The XENIX®

Text Processing System

Text Processing Guide

Information in this document is subject to change without notice and does not represent a com-
mitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation. The software
described in this document is furnished under a license agreement or nondisclosure agreement.
The software may be used or copied only in accordance with the terms of the agreement. It is
against the law to copy this software on magnetic tape, disk, or any other medium for any purpose
other than the purchaser’s personal use.

© 1983, 1984 Microsoft Corporation
© 1984, 1985 The Santa Cruz Operation, Inc.
Licensed to Tandy Corporation

XENIX is a trademark of Microsoft Corporation.

Document Number: G-2-14-85-1.3/1.0

Contents

1 Text Processing Overview

1.1 Introduction -1

1.2 Basic Concepts 1-3

1.3 Formatting Documents 1-5

1.4 A Sample Project 1-7

1.5 Managing Writing Projects 1.9

1.6 Summary 1-12

2 Tools For Writing and Editing

2.1 Introduction 2-1

2.2 XENIX Commands lor Text Processing 2-1
2.3 Writing Tools 2-6

2.4 Using Spell 2-7

2.5 Using Stylc and Diction 2-7

3 Using the MM Macros

3.1 Getting Started with MM 3-1]

3.2 Basic Formatting Macros 3-2

33 Using Nroff /Troff Commands 3-6

34 Checking MM Input with mmcheck 3-6
4 MM Reference

4.1 Introduction 4-1

4.2 Invoking thc Macros 4-2

4.3 Formatting Concepts 4-5

44 Paragraphs and Headings 4-8

4.5 Lists 4-13

4.6 Displays 4-19

4.7 Footnotes 4-24

4.8 Page Headcers and Footers 4-26

49 Tableof Contents 4-29

4.10 References 4-30

4.11 Miscellancous Features 4-31

4.12 Memorandum and Released Paper Styles 4-35
4.13 Reserved Names 4-41

4.14 Errors 4-42

4.15 Summary of Macros, Strings, and Number Registers

4-47

5 Using Nroff / Troff

5.1 Introduction 5-1

5.2 Inserting Commands 5-1

5.3 Point Sizes and Line Spacing 5-2
5.4 Fonts and Special Characters 5-3
5.5 Indentsand Line Lengths 5-4

5.6 Tabs 5-6

57 Drawing Linesand Characters 5-6
5.8 Strings 5-8

5.9 Macros 5-9

5.10 Titles, Pagesand Numbering 5-10
5.11 Number Registers and Arithmetic 5-11
5.12 Macros with Arguments 5-13

5.13 Conditionals 5-14

5.14 Environments 5-15

5.15 Diversions 5-16

6 Nroff /Troff Reference

6.1 Introduction 6-1

6.2 Basic Formatting Requests 6-4

6.3 Character Translations, Overstrike, and Local Motions 6-10
6.4 Processing Control Facilities 6-13

6.5 Output and Error Messages 6-19

6.6 Summary of Escape Sequences and Number Registers 6-20

7 Formatting Tables

7.1 Introduction 7-1

7.2 Input Format 7-1

7.3 Invoking Tbl 7-7

7.4 Examples 7-8

7.5 Summary of tbl Commands 7-16

8 Formatting Mathematics

8.1 Introduction 8-1

8.2 Displayed Equations 8-2

8.3 Basic Mathematical Constructions 8-2

8.4 Complex Mathematical Constructions 8-5
8.5 Layout and Design of Mathematical Text 8-8
8.6 In-line Equations 8-11

8.7 Definitions 8-12

8.8 Invokingeqn 8-13

8.9 Sample Equation 8-13

8.10 Error Mcssages 8-14

8.11 Summaryof Keywordsand Precedences 8-14

Appendix A Editing With Sed and Awk

A.l Introduction A-1
A2 Editing Withsed A-2
Al Pattern Matching Withawk A-10

Chapter 1
Text Processing Overview

1.1 Introduction 1
1.1.1 Before You Begin 1
1.1.2 Reading This Manual 2

1.2 Basic Concepts 3
1.2.1 Writing Tasks 3
1.2.2 Anatomyofa Document 3
1.2.3 Formatting Characteristics 4
1.2.4 Anlnventoryof Tools 5

1.3 Formatting Documents §
1.3.1 Themm Macros 5
1.3.2 Supporting Tools 6
1.3.3 Order of Invoking Programs 6

1.4 A Sample Project 7
1.4.1 Entering Text and Formatting Commands 7
1.4.2 Formatting Text 8
1.4.3 Printing the Document 8

_ 1.5 Managing Writing Projects 9
Q’/ 1.5.1 The Life Cycleof a Document 9
1.5.2 Organizing Your Project 10
1.5.3 Shortcuts: Boilerplates and Cut and Paste 11

1.6 Summary 12

1.1 Introduction

The XENIX Text Processing System is a collection of powerful tools for enhancing writing
productivity and making the process of document preparation more efficient. To create
documents with the XENIX system, you will be using special XENIX text processing programs,
including text editors and text formatters. You will also be relying on XENIX system features and
utilities with which you may already be familiar. Whether you have used other text processing
programs or not, this manual provides you with a practical orientation toward text processing and
describes the XENIX 100ls in detail, along with examples that illustrate their applications to your
writing tasks. Where possible, strategics are offered for using the XENIX system to best
advantage in your own cnvironment.

This manual emphasizes the interrelationship of tools and techniques into a *“text processing
system”. Understanding the relationship between these programs discussed here is as important
as learning to use cach individual program. Think of the XENIX system as a “writing
environment”. How you organize this environment is up to you. Once you learn to use your
XENIX tools selectively, and make the right decisions in planning your writing projects before
you begin them, the XENIX system is ultimately more powerful and flexible than any of the
“word processing packages’ with which you may be familiar.

This introduction provides you with an overview ol text processing with the XENIX System,
including;

+ Thetext processing concepts and terms you will need to understand
« Theediting and formatting tools you will be using
« Thestepsin the process of ereating a finished document

» Thestralegics for managing writing projects

As you read the XENIX Text Processing Guide remember that the XENIX system has been
cvolving over a number of years and that it offers an cnormous range of programs and utilities.
Many of the tools introduced here were not originally designed for text processing—they are
general-purpose utilities upon which all XENIX users depend heavily. Programmers, for
example, use the same text editors and file comparison utilities discussed here to write and revise
programs. Those programs intended solely for text processing applications, including the
formatters and style analysis programs, have developed independently of cach other. You will
often find that their capabilities overlap. A large part of learning to use your XENIX system
successfully is deciding how to make the various programs and utilities work together.

Do not cxpect to sit down and learn the XENIX Text Processing System in a single alternoon.
This manual is designed to help you approach a wide range of editing and formatting tools
gradually. There are many programs described here for which you may not have an immediate
application, and some you may never need at all. You need not learn all the material introduced
here to produce professional-quality manuscripts. Choose the tools that will work best for your
projects.

1.1.1 Before You Begin

Before you can begin to use your XENIX system effectively as a text processing environment, you
should already be familiar with the material covercd in the XENIX User’s Guide, particularly:

« The most common XENIX commands

» The XENIX hierarchical file structure

1-1

XENIX Text Processing

» The XENIX shell programming language

« Atleastoncof the XENIX text editors

Equally important, however, is making use of the power of XENIX as an operating system by
using its features to your advantage. In particular, as you begin working with XENIX Text
Processing, consider how your work can be made easier by utilizing the XENIX hierarchical file
structure to organize files efficiently. Make use of the XENIX shell to “pipe” one process to
another and run several processes concurrently. Use the XENIX shell programming language to
create “scripts” for automating your text processing work. Develop strategics for managing your
writing projects beyond merely learning a collection of commands.

Most importantly, before you begin working with the XENIX Text Processing System, learn one
of the XENIX text editors well enough to fecl comfortable entering and revising document text.

Because there is so much to learn about text processing with the XENIX system, the best
approach is to read through this volume first and decide which editors, utilities, and formatters
best suit your needs. Then learn sclectively, but thoroughly, those tools which are most
appropriate. As you become more experienced, you will develop a feel for which functions work
best in which situations, and you will find new ways to make the writing process more efficient.
You will be continually amazed at how powerful the editors and related tools can be.

1.1.2 Reading This Manual

This manual contains the following chapters:

1. Text Processing Overview
The chapter you are now reading provides you with a general overview of XENIX text
processing: how it works and what kinds of tasks it can do. The XENI1X tools and how
they fit into each phase of document production are described.

2. Writing and Editing Tools
This chapter introduces several XENIX programs which can help you search for
recurring patterns, compare files, and make global revisions to large files and groups
of files. It also introduces three special writing tools for locating spelling errors and
awkward diction, as well as assessing the readability of a document.

3. Using mm
This chapter introduces mm, a package of document formatting requests which
simplifics the task of formatting documents.

4. Mm Reference
This chapter is a comprehensive guide to mm.

5. Nroff/Troff Tutorial
This chapter introduces the two XENIX text formatters, nroff and troff.

6. Nroff / Troff Reference
This chapter is a comprehensive guide to the aroff and troff formatting programs.

7. Formatting Tables
This chapter describes the specialized formatter, tbl, which produces effective tables
in documents.

8. Formatting Mathematical Equations
This chapter describes the eqn program which formats mathematical symbols and
equations.

1-2

Text Processing Overview

Appendix A: Editing With sed and awk
This appendix describes how to use the two baich editing programs sed and awk.

1.2 Basic Concepts

This section reviews some general text processing terms and concepts, including the:
— Typesof writing tasks which can be done with XENIX text processing
— Partsof adocument
— Design characteristics of a formatted document

— Typesof XENIX tools which you will be using
1.2.1 Writing Tasks

You can write, edit, and typeset any manuscript on the XENIX system—whether a memo,
business letter, novel, academic dissertation, feature article or manual. In some respects this
manual relies more heavily on examples relevant to technical documentation, because these
projects require the application of the greatest number of XENIX tools, and demand the most
careful planning and strategy in their construction.

1.2.2 Anatomy of a Document

To fully determine the scope of your formatting needs, let’s look at the parts of a typical
document. Unless you are using your XENIX text processing system to write memos and letters,
you may have some or all of the following in your documents:
Front Matter

— Title page

— Copyright notice or document number

— Tablcof contents

— Listoftablesor illustrations

— Foreword

— Preface

— Acknowledgements
Body of Text

— Chaptersor sections

— Figuresand display

— Tables and equations

1-3

XENIX Text Processing

— Footnotes

— Running headers and footers
Back Matter

— Appendices

— Notes

— Glossary

— Bibliography

— Index

Your XENIX tools will help you automatically generate many parts of your document. For
example, you will be able to create lists of figures and tables, and a table of contents as part of the
formatting process. You can create and store in advance a standard copyright notice page (often
called a ““boilerplate™) and change only that information specific to the document.

Even in those sections of your document that must be written from scratch you can do much to
standardize the “look™ of a preface page, the pagination of an appendix, or the section numbering
and format of a chapter. Once you have developed specifications, you can achieve consistency in
the production of a long and complex document, and even produce many documents with the
same specifications, without going through the definition process again. A further advantage is
that you can change your specifications at any time, often without re-editing the text and
formatting commands themselves. Then, you need only reformat your document and print it.

1.2.3 Formatting Characteristics

There arec many characteristics of your finished text that can be controlled with XENIX
formatting tools. Keepin mind, however, that the appearance of your finished document depends
largely on the capabilities of your output device. To determine the format of your text you will
insert commands in your text file as you write and edit. These commands will be identical,
whether you are planning to produce your document on a lineprinter using the XENIX formatter
nroff, or whether you are sending your document directly to a phototypesctter using troff.
Because a lineprinter cannot do variable spacing, or change the point size or font of your text,
nroff will ignore commands to change point size, round the parameters of spacing commands to
the nearest linc unit, and replace italics with underlining.

You will also notice qualitative differences in the output. For example, the justification of text—
the spacing of text across the line to preserve a margin—is considerably less subtle in lineprinter
output. Some of the characteristics you can control with the nroff / troff programs are:

— Textfilling, centering, and justification

— Multicolumn output, margin, and gutter width

— Vertical spacing, line length, page length, and indentation

— Fonttypeand point size

— Styleof page headers and footers

— Pageand section numbering

Text Processing Overview

— Layout of mathematical equations and tables

1.2.4 An Inventory of Tools

When you approach any writing project, you should examine the whole range of XENIX tools to
find those that will work best, just as you might look inside a toolbox. Although you canoftendoa
job in several ways, there is frequently a tool, or a combination of tools, designed especially for
that job.

Feel free to experiment in using the various editors, utilitics, and formatters. If you are cautious
about making copies of your files and backing up your XENIX system regularly, you can do little
irreversible damage. As you work, you will gain more confidence and find new solutions.

While it is a good idea to learn to use a few of the XENIX tools skillfully, you should also work
consciously to learn new tools and methods, rather than depending on a few procedures which you
feel you know well. Some XENIX tools, like the screen editor vi, offer many more commands and
functions than you can comfortably learn at one sitting. You may find yourself relying on a
limited number of commands quite heavily. To prevent this, periodically review the
documentation and force yourself to try new commands.

In this manual we will be looking at XENIX “tools™ which fall into a few basic categories:
System fealures

Aspects of the XENIX operating system that can be used to enhance the text
processing environment, such as multitasking and the hicrarchical file structure.

Utilities

These include the XENIX text editors (such as vi) and other utilities that are used for
both software development and text processing (such as sort, diff, grep, or awk).

Text Processing Tools

These include specialized programs designed solely for text formatting tasks,
including mm, eqn, and tbl and the formatters nroff and troff. Also included are the
special writing tools, spell, style, and diction, which help you edit what you write.

1.3 Formatting Documents

In this section you will be introduced to nroff and troff, the two XENIX formatting programs. By
inserting a series of commands in your text files you will be able to produce text with justified
right margins, automatic page numbering and titling, automatic hyphenation, and many other
special features. Nroff (pronounced “en-rofl™) is designed to produce output on terminals and
lineprinters. Troff (pronounced “tec-roff™) uses identical commands to drive a phototypesetter.
The two programs are completely compatible, but because of the limitations of ordinary
lincprinters, troff output can be made considerably more sophisticated. With troff, for example,
you can specify italic font, variable spacing, and point size. 1f you format the text using the same
macros with nroff, italicized text will be underlined, the spacing will be approximated, and the
text will be printed in whatever size type the lineprinter offers.

1.3.1 The mm Macros

To use nroff and troff, you must inscrt a fairly complicated series of commands directly into your
text. These “formatting commands” specify in detail how the final output will look. Because

1-5

XENIX Text Processing

nroff and troff are relatively hard to learn to use effectively, XENIX also offers a package of
canned formatting requests called the mm macros. With mm you can specify the style of
paragraphs, titles, footnotes, multicolumn output, lists and so on, with less effort and without
learning nroff and troff themselves. The mm program reads the commands from the text, and
translates them into nroff/troff specifications. Mm is described in detail in the next two chapters.
It is recommended that you learn mm first, and use it for most of your formatting needs. If you
need to fine-tune your output, you can add nroff/ troff requests to the text as nccessary.

To produce a document with mm, use the command
nroff —mm filename

to view the output on your terminal screen. To store the output of nroffin a file, use the command
line:

nrofl -mm filename > outfile

where outfile is the name of the filc you wish to designate for the stored output. It is suggested
that you give consistent extensions to your input and output filenames. You might use *“.s” for
“source” as the extension for all input filenames, and “.mm" as the extension for the names of
files which are the output of mm. For cxample,

nroflf -mm l.intro.s>intromm&

Note that the ampersand is used to process the file in the background.

1.3.2 Supporting Tools

In addition to the nroff and troff formatting programs, and the mm formatting package, there are
also formatting programs to mect some specialized needs. The egn program, for example,
formats complicated mathematical symbols and equations. A version of eqn called neqn outputs
the same mathematical text for the more limited capabilities of lineprinter. Eqnis a preprocessor.
That is, you run eqn first, before nroff/troff, to translate the commands of the eqn *‘language” into
ordinary nroff/troff rcquests. The eqn commands resemble English words (e.g., over, lineup,
bold, union), and the format is specified much as you might try to describe an equation in
conversation. It is recommended that you delay learning about eqn in detail until you actually
need to use it.

The thl program is also a preprocessor: tbl commands arc translated into nroff /troff commands to
prepare complex tables. Tbl gives a you a high degree of control over material which must appear
in tabular form, by doing all the computations necessary to align complicated columns with
clements of varying widths. Like eqn, it requires that you learn another group of commands, and
process your files through another program before using nroff/ troff.

1.3.3 Order of Invoking Programs

After you have inserted all your formatting commands into the text, you are ready to process your
files, using the XENIX formatting programs. Please note that itis extremely important to use the
various macro packages and formatters in the correct order. However, you may invoke all these
programs with a single command line, using the XENIX pipe facility. As noted above, you can
invoke the mm macro package along with nroff/troff using a command such as:

nroff —mm intro.s> intro.mm

However, if you are using several specialized formatters along with nroff /troff, the command
becomes more complex. You must invoke eqn before nroff/ troff and mm, in order to translate the
eqn commands into nroff/ troff specifications before the files arc formatted, as in the following:

neqn intro.s | nrofl -mm> intro.mm

If you are using both eqn and tbl, the tbl program should be called first:
1-6

Text Processing Overview

tbl intro.s | negnproffl —=mm> intro.mm

If you arc formatting multicolumn material or tables with nrofl you must use the col (for
“column™) program. Col processes your text into the necessary columns, after formatting, as in:

nroff —mm intro.s | col>intro.mm
1.4 A Sample Project

The preparation of every document has several phases: entering and editing text, checking your
draft for spelling errors and style quality, formatting the finished version, and printing it on a
printer or typesetter. Toillustrate the process of producing a finished document with the XENIX
Text Processing System, let’s look at the sieps for creating a simple document one by one.

1.4.1 Entering Text and Formatting Commands

First you must writc the text of the document. To do this, you will invoke onc of the XENIX text
editors and type the text on the screen. For example, to produce a memo informing the members
of your department that you will be holding a seminar on the XENIX Text Processing System,
you might begin by typing the following command line:

vi memo.s

You will probably use your editor’s special functions to correct errors and make revisions as you
write, such as delcting words or lines, globally substituting one word for another, or moving whole
paragraphs and scctions around in the document.

If you have used a dedicated word processing system or a microcomputer word processing
program before, note that the XENIX Text Processing System works somewhat differently.
Formatting of text takes placein a “batch™ rather than an “interactive” mode. That is, instead of
using special function keys to format your text on the screen as you work, you will be
interspersing commands with ordinary text in your file. Most of these are two-letter commands
preceded by a dot (.), that appear at the beginning of text lines. These will be lowercase letters, if
you are using either of the XENIX text formatters, nroff, or troff.

In addition to these two programs, there is another program called mm which we recommend you
use, especially if you are new to text processing. Mm commands are called “macros”. These
macros, which are gencrally two upper or lowercase letters preceded by a dot (.), replace whole
sequences of nroff and troff commands, and allow you to reduce the number and complexity of the
commands necessary to format a document. You can use the mm macros wherever possible and
add extra nroff or trofl commands, as necessary, for finc-tuning the format of your doscument.

Let’s look at the beginning of a file called memo.s:

XENIX Text Processing

.ce

.B MEMO

sp 2

P

A seminar has been scheduled for Thursday, September 15,
to introduce users to the XENIX Text Processing System.
It is is intended for all department members

planning to use XENIX for writing or preparing documentation.
P

The seminar will include the following topics:

AL

.L1

Reviewing the XENIX file structure and basic commands.
.LI

Using the vi text editor.

LI

Formatting documents with mm.

.LE

P

The seminar will begin at 9 A.M. and will last approximately
two hours...

In the input file above, each paragraph of text begins with the mm paragraph macro, .P. In the
final document, the word “MEMO” will appear centcred on the page and in boldface. The
aroff /troff command .ce means ‘“‘center” and the mm macro .B means “boldface”™. The
nroff/troff command .sp 2 below MEMO mcans *“2"spaces

Note the three mm macros .AL, .LI, and .LE. These will turn the text following the words
“following topics™ into an automatically numbered list.

1.4.2 Formatting Text

Now, let's format the finished memo into the file called memo.mm using the following command
line:
nroff —mm memo.s>memo.mm&

This command invokes the nroff formatter using the mm macro package to format the file
memo.s. When formatted, the memo will be stored in an output file called memo.mm. If you do
not specify an output file, the formatted text will simply roll across your screen and be lost. Note
that the command line ends with an ampersand (&), an instruction to put the formatting of this
filc “in the background”. It is generally a good idea to put formatting jobs in the background
because they will often take scveral minutes, especially if the file is long and the formatting

relatively complex. If you put the formatting job in the background, your terminal will remain
free for you todo other work on the system.

1.4.3 Printing the Document

When you are ready to print the memo, use the command
Ipr text.memo.mm

The finished memo looks like this:

Text Processing Overview

MEMO

A seminar has been scheduled for Thursday, September 15,
to introduce users to the XENIX Text Processing System.
It is intended for all department members planning

to use XENIX for writing or preparing documentation.

The seminar will include the following topics:

1. Reviewing the XENIX file structure and
basic commands.

2. Using the vi text editor.

3. Formatting documents with mm.

The seminar will begin at 9 A.M and will last
approximately two hours...

1.5 Managing Writing Projects

Once you have mastered one or more of your text editors, and are ready to do extensive writing,
revision, and text processing with the XENIX system, it is time to consider the overall
organization of your writing projects. This section offers some common-sense suggestions for
managing and standardizing your text files to make processing more efficient. Not all of the
suggestions and writing aids discussed here will be equally appropriate in all situations. The
larger and more complex the writing project, however, the more time and confusion can be saved
by their implementation.

1.5.1 The Life Cycle of a Document

Before you can begin to work successfully with XENIX text processing tools, you need to
determine which tools are appropriate for cach phase of a project. This section discusscs the
application of XENIX tools to cach step in the life cycle of a document from the first notes you
take and outlines you develop, to the archiving and management of multiple versions and
updates.

Every document gocs through several phases before it is complete. First, you must enter the body
of the text, using one of the XENIX text cditors. As you write, you will insert formatting
commands, or “macros,” which specify in detail to the formatting programs how the final output
should look. In addition to checking your work for mistakes and spelling errors, you may need to
go through an extensive revision process—the global substitution of one name or term for
another, for instance, or the reorganization of your manuscript using a “cut and paste”
technique.

Depending on the size and scope of your project, you may need to comparc text variants and
maintain several versions of your documents. Finally, you will be producing formatted output,
whether it is a onc-page business letter produced on an ordinary lineprinter or a book-length
manuscript communicated directly to a phototypesetter. XENIX provides all the necessary tools
for every phase of document preparation, and in many cases offers several approaches to each
task.

1-9

XENIX Text Processing

1.5.2 Organizing Your Project

Organization is a key clement of writing projects, especially if you are working on a large
document, or attempting to control many short ones. Text processing can greatly simplify any
writing project if you use common sensc in adapting the wide range of XENIX tools to your work.
If you work with many short memos, Ictters, and documents that are similar in content but
require constant revision, or if you are involved with the production of book-length manuscripts,
you can casily find yourself swamped by huge files containing innumerable text variations and
fragments. These can become difficult to control and process. Time you spend defining the scope
of your project in advance is be well rewarded. Decide which files and versions you need to
maintain, and which formatting and error-checking programs you need to use. Determine in
advance, if possible, the style and format of your text.

Since most documents go through several revisions before they are finished, a few simple
mecasures make the work of repeated revision considerably casier. If you are like most people, you
rewrite phrases and add, delete, or rearrange sentences. Subsequent editing of your text will be
casicr if cvery sentence starts on a new line, and if each line is short and breaks at a natural place,
such as after a semicolon or comma.

As you are editing, you can insert markers in your text, so that you can return to them later; use
an unlikely string as a marker that you can search for easily using the grep command or your text
cditor todo a global scarch. If, for example, you are unsure of which term to use, or how you want
the final text to look, use a given word, or text formatting macro provisionally, but consistently.
In this way, a global substitution can be made casily.

You may find that certain global definitions, like the choice of a font for a given header level, or a
commonly used string, may be created at the last minute and placed at the beginning of your text
file. When you are experienced in the usce of macros, you may want to create “template”
definitions which you use repeatedly. You can even place your definitions in a separate file to be
called every time you invoke a script you have prewritten for processing your documents. This
will facilitate consistency in your documents and allow greater flexibility if changes are required.
In many cases, you will find that you can delay your formatting decisions until the document is to
be printed or typeset.

Long documents should be broken down into individual files of reasonable length, perhaps ten to
fifteen thousand characters. Operations on larger files are considerably slower, and the
accidental loss of a small file is less catastrophic. If possible, cach file should represent a natural
boundary in a document, such as a chapter or section. Develop naming conventions to make your
filcnames consistent and self-cxplanatory, such as:

l.intro.s 2.basic.s 3.adv.s

This allows files to be processed in groups with global commands, editing and shell scripts. You
will also be able to see the contents of files and directories at a glance, and if someonc clse needs to
access your files, they will not be confronted with files named “aardvark™, “katmandu”, or
“fred™

You should also use the XENIX hicrarchical file structure to your advantage in organizing your
work, by creating different directories for special purposes. For example, you may wish to have
your source text files in a different directory from your formatted output files, or you may find it
handy to have “rough™ and “final’ draft directories. If your projects grow and change over time,
you may nced to maintain several versions of a document at once.

Unless your project is truly unwieldy, the creation of parallel directories should provide suflicient
organization for storing multiple versions of a document:

Text Processing Overview

fusr/docwriter

version| version2 version3

I | |
Lo

rough final nroff
| |
l.intro.s l.intro.n
2.basic.s 2.basic.n
3.adv.s 3J.adv.n

If you have crcated definition files and scripts, such as shell programs for processing text or sed
scripts for making uniform changes (see Appendix A), place them in yet another directory. This
might also be a good place to add some “help™ files, which explain which versions of a document
are contained in the directory or explain formatting procedures.

There are no rules to apply in deciding which procedures will produce documentation with the
least effort and the fewest errors. How claborate you make your procedures depends on the
quantity and complexity of the text you need to process and maintain. The essential point here is
the theme of this entire volume: select the XENIX tools which seem most appropriate and adapt
them to your own specific needs. The more organized and consistent your work is, the more
powerful your use of these tools will become.

1.5.3 Shortcuts: Boilerplates and Cut and Paste

You will almost always find several approaches to any writing or revision you do with the XENI1X
system. Begin cach writing project by reviewing thesc alternatives, and determine which solution
requires the least repetitive human effort and leaves the least room for error. You can increase
your productivity, whether vou arc writing technical papers, documentation, or many memos
with similar content, by focusing on writing clearly and concisely, rather than wasting time on
ncedless duplication of cflort. If you proceed in an organized, consistent way, as outlined in the
previous section, you will quickly find that XENIX offers you many shortcuts. One of these is the
concept of the “editing script”. Either of the line editors, ed or ex, can be used to perform a
complicated sequence of editing operations on a large group of files simultancously. These can
often be a substitute for the use of a batch editing facility like sed, or awk.

For example, to change every *“Xenix™ to “XENIX™ in all your files, create a script file with the
following lines:

g/Xenix/s//XENIX/g

w

q

Now, you can use the command
ed filename <script

to make this change to any given file. The editor will take its commands from the prepared script.
You can further automate procedures by using the XENIX shell language to write a shell
procedure. For example, you can write a script which asks XENIX to make the above changes,
reformat the entire text, and print the results. It is even possible to put this procedure in a file to
be read by the at command to do your processing at some other time.

If you must produce many similar documents, or long documents which contain repeated
material, the concept of the “boilerplate™ may already be familiar to you. Often, information
which must be presented in a standardized way can be stored in a scparate file which can be

1-11

XENIX Text Processing

reused as necessary. Not only is this a valuable shortcut to rewriting, it may be the preferred
approach if a complex display or an example of program text must be reproduced. Using
boilerplates assures consistency and makes subsequent changes to all recurrences of the copied
material much simpler.

1.6 Summary

Here are some hints for making your XENIX Text Processing System work for you:

Make your filcnames easy to understand, and use a naming convention that allows you
to take advantage of wildcard characters.

Create text files of manageable length which represent chapters or logical divisions in
the document; arrange files into directorics which represent major documents or
versions so that they can be easily identified.

Create “help” or “README? files in each directory which explain your text—what
version you are writing, what scripts, processors, and files are needed to successfully
produce the document. Use comment lines in your text to explain organizational details
of your project or any special macros you have created.

Control parallel versions and updates carefully, especially if you are working on a large
project. Use conditional processing in your text files, copies of text in different
directories, and file linking where appropriate. If you arc in doubt about versions of text
indifferent files use diff to compare text.

When using vi or another text editor to write text, start cach sentence or clause on a new
line.

Identify text and formats which recur in a document or several documents, and create
boilerplates or templates to save work.

Make full use of “cut and paste” techniques to rearrange material in a file, move text
between files, or use the same text repeatedly in several places.

Use batch processes like sed, awk, or an ed script to make consistent changes to a large
number of files.

Use spell, style, and diction regularly to reduce the number of editorial corrections.

Try to define your production specifications and style conventions in advance; prepare
editing scripts to reduce the number of changes you need to make individually.

Always use the simplest possible technique to achieve your results. Use the mm macros
where possible, reserving nroff/troffl commands for “fine-tuning” or creating an effect
impossible with mm. If you define a new macro, explain it in a comment line so it can be
readily understood.

Avoid running too many formatting processes simultaneously. If necessary, use the at
command to process files at a time when the system is not busy.

Protect yourself by backing up your system and user files regularly. Make copies of files
if you are in doubt about whether your procedures will damage them.

Chapter 2
Tools For Writing and Editing

2.1 Introduction 1

2.2 XENIX Commands for Text Processing 1
2.2.1 Pattern Recognition: The Grep Commands 1
2.2.2 File Comparison; diff, diff3,andcomm 2
2.2.3 Other Useful Commands 4

2.3 WritingTools 6
2.4 UsingSpell 7
2.5 Using Styleand Diction 7

2.5.1Style 8
2.5.2 Diction 13

2.1 Introduction

This chapter introduces you to some XENIX system utilities that can simplify document cditing
and revision. It also discusses three special XENIX writing tools for improving writing style and
locating typographical errors in documents.

This chapter focuses on how the XENIX tools are used to accomplish some common text
processing tasks. These tools are XENIX utilitics which are also used by programmers for
scarching and editing data and program text. The emphasis here is on XENIX commands and
utilities that can help vou simplify complicated editing procedures, and allow you to work with
many files at once. As vou read, it will become apparent that several of the programs introduced
here can be used interchangeably, and that many of these tasks can also be performed with your
text cditor. You may also find the two XENIX programs, sed and awk, helpful for making
complex changes to text files. (See Appendix A. “Editing Withsed and awk™.)

There are scveral revision tasks common to all text processing projects. The larger your project,
the more complex these tasks become. For example, you may nced to change a key term, name,
or phrase cverywhere it appears, or locate references to items you need to change or delete. You
may need to compare and contrast multiple versions of your text in order to locate variations.
You may also need to alter some aspect of the text format to suit production requirements. To do
any of these tasks, you must locate a string—a word, a phrase, a text formatting macro or any
repeated set of characters—and., if necessary, change it everywhere it appears. Using the XENIX
system tools discussed in this chapter, thesc changes can be made rapidly and consistently.

The first half of this chapter discusses several easy ways to learn XENIX commands. [f you have
read the XENIX User's Guide, you may already be familiar with some of them. More detailed
information about these commands is provided in the XENIX Reference Manual. The
commands include:

— Grepcommands print lines that match a single specified pattern. When combined with
other commands in a shell procedure and used to process many files at once, the grep
commands become extremely powerful for locating text in large files. Two variants of
greparcalsointroduced in this chapter: egrep and fgrep.

— The XENIX file comparison utilitics, diff, diff3, and comm. Thesc utilities compare two
or more files and output those lines which do not match. In text processing applications
these programs can be extremely useful for quickly locating variations between several
versions of documents.

— Additional XENIX commands, including sort, which alphabetizes lines in your text
files: we, which counts lines, words, and characters in your text; and cut and paste,
which duplicates “cut and paste” cditing operations.

2.2 XENIX Commands for Text Processing

2.2.1 Pattern Recognition: The Grep Commands

Becausce of its power to search for patterns in many files at once, grep and its variants are among
the most useful XENIX commands. The members of the grep family, like the awk program and
the batch cditor, sed, have as their basis the same principle of pattern recognition as the text
cditors, ed and vi. Each of these programs searches for the occurrence of a given pattern-—a
character or group of characters, a word or word string—and generates a list of those lines
containing the pattern. Finding all occurrences of a word or pattern in a group of files is a
common text processing task. You can casily write a shell seript using the grep command or one
of its variants, egrep and fgrep, and quickly search multipie files. Grep scarches for the same

2-1

XENIX Text Processing

regular expressions recognized by ed. The word “grep” stands for

g/re/p

that s, “globally” locate a pattern and then printit. Grep searches cvery linein a set of files for all
occurrences of the specified regular expression. Thus,

grep thing filel file2 file3

finds the pattern “thing” wherever it occurs in any of the files you name (c.g. filel, file2, file3). 1f
you usc the —n option with grep, it will indicate not only the file in which the line was found but
also the line number, so that you can locate and edit it later. By combining the use of grep with
other commands to generate a shell program that reads and transforms input, large quantities of
text can be processed through multiple searching or editing procedures quickly.

The commands grep, egrep, and fgrep all search files for a specified pattern. They appear on the
command line in the following form:

grep {option] cxpression filename

Commands of the grep family search the files you specify (or the standard input if you do not
specify any files) for lines matching a pattern. Each line is copied to the standard output (your
terminal screen), but if you are processing great quantities of text you should specify a filename
in which to store the results of the grep scarch.

For example, the command
grep —n 'system utility’ chap*.s>util

requests that grep command search for the phrase “‘system utility” in every file that begins with
“chap” and ends with *.s”, and store the resulting list, with line numbers, in a file called wril.
Unless the —h option is uscd, the filename is given if there is more than one input file.

The difference between the three grep variants is the type of expression you arc allowed tosearch
for. Grep searches for every regular expression and allows you to use the special characters to
define special patterns. Egrep looks for the same regular expression as grep, but also has an extra
set of characters that allows you to search for more than one occurrence of an expression, or more
than one expression at a time. Fgrep can only look for strings; no special characters are allowed,
and thus fgrep is faster than grep or egrep. For morc information about grep, egrep, and fgrep, sce
grep(C)in the XENIX Reference Manual.

2.2.2 File Comparison: diff, diff3, and comm

In addition to locating occurrcnces of particular strings or regular expressions in your text, you
will find it uscful to compare and contrast two or more similar text files.

The diff command compares two files and outputs a list of differences. You can use diff to store
file versions more compactly. This is accomplished by storing the output of diff, which would be
the differences in that file version, rather than the file itsclf. The —e option collects a script of
those ed commands (such as append, change, and delete) which would be necessary to recreate
the revised file from the original.

Diff 3 is similar to diff, but is used to compare three files.

Another comparison tool, comm, is discussed in this section. Comm is uscful primarily for
comparing the output of two sorted lists.

Diff

To use the diff command to compare two files, use the form:

2-2

Tools For Writing and Editing

diff —option filel file2

Diff reports which lines must be changed in two files to bring them into agreement. If you use a
dash () instcad of the first filename, diff will read from the “standard input™. The normal
output contains lines in this format, where #1is the linenumber of the text file:

17al8

> line affected in file 2
23,25d 26

< line affected in file !
< line affected in file 1
30c31

< line from file |

> line from file 2

These lines resemble the ed commands which would be necessary to convert filel into file2. The
letters a, d, and ¢ are ed commands for appending, deleting, and changing, respectively. The line
numbers after the letters refer to file2. Following each of these lines are printed all the lines that
are affected in the first file, lagged by a less-than sign (<), then all the lines that are affected in
the second file, flagged by a greater-thansign (>).

For example, you might want to compare two text files, fruit and vegies. The contents of the file
called fruit arc the lines:

apples
bananas
cherries
tomatoes

The contents of the file called vegies are the lines:

asparagus
beans
cauliflower
tomatoes

The command line

diff fruit vegies>diffile &
produces the file diffile that contains a list of differences between fruit and vegies which are the
output of the diff program:

1,3¢1,3

<apples

<bananas

<cherries

> asparagus
>beans
> cauliflower

In this case, lincs 1 through 3 in the file vegies are different from lines | through 3 in the file fruit.
See diff(C) for options.

Using Diff3

Diff3 works like diff, except that it compares three files. It has the form:

2-3

XENIX Text Processing

diff3 —option filel file2 file3
Diff3 reports disagreeing ranges of text flagged with the following codes:
=====All three files differ

===am=| File] is different
=====) Fjle2 is different

=====]3 Fjlel is different

The change which has occurred in converting a given range of lines in a given file to some other is
reported.

For example, the message
filel : nl a

means text is to be appended after line number nl in file filel. The message:
filel : nl,n2c¢

means that the text 1o be changed is in the range of lines n1 to line n2. If n1 = n2, the range may
be abbreviated tonl.

The original contents of the range follow immediatcly after a “c” indication. When the contents
of two files are identical, the contents of the lower-numbered file is suppressed.

As in the case of diff, diff3 used with the —e option prints a script for ed that will incorporate into
filel all changes between file2 file3. In other words, it records the changes that normally would
be flagged the changes that normally would be flagged ==== and ====3,

Comm

The comm program selects or rejects lines common to two sorted files. It has the form:
comm [-option] filel file2

Comm reads file! and file2, and produces a three-column output: lines only in filel, lines only in
Jile2, and lines in both files. Ordinarily, both files should be sorted in ASCII collating sequence
by using the sort program before using comm. As in diff and its variants, if you type a dash (=)
instead of a filename, comm will read either file! or file2 from the standard input.

The possible options with comm are the flags 1, 2, or 3, which suppress printing of the
corresponding column. Thus comm with —12 suppresses printing of the first two columns and
prints only the lines common to the two files; comm —23 prints only lines in the first file but not in
the second. The command comm with the options —123 would print no lines.

2.2.3 Other Useful Commands

In this section a group of XENIX commands that are helpful in text manipulations are
summarized. In each case you may find it helpful to refer to the XENIX Reference Manual for
more information.

Sort

If you have been using your XENIX system for a while, you may have already learned the sort
command. Because of its capacity to alphabetize a list of items, it can be cxtremely useful in a

2-4

Tools For Writing and Editing

variety of text processing situations (e.g., alphabetizing the names on a mailing list or the entries
inanindex). Tousesort, simply type the command

sort filename > list.out

The output file fist.out will contain the sorted list.

.

Like some other XENIX commands, if you use “—"" instead of a filename, sort will read from the
standard input, and uniess you direct the output to another file, the sorted list will appear on your
screen. Sort will, by default, sort an entire line in ascending ASCII collating sequence, including
letters, numbers, and special characters. Sce sor?(C) in the XENIX Reference Manual for a list
of available options.

If you need to do repeated sorts by field, you may find it easier to preparc a simple awk script, as
described in “*Appendix A”.

Note that if you invoke onc or more of the sort options, or use position names, you must use the
following syntax:

sort [—options] [posi] [pos2] [—o output] [filenanies)

W

The XENIX command we counts words, characters, or lines in your files. If, for example, you are
submitting a manuscript to a publisher, an exact word count may be necessary, or you may want
to estimate the number of lines in your file before you make some critical formatting decision. To
usc we, type

wc filename

If you give no options, we automatically counts lines, words, and characters in the named files, or
in the standard input if you do not specify any filenames. It keeps a total count for all named files,
and the filenames will also be printed along with the counts. The option -1 for “lines,” option —w
for “words™ and option —c¢ for “characters™ can be also be used in any combination, if you do not
want all three statistics printed. Remember, when doing a word count, that we will automatically
treat as a word any string of characters delimited by spaces, tabs, or newlines.

Cut and Paste

If you work with large text files, you will find the two X EN1X commands, cut and paste, extremely
useful for rearranging text blocks within a document.

Cut is a shortcut for extracting columns or ficlds of information from a file, or for rearranging
columns in lines. Toinvoke cutin its simplest form, type:

cut [options] file
The cut command will cut out columns from each linc of a file. The columns can be specified as
fields separated by a named delimiter or by character positions. The following options are
available:

—clist A list of numbers following —c specifies character posilions or ranges,

—flist A list of numbers following —f is a list of fields, delimited by a character specificd
after the ~d option.

—dchar A character following the —d option is read as the field delimiter. The default is the
tab character. Spaces or other characters with special meanings must be surrounded

2-5

XENIX Text Processing

with single quotation marks (°).

-s This option suppresses lines which do not contain the delimiter character, if the —f
option is invoked.

Either the —c or —foption must be invoked when using cut.

The paste command performs the reverse operation: it can be used to merge lines in one or several
files. To use paste in its simplest form, type

paste filel file2

Paste will concatenate filel and file2, treating each file as a column or columns of a table and
pasting them together horizontally. As with the cut command, you can also specify a delimiter
character to replace the default tab. You can even use paste to merge material in columns into
lines ina single file.

The following options are available:

—d The —d option suppresses the tab which automatically replaces the newline
character in the old file. It can be followed by one or more characters which act as
delimiters.

list The list of characters which follow the -d option.

-s The -s option merges subsequent lines, rather than one from each input file. The tab
is the default character, unless a list is specified with the -d option.

- The dash can be used in place of any filename, to read a line from the standard input.

There are, of course, several other ways to approach *“cut and paste™ operations with the XENIX
system. By now you should feel fairly confident using onc of the XENiX text editors to move
blocks of text, write parts of files to new files, and rearrange lines. Using sort to alphabetically
sort ficlds within lines, or the awk program to change the order of ficlds in a text file, are two
special cases of cut and paste operations.

2.3 Writing Tools

In the previous sections you were introduced to some common XENIX utilities that arc used both
by programmers and text processing users: programs that can be used to search for patterns, do
batch editing, or compare two or more files. This section introduces three XENIX programs
which have been designed solely for writing and editing documents:

— spell, a program that checks for spelling and typographical errors in your text files.

— style, a program that analyzes the readability of your writing style, based on statistical
measures of sentence length and type.

— diction, a program that searches for awkward, ambiguous, and redundant phrases, and
suggests alternatives.

Think of these programs as *“tools” in the same way as the system utilities discussed carlier in the
chapter. The XENIX system will not do your writing for you, but it will help you rewrite and
polish your work efficiently. As you read about these programs, keep in mind that they are not
intended to substitute for carcful reviewing, editing, and proofrecading on your part. Use spell,
style, and diction carly in the editing process as a preliminary check on your work. You will get
some interesting feedback on your writing and uncover recurrent patterns in your word usage and
sentence construction. Your common spelling errors will be pointed out. As you arc preparing
your final draft, you may wish to usc spell again to locate any last-minute typographical errors.

2-6

Tools For Writing and Editing

2.4 Using Spell

You can save a lot of time and grief in proofreading your documents by using spell. Although not
totaily infallible, the spell program will find most of vour spelling and typographical errors with a
minimum of ¢ffort and processing time. Spell compares all the words in the text files you specify
with the correctly spelled words in a pre-existing XENIX dictionary file. Words which neither
appear in this dictionary, nor can be derived by the application of ordinary English prefixes,
suffixes, or inflections are printed out as spelling errors. You can cither specify an output file in
which to store the list of misspelled words, or allow them to appear on your screen. For example,
to find the spelling errors in a file named /.intro.s. type

spell l.intro.s

and a list of possible misspelled words will appear on your screen. You can also use a command
line like

spell *.s>errors&

to check all your files with names ending in **.s™ at once and output the possible misspellings into a
single file named errors.

Spell ignores the common formatting macros from nroff, troff, tbl, and eqn. It automatically
invokes a program called deroff to remove all formatting commands from the text file being
examined for spelling errors.

Several options are available. With “spell —v™, words not literally in the dictionary are also
printed, along with plausible derivations from dictionary words. The —b option checks British
spelling. This option prefers British spelling variants such as: centre, colour, speciality, and
travelled, and insists on the use of “*-ise™ in words like “standardisc™.

The XENIX dictionary is derived from many sources, and while it recognizes many proper names
and popular technical terms, it does not include an extensive specialized vocabulary in biology,
medicine, or chemistry. The XENIX dictionary will not recognize your friends’ names, your
company's acronyms, and many csoteric words, and will list them as spelling *“crrors™. It is
difficult to predict in advance which technical terms, names, and acronyms spell will uncover in
your documents.

2.5 Using Style and Diction

This scction describes two programs, style and diction. Although these two programs attempt to
critique your writing style, keep in mind that the qualities which distinguish good writing from
bad arc not entirely quantifiable. Taste in writing remains subjective, and different stylistic
qualities may be appropriate to different writing situations. XENIX is neither a literary critic nor
your sophomore English teacher. These tools are best used to eliminate errors and give you
preliminary assessment of a document’s readability. They are not intended to substitute for
human editing.

Both style and diction arc based on statistical measures of writing characteristics—
characteristics that can be counted and summarized on your computer. With a large number of
documents stored on computers, it has become feasible to study the recurrent features of writing
style in a great many documents. The programs described here use the results of such studies to
help you writc in a more readable style. They produce a stylistic profile of writing, including:

— A measurement of readability, determined on the basis of sentence and word length,
sentence type, word usage, and sentence openers.

— Alisting of awkward, ambiguous, redundant and ungrammatical phrases found in the
document.

2-7

XENIX Text Processing

This will help you evaluate overall document style, and correct or eliminate poor word choices or
awkward sentences. As you work with these programs, you can accumulate data to provide you
with a profile of your writing stylc based on all your documents.

Because the style and diction programs can only producc a statistical evaluation of words and
sentences, the term “style” is defined here in a rather narrow way: the results of a writer’s
particular word and sentence choices. Although many stylistic judgements are subjective,
particularly those involving word choice, these programs make use of some relatively objective
measures developed by experts.

These programs have been written to measure some of the objectively definable characteristics of
writing style and to identify some commonly misused or unnecessary phrases. Although a
document that conforms to these stylistic rules is not guarantced to be coherent and readable, one
that violates all of the rules will almost certainly be difficult or tedious to read. These programs
are:

1. Style, which calculates readability, sentence length variability, sentence type, word
usage and sentence openers. It assumes that the sentences are well formed, i.c., that
cach sentence has a verband that the subject and verb agree in number.

2. Diction, which identifics phrases that reflect dubious usage or secem unnecessarily
awkward.

These programs are described in detail in the following sections.
2.5.1 Style

Style rcads a document and prints a summary of sentence length and type, word usage, sentence
openers and “readability indices.” The readability indices are traditional school grade levels
assigned to a document, based on four different studies of what makes one style more readable
than another. You can also use the style program to locate all sentences in a document longer
than a given length; those containing passive verb forms; those beginning with expletives; or
those with readability indices higher than a specified number.

Style is based on a system called *“‘parts”, which determines parts of speech in the English
language. Parts is a sct of programs which uses a small dictionary and experimentally derived
rules of word order to assign word classes toall words in your text. It can be used for any text with
an accuracy rate of approximately 95%. Style mcasures have been built into the output phase of
the programs that make up parts.

The style program is invoked with the following syntax:

Style [options] file

What is a Sentence?

A human reader has little trouble deciding where a sentence begins and ends. Computers,
however, are confused by different uses of the period character (.) in constructions like 1.25, A. J.
Jones, Ph.d., i.e., or etc. Before attempting to count the words in a sentence, the text is stripped of
potentially misleading formatting macros. Then style defines a sentence as a string of words
ending in one of the punctuation marks:

The end marker **/.”” may be used to indicate an imperative sentence. Imperative sentences not
marked in this way arc not identified. Style recognizes numbers with embedded decimal points
and commas, strings of letters and numbers with embedded decimal points used in computer
filenames, and a list of commonly used abbreviations. Numbers that end sentences cause a
sentence break if the next word begins with a capital letter. Initials followed by periods are only

2-8

Tools For Writing and Editing

assumed to be at the end of the sentence if the next word begins with a capital and is found in the
dictionary of function words used by parts. Asa result, the periods in the string

J. D. Jones

are not read as the ends of sentences, but the period after the H in the following string is assumed
to end a sentence:

...system H. The...

Using these rules, most sentences are correctly identified, although occasionally two sentences
are counted as onc or a fragment is identified as a sentence.

The results of running style are reported in five parts. A typical output might have values that
look like this:

readability grades
(Kincaid) 12.3 (auto) 12.8 (Coleman-Liau) 11.8 (Flesch) 13.5 (46.3)

sentence info
no. sent 335 no. wds 7419 av sent leng 22.1 av word leng 4.91 no. questions 0 no.
imperatives 0 no. nonfunc wds 4362 58.8% av leng 6.38 shortsent (<17) 35% (118)
long sent (>32) 16% (55) longest sent 82 wds at sent 174; shortest sent 1 wds at sent
117

sentence types
simple 34% (114) complex 32% (108) compound 12% (41) compound-complex
21%(72)

word usage
verb types as % of total verbs tobe 45% (373) aux 16% (133) inf 14% (114) passives
as % of non-inf verbs 20% (144) types as % of total prep 10.8% (804) conj 3.5% (262)
adv 4.8% (354) noun 26.7% (1983) adj 18.7% (1388) pron 5.3% (393)
nominalizations 2% (155)

sentence beginnings
subject opener: noun (63) pron (43) pos (0) adj (58) art (62) tot 67% prep 12% (39)
adv 9% (31) verb 0% (1) sub_conj 6% (20) conj 1% (5) expletives 4% (13)

Readability Grades

The style program uses four separate readability indices. Generally, a readability index is used to
estimate the gradc level of the reading skills needed by the reader to understand a document. The
readability indices reported by style are based on measures of sentence and word lengths.
Although the indices themselves do not measure whether the document is coherent and well
organized, high indices correlate with stylistic difficulty. Documents with short sentences and
short words have low scores; those with long sentences and many polysyllabic words have high
scores. Four sets of results computed by four commonly used readability formulae are reported:
the Kincaid Formula, the Automated Readability Index, the Coleman-Liau Formula, and a
version of the Flesch Reading Ease Score. Because each of these indices was experimentally
derived from different text and subject results, the results may vary. They are summarized here.

Kincaid Formula

The formula is: Reading Grade=11.8 * syllables per word + .39 * words per sentence
-15.59

XENIX Text Processing

The Kincaid formula is based on Navy training manuals ranging in difficulty from
5.5t0 16.3 in grade level. The score reported by this formula tends to be in the mid-
range of the four scores. Because it is based on adult training manuals rather than
schoolbook text, this formula is probably the best one to apply to technical
documents.

Automated Readability Index (ARI)

The formula is: Recading Grade=4.71 *letters per word +.5 * words per sentence
-21.43

The Automated Readability Index is based on text from grades O to 7, and intended
for easy automation. ARI tends to produce scores that are higher than Kincaid and
Coleman-Liau but are usually slightly lower than Flesch.

If you invoke style with the —r option followed by a number, all sentences with an
Automated Readability Index equal to or greater than the number specified will'be
printed.

Coleman-Liau Formula

The formula is: Reading Grade = 5.89 * letters per word - .3 * sentences per 100
words- 15.8

This is based on text ranging in difficulty from .4 to 16.3. This formula usually yields
the lowest grade when applicd to technical documents. ~

Flesch Reading Ease Score

The formula is: Reading Score = 206.835 - 84.6 * syllables per word - 1.015 * words
per sentence.

This formula is based on grade school text covering grades 3 to 12. The first number
reported is the grade level of the document. The second number, in parentheses, is
the difficulty score. It is usually reported in the range 0 (very difficuit) to 100 (very
casy).

The score reported by style is scaled to be comparable to the other formulas, except that the
maximum grade level reported is 17. On the whole, the Kincaid formula is the best predictor for
technical documents. Both ARI and Flesch tend to overestimate text difficulty; Coleman-Liau
tends to underestimate. On text in the range of grades 7 to 9 the four formulas tend to be about
the same. For easy text, usc the Coleman-Liau formula since it is reasonably accurate at the
lower gradcs.

It is gencrally safer to present text that is too casy than too hard. If a document has particularly
difficult technical content, especially if it includes a lot of mathematics, it is probably best to
make the text very easy toread. You can lower the readability index by shortening sentences and
words, so that the reader can easily concentrate on the technical content.

Remember that these indices produce only rough estimates; the results should not be taken as
absolute.

Sentence Length and Structure

The output scctions labeled “sentence info™ and “sentence types™ give both length and structure
measures. Style reports on the number and average length of both sentences and words. It also
reports the number of questions and imperative sentences. “Nonfunction words™ refer to all the
nouns, adjectives, adverbs, and nonauxiliary verbs. Function words arc prepositions,

2-10

Tools For Writing and Editing

conjunctions, articles, and auxiliary verbs.

Since most function words arc short, they tend to lower the average word length. The average
length of nonfunction words, therefore, is a more useful measure for comparing word choice of
different writers than the total average word length. The percentages of short and long sentences
measure sentence length variability. Short sentences are those at least five words less than the
average. Long sentences are those at least ten words longer than the average. Finally, the length
and location of the longest and shortest sentences is reported in the “‘sentence information™
section. If the flag —lnumber is used, style will print all sentences longer than the specified
number.

Style applics the following rules to the definition of sentence types:
1. Asimplesentence has one verband nodependent clause.

2. Acomplex sentence has one independent clause and onc dependent clause, each with one
verb. Complex scntences are found by identifying sentences that contain either a
subordinate conjunction or a clause beginning with a word like “that” or “who™. The
preceding sentence has such a clause.

3. A compound sentence has more than one verb and no dependent clause. Sentences
joined by a semi-colon (;) are also counted as compound.

4. A compound-complex sentence has cither several dependent clauses or one dependent
clausc and a compound verb in either the dependent or independent clause.
Most authorities on effective writing style emphasize varicty in sentence length, as well as overall
sentence structure. Three simple rules for writing sentences are:
1. Avoid the overuse of short simple sentences.

2. Avoid the overuse of long compound sentences.

3. Usevarious sentence structures to avoid monoteny and increase effectiveness.

Word Usage

The word usage measurcments used by style attempt to identify other features of writing
constructions. In English, there are many ways to say the same thing. For cxample, the following
sentences all convey approximately the same meaning but differ in word usage:

— Thecxio program is used to perform all communication between the systems.
— Thecxio program performs all communications between the systems.

— Thecxio program is used to communicate between the systems.

— Thecxio program communicates between the systems.

— Allcommunication between the systems is performed by the cxio program.

The distribution of the parts of speech and verb constructions in a document helps the writer
identify the overuse of particular construction. For each catcgory, style reports a percentage and
a raw count of the parts of speech used. Although these measures are somewhat crude, they
demonstrate cxcessive repetition of sentence constructions. In addition to looking at percentages,
it is uscful to compare the raw count with the number of sentences. If, for example, the number of
infinitives is almost equal to the number of sentences, then an unusual number of sentences in the

2-11

XENIX Text Processing

document must contain infinitives, like the first and third sentences in the example above. You
may want to change some of these sentences for greater variety.

Verbs

To determine the predominant verb constructions in a document, Verb frequency is measured in
several ways. Technical writing, for example, tends toward passive verb constructions and other
usages of the verb “10 be”. The category of verbs labeled “tobe” measures both passives and
sentences of the form:

subject tobe predicate

Whole verb phrases are counted as a single verb. Verb phrases containing auxiliary verbs are
counted in an “aux” category, including verb phrases whose tense is not simple present or simple
past. Infinitives are listed as “inf.” The percentages reported for these three categories are based
on the total number of verb phrases found. These categories are not mutually exclusive; some
constructions may be in more than one category. For cxample, “to be going™ counts as both
“tobe™ and “inf". Use of these three types of verb constructions varies significantly among
different writers.

Style reports passive verbs as a percentage of the finite verbs in the document. Because sentences
with active verbs are casicr to comprehend than those with passive verbs, you should avoid the
overusc of passive verbs. Although the inverted object-subject order of the passive voice seems to
emphasize the object, studies show that comprehension is not significantly affected by word
position. Furthermore, a reader will retain the direct object of an active verb better than the
subject of a passive verb. The —p option causes style to print all sentences containing passive
verbs.

Conjunctions

Conjunctions provide logical parallelism between ideas by connecting two or more equal units.
These units may be whole sentences, verb phrases, nouns, adjectives, or prepositional phrases.
The compound and compound-complex sentences reported under sentence type are parallel
structures. Other uses of parallel structures are indicated by the degree that the number of
conjunctions reported under word usage exceeds the compound sentence measures.

Adverbs

Adverbs provide transitions between sentences and order in time and space. Like pronouns,
adverbs provide connectivity and cohesiveness.

Nouns and Adjectives

Some writers qualify almost every noun with one or more adjectives. If the ratio of nouns to
adjectives in your text approaches one, it is probable that you are using too many adjectives.
Multiple qualificrs in phrases like *“simplc lincar single-link network model” lend more obscurity
than precision toa text.

2-12

Tools For Writing and Editing

Pronouns

Pronouns can add cohesiveness to a document by acting as a shorthand notation for something
previously mentioned. Documents with no pronouns tend to be verbose and to have little
connectivity.

Nominalizations

Nominalizations are verbs transformed into nouns by the addition of a suffix like: “ment™,
“ance”, “ence”, or “ion”. Examples are accomplishment, admittance, adherence, and
abbreviation. When a writer transforms a nominalized sentence to a non-nominalized sentence,
it becomes more cflfective. The noun becomes an active verb and frequently one complicated
clause becomes twoshorter clauses. For example

Their inclusion of this provision is admission of the
importance of the system.

could be changed to:
When they included this provision, they admitted the ...

The transformed sentences are easier to comprechend, even if they are slightly longer, provided
that the transformation breaks one clausc into two. If your document contains many
nominalizations, you may want to transform some of the sentences to use active verbs.

Sentence Openers

Another principle of style is the desirability of varied sentence openers. Because style determines
the type of sentence opener by looking at the part of speech of the first word in the sentence, the
sentences counted under the heading “subject opener™ may not all really begin with the subject.
However, a large total percentage in this category suggests a lack of variety in sentence openers.
Other scntence opener measurements help determine if there are transitions between sentences
and where subordination occurs. Adverbs and conjunctions at the beginning of sentences are
mechanisms for the transition between sentences. A pronoun at the beginning of a sentence
shows a link to something previously mentioned and indicates connectivity.

The location of subordination can be determined by comparing the number of sentences that
begin with a subordinate conjunction with the number of sentences with complex clauses. If few
sentences start with subordinate conjunctions then the subordination is embedded or at the end of
the complex sentences. For greater varicty, transform some sentences so that they have leading
subordination.

The last category of openers, expletives, is commonly overworked in technical writing.
Expletives are the words “it” and “there”, generally used with the verb *“to be™ in constructions
where the subject follows the verb. For example.

There are three streets used by the traffic.
There are too many uscrs on this system.

This construction tends to emphasize the object rather than the subject of the sentence. The —e
option will causc style to print all sentences that begin with an expletive.

2.5.2 Diction

The diction program prints all sentences in a document containing phrases that are cither
frequently misused or indicate wordiness. Diction uses fgrep to match a file of phrases or patterns

2-13

XENIX Text Processing

1o a file containing the text of the document to be searched. A data base of about 450 phrases has
been compiled as a default pattern file for diction. To facilitate the matching process, diction
changes uppercase letters to lowercase and substitutes blanks for punctuation before beginning
the search for matching patterns. Since sentence boundaries are less critical in diction than in
style, abbreviations and other uses of the period character (.) are not treated specially. Diction
marks all pattern matches in a sentence with brackets ([]). Although many of the phrases in the
default data base may be correct in some contexts, they generally indicate an awkward or verbose
construction. Some cxamples of the phrases and suggested alternatives are:

Phrase: Alternative:
a large number of many
arrive at a decision decide
collect together collect

for this reason S0
pertaining to about
through the use of by or with
utilize use

with the exception of cxcept

All of the following examples contain the repetitious and awkward phrase “the fact™":

Phrase: Alternative:
accounted for by the fact that caused by
an example of this is the fact that thus

based on the fact that because
despite the fact that although
due to the fact that because

in light of the fact that because

in view of the fact that since
notwithstanding the fact that although

If you have some phrases that you particularly dislike, or feel you use too often, you may create
your own file of patterns. Then, you can invoke the diction program with the —f option:

diction —f patternfile

The default pattern file for the diction program will be loaded first, followed by your pattern file.
In this way, you can either suppress patterns contained in the default file or include your own
favorites in addition to those in the default file. You can also use the —n option to exclude the
default file altogether:

diction —n patternfile

In constructing a pattern file, spaces should be used beforc and after each phrase to avoid
matching substrings in words. For example, to find all occurrences of the word “the”, use leading
and trailing spaces, so that only the word “the” is matched and not the string “the” in words like
there, other, and therefore. Note however, that one side effect of surrounding the words with
spaces is that if two instances occur without intervening words, c.g., “the the”, only the first will
be matched because the intervening space will be counted as part of the first pattern.

2-14

Chapter 3
Using the MM Macros

3.1 Getting Started with MM 1
3.1.1 Inserting MM Macros 1
3.1.2 Invoking MM 2

3.2 Basic Formatting Macros 2
3.2.1 Paragraphs and Headings 2
3.22 Lists 3
3.2.3 Font Changes and Underlining 4
3.2.4 Footnotes 5
3.2.5 Displaysand Tables 5
3.2.6 Memos 6
3.2.7 Multicolumn Formats 6

3.3 Using Nroff/Troff Commands 6

3.4 Checking MM Input with mmcheck 6

3.1 Getting Started with MM

This chapter provides a simple introduction to MM, the “Memorandum Macros™, a macro
package which you can use on your XENIX System with cither of the two XENIX formatting
programs, nrofT or troff, to produce formatted text for the lineprinter or typesctier, respectively.
The features of MM are described comprehensively in the next chapter, *MM Reference”. You
can learn to usc the MM macros quickly and format text immediately, without learning the more
complicated nroff or troff formatting commands.

The MM program reads the commands you have inserted in your text and “translates” them into
nroff or troff commands when your text lile is processed. With MM you can specify the style of
paragraphs, section headers, lists, page numbering, titles, and footnotes. You can also produce
cover pages, abstracts, and tables of contents, as well as control font changes and multicolumn
output. If you are using MM along with troff to output vour text to a phototypesetter, you can
specify variable spacing and the size of your type.

Although using nroff or trofl dircctly offers you a much wider range of commands and options, we
recommend that you use MM for most of your formatting needs. Use the nroff and troff requests
discussed in Chapter 5, “The Nroff /Trofl Tutorial” and Chapter 6, “Nroff/Troff Reference™
only when necessary.

3.1.1 Inserting MM Macros

To use the MM macros to format a document, tvpe in yvour text normally, interspersed with
formatting commands. These commands arce uppercase letters preceded by a dot (.) and appear
at the beginning of a linc. Instead of indenting for paragraphs, for example, you can use the .P
macro before each paragraph, to produce extra line space:

P
To meet the objectives proposed at the meeting...

The .P macro can also be used to indent paragraphs. For more information, see Section 4.4.1,
“Paragraphs™.

A single MM macro can often perform a number of formatting functions at once. In a long
document, you might have several sections, each beginning with a numbered heading, like this

1.0 Saltwater Fishing in the Pacific Northwest
Tocreate this header, you would enter:
.H 1 "Saltwater Fishing in the Pacific Northwest”

Not only will MM create a bold heading and leave a space between the heading and the text
which follows, it will also automatically number all the headings in the document sequentially.
Furthermore, if you use the table of contents macro (.TC) at the end of the document, MM will
create a table of contents, listing all the numbered headings and the pages where they occur.

The MM macros provide a convenient facility lor creating a consistent format for such document
clements as lists and displays. For example, if you wanted a “*bullet list” to look like this:

« Convenience
« FEascofuse
« Portability

you would enter the following text and macros:

3-1

XENIX Text Processing

.BL

.LI
Convenience
LI

Ease of use
L1
Portability
.LE

MM will provide the current indents, spacing, and bullets.

Note that you must always begin a document to be formatted with MM with a macro, rather than
an ordinary line of text. You might start with a .P command, for example, to begin your
document with an ordinary paragraph.

3.1.2 Invoking MM

After you have created a file containing text and MM macros, you can format it with the
following command:

nroff —mm flename> filename.mm&

This command line tells the XENIX system that you want to format the document, using the nroff
formatting program, and the MM macro package to prepare it for a letter-quality printer or
lineprinter. Once the document is formatted, it will be stored in filename.mm or whatever file you
specify. You can then send it to the lineprinter with the command:

Ipr filcname.mm

If you are formatting documents for printing on a typesetter, you would use the MM macros with
the troff program instead:

troff —mm filename > filename.t

If you have more complex formatting, such as two-column text, formatted with the two-column
(.2C) macro, or if you have used the table start (.TS) and table end (.TE) macros to produce
multicolumn tabular material, you must remember to pipe the output through the preprocessor
col, in order to prepare the columns of text. Your command line might look like this:

nroff —mm filename | col > filename.mm

If you are using the tbl or eqn programs to produce tables and mathematical equations, you must
also process the files through these programs first, using tbl before eqn, as in the following:

tbl filenameheqnhroff —mm > filename.mm
3.2 Basic Formatting Macros

The following sections describe the most commonly used MM macros, including macros to define
paragraphs, headings, lists, font changes, displays, and tables. For more detailed information
about each of these macros, read Chapter 4, ““MM Reference™.

3.2.1 Paragraphs and Headings

With MM , it is easy to specify paragraph and hcading style. For example, look at the following
passage:

3-2

Using the MM Macros

1.0 Paragraphs and Headings

This section describes the types of paragraphs and the
kinds of headings that are available.

1.1 Paragraphs

Paragraphs are specified with the .P macro. Usually, they are
flush left.

1.2 Headings

Numbered Headings
There are seven levels of numbered headings. Level 1 is the
highest; level 7 is the lowest.

Headings are specified with the .H macro, whose first argument is
the level of heading (1 through 7).

Unnumbered Headings
The macro .HU is a special case of .H which creates a heading

with no heading number.

Tocreate this heading format, you would insert the following in a text file:

.H 2 "Paragraphs and Headings”

This section describes the types of paragraphs and the

kinds of headings that are available.

.H 3 "Paragraphs”

Paragraphs are specificd with the .P macro. Usually, they

are flush left.

.H 3 "Headings”

.HU "Numbered Headings"

There are seven levels of numbered headings. Level 1 is the
highest; level 7, the lowest.

.P

Headings are specified with the .H macro, whose first argument
is the level of heading (1 through 7).

.HU "Unnumbered Headings”

The macro .HU is a special case of .H which creates a heading
with no heading number.

Mm produces these headings in default styles which can be redefined, if necessary. This is
described in detail in Chapter 4, “Mm Reference™. The headings are automatically numbered
and are used to print a table of contents if the table of contents (. TC) macrois used. The numbers
may be altered or reset with the number register (.nr) request. To restart the numbering of a
second level heading at 1, you would insert the following command:

.nr H2 1

3.2.2 Lists

All list formats in MM have a list-begin macro, one or more list items, cach consisting of a . LI
macro followed by the list item text, and the list-end macro (.LLE). In addition to the bullet list
demonstrated at the beginning of this chapter, there is also the dash list, using the list begin
macro (.DL) to create a list format like the bullet list except marked with dashes rather than

3-3

XENIX Text Processing

bullets. A mark list (ML) isalso available, to mark list items with the character of your choice.

The automatic list (.AL) macro automatically numbers list items in one of several ways. When
specified alone, or followed by 17, the .AAL macro numbers the list items with Arabic numbers.
The macro .AL A specifies a list ordered A, B, C, etc. The macro .AL followed by a lowercasc a
(.AL a), specifies a, b, ¢, ctc. The macro .AL 1 numbers list items with Roman numerals. AL i
numbers a list with lowercase Roman numerals (i, ii, iii, etc.)

Numbered lists may be nested to produce outlines and other formats. For example:

I. Incan Archaeological Sites

A. Peru

1. Macchu Picchu
2. Pisac
B. Ecuador

This is produced with:

AL

Incan Archacological Sites
AL A

LI

Peru

AL

LI

Macchu Picchu
.LI

Pisac

.LE

.LI

Ecuador

.LE

.LE

In addition to the numbered and marked lists, MM offers a variable list (.VL) macro,
which is useful for producing two-column lists with indents. The .VL macro is
described in detail in Chapter 4, *“Mm Reference”.

3.2.3 Font Changes and Underlining

To produce italics on the typesetter, precede the text to be italicized with the sequence \fl and
follow it with\fR. For example:

\flas much text as you want
can be typed here\fR

Italics are represented on lineprinters and letter-quality printers by underlining. The .R
command restores the normal (usually Roman) font.

If only one word is 10 be italicized, it may be typed alone on a line after a .I command:

34

Using the MM Macros

.I word

In this case no .R is needed to restore the previous font. The default font is automatically restored
on the next line.

Similarly, boldface can be produced by typing:

.B

Text to be set in boldface
goes here

R

As with the .1 macro, a single word can be placed in boldface by placing it alone on the same line
witha .B command.

3.2.4 Footnotes

Material placed between lines with the footnote start (.FS) and footnote end (.FE) macros will be
collected and placed at the bottom of the current page. The footnotes are automatically
numberced, or an optional footnote mark may be used. This mark follows the .FS macro. For
example:

Without further rescarch

FS

As demonstrated by Tiger and Lcopard (1975).

.FE

the claim could not be substantiated.

However, other studies

.FS *

For example, Panther and Lion (1981).

.FE

indicated that the correlation was significant.

produces one numbered footnote:
1. As demonstrated by Tiger and Leopard (1975).
and one marked footnote:

* For example, Panther and Lion (1981).
3.2.5 Displays and Tables

To prepare displays of lines, such as tables, which are to be set off from the running text, enclose
them in the commands .DS and .DE. For example:

.DS
text goes here
.DE

By default, lines between .DS and .DE are left-adjusted. You may also specify a left-adjusted
display by using .DS L. To get an indented display, use .DS 1. You can also create centered
tables with .DS C. For example:

This is a centered display preceded by
a .DS C and followed by a .DE command.

or:

35

XENIX Text Processing

This is a left-adjusted display
preceded by a .DS L command
and followed by a .DE command.

Note that the .DS C macro centers each subsequent line. You can also use .DS B to make the
display into a left-adjusted block of text and then center that entire block. Normally a display is
kept together on one page. Text within display is produced in “nofill”” mode, i.c., lines of text are
not rearranged.

3.2.6 Memos

If you need to produce many memos in a standardized format, you may find the memorandum
type (.MT) type macros useful for creating titling information. Be warned, however, that
because these memorandum types were originally developed inside Bell Laboratories, some of
the possible parameters to this macro automatically print the string “Bell Laboratories™ on the
memo. To suppress this, be sure to use the “affiliation” (.AF) macro after an .MT macro, as
follows:

'AF "n
or, if you wish to have your own company or organization name appear automatically, use:
AF "Widgets, Ltd."

There arc a number of paramcters which substantially change the format and content of
memoranda output and it is critical that you insert the macros in the correct order. Therefore, it is
important that you read the section on “Memorandum Type” in Chapter 4, “MM Reference”
before inserting these macros. Once you have chosen the appropriate type, you should be able to
reuse these macros for all your memos to produce a standard style.

3.2.7 Muiticolumn Formats

If you place the command .2C in your document, the document will be printed in double column
format beginning at that point. This feature is generally not accommodated by an ordinary
lineprinter, but is often desirable on the typesctter. The command .1C stops two-column output
and returns to one-column output.

3.3 Using Nroff/Troffl Commands

If you want to format text using MM without lcarning the other formatting programs, you should
become familiar with at lcast a few simple nroff /troff commands, which you will probably need 1o
supplement the MM macros. These work with both typesctter and lineprinter or terminal
output:

.bp Begin new page.
br “Break”, that is, stop running text from line to line.
spn Inscrt n blank lines.

3.4 Checking MM Input with mmcheck

The program mmeheck can be used to check the accuracy of your input to MM , without actually
formatting a document. If you use mmcheck regularly, you will save a great deal of processing
time, because you will be able to “debug” your input file quickly, without running the nroff and
troff programs. Toinvoke mmcheck, use the command line:

36

Using the MM Macros

mmcheck filename

The output of by default. Mmcheck checks for correct pairing of macros, including .DS/.DE,
.TS/.TE, and .EQ/.EN. It also looks for list specification format, making sure that every list has
a list begin macro (.AL, .DL, .BL, .ML, VL, etc.) and a list end macro (.LE). Normally,
mmcheck prints a list of errors and the lines where they occurred. For example:

chapl.s:
Extra .DE at line 74
539 lines done.

Note, however, that the location of an error may occasionally be obscured. In the example above,
the “extra” .DE could actually be caused by a missing .DS.

3-7

Chapter 4
MM Reference

4.1

4.2

4.3

4.4

4.5

4.6

Introduction |

4.1.1 WhyUseMM? |

4.1.2 Organization and Conventions |
4.1.3 Structurcofa Document |

4.1.4 Definitions 2

Invoking the Macros 2

4.2.1 The MM Command 2

422 The-cmor-mm Ilags 3

423 Typical Command Lines 3
4.2.4 Command Linc Parameters 4
4.2.5 Omissionof-cmor-mm 5

Formatting Concepts 5

4.3.1 Argumentsand Quoting 6

4.3.2 UnpaddableSpaces 6

4.3.3 Hyphenation 6

434 Tabs 7

435 Bullets 7

4.3.6 Dashes, Minus Signs, and Hyphens 7
4.3.7 TrademarkString 8

Paragraphs and Headings 8

4.4.1 Paragraphs 8

442 Numbered Headings 9

4.43 Appearanceof Headings 9

4.4.4 Bold, Italic, and Underlined Headings 10
4.4.5 Heading PointSizes 10

4.4.6 Marking Styles 11

4.4.7 Unnumbered Headings 11

4.4.8 Headings and the Tableof Contents 12
4.49 First-Level Headings and the Page Numbering Style 12
4.4.10 User Exit Macros 12

Lists 13

4.5.1 Sample Nested List 14

452 Listltem 15

453 ListEnd 16

4.5.4 [nitializing Automatically Numbered or Alphabetized Lists
455 BulletList 16

4.5.6 DashList 17

457 MarkedList 17

4.5.8 Reference List 17

4.5.9 Variable-ltem List 17

4.5.10 List-Begin Macroand Customized Lists 18

Displays 19
4.6.1 Static Displays 20

16

4.6.2 Floating Displays 20

4.6.3 Tables 22

4.6.4 Equations 23

4.6.5 Figure, Table, Equation, and Exhibit Captions 23
4.6.6 Listof Figures, Tables, Equations, and Exhibits 23

4.7 Footnotes 24
4.7.1 Formatof Footnote Text 25

4.8 Pagc Hcaders and Footers 26
4.8.1 Default Headers and Footers 26
4.8.2 PageHecader 26
4.8.3 Even-Page Header 26
4.8.4 Odd-Page Header 26
4.8.5 PageFooter 27
4.8.6 Even-Page Footer 27
4.8.7 0Odd-Page Footer 27
4.8.8 Footeronthe First Page 27
4.8.9 Default Header and Footer With Section-Page Numbering 27
4.8.10 Stringsand Registers in Header and Footer Macros 27
4.8.11 Headerand Footer Example 28
4.8.12 Generalized Top-of-Page Processing 28
4.8.13 Generalized Bottom-of-Page Processing 28
4.8.14 Topand Bottom Margins 29

4.9 Tableof Contents 29

4.10 References 30
4.10.1 Automatic Numbering of References 30
4.10.2 Delimiting Reference Text 30
4.10.3 Subscquent References 30
4.10.4 Reference Page 30

4.11 Miscellaneous Features 31
4.11.1 Bold, Italic, and Roman Fonts 31
4.11.2 Right Margin Justification 32
4.11.3 SCCSRelcasc Identification 32
4.11.4 Two-Column Qutput 32
4.11.5 Vertical Spacing 33
4.11.6 Skipping Pages 33
4.11.7 ForcinganOdd Page 34
4.11.8 Setting Point Size and Vertical Spacing 34
4.11.9 Inserting Text Interactively 34

4,12 Memorandum and Released Paper Styles 35
4.12.1 Tilde 35
4.12.2 Authors 35
4.12.3 Technical Memorandum Numbers 36
4,12.4 Abstract 36
4.12.5 OtherKeywords 36
4.12.6 Memorandum Types 37
4.12.7 Dateand Format Changes 37
4.12.8 Alternate First-Page Format 37
4.12.9 Released-Paper Style 38
4.12.10 Order of Invocation of Beginning Macros 38
4.12.11 Macros for the End ofa Memorandum 39

4.12.12 Copy toand Other Notations 39
4.12.13 Approval SignaturcLine 40
4.12.14 Forcinga One-Page Letter 40
4.12.15 Cover Shect 40

4.13 Reserved Names 41
4.13.1 Names Used by Formatters 41
4.13.2 NamesUsed by MM 41
4.13.3 Names Used byeqn/neqnand tbl 42
4.13.4 User-Definable Names 42
4,13.5 Sample Extension 42

4.14 Errors 42
4.14,1 Disappearanceof Output 43
4.14.2 MM Error Messages 43
4.14.3 Formatter Error Messages 45

4.15 Summary of Macros, Strings, and Number Registers 47
4.15.1 Strings 51
4.15.2 Number Registers 52

4.1 Introduction

This chapter is the reference guide for the MM Memorandum Macros. MM provides a unified,
consistent, and flexible tool for producing many common types of documents, often climinating
the need for working directly with nroff or troff commands. MM is the standard, general-purpose
macro package for most documents.

Using the MM macros, you can produce letters, reports, technical memoranda, papers, manuals,
and books. Documents may range in length from single-page letters to documents that are
hundreds of pages long.

4.1.1 Why Use MM?

There are several reasons why we recommend using MM instead of working with the formatting
programs nroff and troff directly. These include:

— You nced not be an expert to usc MM successfully. If your input is incorrect, the
macros attempt to interpret it, or a message describing the error is output.

— Reasonable default values are provided so that simple documents can be prepared
without complex scquences of commands.

— Parameters are provided to allow for individual preferences and requirements in
document styling.

— The capability exists for expert uscrs to extend the MM macros by adding new macros
or redefining existing ones.

— The output of MM is device independent, allowing the usc of terminals, lineprinters,
and phototypesctlers with no change to the macros.

— The need for repetitious input is minimized by allowing the user to specify parameters
once at the beginning of a document.

— Output style can be modified without making changes to the document input.
4.1.2 Organization and Conventions

Each section of this chapter explains a feature of MM, with the more commonly used features
explained first. You may find you have no nced for the information in the later sections, or for
some of the options and parameters which accompany even common features. This reference
guide is organized so that you can skim a section to obtain formatting information you need, and
skip features for which you have no use.

4.1.3 Structure of a Document

Input for a document to be formatted with MM contains four major parts, any of which is
optional. If present, they must occur in the following order:

1. Parameter-setting. This segment determines the general style and appearance of a
document, including page width, margin justification, numbering styles for headings
and lists, page headers and footers, and other properties. In this segment, macros can be
added or redefined. If omitted, MM will produce output in a default format; this
segment produces no actual output, but performs the setup for the rest of the document.

4-1

XENIX Text Processing

2. Beginning. This segment includes those items that occur only once, at the beginning of a
document (ec.g., title, author’s name, date).

3. Body. This scgment contains the actual text of the document. It may be as small as a
single paragraph, or as large as hundreds of pages. It may include hicrarchically-
ordered headings of up to seven levels, which may be automatically numbered and saved
to gencrate the table of contents. Also available are list formats with up to five levels of
subordination, which may have automatic numbering, alphabetic sequencing, and
marking. The body may contain various types of displays, tables, figures, references,
and footnotes.

4. Ending. This segment contains those items that occur only once at the end of a
document. Included here are signature(s) and lists of notations (e.g., “copy to” lists). In
this segment, macros may be invoked to print information that is wholly or partially
derived from the rest of the document, such as the table of contents or the cover sheet.

The size or existence of any of these segments depends on the type and length of the document.
Although a specific item (such as date, title, author’s name) may be printed in several different
ways depending on the document type, it will always be entered in the same form.

4.1.4 Definitions

The following terms are used throughout this chapter:
Formatter Refers tocither of the text-formatting programs nroff or troff.

Requests Built-in commands recognized by the formatters. Although it may not be
nccessary to use these requests directly, they are referred to in this chapter.

Macros Named collections of requests. Each macro is an abbreviation for a collection of
requests that would otherwisc require repetition. MM supplies many predefined
macros, and you may definc additional macros as necessary. Macros and requests
share the same sct of names and are used in the same way.

Strings Provide character variables, cach of which names a string of characters. Strings
are often used in page headers, page footers, and lists. They use the same names as
requests and macros. A string can be defined with the define string (.ds) request,
and then referred to by its name, preceded by * for a one-character name or *(
for a two-character name.

Number registers
Integer variables used for flags, arithmetic, and automatic numbering. A register
can be given a value using a number register (.nr) request, and can be referenced

by preceding its name by \n for one-character names or \n(for two-character
names.

4.2 Invoking the Macros

This scction describes the command lines necessary to MM, with different options on various
output devices.

4.2.1 The MM Command

The MM command is used to print documents using nroff and MM. This command is cquivalent

4-2

MM Reference

to invoking nroff with the -mm flag. Options are available to specify preprocessing by tbl and for
by eqn/negn, and for postprocessing by various output filters, such as col. Any arguments or flags
not recognized by MM are passed to nroff. The following options can occur in any order before
the filenames:

¢ Invokes negn.

-t Invokes tbl.

-C Invokes col.

-E Invokes the “-e™ option of nroff.

-y Invokes -mm (uncompacted macros) instecad of -cm (See Section 4.2.2 of this

manual).

-12 Invokes 12-pitch mode (The pitch switch on the terminal must be set to 12).
4.2.2 The -cm or -mm Flags

The MM package can also be invoked by including the -cm or -mm flag as an argument to the
formatter, asin:

nrofl -mm file
4.2.3 Typical Command Lines

The prototype command lines are as follows:

Text without tables or equations:

mm [options] filename
nroff [options] filename
troff [options] filename

Text with tables:

mm -t [options] filename
bl filenamelnroff [options] -mm
tbl filenameltroff [options] -mm

Text with equations:

mm -¢ [options] filename
neqn filename|nroff [options] -mm
eqn filename|trofl [options] -mm

Text with both tables and equations:

mm -t -¢ [options] filename
tbl filenamenegninroff [options] -mm
tbl filenamekqn|irofl [options] -mm

If two-column processing is used with nroff, either the -¢ option must be specified to MM or the
nroff output must be postprocessed by col.

4-3

XENIX Text Processing

4.2.4 Command Line Parameters

Number registers hold parameter values that control various aspects of output style. Many of
these can be changed within the text files with number register (.nr) requests. In addition, some
of these registers can be set from the command line itself, a useful feature for those parameters
that should not be permanently embedded within the input text itself. If used, these registers
must be set on the command line or before the MM macro definitions are processed. Thescare:

-rAn

-rCn

-rD1

-rEn

-rlLk

-rNn

-rOk

-rPn

-rSn

4-4

For n=1, this has the effect of invoking the /AAF macro without an argument.
nsets the type of copy (e.g., DRAFT) to be printed at the bottom of each page:
n=1 For OFFICIAL FILE COPY

n=2 For DATEFILECOPY

n=3 For DRAFT with single-spacing and default
paragraphstyle

n=4 For DRAFT with double-spacing and 10-space
paragraphindent

Sets “debug mode™. This flag requests the formatter to continue processing even if
MM detects errors that would otherwise cause termination. It also includes some
debugging information in the default page header.

Controls the font of the Subject/Date/From fields. If n=0 these fields are bold
(default for troff) and if n= 1 they are regular text (default for nroff).

Sets the length of the physical page 10 & lines. For nroff, % is an unscaled number
representing lines or character positions; for troff, & must be scaled. The default
value is 66 lines per page.

Specifics the page numbering style. When n=0 (default), all pages get the
(prevailing) header. When n= 1, the page header replaces the footer on page 1 only.
When n=2, the page header is omitted from page 1. When n=3, section-page
numbering occurs. When n=4, the default page header is suppressed, but user-
specified headers are not affected. When n=35, section-page and section-figure
numbering occurs.

The contents of the prevailing header and footer do not depend on the value of the
number register N; N only controls whether and where the header (and, for N=3 or
5, the footer) is printed, as well as the page numbering style. In particular, if the
header and footer values are null, the value of Nis irrelevant.

Offsets output k spaces to the right. For nroff, these valucs are unscaled numbers
representing lines or character positions. For troff, these values must be scaled. This
register is helpful for adjusting output positioning on some terminals. If this register
is not sct on the command line the default offset is .75 inches. NOTE: The register
name is the capital letter (O), not the digit zero (0).

Specifies that the pages of the document are to be numbered starting with n#. This
register may also be set via a .nr request in the input text.

Sets the point size and vertical spacing. The default nis 10, i.e., 10-point type on 12-
point leading (vertical spacing), giving 6 lines per inch. This parameter applies to

MM Reference

troff only.

-1Tn Provides register settings for certain devices. If n =1, then the line length and page
offset arc set to 80 and 3. respectively. Setting n to 2 changes the page length to 84
lines per page and inhibits underlining. The default value for nis 0. This parameter
applics tonrofT only.

-rU1 Controls underlining of section headings. This flag causes only letters and digits to
be underlined. Otherwise, all characters (including spaces) are underlined. This
parameter applics to nroff only.

-tWk Sets page width (i.e., line length and title length) to k. For nroff, & is an unscaled
number representing lines or character positions; for troff, & must be scaled. This
register can be used to change the page width from the default value of 6.0 inches (60
charactersin 10 pitchor 72 characters in 12 pitch).

4.2.5 Omission of -cm or -mm

If many arguments are required on the command line, it may be convenicnt to sct up the first (or
only) input file of a document as follows:

ss 18

.50 fusr/lib/tmac/tmac.m
ss 12

remainder of text

In this casc, do not use¢ the -cm or -mm flags (or the MM or mmt commands); the .so request has
the equivalent effect. The registers must be initialized before the .so request, because their values
are meaningful only if set before the macro definitions are processed. When using this method, it
is best to put into the input file only those parameters that are seldom changed. For example:

.nr W 80

.r 010

ar N3

.50 /usr/lib/tmac/tmac.m
H 1 "INTRODUCTION"

.

specifics, for nroff, a line length of 80, a page offset of 10. and section-page numbering.
4.3 Formatting Concepts

The normal action of the formatters is to fill output lines from one or more input lines. The output
lines may be justified so that both the left and right margins are aligned. As the lines are being
filled, words may also be hyphenated as necessary. Itis possible to turn any of these modes on and
off. Turning off fill mode also turns off justification and hyphenation.

Certain formatting commands (both requests and macros) cause the filling of the current output
line to cease. Printing of a partially filled output line is known as a “break™. A few formatter
requests and most of the MM macros cause a break.

While formatter requests can be used with MM, they occasionally have unpredicted
consequences. There should be little need to use formatter requests. The macros described in this
section should be used in most cases because you will be able to control and change the overall
style ol the document easily and specify complex features, such as footnotes or tables of contents,
without using intricate formatting requests. A good rule is to use direct nroff and troff requests
only when absolutely necessary.

4-5

XENIX Text Processing

To make future revision easier, input lines should be kept short and should be broken at the end of
clauses; each new full sentence should begin on a new line.

4.3.1 Arguments and Quoting

For any macro, a “null argument” is an argument whose width is zero. Such an argument ofien
has a special meaning; the preferred form for a null argument is double quotation marks (").
Omitting an argument is not the same as supplying a null argument. Furthermore, omitted
arguments can occur only at the end of an argument list, while null arguments can occur
anywhere.

Any macro argument containing ordinary (paddable) spaces must be enclosed in double
quotation marks, (""). Otherwise, it will be treated as several separate arguments. A double
quotation mark (") is a single character that must not be confused with two apostrophes or acute
accents (77), or with two grave accents (7).

Double quotation marks (") are not permitted as part of the value of a macro argument or of a
string that is to be used as a macro argument. If you must, use two grave accents (*°) and/or two
acute accents (") instead. This restriction is necessary because many macro arguments are
processed (interpreted) scveral times. For example, headings are first printed in the text and may
bereprinted in the table of contents.

4.3.2 Unpaddable Spaces

When output lines are justified to give an even right margin, existing spaces in a line may have
additional spaces appended to them. This may affect the desired alignment of text. To avoid this
problem, it is necessary to be able to specify a space that cannot be expanded during justification,
i.e., an “‘unpaddable space”. There are several ways to do this. First, you may type a backslash
(\) followed by a space. This pair of characters generates an unpaddable space. Second, you may
sacrifice some seldom-used character to be translated into a space upon output. Because this
translation occurs after justification, the chosen character may be used anywherce an unpaddable
space is desired. The tilde (7) is often used for this purpose. To use it in this way, insert the
following line at the beginning of the document:

Ar T

If a tilde must actually appear in the output, it can be temporarily recovered by inserting

tr

before the place where it is needed. Its previous usage is restored by repeating the .tr =, but only
after a break or after the line containing the tilde has been forced out. Use of the tilde in this way
is not reccommended for documents in which the tilde is used within equations.

4.3.3 Hyphenation

The formatters do not perform hyphenation unless the user requests it. Hyphenation can be
turned on in the body of the text by specifying

.nr Hy 1

at the beginning of the document. If hyphenation is requested, the formatters will automatically
hyphenate words as nceded. However, you may specify the hyphenation points for a specific
occurrence of any word by using a special character known as a “hyphenation indicator”
(initialy, the two-character sequence \%), or you may specify hyphenation points for a small list
of words (about 128 characters).

4-6

MM Reference

If the hyphenation indicator (initially, the two-character sequence \%) appears at the beginning
of a word. the word is not hyphenated. It can also be used to indicate legal hyphenation point(s)
inside a word. Inany case, all occurrences of the hyphenation indicator disappear on output.

The user may specify a different hyphenation indicator with the command:
.HC [hyphenation-indicator]

The caret (7) is often used for this purpose: this is done by inserting the following at the beginning
of a document:

HC "

Note that any word containing hyphens or dashes- -also known as em dashes—will be broken
immediately after a hyphen or dash if it is necessary to hyphenate the word, even if the formatter
hyphenation function is turned off.

Using the .hw request, you may supply a small list of words with the proper hyphenation points
indicated. For example, to indicate the proper hyphenation of the word *printout™, you may
specifly:

.hw print-out
4.3.4 Tabs

The macros MT, .TC, and .CS use the .ta request to set tab stops, and then restore the default
values of tab settings. Setting tabs to other than the default values is the user’s responsibility.

Note that a tab character is always interpreted with respect to its position on the input line, rather
than its position on the output line. In general, tab characters should appear only on lines
processed in no-fill mode. The tbl program changes tab stops but does not restore the default tab
settings.

4.3.5 Bullets

A bullet (+) is often obtained on a typewriter terminal by using the letter o overstruck by a +. For
compatibility with troff, a bullet string is provided by MM. Rather than overstriking, usc the
sequence:

\+(BU

wherever a bullet is desired. Note that the bullet list (.BL) macro uses this string to
automatically generate bullets for the list items.

4.3.6 Dashes, Minus Signs, and Hyphens

Troff has distinct graphics for a dash, a minus sign, and a hyphen, while nroff does not. If you
intend to use nroff only, you can use the minus sign (-) for all three.

If you plan to use both formatters, you must be careful in preparing text. Unfortunately, these
characters cannot be represented in a way that is both compatible and convenient. Try the
following:

Dash Use *(EM for each text dash for both nroff and troff. This string generates an em
dash (—) in troff and two dashes (——) in nroff. Note that the dash list (.DL) macro
automatically generates the em dashes for the list items.

Hyphen Use the hyphen character (=) for both formatters. Nroff will print it as is, and troff
will print a true hyphen.

4-7

XENIX Text Processing

Minus Use \- for a truc minus sign, regardless of formatter. Nroff will ignore the \, while
troff will print a true minus sign.

4.3.7 Trademark String

The trademark string *(Tm places the letters TM one half-line above the text that it follows. For
example, theinput:

The XENIX*(Tm System Reference Manual.
yields:
The XENIX® System Reference Manual.

4.4 Paragraphs and Headings
This section describes simple paragraphs and section headings.
4.4.1 Paragraphs

The paragraph macrois used to begin two kinds of paragraphs:

.P [type]
one or morc lines of text.

In a “left-justified” paragraph, the first line begins at the left margin, while in an “indented”
paragraph, it is indented five spaces.

A document has a default paragraph style obtained by specifying .P before each paragraph that
does not follow a heading. The default style is controlled by the number register Pt. The initial
value of Pt is 0, which always provides left-justified paragraphs. All paragraphs can be forced to
be indented by inserting the following at the beginning of the document:

.nr P

All paragraphs will be indented except after headings, lists, and displays if the following:
.nr Pt 2

is inserted at the beginning of the document.

The amount a paragraph is indented is contained in the register Pi, whose default value is 5. To
indent paragraphs by 10 spaces, for example, insert:

.nr Pi 10

at the beginning of the document. Both the Pi and Pt register values must be greater than zero for
any paragraphs to be indented.

The number register Ps controls the amount of spacing between paragraphs. By default, the Ps
register is set to 1, yielding one blank space (1/2 vertical space). Values that specify indentation
must be unscaled and are treated as “‘character™ positions, i.c., as a number of ens. In troff, an en
is the number of points (1 point = 1 /72-inch) equal to half the current point size. In nroff,anen s
cqualtothe width of a character.

Regardless of the value of Pt, an individual paragraph can be forced to be left-justified or
indented. .P always forces left justification; .P | always causes indentation by the amount
specified by the register Pi. If .P occurs insidc a list, the indent (if any) of the paragraph is added
to the current list indent.

Numbered paragraphs may be produced by sctting the register Np to 1. This produces
paragraphs numbered within first level headings, e.g., 1.01, 1.02, 1.03, 2.01.

4-8

MM Reference

A different style of numbered paragraphs is obtained by using the
P

macro rather than the .P macro for paragraphs. This produces paragraphs that are numbered
within seccond level headings and contain a double-line indent in which the text of the second line
isindented to be aligned with the text of the first line so that the number stands out. For example:

.H 1 "FIRST HEADING"
.H 2 "Sccond Heading"
.np

one or more lines of text

4.4.2 Numbered Headings

The heading macro has the form:

.H level [heading-text] [heading-suffix]
zero or more lines of text

The .H macro provides seven levels of numbered headings. Level 1 is the highest; level 7 the
lowest. The heading-suffix is appended to the heading-text and may be used for footnote marks
which should not appear with the heading text in the table of contents. You will not nced toinsert
a .P macro after a .H or .HU macro, because the .H macro also performs the function of the .P
macro. Ifa .Pfollowsa.H, the .Pisignored.

The effect of .H varies according to the level argument. First-level headings are preceded by two
blank lines (one vertical space); all others are preceded by one blank line.

.H 1 heading-text
Gives a bold heading followed by a single blank line. The following text begins on a
new line and is indented according to the current paragraph type. Full capital letters
should normally be used to make the heading stand out.

.H 2 heading-text
Yields a bold heading followed by a single blank line. The following text begins on a
new line and is indented according to the current paragraph type. Normally, initial
capitals are used.

.H nheading-text
Where n is a number greater than 3 and less than 7, produces an underlined (italic)
heading followed by two spaces. The following text appears on the same line.

Appropriate numbering and spacing (horizontal and vertical) occur even if the heading text is
omitted from an .H macro.

4.4.3 Appearance of Headings

You can modify the appearance of headings quite easily by setting certain registers and strings at
the beginning of the document. In this way you can quickly alter a document’s style because the
style control information is concentrated in a few lines, rather than distributed throughout the
document.

A first-level heading normally has two blank lines (one vertical space) preceding it, and all others
have one blank line. If a multiline heading splits across pages, it is automatically moved to the top
of the next page. Every first-level heading may be forced to the top of a new page by inserting

.ar Ejl

4-9

XENIX Text Processing

at the beginning of the document. Long documents may be made more manageable if cach
section starts on a new page. Sctting Ej to a higher value has the same effect for headings up to
that level; i.c., a page ¢ject occurs if the heading level is less than or equal to Ej.

Three registers control the appearance of text immediately following an .H macro. They are
heading break level (Hb), heading space level (Hs), and post-heading indent (Hi).

If the heading level is less than or equal to Hb, a break occurs after the heading. If the heading
level is less than or equal 1o Hs, a blank line is inserted after the heading. Defaults for Hband Hs
are 2. If a heading level is greater than Hb and also greater than Hs, then the heading (if any) is
run into the following text. With these registers, you can separate headings from text
consistently throughout the document, and allow for casy alteration of whitespace and header
emphasis.

For any stand-alonc heading, i.e., a heading not run into the following text, the alignment of the
next line of output is controlled by the register Hi. If Hi is 0, text is left-justified. If Hiis | (the
default value), the text is indented according to the paragraph type as specified by the register Pt.
Finally, if Hi is 2, text is indented to line up with the first word of the heading itself, so that the
heading number stands out more clearly.

For example, to cause a blank linc to appear after the first three heading levels, to have no run-in
headings, and to force the text following all headings to be left-justified (regardless of the value of
Pt), the following lines should appear at the top of the document:

.nr Hs 3
.nr Hb 7
anrHi 0

The register He can be used to obtain centered headings. A heading is centered if its level is less
thanor equal to He, and if it is stand-alone. Hcis 0 by default (nocentered headings).

4.4.4 Bold, Italic, and Underlined Headings

Any heading that is underlined by nroff is made italic by troff. The string HF (heading font)
contains seven codes that specify the fonts for heading levels 1-7.

Levels | and 2 are bold; levels 3 through 7 are underlined in nroff and italicin troff. The user may
reset HF as desired. Any value omitted from the right end of the list is taken 1o be 1. For
example, the following would result in five bold levels and two nonunderlined (Roman) levels:

dsHF 33333

Nroff can underline in two ways. The underline (.ul) request underlines only letters and digits.
The continuous style (.cu) request underlines all characters, including spaces. By default, MM
attempts to use the continuous style on any heading that is to be underlined and is short enough to
fitonasingleline. If a heading is too long, only letters and digits are underlined.

Using the —rU1 flag when invoking nroff forces the underlining of only letters and digits in all
headings.

4.4.5 Heading Point Sizes

If you are using troff, you may specify the desired point size for each heading level with the HP
string, as follows:

.ds HP [ps1] [ps2] [ps3] [ps4] [psS5] [ps6] [ps7]

By default, the text of headings (.H and .HU) is printed in the same point size as the body except
that bold stand-alone headings are printed in a size one point smaller than the body. The string
HP, similar to the string HF, can be specified to contain up to seven values, corresponding to the
seven levels of headings. For example:

4-10

MM Reference

ds HP 121211 1010 10 10

prints the first two heading levels in 12-point type, the third heading level in 11-point type, and
the remainder in 10-point type. The specified values may also be relative point-size changes, e.g.:

ds HP +2 +2 -1 -1

[f absolute point sizes are specified, those sizes will be used regardless of the point sizc of the body
of the document. If relative point sizes are specified, then the point sizes for the headings will be
relative to the point size of the body, even if the point size of the body is changed. Omitted or zero
values imply that the default point size will be used for the corresponding heading level.

Note

When you change the point size of headings, vertical spacing remains unchanged.
Therefore, if you specily a large point size for a heading, you must also increase vertical
spacing (with .11X and/or .HZ) o prevent overprinting.

4.4.6 Marking Styles

The heading mark macro has the form:
HM [argl] ...[arg7)

1o change the heading mark style of a heading. The registers named H1 through H7 are used as
counters for the seven levels of headings. Their values are normally printed using Arabic
numerals. The heading mark style ((HM) macro allows this choice to be overridden. This macro
can have up to seven arguments: each argument is a string indicating the type of marking to be
used. Omitted values are interpreted as 1; illegal values have no effect. The values available arc:

Value Interpretation

1 Arabic (default for all levels)

0001 Arabic with enough leading zeroes to get specified digits
A Uppercase alphabetic

a Lowercase alphabetic

| Uppercase Roman

i Lowercase Roman

By default, the complete heading mark for a given level is built by concatenating the mark for
that level to the right of all marks for all levels of higher value. To inhibit the printing of
successive heading level marks, i.e., to obtain just the current level mark followed by a period, set
the heading-mark type (Ht) registerto 1.

For example, a commonly used outline style is obtained by:

HMIA1l1ai
.nr Ht 1

4.4.7 Unnumbered Headings

The unnumbered heading macro has the form:
.HU heading-text

It produces unnumbered heads. .HU is a special case of .H: it is handled in the same way as .H,
except that no heading mark is printed. In order to preserve the hierarchical structure of

4-11

XENIX Text Processing

headings when .H and .HU macros are intermixed, each .HU heading is considered to exist at the
level given by register Hu, whose initial value is 2. Thus, in the normal case, the only difference
between:

.HU heading-text
and
.H 2 heading-text

is the printing of the heading mark for the latter. Both have the effect of incrementing the
numbering counter for level 2, and resetting to zero the counters for levels 3 through 7. Typically,
the value of Hu should be set to make unnumbered headings (if any) be the lowest-level headings
in a document. .HU can be especially helpful in sctting up appendices and other sections that
may not fit well into the numbering scheme of the main body of a document.

4.4.8 Headings and the Table of Contents

The text of headings and their corresponding page numbers can be automatically collected for a
table of contents. This is accomplished by specifying in the register Cl what level headings arc to
be saved, then invoking the .TC macro at the end of the document.

Any heading whose level is less than or equal to the value of the contents level (CL) register is
saved and printed in the table of contents. The default value for Clis 2;i.c., the first two levels of
headings arc saved.

Because of the way the hecadings are saved, it is possible 10 cxceed the formatter’s storage
capacity, particularly when saving many levels of many headings while also processing displays
and footnotes. If this happens, an “Out of temp file space” message will occur; the only remedy is
to save fewer levels or to have fewer words in the heading text.

4.4.9 First-Level Headings and the Page Numbering Style

By default, pages arc numbered sequentially at the top of the page. For large documents, it may
be desirable to usc section-page numbering where the section is the number of the current first-
level heading. This page numbering style can be achieved by specifying the -rN3 or -rN5 flag on
the command line. As a side effect, this alsosets Ej to 1, so that each section begins ona new page.
The page number is printed at the bottom of the page, so that the correct section number is
printed.

4.4.10 User Exit Macros

This section is intended only for users who are accustomed to writing formatter macros. With
.HX, .HY and .HZ you can obtain control over the previously described heading macros. You
must define these macros yourself and use them in the form:

.HX dlevel rlevel heading-text
.HY dlevel rlevel heading-text
.HZ dlevel rlevel heading-text

The .H macro invokes . X shortly before the actual heading text is printed; it calls .HZ as its last
action. After .HX is invoked, the sizc of the heading is calculated. This processing causes certain
features that may have been included in .HX, such as .ti for temporary indent, to be lost. After
the size calculation, .HY is invoked so that you may specify these features again. All the default
actions occur if these macros are not defined. If you define .HX, .HY, or .HZ, your definition is
interpreted at the appropriate point. These macros can therefore influence the handling of all
headings, because the .HU macro is actually a special case of the .H macro.

4-12

MM Reference

If the user originally invoked the .H macro, then the derived level dievel and the real level rlevel
are both equal to the level given in the .H invocation. If you originally invoked the .HU macro,
dlevel is equal to the contents of register Hu , and rlevel is 0. In both cases, heading-text is the
text of the original invocation.

By the time .H calls .HX, it has already incremented the heading counter of the specified level,
produced a blank linc (vertical space) to precede the heading, and accumulated the heading
mark, i.e., the string of digits, letters, and periods needed for a numbered heading. When .HX is
called, all user-accessible registers and strings can be referenced as well as the following:

string JO
If rlevel is nonzero, this string contains the heading mark. If rlevel is 0, this string is
null.

register ;0
This register indicates the type of spacing that is to follow the heading. A valuc of 0
means that the heading is run-in. A value of 1 means a break (but no blank line) is to
follow the heading. A value of 2 means thata blank line is to follow the heading.

string }2
If register :0 is O, this string contains two unpaddable spaces that will be used to
separate the heading from the following text. If register ;0 is nonzero, this string is
null.

register ;3

This register contains an adjustment factor for an .ne request issued before the
heading is actually printed. On entry to .HX, it has the value 3 if dlevel equals 1,and 1
otherwise. The .ne request is for the following number of lines: the contents of the
register ;0 taken as blank lines (halves of vertical space), plus the contents of register
3 as blank lines (halves of vertical space) plus the number of lines of the heading.

The user may alter the values of }0,}2, and ;3 within .HX as desired. If you use temporary string
or macro names within .HX, choose them careflully.

-HY is called after the .ne is issued. Certain features requested in .HX must be repeated. For
cxample:

de HY
AFN\S1=3 .ti 5n
.P

-HZ is called at the end of .H to permit user-controlled actions after the heading is produced. For
cxample, in a large document, sections may correspond to chapters of a book, and you may want
tochange a page header or footer. For example:

.de HZ
AF\N\$1=1 PF""'Secction \\§2"""
P

4.5 Lists

This section describes the kinds of lists which can be obtained with the MM macros, including
automaticaily numbered and alphabetized lists, bullet lists, dash lists, lists with arbitrary marks,
and lists starting with arbitrary strings (e.g., with terms or phrases to be defined).

In order to avoid repetitive typing of arguments to describe the appearance of items in a list, MM
provides a convenient way to specify lists. Alllists are composed of the following parts:

4-13

XENIX Text Processing

— A “list-initialization” macro that controls the appearance of the list (¢.g. line spacing,
indentation, marking with special symbols, and numbering or alphabetizing).

— One or more “list item™ macros, each followed by the actual text of the corresponding
list item.

— The*listend” macro that terminates the list and restores the previous indentation.

Lists may be nested up to five levels. The list-item (.LI) macro saves the previous list status (e.g.,
indentation, marking style, etc.); the list-end (.LE) macro restores it. The format of a list is
specified only once at the beginning of list. You may also create your own customized sets of list
macros with relatively little cflort.

4.5.1 Sample Nested List

The input for several lists and the corresponding output are shown below. The .AL and .DL
macros arc examples of the “list-initialization” macros. Here is some sample input text:

AL A

.LI

This is an alphabetized item.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

AL

.LI

This is a numbered item.

This text shows the alignment of the sccond line of the item.
The quick brown fox jumped over the lazy dog’s back.

.DL

.LI

This is a dash item.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.
LI+

This is a dash item with a plus as prefix.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

.LE

.LI

This is numbered item 2.

.LE

.LI

This is another alphabetized item, B.

This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog’s back.

.LE

.P

This paragraph appears at the left margin.

The output looks like this:

A. This is an alphabetized item. This text shows the
alignment of the second line of the item. The quick brown
fox jumped over the lazy dog’s back.

4-14

MM Reference

1. This is a numbered item. This text shows the
alignment of the second line of the item. The quick
brown fox jumped over the lazy dog’s back.

— This is a dash item. This text shows the
alignment of the second line of the item. The
quick brown fox jumped over the lazy dog’s
back.

+— This is a dash item with a plus as prefix. This
text shows the alignment of the sccond line of
the item. The quick brown fox jumped over the
lazy dog’s back.

2. This is numbered item 2.

B. This is another alphabetized item, B. This text shows the
alignment of the second linc of the item. The quick brown
fox jumped over the lazy dog’s back.

This paragraph appears at the left margin.
4.5.2 List Item

The list item macro has the form:

.L1 [mark] [1]
one or more lines of text that make up the list item.

The .LI macro is used with all lists. It normally causes the output of a single blank line before its
item, although this may be suppressed. If no arguments are given, it labels its item with the
“current mark™ which is specified by the most recent list-initialization macro. If a single
argument is given to L1, that argument is output instead of the current mark. If two arguments
are given, the first argument becomes a prefix to the current mark, thus allowing you to
cmphasize one or more items in a list. One unpaddable space is inserted between the prefix and
the mark. Forexample:

.BL

.L1

This is a simple bullet item.

LI +

This replaces the bullet with a plus.

LI +1

But this uses plus as prefix to the bullet.
.LE

This yields:
» Thisisasimple bulletitem.
+ Thisreplaces the bullet with a plus.

++ But this uses plus as prefix to the bullet.

Note that the mark must not contain ordinary (paddable) spaces, because alignment of items will
be lost if the right margin is justified. If the “*current mark™ in the current list is a null string, and
the first argument of LI is omitted or null, the resulting effect is that of a **hanging indent”, i.e.,
the first line of the following text is outdented, starting at the same place where the mark would

4-15

XENIX Text Processing

have started.
4.5.3 List End

The list end macro has the form:
.LE [1]

The list end macro restores the state of the list to that existing just beforc the most recent list-
initialization macro call. If the optional argument is given, the .LE outputs a blank line. You
should usc this option only when the .LE is followed by running text, but not when followed by a
macro that produces blank lincs of its own, suchas .P, .H, or .LI.

.H and .HU automatically clear all list information, so you may omit the .LE(s) that would
normally occur just before cither of these macros. This is not recommended, however, because
crrors will occur if the list text is separated from the heading at some later time (e.g., by insertion
of text).

4.5.4 Initializing Automatically Numbered or Alphabetized Lists

The list initialization macro for numbered lists has the form:
AL [type] [text-indent] [1]

The .AL macro is used to begin scquentially numbered or alphabetized lists. If there are no
arguments, the list is numbered and text is indented by Li, initially 6 spaces from the indent in
force when the (AL is called, thus leaving room for a space, two digits, a period, and two spaces
before the text. Values that specify indentation must be unscaled and are treated as character
positions, i.c., as the number of ens in troff.

Spacing at the beginning of the list and between the items can be suppressed by setting the list
space (Ls) register. Lsis sct to the innermost list level for which spacing is done. For example:

.arLs O

specifics that no spacing will occur around any list items. The default value for Ls is 6 (which is
the maximum list nesting level).

The type argument may be given to obtain a different type of sequencing, and its value should
indicate the first element in the sequence desired, (i.c., it must be 1, A, a, I, or i). Note that the
0001 format is not permitted. If type is omitted or null, then 1 is assumed. If text-indent is non-
null, itis used as the number of spaces from the current indent to the text, it is used instead of Li
for this list only. If text-indent is null, then the value of Li will be used.

If the third argument is given, a blank line will not separate the items in the list. A blank line will
occur before the first item, however.

4.5.5 Bullet List

The list-inttialization macro for a bullet list has the form:
.BL [text-indent] [1]

.BL begins a bullet list, in which each item is marked by a bullet () followed by one space. If
text-indent is non-null, it overrides the default indentation—amount of paragraph indentation as
given in the register Pi. In the default case, the text of bullet and dash lists lines up with the first
line of indented paragraphs. If a second argument is specified, no blank lines will separate the
items in the list.

4-16

MM Reference

4.5.6 Dash List

The list-initialization macro for dash lists has the form:
.DL [text-indent] [1]

.DL isidentical to .BL, except that a dash is used instcad of a bullet.
4.5.7 Marked List

The form of the list-initialization macro for a marked list is:
.ML mark [text-indent] [1]

.ML is much like .BL and .DL, except that it requires an arbitrary mark, which may consist of
more than a single character. Text is indented rext-indent spaces if the second argument is not
null; otherwise. the text is indented one more space than the width of the mark. If the third
argument is specificd, no blank lines will separate the items in the list. Note that the mark must
not contain ordinary (paddable) spaces, because alignment of items will be lost if the right
margin is justified.

4.5.8 Reference List

The list-initialization macro for a reference list has the form:
.RL [text-indent] [1]

A .RL macro begins an automatically numbered list in which the numbecrs are enclosed by square
brackets ([]). The text-indent may be supplied, as for .AL. If omitted or null, it is assumed to be
6. a convenient value for lists numbered up to 99. If the second argument is specified, no blank
lines will separate the items in the list.

4.5.9 Variable-Item List

The list-initialization macro for a variable-item list is:
.VL text-indent [mark-indent] [1]

When a list begins with a .VL, there is effectively no current mark: it is expected that each L1
provides its own mark. This form is typically used to display definitions of terms or phrascs.
Mark-indent gives the number of spaces from the current indent to the beginning of the mark,
and it defaults to 0 if omitted or null. Text-indent gives the distance from the current indent to
the beginning of the text. If the third argument is specified, no blank lines will separate the items
in the list. Hereisanexample of .VL usage:

4-17

XENIX Text Processing

ar”

VL 202

.LI mark”]

Here is a description of mark [;

mark | of the .LI line contains a tilde translated

to an unpaddable space in order to avoid extra spaces
between the mark and 1.

.LT second“mark

This is the second mark, also using a tilde translated
to an unpaddable space.

.LI third mark longer “than indent:

This item shows the cffect of a long mark; one space separates the mark
from the text.

LI-

This item has no mark because the

tilde following the .LI is translated into a space.

.LE
This yields:
mark | Here is a description of mark 1; mark 1 of the .LI line contains a tilde
translated to an unpaddable space in order to avoid extra spaces between
the markand 1.
second mark This is the sccond mark, also using a tilde translated to an unpaddable

space.

third mark longer than indent This item shows the effect of a long mark; one space separates
the mark from the text.

This item has no mark because the tilde following the .LI is translated
intoa space.

The tilde argument on the last .L1 above is required; otherwise a hanging indent would have been
produced. A hanging indent is produced by using .VL and calling .LI with no arguments or with
a nullfirstargument. For example:

VL 10

.L1

Here is some text to show a hanging indent.
The first line of text is at the left margin.
The second is indented 10 spaces.

.LE

yields:

Here is some text to show a hanging indent. The first line of text is at the left margin. The second
is indented 10 spaces.

Note that the mark must not contain ordinary (paddable) spaces, because alignment of items will
be lost if the right margin is justified.

4.5.10 List-Begin Macro and Customized Lists

The list-begin macro has the form:

.LB text-indent mark-indent pad type [mark] [LI-space] [LB-space]

4-18

MM Reference

The list-initialization macros should be adequate for most cases. However, if necessary, you may
obtain more control over list layouts by using the basic list-begin macro .LB.

A text-indent argument gives the number of spaces that the text is to be indented from the
current indent. Normally, this value is taken from the register Li for automatic lists and from the
register Pi for bullet and dash lists. The combination of mark-indent and pad determines the
placement of the mark. The mark is placed within an arca (called “mark area”) that starts
mark-indent spaces to the right of the current indent, and ends where the text begins text-indent
spaces to the right of the current indent. The mark-indent argument is typically 0. Within the
mark area, the mark is left-justified if pad is 0. If pad is greater than 0, then n blanks are
appended to the mark; the mark-indent value is ignored. The resulting string immediately
precedes the text. That is, the mark is effectively right-justified pad spaces immediately to the
left of the text.

Type and mark interact to control the type of marking used. If type is 0, simple marking is
performed using the mark character(s) found in the mark argument. If type is greater than 0,
automatic numbering or alphabetizing is done, and mark is then interpreted as the first item in
the scquence to be used for numbering or alphabetizing (i.e., it is chosen from the set 1, A, a, I, i).

Each nonzero value of type from 1 to 6 selects a different way of displaying the items. The
following table shows the output appearance for cach value of type:

Type Appearance
1 X.

2 X)

3 (x)

4 (x]

5 <x>

6

{x}

The mark must not contain ordinary (paddable) spaces, because alignment of items will be lost if
the right margin is justified.

Ll-space gives the number of blank lines (halves of a vertical space) that should be output by
each .LI macro in the list. If omitted, LI-space defaults to 1; the value 0 can be used to obtain
compact lists. If LI-space is greater than 0, the .LI macro issues a .ne request for two lines just
before printing the mark. LB-space, the number of blank lines to be output by .LB itsclf, defaults
to 0 il omitted.

There are three reasonable combinations of Ll-space and LB-space. The normal case is to sct
LI-space to 1 and LB-space to 0, yielding one blank line before cach item in the list; such a list is
usually terminated witha .LE | to end the list with a blank line. For a more compact list, set LI-
space to 0 and LB-space to 1, and, again, use .LE 1 at the end of the list. The result is a list with
one blank linc before and after it. If you set both LI-space and LB-space t0 0, and use .LE to end
the list, a list without any blank lines will result.

4.6 Displays

Displays are blocks of text that are to be kept together rather than split across pages. MM
provides two styles of displays: a “static” (.DS) style and a “*floating” (.DF) style. In the static
style, the display appears in the same relative position in the output text as it does in the input
text. If the display will not fit in the space remaining on a page, it will be shifted to the top of the
next page. This may result in cxtra whitespace at the bottom of some pages. In the floating style,
the display floats through the input text to the top of the next page if there is not enough room for
it on the current page; thus the input text that follows a floating display may precede it in the
output text. A queue of floating displays is maintained so that their relative order is not
disturbed.

XENIX Text Processing

By default, a display is processed in no-fill mode, with singlespacing, and is not indented from the
existing margins. You can specify indentation or centering, as well as fill-mode processing.

Displays and footnotes can never be nested in any combination. Although lists and paragraphs
are permitted, no headings (.H or .HU) can occur within displays or feotnotes.

4.6.1 Static Displays

A static display macro has the form:

.DS [format] [fill] [rindent]
one or more lines of text
.DE

A static display is started by the .DS macro and terminated by the .DE macro. With no
arguments, .DS will accept the lines of text exactly as they are typed (no-fill mode) and will not
indent them from the prevailing left margin indentation or from the right margin. The rindent
argument is the number of characters that the line length should be decreased, i.c., an
indentation from the right margin. This number must be unscaled in nroff and is treated as ens.
It may bescaled in troff or else it defaults to ems,

The format argument to .DS is an integer or letter used to control the left margin indentation and
centering. The format argument can have the following meanings:

Code Meaning

e No indent

Oor L No indent

lorl Indent by standard amount

2orC Center each line @

3or CB Center as a block
The fill argument is also an integer or letter and can have the following meanings:

Code Meaning
e -1l mode
Oor N No-fill mode
lorF Fill mode

Omitted arguments are interpreted as zero.

The standard indentation is taken from the Si register which is initially set at 5. Thus, by defauit,
the text of an indented display aligns with the first line of indented paragraphs, whose indent is
contained in the Pi register. Even though their initial values are the same, these two registers are
independent of onc another.

The display format value 3 (CB) centers the entire display as a block (as opposed to .DS 2 and
.DF 2, which center cach line individually). That is, all the collected lines are left-justified, and
the display is centered based on the width of the longest line. This format must be used in order
for the eqn/neqn mark and lineup feature to work with centered equations.

By default, a blank line is placed before and after displays. The blank lines before and after static
displays can be inhibited by setting the register Ds to 0.

4.6.2 Floating Displays

The floating display macro has the form:

.DF [format] [All] [rindent] @
one or more lines of text
.DE

4-20

MM Reference

A floating display is started by the .DF macro and terminated by the .DE macro. The arguments
have the same meanings as for .DS (see Section 4.6.1, “Static Displays™), except that for floating
displays, indent, no indent, and ccntering are always calculated with respect to the initial left
margin, because the prevailing indent may change between the time when the formatter first
reads the floating display and the time that the display is printed. Onc blank line always occurs
both before and after a floating display.

You may control output positioning of floating displays through two number registers, De and
Df. When a floating display is encountered by nroff or troff, it is processed and placed into a
queuc of displays waiting to be output. Displays are removed from the queue and printed in the
order that they were entered in the queue, which is the order that they appear in the input file. Ifa
new floating display is encountered and the queue of displays is empty, the ncw display is a
candidate for immediate output on the current page. Immediate output is governed by the size of
the display and the setting of the Df register. The De register controls whether or not text will
appear on the current page after a floating display has been produced.

The settings for the De register arc as follows:
0 Default: Nospecial action occurs.

1 A page eject will always follow the output of cach floating display, so only one
floating display will appear on a page and no text will follow it.

The settings for the Df register arc as follows:

0 Floating displays will not be output until end of section (when using section-page
numbering) or end of document.

1 Outputs the new floating display on the current page if there is room, otherwise hold
it until the end of the section or document.

2 Outputs exactly one floating display from the queue at the top of a new page or
column (when in two-column mode).

3 Outputs one floating display on current page if there is room. Outputs cxactly one
floating display at the top of a new page or column.

4 QOutputs as many displays as will fit (at least one), starting at the top of a new page or
column. Note that if register De is set to 1, each display will be followed by a page
eject, causing a new top of page to be reached, where at least one more display will be
output.

5 Default. Qutputs a new floating display on the current page if there is room. Outputs
as many displays as will fit starting at the top of a new page or column. Note that if
register De is sct to 1, each display will be followed by a page eject, causing a new top
of page to be reached, where at least one more display will be output.

Note: any value greater than 5is treated as the value 5.

The .WC macro may also be uscd to control handling of displays in double-column mode and to
control the break in the text beforc floating displays.

As long as the queue contains one or more displays, new displays will be automatically added to
the queue, rather than be output. When a new page is started (or when at the top of the second
column in two-column mode), the next display from the queue will be output if the Df register has
specified top-of-page output. When a display is output it is removed from the queue.

When the end of a scction (when using section-page numbering) or the end of a document is
reached, all displays are automatically output and removed from the queue. This will occur

4-21

XENIX Text Processing

beforean .SG, .CS, or . TC macrois processed.

A display fits on the current page if there is enough room to contain the entire display on the page,
or if the display is longer than one page in length and less than half of the current page has been
used. Wide (full page width) display will never fit in the second column of a two-column
document.

4.6.3 Tables

The table macro has the form:

TS [H]

global options;
column descriptors.
title lines

[.TH [N])

data within the table.
.TE

The table start (.TS) and table end (.TE) macros allow use of the tbl processor. They are used to
delimit the text to be examined by the tbl program as well as to set proper spacing around the
table. The display function and the tbl delimiting function are independent of one another,
however. In order to keep together blocks that contain any mixture of tables, equations, filled and
unfilled text, and caption lines, the .TS-.TE block should be enclosed within a display (.DS-.DE),
as each display is always treated as a unit. Floating tables may be enclosed inside floating
displays (.DF-.DE). (For more information on displays, see Section 4.6, “Displays™.)

The macros .-TS and . TE also permit processing of tables that extend over several pages. Ifa table
heading is needed for each page of a multipage table, use the argument H with the . TS macro (as
above). Following the options and format information, the table heading is typed on as many
lines as required and followed by the .TH (table header) macro. The .TH macro must occur
when TS H is used. Note that this is not a feature of tbl, but rather of MM macro definitions.

The table header macro .TH may take as an argument Lhe letter N. This argument causes the
table header to be printed only if it is the first table header on the page. This option is used when it
is necessary to build long tables from smaller .TS H-_TE segments. For example:

TS H

global options;
column descriptors.
Title lines

.TH

data

.TE

TS H

global options;
column descriptors.
Title lines

.THN

data

.TE

This causes the table heading to appear at the top of the first table segment, and no heading to
appear at the top of the second segment when both appear on the same page. However, the
heading will still appear at the top of each page that the table continues onto. This feature is used
when a single table must be broken into segments because of table complexity (for example, too
many blocks of filled text). If each segment had its own . TS H-TH sequence, each segment would
have its own header. However, if each table segment after the first uses .TS H.TH N then the
table header will only appear at the beginning of the table and the top of each new page or column

4.22

MM Reference

that the table continues onto.
4.6.4 Equations

The equation macro has the form:

.DS 1

EQ [label]
equation(s)
.EN

.DE

The equation formatters eqn and neqn usc the the equation start ((EQ) and cquation end (.EN)
macros as delimiters in the same way that tbl uses . TS and .TE; however, .EQ and .EN must
occur inside 2 .DS-.DE pair. There is an exception to this rule: if .EQ and .EN are used only to
specify the delimiters for in-line cquations or to specify eqn/negn “defines”, .DS and .DE must
not be used: otherwise, extra blank lines will appear in the output.

The .EQ macro takes an argument that will be used as a label for the equation. By default, the
label appears at the right margin in the vertical center of the general equation. The Eq register
may be set to | to set the label at the left margin, The equation is centered for centered displays;
otherwise, the equation is adjusted to the opposite margin from the label.

4.6.5 Figure, Table, Equation, and Exhibit Captions

The macros for captions have the form:

FG [title] [override] [flag]
.TB title] [override] [flag]
.EC [tite] [override] [flag]
EX [title] [override] [flag]

The figure title (.FG), table title (.TB), cquation caption (.EC), and exhibit caption ((EX)
macros are normally used inside . DS-.DE pairs to automatically number and title figures, tables,
and equations. They use registers Fg, Tb, Ec, and Ex, respectively. Asan example, the macro:

.FG "This is an illustration”
yiclds:
Figure 1. This is an illustration

Instead of “Figure” TB prints “TABLE”; .EC prints “Equation™, and .EX prints “Exhibit”.
Output is centered if it can fit on a single line; otherwise, all lines but the first are indented to line
up with the first character of the table title. The format of the numbers may be changed using the
.af request of the formatter. The format of the caption may be changed from “Figure 1. Title” to
“Figure 1 - Title” by setting the Of register to 1.

The override string is used to modify the normal numbering. If flag is omitted or 0, override is
used as a prefix to the number; if flag is 1, override is used as a suffix; and if fag is 2, override
replaces the number. If the -rN5 flag is given, section-figure numbering is set automatically and
the override string is ignored.

As a matter of style, table headings are usually placed ahead of the text of the tables, while figure,
equation, and exhibit captions usually occur after the corresponding figures and equations.

4.6.6 List of Figures, Tables, Equations, and Exhibits

Lists of Figures, Tables, Equations, and Exhibits may be obtained. They will be printed after the

4-23

XENIX Text Processing

Table of Contents is printed if the number registers Lf, Lt, Lx, and Leareset to 1. Lf, Lt,and Lx
are | by default; Leis 0 by default.

The titles of these lists may be changed by redefining the following strings which are shown here
with their default values:

.ds Lf LIST OF FIGURES

ds Lt LIST OF TABLES

ds Lx LIST OF EXHIBITS
ds Le LIST OF EQUATIONS

4.7 Footnotes

There are two macros that delimit the text of footnotes, a string used to automatically number the
footnotes, and a macro that specifies the style of the footnote text. Like displays, footnotes are
processed differently from the body of the text.

Footnotes may be automatically numbered by typing the three characters “*F” immediately
after the text to be footnoted, without any intervening spaces. This will place the next sequential
footnote number (in a smaller point size) a half-line above the text to be footnoted.

There are two macros that delimit the text of each footnote:

.FS [label]
one or more lines of footnote text
.FE

The footnote start (.FS) macro marks the beginning of the text of the footnote, and the footnote
end (.FE) macro marks its end. The label on .FS, if present, will be used to mark the footnote
text. Otherwise, the number retrieved from the *F will be used. Automatically numbered and
uscr-labeled footnotes may be intermixed. If a footnote is labeled .FS the text to be footnoted
must be followed by “label,” rather than by *F. The text between .FS and .FE is processed in fill
mode. Another .FS, a .DS, or a .DF are not permitted between the .FS and .FE macros.
Automatically numbered footnotes may not be used for information, such as the title and
abstract, to be placed on the cover sheet, but labeled footnotes are allowed. Similarly, only
labeled footnotes may be used with tables. Here are two examples:

I. Automatically numbered footnote:

This is the line containing the word *F
.FS

This is the text of the footnote.

.FE

to be footnoted.

2. Labeled footnote:

This is a labeled#

FS»

The footnote is labeled with an asterisk.
.FE

footnote.

The text of the footnote (enclosed within the .FS-.FE pair) should immediately follow the word to
be footnoted in the input text, so that \+F or /abel occurs at the end of a line of input and the next
line is the .FS macro call. It is also good practice to append an unpaddable space to “label” when
it follows an end-of-sentence punctuation mark (i.e., period, question mark, exclamation point).

4-24

MM Reference

4.7.1 Format of Footnote Text

The footnote format macro has the form:
.FD [arg] [1]

Within the footnote text, you can control the formatting style by specifying text hyphenation,
right margin justification, and text indentation, as well as left- or right-justification of the label
when text indenting is used. The .FD macro is invoked to select the appropriate style. The first
argument should be a number from the left column of the following table. The formatting style
for each number is given by the remaining four columns. For further explanation of the first two
of these columns, see the definitions of the .ad, .hy, .na, and .nh requests.

ARGUMENT | FORMATTING STYLE

0 .nh | .ad | text indent | label left-justified

1 sy | .ad | text indent | label left-justified
2 .nh | .na | textindent | label left-justified
3 .hy | .na | text indent | label left-justified
4 .nh | .ad | no indent label left-justified
5 .hy | .ad | no indent label left-justified
6 .nh | .na | noindent label left-justified
7 hy | .na | no indent label left-justified
8 .nh | .ad | text indent | label right-justified
9 Jhy | .ad | text indent | label right-justified
10 .nh | .na | text indent | label right-justified
11 gy | .na | text indent | label right-justified

If the first argument 10 .FD is out of range, the effect is as if .FD 0 were specified. If the first
argument is omitted or null, the effect is equivalent to .FD 10 in nroff and to .FD 0 in troff; these
are also the respective initial defaults.

If a second argument is specified, then whenever a first-level heading is encountered,
automatically-numbered footnotes begin again with 1. This is most useful with the section-page
page numbering scheme. Asanexample, the input line:

. FD nn l

maintains the default formatting style and causes footnotes to be numbered beginning with 1
after each first-level heading.

For long footnotes that continue onto the following page, it is possible that, if hyphenation is
permitted, the last line of the footnote on the current page will be hyphenated. Except for this
case (which you can change by specifying an cven-numbered argument to .FD), hyphenation
across pages is inhibited by MM,

Footnotes arc separated from the body of the text by a short rule. Footnotes that continue to the
next page are separated from the body of the text by a full-width rule. In troff, footnotesare setin
type that is two points smaller than the point sizc used in the body of the text.

Normally, one blank line (a three-point vertical space) separates the footnotes when more than
onc occurs on a page. To change this spacing, set the register Fs to the desired value. For
example:

r Fs 2

will causc two blank lines (a six-point vertical space) to occur between footnotes.

4-25

XENIX Text Processing

4.8 Page Headers and Footers

Text that occurs at the top of each page is known as the “page header”. Text printed at the
bottom of each page is called the *“page footer”. There can be up to three lines of text associated
with the header: every page, even page only, and odd page only. Thus the page header may have
up to two lines of text: the line that occurs at the top of every page and the line for the even- or
odd-numbered page. The same is true for the page footer. When not qualified by “even” or
“odd”, “*header” and “footer” will mean those headers and footers that occur on every page. The
default appearance of page headers and page footers is described here, followed by the methods
for changing them.

4.8.1 Default Headers and Footers

By default, each page has a centered page number as the header. There is no default footer and
noeven/odd default headers or footers, except with section-page numbering.

In a memorandum or a released paper, the page header on the first page is automatically
suppressed, if a break does not occur before .MT is called. Since they do not cause a break, the
header and footer macros are permitted before the .MT macro call.

4.8.2 Page Header

The page header macro has the form:
.PH [arg]
For this and for the .EH, .OH, .PF, .EF, and .OF macros, thc argument is of the form:

"left-part’center-part’right-part

If it is inconvenient to use the apostrophe (') as the delimiter (because it occurs within one of the
parts), it may be replaced uniformly by any other character. On output, the parts are left-
justified, centered, and right-justified, respectively.

The .PH macro specifies the header that is to appear at the top of every page. The initial value is
the default centered page number enclosed by hyphens. The page number contained in the P
register isan Arabic number. The format of the number may be changed by the .af request.

If “debug mode” is sct using the flag -rD1 on the command line, additional information, printed
atthe top left of cach page, is included in the default header.

4.8.3 Even-Page Header

The even-page header macro has the form:
.EH [arg]

The .EH macro supplies a line to be printed at the top of cach even-numbered page, immediately
following the header. The initial value is a blank line.

4.8.4 0dd-Page Header

The odd-page header macro has the form:
.OH |[arg]

This macrois the same as .EH, except that it applies to odd-numbered pages.

4-26

MM Reference

4.8.5 Page Footer

The form of the page footer macroiis:
.PF [arg]

The .PF macro specifics the line that is to appear at the bottom of each page. Its initial value is a
blank line. If the -rCn flag is specified on the command line, the type of copy follows the footer on
a scparate line. In particular, if -rC3 or -rC4 (DRAFT) is specified, then the footer is initialized
to contain the datce, instead of being a blank line.

4.8.6 Even-Page Footer

The even-page footer macro has the form:
.EF [arg]

The .EF macro supplies a line to be printed at the bottom of each even-numbered page,
immediately preceding the footer. Theinitial valueis a blank line.

4.8.7 Odd-Page Footer

The odd-page footer macro has the form:
.OF |arg]

This macro is the same as .EF (described in Section 4.8.6), except that it applies to odd-
numbered pages.

4.8.8 Footer on the First Page

By default, the footer on the first page is a blank line. If, in the input text, you specify .PFand/or
.OF before the end of the first page of the document, then these lines will appear at the bottom of
the first page. The header (whatever its contents) replaces the footer on the first page only if the
-rN1 flag is specified on the command line.

4.8.9 Default Header and Footer With Section-Page Numbering

Pages can be numbcered sequentially within sections. To obtain this numbering style, specify
-rN3 or -rN5 on the command line. In this case, the default footer is a centered section-page
number (e.g., 7-2) and the defauit pagc header is blank.

4.8.10 Strings and Registers in Header and Footer Macros

String and register names may be placed in the arguments to the header and footer macros. I1f the
valuc of the string or register is to be computed when the respective header or footer is printed, the
invocation must be escaped by four backslashes. This is because the string or register invocation
is actually processed three times: as the argument to the header or footer macro; in a formatting
request within the header or footer macro; and in a .tl request during header or footer processing.

For example, the page number register P must be escaped with four backslashes in order to
specify a header in which the page number is to be printed at the right margin:

.PH Iv”spagc \\\\npnl

This creates a right-justified header containing the word ““Page” followed by the page number.

4-27

XENIX Text Processing

4.8.11 Header and Footer Example

The following sequence specifies blank lines for the header and footer lines, page numbers on the
outside edge of each page (i.c., top left margin of even pages and top right margin of odd pages),
and “Revision 3" on the top inside margin of each page:

.PH nn
.PF I}
.EH "\\\\nP”Revision 3™
.OH "Revision 3"\\\\nP""

4.8.12 Generalized Top-of-Page Processing

This section and the next are intended only for users accustomed to writing formatter macros.
During header processing, MM invokes two user-definable macros. One, the .TP macro, is
invoked in the environment of the header. The .PX macro may be used to provide text that is to
appear at the top of each page after the normal header and that may have tab stops toalign it with
columns of text in the body of the document.

The effective initial definition of . TP (after the first page of a document) is:

de TP
sp3
ANV
ife’tl
ifo’tl
sp2

The string Jt contains the header, the string }e contains the even-page header, and the string }o
contains the odd-page header, as defined by the .PH, .EH, and .OH macros, respectively. To
obtain more specialized page titles, you may redefine the .TP macro to cause any desired header
processing. Note that formatting donc within the .TP macro is processed in an environment
different from that of the body.

For example, to obtain a page header that includes three centered lines of data, say, a document’s
number, issue date, and revision date, you could define . TP as follows:

de TP

.Sp

.cc3
777-888-999

Iss. 2, AUG 1977
Rev. 7, SEP 1977

sp
4.8.13 Generalized Bottom-of-Page Processing

The bottom start macro has the form:

.BS
zero or more lincs of text
.BE

Lines of text that are specified between the bottom-block start (.BS) and bottom-block end (.BE)
macros will be printed at the bottom of each page after the footnotes (if any), but before the page
footer. This block of text is removed by specifying an empty block, i.e.:

4-28

MM Reference

.BS
.BE

4.8.14 Top and Bottom Margins

The vertical margin macro has the form:
.VM [top] [bottom]

The vertical margin (.VM) macro allows you to specify extra space at the top and bottom of the
page. This spacc precedes the page header and follows the page footer. The .VM macro takes
two unscaled arguments that are treated as v's. For example:

VM 10 15

adds 10 blank lines to the default top of page margin, and 15 blank lines to the default bottom of
page margin. Both arguments must be positive (default spacing at the top of the page may be
decreased by redefining . TP).

4.9 Table of Contents

The table of contents for a document is produced by invoking the table of contents (.TC) macro.
The table of contents is produced at the end of the writing process because the entire document
must be processed before the table of contents can be generated. The table of contents macro has
the form:

TC {slevel] {spacing] [tlevel] [tab] [headl] ... [head7)

The .TC macro generates a table of contents containing the headings that were saved for the
table of contents as determined by the value of the Cl register. The arguments to .TC control the
spacing before cach entry, the placement of the associated page number, and additional text on
the first page of the table of contents before the word “CONTENTS™.

Spacing before cach entry is controlled by the first two arguments; headings whose level is less
than or cqual to slevel will have spacing blank lines (halves of a vertical space) before them. Both
slevel and spacing default to 1. This means that first-level headings are preceded by one blank
line. Note that slevel does not control what levels of heading have been saved; that is controlled
by the setting of the Cl register.

The third and fourth arguments control the placement of the page number for each heading. The
page numbers can be justified at the right margin with either blanks or leader dots separating the
heading text from the page number, or the page numbers can follow the heading text. For
headings whose level is less than or equal to tleve! (default 2), the page numbers are justified at
the right margin. In this case, the value of tab determines the character used to separate the
heading text from the page number. If tabis 0 (the default value), dots (i.e., leaders) are used; if
tab is greater than 0, spaces are used. For headings whose level is greater than tlevel, the page
numbers are separated from the heading text by twospaces (i.c., they are ragged right).

All additional arguments (c.g., headl, head2), if any. are horizontally centered on the page, and
precede the actual table of contents itself,

If the . TC macro is invoked with at most four arguments, then the user-exit macro . TX is invoked
(without arguments) before the word “CONTENTS” is printed; or the user-exit macro . TY is
invoked and the word “CONTENTS" is not printed. By defining .TX or .TY and invoking .TC
with at most four arguments, you can specify what needs to be done at the top of the (first) page of
the table of contents.

By default, the first level headings will appear in the table of contents at the left margin.
Subsequent levels will be aligned with the text of headings at the preceding level. These
indentations may be changed by defining the Ci string which takes a maximum of seven

4-29

XENIX Text Processing

arguments corresponding to the heading levels. It must be given at least as many arguments as
areset by the Clregister. The arguments must bescaled. For example, with C1=35,

ds Ci .251 .51 .751 Li 1i
or
.ds Ci 0 2n 4n 6n 8n

Two other registers are available to modify the format of the table of contents, Oc and Cp. By
default, table of contents pages will have lowercase Roman numeral page numbering. If the Oc
register is set to 1, the .TC macro will not print any page number but will instead reset the P
register to 1. Itis your responsibility to give an appropriate page footer to place the page number.
Ordinarily the same .PF used in the body of the document and exhibits will be adequate. The List
of Figures and List of Tables will be produced separately unless Cp is set to 1 which causes these
lists to appear on the same page as the table of contents.

4.10 References

There are two macros that delimit the text of references, a string used to automatically number
the references, and an optional macro that produces reference pages within the document.

4.10.1 Automatic Numbering of References

Automatically numbered refcrences may be obtained by typing *(Rf immediately after the text
to be referenced. This places the next sequential reference number (in a smaller point size)
enclosed in brackets a half-line above the text to be referenced.

4.10.2 Delimiting Reference Text

The .RS and .RF macros are used to delimit text for each reference. They have the following
form:

A line of text to be referenced *(Rf
.RS [string-name]

reference text

.RF

4.10.3 Subsequent References

.RS takes one argument, a “string-name”. For example:

.RS AA
reference text
.RF

The string AA is assigned the current reference number. It may be used later in the document, as
the string call *(AA to reference text which must be labeled with a prior reference number. The
reference is output enclosed in brackets a half-line above the text to be referenced. No.RS or RF
is needed for subsequent references.

4.10.4 Reference Page

An automatically generated reference page is produced at the end of the document before the
table of contents and the cover sheet are output. The reference page is entitled *“References”.
This page contains the reference text (RS/RF). The user may change the reference page title by

4-30

MM Reference

defining the Rp string. For examplc,
.ds Rp "New Title"

The optional reference page (.RP) macro may be used to produce reference pages anywhere
within a document (i.e., within heading sections).
.RP {arg!] [arg2]

These arguments allow the user to control resetting of reference numbering and page skipping.
The first argument with a value of 0 indicates that the reference counter is to be reset; this is the
default. A valueof 1 indicates that the counter will not be reset. In the second argument, a value
of 0 causes a following .SK; a value of 1 does not cause an .SK. .RP need not be used unless you
want to produce reference pages clsewhere in the document.

4.11 Miscellaneous Features

In this section a number of MM features to control font, spacing, justification, multiple-column
output and page skipping are discussed.

4.11.1 Bold, Italic, and Roman Fonts

Font changes are obtained with the following macros:

.B [bold-arg] [previous-font-arg] ...
I [italic-arg] [previous-font-arg] ...
R

When called without arguments, .B changes the font to bold and .I changes to italic (troff) or
underlining (nroff). This condition continues until the occurrence of a .R, when the regular
Roman font is restored. Thus,

B
here is some text.
.R

yields:
here is some text.

If .B or .l is called with onc argument, that argument is printed in the appropriate font
(underlined in nroff for .1). Then the previous font is restored (underlining is turned off in nroff).
If two or more arguments (maximum 6) are given to a .B or .1, the second argument is then
concatenated to the first with no intervening space (1/12-space if the first font is italic), but is
printed in the previous font; and the remaining pairs of arguments are similarly alternated. For
example:

I italic " text " right -justified
produces:

italic text right-justified

These macros alternate with the prevailing font at the time they are invoked. To alternate
specific pairs of fonts, the following macros are available:

4-31

XENIX Text Processing

B
.Bl
IR
.RI
.RB
.BR

Each takes a maximum of 6 arguments and alternates the arguments between the specified fonts.
Note that font changes in headings are handled separately.

4.11.2 Right Margin Justification

The justification macro has the form:
SA [arg]

The .SA macro is used to set right-margin justification for the main body of text. Two
Justification flags are used: “current” and “default”. .SA 0scts both flags to no justification (i.e.,
it acts like the .na request). .SA 1 is the inverse: it sets both flags to cause justification, just like
the .ad request. However, calling .SA without an argument causes the current flag to be copied
from the default flag, thus performing either an .na or .ad, depending on what the default is.
Initially, both flags are set for no justification in nroff and for justification in troff.

In general, the request .na can be used to ensure that justification is turned off, but .SA should be
used to restore justification, rather than the .ad request. In this way, justification or lack thereof
for the remainder of the text is specified by inserting .SA 0 or .SA 1 once at the beginning of the
document.

4.11.3 SCCS Release Identification

The string \\(**(RE contains the SCCS Release and Level of the current version of MM. For
example, typing:

This is version \#*(RE of the macros.
produces:
This is version 15.110 of the macros.

This information is useful in analyzing suspected bugs in MM. The easiest way 1o have this
number appear in your output is to specify -rD1 on the command line, which causes the string RE
to be output as part of the page header.

4.11.4 Two-Column Output

MM can print two columns on a page:

2C
text and formatting requests (except another .2C)
AC

The .2C macro begins two-column processing which continues until a .1C macro is encountered.
In two-column processing, cach physical page is thought of as containing two columnar pages of
cqual (but smaller) page width. Page headers and footers are not affected by two-column
processing. The .2C macro does not balance two-column output.

It is possiblc to have full page width footnotes and displays when in two column mode, although
the default action is for footnotes and displays to be narrow in two column mode and wide in one
column mode. Footnolc and display width is controlled by the width control (. WC) macro, which

4-32

MM Reference

takes the following arguments:

N Normal default mode
WF Wide footnotes always (even in two-column mode)
-WF Default: turns off WF (footnotes follow column mode, wide in 1C mode, narrow in

2C mode, unless FF is set)

FF First footnote; all footnotes have the same width as the first footnote encountered for
that page

-FF Default: turns off FF (footnote style follows the settings of WF or -WF)

WD Wide displays always (even in two column mode)

-WD Default: Displays follow whichever colurnn mode is in effect when the display is
encountered

For example: WC WD FF will cause all displays to be wide, and all footnotes on a page to be the
same width, while . WC N will reinstate the default actions. If conflicting settings arc given to
.WC the lastoneis used. Thatis, WC WF -WF has the effect of WC-WF.

4.11.5 Vertical Spacing

The vertical space macro has the form:
.SP [lines]

The .SP macro avoids the accumulation of vertical space by successive macro calls. Several .SP
calls in a row produce not the sum of their arguments, but their maximum; i.c., the following
produces only 3 blank lincs:

SP2
SP3
SP

There are several ways of obtaining vertical spacing, all with different effects. The .sp request
spaces the number of lines specified, unless no-space (.ns) mode is on, in which case the request is
ignored. The .ns mode is typically set at the end of a page header in order to eliminate spacing by
a .sp or .bp request that just happens to occur at the top of a page. The .ns mode can be turned off
with the restore spacing (.rs) request.

Many MM macros utilize .SP for spacing. For example, .LE | immediately followed by .P
produces only a single blank line between the end of the list and the following paragraph. An
omitted argument defaults to one blank line (one vertical space). Negative arguments are not
permitted. The argument must be unscaled but fractional amounts are permitted. Like .sp, .SP
is alsoinhibited by the .ns request.

4.11.6 Skipping Pages

The skip page macro has the form:
.SK [pages]

The .SK macro skips pages, but retains the usual header and footer processing. If pages is
omitted, null, or 0, .SK skips to the top of the next page unless it is currently at the top of a page, in
which case it does nothing. .SK n skips n pages. That is, .SK always positions the text that
follows it at the top of a page, while .SK | always leaves one page that is blank except for the

4-33

XENIX Text Processing

header and footer.
4.11.7 Forcing an Odd Page

The odd page macro has the form:
.op

This macro is used to ensure that the following text begins at the top of an odd-numbered page. If
currently at the top of an odd page, no motion takes place. If currently on an even page, text
resumes printing at the top of the next page. If currently onan odd page (but not at the top of the
page) one blank page is produced, and printing resumes on the page after that.

4.11.8 Setting Point Size and Vertical Spacing

In troff, the default point size (obtained from the register S) is 10, with a vertical spacing of 12
points. The prevailing point size and vertical spacing may be changed by invoking the .S macro:

.S [point size] [vertical spacing]

The mnemonics, D for default value, C for current value, and P for previous value, may be used
for both point size and vertical spacing arguments.

Arguments may be signed or unsigned. If an argument is negative, the current value is
decremented by the specified amount. If the argument is positive, the current value is
incremented by the specified amount. If an argument is unsigned, it is used as the new value. .S
without arguments defaults to previous (P). If the first argument is specified but the second
argument (vertical spacing) is not then the dcfault (D) value is used. The default value for
vertical spacing is always 2 points greater than the current point size value selected. Footnotes
are printed in a size 2 points smaller than the point size of the body, with an additional vertical
spacing of 3 points between footnotes. A null (") argument for either the first or second
argument defaults to the current (C) value.

4.11.9 Inserting Text Interactively

The read insertion macro has the form:
.RD [prompt] [diversion] [string)

The read insertion macro (.RD) allows you to stop the standard output of a document and toread
text from the standard input until two consecutive newlines are found. When the newlines are
encountered, normal output is resumed.

.RD follows the formatting conventions already in effect. Thus, the examples below assume that
the .RD is invoked in no fill mode (.nf). The first argument is a prompt which will be printed at
the terminal. If no prompt is given, .RD signals the user with a bell on terminal output.

The second argument, a diversion name, allows the user to save all the entered text typed after
the prompt. The third argument, a string name, allows the user to save for later reference the first
line following the prompt. For example:

.RD Name aa bb
produces

Name: C. R. Jones
16 Densmore St,
Kensington

The diversion aa contains:

4-34

MM Reference

C. R. Jones
16 Densmore St,
Kensington

The string bb contains C.R. Jones.

A newline followed by a CNTRL-D (ASCII end-of-file) also allows you to resume normal
output.

4.12 Memorandum and Released Paper Styles

MM lets you specify a style for a memorandum or technical paper with a macro that controls the
layout of heading information (c.g. title, author, date, ctc.) on the first page or cover sheet. The
information is entered in the same way for both styles; an argument indicates which style is being
used. The macros used tospecify paper style are described in this section.

Note that it is critical to enter the macros in the order prescribed here. If neither the
memorandum nor released-paper style is desired, the macros described below should be omitted
from the input text. If these macros are omitted, the first page will simply have the page header
followed by the body of the document.

4.12.1 Title

The title macro has the form:

.TL
one or more lines of title text

The title of the memorandum or paper follows the .TL macro and is processed in fill mode. On
output, the title appears after the word “subject” in the memorandum style. In the released-
paper style, the title is centered and bold.

4.12.2 Authors

The author macro has the form:

AU name [initials]
AT [title] ...

A scparate . AU macrois required for each author named.

The .AT macro is used to specify the author’s title. Up to nine arguments may be given. Each
will appear in the Signature Block for memorandum style on a separate line following the signer’s
name. The AT mustimmediately follow the . AU for the given author. For example:

AU "C. R. Jones" [initials] [loc] [dept] [ext] [room]
AT "Editor-in-chief”

In the “from” portion for the memorandum style, the author’s name is followed by location and
department number on one line and by recom number and cxtension number on the next. The x
for the extension is added automatically. The printing of the location, department number,
extension number, and room number may be suppressed on the first page of a memorandum by
setting the register Au to 0; the default value for Au is 1. Arguments 7 through 9 of the .AU
macro, if present, will follow this “*normal” author information in the “from” portion, cach on a
separate line. If your organization has a numbering scheme for memoranda, engineer’s notes,
etc., these numbers arc printed after the author’s name. This can be done by providing extra
arguments to the . AU macro.

4-35

XENIX Text Processing

The name, initials, location, and department are also used in the Signature Block described
below. The author information in the from portion, as well as the names and initials in the
Signature Block will appear in the same order as the . AU macros.

The names of the authors in the released-paper style are centered below the title.
4.12.3 Technical Memorandum Numbers

The technical memorandum macro has the form:
TM [number] ...

If the memorandum is a Technical Memorandum, the TM numbers are supplied via the . TM
macro. Up to ninc numbers may be specified. For example:

.TM 7654321 777717777

If present, this macro will be ignored in papers assigned the releascd-paper or external-letter
styles.

4,12.4 Abstract

The abstract macro has the form:

.AS [arg] [indent]
text of the abstract
AE

Three styles of cover sheet are available: Technical Memorandum, Memorandum for File, and
released-paper. On the cover sheet, the text of the abstract follows the author information and is
preceded by the centered and underlined (italic) word “ABSTRACT™.

The abstract start (.AS) and abstract end (.AE) macros bracket the abstract. The abstract is
optional except that for the Memorandum for File style no cover sheet will be produced unless an
abstract is given.

A combination of the first argument to .AS and the use of the .CS macro (see Section 4.12.15)
controls the production of the cover sheet. If the first argument is 2, a Memorandum for File
cover sheet is gencrated automatically. Any other value for the first argument causes the text of
the abstract to be saved until the .CS macro is invoked, then the appropriate cover sheet (either
Technical Memorandum or released paper depending on the MT type) is generated. Thus, .CS
is not needed for Memorandum for File cover sheets. Notations, such as a copy to list, are
allowed on Memorandum for File cover sheets. The NS and .NE macros are given following the
AS 2and .AE.

The abstract is printed with ordinary text margins. An indentation to be used for both margins
can be specified as the second argument for .AS. Values that specify indentation must be
unscaled and are treated as character positions, i.e., as the number of ens. Headings and displays
are not permitted within an abstract.

4.12.5 Other Keywords

The keyword macro has the form:
.OK [keyword] ...

Topical keywords should be specified on a Technical Memorandum cover sheet. Up to nine such
keywords or keyword phrases may be specified as arguments to the .OK macro; if any keyword
contains spaces, it must be enclosed within double quotation marks.

4-36

MM Reference

4.12.6 Memorandum Types

The memorandum type macro has the form:
MT [type] [addressee]

The .MT macro controls the format of the top part of the first page of a memorandum or of a
released paper, as well as the format of the cover sheets. Legal codes for type and the
corresponding values are:

Code Value

MT ™ No memorandum type is printed
.MTO No memorandum type is printed
MT MEMORANDUM FOR FILE
MT 1 MEMORANDUM FOR FILE
MT 2 PROGRAMMER'S NOTES
.MT 3 ENGINEER’S NOTES

MT 4 Released-paper style

MT 3 External-letter style

MT "string® String

If type indicates a memorandum style, then the value will be printed after the last line of author
information. If type is longer than one character, then the string itself will be printed. For
example:

.MT "Technical Note #5"
Asimple letter is produced by calling .MT with a null (but not omitted!) or zero argument.

The second argument to .M T is used to give the name of the addressce of a letter. The name and
page number will be used to replace the ordinary page header on the second and following pages
of theletter. For example,

.MT 1 "Charles Jones"
producces
Charles Jones - 2
as the header on the second page.
This second argument may not be used if the first argument is 4 (the rcleased-paper style).

In the external-letter style ((MT 5), only the title (without the word “subject:’") is printed in the
upper left and right corners, respectively, on the first page. You would normally vse this style
with preprinted stationery that has the company name and address already printed on it.

4.12.7 Date and Format Changes

By default, the current date appears in the date part of a memorandum. This can be overridden
by using:

.ND new-date

The .ND macroalters the value of the string DT, which is initially set to the current date.
4.12.8 Alternate First-Page Format

You can specify that the words “subject™, “date”, and “from” be omitted in the memorandum
style by using the alternate format (.AF) macro. Unless you use the .AF macro, with your own
company namc as an argument, “Bell Laboratories” will automatically be printed as the
company name on any papers which begin with .MT macros. Therefore, you will always want to

4-37

XENIX Text Processing

use:
.AF [company-name]

If an argument is given, it replaces “Bell Laboratories™ without affecting the other headings.
The .AF with no argument suppresses “Bell Laboratories” as well as the “subject”, “date”, and
“from” headings. The use of .AF with no arguments is equivalent to the use of -rAl on the
command line, except that the latter must be used if it is necessary to change the line length
and/or page offset (which default to 5.8i and 1i, respectively, for preprinted forms). The
command linc options -rOk and -r Wk are not effective with .AF.

The only .AF option appropriate for troff is to specify an argument to replace “Bell Laboratories”
with another name.

4.12.9 Released-Paper Style

The released-paper style is obtained by specifying:
MT 4 (1]

This results in a centered, bold title followed by centered names of authors. The location of the
last author is used as the location following “Bell Laboratories” unless .AF is used to specify a
different company. If the optional second argument to .MT 4 is given, Then the name of each
author is followed by the respective company name and location. Information nccessary for the
memorandum style but not for the released-paper style is ignored. The Signature Block macros
and their associated lines of input are also ignored when the released-paper style is specified.

In addition to using the .AF macro to specify your company name, you can define a string witha
two-character name for your address before each .AU. For example:

.TL

A Learned Treatise

.AF "Getem, Inc."

ds XX "22 Maple Avenue, Sometown 09999"
AU "F. Swatter" " XX

AF "Profit Associates”

AU "Sam P. Lename" " CB

MT4 1

4.12.10 Order of Invocation of Beginning Macros

The macros described in this section must be given in the following order if they are used to define
document style:

4-38

MM Reference

ND new-date

TL

one or more lines of text
AF [company-namc]
.AU name [initials} [loc] [dept] [ext] {room] [arg] (arg] [arg]
AT fuitle] ...

.TM [number] ...

.AS |arg] [indent]

onc or more lines of text
AE

NS [arg]

one or more lines of text
.NE

.OK [keyword] ...

MT [type] [addressee]

The only required macros for a memorandum or a released paper are .TL, .AU, and .MT; all the
others (and their associated input lines) may be omitted if the features they provide are not
needed. Once .MT has been invoked, none of the above macros (except .NS and .NE) can be
reinvoked because they are removed from the table of defined macros tosave space.

4.12.11 Macros for the End of 2 Memorandum

At the end of a memorandum (but not of a released paper), the signatures of the authors and a list
of notations can be requested. The following macros and their input are ignored if the released-
paper style is sclected. A signature block macrois provided in the form:

.FC [closing]
SG [arg] [1]

.FC prints *“Yours very truly” as a formal closing. It must be given before the .SG which prints
the signer’s name. A different closing may be specified as an argument to .FC. .SG prints the
author name(s) after the formal closing (or the last line of text). Each name begins at the center
of the page. Three blank lines are left above each name for the actual signature. If no argument
is given, the line of reference data (e.g., location code, department number, author’s initials, and
typist's initials) will not appear following the last line.

A first argument is treated as the typist’s initials, and is appended to the reference data. A null
argument prints reference data with neither the typist’s initials nor the preceding hyphen.

If there arc several authors and if the second argument is given, then the refercnce data is placed
on the same line as the name of the first author, rather than on the line that has the name of the
last author.

The reference data contains only the location and department number of the first author. Thus, if
there are authors from different departments or from different locations, the reference data
should be supplied manually after the invocation (without arguments) of the .SG macro.

4.12.12 Copy to and Other Notations

The notation macro has the form:

NS [arg]
zero or more lines of the notation
.NE

After the signature and reference data, many types of notations may follow, such as a list of
attachments or copy to lists. The various notations are obtained through the .NS macro, which
provides for the proper spacing and for breaking the notations across pages, if necessary.

4-39

XENIX Text Processing

The codes for arg and the corresponding notations are:

Code Notations

NS Copy to

NSO Copy to

NS Copy to

.NS1 Copy (with att.) to
NS 2 Copy (without att.) to
NS 3 Att,

NS 4 Atts.

NS5 Enc.

NS 6 Encs.

NS 7 Under Separate Cover
NS 8 Letter to

.NS 9 Memorandum to

NS "string” Copy (string) to

If arg consists of more than one character, it is placed within parentheses between the words
“Copy’* and “to”. For example:

.NS "with att. 1 only"

generates “Copy (with att. 1 only) to” as the notation. More than one notation may be specified
before the .NE occurs, because a .NS macro terminates the preceding notation, if any.

The .NS and .NE macros may also be used at the beginning following .AS and .AE to place the
notation list on the Memorandum for File cover sheet. If notations are given at the beginning
without .AS 2, they will be saved and output at the end of the document.

4.12.13 Approval Signature Line

The approval signature macro has the form:
LAYV "Jane Doe"

It can be used to provide a space for an approval signature next to the printed name.
4.12,14 Forcing a One-Page Letter

At times it is useful to get a bit more space on the page, by forcing the signature or items within
notations onto the bottom of the page, so that the letter or'memo is just one page in length. This
can be accomplished by increasing the page length through the -rL» option, e.g. -rL90. This has
the effect of making the formatter believe that the page is 90 lines long and therefore giving it
more room than usual to place the signature or the notations. This will only work for a single-
page letter or memo.

4.12.15 Cover Sheet

The cover sheet macro has the form:
.CS [pages] [other] [total] [figs] [tbls] [refs}]

The .CS macro generates a cover sheet in either the Technical Memorandum (TM) or released-
paper style. All of the other information for the cover sheet is obtained from the data given before
the .MT macro call. If a TM style is used, the .CS macro generates the “Cover Sheet for
Technical Memorandum™. The data that appears in the lower left corner of the TM cover sheet
(the number of pages of text, the number of other pages, the total number of pages, the number of
figures, the number of tables, and the number of references) is generated automatically. These

4-40

C

MM Reference

values may be changed by supplying the appropriate arguments to the .CS macro. Any values
that are omitted will be calculated automatically (0 is used for other pages). If the released-
paper style is used, all arguments t0.CS are ignored.

4.13 Reserved Names

If you are extending, changing, or redefining existing MM macros, usc the legal names listed in
this section. The following conventions are used in this section to describe legal names:

Digit

Lowercase letter

Uppercase letter

Any letter or digit (any alphanumeric character)

Special character (any nonalphanumeric character)

"X » e 3

All other characters are literals (i.c., stand for themselves).

Note that “request”, “macro”, and “string” names are kept by the formatters in a single internal
table, so that there must be no duplication among such names. “Number register” names are
keptin aseparate table.

4.13.1 Names Used by Formatters

These are the names of the registers and requests used by nroff and troff.

Requests
aa (most common)
an (only one, currently: .c2)

Registers
aa (normal)
.X (normal)
s (only one, currently: .$)
% (page number)

4.13.2 Names Used by MM

These are the names of the macros, strings, and registers used by MM.

Macros
AA (most common, accessible to user)
A (less common, accessible to user)
}x (internal, constant)
> x (internal, dynamic)
Strings

AA (most common, accessible to user)

A (less common, accessible to uscr)

]x (internal, usually allocated to specific functions throughout)
}x (internal, more dynamic usage)

Registers Aa (most common, accessible to users)
An (common, accessible to user)
A (accessible, set on command line)
:x {mostly internal, rarely accessible, usually dedicated)

4-41

XENIX Text Processing

;X (internal, dynamic, temporaries)
4.13.3 Names Used by eqn/negn and tbl

The equation preprocessors, eqn and negn, use registers and string names of the form nn. The
table preprocessor, tbl, uses the following names:

a- a+ a | nn #a ## #- # "a T& TW
4.13.4 User-Definable Names

None of the above may be used todefine your own extensions. To avoid problems, use names that
consist cither of a single lowercase letter, or of a lowercase letter followed by anything other than
a lowercase letter. The following is a sample naming convention, where a can be any letter:

For macros use a lowercase letter, followed by an uppercase letier (aA), or an uppercase
letter followed by a lowercase letter (Aa).

For strings use a, followed by a parenthesis ()), a bracket (]), or a brace (}).

For registers use a lowercase letter followed by an uppercase letter (aA).

4.13.5 Sample Extension

The following is an example of how MM macro definitions may be extended. This scquence
generates and numbers the pages of appendices:

.nr Hu 1

qnrag0

.de aH

.nra +1

ar PO

.PH “"""Appendix \\na - W\\\\nP""
SK

HU "\$1"

After the above initialization and definition, each call of the form .aH “title” begins a new page
{with the page header changed to “Appendix a -n) and generates an unnumbered heading of
“title,” which, if desired, can be saved for the table of contents. Those who wish Appendix titles
to be centered must, in addition, set the register Hcto 1.

4.14 Errors

When a macro discovers an error, a break occurs in processing. To avoid confusion regarding the
location of the error, the formatter output buffer (which may contain some text) is printed and a
short message is printed giving the name of the macro that found the error, the type of error, and
the approximate line number (in the current input file) of the last processed input line.
Processing terminates, unless the register D has a positive value. In the latter case, processing
continues even though the output is guaranteed to be deranged from that point on.

Note that the error message is printed by writing it directly to the user’s terminal. If cither tblor
eqn/neqn, or both arc being used, and if the -olist option of the formatter causes the last page of
the document not to be printed, a harmless **broken pipe”” message results.

4-42

MM Reference

4.14.1 Disappearance of Qutput

This usually occurs because of an unclosed diversion (e.g., a missing .FE or .DE). Fortunately,
the macros that use diversions are careful about it, and they check to make sure that illegal
nestings do not occur. If any message is issued about a missing .DE or .FE, the appropriate action
is tosearch backwards from the termination point looking for the corresponding .DS, .DF, or .FS.

The following command:
grep -n "\.[EDFT][EFNQS]" files ...

prints all the .DS, .DF, .DE, .FS, .FE, .TS, .TE, .EQ, and .EN macros found in the files, each
preceded by its filename and line number in that file. This listing can be used to check for illegal
nesting and /or omission of these macros.

4.14.2 MM Error Messages

Each MM error message consists of a standard part followed by a variable part. The standard
partisof the form:

ERROR:input line n
The variable part consists of a descriptive message, usually beginning with a macro name. The
variable parts are listed below in alphabetical order by macro name, each with a more complete
explanation:
Check TL, AU, AS, AE, MT sequence
These macros for the beginning of a memorandum are out of sequence.

AL:bad arg:value

The argument to the .AL macro is not one of 1, A, a, I, or i. The incorrect argument is
shown as value.

CS:cover sheet too long

The text of the cover sheet is too long to fit on one page. The abstract should be reduced or
the indent of the abstract should be decreased.

DS:tco many displays

More than 26 floating displays are active at once, i.e., have been accumulated but not yet
output.

DS:missing FE

A display starts inside a footnote. The likely cause is the omission (or misspelling) of a .FE
toend a previous footnote.

DS:missing DE
.DS or .DF occurs within a display, i.e., a .DE has been omitted or mistyped.
DE:no DS or DF active

.DE has been encountered but there has not been a previous .DS or .DF to match it.

4-43

XENIX Text Processing

FE:no FS
.FE has been encountered with no previous .FS to matchit.
FS:missing FE

A previous .FS was not matched by a closing .FE, i.c., an attempt is being made to begin a
footnote inside another one.

FS:missing DE
A footnote starts inside a display, i.c., a .DS or .DF occurs without a matching .DE.
H:bad arg:value

The first argument to .H must be a single digit from 1 to 7, but value has been supplied
instcad.

H:missing FE
A heading macro (.H or .HU) occurs inside a footnote.
H:missing DE
A heading macro (.H or .HU) occurs inside a display.
H:missing arg
.H needs at least 1 argument.
HU:missing arg
.HU needs | argument.
LB:missing arg(s)
.LBrequircs at least 4 arguments.
LB:too many nested lists
Another list was started when there were already 6 active lists.
LE:mismatched
.LE has occurred without a previous .LB or other list-initialization macro. Although this is
not a fatal crror, the message is issued because there almost certainly exists some problem
in the preceding text.
LI:nolists active

.LI occurs without a preceding list-initialization macro. The latter has probably been
omitted, or has been separated from the L1 by an intervening .H or .HU.

ML:missingarg
ML requires at least 1 argument.

4-44

MM Reference

ND:missing arg
.ND requires | argument.
SA:bad arg:value

The argument to .SA (if any) must be either 0 or 1. The incorrect argument is shown as
value.

SG:missing DE
.SG occurs inside a display.
SG:missing FE
.SG occurs inside a fcotnote.
SG:noauthors
.SG occurs without any previous .AU macro(s).
VL:missing arg

.VL requires at least | argument.
4.14.3 Formatter Error Messages

Most messages issued by the formatter are self-explanatory. Those error messages over which
the user has some control are listed below.

Cannot do ev
Caused by setting a page width that is negative or extremely short, setting a page length
that is negative or cxtremely short, reprocessing a macro package (e.g. performing a .sotoa
macro package that was requested from the command line), or requesting the -s1 option to
troff ona document that is longer than ten pages.

Cannot executc filename
Given by the .! request if it cannot find the filename.

Cannot open filename
Issued if onc of the files in the list of files to be processed cannot be opened.

Exception word list full
Too many words have been specified in the hyphenation exception list {via .hw requests).

Line overflow

The output line being generated was too long for the formatter’s line buffer. The excess was
discarded. Sce the “Word overflow” message below.

4-45

XENIX Text Processing

Nonexistent font type
A request has been made to mount an unknown font.
Nonexistent macro file
The requested macro package does not exist.
Nonexistent terminal type
The terminal options refers to an unknown terminal type.
Out of temp file space
Additional temporary space for macro definitions, diversions, etc. cannot be allocated.
This message often occurs because of unclosed diversions (missing .FE or .DE), unclosed
macrodefinitions (c.g., missing *..”), or a huge table of contents.
Too many page numbers
The list of pages specified to the formatter -o option is too long.

Too many string/macro names

The pool of string and macro names is full. Unnecded strings and macros can be deleted
using the .rm request,

Too many number registers

The pool of number register names is full. Unnceded registers can be deleted by using the
.IT request.

Word overflow
A word being generated exceeded the formatter’s word buffer. The excess characters were
discarded. A likely cause for this and for the “Line overflow” message above are very long

lines or words generated through the misuse of \c or of the .cu request, or very long
equations produced by eqn or neqn.

4-46

MM Reference

4.15 Summary of Macros, Strings, and Number Registers

The following is an alphabetical list of macro names used by MM. The first line of each item
gives the name of the macro and a bricf description. The second line shows the form in which the
macro is called. Macros marked with an asterisk are not, in general, invoked directly by the user.
They are “user exits” called from inside header, footer, or other macros.

1C One-column processing
AC

2C Two-column processing
2C

AE Abstractend
AE

AF Alternate format of “Subject/Date/From” block
.AF [company-name]

AL Automatically-incremented list start
AL [type] [text-indent] (1]

AS Abstract start
AS [arg] [indent]

AT Author’stitle
AT [title] ...

AU Author information
.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg] (arg]

AV Approval signature
AV [name]

B Bold
.B [bold-arg] [previous-font-arg] [bold] [prev] [bold] [prev]

BE Bottomend
.BE

BI Bold/Italic
.BI [bold-arg] [italic-arg] [bold] {italic] [bold] {italic]

BL Bulletliststart
.BL [text-indent] {1]

BR Bold/Roman
.BR [bold-arg} [Roman-arg] [bold] [Roman] [bold] [Roman]

BS Bottomstart
.BS

CS Coversheet
.CS [pages] [other] [total] [figs] [tbls] [refs]

4-47

XENIX Text Processing

DE

DF

DL

DS

EC

EF

EH

EN

EQ

EX

FC

FD

FE

FG

FS

HC

HM

HU

4-48

Display end
.DE

Display floating start
.DF [format] [fill] [right-indent]

Dash list start
.DL {text-indent] [1]

Display staticstart
.DS [format] [fill] [right-indent]

Equation caption
.EC [title] [override] [flag]

Even-pagc footer
.EF [arg]

Even-page header
.EH [arg]

End cquation display
.EN

Equationdisplay start
.EQ {label]

Exhibit caption
.EX [title] [override] [flag]

Formal closing
.FC [closing]

Footnotec default format
.FD [arg] [1]

Footnote end
.FE

Figure title
.FG [title] [override] [flag]

Footnote start
.FS [label]

Heading—-numbered
.H level [heading-text] [heading-suffix]

Hyphenation character
.HC [hyphenation-indicator]

Hecading mark style (Arabic or Roman numerals, or letters)
.HM [argl] ... [arg7]

Heading—unnumbered
.HU hecading-text

HX

HY

HZ

IB

IR

LB

LC

LE

LI

ML

MT

ND

NE

NS

nP

OF

OH

MM Reference

Heading user exit X (before printing heading)
.HX dlevel rlevel heading-text

Heading user exit Y (before printing heading)
.HY dlevel rlevel heading-text

Heading user exit Z (after printing heading)
.HZ dlevel rlevel heading-text

Italic (underline in nroff)
I [italic-arg] [previous-font-arg] [italic] [prev] [italic] [prev]

Italic/Bold
B [italic-arg] [bold-arg] [italic] [bold] [italic] {bold)

Italic/Roman
IR [italic-arg] [Roman-arg] [italic] [Roman) [italic] [Roman]

List begin
.LB text-indent mark-indent pad type [mark] [L1-space] [LB-space]

List-status clear
.LC [list-level]

Listend
.LE[1]

List item
LI [mark] [1]

Marked list start
ML mark [text-indent] [1]

Memorandum type
MT [type] [addressee]
or.MT [4] [1]

New date
.ND new-date

Notation end
.NE

Notation start
NS [arg]

Double-line indented paragraphs
.nP

Odd-page footer
.OF [arg]

Odd-page header
.OH [arg]

4-49

XENIX Text Processing

OK

0)3

PF

PH

PX

RB

RD

RF

RI

RL

RP

RS

SA

SG

SK

SP

4-50

Other keywords for TM cover sheet
.OK [keyword] ...

Odd page
.OP

Paragraph
.P [type]

Page footer
.PF [arg]

Page header
.PH [arg]

Page-header user exit
PX

Return to regular (Roman) font (end underlining in nroff)
R

Roman/Bold
.RB [Roman-arg] [bold-arg] [Roman] [bold] [Roman] [bold]

Read insertion from terminal
.RD [prompt] [diversion] [string]

Reference end
.RF

Roman/Italic
.RI[Roman-arg] [italic-arg] [Roman] (italic] [Roman] [italic]

Reference list start
.RL [text-indent] [1]

Produce reference page
.RP{arg] [arg]

Reference start
.RS [string-name]

Set troff point size and vertical spacing
.S [size] [spacing]

Set adjustment (right margin justification) default
SA [arg]

Signature line
SG [arg] [1]

Skip pages
SK [pages]

Space—vertically
.SP [lines]

MM Reference

@/ TB Tabletitle
' .TB [title] [override] [flag]

TC Tableof contents
.TC [slevel] [spacing] [tlevel] [tab] [head 1] [head2] [head3] [head4] [head5]

TE Tableend
.TE

TH Table header
.TH [N]

TL Title of memorandum
.TL [charging-case] [filing-case]

TM Technical Memorandum number(s)
.TM [number] ...

TP Top-of-page macro
.TP

TS Tablestart
TS [H]

TX Table-of-contents user exit
TX

TY Table-of-contents user exit (suppresses “CONTENTS”)
TY

VL Variable-item list start
.VL text-indent [mark-indent] [1]

VM Vertical margins
.VM [top] [bottom]

WC Width control
.WC [format]

4.15.1 Strings

The following is an alphabetic list of string names used by MM, giving for cach a brief
description and an initial default value.

Ci Contents indent up to seven arguments for heading levels.
F Footnote numberer.

In nroff: \u\\n+(:p\d

In troff: \v’-.4m"\s-3\\n+9:p\sO\v".4m’

DT Date. The current date, unless overridden.

EM Em dash string. Used by both nroff and troff

4-51

XENIX Text Processing

HF

HP
Le
Lf
Lt
Lx

RE

Rf
Rp

Tm

Heading font list, up to seven codes for heading levels 1 through 7
3322222 (levels 1 and 2 bold, 3-7 underlined in nroff, italic in troff)

Heading point size list, up to seven codes for heading levels 1 through 7
Title for LIST OF EQUATIONS

Title for LIST OF FIGURES

Title for LIST OF TABLES

Title for LIST OF EXHIBITS

SCCS Relcaseand MM
Release Level

Reference numberer
Title for References

Trademark string places the letters “TM™ half a line above the text that it follows

4.15.2 Number Registers

This section provides an alphabetical list of register names, giving for each a brief description,
initial (default) value, and the legal range of values (where [m:n] means values from m to n
inclusive).

Any register having a single-character name can be set from the command line. An asterisk
attachedto a register name indicates that that register can be set only from the command line or
before the MM macro definitions are read by the formatter.

A

Au

Cl

Cp

De

Df

4-52

Handles preprinted forms
0,[0:2]

Inhibits printing of author’s location, department, room, and extension in the from portion

of a memorandum
1,[0:1]

Copy type (Original, DRAFT, etc.)
0 (Original), [0:4]

Contents level (i.c., level of headings saved for (able of contents)
2,[0:7]

Placement of List of Figures, ctc.
1 (onseparate pages), [0:1]

Debug flag
0, [0:1)]

Display eject register for floating displays
0, [0:1]

Display format register for floating displays
5,[0:5]

Ds

Ec

Ej

Ex

Fg

Fs

MM Reference
Static display pre- and post-space
1, [0:1]

Equation counter, used by .EC macro
0, [0:?], incremented by 1 foreach .EC call.

Page-ejection flag for headings
0 (noeject), [0:7]

Equation label placement
0 (right-adjusted), [0:1]

Exhibit counter, used by .EX macro
0, [0:?], incremented by 1 for each .EX call.

Figure counter, used by .FG macro
0, [0:7], incremented by 1 for each .FG call.

Footnote space (i.c., spacing between footnotes)
1,{0:7]

H1-H7 Heading counters for levels 1-7

Hb

Ht

Hu

Le

Lf

0, [0:?], incremented by .H of corresponding level or .HU if at level given by register Hu.
H2-H7 are reset to 0 by any heading at a lower-numbered level.

Heading break level (after .H and .HU)
2,[0:7]

Heading centering level (for .Hand .HU)
0 (no centered headings), [0:7]

Heading temporary indent (after .H and .HU)
| (indent as paragraph), [0:2]

Heading space level (after .H and \HU)
2 (spacconlyafter .H 1 and .H 2), [0:7]

Heading type (for .H: single or concatenated numbers)
0 (concatenated numbers: 1.1.1, ¢tc.), [0:1]

Heading level (for unnumbered heading .HU)
2(.HU at thesame levelas .H 2), [0:7]

Hyphenation control for body of document
0 (automatic hyphenation off), [0:1]

Lengthof page
66, [20:7] (113, [2i:?] in troff these values must be scaled.

List of Equations
0 (list not produced) [0:1]

List of Figures
1 (list produced) [0:1]

4-53

XENIX Text Processing

Li

Ls

Lt

Lx

Np

of

Pi

Ps

Pt

Si

Tb

4-54

List indent
6,[0:7]

List spacing between items by level
5 (spacing between all levels)

List of Tables
1 (list produced) [0:1]

List of Exhibits
1 (list produced) [0:1]

Numbering style
0, [0:5]

Numbering style for paragraphs
0 (unnumbered) [0:1]

Offset of page
\754, [0:7] (0.5, [0i:?] in troff

Table of Contents page numbering style
0 (lowercase Roman), [0:1]

Figure caption style
0 (period scparator), [0:1]

Page number, managed by MM.
0,[0:7]

Paragraph indent
5,[0:7]

Paragraph spacing
1 (one blank space between paragraphs), [0:?]

Paragraph type
0 (paragraphs always left-justified), [0:2]

Point size
10, [6:36)

Standard indent for displays
5,[0:7]

Type of nroff output device
0, [0:2]

Table counter
0,[0:?], incremented by 1 for each . TB call.

Underlining style for .Hand .HU
0 (continuous underline when possible), [0:1]

Width of page (line and title length)
6i, [10:1365] (6i, [2i:7.54i] in troff

Chapter 5
(o Using Nroff /Troff

5.1 Introduction 1

5.2 Inserting Commands |

5.3 PointSizesand LincSpacing 2
5.4 Fontsand Special Characters 3
5.5 Indentsand Line Lengths 4

5.6 Tabs 6

5.7 Drawing Linesand Characters 6
5.8 Strings 8

59 Macros 9

5.10 Titles, Pages and Numbering 10

5.11 Number Registersand Arithmetic 11
5.12 Macros with Arguments 13

5.13 Conditionals 14

5.14 Environments 15

5.15 Diversions 16

5.1 Introduction

Nroff and troff are the XENIX text formatting programs for producing high-quality printed
output on the lineprinter and phototypesetter, respectively. Commands in the two formatting
programs nroff and troff are identical, although those specifications which are impossible to
achieve on a lineprinter—like changes in point size, font, or variable spacing—are either
approximated or ignored by nroff. The output of nroff and troff may look dramatically different,
but this is largely the result of the limitations of conventional lineprinters. In this chapter, the two
programs will be treated together; the names nroff and troff are used synonymously. Commands
not recognized by nroff or which result in significantly different output will be noted.

Wherever possible, you should avoid using nroff or troff directly. In many ways, nroff and troff
resemble computer assembly languages: they are powerful and flexible, but they require that
many operations must be specified at a level of detail and complexity too difficult for most people
to use effectively. That is why it is suggested that you usc the MM macro package instead. If you
must deal with specialized text, you can use the eqn macros for typesctting mathematics and the
tbl program for producing complex tables. Eqnand tblare discussed in Chapters 10and 11 of this
manual.

For producing running text, whether or not it contains mathematics or tables, you will ordinarily
want 1o use the MM macro package, described in Chapter 3, “Using the MM Macros™ and
Chapter 4,“MM Reference”.

All these macro packages offer the capability of meeting most formatting requircments. You
may find you have little or no need to use nroff/troff dircctly. The macros define formatting rules
and operations for specific styles of documents. The definitions arc concise: in most cases two-
letter commands. In those cases where an existing macro will not do the job, the solution is not to
writc an entirely new sct of nroff/troff instructions from scratch, but to make small adaptations
to macros you arc alrecady using.

This chapter is meant to introduce you to the formatting possibilities of nroff/troff. It docs not
discuss every command or operation in detail. The emphasis is on demonstrating simple and
commonly used specifications, with examples of some of the variations you may need to create.

The following topics are introduced in this tutorial:
— Specifying point size, fonts, and special characters
— Determining line spacing, line lengths, indents, and tabs
— Using string definitions and macros
— Specifying title and pagination styles

— Specifying conditionals, environments, and diversions
5.2 Inserting Commands

To use nroff or troff you intersperse formatting commands with the actual text you want printed,
just as you did with MM commands described in the last chapter. You will notice that nroff and
troff commands are in lowercase, so you will not confuse them with the MM macros. Most nrofl
and troff commands are placed on a line separate from the text itself, beginning with a period, one
command per line. For example, if you had a file that contained the following lines:

Some text.
.ps 14
Some more text.
the .ps command would instruct troff to change the point size, that is, the size of the letters being
5-1

XENIX Text Processing

printed, to 14 point (one point is 1 /72-inch). Your output would look like this:
Some text. Some more text.

If you were to use nroff to output this same file to the lineprinter, nroff would ignore the .ps
command and you would see no difference in the size of your letters.

Some nroff/troff commands do occur in the middle of a line. To produce
This line contains fonr and point size changes.

you haveto type
This \fBline\fR contains \fIfont and \s+2point size\s-2 changes.

The backslash character “\” is used to introduce nroff/troff commands and special characters
within a line of text.

5.3 Point Sizes and Line Spacing

As we just saw, point sizc and vertical spacing are not normally controllable in nroff (lineprinter)
output. In troff, the command .ps sets the point size. One point is 1/72-inch, so 6-point
characters are at most 1/12-inch high, and 36-point characters are 1/2-inch. There are 15 point
sizes available, asillustrated:

6 point: In Xanadu did Kubla Khan...

7 point: In Xanadu did Kubla Khan...

8 point: In Xanadu did Kubla Khan...

9 point: In Xanadu did Kubla Khan...

10 point: In Xanadu did Kubla Khan...

11 point: In Xanadu did Kubla Khan...
12 point: In Xanadu did Kubla Khan...

14 point: In Xanadu did Kubla Khan...
16 point 18 point 20 point

22 24 28 36

If the number after .ps is not one of these legal sizes, it is rounded up to the next valid value, toa
maximum of 36. If no number follows .ps, troff reverts to its previous size. Troff begins with a
default point size of 10.

Point size can also be changed in the middle of a line or even a word with the in-linc command
“\s”. Toproduce

The XENIX system is derived from the UNTX system.
type
The \s12XENIX\s8 system is derived from the \s12UNIX\s8 system.

The \s should be followed by a legal point size. An \sO causes the size to revert to its previous
valuc. An\s101! means “size 10, followed byan 11”.

Relative size changes are possible. The following
The \s+2XENIX\s-2 system

increases the point size by two points, then restores it. The amount of the relative change is
limited to a single digit.

Another feature to consider is the spacing between lines, which is set independently of the point
size. Vertical spacing is measured from the bottom of one line to the bottom of the next. The

5-2

Pl

Using Nroff /Troff

command to control vertical spacing is .vs. For running text, it is usually best to set the vertical
spacing about 20% bigger than the point size.

For example, to use what typesetters call *9on 117, that is, a point size of 9 with a vertical spacing
of 11, you would insert the following commands:

.ps 9
vs 1lp

If you do not specify a point size or vertical spacing, troff automatically uses 10on 12.
Point size and vertical spacing make a substantial difference in the amount of
text per square inch. (Thisis 120n 14.)

Point size and vertical spicing make a substantial ditference in the amount of text per square inch. Tor example, 100n 2 uses about 1wive as much spaceas 7on &
Thisis 6on 7. which s even smaller, and packs a lot more words pee line

When you use the commands .ps and .vs without numbers, troff reverts to the previous size and
vertical spacing.

The .sp command can be used to get vertical space. Without a number, it gives you one blank line
(onc unit of whatever .vs has been set to). The .sp can be followed by a unit specification:

.Sp 2i

means “two inches of vertical space”. The command:
Sp 2p

means “‘two points of vertical space”. The command:
sp 2

means “two vertical spaces” of whatever size .vs is set to.. Be careful to specify the correct unit of
space.

TrofT also understands decimal fractions in most commands, so
.sp 1.51

is a space of 1.5 inches. Scaling (designating a unit of measure such as inches, points, or picas)
can also be used after .vs to define line spacing, and in fact after most commands that deal with
physical dimensions.

5.4 Fonts and Special Characters

The phototypesetter is limited to four different fonts at any one time. Normally three fonts
(Roman, italic and bold) and one collection of special characters are permanently mounted.
What these fonts will actually look like depends on your own typesetting equipment. Here are the
Roman, italic, and bold character sets:

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcedefghijkimnopgrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Troff prints in Roman by default, unless instructed otherwise. To switch into bold, use the .ft
(font) command

ft B

and for italics,

5-3

XENIX Text Processing

ftl

To return to roman, use .ft R; to return to the previous font, whatever it was, use either .ft P or just
ft. The underline command .ul causes the next input line to print in italics. The .ul can be
followed by a count to indicate that more than one line is to be italicized.

Fonts can also be changed within a line or word with the in-line command “\f”’. The words
boldfuce text

are produced with
\fBbold\fifacc\fR text

There are other fonts available besides the standard set, although only four can be mounted at
any given time. The command .fp tells troff what fonts are physically mounted on the typesctter:

fp3H

says that the Helvetica font is mounted on position 3. Appropriate .fp commands should appear
at the beginning of your document if you do not use the standard fonts.

It is possible to print a document by using font numbers instead of names. For example, \f3 and
ft 3 mean “whatever font is mounted at position 3”". Normal settings are Roman font on 1, italic
on 2, bold on 3, and special on 4. An approximation of bold font can also be created by
overstriking letters with a slight offset. This is done with the command .bd.

Special characters have four-character names beginning with “\(”, and they may be inserted
anywhere. In particular, Greek letters are all of the form “\(*—", where “—"" is an uppercase or
lowercase Roman letter similar to the Greek. To get

Z(axB) = o

in troff we have totype
\CSAC*a\(mu\(*b) MM-> \(if

which is a series of special characters:
\(*S
(
\(*a
\(mu
\(*b
)
\(—>
\Gf

You could also use the mathematical typesetting program eqn to achieve the same effect:
SIGMA (alpha times beta) —> inf

Whether you choose to use eqn or the troff special character set should depend on how often you
use Greek or other special characters.

8 IV‘QXQ"‘M

Nroff and troff treat each four-character name as a single character. Some characters are
automatically translated into others: grave and acute accents (apostrophes) become open and
close single quotation marks (“); the combination of single quotation marks is generally
preferable to the double quotation mark character. ("). A typed minus sign becomes a hyphen -.
To print an explicit minus sign, use “\-". To print a backslash, use “\e”.

5.5 Indents and Line Lengths

Troff starts with a default line length of 6.5 inches. To reset the line length, use the .1l (line
length) command, asin

5-4

Using Nroff/Troff

A1 6i

to indicate a line length of 6 inches. The length can be specified in the same ways as the space
(.sp) command, in inches, fractions of inches, or points.

The maximum line length provided by the typesetter is 7.5 inches. To use the full width, however,
you will have to reset the default physical left margin, which is normally slightly less than one
inch from the left edge of the paper. This is done with the page offset (.po) command:

.po 0
This sets the offset as far to the left as it will go.

The indent (.in) command causes the left margin to be indented by a specified amount from the
page offset. If we use.in to move the left margin in, and .11 to move the right margin to the left, we
can make offset blocks of text. Forexample,

.in 0.6i

Al -0.6i

text to be sct into a block
A1 +0.6i

.in -0.6i

will create a block that looks like this:

Pater noster qui est in caclis sanctificetur nomen tuum; adveniat regnum tuum;
fiat voluntas tua, sicut in caelo, et in terra... Amen.

Notice the use of +and — to specify thc amount of change. These change the previous sctting by
the specificd amount, rather than just overriding it. The distinction is quite important: .1l +1i
makes lines onc inch longer than current setting; .1l 1i makes them one inch long. If no argument
is specified with .in, .1l, and .po, troff reverts to the previous value.

To indent a single line, use the temporary indent (.ti) command. The default unit for .ti, as for
most horizontally oriented commands such as .11, .in, .po, is an em. An em is roughly the width of
the letter m in the current point size. Although inches may seem a more intuitive measure to
nontypesetters, ems are a measure of size that is proportional to the current point size. If you
want to make text that keeps its proportions regardless of point size, you should use ems for all
dimensions. Ems can be specificd in the same way as points or inches:

41 2.5m
Lines can also be indented negatively if the indent is already positive:
ti -0.3i

causes the next linc to be moved back three tenths of an inch. You can make a decorative initial
capital, indent a whole paragraph, and move the initial letter back with a .ti command:

Pater noster qui ¢st in caelis sanctificetur
nomen tuum; adveniat regnum tuum;
fiat voluntas tua, sicut in caclo, et in terra. ...
Amen.

This is achieved with the following:

A1-0.3i
A

Aan +3i
41 -0.30

The P is made bigger with a “\s36P\s0”". It also has been moved down from its normal position
with a local motion, as described in Section 5.7, “Drawing Lines and Characters”.

5-5

XENIX Text Processing

5.6 Tabs

Tabs can be used to produce output in columns, or to set the horizontal position of output.
Typically, tabs are used only in unfilled text. Tab stops are set by default every 1/2-inch from the
current indent, but can be changed with the .ta command. To set stops every inch, for example,
use:

Ata 1i 2i 3i 4i 55 6i
The stops are left-justified, as they are on a typewriter, so lining up columns of right-justified
numbers can be painful. If you have many numbers, or if you need more complicated table

layout, don’t attempt to use nroff or troff commands. Use the tbl program instead. (See Chapter
7, “Formatting Tables™.)

For a handful of numeric columns, you can precede every number by enough blanks to make it
line up when typed:

.af
da 1 2i 3i

l tab 2 tab 3
40 tab 50 1ab 60
700 tab 800 tab 900
A

Then change each leading blank into the string “\0”. This is a character that does not print, but
that has the same width as a digit. When printed, this will produce

1 2 3
40 50 60
700 800 900

It is also possible to fill up tabbed-over space with a character other than a space by setting the
“tab replacement character” with the tab character (.tc) command:

.ta 1.51 2.5
¢ \(ru
Name tab Age tab

produces

Name Age

To reset the tab replacement character to a blank, use .tc with no argument. Lines can also be
drawn with the \l command, described below.

5.7 Drawing Lines and Characters

Troff provides a way to place characters of any size at any place, as in the examples Area = 1rr2
and the big P in thc Paternoster (See Section 5.5). Commands can be used to draw special
characters or to give your output a particular appearance. Most of thesc commands are
reasonably straightforward, but look rather complicated.

For example, without egn, subscripts and superscripts are most easily done with the half-line
local motions \u and \d. To go back up the page half a point-size, insert a \u at the desired place;
to godown, inserta\d. Thus

Arca = \(*pr\u2\d
produces
Area = 'zrr2

To make the 2 smaller, bracket it with

5-6

Using Nroff/Troff

\s-2..\s0

Since \u and \d are relative to the current point size, be sure to put them either both inside or both
outside the size changes, or the results will be unbalanced.

If the space given by \u and \d doesn’t look right, the \v command can be used to request an
arbitrary amount of vertical motion. The in-line command

\v'(amount)’

causcs motion up or down the page by the specified amount. For example, to move the P in Pater,
the following is required:

da li

.in +0.6i \"move paragraph in
Al -0.3i \"shorten lines

i =0.3i \"move P back

\v' 1'\s36P\sO\v'\-1’ater noster qui est

in caelis ...

The backslash \" is a troff command that causes the rest of the line to be ignored. It is useful for
adding comments 1o the macro definition.

A minus sign, after “\v’”’ causes upward motion, while no sign or a plus sign causes downward
motion. Thus *“\v'—1"" causes an upward vertical motion of one line space.

There are many other ways to specify the amount of motion:

\Wo.1’

\Wip’

\v'=0.5m’
and soon are all legal. Notice that the specifiers, i for inches, p for points or m for ems, go inside
the quotation marks. Any character can be used in place of the quotation marks, as well as in any
troff commands described in this section.

Since troff does not take within-the-line vertical motions into account when figuring out where it
is on the page, output lines can have unexpected positions if the left and right ends aren’t at the
same vertical position. Thus\v, like \u and \d, should always balance upward vertical motionina
line with the same amount in the downward direction.

Arbitrary horizontal motions are also available: \h is quite analogous to \v, except that its default
scale is ems instead of line spaces. The specification \h’-0.1i’ causes a backwards motion of a
1/10-inch.

Frequently \h is used with the width function \w to generate motions equal to the width of some
character string. The construction

\w'thing’

is a number cqual to the width of thing in machine units (1/432-inch). All troff computations are
actually done in these units. To move horizontally the width of an x, you can use:

\h’\w’x,u’
As we mentioned above, the default scale factor for all horizontal dimensions is m for ems, so here

u for machine units must be specified, or the motion produced will be far too large. Nested
quotation marks are acceptable to troff; be careful to supply the right number.

There are also several special-purposc troff commands for local motion. We have already seen\0,
which is an unpaddable whitespace of the same width as a digit. Unpaddable means that it will
never be widened or split across a line by line justification and filling. There is also \(space),
which is an unpaddable character the width of a space, | which is half that width,\", which is one
quarter of the width of a space, and \ &, which has zero width. This last one is useful, for example,

57

XENIX Text Processing

when entering a text line which would otherwise begin with a dot (.).
The command *\o", used like
\o’set of characters’

causes up to 9 characters to be overstruck, centered on the widest. This can be used for accents, as
in:

syst\o"e\(ga"me t\o"e\(aa"l\o"e\(aa"phonique
which makes;

systéme téléphonique
The accents are treated by troff as single characters.

You can make your own overstrikes with another special convention, \z, the zero-motion
command, which suppresses the normal horizontal motion after printing the single character x,
so another character can be laid on top of it. Although sizes can be changed within\o, it centers
the characters on the widest, and there can be no horizontal or vertical motions, so \z may be the
only way to get what you want.

You can create rather ornate overstrikes with the bracketing function \b, which piles up
characters vertically, centered on the current bascline. Thus you can get big brackets by
constructing them with piled-up smaller pieces:

18}

by typing in this:

AL AT ADNNN x AbA(re\(rAb\(rt\(rk\(rb’

Trofl also provides a convenient facility for drawing horizontal and vertical lines of arbitrary
length with arbitrary characters. \I'li" draws a line one inch long, like this:
The length can be followed by the character touse if the . isn’t appropriate. For example, \l'0. 51
draws a half-inch line of dots: The construction \L is entirely analogous, except that it
draws a vertical line instead of horizontal.

5.8 Strings

Obviously, il a paper contains a large number of occurrences of an acute accent over a letter ¢,
typing \o"e\"" for each occurrence would be a great nuisance. Fortunately, nroff and troff provide
a facility for storing any string of text in a string definition. Strings are among the nroff and troff
mechanisms that allow you to type a document with less effort and organize it so that extensive
format changes can be made with few editing changes. Strings are defined with the define (.ds)
command. Thereafter, whenever you need to use the string, you can replace it with the shorthand
you have defined. For example, the line:

ds ¢ \o"e\"
delines the string e to have the value é.

String names may be cither onc or two characters long. To distinguish them from normal text,
single-character strings must be preceded by “*” and double-character strings by “*(*". Thus,
to use the definition of the string e as above, we can say t*el\+*ephone. If a string must begin with
blanks, define it by using a double quotation mark to signal the beginning of the definition. For
example,

ds xx " text

5-8

Using Nroff/Troff

defines the string “*xx’ as the word “text” preceded by several blanks. There is no trailing quote;
the end of the line terminates the string.

A string may actually be several lines long; if troff encounters a \ at the end of any line, it is
thrown away and the next line added to the current one. So you can make a long string simply by
ending cach line but the last with a backslash:

ds xx this is a very long string\
continuing on the next line\
and on to the next

Strings may be defined in terms of other strings, or even in terms of themselves.

5.9 Macros

In its simplest form, a macro is just a shorthand notation—somewhat like a string. For example,
suppose we want every paragraph in a document to start with a space and a temporary indent of
twoems:

Sp
Ai +2m

Tosave typing, we could translate these commands into one macro:
P

which trofl would interpret exactly as

Sp
i 4+2m

If you first define it with the .de command, the macro .P can replacc the longer specification:

de P

.Sp
A +2m

The first line names the macro, in this case .P for paragraph; it is in uppercase to avoid conflict
with any cxisting nroff or troff command. The last line marks the end of the definition. In
between is the text, which is simply inserted whenever troff sees the command or macro call .P. A
macro ¢an contain any mixture of text and formatting commands. The definition of .P naturally
has to precede its first use. Names are restricted toone or two characters.

Using macros for commonly occurring sequences of commands not only saves typing, but it
makes later changes much easier. Suppose we decide that the paragraph indent is too small, the
vertical space is much too big, and roman font should be forced. Instead of changing the whole
document, we nced only change the definition of .P to something like

de P \" paragraph macro

.sp 2p
A H3m
JtR

and the change takes cffect everywhere the .P macro is invoked.

As another example of a macro definition, consider these two which start and end a block of
offset, unfilled text:

5-9

XENIX Text Processing

.de BS \" start indented block
Sp

.nf

.in +0.3i

.de BE \" end indented block
Sp

A

.in \(mi0.3i

Now we can surround text with the commands .BS and .BE to create indented blocks. Uses of
-BS and .BE can be nested to get blocks within blocks. To change the indent, it is only necessary
to change the definitions of .BS and .BE, not every occurrence of the indent in the entire
document.

The macro package MM, as well as the two specialized macro packages, thl and eqn, are simply
very large collections of macro definitions which replace more cumbersome arrays of nroff and
troff commands. One thing to keep in mind when you consider defining a new macro, is that
unless you are doing something quite unusual, an MM macro probably already exists for that
purpose. Socheck your documentation carefully before reinventing the wheel.

5.10 Titles, Pages and Numbering

None of the features described in this section are automatic. You may wish to copy these
specifications literally until you feel more comfortable with these commands. For example,
suppose you want to have a title at the top of each page. You have to give the actual title, along
with instructions about when to print it, and directions for its appearance. First, a new page
(.NP) macro can be created to process titles and the like at the end of one page and the beginning
of the next:

.de NP

bp

’sp 0.5i

.l ’left top’center top’right top’
sp 0.3i

Tostart at the top of a page, a begin page (.bp) command should be included, which causcs a skip
to the top of the next page. Then we space down half an inch, use the title (.t1) command to print
the title and space another 0.3 inches,

To ask for .NP at the bottom of each page, we nced to specify that the processing for a ncw page
should start when the text is within an inch of the bottom of the page. This is done with a when
(.wh) command:

.wh \-1i NP

(Note that no dot is used before NP; this is simply the name of a macro, not a macro call.) The
minus sign means “measure up from the bottom of the page,” so —!i means one inch from the
bottom.

The .wh command appears in the input outside the definition of .NP; typically the input would be
.de NP
macro defined here
wh —1i NP

As text is actually being output, nroff/troff keeps track of its vertical position on the page, and

after a line is printed within onc inch of the bottom, the .NP macro is activated. The .NP macro
causcs a skip to the top of the next page, then prints the title with the appropriate margins. All the

5-10

Using Nroff /Troff

input text collected but not yet printed is flushed out as soon as possible, and the next input line is
guaranteed tostart a new line of output; a break is caused in the middle of the current output line
when a new page is started. The leftover part of that line is printed at the top of the page, followed
by the next input line on a new output line. Using "instead of dot (.) for a command tells nroff and
troff that no break is to take place; the output line currently being filled should not be forced out
before the space or new page. For example, *bp and 'sp are used here instead of .bp and .sp.

The list of commands that cause a break is short:
.bp .br .ce fi .nf sp .in .ti

All others cause no break, regardless of whether you use a period (.) or a *. If you really need a
break, add a .br command at the appropriate place.

If you change fonts or point sizes frequently , you may find that if you cross a page boundary inan
unexpected font or size, your titles come out in that size and font instcad of what you intended.
Furthermore, the length of a title is independent of the current line length, so titles will come out
at the default length of 6.5 inches unless you change it, which is done with the .It command.
There are several ways to correct point sizes and fonts in titles. The simplest way is to change NP
tosct the proper size and font for the title, then restore the previous values, like this:

ta .8i

.de NP

A bp

’sp 0.5i

ftR \" set title font to Roman
.ps 10 \" and size to 10 point

Jt 61 \"and length to 6 inches

Al 'left’center’right’

.ps \" revert to previous size
ftP \" and to previous font
’sp 0.3i

This version of .NP does not work if the fields in the .tl command contain sizc or font changes.

To get a footer at the bottom of a page, you can modify .NP so it does some processing before the
"bp command, or split the job into a footer macro invoked at the bottom margin and a header
macro invoked at the top of the page.

Output page numbers arc computed automatically starting at 1, but no numbers are printed
unless you ask for them. To get page numbers printed, include the character “% in the .tl line at
the position where you want the number to appear. For example

.'.I LA % o

centers the page number inside hyphens. You can set the page number at any time with cither
.bpn, which immediately starts a new page numbered n, or with .pnn, which sets the page
number for the next page but doesn’t cause a skip to the new page.

5.11 Number Registers and Arithmetic

Troff uses number registers for doing arithmetic and defining and using variables. Number
registers, like strings and macros, are useful for setting up a document so it is easy to change later,
as well as for doing any sort of arithmetic computation. Like strings, number registers have one-
or two-character names. They are set by the .nr command, and are referenced by \nx (one-
character name) or \n(xy (two-character name).

There are quite a few pre-defined number registers maintained by troff, among them % for the
current page number, .nl for the current vertical position on the page; .dy, .mo and .yr for the
current day, month and year; and .s and .f for the current point size and font. Any of these can be
used in computations like any other register, but some, like .s and .f, cannot be arbitrarily

5-11

XENIX Text Processing

changed withan .nr command. 7
\u ,/‘9

In MM, most significant parameters are defined in terms of the values of a handful of number
registers. These include the point size for text, the vertical spacing, and the line and title lengths.
Toset the point size and vertical spacing for the following paragraphs, for example, you could say

.nr PS 9
.nr VS 11

This would set the point size to 9 and the vertical spacing to 11 points.
The paragraph macro .P is defined as follows:

ta i

de.P

.ps \\n(PS \" reset size
vs \\n{VSp \" spacing

ft R \" font
.sp 0.5v \" half a line
i +3m

This sets the font to Roman and the point size and line spacing to whatever values are stored in
the number registers PS and VS.

Two backslashes are required to quote a quote. That is, when nroff or troff originally read the
macro definition, they peel off one backslash to see what is coming next. To ensure that another is
left in the definition when the macro is actually used, we have to put two backslashes in the
definition. If only one backslash is used, point size and vertical spacing will be frozen at the time
the macrois defined, not when it is used.

Protection with extra backslashes is only needed for \n, *,\$, and \ itself. Commands like \s, \,
\h, \v, and so on do not need an extra backslash, since they are converted by nroff and troff to an
internal code when they are read.

Arithmetic expressions can appear anywhere that a number is expected. For example,
.nr PS \\n(PS-2

decrements PS by 2. Expressions can use the arithmetic operators +, —, +, /, % (mod), the
relational operators >, > =, <, <=,=,and != (not equal), and parentheses.

There are a few things to consider in using number register arithmetic. First, number registers
hold only integers. Nroff/troff arithmetic uses truncating integer division. Second, in the
absence of parentheses, evaluation is done left-to-right without any operator precedence,
including relational operators. Thus

7%.4+3/13

becomes “—17. Number registers can occur anywhere in an expression, and so can scale
indicators like p, i, m, and so on. Although integer division causes truncation, each number and
its scale indicator is converted to machine units (1 /432-inch) before any arithmetic is done, so
1i/2u evaluates to 0.5i correctly.

The scale indicator u (for "units”) often has to appear when you wouldn’t expect it--in particular,
when arithmetic is being done in a context that implies horizontal or vertical dimensions. For
example,

A1 7i/2u
Asaferuleistoattach a scale indicator to every number, cven constants.

For arithmetic done within a .nr command, there is no implication of horizontal or vertical
dimension, so the default units are units, and 7i/2 and 7i/2u mean the same thing. Thus

5-12

Using Nroff/Troff

ar ll 7i/2
A1 0u

is sufficiently explicit as long as you use u with the .l command.
5.12 Macros with Arguments

You can define macros that can change from onc use to the next according to parameters supplied
as arguments. To make this work, you need two things: first, when you define the macro, you
must indicate that some parts of it will be provided as arguments when the macro is called.
Sccond, when the macro is called you must provide actual arguments to be plugged into the
definition.

To illustrate, let’s define a macro .SM that will print its argument two points smaller than the
surrounding text. The definitionof SMis

.de SM
\s-2\\S \s+2

Within a macro definition, the symbol \\$n refers to the nth argument that the macro was called
with. Thus\\$1 is the string to be placed in a smaller point size when .SM is called.

The following dcfinition of .SM permits optional second and third arguments that will be printed
in the normal size:

.de SM
WE3s-2\S 1\s+24\$2

Arguments not provided when the macro is called are treated as empty. It is convenicnt to reverse
the order of arguments because trailing punctuation is much more common than leading. The
number of arguments that a macro was called with is available in number register $.

For example, let’s define a macro .BD to create a bold Roman for troff command names in text. It
combines horizontal motions, width computations, and argument rearrangement.

.de BD
VENSAFTWS VW \AS P u+1u"\\S IVPA\S 2

The \h and \w commands need no extra backslash, as we discussed earlier in this section. The\&
is there in casc the argument begins with a period.

Two backslashes are needed with the \\$n commands to protect one of them when the macro is
being defined. Consider a macro called .SH which produces section headings rather like those in
this paper, with the sections numbered automatically, and the title in bold in a smaller size. You
would use it in this form:

SH "Section title ..."

If the argument to a macro is to contain spaces, then it must be surrounded by double quotation
marks.

Here is the definition of the .SH macro:

XENIX Text Processing

.ta 751 1.15i

.nrSHO \" initialize section number
.de SH

.sp 0.3i

ftB

.nr SH \\n(SH+1 \" increment number

.ps Wn(PS—1 \" decrease PS

\\n(SH. \\$1 \" number. title

.ps Wn(PS \" restore PS

sp 0.3i

ft R

The section number is kept in number register SH, which is incremented each time just before it
is used. Note that a number register may have the same name as a macro without conflict, but a
string may not.

We used \\n(SH instead of \n(SH and \\n{PS instead of \n(PS. If we had used \n(SH, we would
get the value of the register at the time the macro was defined, not at the time it was used.
Similarly, by using \\n(PS, we gct the point size at the time the macro s called.

Asan example that does not involve numbers, recall the NP macro which had a
Al ’left’center’right’

We could make these into parameters by using instead
ANWHLTWHCTWHRT

so the title comes from three strings called LT, CT and RT. If these are empty, then the title will
be a blank line. Normally CT would be set with something like

ds CT -%-

but you can also supply private definitions for any of the strings.
5.13 Conditionals

To cause the .SH macro to leave two extra inches of space just before section 1, but nowhere else,
you can put a test inside the .SH macro to determine whether the section number is 1, and add
some space if it is. The .if command provides a conditional test just before the heading line is
output:
Af \W\n(SH=1 .sp 2i \" first section only

The condition after the .if can be any arithmetic or logical expression. If the condition is logically
true, or arithmetically greater than zero, the rest of the line is treated as if it were text. If the
condition is false, or zero or negative, the rest of the line is skipped. It is possible to do more than
one command if a condition is true. Suppose several operations are to be done before section 1.

One possibility is to define a macro .S1 and invoke it if we are about to dosection |, as determined
byan.if:.

de S1
--- processing for section | ---

.de SH

if \n(SH=1 "SI

5-14

Using Nroff/Troff

Analternate way is to use the extended form of the .if, like this:

AT \\n(SH=1 \{--- processing
for scction 1 ----\)

The braces \{ and \} must occur in the positions shown or you will get unexpected extra lines in
your output.

Nroff and troff also provide an if-else construction. A condition can be negated by preceding it
with!; we get the same efieet as above by using

Af N\\n(SH>1 .81

There arc a handful of other conditions that can be tested with .if. For example, you may need to
determine if the current page is even or odd. The following conditionals give facing pages
different titles when used inside an appropriate new page macro.

.if e .tl "even page title”
.if o .tl "odd page title”

Two other conditions, which you will find useful when you need to process text for both
lineprinter and typesetter, arc n and t. These can be used to indicate conditions dependent on
whether troff or nroff arc being invoked.

Af t troff input ...
Af n nroff input ...

Finally, string comparisons may be made in an .if statement. The following comparison does
“input” if string 1 is the samc as string 2:

e&.if ’stringl’string2’ input

The character scparating the strings can be anything reasonable that is not contained in either
string. The strings themselves can reference strings with *, arguments with\$, and soon.

5.14 Environments

In an earlier section, the potential problem of going across a page boundary was mentioned:
parameters like size and font for a page title may be different from those in cffect in the text when
the page boundary occurs. Nroff/trofl provides a way to deal with this and similar situations.
There are three environments that have independently controllable versions of many of the
parameters associated with processing, including size, font, linc and title lengths, fill or no-fill
mode, tab stops, and even partially collected lines. Thus the titling problem may be solved by
processing the main text in one environment and titles in a separate environment with its own
suitable parameters.

The environment command .ev # shifts to environment #; n must be 0, 1 or 2. The command .ev
with no argument returns to the previous environment. Environment names are maintained in a
stack, so calls for different environments may be nested and called in order. If, for example, the
main text is processed in environment 0, which is where troff begins by default, we can modify the
new page macro .NP to process titles in environment 1 like this:

.de NP

ev i \" shift to new environment

Jdt 61 \" set parameters here

ftR

.ps 10

... any other processing ...

.ev \" return 1o previous environment

It is also possible to initialize the parameters for an environment outside the .NP macro, but the

5-15

XENIX Text Processing

version shown keeps all the processing in one place to make it easier to understand and change.
5.15 Diversions

In page layout there are numerous occasions when it is nccessary to store some text for a period of
time without actually printing it. Footnotes are the most obvious example: the text of the
footnote usually appears in the input long before the place on the page where it is to be printed is
reached. In fact, the place where it is output normally depends on how big it is. The footnote text
musl be preprocessed at least to the extent that its size is determined.

Nroff and troff provide a mechanism called a diversion for doing this processing. Any part of the
output may be diverted into a macro instead of being printed, and then at some convenient time
thc macro may be put back into the input. The command .di xy begins a diversion. All
subsequent output is collected into the macro xy until the command .di with no arguments is
encountered. This terminates the diversion. The processed text is available at any time
thereafter, simply by giving the command:

Xy

The vertical size of the last finished diversion is contained in the built-in number register dn.

For example, suppose we want to implement a keep-release operation, so that text (such as a
figure or 1able) between the commands .KS and .KE will not be split across a page boundary.
Clearly, when a .KS is encountered, we have to begin diverting the output so we can find out how
bigitis. Then whena .KE is seen, we decide whether the diverted text will fit on the current page,
and print it cither there if it fits, or at the top of the next page if it doesn’t. We could use the
following to definc .KS and .KE:

de KS \" start keep

Jbr \" start fresh line

.ev] \" collect in new environment
f \" make it filled text

di XX \" collect in XX

de KE \" end keep

br \" get last partial line

di \" end diversion
AC\AN(dn>=\\n(.t .bp \" bp if doesn’t fit

.nf \" bring it back in no-fill
XX \" text

.ev \" return to normal environment

Recall that number register nl is the current position on the output page. Since output was being
diverted, this remains at its value when the diversion started. The amount of text in the diversion
is stored in dn. Another built-in register, .t is the distance to the next trap, which we assume is at
the bottom margin of the page. If the diversion is large enough to go past the trap, the .if is
satisfied, and a .bp is issued automatically. In either case, the diverted output is then brought
back with .XX. It is essential to bring it back in no-fill mode so nroff/troff will do no further
processing on it.

The definition of .KS and .KE is only intended as an example 1o demonstrate the power of
diversions. You will find the .KS and .KE macros already defined in the MM macro package.

5-16

Chapter 6
Nroff /Troff Reference

6.1 Introduction |
6.1.1 Invoking nroffand troff |
6.1.2 Technical Information 2

6.2 Basic Formatting Rcquests 4
6.2.1 Font and Character Size Control 4
6.2.2 PageControl 5
6.2.3 Text Filling, Adjusting, and Centering 6
6.2.4 Vertical Spacing 7
6.2.5 Line Lengthand Indenting 8
6.2.6 Tabs, Leaders,and Fields 8
6.2.7 Hyphenation 9
6.2.8 Three Part Titles 9
6.2.9 Output Line Numbering 10

6.3 Character Translations, Overstrike, and Local Motions 10
6.3.1 Input/Output Conventions and Character Translations 10
6.3.2 Local Motions and the Width Function 12
6.3.3 Overstrike, Bracket, Line-drawing, and Zcro-width Functions 12

6.4 Processing Control Facilities 13
6.4.1 Macros, Strings, Diversions, and Position Traps 13
6.4.2 Number Registers 16
6.4.3 Conditional Acceptanceof Input 17
6.4.4 Environment Switching 18
6.4.5 Insertions From the Standard Input 18
6.4.6 Input/Output FileSwitching 18
6.4.7 Miscellancous Requests 19

6.5 Output and Error Messages 19

6.6 Summary of Escape Sequences and Number Registers 20
6.6.1 Escape Sequences for Characters, Indicators, and Functions 20
6.6.2 Predefined General Number Registers 21
6.6.3 Predefined Read-Only Number Registers 21

6.1 Introduction

Nroff and troff arc the XENIX text processing formatting programs. Nroff can be used to output
text to terminals, lincprinters, and letter-quality printers. Troff can be used to output text to a
number of phototypesetters and laser printers. Both programs use identical commands, which
are interspersed with lines of text. The commands used by both programs allow you to control the
style of headers and footers, footnotes, paragraphs, and sections. You may specify font and point
size, spacing, multiple column output, and local motions to create overstriking and line drawing
effects.

Because nroff and troff arc compatible with each other, it is almost always possible to prepare
input acceptable to both. By using conditional input, you may add commands which are specific
toeither program.

6.1.1 Invoking nrofl and troff

The general form of invoking the formatters on the command line is:
nroff options files

or
troff options files

where options represents any of a number of option arguments and files represents a list of files
containing the document to be formatted. An argument consisting of a single minus sign (=) is
taken to be a filename corresponding to the standard input. If no filenames are given, input is
taken from the standard input. The options may appear in any order so long as they appear
before the filenames. They are:

-ofist Prints only pages whose page numbers appear in list, which consists of comma-
separated numbers and number ranges. A number range has the form N—M and
means pages N through M; an initial -N means from the beginning to page N,and a
final N- means from N to the end.

-nN Numbers first generated page N.

-sN Stops every N pages. Nroff will hait prior to every NV pages (default N=1) to allow
paper loading or changing, and resume upon receipt of a newline. Troff will stop the
phototypesetter every NV pages, produce a trailer to allow changing cassettes, and will
resume after the phototypesetter “start” button is pressed.

-mname Prepends the macro file /usr/lib/tmac.name to the input files.

-cname Samc as-mname, but uses a compacted form of /usr/lib/ftmac.name for efficiency.

-raNV Registeraissetto N.
-i Reads the standard input after the input files are exhausted.
-q Invokes the simultaneous input-output mode of the rd request.

The following options arc recognized by nroff only:
-Tname Specifies the name of the output terminal type.

-e Produces equally-spaced words in adjusted lines, using full terminal resolution.

6-1

XENIX Text Processing Guide

The following options are recognized by troff only:

- Directs output to the standard output instead of the phototypesetter.

-f Refrains from feeding out paper and stopping phototypesetter at the end of the run.
-w Waits until phototypesetter is available, if currently busy.

-b Reports whether the phototypesetter is busy or available. No text processing is done.
-a Sends a printable ASCII approximation of the results to the standard output.

-pN Prints all characters in point size N whilc retaining all prescribed spacings and

motions, to reduce phototypesetter elapsed time.

Note that each option must be invoked as a scparate argument.
6.1.2 Technical Information

The input 10 the formatters consists of text lines interspersed with control lines that set
parameters or otherwise control later processing. Control lines begin with a “control character”,
usually a period (.) or a single quotation mark (’), followed by a one- or two-character name that
specifics a basic “request” or the substitution of a user-defined “macro” in place of the control
line. The single quotation mark control character () suppresses the “break function,” which is
the forced output of a partially filled line caused by certain requests. The control character may
be separated from the request or macro name by whitespace (spaces and/or tabs) for esthetic
reasons. Names must be followed by either a space or a newline. Control lines with unrecognized
names are ignored.

Various special functions may be introduced anywhere in the input by means of an “escape”
character, normally the backslash (\). For example, the function *“\nR” causes the interpolation
of the contents of the number register R in place of the function; here R is either a single
character name as in \nx, or a left-parenthesis-introduced, two-character name as in \n(xx.

Troff uses 432 units to the inch, corresponding to the Wang Laboratories phototypesetter which
has a horizontal resolution of 1 /432-inch and a vertical resolution of 1/144-inch. Nroff uses 240
units to the inch internally, corresponding to the least common multiple of the horizontal and
vertical resolutions of various typewriter-like output devices. Troff rounds horizontal and
vertical numerical parameter input to the actual horizontal and vertical resolution of the
typesetter. Nroff similarly rounds numerical input to the actual resolution of the output device
indicated by the -T option.

Both Nroff and troff accept numerical input with the appended scale indicators shown in the
following table, where S is the current type sizc in points, V is the current vertical line spacing in
basic units, and C is a nominal character width in basic units, as shown below:

6-2

Nroff/Troff Reference

Scale Number of basic units
Indicator Mcaning Troff Nroff
i Inch 432 240
¢ Centimeter 432x50/127 | 240x50/127
p Pica=1/16 inch 72 240/6
m Em =S points 6xS C
n En=Em/2 3xS C,sameas Em
p Point=1/72inch | 6 240/72
u Basic unit] 1
v Vertical linespace | V v
none Default

In nroff, both the cm and the en are taken to be equal to the C, which is output-device dependent;
common values are 1/10- and 1/12-inch. Actual character widths in nroff need not be all the
same and constructed characters such as —> (—) are often extra wide. The default scaling is
ems for the horizontally-oriented requests and functions, including;

Alin .ti .ta .t .po .mc \h \l;
Vs is the scaling for the vertically-oriented requests and the following functions:
.pl .wh .ch .dt .sp .sv .ne .rt .ev \v \x \L

p is the scale for the .vs request; and u is the scale for the requests .nr, .if, and .ie. All other
requests ignorc any scale indicators. When a number register containing an already
appropriately scaled number is interpolated to provide numerical input, the unit scale indicator u
may need to be appended to prevent an additional inappropriate default scaling. The number N
may be specified in decimal-fraction form but the parameter finally stored is rounded to an
integer number of basic units.

The “absolute’ position indicator () may be prepended to a number NV to gencrate the distance to
the vertical or horizontal place N. For vertically oriented requests and functions, }V becomes the
distance in basic units from the current vertical place on the page or in a “diversion” to the
vertical place N. For all other requests and functions, [V becomes the distance from the current
horizontal place on the input line to the horizontal place V.

For example,
sp B.2¢

will space in the required direction to 3.2 centimeters from the top of the page. Wherever
numerical input is expected, an expression involving parcntheses, the arithmetic operators (+, —,

,*, %) and the logical operators (<, >, <=, >=, =, ==, & (and), : {or)) may be used. Except
where controlled by parentheses, evaluation of expressions is left-to-right; there is no operator
precedence. In the case of certain requests, an initial + or — is stripped and interpreted as an
increment or decrement indicator respectively.

For example, if the number register x contains 2 and the current point size is 10, then
11 (4.25i+0P+3)/2u
sets the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

Note: numerical parameters arc indicated here in two ways. =+ N means that the argument may
take the forms &V, +NV, or —N and that the corresponding effect is to set the affected parameter to
N, to increment it by N, or to decrement it by N respectively. Plain VN means that an initial
algebraic sign is not an increment indicator, but merely the sign of . Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For example, most requests
expect to sct parameters to non-negative values; exceptions are .sp, .wh, .ch, .nr, and .if. The
requests .ps, .ft, .po, .vs, .Is, .11, .in and .It restore the previous parameter value in the absence of an
argument.

6-3

XENIX Text Processing Guide

Single-character arguments are indicated by single lowercase letters, and one- or two-character
arguments are indicated by a pair of lowercase letters. Character string arguments are indicated
by multicharacter mnemonics.

6.2 Basic Formatting Requests
The following sections describe the commonly used nroff and troff formatting requests.
6.2.1 Font and Character Size Control

The troff character set includes a regular character set plus a Special Mathematical Font
character set—each having 102 characters. All ASCII characters are included, with some on the
Special Font. With three exceptions, the ASCII characters are input as themselves, and non-
ASCII characters are input in the form \(xx where xx is a two-character name. The three ASCI1
exceptions are mapped as follows:

ASCl Input Printed by troff
Character Name
’ acute accent
grave accent
- minus

The characters’, *, and - may be input as \", *, and \- respectively or by their names. The ASCII
characters @, 4,7, ", <,>,,1{,}, ., and _exist only on the Special Font and are printed asa -
cm space if that font is not mounted. Nroff understands the entire troff character set, but can in
general print only ASCII characters, such characters as can be constructed by overstriking or
other combinations, and those that can reasonably be mapped into other characters. The exact
behavior is determined by a driving table prepared for each device. The characters’,‘,and _print
as themselves. The default mounted fonts are Roman (R), italic (I), bold (B), and the Special
Mathematical Font (S) on physical typesctter positions 1, 2, 3, and 4 respectively.

The current font, initially Roman, may be changed (among the mounted fonts) by use of the .ft
request, or by imbedding at any desired point either \fx,\f(xx, or \fN where x and xx are the
name of a mounted font and N is a numerical font position. It is not necessary to change to the
Special font; characters on that font are handled automatically. A request for a named but
unmounted font is ignored. Troff can be informed that any particular font is mounted by use of
the .fp request. The list of known fonts is installation-dependent. Nroff understands font control
and normally underlines characters that are italicized.

Character point sizes arc typically in the range 6-36 (1/12 to 1/2-inch). The .ps request is used to
change or restorc the point size. Alternatively the point size may be changed between any two
characters by imbedding a \s/V at the desired point to st the size to N, ora\s= N (1SN<K9) to
increment/decrement the size by N; \sO restores the previous size. Requested point size values
that are between two valid sizes yield the larger of the two. The current size is available in the s
register. Nroffignores type size control.

A list of font and size control commands follows:

.ps Has an initial valuc of 10. Point size set to £ /V. Alternatively imbed \sNV or \s £ /.
Any positive size value may be requested; if invalid, the next larger valid size will
result, with a maximum of 36. A paired sequence +N, -N will work because the
previous requested value is also remembered. Ignored in nroff. If no argument is
given, .ps has the previous value.

ssN Has an initial value of 12/36 em. Space-character size is set to N/36 ems. Thissize is
the minimum word spacing in adjusted text. Ignored in nroff. If no argument is

csFNM

bdFN

bdSFN

tF

fpNF

Nroff /Troff Reference

specified, the request is ignored.

Initially off. Constant character space (width) mode is set on for font F (if mounted);
the width of every character will be taken to be /36 ems. If M is absent, the em is
that of the character’s point size; if M is given, the em is M points. All affected
characters are centered in this space, including those with an actual width larger
than this space. Special Font characters occurring while the current font is F are also
sotreated. If Vis absent, the mode is turned off. The mode must be in effect when the
characters are physically printed. Ignored in nroff.

Initially off. The characters in font F will be artificially emboldened by printing each
onc twice, separated by N-1 basic units. A reasonable value for NV is 3 when the
character size is in the vicinity of 10 points. If V is missing the embolden mode is
turned off. The mode must be in effect when the characters are physically printed.
Tgnored in nroff.

Initially off. The characters in the Special Font will be emboldened whenever the
current font is F. The mode must be in effect when the characters are physically
printed.

Initially Roman. Font changed to F. Alternatively, imbed \fF. The font name P is
reserved to mean the previous font. If no argument is specified, previous font is
assumed.

Initially R, T, B, S. Font position. This is a statement that a font named F is mounted
on position NV (1-4). It is a fatal error if F is not known. The phototypesetter has four
fonts physically mounted. Each font consists of a film strip which can be mounted on
a numbered quadrant of a wheel. This request is ignored if noarguments are given.

6.2.2 Page Control

Top and bottom margins are not automatically provided. It is standard procedure to define two
macros and set traps for them at vertical positions 0 (top) and -N (N from the bottom). A
pseudo-page transition onto the first page occurs either when the first break occurs or when the
first nondiverted text processing occurs. Arrangements for a trap to occur at the top of the first
page must be completed before this transition.

pIEN

poxN

Page length set to £ N, initially 11 inches. The internal limitation is about 75 inches
in trofl and about 136 inches in nroff. The current page length is available in the .p
register. The default scale indicator is v. If no argument is given, 11 inches is
assumed.

Begin page, initially N=1. The current page is ejected and a new page is begun, If
+ Nis given, the new page number will be = N. The default scale indicatoris v.

Page number, initially N=1. The next page (when it occurs) will have the page
number = N. A .pn must occur before the initial pseudo-page transition to effect the
page number of the first page. The current page number is in the % register.

Page offset, initially 0. The current left margin is set to £ V. The troff initial value
provides about 1 inch of paper margin including the physical typesetter margin of
1/27-inch. In troff the maximum line-length + page-ofTset is about 7.54 inches. The
current page offset is available in the .o register.

XENIX Text Processing Guide

.ne NV Need N vertical space. If the distance D to the next trap position is less than N, a
forward vertical space of size D occurs, which will spring the trap. If there are no
remaining traps on the page, D is the distance to the bottom of the page. If D<V,
another line could still be output and spring the trap. In a diversion, D is the distance
to thediversion trap, if any, oris very large. If noargument is specified, N=1V.

.mk R Marks the current vertical place in an internal register (both associated with the
current diversion level), or in register R, if given.

TtEN Returns upward only to a marked vertical place in the current diversion. If =N is
given, the place is £ N from the top of the page or diversion or, if & is absent, to a
place marked by a previous .mk. Note that the .sp request may be used in all cases
instcad of .rt by spacing to the absolute place stored in an explicit register.

6.2.3 Text Filling, Adjusting, and Centering

Normally, words are collected from input text lines and assembled into an output text line until
some word docsn’t fit. An attempt is then made to the hyphenate the word in an effort to place a
part of it onto the output line. The spaces between the words on the cutput line are then increased
to spread out the line to the current line length minus any current indent. A word is any string of
characters delimited by the space character or the beginning or end of the input line. Any
adjacent pair of words that must be kept together (neither split across output lines nor spread
apart in the adjustment process) can be tied together using the unpaddable space character
(backslash-space). The adjusted word spacings are uniform in troff and the minimum interword
spacing can be controlled with the .ss request. In nroff, word spacings are normally nonuniform
because of quantization to character-size spaces; the command line option -e causes uniform
spacing with full output device resolution. Filling, adjustment, and hyphenation can all be
prevented or controlled. The text length on the last line output is available in the .n register, and
text baseline position on the page for this line is in the .nl register. The text baseline high-water
mark (lowest place) on the current page is in the .h register.

Aninput text line ending with ., 7, or ! is taken to be the end of a sentence, and an additional space
character is automatically provided during filling. Multiple interword space characters found in
the input are retained, except for trailing spaces; initial spaces also cause a break. When filling is
in effect a \p may be embedded or attached to a word to cause a break at the end of the word and
have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be printed as a text line by
prefacing it with the nonprinting, zero-width filler character \&. Another method is 1o specify
output translation of some convenient character into the control character using .tr.

The copying of an input line in no-fill mode can be interrupted by terminating the partial line with
a\c. The next encountered input text line will be considered to be a continuation of the same line
of input text. Similarly, a word within filled text may be interrupted by terminating the word and
line with \c; the next encountered text will be taken as a continuation of the interrupted word. If
the intervening control lines cause a break, any partial line will be forced out along with any
partial word.

.br Break. The filling of the line currently being collected is stopped and the line is output
without adjustment. Text lines beginning with space characters and empty text lines
(blank lines) also cause a break.

A Fill subsequent output lines. Initially fill is on. The register .u is | in fill mode and 0 in
nofill mode.
.af Nofill. Initially, fill is on. Subsequent output lines are neither filled nor adjusted.

Input text lines are copied directly to output lines without regard for the current line

Nroff/Troff Reference

length.

adce Linc adjustment is begun. If fill mode is not on, adjustment will be deferred until fill
mode is back on. If the type indicator ¢ is present, the adjustment type is changed in
the following ways: | to adjust left-margin only, r to adjust right margin only, ¢ to
center, bor n toadjust both margins. If ¢ is absent the line remains unchanged.

.na No-adjust. Initially, set to adjust. Adjustment is turned ofl; the right margin will be
ragged. The adjustment type for .ad is unchanged. Qutput line filling still occurs if fill
modcis on.

ce N Initially off. Center the next NV input text lines within the current line-length minus

indent. If N=0, any residual count is cleared. A break occurs after each of the N
input lines. If the input line is too long, it will be left-adjusted.

6.2.4 Vertical Spacing

The vertical spacing (V) between the baselines of successive output lines can be set using the .vs
request with a resolution of 1/144-inch = 1/2 point in troff, and to the output device resolution in
nroff. V must be large enough to accommodate the character sizes on the affected output lines.
For the common type sizes (9—12 points), usual typesetting practice is to set V to 2 points greater
than the point size; troff default is 10-point type on a 12-point spacing. The current V is available
inthe .v register. Multiple-V line separation (c.g. double spacing) may be requested with .Is.

If a word contains a vertically tall construct requiring the output line containing it to have extra
vertical space before and or after it, the extra line space function \x'/V’ can be imbedded in or
attached to that word. In this and other functions having a pair of delimiters around their
parameter, the delimiter choice is arbitrary, except that it can’t look like the continuation of a
number expression for V. [f NV is negative, the output linc containing the word will be preceded by
N extra vertical space; il V is positive, the output line containing the word will be followed by N
extra vertical space. If successive requests for extra space apply to the same linc, the maximum
valuesare uscd. The most recently utilized post-line cxtra line space is available in the .a register.

A block of vertical space is ordinarily requested using .sp, which honors the no-space mode and
which does not space past a trap. A contiguous block of vertical space may be reserved using .sv.
The following requests control vertical spacing:

Vs N Initially 1/6-inch or 12 points. Set vertical baseline spacing size V. Transient extra
vertical space available with\x* V'

Is N Initially N=1. Line spacingset to = N. Vs (blank lines) are appended to each output
text linc. Appended blank lines are omitted, if the text or previous appended blank
line reached a trap position. Space vertically in either direction. If NV is negative, the
motion is backward (upward) and is limited to the distance to the top of the page.
Forward (downward) motion is truncated to the distance to the nearest trap.

Sp N Space vertically in either direction. If N is negative, the motion is backward
(upward) and is limited to the distance to the top of the page. Forward (downward)
motion is truncated to the distance to the nearest trap. If no-space mode is on, no
spacing occurs.

sV N Save a contiguous vertical block of size . If the distance to the next trap is greater
than /¥, IV vertical space is output. No-space mode has no effect. If this distance is less
than N, no vertical space is immediately output, but N is remembered for later
output. Subscquent .sv requests will overwrite any still remembered N.

XENIX Text Processing Guide

.08 Output saved vertical space. No-space mode has no effect. Used to finally output a
block of vertical space requested by an earlier .sv request.

qs No-space mode turned on. When on, the no-space mode inhibits .sp requests and .bp
requests without a next page number. The no-space mode is turned off when a line of
output occurs, or with .rs.

.S Restore spacing. The no-space mode is turned off.

blank line Causes a break and output of a blank line exactly like .sp 1.

6.2.5 Line Length and Indenting

The maximum line length for fill mode may be set with .1l. The indent may be set with .in; an
indent applicable to only the next output line may be set with the temporary indent request .ti.
The line length includes indent space but not page offset space. The line length minus the indent
is the basis for centering with .ce. The effect of .11, .in, or .ti is delayed if a partially collected line
cxists until after that line is output. In ill mode the length of text on an output line is less than or
cqual to the line length minus the indent. The current line length and indent are available in
registers .| and .i respectively. The length of three-part titles produced by .tl is independently set
by .It.

N Initially 6.5 inches. Line length is set to £ N. In troff the maximum line-length +
page-offset is about 7.54 inches. Without an argument, this means the previous line
length.

intN Initially ~N=0. Indent is set to £N. The indent is prepended to each output line.
Without an argument, this means the previous indent.

HEN Temporary indent. The next output text line will be indented a distance /N with
respect to the current indent. The resulting total indent may not be negative. The
current indent is not changed. Without an argument, the request is ignored.

6.2.6 Tabs, Leaders, and Fields

The ASCI1 horizontal tab character and the ASCH SOH (leader) character can both be used to
generate either horizontal motion or a string of repeated characters. The length of the generated
entity is governed by internal tab stops specifiable with .ta. The default difference is that tabs
generate motion and leaders generate a string of periods; .tc and .lc offer the choice of repeated
character or motion. There arc three types of internal tab stops: left adjusting, right adjusting,
and centering. In the following table D is the distance from the current position on the input line
(where a tab or leader was found) to the next tab stop; the next string consists of the input
characters following the tab (or leader) up to the next tab (or leader) or end of line; and W is the
width of next-string.

Tab Length of motion or Location of

type repeated characters nextstring

Left D Following D

Right D-W Right adjusted within D
Centered D-W/2 Centered on right end of D

The length of generated motion can be negative, but the length of a repeated character string
cannot be. Repeated character strings contain an integer number of characters, and any residual
distance is prepended as motion. Tabs or leaders found after the last tab stop are ignored, but

6-8

C

Nroff/Troff Reference

may be used as next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a noninterpreted
taband leader respectively, and are equivalent to actual tabs and leaders in copy mode.

A field is contained between a pair of field delimiter characters, and consists of substrings
separated by padding indicator characters. The field length is the distance on the input line from
the position where the field begins to the next tab stop. The difference between the total length of
all the substrings and the field length is incorporated as horizontal padding space that is divided
among the indicated padding places. The incorporated padding is allowed to be negative. For
cxample, if the field delimiter is # and the padding indicator is ~, # xxx right# specifics a right-
adjusted string with the string xxx centered in the remaining space. The following requests are
recognized:

.ta Nt ... Sets tab stops and types. t=R, right adjusting; t=C, centering; t absent is left-
adjusting. Troff tab stops are preset every 0.5 inches, nroff every 0.8 inches. The stop
values are separated by spaces, and a value preceded by + is treated as an increment
to the previous stop value.

tce The tab repetition character becomes c, or is removed specifying motion.
dee The leader repetition character becomes ¢, or is removed specifying motion.
fcabd The field delimiter is set to a; the padding indicator is set to the space character or to

b, if given. In the absence of arguments the field mechanism is turned off.
6.2.7 Hyphenation

Automatic hyphenation can be switched off and on. When switched on with .hy, several variants
may be set. A hyphenation indicator character may be imbedded in a word to specify desired
hyphenation points, or may be prepended to suppress hyphenation. In addition, the user may
specify a small exception word list.

Only words that consist of a central alphabetic string surrounded by (usually null) nonalphabetic
strings are considered candidates for automatic hyphenation. Words that were input containing
hyphens (minus), em-dashes (\(em), or hyphenation indicator characters —such as mother-in-
law—are always subject to splitting after those characters, whether automatic hyphenation is on
oroff.

.nh Initially hyphenation is on. Automatic hyphenation is turned off.

.hy N Automatic hyphenation is turned on for N2 1, or off for N=0. If N=2, last lines
(ones that will cause a trap) are not hyphenated. For N=4 and 8, the last and first
two characters respectively of a word are not split off. These values are additive; i.c.,

/=14 will invoke all threc restrictions.

.hee Hyphenation indicator character is set to ¢ or to the default \&. The indicator does
not appear in the output.

Jhwwordl...

Specify hyphenation points in words with imbedded minus signs. Versions of a word
with various endings are implied.

6.2.8 Three Part Titles

The titling function .tl provides for automatic placement of three fields at the left, center, and

6-9

XENIX Text Processing Guide

right of a line with a title-length specifiable with .It. .tl may be used anywhere, and is independent
of the normal text collecting process. A common use is in header and footer macros.

Al'left’center’right’
The strings Icft, center, and right are respectively left-adjusted, centered, and right-
adjusted in the current title length. Any of the strings may be empty, and
overlapping is permitted. If the page-number character (initially %) is found within
any of the ficlds it is replaced by the current page number having the format assigned
totheregister %. Any character may be used as the string delimiter.

pcc The page number character is set to ¢, or removed. The page-number register
remains %.

JtN Initially 6.5 inches. Length of title set to & V. The line length and the title length are
independent. Indents do not apply to titles; page offsets do.

6.2.9 Output Line Numbering

Automatic sequence numbering of output lines may be requested with .nm. When in effect, a
three-digit Arabic number plus a digit-space is prepended to output text lines. The text lines are
thus offsct by four digit-spaces, and otherwise retain their line length; a reduction in line length
may be desired to keep the right margin aligned with an earlier margin. Blank lines, other
vertical spaces, and lines generated by .tl are not numbered. Numbering can be temporarily
suspended with .nn, or with an .nm followed by a later .nm+0. In addition, a line number indent
I, and the number-text separation S may be specified in digit-spaces. Further, it can be specified
that only those line numbers that are multiples of some number M are to be printed (the others
will appear as blank number fields).

.nm*N Line number mode. If £ /N is given, line numbering is turned on, and the next output
line numbered is numbered +N. Defauit values are M=1, S=R, and [=0.
Parameters corresponding to missing arguments are unaffected; a non-numeric
argument is considered missing. In the absence of all arguments, numbering is
turned off; the next line number is preserved for possible further use in number
register In.

.nn N The next N text output lines are not numbered.
6.3 Character Translations, Overstrike, and Local Motions

The troff functions described in the following sections apply to the processing of specialized text,
including special characters and lines of variable length. Also described are methods for
producing special effects in text, by changing the position of text relative to lines and using offsets
tocreate bold effects.

6.3.1 Input/Output Conventions and Character Translations

The newline delimits input lines. In addition, the ASCII characters STX, ETX, ENQ, ACK,
and BEL characters are accepted, and may be used as delimiters or translated into a graphic with
.tr. Aliothersareignored.

The troff escape character backslash (\) introduces escape sequences— causes the following
character to mean another character, or to indicate some function. The backslash (\) should not
be confused with the ASCIT control character ESC of the same name. The escape character \
can be input with the sequence \\. The escape character can be changed with .ec, and all that has

6-10

Nroff/Troff Reference

been said about the default \ becomes true for the new escape character. The sequence \e can be
used to print whatever the current escape character is. If necessary or convenient, the escape
mechanism may be turned off with .eo, and restored with .ec.

.ecc Scts escape character to\, or toc, if given.

€0 Turns the escape mechanism off.

Five ligatures arc available in the current troff character set: fi, fl, T, Fi, and fl. They may be
input in nroff with \(fi, \(A, \(fT, \(Fi, and \(Fl respectively.

The ligature mode is normally on in troff, and automatically invokes ligatures during input. The
ligature request is:

g N Ligature mode is turned on if NV is absent or nonzero, and turned ofT if N=0. If N=2,
only the two-character
ligatures are automatically invoked. Ligature mode is inhibited for request, macro,
string, register, or filenames, and in copy mode. No cffect in nroff.

Unless in copy mode, the ASCII backspace character is replaced by a backward horizontal
motion having the width of the space character. Nroff automatically underlines charactersin the
underline font, specifiable with uf, normally on font position 2. In addition to .ft and \fF, the
underline font may be selected by .ul and .cu. Underlining is restricted to an output-device-
dependent subset of reasonable characters.

al N Initially off. Underlines in nroff (italicizes in troff) thc next NV input text lines.
Actually, switches to underline font, saving the current font for later restoration;
other font changes within the span of a .ul will take effect, but the restoration will
undo the last change. Output generated by .tl is affccted by the font change, but does
not decrement N. If N> 1, there is the risk that a trap interpolated macro may
provide text lines within the span; environment switching can prevent this.

cu N Initially off. A variant of .ul that causes every character to be underlined in nroff.
Identical to .ulin troff.

afF Initially italic. Underline font set to F. In nroff, F may not be on position 1.

Both the control character dot (.) and the no-break control character (°) may be changed, if
desired. Such a change must be compatible with the design of any macros used in the span of the
change, and particularly of any trap-invoked macros.

.cce The basic control character is set to ¢, or reset todot ().

c2c The nobreak control character is set to ¢, or reset to single quotation mark (°).

One character can be made to stand in for another character using .tr. All text processing (e.g.,
character comparisons) takes place with the input (stand-in) character, which appears to have
the width of the final character. The graphic translation occurs at the moment of output
(including diversion).

Arabed.. Translatesatob, ctod, etc. 1f an odd number of characters is given, the last one will
be mapped into the space character. To be consistent, a particular translation must
stay in effect from input to output time.

An input line beginning with a \! is read in copy mode and transparently output (without the
initial \!); the text processor is otherwise unaware of the line’s presence. This mechanism may be
used to pass control information to a post-processor or to imbed control lines in a macro created
by a diversion.

XENIX Text Processing Guide

Comments and concealed newlines may appear in text. An uncomfortably long input line that
must stay one line (e.g., a string definition, or nofilled text) can be split into many physical lines
by ending all but the last one with the escape \. The sequence \(newline) is always ignored—
except in a comment. Comments may be imbedded at the end of any line by prefacing them with
\". The newline at the end of a comment cannot be concealed. A line beginning with \" will
appear as a blank line and behave like .sp 1;a comment can be on a line by itself if the line begins
with .\".

6.3.2 Local Motions and the Width Function

The functions \v’N" and \h’ A" can be used for local vertical and horizontal motion respectively.
The distance N may be negative; the positive directions are rightward and downward. A local
motion is one contained within a line. and otherwise within a line balance to zero. The vertical
motions are:

W8N Movedistance N

\u 1/2-emupin troff; 1 /2-line up in nroff

\d 1/2-em down in troff; | /2-line down in nroff
\r 1 emupin troff; 1 line up in nroff

The horizontal motions are:

\bV’ Movedistance NV

\space Unpaddable space-size space

\0 Digit-sized space

\ 1/6-em space in troff; ignored in nroff
\" 1/12-em space in troff; ignored in nroff

The width function \w'string’ generates the numerical width of string (in basic units). Size and
font changes may be safely imbedded in string, and will not affect the current environment. For
example, .ti-w’l.’u could be used to temporarily indent leftward a distance equal to the size of the
string “1.”

The width lunction also sets three number registers. The registers st and sb are set to the highest
and lowest extent of string rclative to the bascline; then, for example, the total height of string is
\n(stu—\n(sbu. In troff the number register ct is set toa value between 0 and 3: 0 means that all of
the characters in string were short lowercasc characters without descenders (e.g., ¢); 1 means
that at least one character has a descender (e.g., y); 2 means that at least one character is tall
(e.g., H); and 3 means that both tall characters and characters with descenders are present. The
escape sequence \kx will cause the current horizontal position in the input linc to be stored in
register x.

6.3.3 Overstrike, Bracket, Line-drawing, and Zero-width Functions

Automatically centered overstriking of up to nine characters is provided by the overstrike
function \o’string’. The characters in string are overprinted with centers aligned; the total width
is that of the widest character. Siring should not contain local vertical motion. The function \zc
will output ¢ without spacing over it, and can be used to produce left-aligned overstruck
combinations.

6-12

Nroff/Troff Reference

The Special Mathematical Font contains a number of bracket construction pieces
(IUY) 131 1]111)thatcan be combined into various bracket styles. The function \b’string’
may be used to pile the characters in string vertically (the first character on top and the last at the
bottom); the characters are vertically separated by 1 em and the total pile is centered 1/2-em
above the current baseline.

The function \I’N¢’ will draw a string of repeated ¢'s towards the right for a distance N. (Al is
\(lowercase L). If ¢ looks like a continuation of an expression for V, it may insulated from &V with
a \&. If ¢ is not specified, the _ (baseline rule) is used (underline character in nroff). If N is
negative, a backward horizontal motion of size N is made before drawing the string. Any space
resulting from NV/(size of ¢) having a remainder is put at the beginning (left end) of the string. In
the case of characters that are designed to be connected such as baseline-rule (_), underrule (),
and root-en (), the remaining space is covered by overlapping. If N is less than the width of ¢, a
single cis centered on a distance N.

The function \L’N¢’ will draw a vertical line consisting of the (optional) character ¢ stacked
vertically apart 1 em (1 linc in nroff) with the first two characters overlapped, if necessary, to
form a continuous line. The default character is the box rule (\(br); the other suitable character
is the bold vertical (\(bv). The line is begun without any initial motion relative to the current base
line. A positive N specifies a line drawn downward and a negative /V specifies a line drawn
upward. After the line is drawn no compensating motions are made; the instantaneous baseline is
at the end of the line. The horizontal and vertical line drawing functions may be used in
combination to produce large boxes. The zero-width box-rule and the 1/2-em wide underrule
were designed to form corners when using 1 em vertical spacings.

6.4 Processing Control Facilities

The following sections describe nroff and troff requests and facilities for controlling the
processing of text.

6.4.1 Macros, Strings, Diversions, and Position Traps

A “macro” is a named set of arbitrary lines that may be invoked by name or with a trap. A
“string” is a named string of characters, not including a ncwline character, that may be
interpolated by name at any point. Request, macro, and string names share the same name list.
Macro and string names may be onc or two characters long and may usurp previously defined
request, macro, or string namecs. Any of these may be renamed with .rn or removed with .rm.
Macros are created by .de and .di, and appended to by .am and .da; .di and .da cause normal
output 1o be stored in a macro. Strings are created by .ds and appended to by .as. A macro is
invoked in the same way as a request; a control line beginning with .xx will interpolate the
contents of macro xx. The remainder of the line may contain up to nine arguments. The strings x
and xx are interpolated at any desired point with *x and *(xx respectively. String references
and macro invocations may be nested.

During the definition and extension of strings and macros (not by diversion) the input is read in
copy mode. The input is copied without interpretation except that:

— Thecontents of number registers indicated by \nare interpolated.
— Stringsindicated by * are interpolated.
— Argumentsindicated by\$ arcinterpolated.

— Concealed newlines indicated by \newlinc are eliminated.

6-13

XENIX Text Processing Guide

— Comments indicated by \"are eliminated.
— \tand\aareinterpreted as ASCII horizontal tab and SOH respectively.
— \isinterpreted as\.

— \.isinterpreted asdot (.).

These interpretations can be suppressed by prepending a \. For example, since \\ mapsintoa\,
\\n will copy as \n; this will be interpreted as a number register indicator when the macro or string
is reread.

When a macro is invoked by name, the remainder of the line is taken to contain up to nine
arguments. The argument separator is the space character, and arguments may be surrounded
by quotation marks to permit imbedded space characters. Pairs of double quotation marks may
be imbedded in double-quoted arguments to represent a single quotation mark. If the desired
arguments won’t fit on a line, a concealed newline may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the
previous level become unavailable until the macro is completely read and the previous level is
restored. A macro’s own arguments can be interpolated at any point within the macro with \$~,
which interpolates the Nth argument (1 € N<9). If an invoked argument doesn’t exist, a null
string results. For example, the macro xx might be defined as

.de xx \"begin definition
Today is \\$1 the \\$2.
\"end definition

and called with

.Xx Monday 14th
toproduce the text

Today is Monday the 14th,

Notc that the \$ was concealed in the definition with a prepended \. The number of currently
available argumentsis in the .$ register.

No arguments are available at the top (nonmacro) level in this implementation. Because string
referencing is implemented as an input-level push down, no arguments are available from within
astring. Noarguments are available within a trap-invoked macro.

Arguments are copicd in copy mode onto a stack where they are available for reference. The
mechanism does not allow an argument to contain a direct reference to a long string (interpolated
at copy time) and it is advisable to conceal string references (with an extra \) to delay
interpolation until argument reference time.

Processed output may be diverted into a macro for purposes such as footnote processing or
determining the horizontal and vertical size of some text for conditional changing of pages or
columns. A single diversion trap may be set at a specified vertical position. The number registers
.dn and .d] respectively contain the vertical and horizontal size of the most recently ended
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines
when reread in no-fill mode, regardless of the current value of V. Constant-spaced (.cs) or
cmboldened (.bd) text that is diverted can be reread correctly only if these modes are again or still
ineffect at reread time.

Diversions may be nested and certain parameters and registers are associated with the current
diversion level (the top nondiversion level may be thought of as the Oth diversion level). Theseare
the diversion trap and associated macro, the no-space mode, the internally saved marked place
(see .mk and .rt), the current vertical place (.d register), the current high-water text baseline (.h
register), and the current diversion name (.z register).

6-14

Nroff/Troff Reference

Three types of trap mechanisms are available—page traps, a diversion trap, and an input line
count {rap. Macro invocation traps may be planted using .wh at any page position including the
top. This trap position may be changed using .ch. Trap positions at or below the bottom of the
page have no effect unless or until moved to within the page or rendered effective by an increase in
page length. Two traps may be planted at the same position only by first planting them at
different positions and then moving one of the traps; the first planted trap will conceal the second
unless and until the first one is moved. If the first one is moved back, it again conceals the second
trap. The macro associated with a page trap is automatically invoked when a line of text is output
whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page
springs the top-of-page trap, if any, provided there is a next page. The distance to the next trap
position is available in the .t register; if there are no traps between the current position and the
bottom of the page, the distance returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using .dt. The .t
register works in a diversion; if there is no subsequent trap a large distance is returned. For a
description of input line count traps, sec .it in the following list.

.de xx yy Define or redefine the macro xx. The contents of the macro begin on the next input
line. Input lines are copied in copy mode until the definition is terminated by a line
beginning with .yy, whereupon the macro yy is called. In the absence of yy, the
definition is terminated by a line beginning with two dots (..). A macro may contain
.de requests provided the terminating macros differ or the contained definition
terminator is concealed. The dots can be concealed as \\.. which will copy as \.. and
be rercad asdots (..).

.amxxyy Append tomacro.

ds xx string
Define a string xx containing string. Any initial double quotation mark in string is
stripped off to permit initial blanks.

.as xx string Append string tostring xx.

.rm xx Remove request, macro, or string. The name xx is removed from the name list and
any related storage space is freed. Subsequent references will have no effect.

.rnxxyy Rename request, macro, or string xx to yp. If yy exists, it is first removed.

di xx Divert output to macro xx. Normal text processing occurs during diversion except
that page offsetting is not done. The diversion ends when the request .di or .da is
encountered without an argument; extraneous requests of this type should not
appear when nested diversions arc being used.

.daxx Divert, appending to xx.

.wh N xx Install a trap to invoke xx at page position /V; a negative /V will be interpreted with
respect to the page bottom. Any macro previously planted at NV is replaced by xx. A
zero NV refers to the top of a page. In the absence of xx, the first found trap at N, if
any, is removed.

<chxx N Changethe trap position for macro xx to V. In the absence of /V, the trap is removed.

dt N xx Install a diversion trap at position /V in the current diversion to invoke macro xx.

Another .dt will redefine the diversion trap. If no arguments are given, the diversion
trapis removed.

6-15

XENIX Text Processing Guide

it Nxx Set an input line count trap to invoke the macro xx after V lines of text input have
been read (control or request lines don’t count). The text may be in-line text or text
interpolated by in-line or trap-invoked macros.

em xx The macro xx will be invoked when all input has ended. The effect is the same as if
the contents of xx had been at the end of the last file processed.

6.4.2 Number Registers

A variety of parameters are available to the user as predefined, named number registers. In
addition, the user may define his own named registers. Register names are one or two characters
long and do not conflict with request, macro, or string names. Except for certain predefined
read-only registers, a number register can be read, written, automatically incremented or
decremented, and interpolated into the input in a variety of formats. One common use of user-
defined registers is to automatically number sections, paragraphs, lines, etc. A number register
may be used any time numerical input is expected or desired and may be used in numerical
expressions.

Number registers are created and modified using .nr, which specifies the name, numerical value,
and the auto-increment size. Registers are also modified, if accessed with an auto-incrementing
sequence. If the registers x and xx both contain & and have the auto-increment size M, the
following access sequences have the effect shown:

Effecton Value
Sequence Register Interpolated
\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n+(xx xx incremented by M N+M
\n-(xx xx decremented by M N-M

When interpolated, a number register is converted to decimal (default), decimal with leading
zeros, lowercase Roman, uppercase Roman, lowercase sequential alphabetic, or uppercase
sequential alphabetic according to the format specified by .af.

.ar R+ NM The number register R is assigned the value & /V with respect to the previous value,
if any. The increment for auto-incrementing is set to M.

afRe Assign format c toregister R. Theavailable formats are:
Numbering
Format Sequence
1 0,1,2,3,4,5,...
001 | 000,001,002,003,004,005,...
i 0,i,ii,iii,iv,v,...
I O.LILILIV,V,..
a 0,a,b,c,...,z,aa,ab,...,zz,aaa,...
A 0,A,B,C.....Z, AAAB,...ZZ AAA,...

An Arabic format having /V digits specifies a ficld width of NV digits. The read-only
registers and the width function are always Arabic.

aor R Remove register R. If many registers arc being created dynamically, it may
become necessary to remove no longer used registers to recapture internal storage

6-16

Nroff/Troff Reference

space for newer registers.

6.4.3 Conditional Acceptance of Input

In the following, ¢ is a one-character, built-in condition name, ! signifies not, N is a numerical
expression, string | and string2 are strings delimited by any nonblank, non-numeric character not
in the strings, and text represents what is conditionally accepted.

(ifctext
If condition ¢ is true, process text as input; in multiline case, use \ {text\}.
(iflctrext
If condition c is false, process text.
AN text
If expression N >0, process text.
Af IN text

If expression N <0, process rext.

.if’string1’string2’ text
If string1 identical to string2, process text.

ifVstring1’string2’ text
Ifstring 1 not identical to string2, process fext.

decrext

“If” portion of if-else; all above forms (like if).

el text
“Else™ portion of if-clse.

There are several built-in condition names:

o Current page number is odd
¢ Current page number is even
t Formatter is trofl

n Formatter is nroff

If condition c is true, or if the number N is greater than zero, or if the strings compare identically
(including motions and character size and font), rex is accepted as input. If a ! precedes the
condition, number, or string comparison, the sensc of the acceptance is reversed.

Any spaces between the condition and the beginning of text are skipped over. The fext can be
either a single input line (text, macro, or whatever) or a number of input lines. In the multiline
case, the first line must begin with a left delimiter \{ and the last line must end with a right
delimiter\}.

The request .ie (if-clsc) is identical to .if except that the acceptance state is remembered. A
subsequent and matching .cl (clse) request then uses the reverse scnse of that state. .ic-.el pairs
may be nested.

XENIX Text Processing Guide

6.4.4 Environment Switching

A number of the parameters that control text processing are gathered together into an
environment, which can be switched by the user. Partially collected lines and words are in the
environment. Everything ¢lse is global; examples arc page-oriented parameters, diversion-
oriented parameters, number registers, and macro and string definitions. All environments are
initialized with default parameter values.

ev N Initially N=0. Environment switched to environment where N is in the range 0—2.
Switching is donc in push-down fashion so that restoring a previous environment
must be done with .ev with no parameters rather than a specific numeric reference.

6.4.5 Insertions From the Standard Input

The input can be temporarily switched to the system standard input with .rd, which will switch
back when two newlines in a row are found (the extra blank ling is not used). This mechanism is
intended for insertions in documentation containing standard formats. The standard input can
be the terminal, a pipe, or a file.

.rd prompt Reads insertion from the standard input until two newlines in a row are found. If the
standard input is the user’s keyboard, a prompt (or a BEL) is written onto the
terminal. The .rd request behaves like a macro, and arguments may be placed after
the prompt.

.ex Exit from either nroff or troff. Text processing is terminated exactly as if all input
had ended.

If insertions are to be taken from the terminal keyboard while output is being printed on the
terminal, the command line option -q will turn off the echoing of keyboard input and prompt only
with BEL. The regular input and insertion input cannot simultaneously come from the standard
input.

6.4.6 Input/Output File Switching

The following requests control the switching of input and output files:

50 filename
Switch source file. The top input (file reading) level is switched to filename. The
effect of a .so encountered in a macro is not felt until the input level returns to the file
level. When the new file ends, input is again taken from the original file. .s0’s may be
nested.

.nx filename
Next file is filename. The current file is considered ended, and the input is
immediately switched to filename.

.pi program

Pipe output to program in nroff only. This request must occur before any printing
occurs. Noarguments are transmitted to program.

6-18

Nroff /Troff Reference

6.4.7 Miscellaneous Requests

.mcc N Specifies that a margin character ¢ appear a distance N to the right of the right
margin after cach nonempty text line (except those produced by .t1). If the output
line is too long, the character will be appended to the line. If N is not given, the
previous /Vis used; the initial Vis 0.2 inches in nroff, and | em in troff.

mstring After skipping initial blanks, string (rest of line) is read in copy mode and written on
the user’s terminal.

Agyy Ignores input lines. The .ig request behaves exactly like .de except that the input is
discarded. The input is read in copy mode, and any auto-incremented registers will
be affected.

.pm Prints macros. The names and sizes of all of the defined macros and strings are

printed on the user’s terminal; if 7 is given, only the total of the sizes is printed. The
sizes are given in blocks of 128 characters.

A Flushes output buffer. Used in interactive debugging to force output.
6.S Output and Error Messages

The output from .tm, .pm, and the prompt from .rd, as well as various error messages are written
onto the standard message output. The latter is different from the standard output, where nroff
formatted output goes. By default, both are written onto the user’s terminal, but they can be
independently redirected.

Various error conditions may occur during the operation of nroff and troff. Certain less serious
errors having only local impact do not cause processing to terminate. Two examples are word
overflow, caused by a word that is too large to fit into the word buffer (in fill mode), and line
overflow, caused by an output line that grew too large to fit in the line buffer; in both cascs, a
message is printed, the offending excess is discarded, and the affected word or line is marked at
the point of truncation with a * in nroff and a "W in troff. The program continues processing, if
possible, on the grounds that output useful for debugging may be produced. If a serious error
occurs, processing terminates, and an appropriate message is printed. Examples are the inability
tocreate, read, or write files, and the exceeding of certain internal limits that make future output
unlikely to be useful.

6-19

XENIX Text Processing Guide

6.6 Summary of Escape Sequences and Number Registers

6.6.1 Escape Sequences for Characters, Indicators, and Functions

Sequence Meaning

i\ \(to prevent or delay the interpretation of \)

\e Printable version of the current escape character

v Acute accent (°); equivalent to\(aa

\ Grave accent (*); equivalent to\(ga

\- Minus sign (-) in the current font

\. Period (.)

\(space Unpaddable space-size space character

\0 Digit width space

\ 1/6-em narrow space character (zero width in nroff)
\' 1/12-em half-narrow space character (zero width in nroff)
\& Nonprinting, zero-width character

\! Transparent line indicator

\" Beginning of comment

\$N Interpolate argument (1SKN<9)

\% Default optional hyphenation character

\(xx Character named xx

\a Noninterpreted lcader character

\b’abe...’ Bracket building function

\¢ [nterrupt text processing

\d Forward (down) 1 /2 em vertical motion (1/2 line in nroff)
XXX AN Change to font named x or xx, or position N

\h'N’ Local horizontal motion; move right N (negative left)
\kx Mark horizontal input place in register x

\I’'N¢’ Horizontal line drawing function (optionally with c)
\L’'N¢’ Vertical line drawing function (optionally with ¢)
\nx,\n(xx Interpolate number register x or xx

\o’abe...! Overstrike charactersa, b, ¢

\p Break and spread output line

\r Reverse 1 em vertical motion (reverse line in nroff)
\sN,\s£N Point size change function

\t Noninterpreted horizontal tab

\u Reverse | /2-em vertical motion (1/2-linc in nroff)
\WwN’ Local vertical motion; move down N (negative up)
\w’string’ Interpolate width of string

N’ Extra linc space function {negative before, positive after)
\ze Print ¢ with zero width (without spacing)

Al Begin conditional input

\J End conditional input

\(newline) Concealed (ignored) newline

\X X, any character not listed above

6-20

Nroff/Troff Reference

6.6.2 Predefined General Number Registers

Register

Contents

Current page number

Character type (set by width function)

Width (maximum) of last completed diversion

Height (vertical size) of last completed diversion

Current day of the week (1-7)

Current day of the month (1-31)

Current horizontal place on input line

Output line number

Current month (1-12)

Vertical position of last printed text baseline

Depth of string below base line (generated by width function)
Height of string above base line (generated by width function)
Last twodigits of current year

6.6.3 Predefined Read-Only Number Registers

Register

Nexgeerbogob =" mhob e

Contents

Number of arguments available at the current macro level
Sect to 1 in troff, if -a option used; | in nroff

Available in horizontal resolution in basic units

Setto 1 innroff. if - T option used; always O in troff
Available vertical resolution in basic units

Post-line extra line space most recently utilized using \x'N’
Number of lines read from current input file

Current vertical place in current diversion; equal to nl, if nodiversion
Current font as physical quadrant

Text bascline high-watcer mark on current page or diversion
Current indent

Current line length

Length of text portion on previous output line

Current page offset

Current page length

Current point size

Distance to the next trap

Equalto 1 in fill mode and 0 in no-fill mode

Current vertical line spacing

Width of previous character

Reserved version-dependent register

Reserved version-dependent register

Name of current diversion

6-21

Chapter 7
Formatting Tables

7.1 Introduction 1

7.2 Input Format 1
7.2.1 Options 2
_1.2.2 Format 3
7.2.3 Additional Features 4
724 Data 6
7.2.5 Additional Command Lines 7

7.3 Invoking Tbt 7
7.4 Examples 8

7.5 Summary of tbl Commands 16

7.1 Introduction

By now, you have a firm grasp of most of the principles and techniques of using XENIX text
processing successfully. By using the mm macro package, along with nroff /troff commands, you
should be able to achieve precise control of almost any formatting task. However, there are two
formatting needs which may be best mct with two specialized XENIX formatting programs:

- Formatting tables or other complicated multicolumn material

« Setting mathematical equations

In this chapter, the program tbl, the table formatting program, is introduced. Egn, the
mathematics formatting program, is discussed in Chapter 8. Unless you anticipate using tables
or cquations lairly extensively in your work, you may wish to postpone or skip reading about tbl
and eqn. Although both programs use commands which are easy to learn and use, you should
expect to spend several hours on each program—reading these instructions, learning the
commands, and testing them out with your output device. If you need to create tables or
equations in your documents, the effort of learning tbl and eqn will be well rewarded. You will
soon be able to produce high-quality, consistent output with relatively little work.

Both tbl and eqn arc “preprocessors”—that is, you insert commands into your text as you are
preparing it, just as you would if you were using mm. These commands are translated by the tbl
and eqn programs into scquences of nroff/troff commands, without altering either the body of
your text or other formatting commands. Your file is then processed through the nroff or troff
programs themselves.

You will find tbl especially useful in preparing charts, multicolumn list summarics, and other
tabular material. It will give you a high degree of control over complicated column alignment,
and it will calculate the necessary widths of columns, when the elements are of varying lengths.
Tbl also allows you to draw horizonta!l lines, vertical lines and boxes in order to highlight your
material. Although the effects will be somewhat limited if you are working with an ordinary
lineprinter or similar device, you will obtain extremely high quality results when outputiing
tables to phototypesetter.

Because the thl program works by isolating the tabular material from the rest of the file, and then
creating the necessary nroff or troff commands, the rest of the file is left intact for other programs
to format. Thus you can use thl along with the equation formatting program eqn or various layout
macro packages like mm, without duplicating their functions. You need only be careful toinvoke
the various programs in the correct order.

The latter part of this chapter is devoted to some examples—in each case, the text input is paired
with the resulting output. You may find that at first you learn the features of tbl best by
examining these examples and copying those formatting instructions for examples which
resemble your own tables. However, first read the rules for preparing thl input, so you have a
general idea of how to invoke the tbl program, and an overview of the possible options and
formats.

7.2 Input Format

The input to tbl is text for a document, with tables preceded by a . TS (table start) command and
followed by a .TE (table end) command. Tbl processes the text and formatting commands within
these two commands, generating nroff /troff formatting commands. The .TS and .TE lines are
also copied so that nroff and troff page layout macros can use these lines to delimit and place
tables as necessary. In particular, any arguments on the .TS or .TE lines are copied but otherwise
ignored, and may be used by document layout macro commands.

The format of the input is:

XENIX Text Processing

text
.TS
table
.TE
text
TS
table
.TE
text

Each table will contain text, options, and formatting specifications:

.TS
options;
format.
data
.TE

Each tablc is independent, and must contain formatting information followed by the data to be
entered in the table. The formatting information, which describes the individual columns and
rows of the table, may be preceded by options that affect the entire table.

Each table may contain global options, a format section describing the layout of individual table
entries, and then the text to be printed. The format and data are always required, but not the
options. The various parts of a table are described in the following sections.

7.2.1 Options

There may be a single line of options which affects the whole table. If present, this line must
immediately follow the .TS line and must contain a list of option names separated by spaces, tabs,
or commas, and must be terminated by a semicolon. The allowable options are:

center

Centers the table (default is left-adjust)
expand

Makes the table as wide as the current line length
box

Encloses the table in a box
allbox

Encloses eachitemin the table in a box
doublebox

Encloses the table in two boxes
tab (x)

Uses x instead of tab to separate data items

linesize (n)
Sets lines or rules in # point type

delim (xy)
Recognizes x and y as the eqn delimiters.

Formatting Tables

The thl program tries to keep boxed tables on one page by issuing appropriate .ne commands.
These requests are calculated from the number of lines in the tables, and if there are spacing
commands embedded in the input, these requests may be inaccurate. To ensure the correct
format on one page, you can surround the table with the display macros .DS and .DE.

7.2.2 Format

The format section of the table specifies the layout of the columns. Each line in this scction
corresponds to one line of the table. The last format line applies to all the remaining lines in the
table. Each linc contains a keyletter for each column of the table. It is good practice to separate
the key letters for each column by spaces or tabs. The keyletters, which may be either uppercase
or lowercase, are:

Lorl
Indicates a left-adjusted column entry
Rorr
Indicates a right-adjusted column entry
Corc
Indicates a centered column entry
Norn
Indicates a numerical column entry, to be aligned with other numerical entries so that
the units digits of numbers line up
Aora
Indicates an alphabetic column; all corresponding entries are aligned on the left, and
positioned so that the widest is centered within the column
Sors

Indicates a spanned heading, i.e., the entry from the previous column continues across
this column

Indicates a vertically spanncd heading, i.e., the entry from the previous row continues
down through this row. (Not allowed for the first row of the table.)

When you are aligning numerical information, a location for the decimal point is sought. The
rightmost dot adjacent to a digit is used as a decimal point; if there is no dot adjoining a digit, the
rightmost digit is used for the units; if no alignment is indicated, the item is centered in the
column. However, the special nonprinting character string *\&’" may be used to override dots
and digits, or 1o align alphabetic data; this string lines up where a dot normally would, and then
disappears from the final output. In the cxample below, the items shown at the left will be aligned
(in a numerical column) as shown on the right:

input tbl format
13 13
4.2 4.2
26.12 26.12
abe abc
abc\& abe
43\&3.22 433,22
749.12 749.12

7-3

XENIX Text Processing

Note that if numerical text is used in the same column with wider left-adjusted (L) or right-
adjusted (R) type table entries, the widest number is centered relative to the wider left-adjusted
or right-adjusted items (L is used instead of 1 for readability; they have the same meaning as
keyletters). Alignment within the numerical items is preserved, in the same way as using the A
format. However, alphabetic subcolumns requested by the keyletter are always slightly indented
relative to L items; if necessary, the column width is increased to force this. This is not true for n
type entries. Do not put N and A type entries in the same column.

To make your table formatting information more readable, you should separate the keyletters
describing each column with spaces. The layout of the keyletters in the format section resembles
the layout of the actual data in the table. The end of the format section of the table specification is
indicated by a period. For example, a simple format might look like this:

css

l nn.
This specifies a table of three columns. The first line of the table contains a heading centered

across all three columns; each remaining linc contains a left-adjusted item in the first column
followed by two columns of numerical data.

Hereis a sample table in this format:

Overall title

Item-a 34.22 9.1
[tem-b 12.65 .02
Items: ¢, de 23 5.8
Total 69.87 14.92

Note that instead of listing the format of successive lines of a table on consecutive lines of the
format section, successive line formats may be given on the same line, separated by commas. In P
the example above, the format might have been written: \Q

css, Inn.
7.2.3 Additional Features

There are some additional features of the keyletter system:
Horizontal Lincs

A keyletter may be replaced by an underscore () to indicate a horizontal line in
place of the corresponding column entry, or by an equal sign (=) 10 indicate a double
horizontal line. If an adjacent column contains a horizontal line, or if there are
vertical lines adjoining this column, this horizontal line is extended to meet the
nearby lines. If any data entry is provided for this column, it is ignored and a warning
message is printed.

Vertical Lines
A vertical bar () may be placed between column keyletters. This will cause a vertical
line between the corresponding columns of the table. A vertical bar to the left of the
first keyletter or to the right of the last one produces a line at the edge of the table. If

two vertical bars appear between keyletters, a double vertical line is drawn.

Space Between Columns

A number may follow the keyletter. This indicates the amount of separation between
this column and the next column. The number normally specifies the separation in
ens (one en is about the width of the letter n), or more precisely, an en is a number of

7-4

Formatting Tables

points (1 point = 1/72-inch) cqual to half the current type size. If the “expand”
option is used, then these numbers are multiplied by a constant so that the table is as
wide as the current line length. The default column separation number is 3. If the
scparation is changed, the largest space requested prevails.

Vertical Spanning

Normally, vertically spanned items extending over several rows of the table are
centered in their vertical range. If a keyletter is followed by t or T, any corresponding
vertically spanned item will begin at the top line of its range.

Font Changes

A keyletter may be followed by a string containing a font name or number preceded
by the letter f or F. This indicates that the corresponding column should be in a
different font from the default font (usually Roman). All font names are one or two
letters; a one-letter font name should be scparated from whatever follows by a space
or tab. Font change commands given with the table entries will override these
specifications.

Point Size Changes

A keylctter may be followed by the letter p or P and a number to indicate the point
size of the corresponding table entries. The number may be a signed digit, in which
casc it is taken as an increment or decrement from the current point size. If both a
point size and a column separation value are given, one or more blanks must separate
them.

Vertical Spacing Changes

A keyletter may be followed by the letter v or V and 4 number to indicate the vertical
line spacing to be used within a multiline corresponding table entry. The number
may be a signed digit, in which case it is taken as an increment or decrement from the
current vertical spacing. A column separation value must be separated by blanks or
some other specification from a vertical spacing request. This request has no effect
unless the corresponding table entry is a text block.

Column Width Indication

A keyletter may be followed by the letter w or W and a width value in parentheses.
This width is used as a minimum column width. If the largest element in the column
is not as wide as the width value given, the largest element is assumed to be that wide.
If the largest element in the column is wider than the specified value, its width is
used. The width is also used as a default line length for included text blocks. Normal
troff units can be used to scale the width value; the default is ens. If the width
specification is a unitless integer the parentheses may be omitted. If the width value
is changed in a column, the last value given controls.

Equal Width Columns

A keyletter may be followed by the letter e or E to indicate equal width columns. All
columns whose keyletters are followed by e or E are made the same width. This
allows you to get a group of regularly spaced columns.

The order of the above features is immaterial; they need not be scparated by spaces, except as
indicated above to avoid point size and font change ambiguities. Thus a numerical column entry
in italic font and 12-point type with 2 minimum width of 2.5 inches and separated by 6 ens from

7-5

XENIX Text Processing

the next column could be specified as
npl2w(2.51)f1 6

Note the following format defaults: Column descriptors missing from the end of a format line are
assumed to be L. The longest line in the format section, however, defines the number of columns
in the table; extra columns in the data are ignored silently.

7.2.4 Data

The text for the table is typed after the format specification. Normally, each table lineis typed as
one line of data. Very long input lines can be broken: any line whose last character is a backslash
(\) is combined with the following line (and the backslash vanishes). The data for different
columns (the table entries) are separated by tabs, or by whatever character has been specified in
the tabs option. There are a few special cases:

Troff commands within tables

An input line beginning with a dot (.) followed by anything but a number is assumed
to be a command to troff and is passed through unchanged, retaining its position in
the table. For example, space within a table may be produced by .sp commands in
the data.

Full Width Horizontal Lines

An input line containing only the underscore () or equal sign (=) is taken to be a
single or double line, respectively, extending the full width of the table.

Single Column Horizontal Lines

An input table entry containing only the underscore or equal sign character is taken
to be a single or double line extending the full width of the column. Such lines are
extended to meet horizontal or vertical lines adjoining this column. To obtain these
characters explicitly in a column, either precede them by “\&” or follow them by a
space before the usual tab or newline.

Short Horizontal Lines

Aninput table entry containing only the string “_" is taken to be a single linc as wide
as the contents of the column. It is not extended to meet adjoining lines.

Vertically Spanned Items

An input table entry containing only the character string “\™” indicates that the table
entry immediately above spans downward over this row. It is equivalent to the table
format keyletter.

Text blocks

In order to include a block of text as a table entry, precede it by T{and follow it by T}.
Thus the sequence

LT
block of
text
T}...

7-6

Formatting Tables

is the way to enter, as a single entry in the table, something that cannot conveniently
be typed as a simple string between tabs. Note that the T} end delimiter must begina
line; additional columns of data may follow after a tab on the same line. If more than
twenty text blocks are used in a table, various limits in the troff program are likely to
be exceeded, producing diagnostics such as *“too many string/macro names” or *tco
many number registers.”

Text blocks are pulled out from the table, processed scparately by troff, and replaced
in the table as a solid block. If noline length is specified in the block of text itself, or in
the table format, the default is to use $ L times C / (N+1) $ where L is the current
line length, C is the number of table columns spanned by the text, and &V is the total
number of columns in the table. The other parameters used in setting the block of
text are those in effect at the beginning of the table. These include the effect of the
.TS macro and any table format specifications of size, spacing and font, using the p, v
and f modifiers to the column keyletters. Commands within the text block itself are
also recognized. However, troff commands within the table data but not within the
text block do not affect that block.

Note the following limitations. Although any number of lines may be present in a table, only the
first 200 lines are used in calculating the widths of the various columns. A multipage table may
be arranged as several single-page tables if this proves 1o be a problem. Other difficulties with
formatting may arise because in the calculation of column widths all table entries are assumed to
be in the font and size being used when the . TS command was encountered. Not included in the
calculation are font and size changes indicated in the table format section and within the table
data. Therefore, although arbitrary troff requests may be sprinkled in a table, care must be taken
toavoid confusing the width calculations; use requests such as .ps with care.

7.2.5 Additional Command Lines

If the format of a table must be changed after many similar lines, as with sub-headings or
summarizations, the .T & (table continue) command can be used to change column parameters.
The outline of such a table input is:

TS
options ;
format .
data
T&
format .
data
T&
format .
data
.TE

Using this procedure, each table linc can be close to its corresponding format line. It is not
possible to change the number of columns, the space between columns, the global options such as
box, or the selection of columns to be made equal width.

7.3 Invoking Thl

You can run thl on a simple table with the command
tbl input-file | troff

but for more complicated use, where there are several input files, and they contain equations and
mm commands as well as tables, the normal command would be

77

XENIX Text Processing

tbl file-1 file-2 . . . |eqn |troff -mm

The usual options may be used on the troff and eqn commands. The usage for nroff is similar to
that for troff.

For the convenience of users employing line printers without adequate driving tables or post-
filters, there is a special -TX command line option to thl which produces output that does not have
fractional line motions in it. The only other command line option recognized by tbl is -mm which
fetches the mm macro packages.

When you are using both eqn and tbl on the same file, tbl should be used first. If there are no
equations within tables either order works, but it is usually faster to run tbl first, since eqn
normally produces a larger expansion of the input than thl. However, if there are equations
within tables (e.g. when you are using the eqn delim command), tbl must be first or the output will
be scrambled. (See Chapter 8, “Formatting Mathematics.””) You must also be cautious of using
cquations in n-style columns; this is nearly always wrong, since tbl attempts to split numerical
format items into two parts and this is not possible with equations. Give the delim(xx) tbl option
instead; this prevents splitting of numerical columns within the delimiters. For example, if the
eqn dclimiters are 3, giving delim($$) a numerical column such as “1245 $+— 168" will be
divided after 1245, not after 16.

Tbl limits tables to twenty columns; however, use of more than 16 numerical columns may fail
because of limits in troff, producing the “tco many number registers” message. Troff number
registers used by tbl must be avoided by the user within tables; these include two-digit names
from 31 t0 99, and names of the forms #x, x+, x} “x, and x—, where x is any lowercase letter. The
names ##, #—, and #" are also used in certain circumstances. To conserve number register names,
the n and a formats share a register; hence the restriction that they may not be used in the same
column.

For aid in writing macros, tbl defines a number register TW which is the table width; it is defined
by the time that the .TE macro is invoked and may be used in the expansion of that macro. To
assist in laying out multipage boxed tables the macro T# is defined to produce the bottom lines
and side lines of a boxed table, and then invoked at the of the table. By using this macro in the
page footer a multipage table can be boxed. In particular, the mm macros can be used to printa
multipage boxed table with a repeated heading by giving the argument H to the .TS macro. If the
table start macrois written

JSH
a line of the form
.TH

must be given in the table after any table heading (or at the start if none). Material up tothe TH
is placed at the top of each page of table; the remaining lines in the table are placed on several
pages as required.

7.4 Examples

Here are some examples illustrating features of thl. The symbol @ in the input represents a tab
character.

Input:

7-8

TS
box;
cce
11L

Language® Authors ® Runs on

Fortran ® Many ® Almost anything

PL/1®IBM®360/370
COBTL®11/45,H6000,370

BLISS ® Carnegie-Mellon ® PDP-10,11

IDS ® Honeywell © H6000

Pascal ® Stanford ©® 370
.TE
Output:

Language Authors Runs on
Fortran Many Almost anything
PL/1 IBM 360/370
C BTL 11/45,H6000,370
BLISS Carnegic-Mellon PDP-10,11
IDS Honeywell H6000
Pascal Stanford 370

Formatting Tables

7-9

XENIX Text Processing

Input: T
.TS \@

allbox;

cS§s

ccc

nnn

AT&T Common Stock
Year @ Price © Dividend
1971 ©41-54 ® $260
2041-54©270
3®46-55® 287
4®40-530 324
5@45-52@ 340
6D51-59®95*

.TE

* (first quarter only)

Output:

AT&T Common Stock
Year | Price | Dividend
1971 | 41-54 $2.60

2 | 41-54 2.70

3 | 46-55 2.87

4 | 40-53 3.24

5 | 45-52 3.40

6 | 51-59 95*
* (first quarter only)

7-10

Input:

.TS
box;
css
clele
1j1]n.

Major New York Bridges

Bridge © Designer @ Length

Brooklyn®J A Roebling® 1595
Manhattan® G Lindenthal © 1470
Williamsburg ® L L Buck @ 1600

Queensborough @ Palmer & ® 1182

@ Hornbostel

© D 1380

Triborough®O H Ammann® _

@ D383

Bronx Whitestone®O H Ammann® 2300

Throgs Neck® O H Ammann ® 1800

George Washington® O H Ammann ® 3500

.TE
Output:
Major New York Bridges
Bridge Designer Length
Brooklyn J. A. Roebling 1595
Manhattan G. Lindenthal 1470
Williamsburg L. L. Buck 1600
Queensborough Palmer & 1182
Hornbostel
1380
Triborough O. H. Ammann
383
Bronx Whitestone O. H. Ammann 2300
Throgs Neck 0. H. Ammann 1800
George Washington | O. H. Ammann 3500

Formatting Tables

XENIX Text Processing

Input:

TS

cc
np-2|n|.
@ Stack

1®@46

23

oteooe
O\' —
L] Lh

e w
gl Q,
et

Output;

Stack
46
23
15

6.5
2.1

W o W N e

7-12

Formatting Tables

Input:

.TS

box;

LLL

LL_

LL|LB

LL_

LLL.

january @ february @ march
april ® may

june @ july @ Months
august @ september

october @ november @ december
.TE

Qutput;

january february march
april may
june july Months
august september
october november december

7-13

XENIX Text Processing

Input:

TS

box;

cfBsss.
Composition of Foods

T&

c|css

c|css

c |c|e |

Food @ Percent by Weight
\"®_

\" @ Protein @ Fat @ Carbo-
\"®\"O\" @ hydrate

T&

I [n|n|n.

Apples® .4®.5013.0
Halibut®18.4©5.20. ..
Lima beans®7.50©.8©22.0
Milkk®3.304.0905.0
Mushrooms @3.5©.4906.0
Rye brecad ©9.09.6®52.7

.TE
Output:
Composition of Foods @
Percent by Weight
Food . Carbo-
Protein | Fat hydrate
Apples 4 .5 13.0
Halibut 18.4 5.2
Lima beans 7.5 8 22.0
Milk 33 40 5.0
Mushrooms 3.5 4 6.0
Rye bread 9.0 .6 52.7

7-14

Input:

TS

allbox;

cfl s s

c cw(li) cw(li)

1p9 1p9 1p9.

New York Area Rocks

Era @ Formation @ Age (years)
Precambrian @ Reading Prong ® > 1 billion
Paleozoic @ Manhattan Prong @ 400 million
Mesozoic® T

.na

Newark Basin, incl.

Stockton, Lockatong, and Brunswick
formations; also Watchungs

and Palisades.

T} © 200 million

Cenozoic ® Coastal Plain® T

On Long Island 30,000 years;

Cretaceous sediments redeposited

by recent glaciation.

Formatting Tables

.ad
T)
.TE
Output:
New York Area Rocks
Era Formation Age (years)
Precambrian | Reading Prong >1 billion
Paleozoic Manhattan Prong 400 million
Mesozoic Newark Basin, incl. 200 million

Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.

Cenozoic Coastal Plain

On Long Island 30,000 years;
Crctaccous sediments redeposited
by recent glaciation.

XENIX Text Processing

7.5 Summary of tbl Commands

Command

Meaning

aA

Alphabetic subcolumn

allbox

Draws box around all items

b B

Boldface item

box

Draws box around table

cC

Centered column

center

Centers table in page

doublebox

Doubled box around table

eE

Equal width columns

expand

Makes table full line width

fF

Font change

il

Italic item

1L

Left adjusted column

nN

Numerical column

nnn

Column separation

pP

Point size change

rR

Right adjusted column

sS

Spanned item

tT

Vertical spanning at top

tab (x)

Change data separator character

T(T)

Text block

vV

Vertical spacing change

wW

Minimum width value

XX

Included troff command

Vertical line

Double vertical line

Vertical span

\l\

Vertical span

Double horizontal line

Horizontal line

|

Short horizontal line

7-16

Chapter 8
Formatting Mathematics

8.1

8.2

83

84

8.5

8.6

8.7

8.8

8.9

Introduction |
Displayed Equations 2

Basic Mathematical Constructions 2
8.3.1 Subscripts and Superscripts 2
8.3.2 Braces for Grouping 3

8.3.3 Fractions 4

8.3.4 SquareRoots 4

8.3.5 Summationand Integrals 5

Complex Mathematical Constructions 5
8.4.1 Big Brackets, Parentheses,and Bars 6
8.4.2 Piles 6

8.4.3 Matrices 7

8.4.4 Lining Up Equations 7

Layout and Design of Mathematical Text 8

8.5.1 Input Spaces 8

8.5.2 Output Spaces 8

8.5.3 Spaces Between Special Sequences 8

8.5.4 Symbols, Special Names, and Greek Characters
8.5.5 Sizeand Font Changes 9

8.5.6 Diacritical Marks 10

8.5.7 Quoted Text 10

8.5.8 Local Motions 11

In-line Equations 11
Definitions 12
Invokingeqn 13

Sample Equation 13

8.10 Error Messages 14

8.11 Summary of Keywords and Precedences 14

9

8.1 Introduction

In the previous chapter you were introduced to the tbl program, a special preprocessing
formatting program which helps you design and create professional-looking tables in documents.
This chapter describes another preprocessor: eqn, a program that simplifies the task of
formatting complex mathematical equations and printing special symbols. Once again, unless
you need to use mathematical equations or special symbols in your documents, you can postpone
or skip reading about egn.

Like tbl, eqn is a “preprocessor” —that is, you must embed commands in the text as you are
preparing it, along with mm macros and nroff/troff commands. The eqn macros are then
translated by the eqn program into nroff /troff commands, without altering either the body of the
text or other formatting commands. The file is processed through the nroff or troff programs
themselves to produce final output.

The uses of eqn are fairly specialized—you may simply not need to format equations. However,
eqn offers you precisc control over line spacing, which is suitable to formulas and subscripting,
necessary for documents in such fields as chemistry and physics. You also have such special
character sets as the Greek alphabet available to you.

The design of the eqn program makes it relatively casy to learn. Wherever possible, the
formatting commands resemble ordinary English words {e.g. over, lineup, bold, union), and the
format is specified much as you might try to describe an equation in conversation. If you are
faced with the task of typesctting equations, you will scon appreciate how quickly you can specify
even complicated equations requiring unusual line motions, such as arrays, fractions, subscripts,

Mathematical equations are notoriously difficult to format by conventional typesetting methods.
With the help of the XENIX program eqn, however, you will quickly learn 1o use troff to typeset
mathematical equations directly to a phototypesetter. Eqn employs a language which is quite
casy to use, even if you have know little about either mathematics or typesetting. Ina half hour or
50, you should be able to learn enough of the language to set equations like lim’(tan x)Hn2¥ =)

x—z/2

or equations like:

. Sz Ak
G(2)=e'""""=exp[2 Akz] - eS‘_A//\
k

A2l 21

1+S +S'222+ 1+Szzz+83224
B T 2 22
k k, i,
=3 SlI SZV Sm ™
ma0| kkeazo 1Nk 2%k mtk,

k20 - tmk,, -m

The same commands may also be used with the XENIX formatter nroff to format mathematical
expressions for lineprinters. To do this, invoke the program neqn instead of eqn. The same
limitations (inability to change font and point size, and do variable spacing, et¢.) apply to any
text output to a lineprinter. The resulting ocutput from neqn, however, is usually adequate for
proofreading.

As you work with eqn, remember that the egn program itself knows relatively little about
mathematics. In particular, mathematical symbols like +, —, %, and parentheses have nospecial
meanings. Eqn will set anything that looks like an equation, regardless of whether it makes sense
mathematically.

8-1

XENIX Text Processing

To use egnon your XENIX system, type
eqn file | troff -mm

This command line processes file with eqn, then pipes the resulting output file to the troff
program.

8.2 Displayed Equations

To tell eqn where a mathematical expression begins and ends, surround it with the commands
.EQand .EN. Thus, if you type the lines

.EQ
Xx=y+z
.EN

your output will look like:
x=y+z

The .EQand .EN are not processed by eqn. If you want to specify centering, numbering, or other
formatting features for your mathematical text, you will need to enter the appropriate formatting
commands in your text. If you want, you can add nroff/troff commands, but it is far simpler to
use mm. mm provides commands which allow you to center, indent, left-justify and number
equations.

You can give the .EQ command an argument that is treated as an arbitrary equation number
which will be placed in the right margin. For example, the input

EQ7
x=1(y/2) +y/2
EN

produces the output
x=f(p/2)+y/2 7

Note that .EQ is an mm macro. In other computer systems’ macro packages it may have a
different meaning.

8.3 Basic Mathematical Constructions

This section describes how eqn can be used to handle the following frequently used mathematical
constructions:

subscripts and superscripts
grouping

fractions

square roots

sumration and integrals
8.3.1 Subscripts and Superscripts

To get subscripts and superscripts into mathematical text, use sub and sup. For example, the
following

8-2

Formatting Mathematics

xsup2 +ysubk
produces
x3+yk

Eqn supplies all the commands for size changes and vertical motions to make the output look
right. The words sub and sup must be surrounded by spaces. For example:

X sub2

will give you xsub 2 instead of x,. Furthermore, don’t forget to leave a space or a tilde to mark the
end of a subscript or superscript. Note thatif you usc an expression like

y = (x sup 2)+1
you will get
ps(x
instead of
y=(xH)+1
Subscripted subscripts and superscripted superscripts can also be created. The following
x subisubl
produces
x;,
A subscript and superscript on the same object are printed one above the other if the subscript
comes first. For example,
x sub i sup 2
produces
x?

Other than in this special case, suband sup group to the right, so x sup y subz means x”*, not x” ...

8.3.2 Braces for Grouping

Normally, the end of a subscript or superscript is marked simply by a blank, tab, or tilde. If you
need to produce a subscript or superscript with blanks in it, you can use braces ({}) to mark the
beginning and end of the subscript or superscript. For example:

e sup {i omega t}
produces:

fuwl

-4

Braces can always be used to force eqn to treat an expression as a unit, or just to make your
intention perfectly clear. When you use braces:

x sub {i sub 1} sup 2
produces
2
X,
The same text without braces:
x sub i sub 1 sup 2

produces
8-3

XENIX Text Processing

X

Braces can occur within braces if necessary:
e sup (i pi sup {rho +1}}

results in

i

The general rule is that anywhere you could use a single item like x, you could also use any
complicated expression, if you enclose it in braces. Positioning and size will be taken care of by

eqn.

You will need to make sure you have the right number of braces. If for some reason you need to
print braces, enclose them in double quotations (*), like "{".

8.3.3 Fractions

Tomakea fraction, use the word “over.” For example:
at+bover2c=1

produces

b
+->=]
a 2c

The line is made the right length and positioned automatically. You can use braces to make clear
what goes over what:

{alpha + beta} over (sin(x)}
is
atB
sin(x)
If you have both an over and a sup in the same expression, eqn does the sup before the over, so
-b sup 2 over pi
is
—-p?
S

instead of
2
...b T
The rules of precedence that control which operation will be done first are summarized at the end
of this chapter. If you are in doubt, however, use braces to make clear what you mean.

8.3.4 Square Roots

Todraw a square root, use “‘sqrt”. For example
sqrt a+b + 1 over sqrt {ax sup 2 +bx-+c)

produces

VaTh + e
Vaxi+bx+c

You should note, however, that the square roots of tall quantities often do not look good. A square
root big enough to cover the quantity is too dark and heavy. For example

8-4

Formatting Mathematics

@/ sqrt {a sup 2 over b sub 2}

produces

VI
by

You are better off writing big square roots as the power 1/2. For example, you could use
(a sup 2 /b sub 2) sup half

to produce
(a*/by)*

8.3.5 Summation and Integrals

Summations, integrals, and similar constructions can be produced with eqn. For example
sum from i=0 to (i= inf} x sup i

produces

fmco

zx

i=0
Braces are used here to indicate where the upper part i=o0 begins and ends. No braces were
necessary for the lower part i =0, because it contained no blanks. Braces never hurt, and if the
from and to parts contain any blanks, you must use braces around them. The from and to parts
are optional, but if both arc used, they have tooccur in that order.

Other useful characters can replace the sum, including:

int prod union inter
These become, respectively,

fn1un

The expression before the “from” can be anything, including an expression in braces. The from-
to expression can often be used in unexpected ways. For example

lim from {n —> inf} x sub n =0
produces

limx, =0

#t ~=+cO

8.4 Complex Mathematical Constructions

This section describes how to use egn to produce more complicated mathematical constructions,
including piles and matrices, often surrounded by brackets, parentheses or bars.

8-5

XENIX Text Processing

8.4.1 Big Brackets, Parentheses, and Bars

To get big brackets ([]), braces ({), parentheses (()), and bars () around things, use the left and
right commands. For example

left { a over b + 1 right }
“="left (¢ over d right)
+ left [e right]
produces

a
—+1 + Ie]
l b
The resulting brackets are big enough to cover whatever they enclose. Other characters can be

used besides these, but they probably won’t look very good. One exception is the floor and ceiling
characters. For example

£
d

left Aoor x over y right floor
<= left ceiling a over b right ceiling

produces
x a
2l |L
y| b

Please note that braces are typically bigger than brackets and parentheses, because the number
of pieces is incremented by two (three, five, seven, etc.) while the number of pieces in a bracket is
incremented by one (two, three, etc.). Also, big left and right parentheses often look poor,
because of character set limitations.

The right part may be omitted: a left expression need not have a corresponding right expression.
If the right part is omitted, put braces around the thing you want the left bracket to encompass.
Otherwise the resulting brackets may be 100 large. If you want to omit the left part, things are
more complicated, because technically you can’t have a right without a corresponding left.
Instead you have to say

left " right)

The left " means a “left nothing™. This satisfies the rules without affecting your output.
8.4.2 Piles

There s a facility for making vertical piles of things with several variants. For example:

A =" left |
pile { a above b above ¢ }
= pile { x above y above z }
right]
will produce
ax
A=|by
cz

You can have as many elements in a pile as you want. They will be centered one above another, at
the right height for most purposes. The keyword above is used to separate the pieces; braces are
used around the entire list. The elements of a pile can be as complicated as needed, and may even
contain more piles.

Three other forms of pile exist: “Ipile™ makes a pile with the elements left-justified; “rpile” makes
a right-justified pile; and “cpile” makes a centered pile, just like pile. The vertical spacing

8-6

Formatting Mathematics

between the pieces is somewhat larger for I-, r- and cpiles than it is for ordinary piles. For
example

roman sign (x)"="
left {
Ipile {1 above 0 above -1}
" Ipile
{if*x>0 above if"x=0 above if"x <0}

creates the pile

1 ifx>0
sign{x) =140 ifx=0
-1 ifx <0

Note that the left brace has no matching right one.
8.4.3 Matrices

Itis also possible to make matrices. For example, to make a neat array like
x; x°
2
Yi ¥y
use

matrix {
ccol { x sub i above y sub i }
ccol [x sup 2 above y sup 2 }

This produces a matrix with two centered columns. The elements of the columns are then listed
Just as for a pile, each element separated by the word above. You can also use Icol or reol to left or
right adjust columns. Each column can be separately adjusted, and there can be as many
columns as you like.

The reason for using a matrix instead of two adjacent piles is that if the elements of the piles do
not all have the same height, they will not linc up properly. A matrix forces them to line up,
because it looks at the entire structure before deciding what spacing to use. A word of warning
about matrices: cach column must have the same number of elements in it.

8.4.4 Lining Up Equations

Sometimes it is necessary toline up a series of equations at some horizontal position, such as at an
equal sign. This is done with two operations called “mark”and “lineup.” The word mark may
appear once at any place in an equation. It remembers the horizontal position where it appeared.
Successive equations can contain one occurrence of the word lineup. The place where lineup
appears is made to line up with the place marked by the previous mark if at all possible. Thus, for
cxample, you cansay

.EQ

x+y mark = z
.EN
.EQ

x lineup = 1
.EN

to produce

8-7

XENIX Text Processing

x+ty=z
x=l

Note that mark does not lcok ahead, so

x mark =1

x+y lineup =z

will not work, because there is not room for the x+y part after the mark remembers where the x is.
8.5 Layout and Design of Mathematical Text

The following sections describe the format and layout control features of eqn.

8.5.1 Input Spaces

Eqn ignores spaces and newlines within an expression. If you have any of the following equations
between .EQand .EN commands,

x=y+z
or

X=y+z
or

X =Y
+z

they will all produce the same output:
x=y+z

Therefore, use spaces and newlines freely to make your input equations readable and easy to edit.

8.5.2 OQutput Spaces

To get extra spaces into the your output, use a tilde () for each space you want:
X="y"+7z

This produces
x=y+z

You can also use a caret ("), which produces a space half the width of a tilde. Tabs may be used to
position pieces of an expression, but the tab stops must be set with the troff tab (.ta) command.

8.5.3 Spaces Between Special Sequences

If you need to separate a special sequence of characters, you will have to make this clear to egn.
You can either surround a special sequence with ordinary spaces, tabs, or newlines, or make
special words stand out by surrounding them with tildes or carets, as in the following:

X™="2"pi"int"sin"("omegat™) dt
The tildes not only separate the words sin, omega, etc., but also add extra spaces, one space per
tilde:

8-8

Formatting Mathematics

x=2x [sin(wt)dt

Special words can also be separated by braces ({}) and double quotation marks (*).
8.5.4 Symbols, Special Names, and Greek Characters

Eqgn knows some mathematical symbols, some mathematical names, and the Greek alphabet.
For example,

x=2 pi int sin (omega t)dt
produces
X =21rfsin(wt Yt

Here you nced input spaces to tell eqn that int, pi, sin and omega are separate entities that should
get special treatment. The sin, digit 2, and parentheses are set in Roman type instead of italic; pi
and omega are translated into Greek; int becomes the integral sign.

When in doubt, leave spaces around separate parts of the input. A common error is to type f(pi)
without leaving spaces on both sides of the pi. If you do this, eqn does not recognize pi asa special
word, and it appears as f(pf) instead of f'(w). A complete list of eqn names appears at the end of
this chapter. You canalso use troff names for anything eqn doesn’t know about.

8.5.5 Size and Font Changes

By default, equations are set in 10-point type; standard mathematical conventions determine
which characters are in Roman and which are in italic. If you arc dissatisfied with the default
sizes and fonts, you can change them using the commands size 7 and roman, italic, bold and fat.
Like sub and sup, size and font changes affect only what follows immediately and then revert to
the default. Thus

bold x y
is

Xy
and

size l4bold x =y +
size 14 {alpha + beta}

gives
X=y +C¥+6

You can use braces if you want to apply a change to something more complicated than a single
letter. For example, you can change the size of an entire equation with

size 12 { ...)

Legal sizes are: 6,7, 8,9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. You can also change the
size by a given amount; For example, you can say

size+2
to make the size two points bigger, or
size—3

to make it three points smaller. The advantage of this method is that you do not need to know
what the current size is.

8-9

XENIX Text Processing

If you are using fonts other than Roman, italic and bold, you can say font X where X is a one
character troff name or number for the font. However, since eqn is designed for Roman, italic
and bold, other fonts may not give quite as good an appearance.

The fat operation takes the current font and widens it by overstriking: fat grad is V and fat {x sub
i} is x;.
If an entire document is to be in a nonstandard size or font, you need not write out a size and font

change for each equation. Instead, you can set a “global” size or font which thereafter affects all
equations. At the beginning of any equation, you might say, for instance,

.EQ
gsize 16
gfont R

.EN

to set the size to 16 points and the font to Roman. In place of R, you can use any troff font name.
The size after gsize can be a relative change with +or—.

Generally, gsize and gfont will appear at the beginning of a document but they can also appear
throughout a document: the global font and size can be changed as often as needed. For example,
in a footnote you will typically want the size of equations to match the size of the footnote text,
which is two points smaller than the main text. Don’t forget to reset the global size at the end of
the footnote.

8.5.6 Diacritical Marks

There are several words that produce diacritical marks on top of letters:

x dot

x dotdot
x hat

x tilde
X vec

x dyad
X bar

x under

RV R VAR VIS (IR 1

The diacritical mark is automatically placed at the correct height. The *bar” and “under” are
made the right length for the entire construct, as in X ¥y ¥z ; other marks are centered.

8.5.7 Quoted Text

Any input entirely within quotes ("...") is not subject to any of the font changes and spacing
adjustments normally done by the equation setter. This provides a way to do your own spacing
and adjusting if needed. Forexample

italic "sin(x)" + sin (x)

produces
sin(x)+sin(x)

Quotation marks are also used to get braces and other egn keywords printed. For example
"{ size alpha }"

produces

{size alpha)

8-10

Formatting Mathematics

Similarly

roman “{ size alpha }"
produces

(size alpha }

The construction ™ can be used as a place-holder when eqn syntax requires something, but you
don’tactually want anything in your output. For example, to make

’He
you can’t just type
sup 2 roman He

because a sup has to be a superscript on something. Thus you must say

sup 2 roman He

To get a literal quotation mark, use the sequence \”,
8.5.8 Local Motions

Although egn tries to get most things at the right place on the paper, it isn’t perfect, and
occasionally you will need to tune the output to make it just right. Small extra horizontal spaces
can be obtained with tildes (7) and carets ("). You can also say “back n” and “fwd n” to move
small distances horizontally. The n is the distance to be moved in 1/100 em units (an em is about
the width of the letter m). Thus “back 50" moves back about half the width of an m. Similarly
you can move things up or down with “up n” and “down n.” As with sub or sup, the local motions
affcct the next thing in the input. This can be a complex expression, as long as it is enclosed in
braces.

8.6 In-line Equations

Ina mathematical document it is often necessary to follow mathematical conventions in the body
of the text, as well as in display equations. For example, you may need to make variable names
like x italic. Although this could be done by surrounding the appropriate parts with .EQ and
.EN, the continual repetition of .EQand .EN is a nuisance. Furthermore, this implies a displayed
equation.

Eqn provides a shorthand for short in-line expressions. You can define two characters to mark the
left and right ends of an in-line equation, and then type expressions right in the middle of text
lines. To set both the left and right characters to percent signs, for example, add to the beginning
of your document the three lines

.EQ
delim %%
.EN

Having done this, you create text like

Let %alpha sub i% be the primary variable, and let %beta% be zero. Then we can show
that %x sub 1% is %> =0%.

This produces:
Let «; be the primary variable, and let 8 be zero. Then we can show that x, is >0.

This works as you might expect: spaces, newlines, and so on are significant in the text, but not in
the equation part itself. Multiple equations can occur in a single input line.

8-11

XENIX Text Processing

Enough room is left before and after a line that contains in-line expressions that something like

n
¥ x; docs not interferc with the lines surrounding it.
i=1

To turn off the delimiters, use:
.EQ

delim off
.EN

Do not usc braces, lildes, carets, or double quotation marks as delimiters; these have special
meanings.

8.7 Definitions

Eqn allows you to give a frequently used string of characters a name, and thereafter just type the
name instead of the whole string. For example, if the sequence

x subisub | + ysubisubl

appears repeatedly throughout a paper, you can save retyping it each time by defining it like this:

.EQ
define xy 'xsubisub 1 + ysubisub I’

.EN

This makes xy a shorthand for whatever characters occur between the single quotation marks in
the definition. You can use any character instcad of quotation marks to indicate the ends of the
definition, so long as that character does not appear inside the definition.

Youcan use xy like this:
.EQ
f(x) = xy ...
.EN

Each occurrence of xy will expand into the string of characters you defined. Be careful to leave
spaces or their equivalent around the name when you actually use it, so eqn will be able to identify
it as special.

There are several things to watch out for. First, although definitions can use previous definitions,
asin:

.EQ

define xi "xsubi’
define xil “xisub 1’
.EN

don’t define something in terms of itself. You cannot use
define X "roman X’
because this defines X in terms of itself. 1f yousay
define X ’roman "X"’
however, the quotation marks protect the sccond X, and everything works fine.
Eqn keywords can be also be redefined. You can make / mean over by saying
define / *over’
or redefine over as / with

define over ’ /°

8-12

Formatting Mathematics

If you need to print a symbol one way on a terminal and another way on the typesetter, it is
sometimes worth defining a symbol differently for neqn and eqn. This can be done with “ndefine”
and “tdefine.” A definition made with ndefine only takes effect if you are running negn. If you use
tdefine, the definition only applies for eqn. Names defined with *““define” apply to both eqn and
neqn.

8.8 Invoking eqn

To print a document that contains mathematics on the typesetter, use
eqn files | troff

If there are any troff options, place them after the troff part of the command. For example,
cqn files | troff -mm files

To print equations on a lineprinter or similar device, use
neqn files | nroff -mm files

The language for equations recognized by neqn is identical to that of eqn, although of course the
output is more restricted.

Eqn and neqn can be used with the tbl program for setting tables that contain mathematics. Use
tbl before eqn like this:

bl files | egn | troff -mm
tbl files | neqn | nroff -mm

8.9 Sample Equation

Now that you are familiar with the features of eqn, here is the complete input text for the three
display cquations at the beginning of this chapter:

8-13

XENIX Text Processing

.EQ

G(z)"mark =" e sup (In “ G(2) }

=" exp left (

sum from k>=1 {S sub k z sup k] over k right)

"=~ prod from k>=1 ¢ sup {S sub k z sup k /k}

.EN

.EQ

lineup=1left (1 +Ssub1z+

(Ssub 1sup2zsup2}over2!+..right)

left (14+ {Ssub2zsup2) over2

+ { S sub 2 sup 2 z sup 4) over { 2 sup 2 cdot 2!)

+ ... right) ...

.EN

.EQ

lineup = sum from m>=0 left (

sum from

pile {ksub 1 ksub2,.,ksubm >=0

above

k sub 1 +2k sub 2 + ... +mk sub m =m}
{Ssub1supf{ksub1}}over {Isupksubiksubl!)~
{Ssub2sup{ksub2}}over {2supksub2ksub2!) "
{ S sub m sup {k sub m} } over {m sup k subm k subm !}
right) 2 sup m

.EN

8.10 Error Messages

If you make a mistake in an equation, such as leaving out a brace or having one t00 many braces
or having a sup with nothing before it, eqn will respond with the message

syntax error between lines x and vy, file

where x and y are the lines between which the trouble occurred, and file is the name of the file in
question. The line numbers are only approximate, so check nearby lines as well. You will receive
self-explanatory messages if you leave out a quotation mark or try to run eqn on a nonexistent file.

If you want to check a document before actually printing it try:
eqn files > /dev/null
This will throw away the output but print the error messages.

If you use something like dollar signs as delimiters, it is casy to leave one out. The program
eqncheck checks for misplaced or missing dollar signs and similar errors.

In-line equations are limited in size because of an internal buffer in troff. If you get the message
“word overflow”, you have exceeded this limit. If you print the equation as a display this message
will usually go away. The message “line”overflow indicates you have exceeded an even bigger
buffer. The only cure for this is to break the equation into two separate ones.

Also, egn does not break equations by itself; you must split long equations up across multiple lines
by yourself, marking each by a separate .EQEN sequence. Eqn warns about equations that
are too long to fit on one line.

8.11 Summary of Keywords and Precedences

If you don’t use braces around expressions, eqn will do operations in the order shown in this list.

8-14

Formatting Mathematics

dyad vec under bar tilde hat dot dotdot
fwd back down up

fat roman italic bold size

sub sup sqrt over

from to

These operations group to the left:
over sqrt left right
All others group to the right.

Digits, parentheses, brackets, punctuation marks, and these mathematical words are converted
to Roman font when encountered:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re Im and if for det

These character sequences are recognized and translated as shown.

T ILHYIN AV

<: -
<< <<
> > >>
inf o
partial d
half %)
prime
approx =
nothing
cdot
times
del
grad

c g dx

qeeny

sum
int
prod

union
inter

DCHEM:

8-15

XENIX Text Processing

To obtain Greek letters, simply spell them out in whatever case you want:

DELTA A iota t
GAMMA T kappa K
LAMBDA A lambda A
OMEGA 0 mu I
PHI d nu v
Pl I omega w
PSl ¥ omicron o
SIGMA = phi ¢
THETA © pi ™
UPSILON Y psi ¥
X1 = rho P
alpha o sigma g
beta B tau T
chi X theta 0
delta 8 upsilon v
epsilon € xi £
eta 7 zeta [
gamma ¥

These are all the words known to eqnexcept for characters with names:

above dotdot italic rcol to
back down Icol right under
bar dyad left roman up
bold fat lineup rpile vee
ccol font Ipile size 57
col from mark sqrt {}
cpile fwd matrix sub L\
define gfont ndefine sup

delim gsize over tdefine

dot hat pile tilde

8-16

Appendix A
Editing with Sed and Awk

A.l Introduction A-1

A.2 Editing Withsed A-1
A.2.1 Overall Operation A-1
A.2.2 Addresses A-3
A.2.3 Functions A-4

A.3 Pattern Matching Withawk A-10
A.3.1 Invokingawk A-11
A.3.2 ProgramStructure A-11
A.3.3 Recordsand Fields A-11
A.3.4 Printing A-12
A.3.5 Patterns A-13
A.3.6 Actions A-15

4

Editing with Sed and Awk

A.1 Introduction

This appendix describes two XENIX utilities that allow you to perform large-scale, noninterac-
tive editing tasks:

— Sed, a noninteractive, or “batch”, editor which is useful if you must work with large files
or run a complicated sequence of editing commands on a file or group of files.

— Awk, which searches numerics, logical relations, variables, and particular fields within
lines of text.

Although you can perform many of the same tasks with grep, sort, and the variants of diff, you
will find that these two programs offer an added facility for the processing of complicated
changes to large files, or many files at once. Sed is very handy for large batch editing jobs, but if
you choose not to learn it, many of the same tasks can be performed with ed scripts. The awk pro-
gram offers several features not available with the other tools described in this chapter, but it is
somewhat more complicated tolearn and use.

A.2 Editing With sed

The sed program is a noninteractive editor which is especially useful when the files to be edited
are either too large, or the sequence of editing commands too complex, to be executed interactiv-
ely. sed works on only a few lines of input at a time and does not use temporary files, so the only
1imit on the size of the files you can process is that both the input and output must be able to fit
simultaneously on your disk. You can apply multiple "global” editing functions to your text in one
pass. Since you can create complicated editing scripts and submit them to sed as a command file,
you can save yourself considerable retyping and the possibility of making errors. You can also
save and rcusc sed command files which perform editing operations you need to repeat fre-
quently.

Processing files with sed command files is more efficient than using ed, even if you prepare a
prewritten script. Note, however, that sed lacks relative addressing becauses it processes a file one
line at a time. Also, sed gives you no immediate verification that a command has altered your text
in the way you actually intended. Check your output carefully.

The sed program is derived from ed, although there are considerable differences between the two,
resulting from the different characteristics of interactive and batch operation. You will notice a
striking resemblance in the class of regular expressions they recognize; the code for matching
patterns is nearly identical for ed and sed.

A.2.1 Overall Operation
By default, sed copics the standard input to the standard output, performing one or more editing
commands on each line before writing it to the output. Typically, you will nced to specify the file
or files you are processing, along with the name of the command file which contains your editing
script, as in the following:

sed —f script filename
The flags are optional. The -n flag tells sed to copy only those lines specified by —p functions or -p

flags after -s functions. The -e flag tells sed to take the next argument as an editing command,

A-1

XENIX Text Processing

and the -f flag tells sed to take the next argument as a filename. (This file must contain editing
commands, one toa line.)

The general format of a sed editing command is:

addressi,address2 function arguments
In any command, one or both addresses may be omitted. A function is always required, but an ar-
gument is optional for some functions. Any number of blanks or tabs may separate the addresses

from the function, and tab characters and spaces at the beginning of lines are ignored.

Three flags are recognized on the command line:

-n Directs sed to copy only those lines specified by p functions or p fags after s func-
tions.

-e Indicates that the next argument is an editing command.

-f Indicates that the next argument is the name of the file which contains editing

commands, typed one toa line.

Sed commands are applied one at a time, generally in the order they are encountered, unless you
change this order with one of the “flow-of-control” functions discussed below. Sed works in two
phascs, compiling the editing commands in the order they are given, then executing the com-
mands onc by one to each line of the input file.

The input to cach command is the output of all preceding commands. Even if you change this de-
fault order of applying commands with one of the two flow-of-control commands, t and b, the in-
put line to any command is still the output of any previously applied command.

You should also note that the range of pattern match is normally one line of input text. This range
is called the “pattern space.” More than one line can be read into the pattern space by using the N
command described below in **Multiple Input-Line Functions”,

The rest of this section discusses the principles of sed addressing, followed by a description of sed
functions. All the examples here are based on the following lines from Samuel Taylor Coleridge’s
poem, “Kubla Khan™:

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down toa sunless sea.

For example, the command
2q
will quit after copying the first twa lines of the input. Using the sample text, the result will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

A-2

Editing with Sed and Awk

A.2.2 Addresses

The following rules apply to addressing in sed. There are two ways to select the lines in the input
file 10 which editing commands are to be applied: with line numbers or with “context addresses™.
Context addresses correspond Lo regular expressions. The application of a group of commands
can be controlled by one address or an address pair, by grouping the commands with curly braces
({). There may be 0, 1, or 2 addresses specified, depending on the command. The maximum
number of addresses possible for each command is indicated.

A line number is a decimal integer. As each line is read from the input file, 2 line number counter
is incremented. A line number address matches the input line, causing the internal counter to
equal the address line-number. The counter runs cumulatively through multiple input files; it is
not reset when a new input file is opened. A special case is the dollar sign character (8) which
matches the last linc of the last input file.

Conlext addresses are cnclosed in slashes (/). They include all the regular expressions common
to both ed and sed:

1. Anordinary character is a regular expression and matches itself.

2. Acaret (") at the beginning of a regular cxpression matches the null character at the be-
ginning of a line.

3. Adollar sign () at the end of a regular expression matches the null character at the end
of a line.

4, The characters \n match an embedded newline character, but not the newline at the end
of a pattern space.

5. A period (.) matches any character except the terminal newline of the pattern space.

6. A regular expression followed by a star (*) matches any number, including 0, of adja-
cent occurrences of the regular expression it follows.

7. A string of characters in square brackets ([]) matches any character in the string, and
no others. If, however, the first character of the string is a caret ("), the regular expres-
sion matches any character except the characters in the string and the terminal newline
of the pattern space.

8. A concatcnation of regular expressions is a regular expression which matches the con-
catenation of strings matched by the components of the regular expression.

9. A regular expression between the sequences “\(” and “\)” is identical in effect to itself,
but has side-effects with the s command. Note the following specification.

10. The expression \d means the same string of characters matched by an expression ¢n-
closed in \(and \) earlier in the same pattern. Here “d” is a single digit; the string
specified is that beginning with the “dth™ occurrence of \(counting from the left. For
example, the expression "\(.*\)\1 matches a line beginning with two repeated oc-
currences of the same string.

11. The null regular expression standing alonc is equivalent to the last regular expression
compiled.

A-3

XENIX Text Processing

For a context address to “match” the input, the whole pattern within the address must match
some portion of the pattern space. If you want to use one of the special characters literally, that
is, to match an occurrence of itself in the input file, precede the character with a backslash (\) in
the command.

Each sed command can have 0, 1, or 2 addresses. The maximum number of allowed addresses is
included. A command with no addresses specified is applied to every line in the input. If a com-
mand has one address, it is applied to all lines which match that address. On the other hand, if
two addresses are specified, the command is applied to the first line which matches the first ad-
dress, and to all subsequent lines until and including the first subsequent line which matches the
second address. An attempt is made on subsequent lines to again match the first address, and the
process is repeated. Two addresses are separated by acomma. Here are some examples:

/an/ Matcheslines 1, 3,4 in our sample text
/an.*an/ Matchesline |
/"an/ Matchesnolines

/./ Matchesall lines
/r*an/ Matcheslines 1,3, 4 (number = zero!)

A.2.3 Functions
All sed functions are named by a single character. They are of the following types:

— Whole-line oriented functions add, delete, and change whole text lines.

— Substitute functions search and substitute regular expressions within a line.

— Input-output functions read and write lines and /or files.

— Multiple input-line functions match patterns that extend across line boundaries.
— Hold and get functions save and retrieve input text for later use.

— Flow-of-control functions control the order of application of functions.

— Miscellaneous functions.

Whole-Line Oriented Functions

d Deletes from the file all lines matched by its addresses. No further commands will
be exccuted on a deleted line. As soon as the d function is executed, a new line is
read from the input, and the list of editing commands is restarted from the begin-
ning on the new line. The maximum number of addresses is two.

n Rcads and replaces the current line from the input, writing the current line to the
output if specified. The list of editing commands is continued following the n com-
mand. The maximum number of addresses is two.

a Causcs the text to be written to the output after the line matched by its address.
The a command is inherently multiline; The a command must appear at the end of

A-4

Editing with Sed and Awk

a line. The text may contain any number of lines. The interior newlines must be
hidden by a backslash character (\) immediately preceding each newline. The
text argument is terminated by the first unhidden newline, the first one not im-
mediately preceded by backslash. Once an a function is successfully executed, the
text will be written to the output regardless of what later commands do to the line
which triggered it, even if the line is subsequently deleted. The text is not scanned
for address matches, and no editing commands are attempted on it, nor does it
cause any change in the line-number counter. Only one address is possible.

When followed by a text argument it is the same as the a function, except that the
text is written to the output before the matched line. It has only one possible ad-
dress.

The ¢ function deletes the lines selected by its addresses, and replaces them with
the lines in the text. Like the a and i commands, ¢ must be followed by a newline
hidden with a backslash; interior newlines in the text must be hidden by
backslashes. The ¢ command may have two addresses, and therefore select a
range of lines. If it does, all the lines in the range are deleted, but only one copy of
the text is written to the output, not one copy per line deleted. As in the case of a
and i, the text is not scanned for address matches, and no editing commands are at-
tempted on it. It does not change the line-number counter. After a line has been
deleted by a ¢ function, no further commands are attempted on it. If text is ap-
pended after a line by a or r functions, and the line is subsequently changed, the
text inserted by the ¢ function will be placed before the text of the a or r functions.

Note that when you insert text in the output with these functions, leading blanks and tabs will
disappear in all sed commands. To get leading blanks and tabs into the output, precede the first
desired blank or tab by a backslash; the backslash will not appear in the output.

For cxample, the list of editing commands:

n

a\

XXXX

d

applied to our standard input, produces:

In Xanadu did Kubla Khan
XXXX

Where Alph, the sacred river, ran
XXXX

Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following com-

mand lists:
n
i\
XXXX
d

or

A-5

XENIX Text Processing

c\
XXXX

Substitute Functions

The substitute function(s) changes parts of lines selected by a context search within the line, as
in:

(2)s patiern replacement flags substitute

The s function replaces part of a line selected by the designated pattern with the replacement
pattern. The pattern argument contains a pattern, exactly like the patterns in addresses. The
only difference between a pattern and a context address is that a pattern argument may be delim-
ited by any character other than space or newline. By default, only the first string matched by the
pattern is replaced, except when the —g option is used.

The replacement argument begins immediately after the second delimiting character of the
pattern, and must be followed immediately by another instance of the delimiting character. The
replacement is not a pattern, and the characters which are special in patterns do not have special
meaning in replacement. Instead, the following characters are special:

. Is replaced by the string matched by the pattern.

\d d is a single digit which is replaced by the dth substring matched by parts of the
pattern enclosed in \(and \). If nested substrings occur in the pattern, the dth
substring is determined by counting opening delimiters .

As in patterns, special characters may be made literal by preceding them with a backslash (\).
A flag argument may contain the following:

g Substitutes the replacement for all nonoverlapping instances of the pattern in the
line. After a successful substitution, the scan for the next instance of the pattern
begins just after the end of the inscrted characters; characters put into the line
from the replacement are not rescanned.

p Prints the line if a successful replacement was done. The p flag causes the line to
be written to the output if and only if a substitution was actually made by the s
function. Notice that if several s functions, each followed by a p flag, successfully
substitute in the same input line, multiple copies of the line will be written to the
output: onc for cach successful substitution.

w file Writes the line to a file if a successful replacement was done. The —w option
causes lines which are actually substituted by the s function to be written to the
named file. If the filename existed before sed is run, it is overwritten; if not, the file
is created. A single space must separate —w and the filename. The possibilities of
multiple, somewhat different copies of one input line being written are the same as
for the —p option. A combined maximum of ten different filenames may be men-
tioned after w flags and w functions.

Here are some examples. When applied to our standard input, the following command:

A-6

(o

Editing with Sed and Awk

s/to/by/wchanges

produces, on the standard output:
In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and on the file changes:

Through caverns measureless by man
Down by a sunless sea.

The command
s/[%:1/*P&*/gp
producces:
A stately pleasure dome decrec*P:*

Where Alph*P,* the sacred river*P,* ran
Down toa sunlesssca*P.*

With the g flag, the command
/X/s/an/AN/p
produces:
In XANadu did Kubla Khan
and the command
/X/s[an/AN/gp
produces:

In XANadu did Kubla KhAN

Input-Output Functions

P The print function writes the addressed lines to the standard output file at the time
the p function is encountered, regardless of what succeeding editing commands
may do to the lines. The maximum number of possible addresses is two.

w The write function writes the addressed lines to filename. If the file previously ex-

isted, it is overwritten; if not, it is created. The lines are written exactly as they
exist when the write function is encountcred for each line, regardless of what sub-

A-7

XENIX Text Processing

sequent editing commands may do to them. Exactly one space must separate the
w command and the filename. The combined number of write functions and w
flags may not exceed 10.

T The read function rcads the contents of the named file, and appends them after the
line matched by the address. The file is read and appended regardless of what sub-
sequent editing commands do to the line which matched its address. If r and a
functions are executed on the same line, the text from the a functions and the r
functions is written to the output in the order that the functions are executed. Ex-
actly one space must separate the r and the filename. One address is possible. If a
file mentioned by an r function cannot be opened, it is considered a null file rather
than an error, and nodiagnostic is given.

Note that since there is a limit to the number of files that can be opened simultaneously, be sure
that no more than ten files are mentioned in functions or flags; that number is reduced by one if
any r functions are present. Only one read file is open at one time.

Herc are some examples. Assume that the file note! has the following contents:
Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

The following command:

/Kubla/r notel
produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

A stately pleasure dome decree:

Where Alph, the sacred river, ran

Through caverns measureless toman

Down to a sunless sea.

Multiple Input-Line Functions

Three functions, all spelled with upper case letters, deal specially with pattern spaces containing
embedded newlines. They are intended principally to provide pattern matches across lines in the
input. -

N Appends the next input line to the current line in the pattern space; the two input
lines are separated by an embedded newline. Pattern matches may extend across
the embedded newline(s). There is a maximum of two addresses.

D Deletes up to and including the first newline character in the current pattern
space. If the pattern space becomes empty (the only newline was the terminal

A-8

Editing with Sed and Awk

@/ newline), another line is read from the input. In any case, begin the list of editing
commands again from its beginning. The maximum number of addresses is two.

P Prints up to and including the first newline in the pattern space. The maximum
number of addresses is two.

The P and D functions are equivalent to their lowercase counterparts if there are no embedded
newlines in the pattern space.

Hold and Get Functions

These functions save and retrieve part of the input for possible later use:

h The h function copies the contents of the pattern space into a holding arca, des-
troying any previous contents of the holding area. The maximum number of ad-
dresses is two.

H The H function appends the contents of the pattern space to the contents of the

holding area. The former and new contents are separated by a newline.

g The g function copies the contents of the holding area into the pattern space, des-
troying the previous contents of the pattern space.

G The G function appends the contents of the holding area to the contents of the
- pattern space. The former and new contents are separated by a newline. The max-
QM imum number of addresses is two.

X The exchange command interchanges the contents of the pattern space and the
holding area. The maximum number of addresses is two.

For example, the commands

1h
Is/did.*//
1x

G

s/A\n/ :/
applied to our standard example, produce:

In Xanadu did Kubla Khan :1n Xanadu

A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

Flow-of-Control Functions

Qﬁ/ These functions do no editing on the input lines, but control the application of functions to the
Xizes/ lines selected by the address part.

A-9

XENIX Text Processing

! This command causes the next command written on the same line to be applied to
only those input lines not selected by the address part. There are two possible ad-
dresses.

{ This command causes the next set of commands to be applied or not applied as a
block 1o the input lines selected by the addresses of the grouping command. The
first of the commands under control of the grouping command may appear on the
same line as the (or on the next line. The group of commands is terminated by a
matching } on a line by itself. Groups can be nested and may have two addresses.

:label The label function marks a place in the list of editing commands which may be re-
ferred to by b and t functions. The /abel may be any sequence of eight or fewer
characters; if two different colon functions have identical labels, an error message
will be generated, and no execution attempted.

blabel The branch function causes the sequence of editing commands being applied to
the current input line to be restarted immediately after encountering a colon func-
tion with the same label. If no colon function with the same label can be found
after all the editing commands have been compiled, an error message is produced,
and no execution is attempted. A b function with no label is interpreted as a
branch to the end of the list of editing commands. Whatever should be done with
the current input line is done, and another input line is read; the list of editing com-
mands is restarted from the beginning on the new line. Two addresses are possible.

tlabelfR The t function tests whether any successful substitutions have been made on the
current input line. If so, it branches to the label; if not, it does nothing. The flag
which indicates that a successful substitution has been executed is reset either by
reading a new input line, or executing a t function.

Miscellaneous Functions
There are two other functions of sed not discussed above.

= The = function writes to the standard output the line number of the line matched
by its address. One address is possible.

q The q function causes the current line to be written to the output (if it should be),
any appended or read text to be written, and execution to be terminated. One ad-
dress is possible.

A.3 Pattern Matching With awk

By now you have been introduced to several tools for locating patterns and strings in one or more
text files, including grep and its variants. You should also be familiar with using the various text
editors to do global searching. Awk offers another approach to many of these same tasks. Awk is
actually a programming language designed to make many common search and text manipulation
tasks casy to state and to perform. [t offers several key features not available with grep or sed:
numeric processing, the handling of variables, general selection, and flow-of-control in com-
mands. Awk is also uniquely suited to operations on fields within lines.

In practice, awk is used in two ways for report generation, procesing input to extract counts,
sums, subtotals, etc.; and to transform data from the form produced by one program into that ex-

A-10

Editing with Sed and Awk

pected by another. Awk searches input lines consecutively for a match of patterns which you
designate. For cach pattern, an action can be specified; this action will be performed on each line
that matches the pattern. Awk allows you 10 perform more complex actions than merely printing
amatching line. For example, the awk program:

{print $3, $2}
prints the third and second columns of a table in that order. The program

$2 /ABC/

prints allinput lines with an A, B, or C in the second field, where the second field is text separated
by whitespace. The program

$1!=prev { print; prev=$1)

prints all lines in which the first field is different from what was previously the first field.

A.3.1 Invoking awk
The command in the following form:
awk program filename

executes the awk commands written into the named program on the set of named files, or on the
standard input if no files are named. The statements can also be placed in a file pfile, and exe-
cuted by the command:

awk -f pfile filename

A.3.2 Program Structure
Anawk program is a sequence of statements, each in the form:
pattern {action}

Each line of input is matched in turn against each of the specified patterns. For each pattern
matched, the associated action is executed. When all the patterns have been tested, the next line
is read and the matching process repeated. Either the pattern or the action may be omitted, but
not both. If there is noaction for a pattern, the matching line is simply copied to the output. Thus
a line which matches several patterns can be printed several times. If there is no pattern for an ac-
tion, then the action is performed for every input line. A line which matches no pattern is ignored.
Since patterns and actions are both optional, actions must be enclosed in braces to distinguish
them from patterns.

A.3.3 Records and Fields
Awk input is divided into *‘records” which are terminated by a record separator. Because the de-

fault record scparator is a newline, awk processes its input one line at a time. The number of the
current record is available in a predefined variable named NR, for “number register”.

XENIX Text Processing

Each input record is divided into “fields”. Fields are normally separated by whitespace, either
blanks or tabs, but the input field separator can be changed. Fields are referred toas $1, $2, and
so forth, where $1 is the first field, and $0 is the whole input record itself. Assignments may be
made to fields. The number of fields in the current record is available in another predefined vari-
able named NF, for “number fields”.

The variables FS and RS refer to the input field and record separators; they may be changed at
any time to any single character. The optional command-line argument -Fc may also be used to
set FS to the character “¢”. If the record separator is empty, an empty input line is taken as the

record separator, and blanks, tabs and newlines are treated as field separators. The variable
FILENAME contains the name of the current input file.

A.3.4 Printing
If an action has no pattern, the action is executed for all lines. The simplest action is to print some
or all of a record, using the awk command print. This command prints each record, copying the
input to the output intact. A field or group of ficlds may be printed from each record. For in-
stance,

print §2, $1
prints the first two fields in reverse order. Items separated by a comma in the print statement will
be separated by the current output field separator when output. Items not separated by commas
will be concatenated, so

print $1 32
runs the first and second fields together.
The predefined variables NF and NR can be used. For example,

{print NR, NF, $0)

prints each record preceded by the record number and the number of fields. Also, output may be
diverted to multiple files. For example, the program

(print $1 >"list1”; print $2 > "list2"}

writes the first field, $1, on the file /is¢/, and the second field on file /ist 2, The > > notation can
also be used. Forexample,

print$1 > >"list"

appends the output to the file fist. In each case, the output files are created if necessary. The
filename can be a variable or a field as well as a constant. For example,

print$1 >§2

uses the contents of field 2 as a filename. There is a limit of ten possible output files. Output can
also be piped into another process. For instance,

print|"mail fredm"

A-12

Editing with Sed and Awk

mails the output to fredm’s mailbox.

The variables OFS and ORS may be used to change the current output field separator and output
record separator. The output record separator is appended to the output of the print statement.
Awk also provides the printf statement for output formatting.

printf format, expr, expr, ...

formats the expressions in the list according to the specification in the file format and prints them.
For example,

printf "%8.2f %101d\n", $1, $2
prints $1 as a floating point number 8 digits wide, with two digits after the decimal point, and $2
as a 10-digit decimal number, followed by a newline. No output separators are produced au-
tomatically; they must be added, as in the above example.
A.l.5 Patterns
You may specify a pattern before an action to act as a selector for determining whether the action
is to be executed. A variety of expressions may be used as patterns: regular expressions, arith-
metic relational expressions, string-valued expressions, and arbitrary Boolean combinations of
these.
The special pattern BEGIN matches the beginning of the input, before the first record is read.
The pattern END matches the end of the input, after the last record has been processed. BEGIN
and END thus provide a way to gain control before and after processing, so you ¢an initialize and
terminate the program normally.
For example, the field separator can be set to a colon with;

BEGIN (FS="")
Or the input lines may be counted by:

END {print NR}

If BEGIN is present, it must be the first pattern; END must be the last.

Regular Expressions

The simplest regular expression is a literal string of characters enclosed in slashes, such as:
/smith/

This is actually a complete awk program which prints all lines containing any occurrence of the

name “smith™. Ifaline contains “smith™ as part of a larger word, it will also be printed, asin
blacksmithing

The list of regular expressions recognized by awk includes the regular expressions recognized by

A-13

XENIX Text Processing

ed, sed, and the grep command. In addition, awk allows parentheses for grouping, the pipe () for
alternatives, the plus (+) for “one or more”, and the question mark (?) for *“zero or one”.
Character classes may be abbreviated: [a—zA—Z0~9] is the set of all letters and digits. For ex-
ample, the awk program

/[Aa]pples[Bblananas[Cc}herries/

prints all lines which contain any of the words “apples”, “bananas”, or “cherries,” whether they
begin with an uppercase letter or not.

Regular expressions must be enclosed in slashes, just as in ed and sed. Within a regular expres-
sion, blanks and the regular cxpression metacharacters are significant. To turn off the special
meaning of one of the regular expression metacharacters, precede it with a backslash.
For example, the pattern

NN
matches any string of characters enclosed in slashes. You can also specify that any field or vari-
able matches a regular expression (or does not match it) with the operators tilde (7) and exclama-
tion point tilde (!™). The program

$17/[jJ]ohn/

prints all lines where the first field matches “john” or “John”. Notice that this will also match
“Johnson”, “St. Johnsbury”, and so on. To restrict the match to exactly “John” or “john”, use ~

$17/7[i7John$/

The caret (*) refers to the beginning of a line or field; the dollar sign ($) refers to the end.

Relational Expressions

An awk pattern can be a relational expression involving the operators <, <=, == != >= and
>. Forexample,

$2>81+100

selects lines where the second field is at least 100 greater than the first field. Similarly,
NF%2==0

prints all lines with an even number of fields.

In relational tests, if ncither operand is numeric, a string comparison is made; otherwise it is
numeric. Thus,

$l >= IIS"

selects lines that begin with “s”, “t”, “u”, etc. In the absence of other information, fields are
14
treated as strings, so the program

A-14

Editing with Sed and Awk

31> 92

will perform a string comparison.

Combinations of Patterns

A pattern can be any Boolean combination of patterns, using the operators [|(or), & & (and), and
'(not). For cxample,

$l >=|l Lid "& SI <"t“&& $]!="Smi[h“
selects lines where the first field begins with *‘s”, but is not “smith”. The operators & & and |
guarantee that their operands will be evaluated from left to right; evaluation stops as soon as their
truth or falsehood is determined.
The pattern that selects an aclion may also consist of two patterns separated by a comma, as in

patl, pat2 {..]

In this case, the action is performed for cach line between an occurrence of pat/ and the next oc-
currence of pat2 (inclusive). For example,

/start/, /stop/
prints all lines between “start” and *‘stop”, while
NR == 100, NR ==200{...}

does the action for lines 100 through 200 of the input.

A.3.6 Actions

In addition 1o the patterns described above, the awk program offers a set of possible actions. An
awk action is a sequence of action statements terminated by newlines or semicolons. These action
statements can do a variety of bookkeeping and siring manipulating tasks. The possible actions
arc: built-in functions, the assignment of variables and strings, the use of field variables, string
concatenation statements, arrays, and flow-of-control statements.

Built-in Functions

Awk provides a “length” function to compute the length of a string of characters. This program
prints cach record, preceded by its length:

{print length, $0}

The length by itself is a “pseudo-variable” which yields the length of the current record;
length(argument) is a function which yields the length of its argument, as in the equivalent:

{print length(80), $0}

Theargument may be any expression.

A-15

XENIX Text Processing

Awk also provides the arithmetic functions sqrt, log, exp, and int, for square root, logarithm, ex-
ponential, and integer parts of their respective arguments. The name of one of these built-in
functions, without argument or parentheses, stands for the value of the function on the whole
record. The program
length < 10|length > 20

prints lines whose length is less than 10 or greater than 20.

The function substr(s,m,n) produces the substring of s that begins at position 2 (origin 1) and is
at most n characters long. If n is omitted, the substring goes to the end of s. The function

index(s1, s2) returns the position where the string s2 occurs in s/, or zero if it does not.

The function sprintf(f, e1, e2, ...) produces the value of the expressions el, €2, etc., in the printf
format specified by £. Thus, for example,

x = sprintf("%8.2f %101d", $1, $2)

sets x to the string produced by formatting the valuesof $1 and $2.

Variables, Expressions, and Assignments

Awk variables take on numeric (floating-point) or string values according to context. In the fol-
lowing example,

x=1
x is clearly a number, while in
x = "smith"

it is clearly a string. Strings are converted to numbers and vice versa whenever context demands
it. For instance,

X = n3n + Il4ll

assigns 7 to x. Strings which cannot be interpreted as numbers in a numerical context will gen-
erally have the numeric value zero.

By default, variables (other than built-in functions) are initialized to a null string, which has
numerical value zero. This eliminates the need for most BEGIN sections. For example, the sums
of the first two fields can be computed with:

{s1 +=81;s2+=82}
END {printsl,s2})

Arithmetic is done internally in Roating-point. The arithmetic operators are: +, —, *, /, and %.

The C increment ++ and decrement — — operators are also available, as well as the assignment
operators +=, —=, *=_ /= _and %=. These operators may all be used in expressions.

A-16

Editing with Sed and Awk

Field Variables
Fields in awk share essentially all of the properties of variables. They may be used in arithmetic
or string operations, and may be assigned t0. Thus you can replace the first field with a sequence
number:

{$1=NR;print}
or accumulate two ficlds into a third,

{$1=82+83;print 50}
or assigna string toa field,

(if ($3 > 1000)

$3 ="too big"

print

}
which replaces the third field by “too big” when it is too big, and prints the record in either case.
Field references may be numerical expressions, as in the following:
{ print 8i, $(i+1), $(i+n) }
Whether a field is deemed numeric or string depends on context; in ambiguous cases like
if($1==82) ...
ficlds are treated as strings.

Each input line is automatically split into fields as necessary. It is also possible to split any vari-
able or string into fields. For example,

n=split(s, array, sep)
splits the the string s into array/1], array{n]. The number of elements found is returned. If the
sep argument is provided, it is used as the field separator. Otherwise FS is used as the separator.
String Concatenation
Strings may be concatenated. For example:

length($1$2§3)
returns the length of the first three fields. Ina print statement,

print$1"is"$2

prints the two fields separated by * is ”. Variables and numeric expressions may also appear in
concatenations.

XENIX Text Processing

Arrays

Array elements are not declared; they spring into existence when mentioned in a program. Sub-
scripts may have any non-null value, including non-numeric strings. For example, in a conventio-
nal numeric subscript, the statement

x[NR]=$%0

assigns the current input record to the NRth element of the array x. In principle it is possible to
process the entire input in a random order with the awk program:

{x[NR] =$0}
END{... program ...}

The first action merely records each input linein the array x.

Array elements may be named by non-numeric values. Suppose the input contains fields with
values like apple, orange, etc. The program

Japple/ {x["apple"]++)
Jorange/ {x["orange"]++)
END { print x["apple“], x["orange"])

increments counts for the named array elements, and prints them at the end of the input. Any ex-
pression can be used as a subscriplin an array reference. Thus,

x[$1] =82
uses the first field of a record as a string toindex the array x.
Suppose each line of input contains two fields, a name and a nonzero value. Names may be
repeated. To print a list of each unique name followed by the sum of all the values for that name,
use the program:

{amount[$1] +=82}
END {for (name in amount)
print name, amount[name] }

Tosort the output, replace the last line with

print name, amount[name] |"sort”

Flow-of-Control Statements

Like any programming language, awk provides flow-of-control statements. These are: if-else,
while, for, and statement groupings with braces. When using the if statement the condition in
parenthescs is evaluated. Ifitis true, the statement following the if is done. The else part is optio-
nal.

A whilestatement is also available. For example, to print all input fields one per line, use:

A-18

Editing with Sed and Awk

i=1

while (i <=NF){
print $i
++i

The for statement

for(i=1;i <=NF;i++)
print §i

does the same job as the while statement above.

An alternate form of the for statement is useful for accessing the elements of an associative array.
For example,

for (iinarray)
statement

performs statement with f set in turn to each element of the array. The elements arc accessed in
an apparently random order. Chaos will ensue if i is altered, or if any new elements are accessed
during the loop.

The expression in the condition part of an if, while or for statement can include relational opera-
tors like <, <=, >, >=, == (“isequal to”"), and != (“not equal 10”"); regular expression matches
with the match operators \" and \"; the logical operators || & &, and !, and parentheses for grou-
ping.

The break statement causes an immediate exit from an enclosing while or for statement. The
continue statcment causes the next iteration to begin. The next statement causes awk to skip im-
mediately to the next record and begin scanning the patterns from the top. The exit statement
causes the program to behave as if the end of the input had occurred.

One final note: comments may be placed in awk programs. If you are going to store complex awk
programs for future use, it is a good idea to use comment lines generously, to remind you of what
your program docs:

printx,y #thisisacomment

Comments begin with the character “#”" and end with the end of the line.

Index

AT
19/, 28

A

abstracts 3-1
abstracts 4-36
Acknowledgements 1-3
adjective usage 2-12
AL, list begin macro 1-8
alphabetizing lines in files 2-4
Appendices 1-4
Archiving 1-9
Awk 1-11
awk 1-5
awk A-l
actions A-15
arrays A-18
assignments A-16
BEGIN A-13
break A-19
built-in functions A-15
exp A-16
int A-16
length A-15
log A-16
sprintf A-16
sqrt A-16
substr A-16
combination of patterns A-15
comments A-19
continue A-19
END A-13
exit A-19
expressions A-16
field variables A-17
fields A-11
flow-of-control A-18
for A-18
if-clse A-18
statement grouping A-18
while A-18
next A-19
number register A-11
output field separator A-13
output record separator A-13

patterns A-13

printf statement A-13
printing A-12

records A-11

regular expression A-13
relational expressions A-14
special characters A-14
string concatenation A-17
variables A-12

variables A-16

awk (continued)
B

Back matter 1-4
Background processes

Background processing

Batch 1-11
Batch 1-7
batch A-l
Batch editing 1
Bibliography 1
Body of text I
Boilerplate 1
Boilerplates 1
Boilerplates 1
Boldface 1-
boldface 3
brackets 6
bullet list 4

captions 4-2
Centering 1-4
centering 6-6
Centering 1-8
Chapters 1-3
character sets 5-3
column alignment
column width 7-1
comm 2-1
comm 2-2
comm 2-4

-12 2-4

-23 2-4

sorting before using
complex sentences
compound sentences
Conditional processing
conditional processing
connectivity 2-13
Copyright notice
cover pages 3-1
cover sheet 4-2
cover sheet 4-4
cut 2-1
cut 2-5
Cut and paste 1-1
Cut and paste 1-9
cut and paste 2-1

2-6
1-7

9
0

cut and paste
Cut and paste

cut
-clist 2-5
-dchar 2-5
-flist 2-5
-5 2-6

1-12
1-8

7-1

2-4
2-11
2-11

Index

cut (continued)
D

dash list 4-17
deleting text 2-1
Deletions 1-7
deroff 2-7
diacritical marks 8-10
Diction 1-5
diction 2-6
-f option 2-14
-n option 2-14
diff 1-5
diff 2-1
diff 2-2
- 2-2

producing ed scripts with 2-3

diff3 2-1
diff3 2-2
diff3 2-3
-e 2-4
Displays 1-3
displays 3-5
displays 4-1
floating 4-19
floating 4-20
static 4-19
static 4-20
Document life cycle 1-9
Document number 1-3
Document specifications 1-12
Document specifications 1-4
Document standardization 1-4
Documentation projects 1-3
drawing lines 6-12
drawing lines and characters 5-6

9

Eqn (continued)

brackets 8-6
ceiling 8-6
centering 8-2
command language
commands 8-1

diacritical marks

Index

8-1
8-10

error checking with eqncheck 8-14
error messages 8-14

floor 8-6

fonts 8-10

fonts 8-9

Greek alphabet
grouping 8-3
in-line equations
input spaces 8-
integrals 8-
invoking 8-
invoking 8-
keywords 8-
keywords 8-
line motions with
line spacing 8-1
lining up equations

8
5
1
2
1
1

local motions 8-11

matrices 8-7
numbering 8-2
order of precedence
output spaces 8-8

5
6

overstriking 8-10

8-16
8-11

8-1
8-7

8-14

piles 8-6

point sizes 8-9

printing documents
lineprinter 8-13

phototypesetter 8-13
quoted text 8-10
reserved names 4-42
special characters 8-15
special sequences with 8
square roots 8-4

E string definitions 8-12
subscripts 8-2
d 21 summation 8-5
e d script - A-l superscripts 8-2
eesenipts A- using caret 8-8
Editing techniques 1-12 using tildes 3-8
boilerplates 1-11 withgmm
consistency 1-10 centering 8-2
editing scripts 1-11 numberin 8-2
markers in text 1-10 with nroff g 8-1
shell scripts - 1-11 with nroff/troff 8-1
short lines 1-10
eqncheck 8-1
templates 1-10 Equati 1-3
using writing tools 1-12 quations -
extracting columns 2-5
egrep 2-1
Entering text 1-7
Eqn 1-5
Egqn 1-6
braces 8-3
braces 8-9

extracting fields 2-5

Index

F
fields 6-8
Figures 1-3

File comparison 1-12
File comparison 1-9
file comparison 2-1
file comparison 2-2

Files
backup copies 1-5
backups 1-12
file length 1-12
help files L-11
help files 1-12

hierarchical file structure
managing long documents
naming conventions 1-10
README files 1-12
updates 1-10
using comment lines 1-12
versions 1-10
filling 6-6
Filling 1-4
font changes 3-1
Fonts 1-5
fonts 4-31
Fonts 1-4
typesetting 5-3
Footers 1-4
Footnotes 1
Footnotes 1
footnotes 3-
footnotes 3
footnotes 4
Foreword 1-
formatter 4-2
Formatting commands 1-5
Formatting commands 1-7
Formatting documents 1-5
Formatting tables 1-6
formatting tables 7-1
Front matter 1-3

G

gfrep 2-1

Global substitution
Global substitution
global substitution
global substitution
Glossary 1-4
Greek alphabet 5-4
Greek alphabet 8-1
Greek alphabet 8-16
Greek alphabet 8-9
grep 1-5

grep 2-1

grep 2-2

B —
1]
Ll ~ I |

>

Index

grep {continued)
combined with other commands 2-2
-h 2-2
-n 2-2

Gutter width 1-4

H

horizontal motions 5-7
Hyphenation 1-5 .
hyphenation 4-6
hyphenation 6-9

Illustrations 1-3
Indentation 1-4
indentation 5-5
Index 1-4
inserting text interactively 4-34
Interactive 1-7
Invoking programs

eqn 1-6

mm 1-6

nroff /troff 1-6

order 1-6

using col 1-7
italics 3-4

Justification 1-4
Justification 1-5
justification 4-32
justification 6-6
keep-release 5-16

L
.LE, list end macro 1-8
leaders 6-8
Letters 1-3
.L1, line item macro 1-8

Line length 1-4
line length 5-4

list of figures, tables, etc. 4-23
lists 3-1
lists 4-13

local motions 6-12

local motions 5-6

locating awkward phrases 2-13
locating awkward phrases 2-14

locating long sentences 2-11

Index

M

Macro definition 1-12
macro definition 4-4]1
macro definition 6-13
Macro definition files 1-10
Macros 1-6
macros 3-1
macros 4-2
macros 7-1
macros 8-1

definition 1-7
Margins 1-4
marked list (ML) macro 4-17

Mathematical equations 1-5
mathematical equations 4-23
mathematical equations 7-1

formatting 8-1
printing 8-1
memorandum styles 4-35
Memos 1-3
merging columns 2-6
Mm 1-12
mm 1-2
Mm 1-5
Mm 1-6
MM 3-1
abstract ((AS) macro 4-36
abstracts 3-1

alternate format (AF) 3-6

alternate format (.AF) 4-37

author (.AU) macro 4-35

automatic list ((AL) 3-4

automatically numbered list (.AL)
macro 4-16

beginning segment 4.2

body 4-2

bold (.B) macro 4-31

bullet list 4-16

bullets 4-7

caption macro (.FG) 4-23

closing (.FC) macro 4-39

command line 4-3

command line parameters 4-4

cover pages 3-1

cover sheet (.CS) macro 4-40

dash list (DL) 3-3

dash list (DL) macro 4-17

dashes, minuses, and hyphens 4-7

disappearance of output 4-43

display (.DS I) macro 4-20

display macro(.DS-.DE) 3-5

displays 4-19
indentation 3-5
ending 4-2

equation (.EQ) macro 4-23

error checking with mmcheck 3-6
error messages 4-42

error messages 4-43

Index

MM (continued)

error messages 4-44

even page footer (.EF) macro 4-27

even page header ((EH) macro 4-26

exit macros (.HX, .HY and .HZ)
4-12

floating display (.DF) macro 4-20

font changes 3-4

font changes 3-1

boldface 3-5

italics 3-4
fonts in headings 4-10
footnote (.FS) macro 4-24
footnotes 3-1
footnotes 35

formatting with 4-5
heading (.H) macros 4-9
headings 4-8
modifying 4-9
unnumbered 4-11
hypenation 4-6
inserting commands 3-]
invoking 3-2
invoking 4-2
invoking as a flag 4-
invoking mmcheck 3
italic (.I) macro 4
keyword (.OK) macro 4-
list end (.LE) macro 4
list end macro 4-14
list item (.LI) macro 4-15
list item macro 3-3
list item macro 4-14
list of figures 4-23
list-initialization macro 4-14

lists 3-1

lists 33

lists 4-13

macro definition 4-41

mark list (ML) 34

marking macro (HM) 4-11
memorandum type (.MT) 3-6
memorandum type (.MT) macro 4-37
multicolumn output 3-1

nested lists 34

nested lists 4-14

new date ((ND) macro 4-37
notation ((NS) macro 4-39

null arguments 4-6

numbered headings 3-2

odd page header ((OH) macro 4-26
odd page (.OP) macro 4-34
odd-page footer macro 4-27

-12 4-3
-c 4-3
-E 4.3
-t 4-3
-y 4-3
order of beginning macros 4-38

page footer (.PF) macro 4-27

Index

MM (continued)

page header (.PH) macro 4-26
page numbering 3-1
page numbering 4-12

paragraph (.P) macro 4-8
paragraph (.P macro). 3-2
paragraph style 3-1

paragraphs 4-8

paragraphs and headings 3-2
parameter setting 4-1

point size in headings 4-10

point size (.S) macro 4-34

read insertion (.RD) macro 4-34
reasons to use 4-1

redefining heading styles 3-3
reference list (.RL) macro 4-17
reference page (.RP) macro 4-31

reference ((RS) macro 4-30

Roman (.R) macro 4.31

section headers 3-1

set right justification (.SA) macro
4-32

signature (.SG) macro 4-39

skip page (.SK) macro 4-33

space (.SP) macro 4-33

strings 4-51

summary of macros 4-47

summary of number registers 4-52

table macro (.TS-.TE) 3-§

table of contents ((TC) macro 3-3

table of contents (.TC) macro 4-12

table of contents (.TC) macro 4-29

table (.TS) macro 4-22

tables of contents 3-1

tabs 4-7

technical memorandum (.TM) macro
4-36

title (- TL) macro 4-35

titles 3-1

top of page processing 4-28

trademark string 4-8

two column (.2C) macro 4-32

two column command (.2C) 3-6

unnumbered headings 3-2

unpaddable spaces 4-6

using tilde (") 4-6

variable list (.VL) macro 4-17

variable lists (.VL) 3-4
vertical margin (VM) macro 4-29
with col 3-2
with nroff /troff 3-1
with nroff/troff 3-6
mmcheck 3-6

Multicolumn output 1-4
Multicolumn output 1-6
multicolumn output 3-1
multicolumn output 3-6
muiticolumn output 4-32

Index

N

Naming conventions 1-10
nested lists 4-14
nominalizations 2-13
Notes 1-4
noun usage 2-12
nroff 1-5
internal units 6-2
options
-e 6-1
-Tname 6-1
underline (.cu) command 6-11
nroff /troff
absolute position 6-3
adjust (.ad) command 6-7
append string (.as) command 6-15
append to macro (.am) command
6-15
assign format to register (.af) com-
mand 6-16
begin page (.bp) command 5-10
begin page (.bp) command 6-5
blank lines 6-8
brackets 6-12
brackets 6-13
break (.br) command 6-6
break function 6-2

breaks in 5-11

center (.ce) command 6-7

centering 6-6

change trap position (.ch) command
6-15

character translations 6-10
conditional processing 5-14
conditional processing 6-17

evenand odd 5-15

if-else 5-14

lineprinter and typesetter 5-

15

string comparison 5-15
control lines 6-2
copy mode 6-11
define macro (.de) command 6-15
define string (.ds) command 6-15

difference between 5-1
difference between 6-1
printing 6-4
difference in output 5-1
differences 1-4
changing point sizes 1-4
ignoring commands 1-4
replacing italics with underlining
1-4
rounding parameters 1-4
underlining 1-5
diversions 6-14

Index

nroff /trofl (continued)

diversions (.di) 5-16

nesting 6-14

traps 6-15
divert (.di) command 6-15
divert-append (.da) command 6-15
drawing lines 6-12
drawing lines and characters 5
end macro (.em) command 6-16
environments 6-18
environments (.ev) 5-15
error messages 4-45
error messages 4-46
error messages 6-19

escape character 6-10
escape character 6-2

¢scape sequences 6-20
even page (e) condition 6-17
exit (.ex) command 6-18

field delimiter (.fc) command 6-9
fields 6-8

fill (.fi) command 6-6

filing 6-6

flush output buffer (.fl) 6-19

fonts 5-4

formatter nroff (n) condition 6-17

formatter troff (t) condition 6-17
horizontal motions 5.7
horizontal motions 6-12

hyphenation 6-9

hyphenation on (.hy) command 6-9
if (.if) command 6-17

ignore (.ig) command 6-19

indent (.in) 5-5

indent (.in) command 6-8

inline commands 5-2

input-output conventions 6-10

inserting commands 5-1

install diversion trap (.dt) command
6-15

install trap (.wh) command 6-15

invoking 6-1

justification 6-6
leader repetition character (.I¢) com-

mand 6-9
leaders 6-8
ligature mode on (.1g) command 6-11
ligatures 6-11
line length and indenting 6-8
line length (.1l) 5-4
line length (.11) command 6-8
line number mode (.nm) command

6-10

line space (.Is) command 6-7

local motion 5-7

local motions 5-6

local motions 6-12

macro definitions 5-9
arguments 6-14
input 6-13

Index

nroff/troff (continued)

macros 6-13
macros 6-2

arguments 5-13
margin character (.mc) command

6-19

mark current vertical place (.(mk R)
needs (.ne) command 6-6
new page (.NP) macro 5-10
next filename (.nx) command 6-18
no adjust (.na) command 6-7
no fill (.nf) command 6-6
no hyphenation (.nh) command 6-9
no number (.nn) command 6-10
no space (.ns) command 6-8
number register assign (.nr) command

6-16
number registers 5-11
number registers 5-12
number registers 6-16
predefined 6-21
read-only 6-21

numerical input 6-3
odd page (o) condition 6-17
options
-cname 6-1
-i 6-1
-mname 6-1
-nN
-olist
-q
-raN
-sN
output line numbering 6-10
output save (.0s) command 6-8
overstrike 6-12
overstriking 5-8
page control 6-5
page length (.pl command) 6-5
page number character (.pc) command

-1
1

[= = W= = N~

-1
-1
-1

6-10
page number (.pn) command 6-5
page offset (.po) 5-5
page offset (.po) command 6-5
pipe output (.pi) command 6-18
point size(.ps) 5-2
pre-defined number registers 5-11

print macro (.pm) command 6-19
quoting quotes 5-12
read standard input (.rd} command

6-18
read string in copy mode (.tm0 com-
mand 6-19
relative point size changes 5-2

remove register (.rr) command 6-16

remove (.rm) command 6-15

rename (.rn) command 6-15

requests 6-2

reserved register and request names
4-41

Index

nroff /troff (continued)
restore spacing (.rs) command 6-8
return upward (.rt) command 6-6
save (.sv) command 6-7
scale indicators 6-2
section titles 5-13
set control character (.cc) command
6-11
set environment (.ev) commands 6-18
set escape character (.ec) command
6-11
set hyphenation indicator (.hc) com-
mand 6-9
set input-line-count trap (.it) command
6-16
set nobreak (.c2) command 6-11
set tabs (.ta) command 6-9
space (.sp) command 6-7
spacing units 5-3

special characters 5-4

specify hyphenation points (.hw) com-
mand 6-9

standard input 6-1

string define (.ds) 5-8

string definition 5-8

string definition 6-13

switch source file (.so) command 6-18
tab repetition character (.tc) command

6-9
tab replacement (.tc) 5-6
tabs 6-8
tabs (.ta) 5-6

temporary indent (.ti) 5-5
temporary indent (.ti) command 6-8

title length (.1t) command 6-10
title (.tl}) command 5-10

title (.tl) command 6-10

titles 5-10

titles 6-9

fonts and point sizes 5-11
translate (.tr) command 6-11
turn escape off (.eo) command 6-11
underline (.ul) command 6-11
underline font (.uf) command 6-11
using backslash (\) 5-12
using backslash (\) 6-10
using backslash (\) 6-2
vertical motions 6-12
vertical space (.vs) command 6-7
vertical spacing (.vs) 5-2
width function 6-12

with MM 4-1
zero-width function 6-12
number registers 4-2

Numbered lists 1-8

Index

0
Organizing writing projects 1-10
overstrike 6-12

P

.P, paragraph macro 1-8

page footers 4-26

page footers 4-27

page headers 4-26

Page headers 1

Page length 1

Page numbering 1

Page numbering i

page numbering 3-

page numbering 4

paper styles 4-35

Paragraph style 1-6

paragraph style 3-1

parallel sentence structures 2-12

parts 2-8

Parts of document 1-3

back matter 1-4

appendices 1-
1-
i-

-4
-4

bibliography
glossary
index 1-4
notes 1-4
body of text 1-3
front matter 1-3
acknowledgements 1-3
copyright notice 1-3
document number 1-3
foreword 1-3
illustrations 1-3
preface 1-3
table of contents 1-3
tables 1-3
title page 1-3
parts of speech 2-11
paste 2-1
paste 2-6
-d 2-6
list 2-6
-5 2-6
pattern matching A-l
pattern matching A-10
pattern matching A-11
pattern recognition 2-1
Point size 1-4
Point size 1-5
point size 4-3
Preface 1-3
preparing charts 7-1
Preprocessor 1-6

R

4

Index

Preprocessors 1-6
preprocessors 7-1

Printing documents 1-8
lineprinter 1-5
lineprinter 1-6
phototypesetters 1-5

printing lists 7-1
printing multi-column material 7-1
Production consistency 1-4

Q

quoting quotes 4-6
R

readability 2-10

readability 2-8

readability indices 2-8

readability indices 29

readability of documents 2-6

rearranging columns 2-5

reference page 4-30

references 4-30

regular expression 2-1

regular expressions A-1

regular expressions A-13

relative addressing A-1

requests 4-2

reversing columns of output A-11

Revisions 1-10

Revisions 1-7

Revisions 1-9

Running footers 1-4

Running headers 1-4

Running heads, see Page Headers
1-4

S

searching 2-1
searching A-10
fields A-1
line numbers 2-2
numerics A-1
pattern recognition 2-1
strings 2-2
variables A-1
searching within fields A-11
section headers 3-1
Section-page numbering 1-4

Sections 1-3
Sed 1-11
sed A-1l

= function A-10

: label function A-10

sed (continued)
a function A-4
addressing A-3
b label function A-10
B!function A-10
¢ function A-5
d function A-4
D function A-8

- A-1
-e A-2
-f A-2

flow-of-control A-2

Index

flow-of-control functions A-9

functions A-4
g function A-6
G function A-9
h function A-9
hold and get functions
i function A-5

input/output functions

A-9
A-7

miscellaneous functions A-10

multiple input-line functions A-8

-n A-1

-n A-2

n function A-4

N function A-8

p function A-6

p function A-7

P function A-9

q function A-10 &
r function A-8 \Q
s function A-6

substitution functions
t label function A-10
w function A-6
w function A-7
x function A-9
sentence length 2-7
sentence length 2-8
sentence openers
sentence type 2-
sentence type 2-
simple sentences
skipping pages 4-33

7
8

sort 1-5
sort 2-1
sort 2-4

.Ssp command 1-8
special characters
ineqn 8-15
special symbols
spell 2-6
spell 2-7
Spell 1-5
-b 2-7
British spelling 2-7
dictionary 2-7
-v 2-7
square roots 8-4
Standard output

A-6

2-13

2-11

8-1

Index

Standard output (continued)
formatting to 1-8
Standardization 1-9
Starting paragraphs 1-8
Strategies for managing writing projects
1-2
string definition 6-13
strings 4-2
Style 1-5
style 2-6
style 2-8
elements of writing style 2-7
-1 option 2-11
percentage of verbs 2-12
readability 2-7
readability grades 2-9
readability indices 2-9
automated readability index 2-
10
Coleman-Liau Formula 2-10
Flesch Reading Ease Schore 2-
10
Kincaid Formula 2-9
sentence determination 2-8
sentence length 2-10
sentence length 2-9
sentence openers 2.9
sentence type 2-1
sentence type 2-1
sentence type 2-9
word length 2-9
word usage 2-9
subscripts 8-2
superscripts 8-2
symbols, mathematical 8-9
System features 1-5
hierarchical file structure 1-1
hierarchical file structure 1-2
hierarchical file structure 1-5
multitasking 1-5
pipes 1-2
pipes 1-6
shell 1-2
shell scripts 1-2
..system H. The... 2-9
System utilities 1-5
system utilities 2-1
system utilities 2-6

T

Table of contents 1-3
table of contents 4-12
table of contents 4-29
Tables 1-3

Tables 1-5

tables 3-5

tables 4-22

Index

tables of contents 3-1
tabs 6-8
Tbl 1-5
Tbl 1-6
tbl 7-1
additional command lines 7-7
centering in columns 7-4
column alignment 7-1
column width 7-1
column width 7-5
data 7-6
decimal point alignment 7-3
defaults 7-6
drawing boxes 7-1
drawing horizontal lines 7-1
drawing vertical lines 7-1
equal width columns 7-5
error messages 7-7
error messages 7-8
troffl commands in 7-6
font changes 7-5
format section 7-3
“ option 7
A oraoption 7
Cor coption 7-
L or loption 7
N or noption 7
R or r option 7
Sorsoption 7
formatting section 7-2
full width horizontal lines 7-6
horizontal lines 7-4
input to 7-1
invoking 7-7
with other formatters 7-7
keyletters 7-4
need (.ne) commands 7-3
options 7-2
allbox 7-2
box 7-2
center 7-2
delim 7-2
doublebox 7-2
expand 7-2
linesize 7-2
tab 7-2
options section 7-2
point sizes 7-5
preparing charts with 7-1
printing lists 7-1
printing multi-column material 7-1
printing with phototypesetter 7-1
reserved names 4-42
short horizontal lines 7-6
single column horizontal lines 7-6
space between columns 7-4
table end (.TE) 7-1
table start (.TS) 7-1
text blocks 7-6
vertical lines 7-4

Index

tbl (continued)
vertical spacing 7-5
vertical spanning 7-5
vertically spanned items 7-6

with eqn 7-1

with mm 7-1

with nroff/troff 7-1
Technical papers 1-3
Techniques, text processing 1-5
Templates 1-12
Title page 1-3
Titles 1-6
titles 3-1
titles 4-35
titles 6-9
tools 2-6

Tools, text processing 1-5
top and bottom margins 4-29
Troff 1-5
change font (.ft) command 6-5
character set 6-4
constant character space (.cs) com-
mand 6-5
embolden (.bd) commands 6-5
font position (.fp) command 6-5
internal units 6-2
mathematical font set 6-4
mounted fonts 6-4
options
-a 6-2
-b 6-2
-f 6-2
-pN 6-2
-t 6-2
-w 6-2
point size (.ps) command 6-4
space-character size (.ss) command
using ASCII characters with 6-4
Typesetting mathematical equations

1-6

U
Updates 1-12
Updates to documents 1-9
use of expletives 2-13

vV
Variable spacing 1-5
Versions 1-12
Versions 1-9

Versions of documents 1
Versions of documents 1-10
Vertical spacing 1
Vertical spacing 1

10

Index

vi 1-5
vi 2-1
w
wC 2-1
wC 2-5

width function 6-12
word length 2-7

word usage 2-11
word usage 2-7
word usage 2-8

Writing tools 1-5

X
XX 432
Z
zero-width function 6-12

Contents

Text Processing Commands (CT)

intro
checkmm

col

cut

cw, cwcheck
deroff

diction

diffmk

eqn, neqn, eqncheck
explain
hyphen

man, manprog
mm

mmcheck
mmt

neqn

nroff

paste

prep

ptx

soelim

spell, spellin, spellout
style

tbl

troff

Introduces text processing commands.
Checks usage of MM macros.

Filters reverse linefeeds.

Cuts out selected fields of each line of a file.
Prepares constant-width text for troff.
Removes nroff /troff, tbl, and eqn constructs.
Checks language usage.

Marks differences between files.

Formats mathematical text for nroff or troff.
Corrects language usage.

Finds hyphenated words.

Print entries in this guide.

Prints documents formatted with the mm macros.
Checks usage of MM macros.

Typesets documents.

Formats mathematics.

A text formatter.

Merges lines of files.

Preparcs text for statistical processing.
Generates a permuted index.

Eliminates .s0’s from nroff input.

Finds spelling errors.

Analyzes characteristics of a document.
Formats tables for nroff or troff.

Typesets text.

INTRO (CT) INTRO (CT)

Name

intro — Introduces text processing commands.

Description

This section describes use of the individual commands available in the XENIX Text Processing System.
Each individual command is labeled with the letters CT to distinguish it from commands available in the
XENIX Timesharing and Software Development Systems. These letters are used for easy reference from
other documentation. For example, the reference mm(CT) indicates a reference to a discussion of the
mm command in this section, where the letter “C” stands for “command” and the letter *“T” stands for
“Text Processing”.

Syntax

Unless otherwise noted, commands described in this section accept options and other arguments accor-
ding to the following syntax:

name [option...] [cmdarg...]
This syntax is detailed below:
name The filename or pathname of an executable file

option A single letter representing a command option By convention, most options are preceded
with a dash. Option letters can sometimes be grouped together as in —abed or alterna-
tively they are specified individually as in —a —b —¢ —d . The method of specifying op-
tions depends on the syntax of the individual command. In the latter method of
specifying options, arguments can be given to the options. For example, the —f option for
many commands often takes a following filename argument.

emdarg A pathname or other command argument nor beginning with a dash or a period (). It
may also be a dash alone by itself indicating the standard input.
See Also
getopt(C), getopt(S)
Diagnostics

Upon termination, each command returns 2 bytes of status, one supplied by the system and giving the
cause for termination, and (in the case of “normal” termination) one supplied by the program (see
wait(S) and exit(S)). The forrer byte is 0 for normal termination; the latter is customarily 0 for suc-
cessful execution and nonzero to indicate troubles such as erroneous parameters, bad or inaccessible
data, or other inability to cope with the task at hand. It is called variously “exit code”, “exit status”, or
*“return code”, and is described only where special conventions are involved.

Notes

Many commands do not adhere to the given syntax.

June 28, 1985 Page 1

CHECKMM (CT) CHECKMM (CT)

Name

checkmm, mmcheck — Checks usage of MM macros.

Syntax
checkmm [files]
mmcheck [files |
Description

Checkmm and mmcheck check files for usage of the MM formatting macros. Checkmm and mmcheck
also check for usage of some egn(CT) constructions. Appropriatec messages are produced. The program
skips all directories, and if no filename is given the standard input is read.

See Also

col(CT), env(C), eqn(CT), mm(CT), mmt{CT), nroff(CT), tbl(CT), profile(M)
Diagnostics

If checkmm and mmcheck encounter unreadable files they display the message “Cannot open filename™.
The remaining output of the program is diagnostic of the source file.

September 7, 1984 Page 1

COL (CT) COL (CT)

Name

col — Filters reverse linefeeds.

Syntax
col [—bfxp]

Description

Col prepares output from processes, such as the text formatter nroff{iCT), for output on devices that
limit or do not allow reverse or half-line motions. Co! is typically used to process nroff output text that
contains tables generated by the tbl program. A typical command line might be

tbl file | nroff | col | Ipr
Col 1akes the following options:

—b Col assumes the output device in use is not capable of backspacing. If two or more characters ap-
pear in the same place, cof outputs the last character read.

—f Allows forward half-linefeeds. If not given, co!/ accepts half-line motions in its input, but text that
would appear between lines is moved down to the next full line. Reverse full and half linefeeds are
never allowed with this option.

—x Prevents conversion of whitespace to tabs on output. Col normally converts whitespace to tabs
wherever possible to shorten printing time.

@/ —p Causes col o ignore unknown escape sequences found in its input and pass them to the output as re-
gular characters. Because these characters are subject to overprinting from reverse line motions, the
use of this option is discouraged unless the user is fully aware of the position of the escape se-
quences.

Col assumes that the ASCII control characters SO (octal 016) and SI (octal 017) start and end text in an
alternate character set. If you have a reverse linefeed (ESC 7), reverse half-linefeed (ESC 8), or
forward half-linefeed (ESC 9), within an SI-SO sequence, the ESC 7, 8 and 9 are still recognized as line
motions.

On input, the only control characters col accepts are space, backspace, tab, return, newline, reverse line-
feed (ESC 7), reverse half-linefeed (ESC 8), forward half-linefeed (ESC 9), alternate character
start(SI), alternate character end (SO), and vertical tag (VT). (The VT character is an alternate form
of full reverse linefeed, included for compatibility with some carlier programs of this type.) All other
nonprinting characters are ignored.

See Also
nroff(CT), tbl{CT)

June 28, 1985 Page 1

COL (CT) COL (CT)

Notes

Col cannot back up more than 128 lines.
Col allows at most 800 characters, including backspaces, on a line.

Vertical motions that would back up over the first line of the document are ignored. Therefore the first
line must not contain any superscripts.

June 28, 1985 Page 2

CUT (CT)

Name

CUT (CT)

cut — Cuts out selected fields of each line of a file.

Syntax

cut —clist [filel file2 ...]
cut —flist [—-dchar] [—s] [file! file2 ...]

Description

Use cut 10 cut out columns from a table or ficlds from each line of a file. The fields as specified by fist
can be fixed length, i.c., character positions as on a punched card (~e¢ option), or the length can vary
from linc 1o linc and be marked with a field delimiter character like tab (—f option). Cut can be used
as a filter; if no files are given, the standard input is used.

The meanings of the options are:

list

—clist

—~flist

—dchar

-}

A comma-scparated list of integer field numbers (in increasing order), with an optional dash
(=) to indicate ranges, as in the —o option of aroff/troff for page ranges; e.g., 1,4,7, 1-3,8;
—5,10 (short for 1-5,10); or 3— (short for third through last field).

The fist following —c (no space) specifies character positions (e.g., —¢1—72 would pass the first
72 characters of each line).

The list following —f is a list of fields assumed to be separated in the file by a delimiter
character (see —d); e.g., —f1,7 copies the first and seventh field only. Lines with no ficld del-
imiters will be passed through intact (useful for table subheadings), unless —s is specified.

The character following —d is the field delimiter (—f option only). Default is rab. Space or
other characters with special meaning to the shell must be quoted.

Suppresses lines with no delimiter characters in case of —f option. Unless specified, lines with
no delimiters will be passed through untouched.

Either the —¢ or —f option must be specified.

Hints

Use grep(C) to make horizontal *‘cuts” (by context) through a file, or paste(CT) to put files together
horizontally. To reorder columns in a table, use cur and paste.

Examples

cut —d: —f1,5 /etc/passwd Maps user IDs to names

name="who am i |cut —f1 —d" "% Sets name 1o current login name.

See Also

grep(C), paste(CT)

June 28, 1985 Page 1

CcurT (CT) CUT (CT)

Diagnostics
line too long A line can have no more than 511 characters or fields.
bad list for c/f option
Missing —c or —f option or incorrectly specified /ist. No error occurs if a line has
fewer fields than the list calls for. '
no fields The list is empty,

June 28, 1985 Page 2

CW (CT) CW (CT)

Name

cw, checkcw, cwcheck — Prepares constant-width text for troff.

Syntax
ew[—-Ixx][-rmxx)[—fa][—t][+t])[—d][Sfile..]
checkew [—Ixx] [—rxx] file ...

cwcheck [—Ixx] [—rxx] file ...

Description
Cw prepares troff(CT) input files that contain text in the constant-width (CW) font for typesetting.

Because the CW font contains a nonstandard set of characters and requires different character and in-
terword spacing from standard fonts, documents that use the CW font must be preprocessed by cw.
Typical usage is:

cw file | troff ...

The checkew and cwcheck programs check to see that the left and right delimiters, as well as the
.CW /.CN pairs, are properly balanced. It prints out all incorrect lines.

The options for cw, checkew, cwcheck are:

—lxx Designates the one- or two-character string xx as the left delimiter. If xx is omitted, the left
delimiter is undefined, which is the default setting.

—rxx Designates the one- or two-character string xx as the right delimiter. The left and right delim-
iters may be different.

~fin Mounts the CW font in font position n; acceptable values for # are 1, 2, and 3. The default is
3, replacing the bold font. This option is only useful at the beginning of a document, and can
only be used with cw.

-t Turns transparent mode off. This option can only be used with cw.
+t Turns transparent mode on (this is the default). This option can only be used with cw.
—d Prints current option settings on the standard error, in the form of troff(CT) comment lines.

This option is meant for debugging, and can only be used with cw.

The left and right delimiters perform the same function as the .CW /.CN requests; they are meant,
however, to enclose CW words or phrases in running text. Cw treats text enclosed by delimiters in the
same manner as text bracketed by .CW/.CN pairs, except that while spaces in text bracketed by
.CW/.CN pairs have the same width as any other CW character, spaces between delimiters are half as
wide, so that they have the same width as spaces in the prevailing text. This width is not adjustable.

Delimiters have no special meaning inside .CW /.CN pairs.

Cw recognizes five requests. The requests look like trof(CT) macros (see EXAMPLES below), and are
copied by cw onto its output; thus, they can be defined by the user as troff(CT) macros.

June 28, 1985 Page 1

Cw (CT) CW (CT)

The five requests are:

.CW Marks the start of text to be set in the CW font. .CW takes the same options, in the same Q
format, that are available on the ew command line.

.CN Marks the end of text to be set in the CW font; .CN takes the same options that are available on
the cw command line.

.CD option(s)
Changes delimiters and/or settings of other options; takes the same options as the cw command
line.

.CP argl arg2 arg3 ...
Sets the odd-numbered arguments in the CW font and the even-numbered arguments in the pre-
vailing font. The arguments are delimited like 7r6ff{CT) macro arguments.

.PC argl arg2 arg3 ...
Same as .CP, except that the even-numbered (rather than odd-numbered) arguments are set in

the CW font, and the odd-numbered arguments are set in the prevailing font.

Except for the .CD request and the nine special four-character names listed in the table below, every
character between the .CW and .CN requests is taken literally and output as is. The —t option turns off
this feature (called transparent mode), and applics normal troff(CT) rules to the CW text.

Text typeset with the CW font resembles the output of terminals and lineprinters. This font is often
used to typeset examples of programs and computer output in documents such as user manuals and pro-
gramming texts. The CW font contains the 94 printing ASCII characters:

abcedefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

18%& ()" *+@../:=?(JF_"""<> (A

It also contains eight nonASCII characters represented by 4-character troff (CT) names

Character Symbol Troff Name
“Cents”sign ¢ \(ct
EBCDIC “not”sign =~ \(no
Left arrow ~— \(<-
Right arrow — \(->
Down arrow | \(da
Vertical single quote ' \(fm
Control-shift indicator T \(dg
Visible space indicator O \(sq
Hyphen - \(hy

June 28, 1985 Page 2

CW (CT) CW (CT)
The hyphen is a synonym for the minus sign ().

Examples

The following are typical definitions of the .CW and .CN macros. They are meant to be used with the
MM{(CT) macro package:

de CW Begins definition

DS 1 Display start, indented
ps9 9 point type

.vs 10.5p Vertical spacing 10.5 points

.ta 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u Sets tabs
“ Ends definition

.de CN Begins definition

ta 0.5 1i 1.51 2i 2.5i 31 3.5i 4i 4.5i 5i 5.5i 6i Resets tabs
.vs Resets vertical spacing

.ps Resets point size

.DE Ends display

Ends definition

When set in running text, the CW font is, by default, set in the same point size as the rest of the text.
In displayed matter, it can often be set one point smaller than the prevailing point size (the displayed
definitions of .CW and .CN above are onc point smaller than the running text on this page}). When the
.CW font is set in 9-point type, there are 12 characters per inch.

If a document that contains CW text also contains tables and equations, the order of preprocessing
should be cw, tbl, and egn. Usually, the tables contained in such documents will not contain any CW
text, although it is possible to have elements of the table set in the CW font; care must be taken that

tbi(CT) format information is not modified by cw. Attempts to set equations in the CW font are not
likely to be either pleasing or successful.

Files

Jusr/lib/font/ftCW CW font-width table

See Also

eqn(CT), mmt(CT), tbl{CT), troff(CT)

Warning

Text preprocessed by ¢w must be set on a typesetter equipped with the CW font.

Notes

Don’t use periods (.) or backslashes (\) as delimiters.

Certain CW characters don’t fit gracefully with certain Times Roman characters, such as a CW amper-

sand (&) followed by a Times Roman comma(,); in such cases, use troff(CT) half- and quarter-spaces.
See also Notes under troff (CT).

June 28, 1985 Page 3

DEROFF (CT) DEROFF (CT)

Name

deroff — Removes nroff/troff, tbl, and eqn constructs.

Syntax

deroff [—w) [—mx] {[files]

Description

Deraff reads each of the files in sequence and removes all troff(CT) requests, macro calls, backslash
constructs, egqn(CT) constructs (between .EQ and .EN lines, and between delimiters), and tb!(CT)
descriptions, and writes the remainder of the file on the standard output. Deroff follows chains of in-
cluded files (.so and .nx froff commands); if a file has already been included, a .so naming that file is
ignored and a .nx naming that file terminates execution. If no input file is given, deroff reads the stan-
dard input.

The —m option may be followed by an m, s, or . The resulting —mm or —ms option causes the MM or
MS macros to be interpreted so that only running text is output (i.e., no text from macro lincs), The
—ml option forces the —mm option and also causes deletion of lists associated with the MM macros.
This option is used by the diction(CT) command.

The —w option outputs a word list, one “word” per line, with all other characters deleted. Otherwise,
the output follows the original, with the deletions mentioned above. In text, a “word” is any string that
contains at least two letters and is composed of letters, digits, ampersands (&), and apostrophes ('); in a
macro call, however, a “word” is a string that begins with at least two letters and contains a total of at
least three letters. Delimiters are any characters other than letters, digits, apostrophes, and ampersands.
Trailing apostrophcs and ampersands are removed from “words”.

See Also

diction(CT), eqn{CT), style(CT), tbl(CT), troff(CT)

Notes

Deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most such errors
result in too much rather than too little output.

The —ml option does not handle nested lists correctly.

Deroff also removes words of two or fewer letters in lines that begin with macro calls or troff requests.

June 28, 1985 Page 1

DICTION (CT) DICTION (CT)

Name

diction — Checks language usage.

Syntax

diction [—ml] [—mm] [[—=n] | [—f patternfile] file ...

Description

Diction finds all sentences in a document that contain phrases from a data base of bad or wordy diction.
On output, each phrase is enclosed within brackets. Because diction runs deroff before looking at the
text, formatting header files should be included as part of the input. The options are:

—ms.
Overrides the default macro package, MM.

—ml
Causes deroff to skip lists. Should be used if the document contains many lists of nonsentences.

—fpatternfile
A user-supplied patternfile of words and phrases is used in addition to the default file.

—n Suppresses the default file.

Credit

This utility was developed at the University of California at Berkeley and is used with permission.

See Also

deroff(CT), explain(CT)

Notes
Use of nonstandard formatting macros may cause incorrect sentence breaks.

The —n option can’t be specified by itself.

June 28, 1985 Page |

-

DIFFMK (CT) DIFFMK (CT)

Name

diffmk — Marks differences between files.

Syntax

diffmk namel name2 name3

Description

Diffmk compares two versions of a file and creates a third file that includes *“change mark” commands
for nroff(CT) or troff(CT). Namel and name2 are the old and new versions of the file. Diffmk gen-
erates name3, which contains the lines of name2 plus inserted formatter “change mark™ (.mc) requests.
When name3 is formatted, changed or inserted text is shown by *|” at the right margin of each line.
The position of deleted text is shown by a single “+”.

The diffmk command will produce listings of C (or other) programs with changes marked. A typical
command line for such use is:

diffmk old.c new.c tmp; nroff macs tmp | pr

where the file macs contains:

.pl1
Al 77
.aof
.e0
.nc

The .Ml request might specify a different line length, depending on the nature of the program being
printed. The .eo and .nc requests are probably needed only for C programs.

If the characters “|” and “s” are inappropriate, a copy of diffmk can be edited to change them (diffmk
is a shell procedure).
See Also

diff(C), nroff(CT)

Notes

Aecsthetic considerations may dictate manual adjustment of some output. File differences involving only
formatting requests may produce undesirable output, that is, replacing .sp by .sp 2 will produce a
“change mark™ on the preceding or following line of output.

June 28, 1985 Page 1

EQN (CT) EQN (CT)

Name

eqn, neqn, checkeq, eqnecheck — Formats mathematical text for nroff, troff.

Syntax
eqn [—dxy) [—pn] [—sn] [—ffont] [file ..]
neqn [—dxy | [—pn] [—sn] [—ffont] [file ...]
checkeq | files]

eqncheck [files |

Description

Egn is a troff(CT) preprocessor for typesetting mathematical text on a phototypesetter. Negn is used
with nroff(CT) for setting mathematical text on typewriter-like terminals. Usage is normally one of the
following or its equivalent:

eqn files | troff
negn files | nroff

If no files are specified, these programs read from the standard input.
The options are:

—~dxy Reduces subscripts and superscripts # points from the previous size; the default reduction is 3

points.
—sn Sets eqn delimiters to characters x and p.
—pn Changes the point size within eqn delimiters to n.

—ffont Changes the font within egn delimiters to font.

A line beginning with .EQ marks the start of an equation; the end of an equation is marked by a line be-
ginning with .EN. Neither of these lines is altered, so they may be defined in macro packages for cente-
ring, numbering, etc. It is also possible to designate two characters as delimiters; subsequent text
between delimiters is then treated as egn input. Delimiters may be set to characters x and y with the
command-line argument —dxy or (more commonly) with delim xy between .EQ and .EN. The left and
right delimiters may be the same character; the dollar sign is often used as such a delimiter. Delimiters
are turned off by delim off. All text that is neither between delimiters nor between .EQ and .EN is
passed through untouched.

The programs checkeq and eqncheck report missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within egn arc separated by spaces, tabs, newlines, braces, double quotation marks, tildes, and
carets. Braces {} are used for grouping; generally speaking, anywhere a single character such as x could
appear, a complicated construction enclosed in braces may be used instead. A tilde (~) represents a full
space in the output; a caret (*) represents half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub j makes

» %

June 28, 1985 Page 1

EQON (CT) EQN (CT)

a sub k sup 2 produces

al

while

240
ex +y

is made with e sup {x sup 2 + y sup 2). Fractions are made with over: a over b yields

a

b
sqrt makes square roots: ! over sqrt {ax sup 2+bx+c} results in

1

Vax+bx+c

The keywords from and to introduce lower and upper limits:
n

lim Zx,-
0

is made with lim from {n ~> inf} sum from 0 to n x sub i. Left and right brackets, braces, etc., of
the right height are made with left and right: left [x sup 2 + y sup 2 over alpha right | ~=~ |
produces

2
x4+

o

=]

Legal characters after left and right are braces, brackets, bars, ¢ and f for ceiling and floor, and "* for
nothing at all (useful for a right-side-only bracket). A left need not have a matching right

Vertical piles are made with pile, Ipile, cpile, and rpile: pile {a above b above c) produces
a
b
c

Piles may have arbitrary numbers of elements; Ipile left-justifies, pile and cpile center (but with different
vertical spacing), and rpile right justifies. Matrices are made with matrix: matrix { Icol { x sub i above
y sub 2} ccol { I above 2)} produces

xi 1
Y2 2

There is also reol for a right-justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and under: x dot = f{t) bar is
x=f (1)

y dotdot bar ~=~ n under is

Al

y=n

and x vec ~==~ y dyad is

June 28, 1985 Page 2

EQN (CT) EQN (CT)

=7

QW Point sizes and fonts can be changed with size n or size +n, roman, italic, bold, and font n. Point sizes
and fonts can be changed globally in a document by gsize n and gfont n, or by the command-line argu-
ments —sn and —fn.

Normally, subscripts and superscripts are reduced by 3 points from the previous size; this may be
changed by the command-line argument —pn.

Successive display arguments can be lined up. Place mark before the desired lineup point in the first
equation; place lineup at the place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with definre. For example,
define thing % replacement %

defines a new token called thing that will be replaced by replacement whenever it appears thereafter.
The % may be any character that does not occur in replacement.

Keywords such as sum (), int (f), inf (o0), and shorthands such as >= (), I= (#), and —> (—)
are recognized by eqn. Greek letters are spelled out in the desired case, as in alpba (a), or GAMMA (I).
Mathematical words such as sin, cos, and log are made Roman automatically. Troff(CT) four-character
escapes such as \(dd (¥) and \(bs (®) may be used anywhere. Strings enclosed in double quotation
marks (“...") are passed through untouched; this permits keywords to be entered as text, and can be
used to communicate with troff (CT) when all else fails.

See Also

mm(CT), mmt(CT), tbl(CT), troff(CT)

Notes

To embolden digits, parentheses, etc., it is necessary to surround them with double quotation marks. See
also Notes under troff (CT).

June 28, 1985 Page 3

EXPLAIN (CT) EXPLAIN (CT)

Name

explain — Corrects language usage.

Syntax
explain

Description
Explain interactively reports on language usage. It suggests alternatives to phrases found with the dic-
tion command.

Credit

This utility was developed at the University of California at Berkeley and is used with permission.

See Also
deroff(CT), diction{(CT)

June 28, 1985 Page 1

HYPHEN (CT) HYPHEN (CT)

Name

hyphen — Finds hyphenated words.

Syntax

hyphen file ...

Description
Hyphen finds all the hyphenated words in files and prints them on the standard output. If no argu-
ments are given, the standard input is used. Thus Ayphen may be used as a filter.

Notes

Hyphen doesn’t properly deal with hyphenated italic (i.e., underlined) words; it will often miss them
completely.

Hyphen occasionally gets confused, but with no ill effects other than extra output.

June 28, 1985 Page 1

MAN (CT) MAN (CT)

Name

man, manprog — Print entries in this manual.

Syntax
man [options] [section] titles

Jusr/lib/manprog file

Description

Man locates and prints the entry named tirle in the section named section from the XENIX Reference
Manual. (For historical reasons, the word ‘“‘page” is often used as a synonym for “entry” in this con-
text.) The title is entered in lower case. The section number may not have a letter suffix. If no section
is specified, the whole manual is scarched for title and all occurrences of it are printed. Options and
their meanings are:

—t Typeset the entry in the default format (8.5"x11™).
—s Typeset the entry in the small format (6'x9").
~Tterm Format the entry using nroff and print it on the standard output (usually, the terminal);

term is the terminal type (see term(M) and the explanation below); for a list of recognized
values of term, type help term2. The default value of term is 450.

—w Print on the standard output only the path names of the entries, relative to /usr/man, or to
the current directory for —d option.

—d Scarch the current directory rather than /usr/man; requires the full file name (e.g., cu.C,
rather than just cu).

-12 Indicates that the manual entry is to be produced in 12-pitch. May be used when STERM

(scc below) is set to one of 300, 300s, 450, and 1620. (The pitch switch on the DASI 300
and 300s terminals must be manually set to 12 if this option is used.)

—c Causes man to invoke co/(CT); note that col/(CT) is invoked automatically by man unless
term is one of 300, 300s, 450, 37, 4000a, 382, 4014, tek, 1620, and X.
-y Causes man to use the non-compacted version of the macros.

The above options other than —d, —¢, and —y are mutually exclusive, except that the —s option may be
used in conjunction with the first four —T options above. Any other options are passed to troff, nroff, or
the man(CT) macro package.

When using nroff, man examines the environment variable STERM (see environ(M)) and attempts to
select options to nroff, as well as filters, that adapt the output to the terminal being used. The —Trerm
option overrides the value of STERM; in particular, one should use —Tlp when sending the output of man
to a linc printer.

Section may be changed before each title.
As an example:
man man

would reproduce on the terminal this entry, as well as any other entries named man that may exist in
other sections of the manual.

If the first line of the input for an entry consists solely of the string:

I\" x

June 28, 1985 Page 1

MAN (CT) MAN (CT)

where x is any combination of the three characters c, e, and t, and where there is exactly one blank
between the double quote (") and x, then man will preprocess its input through the appropriate com-
bination of cw(CT), eqn(CT) (negn for nroff) and tb!(CT), respectively. If eqn or neqn are invoked,
they will automatically read the file fusr/pub/eqnchar

The man command executes manprog that takes a file name as its argument. Manprog calculates and
returns a string of three register definitions used by the formatters identifying the date the file was last
modified. The returned string has the form:

—rdday —rmmonth —ryyear

and is passed to nroff which sets this string as variables for the man macro package. Months are given
from O to 11, therefore month is always 1 less than the actual month. The man macros calculate the
correct month. If the man macro package is invoked as an option to nroff/troff (i.e., nroff —man file),
then the current day/month/year is used as the printed date.

See Also

checkew(CT), checkeqn(CT), nroff(CT), tbl(CT), troff(CT), environ(M), man(CT), term(M).

Notes

All entries are supposed to be reproducible either on a typesetter or on a terminal. However, on a ter-
minal some information is necessarily lost.

June 28, 1985 Page 2

MM (CT) MM (CT)

Name

mm — Prints documents formatted with thec mm macros.

Syntax

mm [options] [files]

mmcheck {[files]

Description

Mm can be used to type out documents using nroff(CT) and the mm text-formatting macro package. It
has options to specify preprocessing by tb/(CT) and/or negn(CT) and postprocessing by various
terminal-oriented output filters, The proper pipelines and the required arguments and flags for
nroff(CT) and mm are generated, depending on the options selected.

The options for mm are given below. Any other arguments or flags (for example, —rC3) are passed to
nroff(CT) or to mm, as appropriate. Such options can occur in any order, but they must appear before
the files arguments. If no arguments are given, mm prints a list of its options.

—c¢ Causes mm to invoke col(CT).

—e Causes mm to invoke negn(CT).

—t Causes mm to invoke tbl(CT).

—E Invokes the —e option of nroff(CT).

—y Causes mm to use the noncompacted version of the macros (see mm(M)).

Mm reads the standard input when a dash is is specified instead of any filenames. (Mentioning other
files together with the dash can lead to disaster.) This option allows mm to be used as a filter; for ex-
ample:

cat dws | mm —

Hints

1. Mm invokes nroff(CT) with the —h flag. With this flag, nroff(CT) assumes that the terminal has
tabs set every 8 character positions.

2. Use the —olist option of nroff(CT) to specify ranges of pages to be output. Note, however, that
mm, if invoked with one or more of the —e, —t, and — options, together with the —olist option of
nroff (CT) may cause a harmless “broken pipe” diagnostic if the last page of the document is not
specified in fist.

3. If you use the —s option of nroff(C) (to stop between pages of output), use linefeed (rather than re-
turn or newline) to restart the output. The —s option of nroff(C) does not work with the —c option
of mm, or if mm automatically invokes col(C) (see —c option above).

Use the mmcheck program to check the contents of mm source files for errors in usage of the macros.

June 28, 1985 Page 1

MM (CT) ’ MM (CT)

See Also

col(CT), env(C), eqn(CT), mmt(CT), mmcheck(CT), nroff(CT), tbl(CT), profile(F)

Xenix Text Processing Guide

Diagnostics

mm: no input file None of the arguments is a readable file and mm has not been used as a filter

June 28, 1985 Page 2

MMCHECK (CT) MMCHECK (CT)

Name

mmcheck — Checks usage of mm macros.

Syntax

mmcheck [files]

Description

Mmcheck checks files for usage of the mm formatting macros. Mmcheck also checks for usage of some
eqn(CT) constructions. Appropriate messages are produced. The program skips all directories, and if
no filename is given the standard input is read.

See Also

col(CT), env(C), eqn(CT), mm(CT), mmt(CT), nroff(CT), tbl(CT), profile(F)
Diagnostics

mmcheck unreadable files cause the message “Cannot open filename”. The remaining output of
the program is diagnostic of the source file.

Junc 28, 1985 Page 1

MMT (CT) MMT (CT)

Name

mmt — Typesets documents.

Syntax

mmt [options] [file]

Description

Mmt uses the MM macro package. It has options to specify preprocessing by tb/(CT) and egn(CT).
The proper pipelines and the required arguments and flags for troff(CT) and for the macro packages
are generated, depending on the options selected.

Options are given below. Any other arguments or flags (e.g., —rC3) are passed to troff(CT) or to the
macro package, as appropriate. Such options can occur in any order, but they must appear before the
files arguments. If no arguments are given, these commands print a list of their options.

—e Causes these commands to invoke egn(CT).

—t Causes these commands to invoke tbI(CT).

-a Invokes the —a option of troff (CT).

-y Causes mmtz to use the noncompacted version of the macros (see mm(CT)).

When a dash (—) is specified, mmt reads the standard input instead of any filenames.

Hints

Use the —olist option of troff(CT) to specify ranges of pages to be output. Note, however, that these
commands, if invoked with one or more of the —e, —t, and — options, together with the —o/ist option of
troff (CT) may cause a harmless “broken pipe” diagnostic if the last page of the document is not
specified in fist.

See Also

env(C), eqn(CT), mm{CT), tbl(CT), troff(CT), profile(M), environ(M)

Diagnostics
mmt: no input file None of the arguments is a readable file and the command is not used as a
filter.
typesetter busy Either the typesetter is already being used, or it is not attached to the

system as /dev/cat. In the latter case, you must use the —t option of the
troff command to direct output to the standard output. See troff(CT).

June 28, 1985 Page 1

NEQN (CT) NEQN (CT)

Name

negn — Formats mathematics.

Syntax

neqn [—dxy] [—fn] [file] ...
checkeq | file] ...

Description

Negn is an nroff(CT) preprocessor for formatting mathematics on terminals and for printers; eqn(CT) is
its counterpart for typesetting with 1roff(CT). Usage is almost always:

neqn file ... | nroff

If no files are specified, these programs read from the standard input. A line beginning with .EQ marks
the start of an equation; the cnd of an equation is marked by a line beginning with .EN. Neither of
these lines is altered, so they may be defined in macro packages to get centering, numbering, etc. It is
also possible to set two characters as “delimiters”; subsequent text between delimiters is also treated as
negn input. Delimiters may be sct to characters x and y with the command-line argument —dxy or
(more commonly) with “delim xy” between .EQ and .EN. The left and right delimiters may be iden-
tical. Delimiters are turned off by ‘delim off>. All text that is neither between delimiters nor betwcen
.EQ and .EN s passed through untouched. Fonts can be changed globally in a document with gfont n,
or with the command-line argument —fn.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within negn arc scparated by spaces, tabs, newlines, braces, double quotation marks, tildes or
carets. Braces (} are used for grouping; generally speaking, anywhere a single character like x could ap-
pear, a complicated construction enclosed in braces may be used instead. Tilde (*) represents a full
space in the output, caret () half as much.

See Also

eqn(CT), checkeq(CT), troff(CT), tbl(CT)

Notes

To embolden digits, parentheses, etc., it is necessary to quote them, as in ‘bold “12.3".

June 28, 1985 Page 1

NROFF (CT) NROFF (CT)

Name

nroff — A text formatter.

Syntax

nroff [option ...] [file ...]

Description

Nroff formats text in the named files. Nroff is part of the nroff/troff family of text formatters. Nroff is
used to format files for output to a lineprinter or daisy wheel printer; troff to a phototypesetter.

If no file argument is present, the standard input is read. An argument consisting of a single dash (-)
is taken to be a filename corresponding to the standard input. The options, which may appear in any
order so long as they appear before the files, are:

—olist Prints only pages whose page numbers appear in the comma-separated /ist of numbers and
ranges. A range N—M mcans pages N through M; an initial —V means from the beginning to
page N; and a final N— means from N to the end.

—nN Numbers first generated page V.

—sN Stops every N pages. Nroff will halt prior to every N pages (default N=1) to allow paper
loading or changing, and will resume upon receipt of a newline.

—mname Prepends the macro file /usr/lib/tmac/tmac.name to the input files.

—cname Prepends to the input files the compacted macro files /usr/lib/macros/cmp.[nt].[dt].name and
/usr/lib/macros/ucmp.[nt].name.

—raN Scts register a {one-character) to V.

—i Reads standard input after the input files are exhausted.

—-q Invokes the simuitaneous input-output mode of the .rd request.

—e Produces equally spaced words in adjusted lines, using full terminal resolution.

—h Uses output tabs during horizontal spacing to speed output and reduce output character count.

Tab settings are assumed to be every 8 nominal character widths.

—Tdevice
Specifies the output device. The default device is “lp”, the lineprinter.

Other supported devices include:

-T300
DASI (DTC, GSI) 300.

—T300s
DASI 300s.

-T450
Q DASI 450 (same as Diablo 1620).

June 28, 1985 Page 1

NROFF (CT) NROFF (CT)

-T300-12
DASI 300 at 12-pitch.

—T300s-12
DASI 300s at 12-pitch.

—T450-12
DASI 450 at 12-pitch.

-T33
TTY 33. Invokes col automatically.

—Tdumb
Terminal types with no special features. Invokes col automatically.

-T37
TTY 37.

—T735
TI 735. Invokes col automatically.

=T745
TI 745. Invokes col automatically.

—-T43
TTY 43. Invokes col automatically.

—T40/2.
Teletype model 40/2 Invokes cof automatically.

—~T40/4
Teletype mode 40/4. Invokes col automatically.

-T2631
HP 2631 series lineprinter. Invokes cof automatically.

—T2631-¢
HP 2631 series lineprinter, expanded mode. Invokes co/ automatically.

-T2631-c
HP 2631 series lineprinter, compressed mode. Invokes col automatically.

—T42
ADM 42. Invokes co! automatically.

=T31
TTY 31. Invokes col automatically.

-T35
TTY 35. Invokes co! automatically.

-T1620
Diablo 1620 (same as DASI 450).

-T1620-12
Diablo 1620 at 12-pitch.

June 28, 1985 Page 2

NROFF (CT) NROFF (CT)

Files
Jusr/lib/suftab Suffix hyphenation tables
Jimp/ta* Temporary file

Jusr/lib/tmac/tmac.* Standard macro files

Jusr/lib/term/* Terminal driving tables

See Also
col(CT), eqn(CT), tbl(CT), troff(CT)

June 28, 1985 Page 3

PASTE (CT) PASTE (CT)

Name

@’ paste — Merges lines of files.

Syntax
paste filel file2 ...

paste —dlist filel file2 ...

paste —s [—dlist] file! file2 ...

Description

In the first two forms, paste concatenates corresponding lines of the given input files filel, file2, etc. It
treats each file as a column or columns of a table and pastes them together horizontally (parallel mer-
ging). It is the counterpart of cat(C) which concatenates vertically, i.c., one file after the other. In the
last form above, paste subsumes the function of an older command with the same name by combining
subsequent lines of the input file (serial merging). In all cases, lines are glued together with the tab
character, or with characters from an optionally specified /ist. Output is to the standard output, so it
can be used as the start of a pipe, or as a filter, if — is used in place of a filename.

The meanings of the options are:

—d Without this option, the newline characters of each but the last file (or last line in case of the —s op-
tion) are replaced by a tab character. This option allows replacing the tab character by one or
more alternate characters (see below).

list One or more characters immediately following —d replace the default tab as the line concatenation
character. The list is used circularly, i. e. when exhausted, it is reused. In parallel merging (i. €. no
—s option), the lines from the last file are always terminated with a newline character, not from the
list. The list may contain the special escape sequences: \n (newline), \t (tab), \\ (backslash), and \0
(empty string, not a null character). Quoting may be necessary, if characters have special meaning
to the shell (e.g. to get one backslash, use —d"™\\\\").

—s Merges subsequent lines rather than one from each input file. Use tab for concatenation, unless a
list is specified with —d option. Regardless of the list, the very last character of the file is forced to
be a newline.

— May be used in place of any filename to read a line from the standard input. (There is no promp-

ting.)
Examples
Is | paste —d" " — Lists directory in one column
Is | paste = — — — Lists directory in four columns
paste —s —d"\t\n" file Combines pairs of lines into lines
See Also
» cut(CT), grep(C), pr(C)

June 28, 1985 Page |

PASTE (CT) PASTE (CT)

Diagnostics
line too long Output lines are restricted to 511 characters.
too many files Except for —s option, no more than 12 input files may be specified.

June 28, 1985 Page 2

PREP (CT) PREP (CT)

Name

@” prep — Prepares text for statistical processing.

Syntax

prep [—diop] file ...

Description

Prep reads each file in sequence and writes it on the standard output, one “word” to a line. A word is a
string of alphabetic characters and imbedded apostrophes, delimited by space or punctuation. Hyphen-
ated words are broken apart; hyphens at the end of lines are removed and the hyphenated parts are
joined. Strings of digits are discarded.

The following option letters may appear in any order:
—d Prints the word number (in the input stream) with each word.

—i Takes the next file as an “ignore™ file. These words will not appear in the output. (They will be
counted, for purposes of the —d count.)

—o0 Takes the next file as an *“only” file. Only these words will appear in the output. (All other words
will also be counted for the —d count.)

—p Includes punctuation marks (single nonalphanumeric characters) as separate output lines. The
punctuation marks are not counted for the —d count.

The ignore and only files contain words, one per lince.

See Also

deroff(CT)

Notes

Prep ignores any nroff /troff commands it may find in a file. In some cascs, it may mistake sentences
that begin with a period or a quote as nroff/troff commands and ignore them.

September 7, 1984 Page 1

PTX (CT)

Name

PTX (CT)

ptx — Generates a permuted index.

Syntax

ptx [options) [input [output]]

Description

Prx generates a permuted index to file fnput on file ourpur (standard input and output default). It has
three phases: the first does the permutation, generating one line for cach keyword in an input line. The
keyword is rotated to the front. The permuted file is then sorted. Finally, the sorted lines are rotated so
the keyword comes at the middle of each line. Ptx produces output in the form:

xx "tail" "before keyword” "keyword and after” "head"

where .xx is assumed to be an nroff” or troff(CT) macro provided by the user. The “before keyword”
and “keyword and after” fields incorporate as much of the line as will fit around the keyword when it is
printed. 7Tail and head, at least one of which is always the empty string, are wrapped-around pieces
small enough to fit in the unused space at the opposite end of the line.

The following options can be applied:

—f Folds uppercase and lowercase letters for sorting.

-t Prepares the output for the phototypesetter.

-wn Uses the next argument, n, as the length of the output line. The default line length is 72
characters for nroff and 100 for troff.

—-gn Uses the next argument, s, as the gap size in characters. The gap size determines the
number of characters to be output for the "before keyword” and "keyword and after” fields
of the output line. The total number of characters in these fields is no more than the max-
imum line length less the total size of all gaps less whatever characters are in the "tail” and
“head” fields. Prx does not copy the gaps to the output lines. Tt is the responsibility of the
user to provide the gaps when printing the lines. The default gap is 3 characters.

~o0 only Uses as keywords only the words given in the only file.

—iignore Does not use as keywords any words given in the ignore file. 1f the —i and —o options are
missing, use /usr/lib/eign as the ignore file.

—b break Uses the characters in the break file to separate words. Tab, newline, and space characters
are always used as break characters.

-r Takes any leading nonblank characters of each input line to be a reference identifier (as to
a page or chapter), separate from the text of the line. Attaches that identifier as a fifth
field on each output line.

Files
/bin/sort
Jusr/lib/eign

June 8, 1984

Page 1

PTX (CT) PTX (CT)

Notes

Line length counts do not account for overstriking or proportional spacing.

Lines that contain tildes (7) are not handled correctly, because prx uses that character internally.

June 8, 1984 Page 2

SOELIM (CT) SOELIM (CT)

Name

(@K J
soelim — Eliminates .s0's from nroff input.

Syntax

soelim [file ...]

Description

Soelim reads the specified files or the standard input and performs the textual inclusion implied by the
nroff directives of the form

.so sometile

when they appear at the beginning of input lines. This is useful since programs such as r5/ do not nor-
mally do this; it allows the placement of individual tables in separate files to be run as a part of a large
document.

Note that inclusion can be suppressed by using a single quotation mark (°) instead of a dot (), e.g.
’so /usr/lib/tmac.s
Example
A sample usage of soelim would be

soelim exum?.n | tbl [nroff —mm |col | lpr

See Also

nrof((CT), troff(CT)

Credit

This utility was developed at the University of California at Berkeley and is used with permission.

Notes
Exactly one blank must precede and no blanks may follow the filename. Lines of the form
{if t .so fusr/lib/macros.t

mean that “.s0” statements embedded in the text are expanded.

June 28, 1985 Page 1

SPELL (CT) SPELL (CT)

Name

spell, spellin, spellout — Finds spelling errors.

Syntax
spell [options | [files)
/Jusr/lib/spell/spellin [/ist]

Jusr/lib/spell/spellout [—d] fist

Description

Spell collects words from the named files and looks them up in a spelling list. Words that neither occur
among nor are derivable (by applying certain inflections, prefixes, and/or suffixes) from words in the
spelling list are printed on the standard output. If no files are named, words are collected from the
standard input.

Spell ignores most troff(CT), thl(CT), and egn(CT) constructions.

Under the —v option, all words not literally in the spelling list are printed, and plausible derivations from
the words in the spelling list are indicated.

Under the —b option, British spelling is checked. Besides preferring centre, colour, speciality, travelled,
etc., this option insists upon -ise in words likc standardise, Under the —x option, every plausible stem is
printed with = for cach word.

The spelling list is based on many sources, and while more haphazard than an ordinary dictionary, is
also more effective with respect to proper names and popular technical words. Coverage of the special-
ized vocabularies of biology, medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated below with their default set-
tings. The stop list filters out misspellings (e.g., thier=thy—y-+ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell (both expect a list of words, one per line, from
the standard input). spellin adds the words on the standard input to the preexisting /ist and places a
new list on the standard output. If no /ist is specified, the new list is crcated from scratch. Spellout
looks up each word read from the standard input, and prints on the standard output those that are mis-
sing from (or, with the —d option, present in) the hash list.

Files

D_SPELL=/usr/lib/spell/hlist[ab] Hashed spelling lists, American and British

S_SPELL=/usr/lib/spell/hstop Hashed stop list
Jtmp/spell.$$ Temporary
Jusr/lib/spell/spellprog Program

D SPELL and $_SPELL can be overridden by placing alternate path definitions in your environment.

June 28, 1985 Page 1

SPELL (CT) SPELL (CT)

See Also

deroff (CT), eqn(CT), sed(C), sort(C), tbl(CT), tee(C), troff(CT)

Notes
The spelling list’s coverage is uneven: You may wish to monitor the output for several months to gather
local additions. Typically, these additions are kept in a separate local dictionary that is added to the
hashed list via spellin.
By default, logging of errors to /usr/lib/spell/spellhist is turned off.

D_SPELL and S_SPELL can be overridden by placing alternate definitions in your environment.

June 28, 1985 Page 2

STYLE (CT) STYLE (CT)

Name

style — Analyzes characteristics of a document.

Syntax

style[-ml] [-mm] [—-a][—-e][—lnum] [—rnum]

(-pl[-P]Jile..
Description

Style analyzes the characteristics of the writing style of a document. It reports on readability, sentence
length and structure, word length and usage, verb type, and sentence opencrs. Because style runs deroff
before looking at the text, formatting header files should be included as part of the input. The default
macro package —ms may be overridden with the flag —mm. The flag —ml, which causes deroff Lo skip
lists, should be used if the document contains many lists of nonsentences. The other options are used to
locate sentences with certain characteristics.

—a Prints all sentences with their length and readability index.
—e Prints all sentences that begin with an cxpletive.
-p Prints all sentences that contain a passive verb.

—lnum Prints all sentences longer than num.
—rnum Prints all sentences whose readability index is greater than num.

-P Prints parts of speech of the words in the document.

Credit

This utility was developed at the University of California at Berkeley and is used with permission.

See Also

deroff(CT), diction(CT)

Notes

Use of nonstandard formatting macros may cause incorrect sentence breaks.

June 28, 1985 Page 1

TBL (CT) TBL (CT)

Name

tbl — Formats tables for nroff or troff.

Syntax
tbl [=TX] [files]

Description

Thi is a preprocessor that formats tables for nroff(CT) or troff(CT). The input files are copied to the
standard output, except for lines between .TS and .TE command lines, which are assumed to describe
tables and are reformatted by ¢tb/. (The .TS and .TE command lines are not altered by 1b{).

.TS is followed by global options. The available global options are:

center Centers the table (default is left-adjust)

expand Makes the table as wide as the current line length

box Encloses the table in a box

doublebox Encloses the table in a double box

allbox Encloses each item of the table in a box;

tab (x) Uses the character x instead of a tab to scparate items in a line of input data.

The global options, if any, are terminated with a semicolon (;).

Next come lines describing the format of each linc of the table. Each such format line describes one
line of the actual table, except that the last format line (which must end with a period) describes all
remaining lines of the actual table. Each column of each line of the table is described by a single
keyletter, optionally followed by specifiers that determine the font and point size of the corresponding
item, indicate where vertical bars are to appear between columns, and determine parameters such as
column width and intercolumn spacing. The available keyletters are:

Centers item within the column

Right-adjusts item within the column

Left-adjusts item within the column

Numerically adjusts item in the column: unit positions of numbers are aligned vertically;

Spans previous item on the left into this column

Centers longest line in this column and then left-adjusts all other lines in this column with
respect to that centered line

~ Spans down previous entry in this column

_ Replaces this entry with a horizontal line

= Replaces this entry witk a double horizontal line

U - B BN <]

The characters B and I stand for the bold and italic fonts, respectively; the character | indicates a ver-
tical line between columns.

The format lines are followed by lines containing the actual data for the table, followed finally by .TE.
Within such data lines, data items are normally separated by tab characters.

If a data line consists of only an underscore () or an equals sign occurs, then a single or double line,
respectively, is drawn across the table at that point. If a single item in a data line consists of only an
underscore or equals sign then that item is replaced by a single or double line.

Full details of all these and other features of tb! are given in the XENIX Text Processing Guide.

June 28, 1985 Page 1

TBL (CT) TBL (CT)

The —TX option forces th! to use only full vertical line motions, making the output more suitable for dev-
ices that cannot generate partial vertical line motions, such as lineprinters.

If no filenames are given as arguments, tb/ reads the standard input, so it may be used as a filter. When
it is used with eqn(CT) or neqn(CT), tbi should come first to minimize the volume of data passed
through pipes.

Example
If we let — represent a tab (which should be typed as a genuine tab), then the input:

TS

center box ;

cBss

cl| els

“lec

| nn.

Houschold Population

Town—Households
—Number—Size
Bedminster—789—3.26
Bernards Twp.—3087—3.74
Bernardsville—2018—3.30
Bound Brook—3425—3.04
Bridgewater—7897—3.81
Far Hills—240—3.19

.TE
yields:
Household Population
Tow Households

" Number Size
Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04
Bridgewater 7897 3.81
Far Hills 240 3.19

See Also

Xenix Text Processing Guide
eqn(CT), mm(CT), mmt(CT), troff(CT)

Notes

Sec also Notes under troff (CT).

June 28, 1985 Page 2

TROFF (CT) TROFF (CT)

Name

troff — Typesets text.

Syntax

troff [options] | files |

Description
Troff formats text contained in files (standard input by default) for printing on a phototypesctter.

An argument consisting of a lone dash (=) is taken to be a filename corresponding to the standard
input. The options, which may appear in any order, but must appear beforc the files, are:

—olist Prints only pages whose page numbers appear in the /ist of numbers and ranges, separated by
commas. A range N—M means pages N through M; an initial —N means from the beginning
to page N: and a final N— means from N to the end. (Sce NOTES below.)

-nN Numbers first generated page V.

—sN Stops every N pages. Nroff will halt after cvery N pages (default N=1) 1o allow paper
loading or changing, and will resume upon reccipt of a linefeed or newline (newlines do not
work in pipelines, e.g., with mm(CT)). This option does not work if the output of nroff is
piped through co/(CT). Troff will stop the phototypesetter every N pages, produce a trailer
to allow changing cassettes, and resume when the typesetier’s start button is pressed. When
nroff’ (troff) halts between pages, an ASCIl BEL (in 7roff, the message page stop) is sent to
the terminal.

—raN Sets register a (which must have a onc-character name) to V.

—i Reads standard input after files arc exhausted.
—-q Invokes the simultancous input-output mode of the .rd request.
-z Prints only messages gencrated by .tm (terminal message) requests.

—mname Prepends to the input files the noncompacted (ASCIT text) macro file
Jusr/lib/tmac/tmac.name.

—cname Prepends to the input files the compacted macro files /usr/lib/macros/cmp.[nt].[dt].name and
/Jusr/lib/macros/ucmp.[nt].name.

—kname Compacts the macros used in this invocation of nroffftroff, placing the output in files
[dt].name in the current directory.

—e Produces equally-spaced words in adjusted lines, using the full resolution of the particular ter-
minal.
—h Uses output tabs during horizontal spacing to speed output and reduce output character count.

Tab settings are assumed to be every 8 nominal character widths.

—un Scts the emboldening factor (number of character overstrikes) for the third font position
{(bold) to n, or to zero if n is missing.

June 28, 1985 Page 1

TROFF (CT) TROFF (CT)

Troff only:

—t Directs output to the standard output instead of the phototypesetter.

—f Refrains from feeding out paper and stopping phototypesetter at the end of the run.

—-w Waits until phototypesetter is available, if it is currently busy.

—b Reports whether the phototypesetter is busy or available. No text processing is done.

-a Sends a printable ASCII approximation of the results to the standard output.

—pN Prints all characters in point size N while retaining all prescribed spacings and motions, to

reduce phototypesetter elapsed time.

—Tname Uses font-width tables for device name (the font tables are found in /usr/lib/font/name/+).
Currently, no names are supported.

Files
Jusr/lib/suftab Suffix hyphenation tables
/tmp/ta# Temporary file

/usr/lib/tmac/tmac Standard macro files and pointers

Jusr/lib/macros/* Standard macro files

Jusr/lib/term/* Terminal driving tables for nroff
Jusr/lib/font/* Font width tables for troff
See Also

¢qn(CT), tbl(CT)
{nroff only) col(CT), mm(CT)

(troff only) mmt(CT)

Notes

Nroff/troff uses Eastern Standard Time; as a result, depending on the time of the ycar and on your local
time zone, the date that nroff/troff gencrates may be off by one day.

When nroffftroff is used with the —olist option inside a pipeline (e.g., with one or morc of ew(CT),
eqn(CT), and thI(CT)), it may cause a harmless “broken pipe” diagnostic if the last page of the docu-
ment is not specified in /fist.

Troff normally sends output dircctly to the typesetter. If you do not have a typesetter attached to your
system as /dev/cat , troff will display the message “‘typesctter busy”. If this is the case, you must use
the —t option and the shell’s redirection symbol to dircct the output to the standard output and into a
file.

June 28, 1985 Page 2

Index

Text Processing Commands (CT)

Constant Width teXtcccoivveviviviriererirereerenineeessenine cw
cwcheck command ..., cw
Document characteristics ..oooeeeanrenranennenenennenne style

egncheck command ... eqn

File, differencescccccoovvrvircrccrcmnnnnnninieiiicinnn diffmk
Files, merging linescocccoviriiiniminiiiiniiinniceseinceen, paste
Files, selecting ficldscccoovricinicnnnneneeee cut
Hyphenationcccovvvcvinenieneniicenrreeenen e nene e hyphen
Language usage, COrreclionc.ccvcneecncnneneicsnnicnens explain
Language usage, descriptionc.ccccocoecreneenecnrceenens diction
Macros, checking (see checkmm(CT))coceevvnnnnnn mmcheck
Macros, checking usage ..o checkmm
Macros, memorandum for linc printercccceeeenne mm
Macros, memorandum for typesetting ... mmt
Macros, removal ... e deroff
Macros, .50 elimination ..., soelim
Manual pages, printingcooeerioeminniininnniicnenin manprog
Mathematical text ...o.covveiieiiinieiriere e neqn
Permuted indexocooviveeeniniiiirercceeenecreee ptx
Reverselinefeed ..o col
spellincommand ..o spell
SPEIING .ot spell
spellout command ... spell
Statistical Processingo.covvvvrereenrcernsinscereneenncenens prep
TabIES oo e tbl

Text formatter for line printercoccoevnrinnccenene. nroff
Text formatter for LypesClLerooovvrernreeererereercrennene troff

cat. no.
26-6402

RADIO SHACK
A Division of Tandy Corporation
USA: Fort Worth, Texas 76102
Canada: Barrie, Ontario L4M4W5

Tandy Corporation

Australia
91 Kurrajong Avenue
Mount Druitt, N.S.W. 2770

Belguim
Rue des Pieds D’Alouette, 39
5140 Naninne (Namur)

france
BP 147-95022
Cergy Pontoise Cedex

UK.
Bilston Road Wednesbury
West Midlands WS10 7)N

10/85-T™M 874.9795 Printed in U.S.A.

VI,

TERMS AND CONDITIONS OF SALE AND LICENSE OF TANDY COMPUTER EQUIPMENT AND SOFTWARE PURCHASED
FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND RADIO SHACK FRANCHISEES OR
DEALERS AT THEIR AUTHORIZED LOCATIONS

LIMITED WARRANTY
CUSTOMER OBLIGATIONS

A. CUSTOMER assumes full responsibility that this computer hardware purchased (the '‘Equipment™), and any copies of software included with the
Equipment or licensed separately (the ‘'Software'') meets the specifications, capacity, capabilities, versatility, and other requirements of CUSTOMER.

B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software are to
function, and for its installation.

LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment. RADIO SHACK
warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing defects. This
warranty Is only applicable to purchases of Tandy Equipment by the otiginal customer from Radlo Shack campany-owned computer centers,
retall stores, and Radio Shack franchisees and dealers at thelr authorized focations. The warranty is void if the Equipment’s case or cabinet has
been opened, or if the Equipment or Software has been subjected to improper or abnormal use. if a manufacturing defect is discovered during the
stated warranty period, the defective Equipment must be returned to a Radio Shack Computer Center, a Radio Shack retail store, a participating
Radio Shack franchisee or a participating Radio Shack dealer for repair, along with a copy of the sales document or lease agreement. The original
CUSTOMER'S sole and exclusive remedy in the event of a defect is limited to the correction of the defect by repair, replacement, or refund of the
purchase price, at RADIO SHACK'S election and sole expense. RADIQ SHACK has no obligation to replace or repair expendable items.

8. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the SOttware. except as provided in this paragraph.
Software is licensed on an “'AS IS" basis, without warranty. The criginal CUSTOMER'S exclusive remedy, in the event of a Software manufacturing
defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document received upon license of the
Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store, a participating Radio Shack
franchisee or Radio Shack dealer along with the sales document.

C. gxce;g gs p(r;ovided herein no employee, agent, franchisee, dealer or other persen is authorized to give any warranties of any nature on behalf of

ADIO SHACK.

D. EXCEPT AS PROVIDED HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES, AND ANY IMPLIED WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE IS LIMITED (N ITS DURATION TO THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FORTH
HEREIN.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON OR
ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
“EQUIPMENT” OR “'SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR
OPERATION OF THE “EQUIPMENT” OR “SOFTWARE." IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR ANY
INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING QUT OF
OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT OR “SOFTWARE."

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADI0 SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
cUSJ&MIE’H OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR “EQUIPMENT' OR *“SOFTWARE"
INVOLVED.

B. RADIO SHACK shall not be liable for any damages caused by delay in dslivering or furnishing Equipment and/or Software.

C. No action arising out of any claimed breach of this Warranty or transacticns under this Warranty may be brought more than two (2) years after the
cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or Software, whichever
first occurs.

0. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may not apply
to CUSTOMER.

SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the TANDY Software on ene computer, subject to the following provisions:

Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.

Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to the

Software.

CUSTOMER may use Software on a multiuser or network system only if either, the Software is expressly labeled to be for use on a multiuser or

network system, or one copy of this software is purchased for each node or terminal on which Software is to be used simultaneously.

CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically provided in

this Software License. Customer is expressly prohibited from disassembiing the Software.

CUSTOMER is permitted to make additional copies of the Software anly for backup or archival purposes or if additional copies are required in the

operation of ore computer with the Software, but oniy to the extent the Software allows a backup c¢opy to be made. However, for TRSDOS Software,

CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each one
sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER.

G. Al copyright notices shall be retained on all copies of the Software.

APPLICABILITY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or
Software License to CUSTCMER or to a transaction whereby Radio Shack sells or conveys such Equipment to a third party for lease to CUSTOMER.

B. The limitatiens of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and or licensor of the
Software and any manufacturer of the Equipment sold by Radio Shack.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary from
state to state.
8/85

m o o o>

875-9855

