is usually the value of the ezprin parentheses.
Thiscanbe indicated by

expr:'("expr’) {$$ = $2; }

By default, the value of a rule is the value of the first element in it ($1). Thus,
grammar rulesof the form

A:B;
frequently need not have an explicit action.

Inthe examples above, all the actions came at the end of their rules. Sometimes,
it is desirable to get control before a rule is fully parsed. Yacc permits an
action to be written in the middle of a rule as well as at the end. Thisrule is
assumed to return a value, accessible through the usual mechanism by the
actions to the right of it. In turn, it may access the values returned by the
symbolsto its left. Thus, in the rule

x=1982;, y=193 }

the effect is toset z to 1, and yto the value returned by C.

Actions that do not terminate a rule are actually handled by yace by
manufacturing a new nonterminal symbol name, and a new rule matching this
name to the empty string. The interior action is the action triggered off by
recognizing thisadded rule. Yaccactually treats the above example asif it had
been written:

XENIX Programmer’s Guide

$ACT : /+ empty */
{8=1)

A :B $ACT C
{ x=82;, y=283;)

H

In many applications, output is not done directly by the actions; rather, a data
structure, such as a parse tree, is constructed in memory, and transformations
are applied toit before output is generated. Parse treesare particularly easy to
construct, given routines to build and maintain the tree structure desired. For
example, suppose there isa C function node, written so that the call

node(L, n1, n2)

creates anode with label L, and descendants nl and n2, and returnsthe index of
the newly created node. Then parse tree can be built by supplyingactionssuch
as:

expr : expr '+’ expr

{ $8 = node(’+’,$1,83); }
in the specification.

The user may define other variablesto be used by the actions. Declarationsand
definitions can appear in the declarationssection, enclosed in the marks %{ and
%} These declarations and definitions have global scope, so they are known to
the action statements and the lexical analyzer. For example,

%{ int variable = 0; %}

could be placed in the declarations section, making varsable accessible to all of
the actions. The yacc parser uses only names beginningin yy; the user should
avoid such names.

In these examples, all the values are integers: a discussion of values of other
types will be found in a later section.

9.4 Lexical Analysis

The user must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) tothe parser. The lexical analyzer
is an integer-valued function called yylez. The function returns an integer,
called the token number, representing the kind of token read. If thereisa value
associated with that token, it should be assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbersin order
for communication between them to take place. The numbers may be chosen

9-8

o

Yacc: A Compiler-Compiler

by yacc, or chosen by the user. In either case, the # define mechanism of C is
used to allow the lexical analyzer to return these numbers symbolically. For
example, suppose that the token name DIGI/T has been defined in the
declarations section of the yacc specification file. The relevant portion of the
lexical analyzer might look like:

yylex(){
extern int yylval;
int ¢;

c= getchar();
switch(¢) {

case ‘0%
case 'l

ca..;e 9"
yylval = ¢-'0’;
return(DIGIT);

}

The intent is to return a token number of DIG/T, and a value equal to the
numerical value of the digit. Provided thatthe lexical analyzer code is placed in
the programs section of the specification file, the identifier DIGIT will be
definedasthe token number associated withthetoken DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall
is the need to avoid using any token namesin the grammar that are reserved or
significant in C or the parser; for example, the use of token names ifor wkile will
almost certainly cause severe difficulties when the lexical analyzer is compiled.
The token name error is reserved for error handling, and should not be used
naively.

Asmentioned above, the token numbers may be chosen by yacc or by the user.
In the default situation, the numbers are chosen by yacc. The default token
number for a literal character is the numerical value of the character in the
localcharacterset. Other namesare assigned tokennumbersstarting at257.

To assign a token number to atoken (includingliterals), the first appearance of
the token name or literal in the declarations section can be immediately
followed by anonnegative integer. Thisinteger is taken to be the token number
of the name or literal. Names and literalsnot defined by thismechanismretain
their default definition. Itisimportantthatalltoken numbersbe distinct.

For historical reasons, the endmarker must have token number 0 or negative.

This token number cannot be redefined by the user. Hence, alllexical analyzers
should be prepared to return 0 or negative as a token number upon reaching the

9-9

XENIX Programmer’s Guide

end oftheirinput.

A very useful tool for constructing lexical analyzers is lex, discussed in 2
previous section. These lexical analyzers are designed to work in close harmony
with yacc parsers. The specifications for these lexical analyzers use regular
expressions instead of grammar rules. Lex can be easily used to produce quite
complicated lexical analyzers, but there remain some languages (such as
FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

9.5 How the Parser Works

Yacc turns the specification file into a C program, which parses the input
according to the specification given. The algorithm used to go from the
specification to the parser is complex, and will not be discussed here (see the
references for more information). The parser itself, however, is relatively
simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more
comprehensible.

The parser produced by yacc consists of a finite state machine with a stack.
The parser is also capable of reading and remembering the next input token
(called the lookahead token). The current state is always the one on the top of
the stack. The states of the finite state machine are given small integer labels;
initially, the machine is in state 0, the stack contains only state 0, and no
look ahead token has beenread.

The machine hasonly four actions available to it, called shift, reduce, accept,
and error. Amove of the parser is done asfollows:

‘1. Based on its current state, the parser decides whether it needs a
lookahead token to decide what action should be done; if it needs one,
and does not have one, it calls yylez to obtain the next token.

2. Usingthe current state, and the lookahead token if needed, the parser
decides on its next action, and carries it out. This may result in states
being pushed onto the stack, or popped off of the stack, and in the
look ahead token beingprocessedor left alone.

The shift action is the most common action the parser takes. Whenever a shift
action is taken, there is always a lookahead token. For example, in state 56
there may be anaction:

IF shift 34
which says, in state 56, if the lookahead token is IF, the current state (56) is

pushed down on the stack, and state 34 becomes the current state (on the top of
the stack). The lookahead token is cleared.

9-10

Yacc: A Compiler-Compiler

The reduce action keeps the stack from growing without bounds. Reduce
actions are appropriate when the parser has seen the right hand side of a
grammar rule. and is prepared to announce that it has seen an instance of the
rule, replacing the right hand side by theleft hand side. It may be necessary to
consult the lookahead token to decide whether to reduce, but usuallyitisnot;in
fact, the default action (representedby a.)isoftenareduce action.

Reduce actions are associated with individual grammar rules. Grammar rules
are also given small integer numbers, leading tosome confusion. Theaction

reduce 18
refersto grammar rule 18, while the action
IF shift 34
refers tostate 34.
Suppose the rule being reduced is
A:xyz;

The reduce action depends on the left hand symbol (A in this case), and the
number of symbols on the right hand side (three in this case). To reduce, first
pop off the top three states from the stack (In general, the number of states
popped equals the number of symbols on the right side of the rule). In effect,
these states were the ones put on the stack while recognizing 2, y, and 2, and no
longer serve any useful purpose. After popping these states, a state is
uncovered which wasthe state the parser wasinbeforebeginning to processthe
rule. Using this uncovered state, and the symbol on the left side of the rule,
perform what is in eflect a shift of A. A new state is obtained, pushed onto the
stack, and parsing continues. There are significant differences between the
processing of the left hand symbol and an ordinary shiftof a token, however, so
this action is called a goto acticn. In particular, the lookahead tokenis cleared
by a shift, and is not affected by a goto. In any case, the uncovered state
containsan entry such as:

A goto 20
causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action turns back the clock in the parse, popping the states
off the stack to go back to the state where the right hand side of the rule was first
seen. The parser then behavesasif it had seenthe left side at that time. If the
right hand side of the rule is empty, no states are popped off of the stack: the
uncoveredstateisin fact the currentstate.

The reduce action is also important in the treatment of user-supplied actions

and values. When a rule is reduced, the code supplied with the rule is executed
before the stack isadjusted. Inaddition to thestack holding the states, another

9-11

XENIX Programmer’s Guide

stack, running in parallel with it, holds the values returned from the lexical
analyzer and the actions. When a shift takesplace, the external variable yylval
is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable
yyvalis copied onto the value stack. The pseudo-variables $1, $2, etc., refer to
the value stack.

The other two parser actionsare conceptually much simpler. The accept action
indicates that the entire input has been seen and that it matches the
specification. This action appears only when the lookahead token is the
endmarker, and indicates that the parser has successfully done its job. The
error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokensit has
seen, together with the lookahead token, cannot be followed by anything that
would result in a legal input. The parser reports an error, and attempts to
recover the situation and resume parsing: the error recovery (asopposed to the
detecticn of error) willbe in a later section.

Consider the following example:

%token DING DONG DELL
%%
rhyme : sound place

sound : DING DONG
place : DELL

When yacec is invoked with the —v option, a file called y.output is produced,
with a human-readable description of the parser. The y.output file
corresponding to theabove grammar (with some statistics stripped off the end)
is:

state 0
$accept : _rhyme $end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_8$end

$end accept
. error

state 2
rhyme : sound_place

DELL shift 5
. error

place goto 4

state 3
sound : DING_DONG
DONG shift 6

. error.

state 4
rhyme : sound place_ (1)

. reduce 1

state 5
place : DELL_ (3)

. reduce 3

state 6
sound : DING DONG_ (2)

. reduce 2

Yace: A Compiler-Compiler

Notice that, in addition to the actionsfor eachstate, there isadescriptionof the
parsing rulesbeing processed in each state. The underscore character (_)isused
to indicate what has been seen, and what is yet to come, in each rule. Suppose
theinputis

9-13

XENIX Programmer’s Guide

DING DONG DELL
It isinstructive to follow the steps of the parser while processing thisinput.

Initially, the current state is state 0. The parser needs to refer to the input in
order to decide between the actions available in state 0, so the first token,
DING, is read, becoming the lookahead token. The actioninstate0on DINGis
shift 8, so state 3 is pushed onto the stack, and the lookahead token is cleared.
State 3 becomes the current state. The next token, DONG, is read, becoming
the lookahead token. The action in state 3 on the token DONG is shift 6, so
state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the
parser reduces by rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are
popped off of the stack, uncovering state 0. Consulting the descriptionof state
0, looking for a goto on sound,

sound goto 2
is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is #ksft 5, so state S is
pushed onto the stack, which now has 0, 2, and 5on it, and the lookahead token
is cleared. In state 5, the only action is toreduce by rule 3. This hasone symbol
on the right hand side, so one state, 5, is popped off, and state 2 is uncovered.
The goto in state 2 on place, the left side of rule 3, isstate 4. Now, the stack
contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1. There are
two symbols on the right, so the top two statesare popped off, uncovering state

-0 again. Instate 0, there is a goto on rhyme causing the parser to enter state 1.
Instate 1, the inputisread; the endmarkerisobtained, indicatedby $endinthe
y.output file. The action in state 1 when the endmarker is seen is to accept,
successfully ending the parse.

The reader is urged to consider how the parser works when confronted with
such incorrect strings as DING DONG DONG, DING DONG, DING DONG
DELL DELL, etc. A few minutes spend with this and other simple examples
will prabably be repaid when problems arise in more complicated contexts.

9.6 Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be
structured in two or more different ways. For example, the grammar rule

expr : expr -’ expr

is a natural way of expressing the fact that one way of forming an arithmetic

9-14

Yacc: A Compiler-Compiler

expression is to put two other expressions together with a minus sign between
them. Unfortunately, this grammar rule does not completely specify the way
that.all complex inputs should be structured. For example, if the input is

expr - expr - expr
the rule allows this input to be structured aseither

(expr - expr) - expr
or as

expr - (expr - expr)
(The firstis called ieft association, the second right association).
Yacc detects such ambiguities when it is attempting to build the parser. Itis
instructive to consider the problem that confronts the parser when it is-given
aninput such as

expr - expr - expr
When the parser hasread the second expr, the input that it hasseen:

expr - expr
matches the right side of the grammar rule above. The parser could reduce the
input by applying this rule; after applying the rule; the input is reduced to ezpr
(the left side of the rule). The parser would then read the final part of the input:

- expr
andagainreduce. Theeffect of thisis totaketheleftassociative interpretation.
Alternatively, when the parser hasseen

eXpr - expr

it could defer the immediate application of the rule, and continue reading the
input until it had seen

eXpr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to
ezprand leaving

eXpr - expr

Now the rule can be reduced once more; the effectis to take the right associative
interpretation. Thus, having read

9-15

XENIX Programmer’s Guide

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of
deciding between them. This is called a shift/reduce conflict. It may also
happen that the parser has a choice of two legal reductions; this is called a
reduce/reduce conflict. Note that there are never any shift/shift conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc still produces a
parser. It does this by selecting one of the valid steps wherever it has a choice.
A rule describing which choice to make in a given situation is called a
disambiguating rule.

Yaccinvokestwo disambiguatingrulesby default:

1. Inashift/reduce conflict, the defaultis to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier
grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor
of shifts. Rule 2 gives the user rather crude control over the behavior of the
parser in this situation, but reduce/reduce conflicts should be avoided
whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the
grammar rules, while consistent, require a more complex parser than yacc can
construct. The use of actions within rules can also cause conflicts, if the action
must be done before the parser can be sure which rule is being recognized. In
these cases, the application of disambiguating rules isinappropriate, and leads
to an incorrect parser. For this reason, yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a
correct parser, it is also possible to rewrite the grammar rules so that the same
inputs are read but there are no conflicts. For this reason, most previous parser
generators have considered conflicts to be fatal errors. Our experience has
suggested that this rewriting is somewhat unnatural, and produces slower
parsers; thus, yacc will produce parserseven in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a
programming language involving an if-then-else construction:

stat : IF *(’ cond *)' stat
| IF (" cond)" stat ELSE stat

n these rules, /Fand ELSE are tokens, condisanonterminal symbol describing
-onditional (logical) expressions, and stat is 2 nonterminal symbol describing
statements. The first rule will be called the simple-if rule, and the second the

)-16

Yacc: A Compiler-Compiler

if-else rule.

These tworules form an ambiguous construction,sinceinput of theform
IF (C1)IF (C2) S1ELSE S2

can be structured according to these rulesin two ways:

F(Cl){
IF(C2)SI

ELSE S2
or
IF (C1){
IF(C2)S1

ELSE S2
}

The second interpretation is the one given in most programming languages
having this construct. Each FLSE is associated with the last /F immediately
preceding the ELSE. In this example, consider the situation where the parser
hasseen

IF(C1)IF(C2)SI

and islooking at the ELSE. It can immediately reduce by the simple-if rule to
get

IF (C1) stat
and then read the remaininginput,
ELSE S2
andreduce
IF (C1) stat ELSE S2
by theif-else rule. Thisleadstothe first of the above groupingsof the input.

On the other hand, the ELSE may be shifted, S2read, and then the right hand
portion of

IF (C1)IF (C2)S1ELSES2

sanbe reduced by the if-else rule to get

9-17

XENIX Programmer’s Guide

IF (C1) stat

which can be reduced by the simple-if rule. This leads to the second of the
above groupings of the input, whichisusually desired.

Once again the parser can do two valid things - there is a shift /reduce conflict.
The application of disambiguating rule 1 tells the pareer to shift in this case,
which leads tothedesired grouping.

This shift/reduce conflict arises only when there is a particular current input
symbol, ELSE, and particular inputsalready seen, such as

IF(C1)IF(C2)S1

[n general, there may be many conflicts, and each one will be associated with an
input symbol and a set of previously read inputs. The previously read inputs
are characterized by the stateof the parser.

The conflict messages of yacc are best understood by examining the verbose
'~v) option output file. For example, the output corresponding to the above
sonflict state might be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat : IF (cond) stat_ (18)
stat : IF (cond) stat_ELSE stat

ELSE shift 45
reduce 18

Che first line describes the conflict, giving the state and the input symbol. The
irdinary state description follows, giving the grammar rules active in the state,
.nd the parser actions. Recall that the underline marks the portion of the
;rammar rules which has been seen. Thusin the example, in state 23 the parser
1asseen input corresponding to

IF (cond) stat

nd the two grammar rules shown are active at this time. The parser can do
wo possible things. If the input symbol is ELSE, it is possible to shift into state
5. State 45 will have, as part of its description, the line

stat : IF (cond) stat ELSE_stat
ince the ELSE will have been shifted in this state. Back in state 23, the

Iternative action, described by *.”” | is to be done if the input symbol is not
rentioned explicitly in the above actions; thus, in this case, if the input symbol

-18

Yacc: A Compiler-Compiler

isnot ELSE, the parser reduces by grammar rule 18:
stat : IF (" cond '}' stat

Once again, notice that the numbers following shift commands refer to other
states, while the numbers following reduce commands refer to grammar rule
numbers. In the y.output file, the rule numbers are printed after those rules
which can be reduced. In most one states, there will be at most reduce action
possible in the state, and this will be the defauit command. The user who
encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. Inreally
tough cases, the user might need to know more about the behavior and
construction of the parser than can be covered here. In this case, one of the
theoretical references might be consulted; the services of a local guru might also
be appropriate.

9.7 Precedence

There is one common situation where the rules given above for resolving
conflicts are not sufficient; this isin the parsing of arithmetic expressions. Most
of the commonly used constructions for arithmetic expressions can be naturally
described by the notion of precedence levels for operators, together with
information about left or right associativity. It turns out that ambiguous
grammars with appropriate disambiguating rules can be used to create parsers
that are faster and easier to write than parsers constructed from unambiguous
grammars. The basic notionisto write grammar rulesof theform

expr : expr OP expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous
grammar, with many parsing conflicts. As disambiguating rules, the user
specifies the precedence, or binding strength, of all the operators, and the
associativity of the binary operators. This information is sufficient to z2llow
yacc to resolve the parsing conflicts in accordance with these rules, and
construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations
section. This is done by a series of lines beginning with a yacc keyword: Sleft,
%right, or %nonassoc, followed by a list of tokens. All of the tokens on the
same line are assumed to have the same precedence level and associativity; the
linesare listed in order of increasing precedence or binding strength. Thus,

Geleft "+ -
Teleft, '+ "/’

9-19

'XENIX Programmer's Guide

describes the precedence and associativity of the four arithmetic operators.
Plus and minus are left associative, and have lower precedence than star and
slash, which are also left associative. The keyword %right is used to describe
right associative operators, and the keyword %nonassoc is used to describe
operators, like the operator .LT. in FORTRAN, that may not associate with
themselves; thus,

A LT.B.LT.C

is illegal in FORTRAN, and such an operator would be described with the
keyword %nonassoc in yacc. As an example of the behavior of these
declarations, the description

Geright '='
TBleft '+ '
Pleft *s' ' J*

%%

expr :expr '='expr
| expr '+ expr
| expr ’-’ expr
| expr ¢ expr
| expr '/’ expr

| NAME

might be used to structure the input
a=bhb=-csd-e-fsg
asfollows:
a={(b={(((ced)-e) - (f+g)))

When this mechanism is used, unary operators must, in general, be given a
precedence. Sometimes a unary operator and a binary operator have the same
symbolic representation, tut different precedences. An example is unary and
binary “-’; unary minus may be given the same strength as multiplication, or
even higher, while binary minus has a lower strength than multiplication. The
keyword, %6prec, changes the precedence level associated with a particular
grammar rule. The Cprec appearsimmediately after the body of the grammar
rule, before the action or closing semicolon, and is followed by a token name or
literal. It causes the precedence of the grammar rule to become that of the
following token name or literal. For example, to make unary minus have the
same precedence asmultiplication the rules might resemble:

9-20

Yacc: A Compiler-Compiler

%left '+ -
Tolefy '+ !

%%

expr : expr '+’ expr
| expr -’ expr
expr '+’ expr
expr '/’ expr
| ™=’ expr Soprec s’

| NAME

A token declared by %left, %right, and %nonassoc need not be, but may be,
declaredby Z%tokenaswell.

The precedences and associativities are used by yacc to resolve parsing
conflicts; they give rise to disambiguating rules. Formally, the rules work as
follows:

1. The precedences and associativities are recorded for those tokens and
literalsthat have them.

X}

A precedence and associativity is associated with each grammar rule;
it is the precedence and associativity of the last tokenor literal in the
body of the rule. If the %prec construction is used, it overrides this
default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce
conflict and either the input symbol or the grammar rule has no
precedence and associativity, then the two disambiguating rules
given at the beginning of the section are used, and the conflicts are
reported.

4. Ifthereisa shift/reduce conflict, and boththe grammar rule and the
input character have precedence and associativity associated with
them, then the conflict is resolved in favor of the action (shift or
reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies
reduce, right associative implies shift, and nonassociating implies
error.

Conflictsresolved by precedence are not counted in the number of shift/reduce
and reduce/reduce conflictsreported by yacc. Thismeansthat mistakesinthe
specification of precedences may disguise errors in the input grammar; it is a
good idea to be sparing with precedences, and use them in an essentially
cookbook fashion, until some experience has been gained. The y.output file is
very useful in deciding whether the parser isactually doing what was intended.

9-21

XENIX Programmer’s Guide

9.8 Error Handling

Error handling is an extremely difficult area, and many of the problems are
semantic ones. When an error is found, for example, it may be necessary to
reclaim parse tree storage, delete or alter symbol table entries, and, typically,
set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found. It is more
useful to continue scanning the input to find further syntax errors. This leads
to the problem of getting the parser restarted after an error. A general class of
algorithms to perform this involves discarding 2 number of tokens from the
input string, and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides a simple, but
reasonably general feature. The token name error is reserved for error
handling. This name can be used in grammar rules; in effect, it suggests places
where errors are expected, and recovery might take place. The parser popsits
stack until it enters a state where the token error islegal. It then behaves as if
the token error were the current lookahead token, and performs the action
encountered. The lookahead token is then reset to the token that caused the
error. If nospecial error ruleshave been specified, the processing halts when an
error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an
error, remains in error state until three tokens have been successfully read and
shifted. If an error is detected when the parser is already in error state, no
message isgiven, and the input tokenis quietly deleted.

Asanexample, arule of the form
stat : error

would, in effect, mean that on a syntax error the parser would attempt to skip
over the statement in which the error was seen. More precisely, the parser will
scan ahead, looking for three tokens that might legally follow a statement, and
start processing at the first of these; if the beginnings of statements are not
sufficiently distinctive, it may make a false start in the middle of a statement,
and end up reporting a second error where thereisinfact noerror.

Actions may be used with these special error rules. These actions might
attempt to reinitialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control.
Somewhat easier are rules such as

stat : error '}’

Here, when there isanerror, the parser attempts toskip over the statement,
but will do so by skippirg to the next . All tokens after the error and before

8-22

Yacc: A Compiler-Compiler

the next *’cannot be shifted, and are discarded. When the *’is seen, this rule
will be reduced, andany cleanup action associated with it performed.

Another form of error rule arises in interactive applications, where it may be
desirable to permit a line to be reentered after an error. A possible error rule
might be

input : error "\n’ { printf{ "Reenter line: "); } input
= §4;

There is one potential difficulty with this approach; the parser must correctly
process three input tokensbefore it admits that it has correctly resynchronized
after the error. If the reentered line contains an error in the first two tokens,
the parser deletes the offending tokens, and gives no message; this is clearly
unacceptable. For this reason, there is a mechanism that can be used to force
the parser to believe that an error has been fully recovered from. The
statement

yyerrok ;

in an action resets the parser to its normal mode. The last example is better
written

input : error ’\n’
{ yyerrok;
printf("Reenter last line: "); }
input

{38 =84)

As mentioned above, the token seen immediately after the error symbol is the
input token at which the error was discovered. Sometimes, this is
inappropriate; for example, an error recovery action might take upon itself the
job of finding the correct place to resume input. In this case, the previous
lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error
were to call some sophisticated resynchronization routine, supplied by the user,
that attempted to advance the input to the beginning of the next valid
statement. After this routine was called, the next token returned by yylex
would presumably be the first token in a legal statement; the old, illegal token
must be discarded, and the error state reset. Thiscould be done by a rule like

9-23

XENIX Programmer's Guide

stat : error
{ resynch();
yyerrok ;
yyclearin ; }

These mechanisms are admittedly crude, but do allow for a simple, fairly
effective recovery of the parser from many errors. Moreover, the user can get
control to deal with the error actions required by other portions of the
program.

9.9 The Yacc Environment

When the user inputs a specification to yacc, the outputisa file of C programs,
called y.tab.c on most systems. The function produced by yacec is called
yyparse ;itis aninteger valued function. When it is called, it in turn repeatedly
calls yylez, the lexical analyzer supplied by the user to obtain input tokens.
Eventually, either an error is detected, in which case (if no error recovery is
possible) yyparse returns the value 1, or the lexical analyzer returns the
endmarker token and the parser accepts. Inthis case, yyparee returns the value
0.

The user must provide a certain amount of environment for this parser inorder
to obtain a working program. For example, as with every C program, a
program called mein must be defined, that eventually calls yyparse. In
addition, a routine called yyerror prints a message when a syntax error is
detected.

These two routines must be supplied in one form or another by the user. To
ease the initial effort of using yace, a library has been provided with default
versions of main and yyerror. The name of thislibrary is system dependent; on
many systems the library is accessed by a ~ly argument to the loader. To show
the triviality of these default programs, the source is given below:

main(){
return(yyparse());
}
and
include <stdio.h>
yyerror(s) char #s; {

fprintf(stderr, "%s\n", s);
}

The argument to yyerror is a string containing an error message, usually the
string syntaz error. The average application v.ill »unt to do better than this.
Ordinarily, the program should keep track of the in at line number, and print

9-24

Yacc: A Compiler-Compiler

it along with the message when a syntax errorisdetected. The exter.nal integer
variable yyckar contains the lookahead token number at the time the error was
detected; this may be of some interest in giving better diagnostics. Since the
main program is probably supplied by the user (to read arguments, etc.) the
yacc library is useful only in small projects, or in the earliest stages of larger
ones.

The external integer variable yydebug is normally set to 0. If it is set to a
nonzero value, the parser will output a verbose description of its actions,
including a discussion of which input symbols have been read, and what the
parser actions are. Depending on the operating environment, it may be
possible to set thisvariable by using a debugging system.

9.10 Preparing Specifications

This section contains miscellaneous hintson preparingefficient, easy to change,
and clear specifications. The individual subsections are more or less
independent.

9.11 Input Style

It is difficult to providerules with substantial actions and still have a readable
specification file.

1. Use uppercase letters for token names, lowercase letters for
nonterminal names. This rule helps you to know who to blame when
things go wrong.

2. Put grammar rules and actions on separate lines. This allows either
to be changed without an automatic need to change the other.

3. Putall rules with the same left hand side together. Put the left hand
side in only once, and let all following rules begin with a vertical bar.

4. Putasemicolononly after thelast rule withagivenlefthand side, and
put the semicolon on a separate line. This allows new rules to be easily

added.

5. Indent rule bodies by two tab stops, and action bodies by three tab
stops.

The examples in the text of this section follow this.style (where space permits).
The user must make up his own mind about these stylistic questions; the central
problem, however, is to make the rules visible through the morass of action
code.

9-25

XENIX Programmer's Guide

9.12 Left Recursion

The algorithm used by the yace parser encourages so-called left recursive
grammarrules: rulesof the form

name : name rest_of_rule ;
These rulesfrequently arise when writing specifications of sequences and lists:
list : item
| list ’,* item
i
and
seq : item
| seq item
H

In each of these cases, the first rule will be reduced for the first item only, and
thesecondrule will be reduced for thesecond and allsucceedingitems.

With right recursive rules, such as

seq : item
| item seq

1

the parser would be a bit bigger, and the items would be seen, and reduced,
fromright to left. More seriously, an internal stack in the parser would be in
danger of overflowing if a very long sequence were read. Thus, the user should
use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements hasany meaning,
and if so, consider writing the sequence specification with an empty rule:

seq : /* empty */
| seq item

Once again, the first rule would always be reduced exactly once, before the first
item was read, and then the second rule would be reduced once for each item
read. Permitting empty sequences often leads to increased generality.
However, conflicts might arise if yacc is asked to decide which empty sequence
it hasseen, whenit hasn’t seen enough to know!

9-26

e

Yacc: A Compiler-Compiler

9.13 Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer
might want to delete blanks normally, but not within quoted strings. Or names
might be entered into a symbol table in declarations, but not in expressions.

One wzy of handling this situation is to create a global flag that is examined by
the lexical analyzer, and set by actions. For example, suppose a program
consists of 0 or more declarations, followed by 0 or more statements. Consider:

%({
int dflag;
%}

. other declarations ...

%%

prog : decls stats

decls : /s empty */
dflag = 1; }
| decls declaration

stats : /* empty */
dflag = 0; }
| stats statement

. other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading
declarations, except for the first token in the first statement. This token must
be seen by the parser before it can tell that the declaration section has ended
and the statementshave begun. In many cases, thissingletokenexceptiondoes
not affect the lexical scan.

This kind of back door approach can be over done. Nevertheless, it representsa
way of doing some things that are difficult to do otherwise.

9.14 Handling Reserved Words

Some programming languages permit the user to use words like if, which are
normally reserved, as label or variable names, provided that such use does not
conflict with thelegaluse of these names in‘the programming language. Thisis
extremely hard to do in the framework of yacc; it is difficult to pass
information to the lexical analyzer telling it ‘‘this instance of ‘if’ is a keyword,

9-27

XENIX Programmer’s Guide

and that instance is a variable’’. The user can make a stab at it, but it is
difficult. It is best that keywords be reserved; that is, be forbidden for use as
variable names,

9.15 Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of
macros YYACCEPTand YYERROR. YYACOEPT causes yyparse to return
the value 0; YYZRROR causes the parser to behave as if the current input
symbol had been a syntax error; yyerror is called, and error recovery takes
place. These mechanisms can be used to simulate parsers with multiple
endmarkers or context-sensitive syntax checking.

9.18 Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the current rule.
The mechanism is simply the same as with ordinary actions, a dollar sign
followed by a digit, but in this case the digit may be 0 or negative. Consider

sent :adj noun verb adj noun
{ look at the sentence ... }

adj :THE {$$= THE;}
| YOUNG { $$ = YOUNG; }

noun :DOG {$$ = DOG; }
| CRONE { if($0 === YOUNG){
printf("what?\n");

$$ = CRONE;

In the action following the word CRONE,achecksemade preceding token
shifted was not YOUNG. Obviously, this is only possible when a great deal is
known about what might precede the symbol noun in the input. There isalsoa
distinctly unstructured flavor about this. Nevertheless, at times this
mechanism will save a great deal of trouble, especially when a few combinations
are tobe excluded from an otherwise regular structure.

9-28

.'_)

Yacc: A Compiler-Compiler

9.17 Supporting Arbitrary Value Types

By default, the vzluesreturned by actions and the lexical analyzer are integers.
Yace can also support values of other types, including structures. In addition,
yacc keeps track of the types, and inserts appropriate union member namesso
that the resulting parser will be strictly type checked. The yacc value stack is
declared to be a union of the various types of values desired. The user declares
the union, and associates union member names to each token and nonterminal
symbol having a value. When the value is referenced through a $$ or $n
construction, yacc will automatically insert the appropriate union name, so
that no unwanted conversions will take place. In addition, type checking
commandssuch as lint{C) will befar moresilent.

There are three mechanisms used to provide for this typing. First, thereisa
way of defining the union; this must be done by the user since other programs,
notably the lexical analyzer, must know about the union member names.
Second, there is a way of associating a union member name with tokens and
nonterminals. Finally, there is a mechanism for describing the type of those
few values where yacc cannot easily determine the type.

To declare the union, the user includesin the declaration section:

%union {
body of union ...

This declares the yacc value stack, and the external variables yylvaland yyval,
to have type equal to this union. If yacc was invoked with the —d option, the
union declaration is copied onto the y.tab.k file. Alternatively, the union may
be declared in a header file, and a typedef used to define the variable YYSTYPE
to represent this union. Thus, the header file might also have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and
%}.

Once YYSTYPE isdefined, the union member names must be associated with
the various terminal and nonterminal names. The construction

< name >
is used to indicate a union member name. If this follows one of the keywords

%token, %left, Soright, and ononassoc, the union member name is associated
with the tokens listed. Thus, saying

XENIX Programmer’s Guide

%left <optype> '+’ -

will cause any reference to valuesreturned by these two tokens to be tagged
with the union member name optype. Another keyword, %type, is used
similarly to assoCiate union member names with nonterminals. Thus, one
mightsay

%t.ype <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If
there is an action within a rule, the value returned by this action has no
predefined type. Similarly, reference to left context values (such as $0 - see the
previous subsection) leaves yacc with no easy way of knowing the type. In this
case, a type can be imposed on the reference by inserting a union member name,
between < and >,immediately after the first $. Anexample of thisusageis

rule : aaa { $<intval>$ = 3; } bbb
{ fun($<intval>2, $<other>0); }

H
Thissyntax has little to recommend it, but the situation arisesrarely.

A sample specification is given in a later section. Thefacilitiesin thissubsection
are not triggered until they are used: in particular, the use of %type willturnon
thesemechanisms. Whenthey are used, there is a fairly strictlevelof checking.
For example, use of $n or $$ to refer to something with no defined type is
diagnosed. If these facilities are not triggered, the yacc value stack is used to
hold int’s, as was true historically.

9.18 A Small Desk Calculator

Thisexample gives the complete yacc specification for asmall desk calculator:
the desk calculator has 26 registers, labeled athrough z, and accepts arithmetic
expressions made up of the operators +, -, *, /, % (mod operator), & (bitwise
and), | (bitwise or), and assignment. If an expression at the top level is an
assignment, the value is not printed; otherwise it is. Asin C, an integer that
begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example of ayacc specification, the desk calculator does areasonable job
of showing how precedences and ambiguities are used, and demonstrating
simple error recovery. The major oversimplifications are that the lexical
analysis phase is much simpler than for most applications, and the output is
produced immediately, line by line. Note the way that decimal and octal
integers are read in by the grammar rules; This job is probably better done by
the lexical analy zer.

9-30

[—

Yacc: A Compiler-Compiler

%{
include <stdio.h>
include <ctype.h>

int regs[26];
int base;

%}
%start list
%token DIGIT LETTER

Toleft

Goleft ‘&’

%left +° -*

/oleft LA

%left UMINUS /* precedence for unary minus */

%% [+ beginning of rules section */

list : /* empty */
| list stat 4\n’

| list error A\n”

{ yyerrok; }

H

stat : expr
{ printf(" %d\n $1);)
! ETTER ‘=" expr
{ regs[$1] = $3; }

expr : ‘(" expr)’

{88 =292}
| expr “+°expr

{88 =¢91+83}
| expr “~"expr

{ $$ = $l -$3;}
| expr “*“expr

{86 =281+$3;)
| expr °/* expr

{88 =¢81/83)}
| expr 0" expr

{$¢=291%8$3; }
| expr ‘&’ expr

{88 =291&83;)
| expr 1" expr

{88 =183}

9-31

XENIX Programmer's Guide

| - expr %prec UMINUS

{88 =-82;)
| LETTER

{ 88 = regs[$1]; }
| number

number : DIGIT
{ 88 = $1; base == ($1==0) ? 8 : 10; }
| number DIGIT
{ 8% = base + $1 + 82; }

H
%% [+ start of programs */

yylex() { /t lexical analysis routine */
returns LETTER for a lowercase letter, s/
/- yylval = 0 through 25 */
/* return DIGIT for a digit, */
/* yylval = 0 through 9 +/
/* all other characters */
/+ are returned immediately */

while((c=getchar()) == ‘) { /* skip blanks */ }
/* ¢ is now nonblank */
if(islower(¢)) {

yylval = ¢ - a5
return (LETTER);

if(isdigit(¢)) {
yylval = ¢ -
return(DIGIT)

’

return(¢ };

8.18 Yacc Input Syntax

This section has a description of theyaccinputsyntax, asayacc specification. Yk)
Context dependencies, etc., are not considered. Ironically, the yacc input
specification language is most naturally specified as an LR(2) grammar; the
sticky part comes when an identifier is seen in a rule, immediately following an
action. If this identifier is followed by a colon, it is the start of the next rule;
otherwise it is a continuation of the current rule, which justhappenstohavean

9-32

Yacc: A Compiler-Compiler

on embedded in it. Asimplemented, the lexical analyzer looks ahead after
ng an identifier, and decide whether the next token (skipping blanks,
lines, comments, etc) is a colon. If so, it returns the token
DENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted
ngs) are also returned as IDENTIFIER, but never as part of
DENTIFIER.

/* grammar for the input to Yacc */

/* basic entities */
»ken IDENTIFIER /* includes identifiers and literals ¢/
sken C_IDENTIFIER /# identifier followed by colon +/
sken NUMBER [+ [0-9]+ /

/* reserved words: %type => TYPE, %left => LEFT, etc. */
ken LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

ken MARK [+ the %% mark /
ken LCURL [+ the %{ mark */
sken RCURL /# the %} mark /

/* ascii character literals stand for themselves s/
.art spec

: :defs MARK rules tail

: MARK { Eat up the rest of the file }
| /* empty: the second MARK is optional */

it /% empty */
| defs def

1

: START IDENTIFIER

UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL
ndefs rword tag nlist

rd : TOKEN
LEFT
RIGHT
NONASSOC

9-33

XENIX Programmer’'s Guide

| TYPE

tag : /* empty: union tag is optional */
| ‘<’ IDENTIFIER ‘>

nlist : nmno
nlist nmno
nlist %’ nmno

nmno :IDENTIFIER [+ Literal illegal with %type #/
| IDENTIFIER NUMBER /# Illegal with %type */

¥
/#* rules section =/

rules : C_IDENTIFIER rbody prec
| rules rule

rule : C_IDENTIFIER rbody prec
|'’l' rbody prec

rbody : /+# empty */
| rbody IDENTIFIER
| rbody act

1

act : {* { Copy action, translate $3, etc. } }’

prec : [+ empty */
PREC IDENTIFIER
PREC IDENTIFIER act

| prec %
3

8.20 An Advanced Example

This section gives an example of a grammar using some of the advanced
‘eatures discussed in earlier sections. The desk calculator example is modified
;0 provide a desk calculator that doesfloating point interval arithmetic. The
:alculator understands floating point constants, the arithmetic operations +,
-, %, /, unary -, and = (assignment), and has 26 floating point variables, a
hrough z. Moreover, it also understands intervals, written

)-34

Yacc: A Compiler-Compiler

(x,y)

where z is less than or equal to y. There are 26 interval valued variables A
through Z that may also be used. Assignments return no value, and print
nothing, while expressions print the (Roatingor interval) value.

This example explores a number of interesting features of yacc and C.
Intervals are represented by a structure, consisting of the left and right
endpoint values, stored as a double precision values. This structure is given a
type name, /INTERVAL, by using typedef. The yacc value stack can also
contain floating point scalars, and integers (used to index into the arrays
holding the variable values). Notice that this entire strategy depends strongly
on being able to assign structures and unions in C. Infact, many of the actions
callfunctionsthat return structures as well.

It is also worth noting the use of YYERROR to handle error conditions:
division by an interval containing 0, and an interval preseated in the wrong
order. In effect, the error recovery mechanism of yacc is used to throw away
the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also
demonstrates an interesting use of syntax to keep track of the type (e.g., scalar
or interval) of intermediate expressions. Note that a scalar can be
automatically promoted to an interval if the context demands an interval
value. This causes a large number of conflicts when the grammar is run
through yacc: 18 Shift/Reduce and 26 Reduce /Reduce. The problem can be
seenby lookingat thetwoinputlines:

25+ (35-4.)
and
25+ (35,4.)

Notice that the 2.5 is to be used in an interval valued expression in the second
example, but this factis not known until the comma (,) isread; by thistime, 2.5
is finished, and the parser cannot go back and change its mind. More generally,
it might be necessary to look ahead an arbitrary number of tokens to decide
whether to convert a scalar to an interval. This problem is circumvented by
having two rules for each binary interval valued operator: one when the left
operand is a scalar, and one when the left operand is an interval. In the second
case, the right operand must be an interval, so the conversion will be applied
automatically. However, there are still many cases where the conversion may
be applied or not, leading to the above conflicts. They are resolved by listing
the rules that yield scalars first in the specification file; in this way, the conflicts
will be resolved in the direction of keeping scalar valued expressions scalar
valued until they are forced to become intervals.

This way of handling multiple typesis very instructive, but not very general. If
there were many kinds of expression types, instead of just two, the number of

9-35

XENIX Programmer’s Guide

'ules needed would increase dramatically, and the conflicts even more
iramatically. Thus, while this example is instructive, it is better practicein a
nore normal programming language environment to keep the type
information as part of the value, and not aspart of the grammar.

s

Finally, a word about the lexical analysis. The only unusual feature is the
rreatment of floating point constants. The C library routine atof is used to do
the actual conversion from a character string to a double precision value. If the
lexical analyzer detects anerror, it responds by returning a token thatisillegal
in the grammar, provoking a syntax error in the parser, and thence error
recovery.

%

include <stdio.h>
include <ctype.h>

typedef struct interval {
double lo, hi;
} INTERVAL;
INTERVAL vmul(), vdiv();
double atof();

double dreg| 26 J;
INTERVAL vreg[26 J;

%}

Zostart lines

%ounion {
int ival;

double dval;
INTERVAL vval;

}
%token <ival> DREG VREG [+ indices into dreg, vreg arrays #/

Jotoken <dval> CONST /* floating point constant */

%type <dval> dexp /* expression */ .))

%type <vval> vexp /* interval expression s/ .
[+ precedence information about the operators */

%left g

9-36

Yace: A Compiler-Compiler

%left 147 1/1
%left UMINUS /* precedence for unary minus */

%%

lines :/* empty s/
| lines line

line :dexp ’\n’
{ printf(" %15.8M\n", $1); }
bl n’
{ printf("(%15.8f, %15.8f)\n", $1.1o, $1.hi); }
| DREG '=’ dexp '\n’
{ dreg[$1] = $3; }
| VREG =’ vexp '\n’
{ vreg[$1] = $3; }
| error \n’
{ yyerrok; }

| vexp

r

dexp : CONST

| DREG

{ 88 = dregl$1); }

| dexp ’+’ dexp
{88 =81+83;}
-’ dexp
{8¢=2¢1-83;)
| dexp ’¢" dexp

{88 =281+83}
| dexp ’/’ dexp

{$6=2%1/¢3)
| -’ dexp %prec UMINUS

$$=-892)

| ’(1 dexp ’)1

{88 =282)

| dexp

’

vexp :dexp
{ $8.hi = $8.1o = $1; }
| °(" dexp *) dexp’)'

$$.1o = $2;

$3.hi = $4;

if($8.1o0 > $$.hi }{
printf(”interval out of order\n");
}YYERROR;

| VREG

9-37

XENIX Programmer's Guide

{ 88 = vregl$1); }
| vexp ’+’ vexp
{ $8.hi = $L.hi + $3.hi;
$$.1o = $1.1o + $3.lo; }
| dexp '+’ vexp
{ $8.hi = $1 + $3.hi;
$3.1o = $1 + $3.10; }
| vexp *-> vexp
{ $8.hi = $1.hi - $3.1o;
$$.1o = $1.lo - $3.hi; }
| dexp '+’ vexp
{ $8.hi = $1 - $3.lo;
$$lo = $1 - $3.hi;}
| vexp '’ vexp
{ $¢ = vmul($1.lo, $1.hi, $3); }
| dexp ¢’ vex
{ $8 = vmul($1, $1, $3); }
| vexp '/’ vex
{'if (dcheck($3)) YYERROR;
$$ = vdiv($1.10, $1.hi, $3); }
| dexp */’ vex
{'if (dcheck($3)) YYERROR;
$8 = vdiv($1, $1,$3); }
| *-* vexp %prec UMINUS
{ $8.hi = -$2.l0; $$.10 = -82.hi; }
I ’(’ vexp ’),
{ 8 = 82)

define BSZ 50 /¢ buffer size for fp numbers
/* lexical analysis ¢/

yylex({
register c;

{ /# skip over blanks */ }
while((¢ = getchar()) =="")

if (isupper(c)){
.YYlval.ival =c- ’A";
return(VREG);
}

if (islower(c) }{

yylval.ival =c- ’a’;
lieturn(DREG);

if(isdigit(~) || c=="." }{

9-38

*/

Ny

Yacc: A Compiler-Compiler

/* gobble up digits, points, exponents */

char buf(BSZ+1], *cp = buf;
int dot =0, exp = 0;

for(; (cp-buf)<BSZ ; ++cp,c=getchar() }{

tcp = C,
if (isdigit(c)) continue;
if(c==""

if (dot++ || exp) return(’');
/* above causes syntax error s/
continue;

if (c=="¢){
if (exp++) return(’e’);
/* above causes syntax error */
continue;

}

/* end of number */
break;

‘c p— k) 0';
if((cp-buf) >= BSZ)
printf(" constant too long: truncated\n”);
else ungete(¢, stdin);
/#* above pushes back last char read s/
yylval.dval = atof (buf);
return(CONST);

return(¢);

INTERVAL hilo(a, b, ¢, d) double a, b, ¢, d; {
/* returns the smallest interval containing a, b, ¢, and d */
/* used by *, / routines */
INTERVAL v;

if(a>b) { v.hi = a; v.lo = b; }
else { v.hi = b; v.lo = 3;

if(c>d) {
if (e>v.hi) v.hi=c¢;
if (d<v.o) v.lo = d;

else {

if (d>v.hi) v.hi = d;
if (e<v.lo) vilo =g

9-39

XENIX Programmer’s Guide

return(v);

INTERVAL vmul(a, b, v) dou.ble a, b; INTERVAL v; {
return(hilo(a*v.hi, a*v.lo, b*v.hi, bsv.lo));

dcheck(v) INTERVAL v; {
if(v.hi >=0. && vilo <= 0.){
printf(" divisor interval contains 0.\n”);
return(1);

return(0);

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
ieturn(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));

9.21 Old Features

This section mentions synonyms and features which are supported for)
historical continuity, but, for variousreasons, are not encouraged.

1. Literalsmay also be delimited by double quotation marks (”).

2. Literalsmay be more than one character long. Ifall the charactersare
alphabetic, numeric, or underscore, the type number of the literalis
defined, just asif the literal did not have the quotation marksaround
it. Otherwise, it is difficult to find the value for such literals. The use
of multicharacter literals is likely to mislead those unfamiliar with
yacc, since it suggests that yacc is doing a job that must be actually
done by thelexical analyzer.

3. Most places where ‘%’ is legal, backslash (\) may be used. In
particular, the double backslash (\\) is the same as %%, \left the
same as Zleft, etc.

4. Thereareanumberofothersynonyms:

%< is the same as %left

%> is the same as %right

%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

9-40

Yacc: A Compiler-Compiler

Actionsmay also have the form

and the curly braces can be dropped if the action is a single C
statement.

C code between %{ and %} used to be permitted at the head of the
rulessection, as wellasin the declaration section.

9-41

Appendix A

C Language Portability

A Introduction 1

A.2 Program Portability 2

A.3 Machine Hardware 2
A.3.1 Byte Length 2
A.3.2 Word Length 2
A.3.3 Storage Alignment 2
A.3.4 Byte Order in a Word 4
A.3.5 Bitfields 5
A. 3.6 Pointers 5
A.3.7 Address Space 6
A.3.8 Character Set 6
A.4 Compiler Differences 7
A.U4,1 Signed/Unsigned char, Sign Extension T
A.4,2 Shift Operations 7
A.4.3 Identifier Length 7
A.4.,4 Register Variables 8
A. 4.5 Type Conversion 8
A.4.6 Functions With Variable Number of Arguments 9
A.4.7 Side Effects, Evaluation Order 11

1-1ii

A.5

A.6

A7

A.8

Program Environment Differences

Portability of Data

Lint 12

Byte Ordering Summary

12

13

11

C Language Portability

A.l Introduction

The standard definition of the C programming language leaves many details to
be decided by individual implementations of the language. These unspecified
features of the language detract from its portability and must be studied when
attemptingto write portable C code.

Most of the issues affecting C portability arise from differences in either target
machine hardware or compilers. C was designed to compile to efficient code for
the target machine (initially a PDP-11) and so many of the language features
not precisely defined are those that reflect a particular machine’s hardware
characteristics.

This appendix highlights the various aspects of C that may not be portable
acrossdifferent machines and compilers. It also briefly discusses the portability
of a C program in terms of its environment, which is determined by the system
calls and library routines it uses during execution, file pathnames it requires,
and other items not guaranteed to be constantacrossdifferentsystems.

The C language has been implemented on many different computers with
widely different hardware characteristics, from small 8-bit microprocessors to
large mainframes. This appendix is concerned with the portability of C code in
the XENIX programming environment. This is a more restricted problem to
consider since all XENIX systems to date run on hardware with the following
basic characteristics:

- ASCIHI character set

— 8-bitbytes

— 2-byte or 4-byte integers

— Two’scomplement arithmetic
These features are not formally defined for the language and may not be found
in all implementations of C. However, the remainder of this appendix is
devoted to those systems where these basic assumptionshold.
The C language definition contains no specification of how input and output is
performed. This is left to system calls and library routines on individual
systems. Within XENIX systems there aresystem callsand library routinesthat
can be considered portable. These are described briefly in a later section.
This appendix is not intended as a C language primer. It is assumed that the

reader is familiar with C, and with the basic architecture of common
microprocessors.

XENIX Programmer’s Guide

A.2 Program Portability

A program is portable if it can be compiled and run successfully on different
machines without alteration. There are many ways to write portable
programs. The firstis to avoid using inherently nonportablelanguagefeatures.
The second is to isolate any nonportable interactions with the environment,
such as1/O to nonstandard devices. For example programs should avoidhard-
coding pathnames unless a pathname is common to all systems (e.g.,

[ete/ paeswd).
Files required at compiletime (i.e., include files) may also introduce
nonportability if the pathnamesare not the same on allmachines. In some cases

include files containing machine parameters can be used to make the source
codeitself portable.

A.3 Machine Hardware

Differences in the hardware of the various target machines and differences in

the corresponding C compilers cause the greatest number of portability

problems. This section lists problems commonly encountered on XENIX
systems.

A.3.1 Byte Length

By definition, the char data type in C must be large enough to hold as positive
integers all members of 2 machine’s character set. For the machines described
in thisappendix, the char size isexactly an8 bitbyte.

A.3.2 Word Length

[n C, the size of the basic data types for a given implementation are not
formally defined. Thus they often follow the most natural size for the
underlying machine. It is safe to assume that short is no longer than long.
Beyond that no assumptions are portable. For example on some machines
short is the same length as int, whereas on otherslong is the same length as
int.

Programs that need to know the size of a particular data type should avoid
hard-coded constants where possible. Such information can usually be written
in a fairly portable way. For example the maximum positive integer (on a two’s
complement machine) can be obtained with:

#define MAXPOS ((int)(((unsigned) 0) >> 1))

Thisis preferable to something like:

A-2

C Language Portability

#tifdef PDP11
#define MAXPOS 32767
ftelse

#endif

Tofind the number of bytes in an int use *‘sizeof (int)” rather than 2, 4, or some
other nonportable constant.

A.3.3 Storage Alignment

The C language definesno particular layout for storage of data itemsrelative to
each other, or for storage of elements of structures or unions within the
structure or union.

Some CPU's, such as the PDP-11 and M68000 require that data types longer
than one byte be aligned on even byte address boundaries. Others, such as the
8086 and VAX-11 have no such hardware restriction. However, even with these
machines, most compilers generate code that aligns words, structures, arrays,
and long words on even addresses, or even long word addresses. Thus, on the
VAX-11, the following code sequence gives *‘8", even though the VAX
hardware can accessan int (a 4-byte word) on any physical starting address:

struct s_tag {
char ¢;
int i;

b
printf(" %d\n" sizeof (struct s_tag));

The principal implications of this variation in data storage are that data
.accessed as nonprimitive data types is not portable, and code that makes use of
knowledge of thelayout on a particular machineisnot portable.

Thus unions containing structures are nonportable if the union is used to access
the same data in different ways. Unions are only likely to be portable if they are
used simply to have different data in the same space at different times. For
example, if the following union were used to obtain 4 bytes from a long word,
the code would not be portable:

union {
char c[4];
long lw;

}u

The eizeof operator should always be used when reading and writing
structures:

XENIX Programmer’s Guide

struct s_tag st;

write(fd, &st, sizeof(st));

This ensures portability of the source code. It does not produce a portable data
file. Portability of data is discussed in alater section.

Note that the sizeof operator returns the number of bytes an object would
occupy in an array. Thus on machines where structures are always aligned to
begin on a word boundary in memory, the sizeof operator will include any
necessary padding for this in the returnvalue, even if the padding occurs after
all useful data in the structure. This occurs whether or not the argument is
actually an array element.

A.3.4 Byte Order in a Word

The variation in byte order in a word affects the portability of data more than
the portability of source code. However any program that makes use of
knowledge of the internal byte order in a word is not portable. For example, on
some systems there is an include file miec.k that contains the following
structure declaration:

/t
* structure to access an
* integer in bytes
*
struct {
char lobyte;
char hibyte;

h

With certain lessrestrictive compilers this could be used to access the high and
low order bytes of an integer separately, and in a completely nonportable way.
The correct way to do this is to use mask and shift operations to extract the
required byte:

#define LOBYTE(i) (i & 0xff)
#tdefine HIBYTE() ((i > > 8) & 0xfl)

Note that even this operation is only applicable to machines with two bytes in
anint.

Oneresult of the byte ordering problem is that the following code sequence will
notalways perform asintended:

.

C Language Portability

int ¢ = 0;
read(fd, &e, 1);

On machines where the low order byte isstored first, the value of “c”’ willbe the
byte value read. On other machines the byte is read into some byte other than
the low order one, and the value of ““c” is different.

A.3.5 Bitfields

Bitfieldsare not implemented in all C compilers. When they are, no field may
be larger than an int, and no field can overlap an int boundary.If necessary the
compiler will leave gaps and move to the next int boundary.

The C language makes no guarantees about whether fields are assigned left to

‘right, or right to left in an int. Thus, while bitfields may be useful for storing
flags and other small data items, their use in unions to dissect bits from other
data is definitely nonportable.

Toensure portability no individual field should exceed 16 bits.

A.3.6 Pointers

The C language is fairly generous in allowing manipulation of pointers, to the
extent that most compilers will not object to nonportable pointer operations.
The lint program is particularly useful for detecting questionable pointer
assignmentsand comparisons.

The common nonportable use of pointers is the use of casts to assign one pointer
to another pointer of a different data type. This almost always makes some
assumption about the internal byte ordering andlayout of the datatype, andis
therefore nonportable. In the following code, the byte order in the given array
isnot portable:

char c[4];
long *lp;

lp = (long *)&c|0};
¢lp = 0x12345678L;

The lint program will issue warning messages about such uses of pointers. Code
like thisis very rarely necessary or valid. It is acceptable, however, when using
the malloc function to allocate space for variables that do not have char type.
Theroutine isdeclared astype char * and thereturnvalue is cast to the type
to be stored in the allocated memory. If this type is not char #* then lint will
issue a warning concerning illegal type conversion. In addition, the malloc
function is written to always return a starting address suitable for storing all
typesof data. Lint does not know this, so it gives a warning about possible data

A-5

XENIX Programn.ler's Guide

alignment problems too. In the following example, malloc is used to obtain
memory for an array of 50 integers.

extern char #*malloc();
int *ip;

ip = (int *)malloc(50);

Thisexample will attract a warning message from lint.

A.3.7 Address Space

The address space available to a program running under XENIX varies
considerably from system to system. On a small PDP-11 there may beonly 64K
bytes available for program and data combined. Larger PDP-11’s, and some 16
bit microprocessors-allow 64K bytes of data, and 64K bytes of program text.
Other machines may allow considerably more text, and possibly more data as
well.

Large programs, or programs that require large data areas may have
portability problems on small machines.

A.3.8 Character Set

The Clanguage does not require the use of the ASCII character set. Infact, the
only character set requirements are all characters must fit in the char data
type, and all characters must have positive values.

In the ASCII character set, all characters have values between zero and 127.
Thus they can all be represented in 7 bits, and on an 8-bits-per-byte machine
areallpositive, whether charistreated assigned or unsigned.

There is a set of macros defined under XENIX in the header file
Juerfinclude/ctype.h that should be used for most tests on character
quantities. They provide insulation from the internal structure of the
character set and, in most cases, their names are more meaningful than the
equivalent line of code. Compare

if(isupper(c))
to
if((c >="A") && (c <="2"))
With some of the other macros, such as fsdigit to test for a hex digit, the

advantage is even greater. Also, the internal implementation of the macros
makes them more efficient than an explicit test with an ‘if” statement

A-6

C Language Portability

A.4 Compiler Differences

There are a number of C compilers running under XENIX. On PDP-11 systems
there is the so-called “Ritchie” compiler. Also on the 11, and on most other
systems, there is the Portable C Compiler.

A.4.1 Signed/Unsigned char, Sign Extension

The current stateof thesigned versusunsigned char problem is best described
as unsatisfactory.

The sign extension problem is a serious barrier to writing portable C, and the
best solution at present is to write defensive code that does not rely on
particularimplementation features.

A.4.2 Shift Operations

The left shift operator, **< < shifts its operand a number of bits left, filling
vacated bits with zero. Thisis a so-called logical shift. Theright shift operator,
“>>" when applied to an unsigned quantity, performs a logical shift
operation. When applied to a signed quantity, the vacated bits may be filled
with zero (logical shift) or with sign bits (arithmetic shift). The decision is
implementation dependent, and code that uses knowledge of a particular
implementation is nonportable.

The PDP-11 compilers use arithmetic right shift. To avoid signextensionit is
necessary toshift and mask out the appropriate number of high order bits:

char ¢;
c=(c >> 3) & 0xlf;

Youcanalso avoidsignextension by using using the divide operator:
char ¢;

c=c/8

A.4.3 Identifier Length
The use of long symbols and identifier names will cause portability problems
with some compilers. To avoid these problems, a program should keep the

following symbols as short as possible:

— CPreprocessor Symbols

A7

XENIX Programmer's Guide

— CLocal Symbols
— CExternalSymbols

The loader used may also place a restriction on the number of unique
charactersin C externalsymbols.

Symbols unique in the first six characters are unique to most C language
processors. '

On some non-XENIX C implementations, uppercase and lowercase letters are
notdistinct in identifiers.
A.4.4 Register Variables
The number and type of register variablesin a function depends on the machine
hardware and the compiler. Excess and invalid register declarationsare treated
as nonregister declarations and should not cause a portability problem. On a
PDP-11, up to three register declarations are significant, and they must be of
type int, char, or pointer. While other machines and compilers may support
declarationssuch as

register unsigned short
thisshould not be relied upon.
Since the compiler ignores excess variables of register type, the most important
register type variables should be declared first. Thus, if any are ignored, they
will be the least important ones.
A.4.5 Type Conversion
The C language has some rules for implicit type conversion; it also allows
explicit type conversions by type casting. The most common portability
problem in implicit type conversion is unexpected sign extension. This is a
potential problem whenever something of type charis compared with anint.
Forexample

char c;

if(c == 0x80)

will never evaluate true on a machine which sign extends since “‘c” is sign
extended before the comparison with 0x80,anint.

A-8

C Language Portability

The only safe comparison between char type and an int is the following:
char ¢;

if(c =="x’)

This is reliable because C guarantees all characters to be positive. The use of
hard-coded octal constants is subject to sign extension. For example the
following program prints ““ff80" on a PDP-11:

main()

printf(” %x\n",’\200’);

Type conversion also takes place when arguments are passed to functions.
Types char and short become int. Machines that sign extend char can give
surprises. For example the following program gives—128 on some machines:

char ¢ = 128;
printf(" %d\n" ,c);

This is because ‘“c” is converted to int before passing o the function. The
function itself has no knowledge of the original type of the argument, and is
expecting an int. The correct way to handle this is to code defensively and
allow for the possibility of sign extension:

char ¢ = 128;
printf(" %d\n", ¢ & Oxfl);

A.4.8 Functions With Variable Number of Arguments

Functions with a variable number of arguments present a particular
portability problem if the type of the arguments is variable too. In such cases
the code is dependent upon the size of various data types.

In XENIX there is an include file, /usr/include/varargs.k, that contains macros
for use in variable argument functions to access the arguments in a portable
way:

typedef char #va_list;

#define va_dcl int va_alist;

ftdefine va_start(list) list = (char *) &va_alist

#define va_end(list)

Ftdefine va_arg(list,mode) ((mode #)(list += sizeof(mode)))[-1]

The va_end() macro is not currently required. Use of the other macros will be

A-9

XENIX Programmer's Guide

demonstrated by an example of the fprintf library routine. This has a first
argument of type FILE #, and asecond argument of type char *. Subsequent
arguments are of unknown type and number at compilation time. They are
determined at run time by the contentsof the control string, argument 2,

The first few lines of fprintf to declare the arguments and find the output file
and controlstring address could be:

#include <varargs.h>
ginclude <stdio.h>

int
fprintf(va_alist)
va_decl;
va_list ap; /* pointer to arg list +f
char *format;
FILE #fp;
va_start(ap); [+ initialize arg pointer */

fp = va_arg(ap, (FILE #));
format = va_arg(ap, (char #));

}

Note that there is just one argument declared to fprintf. This argument is
declared by the va_decl macro to be type int, although its actual type is
unknown at compile time. The argument pointer ““ap” is initialized by va_start
to the address of the first argument. Successive arguments can be picked from
the stack so long as their type is known using the va_argmacro. This has a type
as its second argument, and this controls what data is removed from the stack,
and how far the argument pointer “ap” is incremented. In fprintf, once the
control string is found, the type of subsequent arguments is known and they
can be accessed sequentially by repeated calls to va_arg(). For example,
arguments of type double, int *, andshort, could be retrieved asfollows:

double dint;
int #ip;
short s;

dint = va_arg(ap, double);
ip = va_arg(ap, (int *));
s = va_arg(ap, short);

The use of these macros makes the code more portable, althoughit doesassume
a certain standard method of passing arguments on the stack. In particular no
holes must be left by the compiler, and typessmaller than int (e.g., char, and
short onlong word machines) must bedeclaredasint.

A-10

C Language Portability

A.4.7 Side Effects, Evaluation Order

The C language makes few guarantees about the order of evaluation of
operandsin an expression, or arguments to a function call. Thus

func(i++, i++);
isextremely nonportable,andeven
func(i++);

is unwise if func isever likely to be replaced by a macro, since the macro may
use “i” more than once. There are certain XENIX macros commonly used in
user programs; these are all guaranteed to use theirargumentonce, and socan
safely be called with a side-effect argument. The most common'examples are
gete, pute, getchar, and putchar.

Operands to the following operators are guaranteed to be evaluated left to
right:

: & | ?

Note that the comma operator here is a separator for two C statements. A list
of items separated by commas in a declaration list is not guaranteed to be
processed left to right. Thus the declaration

register int a, b, ¢, d;

on a PDP-11 where only three register variables may be declared could make
any three of the four variables register type, depending on the compiler. The
correct declaration is to decide the order of importance of the variables being
register type, and then use separate declaration statements, since the order of
processing of individual declaration statementsisguaranteed to be sequential:

register int 3;
register int b;
register int c;
register int d;

A.5 Program Environment Differences

Most programs make system callsand use library routines for variousservices.
This section indicates some of those routines that are not always portable, and
those that particularly aid portability.

We are concerned here primarily with portability under the XENIX operating

system. Many of the XENIX system calls are specific to that particular
operating system environment and are not present on all other operating

A-11

XENKX Programmer’s Guide

system implementations of C. Examples of this are getpwent for accessing
entries in the XENIX password file, and getenv which is specific to the XENIX
concept of a process’ environment.

Any program containing hard-coded pathnames to files or directories, or user
IDs, login names, terminal lines or other system dependent parameters is
nonportable. These types of constant should be in header files, passed as
rommand line arguments, obtained from the environment, or obtained by
asing theXENIX default parameter library routines dfopen, and dfread.

Within XENIX, most gystem calls and library routines are portable across
lifferent implementations and XENIX releases. However, a few routines have
shanged in their user interface. The XENIX library routines are usually
sortable among XENIX systems.

Note that the members of the printf family, printf, fprintf, eprintf, sscanf, and
reanf have changed in several ways during the evolution of XENIX, and some
‘eatures are not completely portable. The return values of these routines
:annot be relied upon to have the same meaning on all systems. Some of the
‘ormat conversion characters have changed their meanings, in particular those
elating to uppercase and lowercase in the output of hexadecimal numbers, and
he specification of long integers on 16-bit word machines. The reference
nanual page for printfcontains the correct specification for these routines.

A.8 Portability of Data

Jata files are almost always nonportable across different machine CPU
rchitectures. As mentioned above, structures, unions, and arrays have
-arying internal layout and padding requirements on different machines. In
.ddition, byte ordering within words and actual word length may differ.

“he only way achieve data file portability is to write and read data files as one
'imensional character arrays. This avoids alignment and padding problems if
he data is written and read as characters, and interpreted that way. Thus
\SCII text files can usually be moved between different machine types without
oo many problems.

\.7 Lint

tntisa C program checker which attempts to detect features of a collection of
' source files that are nonportable or even incorrect C. One particular
dvantage of lint over any compiler checking is that lint checks function

eclaration and usage acrosssource files, Neither compiler nor loader do this.

tnt will generate warning messages about nonportable pointer arithmetic,
ssignments, and type conversions. Passage unscathed through lint is not a
uarantee thata program is completely portable.

C Language Portability

A.8 Byte Ordering Summary
The following conventionsare used in the tables below:
a0 Thelowestphysically addressed byte ofthe dataitem.a0+ 1, and soon.

b0 The least significant byte of the data item, ’bl’ being the next least
significant, and so on.

Note that any program that actually makes use of the following information is
guaranteed to be nonportable!

Byte Orderingfor Short Types

CPU Byte Order
a0 2l
PDP-11 b0 bl
VAX-11 b0 bl
8086 bo bl
286 bo bl
M68000 bl bo
28000 bl b0

ByteOrdering for Long Types

CPU Byte Order

a0 al a2 ad
PDP-11 b2 b3 b0 bl
VAX-11 b0 bl b2 b3
8086 b2 b3 b0 bl
286 b2 b3 b0 bl
M68000 b3 b2 bl b0
28000 b3 b2 bl b0

A-13

Appendix B

MU4: A Macro Processor

B. 1 Introduction 1

B.2 Invoking mi 1

B.3 Defining Macros 2

B.4 Quoting 3

B.5 Using Arguments 5

B.6 Using Arithmetic Built-ins 6
B.7 Manipulating Files 7

B.8 Using System Commnands 7

B.9 Using Conditionals 8

B.10 Manipulating Strings 8

B.11 Printing 10

o

M4: A Macro Processor

B.1 Introduction
The m4 macro processor defines and processes specially defined strings of
characters called macros. By defining a set of macrosto be processedby m4, a
programming language can be enhanced to make it:

— More structured

-~ Morereadable

— Moreappropriate fora particular application
The #define statement in C and the analogous define in Ratfor are examples
of the basic facility provided by any macro processor—replacement of text by

other text.

Besides the straightforward replacement of one string of text by another, m4
provides:

— Macros with arguments

-~ Conditional macro expansions

— Arithmetic expressions

— Filemanipulation facilities

~ String processing functions
The basic operation of m4is copying its input to its output. As the input isread,
each alphanumeric token (that is, string of lettersand digits) is checked. If the
token is the name of a macro, then the name of the macro is replaced by its
defining text. The resulting string is reread by m4. Macros may also be called
with arguments, in which case the arguments are collected and substituted in
the right placesinthe defining text before m4 rescans the text.
M/ provides a collection of about twenty built-in macros. In addition, the user
can define new macros. Built-ins and user-defined macros work in exactly the

same way, except that some of the built-in macros have side effects on the state
of the process.

B.2 Invoking m4
The invocation syntax for m §is:
m4 [files]

Each file name argument is processed in order. If there are no arguments, or if

B-1

XENIX Programmer’s Guide

an argument is a dash (-}, then the standard is read. The processed text is
written to the standard output, and can be redirected as in the following
example:

m4 filel file2 - > outputfile
Note the use of the dash in the above example to indicate processing of the
standardinput, efterthefiles fileZ and file2have been processed by m 4.
B.3 Defining Macros

The primary built-in function of m{ is define, which is used to define new
macros. The input

define(name, stuff)
causes the string name to be defined as etuff. All subsequent occurrences of
name will be replaced by stuff. Naeme must be alphanumeric and must begin
with a letter (the underscore (_) counts as a letter). Stuffisany text, including
text that containsbalanced parentheses; it may stretch over multiple lines.

Thus, asa typicalexample

define(N, 100)

if(i > N)
defines “N"’ to be 100, and uses this symbolic constant in alater if statement.
The left parenthesis must immediately follow the word define, to signal that
define hasarguments. If amacro or built-in name is not followed immediately
by a left parenthesis, “(”, it is assumed to have no arguments. This is the
situation for “N" above; it is actually a macro withno arguments. Thus, when
itisused, no parentheses are needed followingits name.

You should also notice that a macro name is only recognized as such if it
appears surrounded by nonalphanumerics. For example, in

define(N, 100)
if (NNN > 100)

the variable “NNN" is absolutely unrelated to the defined macro “N”, even
though it contains three N's.

Thingsmay be definedin terms of other things. Forexample

B-2

M4: A Macro Processor

define(N, 100)
define(M, N)

definesbothM and N to be 100.

What happensif “N” isredefined? Or, tosay it another way, is “M"” defined as
“N" or as 100? In m{, the latter is true, “M" is 100, so even if “N’’ subsequently

changes, “‘M’’ does not.

This behavior arises because m4 expands macro names into their defining text
as soon as it possibly can. Here, that means that when the string N’ isseen as
the arguments of define are being collected, it isimmediately replaced by 100;
it'sjustasif youhadsaid

define(M, 100)
in the first place.

If thisisn’t what youreally want, there are two ways out of it. The first, which
is specific to thissituation, is to interchange the order of the definitions:

define(M, N)
define(N, 100)

Now “M” is defined to be the string N, so when you ask for “M" later, you
will always get the value of “N’’ at that time (because the *“‘M" will be replaced
by “N* which, in turn, will bereplaced by 100).

B.4 Quoting

The more general solution is to delay the expansion of the arguments of define
by quoting them. Any text surrounded by single quotation marks *and “is not
expandedimmediately, but hasthe quotationmarksstrippedoff. If yousay

define(N, 100)
define(M, ‘N’)

the quotation marks around the ‘N’ are stripped off asthe argument is being
collected, but they have served their purpose, and *“M” is defined as the string
“N”, not 100. The general rule is that m§ always strips off one level of single
quotation marks whenever it evaluates something. This is true even outside of
macros. If you want the word ‘‘define” to appear in the output, you have to
quoteitintheinput,asin

‘define’ = 1;

As another instance of the same thing, whichis abit more surprising, consider
redefining ‘N

B-3

XENIX Programmer’s Guide

define(N, 100)
define(N, 200)

Perhapsregrettably, the “N” in the second definition isevaluated assoon asit’s
seen; thatis, it isreplaced by 100, so it’s asif you had written

define(100, 200)
This statementisignored by m4, since you can only define things that look like
names, but it obviously doesn’t have the effect you wanted. To really redefine
“N", youmustdelay the evaluation by quoting:

define(N, 100)

define(*N’, 200)
In m4,itisoften wise to quote the first argument of a macro.
If the forward and backward quotation marks (*and) are not convenient for
some reason, the quotation marks can be changed with the built-in
changequote. For example:

changequote(],])

makes the new quotation marksthe left and right brackets. You canrestore the
original characters with just

changequote

There are two additional built-ins related to define. The built-in undefine
removes the definition of some macro or built-in:

undefine(‘N’)
removesthe definitionof “N”’. Built-ins can be removed with undefine, asin
undefine(‘define’)
but once youremove one, you cannevergetit back.
The built-in ifdef provides a way to determine if a macro is currently defined.
For instance, pretend that either the word “xenix” or “unix” is defined
accordingtoaparticularimplementationof aprogram. To perform operations

according to which system you have you might say:

. ifdef(‘xenix’, ‘define(system,1)’)
ifdef(‘unix’, ‘define(system,2)’)

Don’t forget the quotation marksin the above example.

B-4

S

N

M4: A Macro Processor
Ifdef actually permits three arguments: if the name is undefined, the value of
ifdefisthenthe third argument, asin

ifdef(‘xenix’, on XENIX, not on XIENIX)

B.5 Using Arguments
So far we have discussed the simplest form of macro processing — replacing one
string by another (fixed) string. User-defined macrosmay alsohave arguments,
so different invocations can have different results. Within the replacement text
for a macro (the second argument of its define) any occurrence of $n will be
replaced by the nth argument when the macro is actually used. Thus, the
macro bump, defined as

define(bump, $1 = $§1 + 1)
generates code toincrement itsargument by 1:

bump(x)

¥ome X + 1
A macro can have as many arguments as you want, but only the first nine are
accessible, through $1 to $9. (The macro name itself is $0.) Argumentsthat are
not supplied are replaced by null strings, so we can define a macro cat which
simply concatenatesitsarguments, like this:

define(cat, $1$2$3$48586878889)
Thus

ca"(xl ¥y Z)
isequivalent to

xXyz

The arguments $4 through $9 are null, since no corresponding arguments were
provided.

Leading unquoted blanks, tabs, or newlines that occur during argument
collection are discarded. All other white spaceis retained. Thus:

define(a, b ¢)

defines““a” tobe“b ¢”.

B-5

XENIX Programmer's Guide

Arguments are separated by commas, but parentheses are counted properly, so
acomma protected by parenthesesdoes not terminate anargument. Thatis, in

define(a, (b,c))

there are only two arguments; the second is literally *“(b,c)”. And of coursea
bare comma or parenthesis can be inserted by quotingit.

B.8 Using Arithmetic Built-ins

M/ provides two built-in functions for doing arithmetic on integers. The
simplestisincr, whichincrementsitsnumericargument by 1. Thus, tohandle
the common programming situation where you want avariable to be defined as
one more than N, write

define(N, 100)
define(N1, ‘incr(N)")

Then**N1"is defined as one more than the current value of “N”’.

The more general mechanism for arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers. It provides the following operators
(in decreasing order of precedence):

unary + and -
«+ or * (exponentiation)
* [/ % (modulus)

! not)
& or &&(logical and)
|or|| (logical or)

Parentheses may be used to group operations where needed. Allthe operands
of an expression given to eval must ultimately be numeric. The numeric value
of a true relation (like 1>0) is 1, and false is 0. The precision in eval is
implementation dependent.

Asasimple example, suppose we want “M” to be “2¢+N+1". Then

define(N, 3)
define(M, ‘eval(2#*N+1)’)

As a matter of principle, it is advisable to quote the definingtext for a macro

unlessitisverysimpleindeed (say just anumber); it usually givesthe resultyou
want,andisagoodhabittogetinto.

B-6

M4: A Macro Processor

B.7 Manipulating Files

You can include a new file in the input at any time by the built-in function
include:

include(filename)

inserts the contents of filename in place of the include command. The
contents of the file is often a set of definitions. Thevalueof include (thatis, its
replacement text) is the contents of the file; this can be captured in definitions,
etc.

It is afatal error if the file named in include cannot be accessed. To get some
control over this situation, the alternate form sinclude can be used; sinclude
(for “silentinclude”) says nothing and continuesifit can’t accessthe file.

It is also possible to divert the output of m4 to temporary files during
processing, and output the collected material upon command. M4 maintains
nine of these diversions, numbered 1 through 9. If yousay

divert(n)
all subsequent output is put onto the end of a temporary file referred to as“n”.
Diverting to this file is stopped by another divert command; in particular,
divert or divert(0) resumes the normal output process.
Diverted text is normally output all at once at the end of processing, with the
diversions output in numeric order. It is possible, however, to bring back
diversions at any time, that is, to append them to the current diversion.
undivert
brings back all diversions in numeric order, and undivert with arguments
brings back the selected diversions in the order given. The act of undiverting
discards the diverted stuff, as does diverting into a diversion whose number is

not between 0 and 9 inclusive.

The value of undivert is not the diverted stuff. Furthermore, the diverted
materialisnotrescannedfor macros.

The built-in divnum returns the number of the currently active diversion.
Thisiszero during normal processing.

B.8 Using System Commands

You can run any program in the local operating system with the syscmd
built-in. Forexample,

B-7

XENIX Programmer's Guide

sysemd(date)

runs the date command. Normally, syscmd would be used to create afilefor a
subsequentinclude.

To facilitate making unique file names, the built-in maketemp is provided,

with specifications identical to the system function mktemp: a string of
X30IXX" in the argument isreplaced by the processid of the current process.

B.9 Using Conditionals

There is a built-in called ifelse which enables you to perform arbitrary
conditional testing. Inthe simplestform,

ifelse(q, b, ¢, d)
compares the two strings a and b. If these are identical, ifelse returns the
string ¢; otherwise it returns d. Thus, we might define a macro called
compare which compares twostringsandreturns “yes” or ““no”’ if they are the
same or different.

define(compare, ‘ifelse($1, $2, yes, no)’)
Notethe quotation marks, whichprevent too-earlyevaluationof ifelse.

If the fourth argumentis missing, it istreated as empty.

ifelse can actually have any number of arguments, and thus provides a limited
form of multi-way decision capability. Inthe input

ifelse(q, b, ¢, d, ¢, f, g)
if the string a matches the string b, the resultis ¢. Otherwise,if dis the same as
e, the result is f. Otherwise the result is g. If the final argument is omitted, the
resultisnull, so

ifelse(q, b, ¢)

is ¢if amatches b, and null otherwise.

B.10 Manipulating Strings

The built-in len returns the length of the string that makes up its argument.
Thus

len(abedef)

is 6, and

B-8

e

M4: A Macro Processor

len((a,b))

is 5.

The built-in substr can be used to produce substrings of strings. For example
substr(s,1,n)

returns the substring of s that starts at position 1 (origin zero), and is n
characterslong. If nisomitted, the rest of the stringisreturned, so

substr(‘now is the time’, 1)

ow is the time
If sor nare outof range, various sensible things happen.
The command

index(e1,22)

returns the index (position) in 1 where the string s2occurs, or -1 if it doesn’t
occur. As withsubstr, theorigin for stringsis0.

Thebuilt-intranslit performs character transliteration.
translit(s, £, t)

modifies s by replacing any character found in fby the corresponding character
of t. Thatis

translit(s, aeiou, 12345)
replaces the vowels by the corresponding digits. If ¢ is shorter than f,
characters that don’t have an entry in t are deleted; as a limiting case, if ¢ is not
present at all, charactersfromfare deleted from s. So

translit(s, aeiou)
deletes vowels from *‘s”.
There is also a built-in called dnl which deletes all characters that followit up

to and including the next newline. It is useful mainlyfor throwingaway empty
lines that otherwise tend to clutter up m4 output. For example, if yousay

B-9

XENIX Programmer's Guide

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part of the definition, soit is copiedinto
the output, where it may not be wanted. If you add dnl to each of these lines,
the newlines will disappear.

Another way toachieve this, is

divert(-1)
define(...)

e

divert

B.11 Printing

The built-in errprint writes its arguments out on the standard error file.
Thus,youcansay

errprint(‘fatal error’)
Dumpdef is a debugging aid that dumps the current definitions of defined

terms. If there are no arguments, you get everything; otherwise you get the
onesyouname as arguments. Don’t forget the quotation marks.

B-10

ndex

c option

C compiler 2-8
D option

C compiler 2-13
E option

C compiler 2-15
h option

lint 3-9

I option

C compiler 2-14
1 option

C compiler
o option

C compiler 2-5
0 option

C compiler 2-10"
p option

C compiler 2-12
P option

C compiler 2-15
s option

C compiler 2-10"
X option

C compiler 2-10"
a option

lint 3-8
b option

lint 3-4
¢ option

lint 3-7
n option

lint 3-12

p option

lint 3-12

-u option
lint 3-3
-v option
lint 3-11
lint 3-3
=X option
lint 3-2
Adb
basic tool 1-1
ar
description 1-2
As
basic tool 1-2
Assembler See As
assembler
error messages 2-15
C compiler
-I option, include file
search 2-14
-1 option
library linking 2-9
-0 option
a.out file naming 2-5
-0 option
output optimization
2-10"
-P option, preprocessor
invocation 2-15
-p option, profiling
code 2-12
-s option, output
stripping 2-10"
=S option
assembly language

1-1

Programmers Guide

tput 2-12

ption, external symbol
y 2-10"

ption, symbol saving
0"

ile 2-12

t file

fault output file 2-3

ning 2-4

nbly language

ut 2-12

ting

ject files 2-8

tion

ero definition 2-13
r messages 2-15
assion

aluation order 3-11
tion calls

inting 2-12

ide file

arch 2-14

l discard 2-10"

ary

itking 2-9

ng

rary 2-9
directives,

it 3-1

)

*inition 2-13
:processor 2-15

ut file write out 2-

.ple source files 2-3
it file
ration 2-4

optimization 2-10"
output file See a.out
file
output
assembly language
output 2-12
stripping 2-10"
preprocessing 2-13
preprocessing 2-15
profiling code 2-12
source file
linking 2-4
multiple 2-4
single 2-2
strip command, output
stripping 2-10"
symbol table 2-10"
C language
compiler See cc
usage check 1-1
yacc 9-1
C program
string extraction 1-3
programming 1anguage
programs
creating 1-1
C source file
compilation See C
compiler 2-2
C-shell
command history
mechanism 1-3
command language 1-3
cc command
error messages 2-15
source file
compiling 2-3

(e N @]

1-1

\

imand
rxecution 1-3
.nterpretation 1-3
3CCS commands See SCCS
3CCS See SCCS
\
lescription 1-3
ugger See Adb
.ta See SCCS
sk calculator
specifications 9-31
‘or message file
rreation 1=3
:cution profile
wof 2-12
.e
irchives 1-2
»lock counting 1-3
theck sum computation 1-3
rrror message file See
irror message file
rectal dump 1-3
‘elocation bits
‘emoval 1-3
*emoval

SCCS use See SCCS
Source Code Control System
See SCCS
symbol removal 1-3
.ext search, print 1-3
t{TRAN
ronversion program 8-20"
tadecimal dump 1-3

»asic tool 1-2

-11 flag
library access 8-5

0, end of file

notation 8-12

a.out file
contents 8-5

action
default 8-8
description 8-3
repetition 8-9
specification 8-8

alternation 8-7

ambiguous source rules 8-

12

angle brackets (<>)
operator character 8-24

operator character 8-4
start condition
referencing 8-16
arbitrary character
match 8-6
array size change 8-24
asterisk (®)
operator character 8-25

operator character 8-U4
repeated expression
specification 8-6
automaton interpreter
initial condition
resetting 8-16
backslash (\)
C escapes 8-4
backslash (\)
operator character 8-24

backslash (\)
operator character . 8-4

NIX Programmers Guide

backslash (\)
operator character
escape 8-4

backslash (\)
operator character
escape 8-6

BEGIN
start condition
entry 8-16

blank character
quoting 8-4
rule ending 8-4
blank, tab line
beginning 8-17
braces ({})
expression
repetition 8-8
operator character 8-25

operator character 8-4
brackets ([1)

character class

specification 8-5

character class use 8-1

operator character 8-24

operator character 8-4
operator character
escape 8-5
buffer overflow 8-13
C escapes 8-4
caret (") operator
left context
recognizing 8-15
caret (7)
character class
inclusion 8-5

context sensitivity 8-7
operator character 8-24

operator character 8-U4
string complement 8-5
character class
notation 8-1
specification 8-5
character set
specification 8-22
character
internal use 8-22
set table 8-22
set table 8-24
translation table See
set table
context sensitivity 8-7
copy classes 8-17
dash (=)
operator character 8-24

character class

inclusion 8-5

operator character 8-4

range indicator 8-5
definition

expansion 8-8

format 8-18

placement 8-8
definitions

character set table 8-

22

contents 8-18

contents 8-23

format 8-23

location 8-18

specification 8-17
delimiter
discard 8-18
rule beginning
marking 8-1
source format 8-2
third delimiter,
copy 8-18
description 1-2
description 8-1
dollar sign ($) operator
right context)
recognizing 8-15
dollar sign ($)
context sensitivity 8-7

end of line
notation 8-1
operator character 8-24

operator character 8-4
dot (.) operator See
period (.)
double precision constant
change 8-21
ECHO

format argument, data

printing 8-9
end-of-file

0 handling 8-12

yywrap routine 8-12
environment

change 8-15
expression

new line illegal 8-4

repetition 8-8
external character
array 8-9

flag
environment change 8-15

FORTRAN conversion program

8-20"
grouping 8-7
I/0 library See library
I/0 routine

access 8-11

consistency 8-11
input () routine 8-11
input routine

character I/0

handling 8-22
input

description 8-1

end-of-file, 0

ignoring 8-8

manipulation

restriction 8-15
invocation 8-U
left context 8-7

caret (") operator 8-15

sensitivity 8-15
lex.yy.c file 8-5
lexical analyzer
environment change 8-15

library
access 8-5
avoidance 8-5
backup limitation 8-12
loading 8-19
line beginning match 8-7
line end match 8-7
loader flag See =11 flag

IX Programmers Guide

ookahead
haracteristic 8-12
ookahead characteristic
8-10"
atch count 8-9
atching

occurrence counting 8-
13

preferences 8-12
ew line

illegality 8-4
awline

escape 8-23

matching 8-13
2tal escape 8-6
perator character
escape 8-4

quoting 8-4
perator characters
aaSee also Specific
Oper ator Character
designated 8-24
escape 8-5

escape 8-6

listing 8-4

literal meaning 8-4
>tional expression
specification 8-6
atput (e) routine 8-11
utput routine

character I1/0

handling 8-22
arentheses (())
grouping 8-7

operator character 8-4
arenthesis (())
operator character 8-25

parser generator
analysis phase 8-2
percentage sign (%) ;)
delimiter notation :
(2%) 8-1
operator character 8-4
remainder operator 8-19

source segment
separator 8-8
period (.) operator
designted . 8-24
period (.)
arbitrary character
match 8-6
newline no match 8-13
operator character 8-4
plus sign (+)
operator character 8-25

operator character 8-4)
repeated expression ’
specification 8-6

preprocessor statement

entry 8-18

question mark (?)
operator character 8-25

operator character 8-4
optional expression
specification 8-6
quotation marks, double
(\O
real numbers rule 8-18
regular expression
description 8-3
end indication 8-3

operators See operator
characters

rule component 8-3
EJECT 8-14

epeated expression
specification 8-6
ight context

dollar sign ($)
operator 8-15
ule

active 8-16

real number 8-18
ules

components 8-3

format 8-24
emicolon (3)

null statement 8-8
lash (/)

operator character 8-25

operator character 8-4
trailing text 8-7
ource definitions
specification 8-17
ource file

format 8-23

ource program
compilation 8-4

surce

copy into generated
program 8-17
description 8-1
format 8-17

format 8-2
interception

failure 8-17

segment separator 8-8

spacing character
ignoring 8-9
start condition 8-7
entry 8-16
environment change 8-15

start conditions

format 8-23
location 8-23
start

abbreviation 8-16
statistics gathering 8-
20“
string

printing 8-3
substitution string

definition See

definition
tab line beginning See
blank, tab line beginning

text character
quoting 84
trailing text 8-7
unput (c¢) routine 8-11
unput routine
character I/0
handling 8-22
unput
REJECT
noncompatible 8-15
lex
unreachable statement 3-4
Lex
vertical bar (})
action repetition 8-9
alternation 8-7

XENIX Programmers Guide

operator character 8-25

operator character 8-4
wrapup See yywrap routine

Yace interface

tokens 8-19

yylex () 8-18
Yace

interface 8-2

library loading 8-19
yyleng variable 8-9
yyless ()

text reprocessing 8-10

yyless (n) 8-10
yylex () program
Yace interface 8-18
yylex program
contents 8-1
yymore () 8-10

yytext
external character
array 8-9

yywrap () 8-20

yywrap () routine 8-12
Library

conversion 1-2

maintenance 1-2

ordering relation 1=2

sort 1-2
linker

error messages 2-15
Lint

«h option 3-9

-a option 3-8

=b option 3-4

-c option 3=7
«ly directive 3-12
-n option 3-12
=-p option 3-12
=u option 3-3
=v option
turnon 3-11
unused variable report
suppression 3-3
-x option 3-2
ARGSUSED directive 3-11
ARGSUSED directive 3-12
argument number comments
turnoff 3-11
assignment of long to int
check 3-8
assignment operator
new form 3-10
old form, check 3-9
operand type
balancing 3-6
assignment, implied See
implied assignment
binary operator, type
check 3-6
break statement
unreachable See
unreachable break
statement
C language check 1-1
C program check 3-1
C syntax, old form,
check 3-9
cast See type cast
conditional operator,
operand type balancing 3-6

onstant in conditional
rontext 3-9
ronstruction check 3-1
ronstruction check 3-8
rontrol information
*low 3-11
legenerate unsigned
romparison 3-8
lescription 3-1
lirective
defined 3-11
embedding 3-11
:numeration, type
theck 3-6
rrror message, function
rame 3-5
»xxpression, order 3-10"
1xtern statement 3-2
:xternal declaration,
‘eport suppression 3-2
‘ile
library declaration file
identification 3-12
‘unction
error message 3-5
return value check 3-5
type check 3-6
unused See unused
function
.mplied assignment, type
heck 3-6
nitialization, old style
theeck 3-10"
.ibrary
compatibility check 3-
12
compatibility check
suppression 3-12

directive

acceptance 3-12

file processing 3-12
LINTLIBRARY directive 3-12

loop check 3-4
nonportable character
check 3-7
nonportable expression
evaluation order check
3-10"
NOSTRICT directive 3-11
NOTREACHED directive 3-11
operator
operand types
balancing 3-6
precedence 3-9
output turnoff 3-11
pointer
agreement 3-6
alignment check 3-10"
relational operator,
operand type balancing 3-6

scalar variable check 3-11

source file, library
compatibility check 3-12
statement, unlabeled
report 3-4
structure selection
operator, type check 3-6
syntax 3-1
type cast
check 3-7
comment printing
control 3-7

NIX Programmers Guide

type check
description 3-6
turnoff 3-11
anreachable break
statement, report
suppression 3-4
mnused argument
report suppression 3-3

inused function, check 3-2

syntax 4=l

Make

-d option 4-13
-n option 4-13
-t option 4-13
. suffix 4-9
.DEFAULT 4<5
of suffix 4-9
«IGNORE 45

.1 suffix 4-9

.0 suffix 4-9

« PRECIOUS 4<5

.r suffix 4-9

.S suffix 4-9

.SILENT 4-5

Yy suffix U4-9

.yr suffix 4-9

argument quoting U4-6

backslash (\)
description file
continuation 4-=2

basic tool 1-2

command argument
macro definition 46

mused variable, check 3=2

/ARARGS directive 3=12

rariable
external variable
initialization 3-4
inner/outer block
conflict 3-9
set/used
information 3-3
static variable
initialization 3-4
unused See unused

variable command string
ider See 1d " substitution U4-5
p command string
.int use See Lint hyphen (=) start U5
der command

form 41
location 4-1

" description print without
ros execution 4-13
reprocessing 1-2 dependency line
ntainer See Make substitution 4=5
‘e command dependency line
rguments 4-4 form U4-1

leseription 1-2

lescription file
comment convention 4-1

macro definition U-6
lescription filename
argument U-U
ollar sign ($)
macro invocation U4-6
qual sign (=)
macro definition 4-5
‘ile generation 4-5
‘ile update 4-1
‘ile
time, date printing U4-
13
updating 4-13
yphen (=)
command string
start 4-5
acro definition
analysis U-6
argument 4-4
description 4-5
.acro
definition 4-6
definition override 4-6

invocation 4-6
substitution 4-5
value assignment U-6
edium sized projects 4-1
etacharacter
xpansion 4-1
umber sign (#)
description file
comment 4-1
bject file
suffix U4-9

option argument

use U-4
parentheses (())

macro enclosure 4-6
program maintenance 4-1
semicolon (;)

command

introduction 4-1
source file

suffixes 4-9
source grammar

suffixes 4-9

suffixes
list 4-9
table 4-9

target file
pseudo-target files 4-5

update U4-13
target filename

argument 4-4
target name omission 4-3
touch option See -t

option
transformation rules
table 4-9

troubleshooting' 4-13
Notational conventions 1-5
Object files

creating 2-8
Pipe

SCCS use See SCCS
prof command 2-12
Program development 1-1
Program

maintainer See Make
ps command

C-shell use See C-shell

IX Programmers Guide

tation marks, single ('')
=shell use See C-shell
1ib

escription 1=2

command

CCS use See SCCS

S, source code

ontrol 1-3
S
M% keyword

g=file line
precedence 5-30
a option

login name addition
use 5-=23
d flag

flags deletion 5-16
d option

data specification
provision 5-20"
flag removal 5-16
e option

delta range

printing 5-21

file editing use 5-7
login name removal 5-24

f option
flag initialization,
modification 5-15
flag, value setting 5-
16
g option
output suppression 5-
30"
p-file regeneration 5-
26

<h option
file audit use 5-25
-1 flag
keyword message, error
treatment 5-15
-1 option
delta inclusion list
use 5-28
=k option
g-file regeneration 65-
26
-1 option
delta range
printing 5-21
l-file creation 5-29
-m option
effective when 5-18
file change
identification 5-30"
new file creation 5-27

-n option :
%M% keyword value use :
5-30"
g-file preservation 5-
12
pipeline use 5-30"
-p option

delta printing 5-30"
output effect 5-11

-r option
delta creation use 5-22

delta printing use 5-21
file retrieval 5-9

release number
specification 65-27

3 option
output suppression 5-28

. option

delta retrieval 5-11
file initialization 6-
19

file modification 5-19
: option

delta exclusion list
use 5-28

r option

comments prompt
response 5-=17

new file creation 65-27
. key

file audit use 5-26
‘#) string

file information,
search 5-31

Imin command

file administration 65-
25

file checking use 5-25
file creation 5-5

use authorization 65-6
Iministrator

description 5-4
‘gument

minus sign(-) wuse
types designated 5-4
*anch delta

retrieval 5=-10"

*anch number

description 65-2
ic command

commentary change 5-17

ceiling flag

protection 5-24
checksum

file corruption

determination 5<25
command

argument See argument

execution control 5-4

explanation 5-26
comments

change procedure 5-17

omission, effect 65-28
corrupted file

determination 5-25

processing

restrictions 5-25

restoration 5-26
d flag

default

specification 5-16
d-file

temporary g-file 5-4
data keyword

data specification

component 5-20"

replacement 5-20"
data specification

description 5=-20"
delta command

comments prompt 5-8

file change

procedure 5-8

g-file removal 5-12

p-file reading 5-7

p-file reading 5-8
delta table

delta removal,

1-13

ENIX Programmers Guide

effect 5-=31

description 5-17
delta

branch delta See branch

delta

defined 65-1

defined 65-2

exclusion 65<28

inclusion 5-28

interference 5-29

latest release

retrieval 5-11

level number See level

number

name See 1S1ID"

printing 5-21

printing 5-30"

range printing 5-21

release number See

release number

removal 5-31
descriptive text

initialization 5-19

modification 5-19

removal 5-19
diagnostic output

-p option effect 5-12
diagnostics

code as help

argument 5-12

form 65-12
directory use 5-1
jirectory

file argument

application 5-4

x-file location 65-3
arror message

code use 5-12

form 5-12
exclamation point (!)
MR deletion use 5-19
file argument
description 5<4
processing 5-4
file creation
comment line
generation 5-28
commentary 5<27
comments omission,
effect 5-28
level number 5-27
release number 5-27
file protection 5-23
file
administration 5-25
change identification
5=30"
change procedure 5-8
change, major 5-9
changes See delta

checking procedure 5-25

comparison 5=32
composition 5-16
composition 52
corrupted file See
corrupted file
creation 5-5

data keyword See data
keyword

descriptive text
description 5-17
descriptive text See
descriptive text
editing, -e option
use 5<7

irouping 5-1
.dentifying
information 5-=31
iink See link
nultiple concurrent
xdits 5-22

1ame arbitrary 5-12
1ame See link

rame, S use 5-5

par ameter
initialization,
nodification 5-19
printing 5=20"
protection methods 65-23

removal 5-5

retrieval See get

command

x=-file See x-file

ags

deletion 5-16

initialization 5-15

modification 5-15

setting, value

setting 5-16

use 65-16

oor flag

protection 5-24

file

creation 5-3

creation date, time

recordation 65-13

description 5-3

line identification
5_30“

line, %M% keyword value
5-30"

ownership 65-3
regeneration 5-26
removal, delta command
use 5-12

temporary See d-file

get command

-e option use 5-T
concurrent editing,
directory use 5-21
delta inclusion,
exclusion check 5-29
file retrieval 5-6
filename creation 5-6
g-file creation 5-3
message 5-6
release number
change 5-9

help command
argument 5-12
code use 65-12
use 5-26

i flag
file creation,
effect 5-14

ID keyword See keyword

identification string See
1SID"

j flag
multiple concurrent
edits specification 5-
22

keyword
data See data keyword

format 5-13
lack, error
treatment 5-15

NIX Programmers Guide

use 5-13
l-file
contents 5-3
creation 5-29
level number
delta component 5-2
new file 5-27
omission, file
retrieval, effect 5-9
link
number restriction 5-2

lock file See z-file
lock flag
R protection 5-24
minus sign (=)
option argument use 5-U4

minus sign(-)
argument use 65-4
mode
g-file 5-3
MR
commentary supply 5-17

deletion 5-18

new file creation 5-27
multiple users 5-4
option argument

description 5-U4

processing order 5-l
output

data specification See

data specification

suppression, =g option

5_3 0"
suppression, =s
option 5-28

16

write to standard
output 5-11
p=-file
contents 5-3
contents 5-7
creation 5-3
delta command
reading 5-8
naming 5-3
ownership 5-3
permissions 5-3
regeneration 5-26
update 5-3
updating 5-U
percentage sign (%)
keyword enclosure 5-13

piping 5-28
-n option use 5-30"
prs command
file printing 5-20"
purpose 5-1
q file
use 5=
R
delta removal check 5-
31
release number
-r option,
specification 5-27
change 5-2
change procedure 5-9
delta component 5-2
new file 5-27
release
protection 5-=24
rm command
file removal 5-5

s

ndel command

delta removal 5-31

:esdiff command

file comparison 5-32

2quence number

description 5-2

ab character

-n option, designation
5_30“

ser list

empty by default 5-23

login name addition 65-

23

login name removal 5-24

protection feature 5-23

ser name
list 5-23
flag

new file use 5-16

1at command

file information 5-31
ite permission

delta removal 5-31
-file

directory, location 5-3

naming procedure 5-3
permissions 5-3
temporary file copy 5-3

use 5-3

INIX command

use precaution 5-25
-file

lock file use 5-3

ownership 5-3
permissions 5-3

1SID" components
1SID" delta printing
use
SCs
output

piping 5-28
Semicolon (3)
C-shell use See C-shell
Software development
described 1-1
Source Code Control System:
See SCCS
Source files 1-1
strip
description 1-3
sum
description 1-3
Symbol
name list 1-3
removal 1-3
sync
description 1-=3
Tags file
creation 1-3
Text editor
creating programs 1-1
tsort
description 1-2

vi, the screen-oriented text

editor 1-1
XENIX file

identifying

information 5-=31
Yace

% token keyword

1-17

NIX Programmers Guide

union member name

association 9-30"
%left keyword 9-20"
%left keyword

union member name

association 9-30"
%left token

synonym 9-42
%¥nonassoc keyword 9-21

union member name

association 9-30"
%nonassoc token

synonyms 9-42
%prec keyword 9-21
%prec

synonym 9-42
%right keyword 9-21

union member name

association 9-30"
fright token

synonym 9-42
ftoken

synonym 9=42
Stype keyword 9-31
)

0 key"
=ly argument, library
access 9-25
-v option
y.output file 9-13
0 character
grammar rules,
avoidance 9=5
accept action See parser
iccept simulation 9-29
action
0, negative number 9=
29

conflict source 9-17
defined 9-7

error rules 9-23

form 9-42

global flag setting 9-

- 28

input style 9-26
invocation 9-1
location 9-8
nonterminating 9-8
parser See parser
return value 9-30"
statement 9-7
statement 9-8
value in enclosing
rules, access 9-29
ampersand (&)
bitwise AND
operator 931
desk calculator
operator 9-31
arithmetic expression
desk calculator 9-31
parsing 9-20"
precedence See
precedence
associativity
arithmetic expression
parsing 9-20"
grammar rule
association 9-22
recordation 9-22
token attachment 920"

asterisk (#)
desk calculator
operator 9-31

backslash (\)
escape character 9-5
percentage sign (%)
substitution 9-41
binary operator
precedence 9-21
blank character
restrictions 9-5
braces ({})
action 9-8
action statement
enclosure 9-7
action, dropping 9-42
header file enclosure
9_30"
colon (3)
identifier, effect 9-33

punctuation 9-5
comments
location 9-5
conflict
associativity See
associativity
disambiguating
rules 9-17
message 9-19
precedence See
precedence
reduce/reduce
conflict 9-17
reduce/reduce
conflict 9-22
resolution, not
counted 9-22
shift/reduce
conflict 9-17

shift/reduce
conflict 9-19
shift/reduce
conflict 9-22
source 9-17
declaration section
header file 9-30"
declaration
specification file
component 9-4
description 1-2
desk calculator
specifications 9-31
desk calculator
advanced features 9-35

error recovery 9-36

floating point

interval 9-35

scalar conversion 9-36
dflag 9-28)
disambiguating rule 9-17
disambiguating rules 9-17
dollar sign (%)

action significance 9-7

empty rule 9-27
enclosing rules,
access 9-29
endmarker
lookahead token 9-12
parser input end 9-6
representation 9-6
token number 9-10"
environment 9-25
error action See parser
error token
parser restart 9-23

1-19

grammers Guide

ing 9-23
sociating

cation 9-22

r restart 9-23
ation 9-29

ok statement 9-24
characters 9-5

1 interger

e 9-26

i1 flag See global

ig point intervals

ik calculator

flag

al analysis 9-28
rules 9-1

racter avoidance

iced features 9-35
uity 9-15
{ativity

:iation 9-22

le location 9-42

' rule 9-27
* token 9-23
it 9<5

. style 9-26

recursion 9-27
side

.ition 95
i 9<5
’rs 9-20"
:dence

tiation 9-22
e action 9-11

reduction 9-12
revwrite 9-17

right recursion 9-27
specification file
component 9-4

value 9-7

header file, union
declaration 9-30"
historical features 9-41

identifier

input syntax 9-33
if-else rule 9-18
if-then-else
construction 9-17
input error detection 9-3
input language 9-1
input

style 9-26

syntax 9-33
keyword 9-20"

keyword

reservation 9-29
union member name
association 9-30"
left association 9-16
left associative
reduce implication 9-22

left recursion 9-27
value type 9-31
lex
interface 8-2
lexical analyzer
construction 9-10"
lexical analyzer
context dependency 9-28

afined 9-1

:fined 9-9

idmarker return 9-6
loating point
»nstants 9-37
inction 9-=2

lobal flag
tamination 9-28
ientifier analysis

3x 9-10"
2turn value 9-30"
ope 9-8

decification file
»mponent 9-4
'rminal symbol See
:rminal symbol
»ken number
ireement 9-9
.cal tie-in 9-28
‘ary 9-25

‘ary 9-26

ral

fined 9-5
:limiting 9-41
mgth 9-41

tahead token 9-10"
:tahead token
.earing 9-24
‘ror rules 9-23
2)

| program

t1s -sign (=)

'sk calculator
rerator 9-31

'S
mposition 9=5
mgth 9-5

reference 9-4
token name See token
name
newline character
restrictions 9-5
nonassociating
error implication 9-22

nonterminal name
input style 9-26
representation 9-5
nonterminal symbol 9-2
empty string match 9-6
location 9-6
name See nonterminal
name
start symbol See start
symbol
nonterminal
union member name
association 9-31
octal interger
0 beginning 9-31
parser
accept action 9-12
accept simulation 9-29
actions 9-11
arithmetic expression
9_20"
conflict See conflict
creation 9-20"
defined 9-1
description 9-10"
error action 9-12
error handling See
error
goto action 9-12

121

{ENIX Programmers Guide

initial state 9-15

input end 9-6

lookahead token 9-11

movement 9-11

names, yy prefix 9-9

nonterminal symbol See

nonterminal

production flailure 9-3

reduce action 9-11

restart 9-23

shift action 9-11

start symbol

recognition 9-6

token number

agreement 9-9
percentage sign (%)

action 9-8

desk calculator mod

operator 9-31

header file enclosure

9_30"

precedence keyword 9-

20“

specification file

section separator 9-U4

substitution 9-41
plus sign (+)

desk calculator

operator 9-31
precedence

binary operator 9-21

change 9-21

grammar rule

association 9-22

keyword 9-20"

parsing function 9-20"

=22

recordation 9-22
token attachment 9-20"

unary operator 9-21
program

specification file

component 9-4
punctuation 9-5
quotation marks, double
(9-41
quotation marks, single

(')

literal enclosure 9=5
reduce action See parser
reduce command

number reference 9.20"

reduce/reduce conflict 9-
17
reduce/reduce conflict 9-
22
reduction conflict See
reduce/reduce conflict
reduction conflict See
shif't/reduce conflict
reserved words 9-28
right association 9-16
right associative

shift implication 9-22

right recursion 9-27
semicolon (3)
input style 9-26
punctuation 9-5
shift action See parser
shift command
number reference 9-20"

-

ft/reduce conflict 9-17
ft/reduce conflict 9-19
ft/reduce conflict 9-22

ple-if rule 9-18
sh (/)
esk calculator
perator 9-31
cification file
ontents 9-4
exical analyzer
nclusion 9-4
ections separator 9-4
cification files 9-2
rt symbol
escription 9-6
ocation 9-6
bol synonyms 9-41
character
estrictions 9-5
minal symbol 9-2
en name
eclaration 9-6
nput style 9-26
en names 9-10"
en number 9-9
greement 9-9
ssignment 9-10"
ndmarker 9-10"

en
ssociativity 9-20"
efined 9-1

rror token See error
oken
ames 9-4

organization 9-1
precedence 9-20"
unary operator
precedence 9-21
underscore sign ()
parser 9-14
union
copy 9-30"
declaration 9-30"
header file 9-30"
name association 9-30"

yace
unreachable statement 3-4
Yace
value stack 9-30"
value stack
declaration 9-30"
floating point scalars,
intergers 9-36
value
typing 9-30"
union See union
vertical bar (})
bitwise OR operator 9-
N
desk calculator
operator 9-31
grammar rule
repetition 9-5
input style 9-26
y.output file 9-13
parser checkup 9-22
y.tab.c file 9-25
y.tab.h file 9-30"
YYACCEPT 9-29
yychar 9-26

1-23

XENIX Programmers Guide

yyclearin statement 9-24
yydebug 9-26
yyerrok statement 9-24
yyerror 9-25
YYERROR 9-36
yylex 9-25
yyparse 9-25
YYACCEPT effect 9-29
YYSTYPE 9-30"
XENIX Timesharing
system 1-1

1=24

