MICRESSOFT

XENIX.
STANDARD
OBJECT FILE
FORMAT

January 1983

CONTENTS

1. INTRODUCTION....... AP S SRR PN YN 1
2. X.OUT ADVANTAGES..%ccccecaccccosssssccsssscsnnssacons 2
3. MAIN HEADER.....ccoveeenns R L ieer s ceEn e | D
4. EXTENDéD HEADER...eoceeceneenneancancscasoccnccncccns 6
5. _SYMBOL TABLE .« s ne v eneeenenenennns - i e s B g pmmeg W
6. LONG FORM RELOCATION...... e e e i sigedsawss B
7. SHORT FORM RELOCATION. .o eueeeeenanancacacocseanncnnnns 9
Appendix A: <a.out.h>...ccieiiecniecccenccanann cecsesseesshA=1
Appendix B: <sys/relsym.h> PR T L R T e PR B-1

Appendix C: MC68000 Header Example.........ccccececccccns Cc-1

MICRESSOFT

XERNBX.
STANDARD
OBJECT FILE

January 1983

CONTENTS

1. INTRODUCTION...¢.ceeeeesenn s e e e e men e a.ine e §a
2. X.O0OUT ADVANTAGES..%eecscceccceses wisie ® w o ceeie s e s & e e
3 MAIN HEADER s s us anmewasoes WeRE W W e cesesese e canann
4. EXTENDz::ID HEADER....ocvvetucennconnnnn
5. SYMBOL TABLE.«+nensnnnnn. ettt
6. LONG FORM RELOCATION. .t ceetetoomenaancacacoconanans v
7. SHORT FORM RELOCATION. . ¢ttt eeeeeeecnecoaoasonanonsse
Appendix Af fE.0UE.HPucsmsrsssnsvssosssssinsassanssaesanss
Appendix B: <Sys/relsym.h> o 5 & & SIS 5 ® 8 S GRS w e
Appendix C: MC68000 Header Example.........
= §

.1
.2
. 3
. 6
.7
. 8
.9
.A-1
.B-1
.c-1

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

L.

LIST OF FIGURES

a

Main header...cceeeeceesoscsccascocascssncsansos
'Object file layout...oeeeeeeeacoans A RE BB . .
Seek position MacCroS..........c.c.. e ey bl s
Extended header.....eeeeecececceosnsnsocanas .
X.out symbol structure.........ccceeeereccccce
Nlist symbol structure............ G s s .o
Xlist symbol structure......... ceevsesscsansaens
Long form relocation structure.............. e
Short form relocation structure...............

The XENIX X.out Standard Object File Format
Vic Heller

Microsoft Corporation
1. INTRODUCTION

In the course of developing and porting XENIX to a variety

of processors, several 1limitations were encountered with
respect to the object file formats in popular use. These
limitations were also evident in different hardware
configurations using the same processor.

One of the most basic problems is that structure
declarations are not necessarily binary compatible between
processors. Any structure that makes use of an integer
field cannot be relied upon to be readable on a processor
other than the one on which it was written. :

Different compiler implementations align structure elements
on different boundaries within the structure. In order to
be portable, a structure's layout should be designed with
knowledge of all the compilers likely to be encountered.

In the past, when a change was made in the configuration of
the text and data segments, a new magic number was us=2d.
Given the number of processors and the variety of
implementations currently available, a better scheme for
encoding the new information was needed. Overloading the
magic number was simply not a clean solution.

Microsoft sought to establish a common format that would be
suitable for wuse with all processors with which we are
currently working, as well as with those that we cannot as
yet anticipate. Since the need for consistency is great, we

were especially interested in allowing for future .

flexibility without causing further upheavals.

Our response was to design and implement the x.out object
file format. Through the use of a common header and magic
number, object files can be dealt with easily, even while
allowing for a number of different relocation and symbol
table formats. By attaching a short form of relocation
records to executable files, the configuration of the text
and data segments can be changed without recompiling . or
relinking. By adding an extended header whose size is
encoded in the main header, more information can be stored
as needed without impacting utilities that do not need the

new information.

The rest of this document discusses the advantages of the
x.out format, and explains the structures used in an x.out

Rl e e

object file. The 1include files may be found 1in the
appendices.

2. X.0UT ADVANTAGES.

The x.out object file format is capable of supporting the
following processors: Motorola MC68000, Intel 8086 and
iAPX286, Zilog 28000, National NS16032, Digital PDP - 11 and
vax - 11l. The header, extended header, symbol table and
relocation structures can be read and understood on any
processor, no matter which processor actually generated
them.

In order to maintain portability between processors that
order bytes and words differently, a field has been reserved
in the main header to indicate the target processor and the
current byte and word ordering of the header, extended
header, symbol table and relocation records. The position
of the field 1in the header is not affected by the current
byte and word ordering of the header; it is always readable.
Using this information and fixbin(l), a utility developed by
Microsoft for this purpose, the byte and word ordering of an
x.out object file can be adjusted on any known processor to
be readable by any known processor. This flexibility
greatly simplifies cross development. Of course, the
ordering of the text and data segments themselves is set by
the assembler and linker, and is not changed by fixbin.

To simplify the recognition of an x.out object file, a
single magic number is used. The main header has a field
that encodes much of the function of the old magic number,
as well as other information relating to the run-time
environment. The configuration of the text, data and stack
segments, the version of operating system for which the file
was compiled, and the type of text and data addressing used

are all kept in the header.

In order to distinguish between executable files set up for

different configurations, it is necessary to keep track of
the text and data base addresses. These addresses are kept

in the extended header.

To allow for several different formats, a field has been
added to encode the type of symbol table and relocation
records attached.

Currently, two different types of relocation records are
used: a long form for linkable object files, and a short

form for executable files. The short form saves space while
allowing an executable to be relocated to run on a different
configuration of the same processor, or to be converted to
or from pure text by running 1d over the file with the
appropriate flags.

The nlist symbol table structure is not at all portable; the
value field is declared as an integer. The length of a
symbol name is limited to eight characters. The addition of
an underscore to all C language symbol names reduces the

effective length to seven. In the x.out symbol table,
arbitrary length symbols are allowed, but some utilities
enforce a practical limit of fifty characters. Since no

fixed amount of space is reserved, shorter symbol names do,
not waste space.

In the future, an expanded symbol table may be added in
order to aid a symbolic debugger.

The conversion to x.out impacts the XENIX kernel and
nlist(3) as well as the following utilities: adb, as, file,
Id, make, mkfs, nroff and troff, prof, size, strip, and
ranlib. In addition, any other utility that deals with
object file formats must be modified if it needs to deal
with x.out.

3. MAIN HEADER

struct xexec |{ .

unsigned short x_magic;
unsigned short x_ext;

long Xx_text;
long _ x_data;
long x_bss;
long X_syms;
long x_reloc;
long : x_entry;
char X_cpu;
char X _relsym;

unsigned short x_renv;

[
e

Figure 1. Main header

All sizes used in the header and extended header are 1in

bytes. The text, data and bss sizes are expected to be
even.

The x _magic field is always set to X MAGIC, as defined in
the 1include file, <a.out.h>. X ext is set to the size of
the extended header, or zero if no extended header is
attached..

X text and x_data are the sizes of the text and data
segments in the object file. X bss 1is the size of
uninitialized data space required at the time of execution;
no space is used for this segment in the file.

X_syms is the size of the symbol table; x_reloc is the total
size of attached relocation records.

X entry is set to the entry point in the text segment; this
value 1is only valid for executable files and is usually set
to the base address of the text segment.

The x_cpu field encodes the target cpu as well as the
current byte and word ordering of the header, extended
header, symbol table and relocation records. The text and
data segments themselves are always ordered as required by
the target processor. The top bit 1is set if the byte
ordering differs from the PDPll; the second bit is set if
the word ordering differs. The 1low six bits encode the
target <cpu; the processor for which the file was assembled

or compiled.

The x relsym field contains the type of symbol table and
relocation records attached to the object file. The low
four bits encode the type of symbol table used, and is only
valid when x syms is non-zero. The high four bits encode
the type of relocation records used, and is only meaningful
when x_reloc is non-zero.

The x renv field encodes information needed at run-time.
The high two bits encode the version of XENIX kernel for
which the file was compiled. This enables a file compiled
for Bell version 7 to to be run in compatability mode under
those XENIX kernels that support it.

Bit six is set if the file was compiled for large model text
addressing; bit five if large model data. Large and small
model addressing is a concept that applies to processors
that can run in non-segmented and segmented modes. 1In non-
segmented mode (small model), addresses are smaller and
always refer to the current segment. In segmented mode
(large model), addresses must be expanded to include the

segment. Although wused on all processors, these two bits
are only useful on processors such as the Intel 8086, where
both large and small models of addressing have been
implemented.

Bit four is set if the file is a text overlay. Bit three is
set on those processors that require a fixed size stack
segment; if this bit is set, the xe_stksize field in the
extended header should be set to the size of the stack
needed when executing. This usually involves evaluating the
stack requirements of each executable file, and passing the
stack size to 1ld on the command line.

Bit two is set if the text segment is to be pure (write-
protected) and shared among all users executing the same
file. Bit one is set if the text and data segments use
separate address spaces. Bit zero is set if the file is
executable; object modules that have not yet been linked or
have not had all external references resolved will not have
this bit set.

—— — ——— —— — — - —— ———— ———— — T ———— - —— =

——— ——— ——— —— — —— —— - —— — - ——— — ———— — -

— —— ——— — — - ——— — ——— . ——— — ——— — ——— ", —————

Figure 2. Object file layout

An x.out object file has seven sections, the header,
extended header, text, data, symbol table, text relocation,
and data relocation (in that order). If the extended header
is not present, no distinction can be made between the text
and data relocation records. The symbol table and/or

relocation records need not be present.

Since the type of symbol table and relocation records can be
encoded 1in the header, the x.out format is capable of
dealing with the original Bell a.out symbol table and
relocation information. T

The following macros define the seek positions for the
various sections within an object file; they are defined in
the include file and depend on the above ordering. These
macros are not valid in x.out files that contain either: 1)
Bell's a.out relocation Information, or 2) the combined

symbol table and relocation records used 1in an 8086
relocatable object module (not executable).

$§define XEXTPOS (xp) ((long) sizeof(struct xexec))

$define XTEXTPOS (xp) (XEXTPOS (xp) + (long) (xp)->x_ext)
$define XDATAPOS (xp) (XTEXTPOS (xp) + (xp)->x_text)
$define XSYMPOS (xp) (XDATAPOS (xp) + (xp)->x_data)
$define XRELPOS (xp) (XSYMPOS (xp) + (xp)->x_syms)
#define XENDPOS (xp) (XRELPOS (xp) + (xp)->x_reloc)

$define XRTEXTPOS (xp, ep) (XRELPOS (xp))
#define XRDATAPOS (xp, ep) (XRELPOS(xp) + (ep)->xe_trsize)

Figure 3. Seek position macros

4. EXTENDED HEADER

struct xext |

long xe trsize;
long = xe_drsize;
long xe_ tbase;
long xe_dbase;
long xe_stksize;

Figure 4. Extended header

The extended header currently contains five fields.
Xe trsize and xe drsize contain the sizes of text and data
relocation records attached to the file. The xe tbase and
xe dbase fields <contain the base address of the text and
data segments as they will be located in memory.

The xe_stksize field contains the size of the stack segment

required for execution, if the appropriate bit is set in
x_renv in the main header. This field is used by those
processors that cannot expand the stack dynamically.

5. SYMBOL TABLE

i

struct sym { ' R
unsigned short s type; e S «
unsigned short s pad; e ‘
long s_value;

Figure 5. X.out symbol structure

The sym structure 1is the standard x.out symbol table
structure. It has been designed to be portable between
processors and to remove the limitations of the nlist
structure.

\ Each symbol in the symbol table consists of the above
structure, followed by a null terminated symbol name. sing
this method, 1long symbol names may be stored without

reserving unused space in the symbol table. No attempt is
made to align subsequent structures on even boundaries.

The s_type field encodes the symbol type: undefined,
absolute, text, data, etc. A separate bit is provided to
indicate that a symbol is external.

The s_pad field is padding to insure portability; it is not Ay//
oy

currently used. The s_value field contains the symbol's
value; it is declared as a long as an aid to portability.

struct nlist {

char n_name [8];
int n_type;
unsigned n_value;

Figure 6. Nlist symbol structure

The nlist structure is supported unchanged from its original
declaration. It is used by the library routine nlist(3),

which has been expanded to understand x.out files. Since

nlist(3) 1is used primarily on a native XENIX kernel to find
addresses in the kernel's memory space, and since an integer

field is usually large enough to store an address, the nlist
structure is barely adequate.

If the 1library routine were to be used for Cross
development, it would be hopelessly inadequate, as an

integer oh one processor is often too small to store an
address from another.

struct xlist {
unsigned short x1 type;
unsigned short x1 pad;
long xl value;
char *x1 name;

Figure 7. Xlist symbol structure

The solution to the limitations of nlist(3) 1is the xlist
structure and a new library routine, xlist(3). Xlist is
used in the same manner as nlist, but allows 1longer symbol
names and completely portable results.

The first three fields have exactly the same meaning as in
the sym structure, above. The xl1 name field is a pointer to
a null-terminated symbol name, which must be initialized by
the calling routine.

Since many non-standard XENIX utilities depend on nlist, the
expanded version will continue to be supported.

6. LONG FORM RELOCATION

o
struct reloc {

unsigned short r_desc;
unsigned short r_symbol;
long r_pos;

Figure 8. Long form relocation structure

The reloc structure 1is the standard type of relocation
record attached to linkable object modules.

The relocation records for the text and data segments must
be kept in separate sections of the object file because the
relocation of each segment is performed separately. &
addition, the relocation records are examined in sequence;
each relocation must take place at progressively greater
offsets in the current segment.

The r_pos field is the offset within the current segment at
which the relocation is to take place.

The r_desc field contains bits to indicate the segment
referenced, the number of bytes involved in the reference,
and whether the reference is relative.

The two high bits encode the segment referenced as one of
text, data, bss and external. The next two bits encode the
number of bytes that must be relocated; one, two or four
bytes are the allowed sizes. The fifth highest bit is set
if the reference is relative to the current location in the
text or data segment.

If the segment referenced 1is external, it relates to a
previously undefined symbol; the r_symbol field is then used
an an index into the symbol table in order to obtain the
value when it ©becomes defined. Zero is used to index the
first entry in the symbol table. When relocation is
performed, and an external reference relates to a newly
defined symbol, the value in the current segment is set to
the symbol's value and the segment referenced bits are set
to the segment to which the symbol belongs.

If the segment referenced is not external, the value in the

current segment is only updated by the amount necessary to
perform the relocation. p

7. SHORT FORM RELOCATION

struct xreloc {
} - long xr_cmd;
H

Figure 9. Short form relocation structure
The short form of relocation is used to save space in an

object file while allowing relocation. Since it is only
attached to executable files, all external references must

be resolved. It is also limited in that relocation can only

invlove two or four bytes. References to the bss segment
are recorded as references to the data segment.

The high bit is set if the reference is to the text segment;
otherwise it is assumed to be a reference to data. The
second bit is set if the relocation involves four bytes;
otherwise .it involves two bytes. The remaining thirty bits
encode the offset within the current segment at which
relocation is to be performed.

Appendix A: <a.out.h>

struct xexec { 5 /* x.out header */
unsigned short x magic; /* magic number
unsigned short X _ext; /* extended header size
long X text; /* size of text segment
long x_data; /* size of data segment
long X bss; /* size of bss required
long X _Syms; /* size of symbol table
long x _reloc; /* size of relocation
long X entry; /* entry point
char X_cpu; /* cpu, byte/word order
char X _relsym; /* reloc & symbol type
unsigned short x_renv; /* run-time environment

struct xext {

long
long
long
long
long

/*.x.out header extension */

Xe_trsize; /* text relocation size
xe_drsize; /* data relocation size
xe_tbase; /* text relocation base
xe dbase; /* data relocation base

xe_stksize; /* stack size, if XE_FS

/*

* Definitions for

*
#define
$define
J*
*
*
* b
* w
*

*/
J*

* Bytes or words are
* PDPll ordering.

*7
$define
#define

#define
#define
$define
$define
#define
$define
#define
$define
#define
#$define

ARCMAGIC
X_MAGIC

Definitions for

cccccece

XC_BSWAP
XC_WSWAP

XC_NONE
XC_PDP11
XC_ 23
XC_Z8K
XC_8086
XC_68K
XC_280
XC_VAX
XC 16032
XC_CPU

xexec.x magic, HEX (short).

Oxf£65
0x0206

/* 0177545, archive
/* x.out magic number-

xexec.X cpu, cpu type (char).

set if high byte first in short
set if low word first in long
cpu type .

"swapped", if not stored in

0x80 /* bytes swapped */
0x40 /* words swapped */
0x00 /* none */
0x01 /* pdpll *

0x02 /* 23fixed from PDPll */
0x03 /* 28000 */
0x04 /* 18086 */
0x05 /* M68000 */
0x06 /* 280 */
0x07 /* VAX 780/750 */
0x08 /* NS16032 */
0x3f /* cpu mask */

A-2

*/
*/

/*

*

*

Definitions for xexec.x relsym (char).

* rrrr relocation table format

* SSSS symbol table format

*/ .

/* relocation table format */

#define XR RXOUT 0x00 /* x.out long form, linkable */
#define XR RXEXEC 0x10 /* short form, executable *x/
#define XR _RBOUT 0x20 /* b.out format *x/
#define XR RAOUT 0x30 /* a.out format *x/
#define XR_R8B6REL 0x40 /* 8086 relocatable format */
#define XR_RB6ABS 0x50 /* 8086 absolute format *x/
#define XR_REL 0xf0 /* relocation format mask */f

/* symbol table format */

$define XR_SXOUT 0x00 " /* x.out, struct sym * /
#define XR SBOUT 0x01 /* b.out, struct bsym */
#define XR SAOUT 0x02 /* struct asym (nlist) */
#define XR_S86REL 0x03 /* 8086 relocatable format */
#define XR_S86ABS 0x04 /* 8086 absolute format */
$define XR_SUCBVAX 0x05 /* separate string table */
#define XR SYM Ox0f /* symbol format mask */
/*

* Definitions for xexec.x renv (short).

*

* yv version compiled for

* XXXXXX extra (zero)

*

* r reserved

* E set if large model text

* d set if large model data

& o set if text overlay

* f set if fixed stack

® P set if text pure

* s set if separate I & D

* e set if executable

LFy

§define XE V2 0x4000 /* up to and including 2.3 */
$define XE V3 0x8000 /* after version 2.3 */
$define XE_VERS 0xc000 /* version mask * /
$define XE RES 0x0080 /* reserved *x/
$define XE LTEXT 0x0040 /* large model text */
$define XE LDATA 0x0020 /* large model data */
$define XE OVER 0x0010 /* text overlay */

A-3

#define
$define
$define
#define

#define
$define
$define
$define
#define
#define

$define
#def;ne

XE_FS
XE_PURE
XE_SEP
XE_EXEC

XEXTPOS (xp)
XTEXTPOS (xp)
XDATAPOS (xp)
XSYMPOS (xp)
XRELPOS (xp)
XENDPOS (xp)

0x0008
0x0004
0x0002
0x0001

XRTEXTPOS (xp, ep)
XRDATAPOS (xp, ep)

/* fixed stack ' 4

/* pure text */
/* separate I & D *x/
/* executable */

((long) sizeof(struct xexec))
(XEXTPOS (xp) + (long) (xp)->x ext)
(XTEXTPOS (xp) + (xp)->x_text)
(XDATAPOS (xp) + (xp)->x_data)
(XSYMPOS (xp) + (Xp)->x_syms)
(XRELPOS (xp) + (xXp)->x_reloc)

(XRELPOS (xp))
(XRELPOS (xp) + (ep)->xe trsize)

struct aexec {

[S——
~-e

/*

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

short
short
shor
short
short
short
short
short

/* a.out header */
Xxa _magic; /* magic number */
xa_text; /* size of text segment */
xa_data; /* size of data segment */
xa_bss; /* size of bss segment */
xa_syms; /* size of symbol table */
xa_entry; /* entry point */
xa_unused;/* not used xJ
xa_flag; /* relocation stripped */

* pefinitions for aexec.xa magic, obsolete.

*/

#define
#define
#define
#define

#define
$define

$define
$define

$define
#define
$define
$define

tdefine

$¢define

FMAGIC
NMAGIC
IMAGIC
OMAGIC

A MAGICL
A MAGIC2

A_MAGIC3
A_MAGICA4

0407 /* normal ol 4
0410 /* pure, shared text */
0411 /* separate I & D */
0405 /* text overlays */
FMAGIC
NMAGIC
IMAGIC
OMAGIC

ATEXTPOS (ap)
ADATAPOS (ap)
ARTEXTPOS (ap)
ARDATAPOS (ap)

ASYMPOS (ap)

AENDPOS (ap)

((long) sizeof(struct aexec))
(ATEXTPOS (ap) + (long) (ap)->xa_text)
(ADATAPOS (ap) + (long) (ap)->xa_data)
(ARTEXTPOS (ap) + ((long)
((ap)->xa_flag? \
0 : (ap)->xa_text)))
(ATEXTPOS (ap) + \

(((ap)->xa_flag? 1L : 2L) * \
((long) (ap)->xa_text + \
(long) (ap)->xa_data)))
(ASYMPOS (ap) + (long) (ap)—>xa_syms)

struct bexec {

/* b.out header */
magic number

long xb _magic; Ve
long xb_text; /*
long xb data; /*
long xb_bss; rE
long xb_syms; /%
long - xb trsize; /*
long xb_drsize; /*
long xb_entry; /%

#define BTEXTPOS (bp)
#define BDATAPOS (bp)
#define BSYMPOS (bp)
#define BRTEXTPOS (bp)
$define BRDATAPOS (bp)
$define BENDPOS (bp)

/*

size
size
size
size
size
size

of
of
of
of
of
of

text segment
data segment
bss segment
symbol table
text relocation
data relocation

entry point

((long) sizeof(struct bexec))
(BTEXTPOS (bp) + (bp)—>xb_text)
(BDATAPOS (bp) + (bp)->xb data)
(BSYMPOS (bp) +
(BRTEXTPOS (bp) + (bp)->xb_trsize)
(BRDATAPOS (bp) + (bp)->xb_drsize)

“* nlist symbol table structure.

*

(bp) ->xb_syms)

* Used to provide compatibility with nlist(3).

*/

struct nlist {

char n_name [8];
int n_type;
unsigned n_value;

/*

* xlist symbol table structure,

*/

struct xlist {

: unsigned short
unsigned short
long
char

x1l _type;
xl_pad;

x1l value;
*x1 name;

/* symbol name */
/* type flag */
/* value */

used by xlist(3).

symbol type

for transient use
symbol value
pointer to name

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/

Appendix B: <sys/relsym.h>

/* .
* Symbol table for x.out.
* The "sym" structure replaces the old "asym" (nlist)
* structure used by a.out. Each symbol in the table has
* the below structure, followed immediately by its name
* in the form of a null terminated string.
* Note that no effort is made to word align subsequent
* "gym" structures in -the symbol table.
*/ 4

struct sym {

unsigned short s type; /* symbol type */

unsigned short s _pad; /* portability padding */
} long Ss_value; /* symbol value %/
$define SYMLENGTH 50 /* Maximum symbol name length */
/* Definitions for sym.s_type: */
$define S_UNDEF 0x0000 /* undefined ay
$define S _ABS 0x0001 /* absolute */
4$define S_TEXT 0x0002 /* text */
§define S_DATA 0x0003 /* data <
$define S BSS 0x0004 /* bss *f
$define S_COMM 0x0005 /* for internal use only */
#¢define S REG 0x0006 /* undefined ® /=
$define S COMB 0x0007 /* for internal use only */
#define S TYPE 0x001f /* type mask *x/
$define S FN 0x001f /* file name symbol L
#define S EXTERN 0x0020 /* external bit */
$define FORMAT "$081x" /* symbol value format */
#define FWIDTH 8 /* symbol format width */

/* symbol management */

/*
* Symbol table for a.out.

*

»*

Modified from nlist for portability.

*/ .
struct asym {
char sa_name[8]; /* symbol name */
unsigned short sa_type; /* symbol type */
}» unsigned short sa value; /* symbol value */
/*
* Definitions for asym.sa type and nlist.n_type.
* / - N
#define N_UNDF 0 /* undefined */
#define N_ABS 0l /* absolute *x/
$define N_TEXT 02 /* text symbol */
§define N_DATA 03 /* data symbol */
#define N_BSS 04 /* bss symbol =/
$define N_TYPE 037 /* type mask */
#define N_REG 024 /* register name *x/
#define N_FN 037 /* file name symbol */
#define N_EXT 040 /* external bit */
/*

* Symbol table for b.out.

*

»*

The same as x.out, except that it uses 6 bytes
* on most machines.

*/

struct bsym {
char sb_type; /* symbol type */
long sb_value; /* symbol value */

/*

* Relocation table entry for x.out, long form.

* This form is normally attached to ".o" files.
* Bit-wise compatible with the b.out format on

* machines that allocate bitfields from the high
* end of a word. (68k)

*f

struct reloc {

unsigned short r_desc; /* descriptor */
unsigned short r _symbol; /* external symbol id */
long I_pos; /* position in segment */

/*
* pefinitions for reloc.r_desc (short).
*
* ss - segment
* ss size
* a displacement
* XXX extra
* XXXXXXXX extra
*/
$define RD_TEXT 0x0000
#define RD_DATA 0x4000
#define RD_BSS 0x8000
#define RD_EXT 0xc000
$define RD_SEG 0xc000
#define RD_BYTE 0x0000
#define RD_WORD 0x1000
$define RD_LONG 0x2000
$define RD_SIZE 0x3000
$define RD_DISP 0x0800
7* ‘
* Dpefinitions for reloc.r_desc, compatible with bitfield
* allocation from the low end of a word (pdpll).
%7
$define RD_BTEXT 0x0000
$define RD_BDATA 0x0001
#define RD_BBSS 0x0002
#define RD BEXT 0x0003
#define RD_BSEG 0x0003

#define RD_BBYTE 0x0000
#define RD_BWORD 0x0004
#define RD_BLONG 0x0008
#define RD_BSIZE 0x000c

$define RD_BDISP 0x0010

/*)
* Relocation table entry for x.out, short form.

This form is normally attached to executable files.
* Currently used on the 68k.

*

'
struct xreloc {
long xr_cmd; /* reloc command */

}a
/*

* Dpefinitions for xreloc.xr_cmd (long).

*

* set if code segment
& 1 set if long operand
* 000000000000000000000000000000 offset

*/
#define XR_CODE 0x80000000 /* code/data segment */
#define XR_LONG 0x40000000 /* long/short operand */
#define XR_OFFS Ox3fffffff /* 30 bit offset mask */

B~4

Appendix C: MC68000 Header Example

The following C code illustrates how the header and extended
header fields would be set up for an object file that is
executable, is byte and word ordered for the MC68000, has
the MC68000 as its target processor, has a fixed stack, and
does not have pure text, separate I & D or text overlays.

Tsize, dsize, bsize, and stksize are the sizes of the text,

data, bss and stack segments, Ssize is the size of the
symbol table. Tbase is the base address of the text
segment. Ntrel and ndrel are the number of relocations to

be performed in the text and data segments.

xexec.x _magic = X MAGIC;

xexec.Xx ext = sizeof(struct xext);
xexec.X_text = tsize;

xexec.X data = dsize;

xexec.x_bss = bsize;

Xxexec.x syms = ssize; ,
xexec.Xx_reloc (ntrel + ndrel) * sizeof(struct xreloc);
xexec.x entry tbase;

xexec.x_cpu = XC_BSWAP | XC 68K;

xexec.x_relsym = XR_SXOUT | XR_RXEXEC;

xexec.x_renv = XE_LTEXT | XE _LDATA | XE_FS | XE EXEC;

n

xext.xe_trsize = ntrel * sizeof(struct xreloc);
xext.xe drsize = ndrel * sizeof(struct xreloc);
xext.xe_tbase = tbase;

xext.xe dbase = tbase + tsize;

xext.xe stksize = stksize;

