Radio fhaek

TRS-XENIX™ Operating System

MBASIC Interpreter

(Multi-user)

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER GENTER, RETAIL STORE OR FROM A
RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY

CUSTOMER OBLIGATIONS

A

CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the “‘Equipment™), and any copies of Radio
Shack software included with the Equipment or licensed separately (the “Software””) meets the specifications, capacity, capabilities,
versatility, and other requirements of CUSTOMER.

CUSTOMER assumes fuli responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its instalfation.

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A

C.
D.
E.

For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing
defects. THIS WARRANTY 1S ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE QORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION. The warranty:is void if the Equipment's case or cabinet has been opened, or if the Equipment or Software has been
subjected to improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period, the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER’S sole and exclusive remedy in the event of
a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIQ SHACK'S election and sole
expense. RADIO SHACK has no obligation to replace or repair expendable items.

RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this
paragraph. Software is licensed on an “'AS {S" basis, without warranty. The original CUSTOMER’S exclusive remedy, in the event of a
Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf
of RADIO SHACK.

Except as provided herein, RADIO SHACK MAKES NG WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not atlow limitations on how long an implied warranty fasts, so the above limitation(s) may not apply to CUSTOMER.

LIMITATION OF LIABILITY

A.

EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
"EQUIPMENT" OR “SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED 7O, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE “EQUIPMENT" OR “"SOFTWARE". IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT"” OR “SOFTWARE".

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSOT E)I\ggﬂ OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "'SOFTWARE"
INVOLVED.

RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software.

No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years
after the cause of action has accrued or more than four {4) years after the date of the Radio Shack sales document for the Equipment or
Software, whichever first occurs.

Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion{s) may
not apply to CUSTOMER.

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on ene computer, subiject to the following
provisions:

B

G.

Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.

Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to
the Software.

CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this
function.

CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on ene computer and as is specifically
provided in this Software License. Customer is expressly prohibited from disassembling the Software.

CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in
the operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for
TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.

CUSTOMER may resell or distribute unmodified copies of the Seftware provided CUSTOMER has purchased one copy of the Software for each
one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER.

All copyright notices shall be retained on all copies of the Software.

APPLICABILITY OF WARRANTY

A.

The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER.

The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and/or licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary
from state to state.

iz

4 Y
o Ty
5 SR

Addendum

page
74

87

AP

134

MBASICVInter'reter gg &tence Manual.

ychang®

S LBF - returns; ‘the -humber o*ﬁ@y;f"
ﬁ*sn&—of -file. record numbet,ag,$t_t§a

m@ g, ﬁll@, not the

/CLEAR - == The $irst.example should read:
| CLEAR 61000, 2000
sclearﬁmal} varlables and closes all ﬁlbes-

-allacates 6100f bytes for program:an ariable
spacej.iang 2009 bgtes for staqk%sgacea

DIM == if an arfay typé& is not.specified, the
array. is’ clas8ified as doubletprac$31an, not
sin le—pre0b31on. _

KIDb"“;' Yoir may kill & file, that is. epen,@~Thls
ufollows'TRS-XENIX sonventlons.

-= 1 ==

164

194

B

OPEN -- The option RANDOM for mode does not A
exist. If the mode is omitted, RANDOM is
automatically selected.

Also, the record length can be as large as 32715
bytes, not 32767 as stated.

Note: The maximum number of files that can be
opened at one time is 17.

SAVE -- notes on the P option:

The P opt1on of SAVE tells MBASIC to save the
program as a protected file. A protected file is
a binary encrypted BASIC program that has been
~8crambled by a special-algorithm..

‘TMBASIC allows only certaln statements to be

executed while a protected flle is in memory.
They are:

RANDOMIZE CONT DATE$ FILES
KILL LOAD NAME NEW
RUN SYSTEM TIME

ey
An error occurs if you try to use any other)
statement.

Also, the example at the bottom of the page should
read:
SAVE "MATHPAK.TXT", A

saves the resident program in ASCII form, using
the name MATHPAK.TXT. ‘

¥ o

Radioc Shack
8759329

_— 2 -

TRS-80 °

g

ADDENDUM
MBASIC Reference Manual

A new keyword has been added to TRS-XENIX BASIC. Please
insert the attached page to add "ON BREAK" to your, MBASIC
Reference Manual. ‘

Thank You!
Radio Shack
A Division of Tandy Corporation

Radio fhaek

TRS-XENIX MBASIC KEYWORDS
TRS-80 °

ON BREAK GOSUB Statement
ON BREAK GOSUB line

Transfers control to line if <BREAK> is pressed.

Normally <BREAK> terminates the program execution. But ON
BREAK Tets you use the <BREAK> key as a switch to execute
the specified subroutine.

Example

1P CLS

20 ON BREAK GOSUB 7@

30 PRINT@ I, "*"

351 =1+1

49 IF T < P OR I > 1919 THEN 139
50 GOTO 39

6@ RETURN

70 ON BREAK GOSUB 20

80 PRINTG I, "."

WI=1I-1

100 IF T < O OR I > 1919 THEN 139
119 GOTO 8¢9
120 RETURN
130 END

The first part of the program prints asterisks (*) starting
at Position @. When you press the <BREAK> key, control
passes to subroutine beginning at Line 7@8. This subroutine
prints periods (.). When you press <BREAK> again, control
goes back to subroutine beginning at Line 2@. When the
cursor position is Tess than P or more than 1919, execution
ends.

875-9541
Radio fhaek

IMPORTANT

Installing MBASIC On Your Hard Disk

Please read all these directions before installing MBASIC on your hard disk. This lets
you become familiar with the entire procedure and help make the installation
smoother. During the installation be sure to watch the screen and answer all the
prompts,

To begin installing the package:

1. Turn on all peripherals and then turn on the computer.
2. Log in as root (to install MBASIC, you must be logged in as root).
3. At the root prompt (#) type:

install

The screen shows Installation Menu. It also shows the prompts
1) to install or q) to quit.

4. Enter to install MBASIC.
5. At the prompt:
Insert diskette in Drive § and press <ENTER >
insert your TRS-XENIX MBASIC diskette in Drive @ and press (ENTER).

The next screen shows the name of the package being installed, the version number,
and the catalog number. At the bottom of the screen a welcoming message appears.

When TRS-XENIX finishes, the message:
Installation complete — Remove the diskette, then press <ENTER >

appears. Pressing (ENT E R) returns the menu to the screen. You are then prompted
to press:

1) to install another application, or
q) to quit.

Your installation of MBASIC is now complete. Press (Q) to quit and return to
TRS-XENIX.

Note: You should never write protect your hard disk when running TRS-XENIX or
MBASIC.

Radio fhaek

A DIVISION OF TANDY CORPORATION
FORT WORTH, TEXAS 76102

TRS-80 °

TRS-XENIX MBASIC Interpreter

Reference Manual

- Radio fhaek

XENIX Operating System Software: Copyright 1983 Microsoft
Corporation. All Rights Reserved. Licensed to Tandy
Corporation.

Restricted rights: Use, duplication, and disclosure are
subject to the terms stated in the customer Non-Disclosure
Agreement.

"tsh" and "tx" Software: Copyright 1983 Tandy Corporation.
All Rights Reserved.

TRS-XENIX BASIC Software: Copyright 1983 Microsoft
Corporation. All Rights Reserved. Licensed to Tandy
Corporation.

TRS-XENIX BASIC Reference Manual: Copyright 1983 Tandy
Corporation. All Rights Reserved.

Reproduction or use without express written permission from
Tandy Corporation, of any portion of this manual is
prohibited. While reasonable efforts have been taken in the
preparation of this manual to assure its accuracy, Tandy
Corporation assumes no liability resulting from any errors
or omissions in this manual, or from the use of the
information contained herein.

XENIX is a trademark of Microsoft.

UNIX is a trademark of Bell Laboratories.

TRS-80 °

Introduction

This is a reference manual for the TRS-XENIX MBASIC language.
TRS-XENIX MBASIC is designed to run under the TRS-XENIX Disk
Operating System.

TRS-XENIX MBASIC is an "interpreter." When you run a program, it
executes each statement one at a time. This makes it quick and easy

to use. It also allows you to take advantage many of TRS-8¢
features, such as:

. Faster running programs
. Larger programs

and TRS-XENIX features of:

. Multi-user
. Multi-tasking

About this Manual

This is a reference manual, not a tutorial. We assume you already

know BASIC and are using this manual to quickly find the information
you need.

Section I--Operations. This section shows how to
load MBASIC. It also demonstrates how to write, run
and save a MBASIC program on disk.

Section II--The MBASIC Language. This section includes
a definition for each of MBASIC's keywords (statements
and functions) in alphabetical order. In addition,

it shows how to write a program to store data on disk.

If you have been using TRSDOS BASIC read Appendix D, "Differences
Between TRSDOS BASIC and TRS-XENIX MBASIC" and Appendix C,
“Transferring Files From TRSDOS BASIC to TRS-XENIX".

Radie fhaek

-3-

<
ar
P
O
»)
c
@)
|
O
<

INTRODUCTION

TRS-80 © ——RS-XENIX MRASIC

Terms and Notations

For clarity and brevity, we use some special notation and type

styles in this manual.

CAPITALS

Towercase underlined

... (ellipsis)

X 'NNNN

O "NNNN

<keyname>

[J(square brackets)

line

buffer

indicate material which must be entered
exactly as it appears.

represent words, letters, characters or
values you supply from a set of acceptable
entries.

indicates that preceding items may be
repeated.

indicates that NNNN is a hexadecimal
number.

indicates that NNNN 1is an octal number.

indicates one of the keys from your
keyboard.

indicate that the enclosed entry is
optional.

indicates a blank space character (ASCII
code 32). For. example, in

mbasic B§ progr

there are two blank spaces between MBASIC
and PROG.

a numeric expression that identifies a
MBASIC program line. Each line has a number
between @ and 65529.

a number between 1 and 255. This refers to
an area in memory that MBASIC uses to
create and access a disk file. Once you
use a buffer to create a file, you cannot
use it to create or access any other file;
you must first close the first file. You
may only access a file with the buffer used
to create it.

Radio fhaek

TRS-XENIX MBASIC

[parameters]

pathname

[arguments]

syntax

integer

string

number

dummy number
or dummy string

TRS-80 ¢ INTRODUCTION

information you supply to specify how a
command is to operate. Parameters enclosed
in brackets are optional.

4
-
X
o
-
cC
@)
.
o
Z

a sequence of directory names seperated by
slashes (/) followed by a filename.

expressions you supply for a function to
evaluate. Arguments enclosed in brackets
are optional.

a command with its parameter(s), or a
function with its argument(s). This shows
the format to use for entering a keyword in
a program line.

any integer expression. It may consist of
an integer, or several integers joined by
operators. Integers are whole numbers
between -32768 and 32767.

any string expression. It may consist of a

string, or several strings joined by

operators. A string is a sequence of

characters which is to be taken verbatim. -

any numeric expression. It may consist of
a number, or several numbers joined by
operators.

a number (or string) used in an expression
to meet syntactic requirements, but whose
value is insignificant.

Radio fhaek

-5-

INTRODUCTION T RS-80 © —IRS=XENIX MRASIC

This manual is organized as follows:

Section I. Operations
Chapter 1.
Chapter 2.

Chapter 3.

Sample Session

Command Mode
Execution Mode

Line Edit Mode

Section II. The MBASIC Language

Chapter 4.
- Chapter 5.
Chapter 6.

Chapter 7.

Appendices
Appendix A
Appendix B
Appendix C
Appendix D

Appendix E

Appendix F
Appendix G
Appendix H

MBASIC Concepts
Disk Files

Introduction to MBASIC Statements and
Functions

MBASIC Statements and Functions

Error Messages
Reserved Words
Converting TRSDOS BASIC Programs to MBASIC

Differences Between TRSDOS BASIC and
TRS-XENIX MBASIC

Machine Language Interface to TRS-XENIX
MBASIC

Loading Assembly Language Files
Device Handling

Decimal Math Representation

Radio fhaek

-6-

\\

Operations ‘

MBASIC Reference Manual

suopeladp

TRS-80 °

Section I/ Operations

Radie fhaek

TRS-80°

Chapter 1/ Sample Session

The easiest way to learn how MBASIC operates is to write and run a
program. This chapter provides sample statements and instructions to
help familiarize you with the way MBASIC works.,

The main steps in running a program are:

A) Loading MBASIC

B) Typing the program

C) Editing the program

D) Running the program

E) Saving the program on disk

F) Loading the program back into memory

Radio fhaek

-9-

o |
>
=
T
-
m
)
m
)
2
)
&

Loading MBASIC
After you power up your system and install the system diskette, the
prompt "jogin:" appears.
To answer this prompt, type in your "“login" name and press <ENTER>.
(Refer to your XENIX operations manual for further information on
the mkuser routine.)
You are now prompted to type your password.
Your password was also assigned during the mkuser routine. Type in
your assigned password. The echo on the screen for your input is
turned off for this prompt.
The words "Welcome to TRS-XENIX" now appear on your screen along
with a dollar sign prompt: "$". This indicates that you are at the
operating system level in your current directory.
To load MBASIC into the system, type:

mbasic<ENTER>
A paragraph with copyright information is displayed, followed by: OK

You may now begin using MBASIC.

Radie Shaek

-1¢-

__ TRS-XENIX MBASIC TRS-80 © —SAMPLE SESSION

Options for Loading MBASIC

When starting up MBASIC, you can also specify a set of options. They
are:

mbasic [program] [-m memory size] [-e]

program specifies a program to run immediately after
MBASIC 1is started.

-m memory Ssize indicates how many bytes of memory are to be
allocated for program, variable, and stack
space. If omitted TRS-XENIX MBASIC attempts to
allocate 32,767 bytes of memory.

-e tells MBASIC to suppress echoing of user's
input, the "OK" prompt, the "?" prompt
associated with an INPUT statement and the sign
on copyright information. This option is useful
for MBASIC programs which are written to be
TRS-XENIX filters.

To exit MBASIC use the SYSTEM command. Type:

system <ENTER>

to close all files and return to the operating system level in your
current directory.(See chapter 7 for more information on SYSTEM.)

Examples

$ mbasic -m 45056
initializes MBASIC; allocates 45056 bytes of memory for program,
variable, and stack space. MBASIC uses part of this memory
allocation to initialize internal buffers; therefore only 43631
bytes are free for execution.

$ mbasic

initializes MBASIC in the command mode. After internal buffers there
are 31087 bytes of free memory.

Radio fhaek

-11-

0
>
=
o
r
m
72
m
"
2
o
Z

SAMPLE_SESSION TRS-80 © —IRS-XENIX MBASIC

$ mbasic -e
initializes MBASIC in the command mode but echoing of your input,

the "Ok" prompt, the "?" prompt associated with an INPUT statement,
and the sign on copyright information is suppressed.

Typing the Program

Let's write a small MBASIC program. Before pressing <ENTER> after
each line, check the spelling. If you have made any mistakes while
typing, use the <BACKSPACE> key to correct them.

10 A$="WILLIAM SHAKESPEARE WROTE " <ENTER>

15 B$="THE MERCHANT OF VENICE" <ENTER>

20 PRINT A$; B$ <ENTER>
Check your program again. If there is a mistake on a line, retype
the entire line, including the line number, immediately after the
current Tline.

For example, suppose you had typed:

15 B$="THE VERCHANT OF VENICE"
20 PRINT A$ B$

After line 20, type
15 B$="THE MERCHANT OF VENICE" <ENTER>
RUN <ENTER> :
Your screen should display:
WILLIAM SHAKESPEARE WROTE THE MERCHANT OF VENICE

MBASIC replaced line 15 in the original program with the most recent
line 15.

MBASIC "reads" your program lines in numerical order. It doesn't
matter if you entered line 15 after line 20; it will still read and
execute 15 before "looking" at 20.

Radio Shaek

-12-

— IRSXENIX MBASIC TRS-80 ° SAMPIF SESSION

Note: When you type in a program in lowercase, all
the lowercase characters are converted to
uppercase with the exception of the contents of
string variables or constants and remarks (REM).

MBASIC has a powerful set of commands in the "line edit mode". This
mode is discussed in Chapter 3.

Saving the Program on Disk

You can save any of your MBASIC programs on disk. To do this, you
assign it a "filename".

7
>
=
T
-
m
%)
m
0
N
o
4

For example, if you wanted to save the program we just wrote, you
could assign it the filename "AUTHOR". Type the following command:

SAVE "AUTHOR" <ENTER>

It takes a few seconds for MBASIC to find a place to store our
program. When this process is completed, it displays OK. The program
is now saved on disk and stored in your current directory.

Filenames do not go through case conversion. They are saved exactly
as typed. For example, the files "AUTHOR" and "author" will be saved
exactly as typed; therefore they will be considered as two separate
files.

Important Note: A filename can also have an
optional extension. A filename including an
extension can have a maximum of fourteen
characters. A period "." is included between the
filename and the extension. The pathname of a file
can have up to 32767 characters. For example:

/Jusr/inventory/junel982/general.stock

The filename in this example is general.stock.

Example

SAVE "AUTHOR.WIL"

Radio fhaek

-13-

SAMPLE SESSION TRS-80 °© TRS-XENIX MBASIC

Loading the Program

If, after typing or running other programs, you wanted to go back
and use this program again, you would have to "LOAD" it back into
memory. Simply type: LOAD "filename", R
Example

LOAD "AUTHOR"™, R <ENTER>

tells MBASIC to load the program "AUTHOR" from disk into memory;
optional R tells MBASIC to run it.

The SAVE and LOAD commands are discussed in more detail in Chapter
70

Radio fhaek

-14-

TRS-80 °

Chapter 2/ Command And Execution Modes

This chapter describes MBASIC's command and execution modes. The
command mode is for typing in program lines and immediate commands.
The execution mode is for executing programs and immediate lines.

Command Mode
Whenever you enter the command mode, MBASIC displays a prompt:

Ok (prompt)

While you are in the command mode, MBASIC displays the prompt at the
beginning of the first logical line (the line you are typing in).

A Tlogical line is a string of up to 255 characters and is always
terminated by pressing <ENTER>. A physical line, on the other hand,

is one line on the display. A physical line contains a maximum of 8¢
characters.

For example, if you type 100 R's and then press <ENTER>, you have
two physical Tlines, but only one logical Tine.

In the command mode, MBASIC does not "read" your input until you

complete the logical line by pressing <ENTER>. This is called "line
input", as opposed to ‘"character input".

Interpretation of a Line

MBASIC always ignores leading spaces or tabs in the line--it jumps
ahead to the first non-white character. If this character is not a
digit, MBASIC treats the line as an immediate line. If it is a
digit, MBASIC treats the line as a program line.

For example:

Ok
PRINT "THE TIME IS " TIME$ <ENTER>

Radie fhaek

-15-

m
P
m
9
C
=
o
Z

? ANVININOD

COMMAND & EXECUTION TRS-80 °© JRS-XENIX MBASIC

MBASIC takes this as an immediate line,
If you type:

Ok
1 PRINT "THE TIME IS" TIME$ <ENTER>

MBASIC takes this as a program line.

Immediate Lines

An immediate Tine consists of one or more statements separated by
colons. The line is executed as soon as you press <ENTER>. For
example:

Ok
CLS: PRINT "THE SQUARE ROOT OF 2 IS* SQR(2)

is an immediate line. When you press <ENTER>, MBASIC executes it.

Program Lines

A program line consists of a line number in the range @ to 65529,
followed by one or more statements separated by colons. A program
line may contain a maximum of 251 characters. When you press
<ENTER>, the line is stored in the program text area of the memory,
along with any other lines you have entered this way. The program is
not executed until you type RUN or another execute command. For
example:

100 CLS: PRINT "THE SQUARE ROOT OF 2 IS™ SQR(2)

is a program line. When you press <ENTER>, MBASIC stores it in the
program text area. To execute it, type:

RUN <ENTER>

Special Keys in the Command Mode

<BACKSPACE> Backspaces the cursor, erasing the preceding
or <CTRL><H> character in the line. This allows you typing
errors.
<SPACE BAR> Enters a blank space character and advances the
cursor,
®
Radie fhaek

-16-

——IRS-XENIX MBASIC TRS-80 © —COMMAND & FXFCUTION

<CTRL><C> Interrupts line entry and starts over with a new
or <BREAK> line.

\ (backslash) When followed by <ENTER> starts a new physical line
without ending the current logical line.

<CAPS> Switches the display to either all uppercase or
upper/lowercase mode.

<ENTER> Ends the current logical line. MBASIC "takes" the
or <CTRL><J> line..

Execution Mode

When MBASIC is executing statements (immediate lines or programs),

it is in the execution mode. In this mode, the contents of the
video display are under program control.

Special Keys in the Execution Mode

<CTRL><S> Pauses execution.

<CTRL><Q> Continues execution.

<CTRL>KC> Terminates execution and returns you to command

or <BREAK> mode.

<ENTER> Interprets data entered from the keyboard with the

INPUT statement.

<ESC> Allows you to exit the insert command while in the
MBASIC editor.

Note: The <BREAK> key has a different meaning on terminals
than it does on the console. We recommend that you use
<CTRL><C> instead of <BREAK> on any terminal not mentioned
above.

Radio fhaek

-17-

m
x
m
O
C
=
@)
2

? ANVININOOD

TRS-80 °

Chapter 3/ Line Edit Mode

This mode enables you to "debug" (correct) programs quickly and
efficiently. It allows you to correct a program line without having
to re-type the entire line.

If MBASIC encounters a syntax error while executing a program, it
automatically puts you in the "line edit mode". The display shows:

Syntax Error in Tline number

oK
line number

(1ine number represents the program line in which the error
occurred.) In this case, you can use the edit mode commands and
subcommands described later in this Chapter.
However, if you wish to activate the line editor yourself (because
you have noticed a mistake or wish to make a change in a long
program line), type:

EDIT line number <ENTER>

This lets you edit the specified line number-. (If the line number -
you specify does not exist, an "Undefinedline number" error occurs).

You may also type:

EDIT .
The period after EDIT means that you want to edit the current
program line, the last line entered, the last line altered or a line
in which an error has occurred.

For example, type in and <ENTER> the following line:
100 FOR I = 1 TO 19 STEP .5: PRINT I, I*2, I*3: NEXT

r
Z
m
m
=)
—

Radio Shaek

-19-

LINE EDIT TRS-80) °© TRS-XENIX MBASIC

(This line will be used in exercising all the edit subcommands
described below).

Now type EDIT 100 and press <ENTER>. MBASIC displays:
100

This starts the editor. You may now begin editing line 100.

Special Keys in the Edit Mode
<ENTER>

Pressing <ENTER> in the edit mode records all the changes you made
in the current line and returns you to the command mode.

Space bar

Pressing the space bar moves the cursor over one space to the right
and displays any character stored in the preceding position. For
example, using line 100 entered above, put MBASIC in the edit mode
so the display shows:

100

Now press the space bar. The cursor moves over one space and the
first character of the program line is displayed. If this character
was a blank, then a blank is displayed. Press the space bar again
until you reach the first non-blank character:

100 F
is displayed. To move over more than one space at a time, type the
desired number of spaces first, then press the space bar. For
example, type 6 and press the space bar. The display should show

something like this (depending on how many blanks you inserted in
the line):

1090 FOR I =

Now type 8 and press the space bar. The cursor moves over eight
spaces to the right, and eight more characters are displayed.

109 FOR I =1 T0 10

Radie fhaek

-2¢-

_ TRS-XENIX MBASIC TRS-80 ° LINE EDIT

L (List Line)
displays the remainder of the program line (unless MBASIC is under
one of the insert subcommands listed below). The cursor drops down
to the next line of the display, reprints the current line number,
and moves to the first position of the line.
For example, when the display shows

100
press L (without pressing <ENTER> key). Line 10@ is displayed:

100 FOR I =1 TO 19 STEP .5: PRINT I, 1*2, I*3: NEXT
100

This lets you look at the line in its current form while you're
doing the editing.

Insert Subcommand Mode

The insert subcommand mode allows you to add material to a line
while editing it. The three keys you can use to enter this
subcommand mode are X, I and H.

X (Extend Line)

Displays the rest of the current line. Typing X also moves the
cursor to the end of the line and puts MBASIC in the insert
subcommand mode. This enables you to add material to the end of the
line.

For example, using line 100, when the display shows

109

press X (without pressing <ENTER>) and the entire line is displayed;
notice that the cursor now follows the last character on the line:

L
prd
m
m
=
—

1090 FOR I =1 TO 1¢ STEP .5: PRINT I, I*2, I*3: NEXT

We can now add another statement to the line, or delete material
from the line by using the <BACKSPACE> key. For example, type

: PRINT "DONE™

Radio fhaek

-21-

at the end of the line. Now press <ENTER>. If you type LIST 1¢@, the
display should show something like this:

109 FOR I = 1 TO 1¢ STEP .5: PRINT I, I*2, I*3: NEXT: PRINT
“DONE "

Note: If you want to continue editing the line, press <ESC> to get
out of the insert subcommand mode.

I (Insert)

Inserts material beginning at the current cursor position on the
line.

For example, type and <ENTER> the EDIT 100 command, then use the
space bar to move over to the decimal point in line 10@Q. The display
shows:

10¢ FOR I = 1 TO 1¢ STEP .

Suppose you want to change the increment from .5 to .25. Press the
I key (don't press <ENTER>) and MBASIC now lets you insert material
at the current position. Type 2 now, and the display shows:

100 FOR I = 1 TO 1@ STEP .2

You have made the necessary change, so press <ESC> to escape from
the insert subcommand. Now press the L key to display the remainder
of the line and move the cursor back to the beginning of the line:

109 FOR I = 1 TO 1¢ STEP .25: PRINT I, I*2, I*3: NEXT: PRINT
“DONE "
100

Note: You can also exit the insert subcommand and save all changes
by pressing <ENTER>. This returns you to command mode.

H (Hack and Insert)

Deletes the remainder of a line and lets you insert material at the
current cursor position,

For example, using line 1@, enter the edit mode and space over
until just before the PRINT “DONE" statement. Suppose you wish to
delete this statement and insert an END statement. The display
shows:

Radio fhaek

-22-

TRS-XENIX MBASIC TRS-80 °© LINE _EDIT

10¢ FOR I = 1 TO 1@ STEP .25: PRINT I, I*2, I*3: NEXT:
Type H, then type END. Press <ENTER>. List the Tine:

109 FOR I = 1 TO 1¢ STEP ,25: PRINT I, I*2, I*3: NEXT: END
should be displayed.
Note: To continue editing the line, press <ESC> this takes you out
of the insert subcommand mode.
A (Cancel and Restart)

Moves the cursor back to the beginning of the program line and
cancels editing changes already made.

For example, if you have added, deleted, or changed something in a
Tine, and you wish to go back to the beginning of the Tine and
cancel the changes already made: first press <ESC> (to escape from
any subcommand you may be executing); then press A. The cursor drops
down to the next line, displays the Tine number and moves to the
first character position.

E (Save Changes and Exit)

Ends editing and saves all changes made. You must be in edit mode,
not executing any subcommand, when you press £ to end editing.

Q (Cancel and Exit)

Ends editing and cancels all changes made in the current editing
session. If you've decided not to change the line, type Q to cancel
changes and leave the edit mode.

If a syntax error is detected during program execution, MBASIC
starts the editor. To examine variable values, you must press Q or
<ENTER> before typing any other command.

L
p
m .
m
=
—

nD (Delete)

Deletes the specified number n of characters to the right of the
cursor. The deleted characters appear enclosed in backslashes.

Radio fhaek

-23-

e LINE EDIT TRS-80 © ——IR-XENIX MBASIC

For example, using line 1@, space over to just before the PRINT
statement:

109 FOR I =1 TO 1@ STEP .25:

Now type 19D. This tells MBASIC to delete 19 characters to the right
of the cursor. The display should show something like this:

100 FOR I =1 TO 1@ STEP .25: \PRINT I, I*2, I*3:\NEXT: END

When you list the complete line, you will see that everything from
the PRINT to the next statement has been deleted.

nC (Change)

Lets you change the specified number of characters beginning at the
current cursor position, If you type C without a preceding number,
MBASIC assumes you want to change one character. When you have
entered n number of characters, MBASIC returns you to the edit

mode (so you're not in the nC subcommand).

For example, using line 100, suppose you want to change the final
value of the FOR-NEXT Tloop, from "1¢" to "15". In the edit mode,
space over to just before the "@" in "1g".

19 FOR I =1T0 1

Now type C. MBASIC assumes you want to change just one character.
Press 5, then press L. When you list the line, you'll see that the
change has been made.

109 FOR 1 = 1 TO 15 STEP .25: NEXT: END
would be the current Tine if you've followed the editing sequence in
this chapter.
nSc (Search)
Searches for the nth occurrence of the character c, and moves
the cursor to that position. If you don't specify a value for n,
MBASIC searches for the first occurrence of the specified character.

If character ¢ is not found, cursor goes to the end of the line,

Note: MBASIC only searches through characters to the right of the
cursor,

Radie fhaek

-24-

IBS-!ENI! MBBS” TRS'BD ® LINE_EDIT

For example, using the current form of line 100, type EDIT 100
<ENTER>. then press 2S:. This tells MBASIC to search for the second
occurrence of the colon character. The display should show:

100 FOR I =1 TO 15 STEP .25: NEXT

You may now execute one of the subcommands beginning at the current
cursor position. For example, suppose you want to add the counter
variable after the NEXT statement. Type I to enter the insert
subcommand, then press the spacebar to insert a space and type the
variable name, I. That's all you want to insert, so press <ESC> to
escape from the insert subcommand mode. The next time you list the
line, it should appear as:

100 FOR I = 1 TO 15 STEP .25: NEXT I: END

nKc (Search and Kill)

Deletes all characters up to the nth occurrence of character c,
and moves the cursor to that position.

For example, using the current version of line 100, suppose we
wanted to delete the entire line up to the END statement. Type EDIT
100 <ENTER>, then type 2K:. This tells MBASIC to delete all
characters up to the 2nd occurrence of the colon.

100 \FOR I = 1 TO 15 STEP .25: NEXT I\ |

should be displayed. The second colon still needs to be deleted, so
type D. The display now shows:

100 \FOR I = 1 TO 15 STEP .25: NEXT I\\:\
Press <ENTER> and type LIST 100 <ENTER>
Line 100 should look something like this:

100 END

C
<
m
m
=
-

n <BACKSPACE>

Moves the cursor to the left by n spaces. If no number n is

given, the cursor moves back one space. When the cursor backspaces,
all characters in its path are displayed in a backwards format, but
they are not deleted. from the program. Use the space bar to advance
the cursor forward and re-display the characters.

Radio fhaek

-25-

" BASIC Language

MBASIC Reference Manual

abenbue 9|Svg

TRS-80 °

SECTION II/ The MBASIC Language

Radio fhaek

TRS-80 °

Chapter 4/ MBASIC Concepts

This chapter describes how to use the full power of TRS-XENIX
MBASIC. This information can help programmers build powerful and
efficient programs. If you are still something of a novice, you
might want to skip this chapter for now, keeping in mind that the
information is here when you need it.

The chapter is divided into four sections:

A. Overview - Elements of a Program, This section defines many of
the terms we will be using in the chapter.

B. How MBASIC Handles Data. Here we discuss how MBASIC classifies
and stores data. This shows you how to get MBASIC to store your data
in its most efficient format.

C. How MBASIC Manipulates Data. This gives you an overview of all
the different operators and functions you can use to manipulate and
test your data.

D. How to Construct an Expression. Understanding this topic will
help you in constructing powerful statements instead of using many
short ones.

Radio fhaek

-29-

=
o
>
0
O
O
o
<
O
m
v
—
2

————HBASIC CONCEPTS . TRS-80 © ——IBS-XENIX NRASIC

Overview - Elements of a Program

This overview defines the elements of a program. A program is made
up of "statements"; statements may have several "expressions."

We will refer to these terms during the rest of this chapter.

Program

A program is made up of one or more numbered lines. Each line -
contains one or more MBASIC statements. MBASIC allows line numbers
from @ to 65529 inclusive. You may include up to 251 characters per
line, not including the line number (see note below). You may also
have two or more statements to a line, separated by colons.

Note: MBASIC allows you to input more than 251 characters per line;
however, unpredictable results can occur if the number of characters
exceeds 251.

Each program can hold 16,777,215 bytes of data. This includes the
user program, variables and strings. However, you are limited by
the actual amount of memory in MBASIC. Refer to your current
operators manual for this information.

Here is a sample program:

Line MBASIC Colon between MBASIC
number statement statements statement

10 CLS: FORI =1 TO 15

119 PRINT "“NUMBER ";I

120 FOR J = 1 TO 50@: Next J
130 NEXT I

140 END

When MBASIC executes a program, it handles the statements one at a
time, starting with the first and proceeding to the last. Some
statements, such as GOTO, ON...GOTO, GOSUB, change this sequence.

Statements

A statement is a complex instruction to MBASIC, telling MBASIC to
perform specific operations. For example:

GOTO 100

Radio fhaek

-3¢-

TRS-XENIX MBASIC TRS-80 ® ———MBASIC CONCEPTS

Tells MBASIC to perform the operations of (1) locating line 1¢¢ and
(2) executing the statement on that Tine.

END

Tells MBASIC to perform the operation of ending execution of the
program.

Many statements instruct MBASIC to perform operations with data. For
example, in the statement:

PRINT"SEPTEMBER REPORT"

the data is SEPTEMBER REPORT. The statement instructs MBASIC to
print the data inside quotes.

Line Termination

The Tine terminator for ASCII files under the TRS-XENIX operating
system is the new line character. Under TRS-XENIX the new line
character is represented by a carriage return or a line feed. Either
a carriage return or a line feed will terminate a BASIC line.

Line Continuation

Continuing a single logical line across several physical lines is
done by preceding the line terminator with the backslash character
"\", For example:

IF NAME = "SARA"™ \
THEN PRINT “TRUE" \
ELSE PRINT "FALSE" \

The backslashes were typed before the carriage returns were typed,
thus causing the 3 physical lines to appear to BASIC as a single
logical line.

A backslash placed in any other position will have its normal
meaning as an integer divide. The internal representation for line
continuation used in binary files remains the same for all versions
of TRS-XENIX BASIC.

Radio fhaek

-31-

=
o)
>
0
O
O
o
2
O
m
o
-
wn

MBASIC CONCEPTS TRS-80 ° IRS-XENIX MBASIC

Expressions

An expression is actually a general term for data. There are four
types of expressions:

1. Numeric expressions, which are composed of numeric data.
Examples:

(1+5.2)/3
D

5%B

3.7682

ABS(X) + RND(@)
SIN(3 + E)

2. String expressions, which are composed of character data.

Examples:
AS$
"STRING"
YSTRING" + "DATA"
MO$ + "DATA"
MID$(AS,2,5) + MID$("MAN",1,2)
M$ + A$ + BS
3. Relational expressions, which test the relationship between two
expressions.
Examples:
A=1
A$>B$

4, Logical expressions, which test the logical relationship between
two expressions.

Examples:
A$ = “"YES" AND B$ = “"NO"

c>5 OR M<B OR @>2
578 AND 452

Radio fhaek

-32-

Functions

Functions are automatically subroutines. Most MBASIC functions
perform computations on data. Some serve a special purpose, such as
controlling the video display or providing data on the status of
MBASIC. You may use functions in the same manner that you use any
data: as part of a statement.

These are some of MBASIC's functions:

INT
ABS
STRINGS

For example, ABS returns the absolute value of a numeric expression.
The following example shows how this function works:

PRINT ABS(7*(-5)) <ENTER>
35
Ok

How MBASIC Handles Data

MBASIC offers several different methods of handling your data. Using
these methods properly can greatly improve the efficiency of your
program. In this section we discuss:

1. Ways of Representing Data
a. Constants :
b. Variables
2. How MBASIC Stores Data
a. Numeric (integer, single precision, double
precision)
b. String
. How MBASIC Classifies Constants
. How MBASIC Classifies Variables
. How MBASIC Converts Data

G W

Ways of Representing Data

MBASIC recognizes data in two forms: directly (as constants), or by
reference to a memory location (as variables).

Radio fhaek

-33-

=
W
>
0
9]
0
o
e
2]
m
U
-
9]

———HBASIC CONCEFIS — TRS-80 © —IRS-XENIX MRASIC

Constants

A1l data is input into a program as "“constants" - values which are
not subject to change. For example, the statement:

PRINT "1 PLUS 1 EQUALS"; 2
contains one string constant,

1 PLUS 1 EQUALS
and one numeric constant

2

In these examples, the constants "input" to the PRINT statement.
They tell PRINT what data to print on the display.

These are more examples of constants:

3.14159 "L.0.SMITH"
1,775E+3 "(3123456789ABCDEF"
"NAME TITLE" -123.45E-8
57 IIAGE H

Variables

A variable is a place in memory where data is stored. Unlike a
constant, a variable's value can change. This allows you to write
programs dealing with changing quantities. For example, in the
statement:

A$ = “OCCUPATION"

The variable A$ now contains the data OCCUPATION. However, if this
statement appeared later in the program:

A$ = "FINANCE"

The variable A$ would no longer contain OCCUPATION. It would now
contain the data FINANCE.

Radio fhaek

-34-

TRS-XENIX MBASIC TRS-80 © ——HMBASIC CONCEPTS

Variable Names
In MBASIC, variables are represented by names. Variable names must
begin with a letter, A through Z. This letter may be followed by one
or more characters (digits or letters).
For example:

AM A Al BALANCE EMPLOYEE?

are all valid and distinct variable names.

Variable names may be of any length up to 4@ characters.

Reserved Words

Certain combinations of letters are reserved as MBASIC keywords and
operator names. These combinations cannot be used in variable names.

For example:
OR LEN OPTION

cannot be used as variable names.

But keywords may appear inside variable names. For example:
BORE STRLEN OPTIONC

See the Appendix B on MBASIC's reserved words.

Simple and Subscripted Variables

Variables may also be "subscripted" so that an entire list of data
can be stored under one variable name. This method of data storage
is called an array. For example, an array named A may contain
these elements (subscripted variables):

A(D) A(L) A(2) A(3) A(4)

You may use each of these elements to store a seperate data item,
such as:

A(D)
A(1)

inn
~N o
L]

Radio fhaek

-35-

=
o
>
0
O
0O
o
<
0O
m
U
-
9]

MBASIC CONCEPTS TRS-80 ® __JRS-XENIX MBASIC

A(2) = 8.3
A(3) = 6.8
A(4) = 3.7

In this example, array A is a one-dimensional array, since each
element contains only one subscript. An array may also be
two-dimensional, with each element containing two subscripts. For
example, a two-dimensional array named X could contain these
elements:

X(9,0) = 8.6
7.3

X(3.5
X(1,0) . X(

32.6

2,
1,

1)
1)
With MBASIC, you may have as many dimensions in your array as you

would like. Here is an example of a three-dimensional array named L
which contains these eight elements:

L(P,0,0) = 35233 L(9,1,0) = 96522
L(2,0,1) = 52000 L(@,1,1) = 10255
L(1,0,0) = 33333 L(1,1,0) = 96253
L(1,8,1) = 53853 L(1,1,1) = 79654

Each index of the array is limited to the range @ to 32767. MBASIC
assumes that all arrays contain 11 elements in each dimension. If
you want more elements you must use the DIM statement at the
beginning of your program to dimension the array.

For example, to dimension array L, put‘this line at the beginning of
the program:

DIM(1,1,1)

to a]Tow room for two elements in the first dimension; two in the
second, and two in the third for a total of 2*2*2 = 8 elements.

Arrays are discussed later in this chapter.

How MBASIC Stores Data

The way that MBASIC stores data determines the amount of memory it
consumes and the speed in which MBASIC can process it.

Radio fhaek

-36-

TRS-XENIX MBASIC TRS-80 °© MBASIC CONCEPIS

Numeric Data

You may get MBASIC to store all numbers in your program as either
integer, single precision, or double precision. In deciding how to
get MBASIC to store your numeric data, remember the tradeoffs.
Integers are the most efficient and the least precise. Double
precision is the most precise and least efficient. For information
on the internal representation of numbers refer to Appendix H.

Integers
(Speed and Efficiency, Limited Range)

To be stored as an integer, a number must be whole and in the range
of -32768 to 32767. An integer value requires only two bytes of
memory for storage. Arithmetic operations are faster when both
operands are integers.

For example:

1 3200 -2 500 -12345
can all be stored as integers.
Single Precision _
(General Purpose, Full Numeric Range)
Single precision numbers can include up to six significant digits,
and can represent normalized values* with exponents up to 64.
Refer to Appendix H for more information on the range of single
precision numbers.
A single precision value requires four bytes of memory for storage.
MBASIC assumes a number is double precision if you do not specify
the level of precision.
* In this manual, normalized value is one in which exactly one digit
appears to the left of the decimal point. For example, 12.3
expressed in normalized form is 1.23 X 10.
For example:

10.001 -200034 1.774E6 6.024E-23 123.456

can all be stored as single precision values.

Radie fhaek

-37-

=
o
>
0
O
O
O
<
9
m
o
-]
]

—_MBASIC CONCEPTS TRS-80 ©® —IRS=XENIX MBASIC

Note: When used in a decimal number, the symbol E stands for "single
precision times 10 to the power of..." Therefore 6.024E-23
represents the single precision value:

6.024 X 19723
Double Precision
(Maximum Precision, Slowest in Computations)
Double precision numbers can include up to 14 significant .digits,
and can represent values in the same range as that for single
precision numbers. A double precision value requires eight bytes of
memory for storage. '
For example:

1019234578

-8.7777651010

3.141592653589

8.00100798D12
can all be stored as double precision values.
Note: When used in a decimal number, the symbol D stands for "double
precision times 10 to the power of..." Therefore 8.0010¢7¢08D12
represents the value

8.09100708 X 192
The default type for a variable is double precision.

For more information on Numeric data refer to Appendix H.

Strings
Strings (sequences of characters) are useful for storing non-numeric
information such as names, addresses, text, etc. You may store any
ASCII characters as a string.
For example, the data constant:

Jack Brown, Age 38

can be stored as a string of 18 characters. Each character (and
.- blank) in the string is stored as an ASCII code, requiring one byte

Radio fhaek

-38-

of storage. Five bytes of overhead are added to the present contents
of the string.

MBASIC would store the above string constant internally as:

A string can be up to 32767 characters long. Strings with length
zerg are called "null" or "empty".

How MBASIC Classifies Constants

When MBASIC encounters a data constant in a statement, it must

determine the type of the constant: string, integer, single -
precision, or double precision. First, we will list the rules MBASIC

uses to classify the constant. Then we will show you how you can

override these rules, if you want a constant stored differently:

Rule 1

If the value is enclosed in double-quotes, it is a string. For
example:

|IYES "
#3331 Waverly Way"
"123456789¢"

are all classified as strings.
Rule 2
If the value is not in quotes, it is a number. (An exception to this

rule is during data input by an operator, and in DATA lists. See
INPUT, INKEYS$, and DATA)

Radie Shaek

-39-

=
X
>
2
(@)
@
O
4
O
m
T
—
w

MBASIC CONCEPTS TRS-80 © IRS-XENIX MBASIC

For example:

123001

E7.3214E + 6
are all numeric data.
Rule 3

Whole numbers in the range of -32768 to 32767 are integers. For
example:

12350
-12
19012

are integer constants.
Rule 4

If the number is not an integer and contains six or fewer digits, it
is single precision. For example:

123456

-1.23
1.3321

are all classifed as single precision.
Rule 5

If the number contains more than six digits, it is double precision.
For example, these numbers:

12345678901234
-1000000000000 . 1
2.777000321

are all classified as double precision.

Type Declaration Tags

You can override MBASIC's normal typing criteria by adding the
following "tags" to the end of the numeric constant:

Radio fhaek

-40-

TRS-XENIX_MBASIC TRS-80 ° MBASIC CONCEPTS

! Makes the number single precision. For example, in the
statement:

A = 12.3456789¢1234!

the constant is classified as single precision, and shortened
to six digits: 12.3457.

E Single precision exponential format. The E indicates the
constant is to be multiplied by a specific power of 10. For

example:
A =1,2E5
stores the single precision number 120000 in A, j
Makes the number double precision. For example, in statement: -
PRINT 3#/7

the first constant is classified as double precision before the
division takes place.

D Double precision exponential format. The D indicates the
constant is to be multiplied by a specified power of 1¢. For =
example:
A = 1,23456789D-1

The double precision constant has the value §.123456789.

How MBASIC Classifies Variables

When MBASIC encounters a variable name in the program, it classifies
it as either a string, an integer, a single precision number, or a
double precision number.

MBASIC classifies all variable names as double precision initially.
For example:

AB AMOUNT XY L

are all double precision initially. If this is the first line of
your program:

LP = 1.2

Radie fhaek

-4]1-

=
W
>
0
O
O
o
<
o
m
o
|
w

— MBASIC CONCEPTS ______ TRS-80 © —IRS-XENIX MBASIC

MBASIC classifies LP as a double precision variable.

However, you may assign different attributes to variables by using
definition statements at the beginning of your program:

DEFSTR - Defines variables as string.

DEFINT - Defines variables as integer.

DEFSNG - Defines variables as single precision.

DEFDBL - Defines variables as double precision. (Since MBASIC

classifies all variables as double precision
initially, you would only need to use DEFDBL if one of
the other DEF statements were used.
For example:
DEFSTR L

makes MBASIC classify all variables which start with L as string
variables. After this statement, the variables:

L LP LAST

can all hold string values only.

Type Declaration Tags

As with constants, you can always override the type of a variable
name by adding a type declaration tag at the end. There are four
type declaration tags for variables:

% Integer
! Single precision
Double precision
$ String
For example:
1% FT% NUM% COUNTER%

are all integer variables, regardless of what attributes have been
assigned to the letters I, F, N, and C.

T! RY ! QUAN! PERCENT!

Radio Shaek

-42-

TRS-XENIX MBASIC TRS-80 © MBASIC CONCEPTS

are all single precision variables, regardless of what attributes
have been assigned to the letters T, R, Q, and P.

X# RR# PREV# LSTNUM#

are all double precision variables, regardless of what attributes
have been assigned to the letters X, R, P, and L.

Q$ CAS WRD$ ENTRY$

are all string variables, regardless of what attributes have been
assigned to the letters Q, C, W, and E.

Note that any given variable name can represent four different
variables. For example:

A5# A5! A5% A5$
are all valid and distinct variable names.
One further implication of type declaration: Once you define a
type declaration tag it has no effect on that particular variable
name. For example, after the statement:
DEFSTR C =
the variable referenced by the name Cl is identical to the variable
referenced by the name C1S$.

How MBASIC Converts Numeric Data

Often your program might ask MBASIC to assign one type of constant
to a different type of variable. For example:

A% = 2.34
In this example, MBASIC must first convert the single precision

constant 2.34 to an integer in order to assign it to the integer
variable A%.

You might also want to convert one type of variable to a different
type, such as:

A# = A%
Al = A#
Al = A%

- Radio fhaek

-43-

=
2y
>
»
O
0O
O
<
O
m
U
-
w

. MBASIC CONCEPTS TRS.-80 © ——IRS-XENIX MBASIC

The conversion procedures are listed on the following pages.

Single or double precision to integer type

MBASIC rounds the fractional portion of the number.

Note: The original value must be greater than or equal to -32768,
and less than 32768.

Examples
A% = 32766.9
assigns A% the value 32767.
A% = 2.5D3
assigns A% the value 2500.
A% = -123.456789011234578
assigns A% the value -123.
A% = -32767.5
assigns A% the value -32768.

Integer to single or double precision

The converted value looks like the original value with zeros to the
right of the decimal place.

Examples
A# = 32767

Stores 32767.000000008 in A# and would print 32767.
Al = -1234

Stores -1234.0¢ in A! and would print -1234.

Radio fhaek

-44-

TRS-XENIX MBASIC TRS-80 °© MBASIC CONCEPTS

Double to single precision

This involves converting a number with up to 14 significant digits
into a number with no more than six. MBASIC rounds off the least
siginificant digits to produce a six-digit number.
Examples

Al = 1.234567890124567
stores 1.23457 in A!. The statement:

PRINT A
displays the value 1.23457.

Al = 1,3333333333333

stores 1.33333 in Al.

Single to double precision

To make this conversion, MBASIC simply adds trailing zeros to the
single precision number. For example: -

A# = 1.5
stores 1.500000000000¢ in A# and would print 1.5.

I11egal Conversions

MBASIC cannot automatically convert numeric values to string, or
vice versa. For example, the statements:

AS
A%

1234
II1234II

are illegal. They would return a "Type mismatch" error. (Use STR$
and VAL to accomplish such conversions.)

Radio fhaek

-45-

=
W
>
2
9}
0
o
r4
0
m
o
d
7

e MBASIC CONCEPTS — TRS-80 © —IRSXENIX MBASIC

How MBASIC Manipulates Data
You have many fast methods you may use to get MBASIC to count, sort,
test, and rearrange your data. These methods fall into two
categories:
1. Operators

a. numeric

b. string

c. relational

d. logical

2, Functions

Operators
An operator is the single symbol or word which signifies some action
to be taken on either one or two specified values referred to as
operands.
In general, an operator is used like this:
operand-1 operator operand-2
6 + 2

The addition operator + connects or relates its two operands, 6 and
2, to produce the result 8.

Operand-1 and -2 can be expressions.
A few operations take only one operand, and are used like this:
operator operand
- 5

The negation operator - acts on a single operand 5 to produce the
result negative 5.

Neither 6 + 2 or -5 can stand alone; they must be used in statements
to be meaningful to MBASIC. For example:

A=6+2
PRINT -5

Radio Shaek

-46-

TRS-XENIX MBASIC TRS-80 © MBASIC CONCEPTS

Operators fall into four categories:

. Numeric

. String

. Relational
. Logical

based on the kinds of operands they require and the results they
produce.

Numeric Operators

Numeric Operators are used in numeric expressions. Their operands
must always be numeric, and the results they produce are one numeric
data item.

In the description below, we use the terms integer, single
precision, and double precision operations. Integer operations
involve two-byte operands, single precision operations involve
four-byte operands, and double precision operations involve
eight-byte operands. The more bytes involved, the slower the
operation.

There are five different numeric operators. Two of them, sign + and -
sign -, are unary, that is, they have only one operand. A sign
operator has no effect on the precision of its operand.

For example, in the statement:
PRINT -77, +77

the sign operators - and + produce the values negative 77 and
positive 77, respectively.

Note: When no sign operator appears in front of a numeric term, + is
assumed.

The other numeric operators are all binary, that is, they all take
two operands.

These operators are, in order of precedence:

-~

Exponentiation

*, / Multiplication, Division
+,- Addition, Subtraction F—
w
>
L)
o

®

Radio fhaek 8
p-d
Y
-47- o
_|
w

MBASIC CONCEPTS TRS-80 © TRS-XENIX MBASIC

Exponentiation

The symbol “ denotes exponentiation. It converts both its operands
to double precision, and returns a double precision result.

For example:
PRINT 6°.3

prints 6 to the .3 power.

Multiplication

The * operator is the symbol for multiplication. Once again, the
operation is done with the precision of the more precise operand
(the less precise operand is converted).
Examples:

PRINT 33 * 11
integer multiplication is performed.

PRINT 33 * 11.1
double precision multiplication is performed.

PRINT 12.345678901234 * 11

double precision multiplication is performed.

Division

The / symbol is used to indicate ordinary division. Both operands
are converted to single precision or double precision, depending on
their original precision:

. If either operand is double precision, then both are converted to
double precision and eight-byte division is performed.

Examples:
PRINT 3/4

double precision division is performed.

Radio fhaek

-48-

TRS-XENIX MBASIC TRS-80 ¢ MBASIC CONCEPTS

PRINT 3.8/4
double precision division is performed.
PRINT 3/1.2345678901234

double precision division is performed.

Addition
The + operator is the symbol for addition. The addition is done with
the precision of the most precise operand (the less precise operand
is converted).
For example, when one operand is integer type and the other is
single precision, the integer is converted to single precision and
four-byte addition is performed. When one operand is single
precision and the other is double precision, the single precision
number is converted to double precision and eight-byte addition is
performed. ‘
Examples:

PRINT 2 + 3
integer addition is performed.

PRINT 3.1 + 3
double precision addition is performed.

PRINT 1.2345678901234 + 1

double precision addition is performed.

Subtraction

The - operator is the symbol for subtraction. As with addition, the
operation is done with the precision of the most precise operand
(the less precise operand is converted).
Examples:

PRINT 33 - 11

integer subtraction is performed.

Radio fhaek

-49-

=
s Y)
>
@
0O
0
o
<
0O
m
B’
|
7]

MBASIC CONCEPTS TRS-80 ° TRS-XENIX MBASIC

PRINT 33 - 11.1
double precision subtraction is performed.
PRINT 12.3456789¢01234 - 11

double precision subtraction is performed.

String Operator

MBASIC has a string operator (+) which allows you to concatenate
(link) two strings into one. This operator should be used as part of
a string expression. The operands are both strings and the resulting
value is one piece of string data.

The + operator links the string on the right of the sign to the
string on the left. For example:

PRINT "CATS" + "LOVE" + "MICE"
prints:
CATSLOVEMICE
Since MBASIC does not allow one string to be longer than 32767

characters, you will get an error if your resulting string is too
long.

Relational Operators

Relational operators compare two numeric or two string expressions
to form a relational expression. This expression reports whether the
comparison you set up in your program is true or false. It returns a
-1 if the relation is true; a @ if it is false.

Numeric Relations

This is the meaning of the operators when you use them to compare
numeric expressions:

Less than
Greater than
Equal to

v A

Radio Sfhaek

-5@-

TRS-XENIX MBASIC TRS-80 ° MBASIC CONCEPTS

<O or X Not equal to
= or <= Less than or equal to
=> or >= Greater than or equal to

Examples of true relational expressions:

String Relations

The relational operators for string expressions are the same as
above, although their meanings are slightly different. Instead of
comparing numerical magnitudes, the operators compare their ASCII
sequence. This allows you to sort string data:

< Precedes
> Follows
>X or O Does not have the same precedence
<= Precedes or has the same precedence -
>= Follows or has the same precedence

MBASIC compares the string expressions on a character-by-character
basis from left to right. When it finds a non-matching character, it
checks to see which character has the lowest ASCII code. The
character with the Towest ASCII code is the smallest (precedent) of
the two strings.

Examples of true relational expressions:
UA® < "B
The ASCII code for A is decimal 65; for B it's 66.
“"CODE" < "CooL"
The ASCII code for 0 is 79; for D it's 68.
If while making the comparision, MBASIC reaches the end of one

string before finding non-matching characters, the shorter string is
the precedent. For example:

Radio fhaek

=51~

=
W
>
2
O
O
®)
e
@)
m
0
-
7))

e MBASIC CONCEPTS ___ __ TRS-80 ® ——IBS-XENIX MBASIC

"TRAIL" < “TRAILER"
Leading and trailing blanks are significant. For example:
AT < AN
ASCII for the space character is 32; for A, it's 65.
"Z-8¢" < "Z-8@A"
The string on the left is four characters long; the string on the

right is five.

How to Use Relational Expressions

Normally, relational expressions are used as the test in an IF/THEN
statement. For example:

IF A =1 THEN PRINT "CORRECT"

MBASIC tests to see if A is equal to 1. If it is, MBASIC prints the
message "CORRECT".

IF A$ < B$ THEN 50

if string A$ alphabetically precedes string B$, then the program
branches to line 50.

IF R$ = "YES" THEN PRINT AS$
if R$ equals YES then the message stored as A$ is printed.

However, you may also use relational expressions simply to return
the true or false results of a test. For example:

PRINT 7 = 7
prints - 1 since the relation tested is true.
PRINT upn > wgw

prints @ because the relation tested is false.

Radio fhaek

-52-

TRS-XENIX MBASIC TRS-80 ¢ ———MBASIC CONCEPTS

Logical Operators

Logical operators make logical comparisions. Normally, they are used
in IF/THEN statements to make a logical test between two or more
relations. For example:

IFA=1 OR C =2 THEN PRINT X

The logical operator, OR, compares the two relations A =1 and C =
2.

Logical operators may also be used to make bit comparisions of two
numeric expressions.

For this application, MBASIC does a bit-by-bit comparision of the
two operands, according to predefined rules for the specific
operator,

Note: The operands are converted to integer type, stored internally
as 16-bit, two's complement numbers. To understand the results of
bit-by-bit comparisions, you need to keep this in mind.

The following table summarizes the action of Boolean operators in
bit manipulation.

Meaning of First Second
Operator Operation Operand Operand Result
AND When both bits 1 1 1
are 1, the re- 1 1) 1)
sults will be 1. @ 1 1)
Otherwise, the @ @ @

result will be @.

OR Result will be 1 1 1 1
unless both bits 1 @ 1

are @, @ 1 1

)))

NOT Result is oppo- 1 @
site of bit. @ 1

XOR Result will be 1 1 @
1 when both bits 1 @ 1

are opposite.) 1 1

¢ /) g

Radie fhaek

-53-

=
o
>
@
O
2
o
<
o
m
O
|
w

e MBASIC _CONCEPTS _ TRS-80 © ——IRS-XENDCMBASIC
EQV Result will be 1 1 1
1 when both bits 1 @ @
are the same. g 1 @
Y/ ¢ 1
IMP Result will be 1 1 1
1 unless the first 1 @]
bit is 1 and @ 1 1
the second bit @. @ @ 1
is zero.

Hierarchy of Operators

When your expressions have multiple operators, MBASIC performs the
operations according to a well-defined hierarchy, so that results
are always predictable.

Parentheses
When a complex expression includes parentheses, MBASIC always
evaluates the expressions inside the parentheses before evaluating
the rest of the expression. For example, the expression:

8 ~ (3 -2)
is evaluated like this:

3-2
8 -1

([

1
7
With nested parentheses, MBASIC starts evaluating the innermost
level first and works outward. For example:

4% (2 -(3-4))
is evaluated Tike this:

)
1

3 -
3

W~
o=
N I

2 -
4 *

Radio Sfhaek

-54-

Order of Operations

When evaluating a sequence of operations on the same level of
parenthesis, MBASIC uses a hierarchy to determine what operation to
do first.

The two listings below show the hierarchy MBASIC uses. Operators are
shown in decreasing order of precedence and are executed as
encountered from left to right:

For Numeric Operations:

“ or (Exponentiation)
+,~- (Unary sign operands [not addition and
subtractionl])

*,/ (Multiplication and division)

+,~- (Addition and subtraction)
<, >,=,<=,0=,

NOT

AND

OR

XOR -
EQV

IMP

For String Operations:

+
<y>y=,<=,0=, O

For example, in the line:

X*X + 572.8
MBASIC finds the value of 5 to the 2.8 power. Next it multiplies
X*X, and finally adds the value of 5 to the 2.8. If you want MBASIC
to perform the indicated operations in a different order, you must
add parentheses. For example:

(X*(X + 5))72.8

or

Radio fhaek

-55-

=
w
>
0
)
Q
o)
r4
O
m
o
-
7

—MBASIC CONCEPTS ——— TRS-80 © ——IS=LENIX MEASIC

X*(X + 5) “2.8
Here's another example:
IFX=0 OR Y>@ AND Z =1 THEN 255
The relational operators = and > have the highest precedence, so
MBASIC performs them first, one after the next, from left to right.
Then the logical operations are performed. AND has a higher
precedence than OR, so MBASIC performs the AND operation before OR.
If the above 1ine looks confusing because you can't remember which
operator is precedent over which, then you can use parentheses to
make the sequence obvious:

IFX=0 OR ((Y>@) AND (Z = 1)) THEN 255

Functions
A function is a built-in sequence of operations which MBASIC
performs on data. MBASIC functions save you from having to write a
MBASIC routine, and they operate faster than a MBASIC routine would.
Examples:

SQR (A + 6)
tells MBASIC to compute the square root of (A + 6).

MIDS (AS$,3,2)

tells MBASIC to return a substring of the string A$, starting with
the third character, with a length of 2.

MBASIC functions are described in more detail in Chapter 7.
If the function returns numeric data, it is a numeric function and

may be used in a numeric expression. If it returns string data, it
is a string function and may be used in a string expression.

Radie fhaek

-56-

How to Construct an Expression

Understanding how to construct an expression will help you put
together powerful statements,instead of using many short ones. In
this section we will discuss the two kinds of expressions you may
construct:

. Simple
. Complex

as well as how to construct a function.

As we have stated before, an expression is actually data. This is
because once MBASIC performs all the operations, it returns one data
item. An expression may be string or numeric. It may be composed of:

. Constants
. Variables
. Operators
. Functions

Expressions may be either simple or complex:
A simple expression consists of a single term: a constant,
variable or function. If it is a numeric term, it may be preceded by
an optional + or - sign, or by the logical operator NOT.
For example:
+A 3.3 -5 SQR(8)

are all simple numeric expressions, since they only consist of one
numeric term.

A$ STRINGS (20,A$) "WORD" "M

are all simple string expressions, since they only consist of one
string term.

Radie fhaek

-57-

=
%)
>
2
O
O
O
Z
O
m
T
]
w

———MBASIC CONCEPTS o TRS-80 © —IB3-XENIX MRASIC

Here's how a simple expression is formed:

r,ég}_ﬂ CONSTANT
| variABLE
> FUNCTION |

A complex expression consists of two or more terms (simple
expressions) combined by operators. For example:

A-1 X+3.2-Y 1=1 A AND B ABS(B)+L0G(2)

are all examples of complex numeric expressions. (Notice that you
can use the relational expression (1=1) and the logical expression
(A AND B) as a complex numeric expression since both actually return
numeric data.)

A complex numeric expression is formed using the following
operators:

A$ + B$ "I" + Z§ STRINGS(1@, "A") + "M"

are all examples of complex string expressions.

Radio fhaek

-58-

TRS-XENIX MBASIC TRS-80 © MBASIC CONCEPTS

A complex string expression is formed using the following
operator:

Most functions, except functions returning system information,
require that you input either or both of the following kinds of
data:

. One or more numeric expressions
. One or more string expressions

This is how a function is formed:

If the data returned is a number, the function may be used as a term
in a numeric expression. If the data is a string, the function may
be used as a term in a string expression.

SIN(A) STRE(X) VAL (A) LOG(.53)

are all examples of functions.

Radio fhaek

-59-

=
w0
>
2
@)
O
O
pd
@)
m
T
o
w

TRS-80 °

S3Tid 1Sid

Chapter 5/ Disk Files

You may want to store data on your disk for future use. To do this,
you need to store the data in a "disk file", A disk file is an
organized collection of related data. It may contain a mailing list,
a personnel record, or almost any kind of information. This is the
largest block of information on disk that you can address with a
single command.

To transfer data from a MBASIC program to a disk file, and
vice-versa, the data must first go through a "buffer". This is an
area in memory where data is accumulated for further processing.

With MBASIC, you can create and access two types of disk files. The
difference between these two types is that each is created in a
different "mode". The mode you choose determines what kind of access
you will have to the file: sequential access or direct access.

Sequential-Access Files

With a sequential-access file, you can only access data in the same
order it was stored: sequentially. To read from or write to a
particular section in the file, you must first read through all the
contents in the file until you get to the desired section.

Data is stored in a sequential file as ASCII characters. Therefore,
it is ideal for storing free-form data without wasting space between
data items. However, it is Timited in flexibility and speed.

The statements and functions used with sequential files are:
OPEN WRITE# EOF
PRINT# INPUT# LOC
PRINT# USING LINE INPUT# CLOSE

These statements and functions are discussed in more detail in
Chapters 6 and 7.

Radio fhaek

-61-

DISK FILES TRS-80 © ~—IRS=XENIX MBASIC

Creating a Sequential-Access File

1. To create the file, OPEN it in "0" (output) mode and assign it a
buffer number (1 to 255).

Example
OPEN "O0", 1, "LIST.EMP"

opens a sequential output file named LIST/EMP and gives buffer 1
access to this file.

2. To write data to the file, use the WRITE# statement (you can also
use PRINT#).

Example
WRITE# 1, NS

writes variable N$ to the file, using buffer 1 (the buffer used
to OPEN the file). Remember that data must go through a buffer
before it can be written to a file.

3. To ensure that all the data was written to the file, use the
CLOSE statement.

Example
CLOSE 1

closes access to the file, using buffer 1 (the same buffer used
to OPEN the file).

Sample Program

19 OPEN "O", 1, “LIST.EMP"
20 LINE INPUT “NAME? "; N$
30 IF N$="DONE" THEN 60

49 WRITE#1, N$

5@ PRINT: GOTO 2¢

60 CLOSE 1

RUN

Note: The file "LIST.EMP" stores the data you input through the
aid of the program, not the program itself (the program
manipulates data). To save the program above, you must assign it
a name and SAVE it (refer to Chapter 1).

Radio fhaek

-62-

=)
7]
A
L
r
m
7]

Example

SAVE "PAYROLL"

would save the program under the name "PAYROLL". This would
enable you to edit, add or delete program lines later.

. To access data in the file, reOPEN it in the "I" (input) mode.
Example
OPEN "I“, 1, "LIST.EMP"

OPENs the file named LIST.EMP for sequential input, using buffer
10

. To read data from the file and assign it to program variables,
use either INPUT# or LINE INPUT#.

Examples
INPUT#1, N$

reads a string item into N$, using buffer 1 (the buffer used when
the file was OPENed).

LINE INPUT#1, NS
reads an entire line of data into N$, using buffer 1.

INPUT# and LINE INPUT# each recognize a different set of
"deTimiters" for reading data from the file. Delimiters are
characters that define the beginning or end of a data item. See
Chapter 7 for a detailed explanation of these statements.

Sample Program

19 OPEN “I", 1, “LIST.EMP"
20 IF EOF (1), THEN 19¢

30 INPUT#1, N$

49 PRINT N$

50 GOTO 20

199 CLOSE

Radie fhaek

-63-~

DI FILES TRS-80 © ——RAENIMBASIC

Updating a Sequential-Access File

You can add data at the end of a sequential-access file. But if you
simply open the file in "0" mode and start writing the data, you
will destroy the file's current contents.

Follow these steps instead:

1) OPEN the existing file in the "A" mode for sequential output,
after the pointer is positioned at the end-of-data.

2) Write the additional data to the new file.

Now you have a file on disk that includes all the previous data,
plus the data you just added in step two.

The following program illustrates this technique. It builds upon the
file we previously created under the name LIST.EMP.

Note: Read through the entire program first. If you encounter MBASIC
words (commands or functions) that are unfamiliar to you, refer to
Chapter 7 for their definitions.

NEW

19 OPEN "A™, 1, "“LIST.EMP®

20 LINE INPUT "TYPE A NEW NAME OR PRESS <N>"; N$
30 IF N$="N" THEN 60

40 WRITE#1, N$

50 GOTO 2¢

60 CLOSE 1

RUN

If you wanted the program to print on your display the information
stored in the updated file, add the following lines:

7@ OPEN “I", 1, "LIST/EMP"
8¢ IF EOF (1) THEN 2000

90 LINE INPUT#1, N$

109 PRINT N$

119 GOTO 8¢

2000 CLOSE

RUN

Once you have run this program, save it.

Radio fhaek

-64-

o
=
TRS-XENIX MBASIC TRS-80 °© DISK_FILES -
—
o
Example

SAVE "PAYROLL 2" 'saves the new program

Direct-Access Files

With a direct-access file, you can access data almost anywhere on
disk. It is not necessary to read through all the information, as a
with sequential-access file. This is possible because in a
direct-access file, information is stored and accessed in distinct
units called "records". Each record is numbered.

Creating and accessing direct-access files requires more program
steps than sequential-access files. However, direct-access files are
more flexible and easier to update. They generally take up less room
on disk because MBASIC stores them in packed binary format.

The maximum number of logical records is 32,767. Each record may
contain between 1 and 32767 bytes.

The statements and functions used with direct-access files are:

OPEN FIELD LSET/RSET
GET PUT CLOSE

LocC MKD$ MKI$

MKS$ CvD CVI

CvsS

These statements and functions are discussed in more detail in
Chapters 7.

Creating a Direct-Access File

1. To create the file, OPEN it for direct access in "D" mode.
Example
OPEN, "D", 1, "LISTING", 32
opens the file named "LISTING", gives buffer 1 direct access to
the file, and sets the record length to 32 bytes. (If the record

Tength is omitted, the default is 256 bytes). Remember that data
is passed to and from disk in records.

Radie fhaek

-65-

DISK FILES TRS-80 © ~———IRS-XENIX MBASIC

2. Use the FIELD statement to allocate space in the buffer for the

variables that will be written to the file. This is necessary
because you must place the entire record into the buffer before
putting it into the disk file.

Example

FIELD 1, 20 AS N$, 4 AS A$,8 AS P$
allocates the first 20 positions in buffer 1 to string variable
N$, the next four positions to A$, and the next eight positions

to P$. N$, A$ and P$ are now “"field names". The field statement
is ignored after the file is closed.

. To move data into the buffer, use the LSET statement. Numeric

values must be converted into strings when placed in the buffer.
To do this, use the "make" functions: MKI$ to make an integer
value into a string, MKS$ for a single precision value, and MKD$
for a double precision value.

Example

LSET N$=X$
LSET A$=MKS$(AMT)

. To write data from the buffer to a record (within a direct-access

disk file), use the PUT statement.
PUT 1, CODE%

writes the data from buffer 1 to a record with the number CODE%.
(The percentage sign at the end of a variable specifies that it
will store only integers.)

The following program writes information to a direct-access file:

19 OPEN "D", 1, "LISTING", 32

20 FIELD 1, 20 AS N$, 4 AS A$, 8 AS P$

30 INPUT "2-DIGIT CODE OR @ TO END"; CODE%
35 IF CODE%=@ THEN 120

49 INPUT “NAME"; X$

5@ INPUT “AMOUNT"; AMT

6¢ INPUT "PHONE"; TEL$

70 LSET N$ = X$

8F LSET A$ = MKS$(AMT)

Radio fhaek

-66-

TRS-XENIX MBASIC TRS"B ® m FILES

=
7
~
L
~
m
7z

9 LSET P$ = TELS
109 PUT #1, CODE%
110 GOTO 30

120 CLOSE

Every time the PUT statement is executed, a record is written to
the file. The two-digit code that is input in line 30 becomes the
record number.

Once you have run this program, save it.

Example

SAVE "DIRECTORY" ‘'saves the new program

Accessing a Direct-Access File

1. OPEN the file in "D" mode ("R" can also be used).
Example
OPEN "D", 1,"FILE",32

2. Use the FIELD statement to allocate space in the random buffer
for the variables that will be read from the file.

Example
FIELD 1, 20 AS N$, 4 AS A$, 8 AS P$

3. Use the GET statement to read the desired record from a direct
disk file into a direct buffer,

Example e
GET 1, CODE%
gets the record numbered CODE% and reads it into buffer 1.
4, Convert string values back to numbers using the "convert"
functions: CVI for integers, CVS for single precision values, and
CVD for double precision values.

Example

PRINT N$
PRINT CVS(AS$)

Radie fhaek

-67-

DISK FILES TRS-80 © —IRSXENDX MBASIC

The program may now access the data in the buffer.

The following program accesses the direct-access file "LISTING"
created with the previous program.

19 OPEN "D"“, 1, "LISTING", 32

20 FIELD 1,20 AS N$,4 AS AS$,8 AS P$

3¢ INPUT "2-DIGIT CODE OR @ TO END"; CODE%
35 IF CODE% = @ THEN 1000

49 GET #1, CODE%

50 PRINT N$

60 PRINT USING “$S###.##"; CVS(AS)

7¢ PRINT P$: PRINT

8¢ GOTO 30

1000 CLOSE

After typing this program, SAVE it and RUN it.

Radio fhaek

-68-

TRS-80 °

Chapter 6/ Introduction To MBASIC Statements And Functions
MBASIC is made up of keywords. These keywords instruct the computer
to perform certain operations.

Chapter 7 describes all of MBASIC's keywords. This chapter explains

the format used in Chapter 7. It also introduces you to MBASIC's two
types of keywords: statements and functions.

Format for Chapter 7

Keyword

Syntax parameter(s) or (argument(s))

explanation of parameters or arguments
Brief definition of keyword.
Detailed definition of keyword.
Example(s)
Sample Program(s)
This format varies slightly, depending on the complexity of each
keyword. For instance, some keywords are used alone (without
parameters or arguments). Others have several possible syntaxes. As
a general rule, definitions for statements are longer than
definitions for functions. That is because a statement is a complete

instruction to MBASIC, while a function is a built-in subroutine
which may only be used as part of a statement.

Radio Sfhaek

-69-

A
m
<
=
O
0
O
)]

~ Ol1 OH.LNI

INTRO TO KEYWORDS TRS-80 ¢ TRS-XENIX MBASIC

Some keywords have several sample programs. We added programs to
illustrate useful applications which may not be readily apparent.
Remember that this manual is to be used as a reference, not a
tutorial on how to program in MBASIC.

For a definition of the terms and notation used in Chapter 7, see
page 3-5 of the Introduction.

Statements

A program is made up of lines; each line contains one or more
statements. A statement tells the computer to perform some operation
when that particular line is executed. For example,

1¢¢ Sstop

tells the computer to stop executing the program when it reaches
line 10@.

Statements for assigning values to variables and defining memory
space are:

CLEAR clears all variables, indicates memory to be
allocated for program, variable, and stack
space.

COMMON passes variables to a CHAINed program.

DATA stores data in your program so that you may
assign it to a variable.

DEFDBL defines variables as double precision.

DEF FN defines a function according to your
specifications.

DEFINT defines variables as integers.

DEFSNG defines variables as single precision.

DEFSTR defines variables as strings.

DIM dimensions an array.

ERASE erases an array.

LET assigns a value to a variable (the keyword LET
may be omitted).

MID$ replaces a portion of a string.

OPTION BASE declares the minimum value for array subscripts.

RANDOMIZE reseeds the random number generator.

READ reads data stored in the DATA statement and
assigns it to a variable.

RESTORE restores the DATA pointer.

SWAP exchanges the values of variables.

®
Radio fhaek

-79-

— TRS-XENIX MBASIC TRS-80 © ——INIR0 10 KEYWORDS

Statements for altering program sequence:

CHAIN

END
FOR/NEXT
GOSUB
GOTO

IF...THEN...ELSE

ON...GOSUB
ON...GOTO
RETURN

STOP
WHILE...WEND

loads another program and passes variables to
the current program.

ends a program.

establishes a program loop.

transfers program control to the subroutine
transfers program control to the specified line
number.

evaluates an expression and performs an
operation if conditions are met.

evaluates an expression and branches to a
subroutine.

evaluates an expression and branches to another
program line.

returns from a subroutine to the calling
program.

stops program execution.

executes statements in a loop as long as a given
condition is true.

Statements for storing and accessing data on disk:

CLOSE
CvD

CVI
CcvsS
FIELD
GET
INPUT#
LINE INPUT#
LOCK
LSET
MKD$
MKI$
MKS$
OPEN

PRINT#
PRINT# USING

closes access to a disk file.

restores data from a direct disk file to double
precision.

restores data from a direct disk file to
integer.

restores data from a direct disk file to single
precision,

organizes a direct-access buffer,

gets a record from a direct-access file.

inputs data from a disk file.

inputs an entire line from a disk file.
restricts access to specified portions of a
file.

moves data (and left-justifies it) to a direct
file buffer.

converts a double-precision number to string for
direct-access write.

converts an integer to string for direct-access
write,

converts a single-precision number to string for
direct-access write.

opens a disk file.

writes data to a sequential disk file,

writes data to a disk file using the specified
format.

Radio Sfhaek

-71-

OL OHL1NI

A
m
<
=
o)
X
O
w

INTRO_TO KEYWORDS TRS-80 © TRS-XENIX MBASIC

PUT
RSET

UNLOCK
WRITE#

puts a record into a direct-access file.

moves data (and right-justifies it) to a direct
file buffer.

releases access restrictions placed on a file.
writes data to a sequential file.

Statements for debugging a program:

CONT

ERL

ERR

ERROR

ON ERROR GOTO
RESUME

TROFF

TRON

continues program execution.

returns the line number where an error occurred.
returns an error code after an error,

simulates the specified error.

sets up an error-trapping routine.

terminates an error-handling routine.

turns the tracer off.

turns the tracer on.

Statements for inputting data from the keyboard or outputting data
to the video display or the line printer:

CLS

INPUT

LINE INPUT
LIST

LLIST
LPRINT
LPRINT USING
PRINT

PRINT USING
PRINT @
PRINT TAB
WIDTH

WRITE

clears the display.

inputs data from the keyboard.

inputs an entire line from the keyboard.

lists a program to the display.

lists program to line printer.

prints an entire line to the display.

prints to printer using a specified format.
prints to the display.

prints to the display using a specified format.
specifies exactly where printing is to begin.
moves cursor to specified tab position.

sets the printed line width for the file which
is opened for output.

prints data at the display.

Statements for performing system functions or entering other modes

of operation:

AUTO
CALL
DELETE
EDIT
KILL
LOAD
MERGE
NAME
NEW
POKE

automatically numbers program lines.

calls an assembly-language subroutine.

erases program lines from memory.

edits program lines.

deletes a disk file.

loads a program from disk.

merges a disk program with a resident program.
renames a disk file.

erases a program from RAM, v

writes a byte into a memory location.

Radie fhaek

=72~

_ TRS-XENIXMBASIC TRG-80 © —INRO TO KEYWORDS

RENUM renumbers a program.

RUN executes a program,

SAVE saves a program on disk.

SHELL calls a TRS-XENIX command and returns to MBASIC.
SYSTEM returns to TRS-XENIX.

Functions

A function is a built-in subroutine. It may only be used as part of
a statement.

Ol OHINI

x
m
<
=
)
s
o
7]

Most MBASIC functions return numeric or string data by performing
certain built-in routines. Special print functions are used to
control the video display.

Numeric Functions (return a number):

ABS computes the absolute value.
ASC returns the ASCII code.
ATN computes the arctangent
CDBL converts to double precision.
CINT returns the largest integer not greater than the
parameter.
O computes the cosine.
CSNG converts to single precision
EXP computes the natural exponential.
FIX truncates to whole number,
FRE returns the number of bytes in memory not being
used.
INSTR searches for a specified string.
INT returns the largest whole number not greater
than the argument.
LEN returns the length of the string.
LOG computes the natural logarithm.
MEM returns the amount of memory.
PEEK returns a byte from a memory location.
RND returns the pseudorandom number.
SGN returns the sign.
SHELL executes a TRS-XENIX command, returns the
process I.D., and returns to MBASIC.
SIN calculates the sine.
SQR calculates the square root.
TAN computes the tangent.
VAL evaluates a string.
VARPTR returns the address for a buffer.
®
Radio fhaek

-73-

INTRO TO KEYWORDS TRS-80 °© TRS-XENIX MBASIC

String Functions (return a string value):

CHRS
DATES$
HEX$

LEFTS
MID$
0CT$
RIGHTS
SPACE$
STRS
STRINGS
TIMES

returns the specified character

returns today's date.

converts a decimal value to a hexadecimal
string.

returns the Teft portion of a string.
returns the mid-portion of a string.
converts a decimal value to an octal string.
returns the right portion of a string.
returns a string of spaces.

converts to string type.

returns a string of characters.

returns the time.

Input/Qutput Functions (perform miscellaneous functions with the
keyboard, display, disk files, or "devices"):

INKEY $
INPUTS

POS
SPC
EOF
LoC
LOF
LPOS

TAB

returns the keyboard character

returns a string of characters from either the
keyboard or a sequential disk file.

returns the cursor column position on the
display.

prints spaces to the display.

checks for end-of-file.

returns the current disk file record number.
returns the disk file's end-of-file record
number.

returns the column position at the line
printer. .
spaces to a tab position.

Radio fhaek

-74-

TRS-80 °

Chapter 7/ Statements And Functions

ABS Function
- ABS (number)

Computes the absolute value of number.

ABS returns the absolute value of the argument, that is, the
magnitude of the number without respect to its sign.

If number is greater than or equal to zero,

ABS (number)=number. If number is less than zero, ABS(negative
number)=number.

Example

X = ABS(Y)
computes the absolute value of Y and assigns it to X.
Sample Program

10¢ INPUT “"WHAT'S THE TEMPERATURE OUTSIDE (DEGREES F)"; TEMP

119 IF TEMP < @ THEN PRINT “THAT'S" ABS(TEMP) “BELOW ZERO!
BRR!": END

12¢ IF TEMP = @ THEN PRINT “ZERO DEGREES! MITE COLD!": END

130 PRINT TEMP “DEGREES ABOVE ZERO? BALMY!": END

Radio Shaek

-75-

A
m
<
=
o
)
O
w

KEYWORDS TRS-80 ® ——IRSXENDXUMBASIC

ASC Function

ASC(string)

Returns the ASCII code for the first character of string .

The value is returned as a decimal number. If string is null, an
"I1legal function call" error occurs.

Example

PRINT ASC("A")
prints 65, the ASCII code for "A".
Sample Program

ASC can be used to make sure that a program is receiving the proper
input. Suppose you've written a program that requires the user to
input hexadecimal digits @-9, A-F. To make sure that only those
characters are input, and exclude all other characters, you can
insert the following routine.

10¢ INPUT “ENTER A HEXADECIMAL VALUE (P-9,A-F)";N$

119 A=ASC(N$) 'get ASCII code
120 IF A>47 AND A<58 OR A>64 AND A<71 THEN PRINT "OK.": GOTO
100

139 PRINT "VALUE NOT OK." : GOTO 10Q

Radie fhaek

-76-

TRS-XENIX MBASIC

ATN Function

ATN(number)

Computes the arctangent of number in radians.

ATN returns the angle whose tangent is number. The result is
always double precision, regardliess of number's numeric type.

To convert this value to degrees, multiply ATN(number) by
57.29578.

Example
X = ATN(Y/3)

computes the arctangent of Y/3 and assigns the value to X.

Radio fhaek

=77~

SAHOMAIN

KEYWORDS TRS-80 ° TRS-XENIX MBASIC

AUTO Statement

AUTO [linell,increment]

Automatically generates a line every time you press <ENTER>.

AUTO begins numbering at line and displays the next line using
increment. The default for both values is 1. A period (.) can be
substituted for line. In this case, MBASIC uses the current line
number .,

IF AUTO generates a line number that has already been used, it
displays an asterisk after the number. To save the existing line,
press <ENTER> immediately after the asterisk. AUTO then generates
the next line number.

To turn off AUTO, press <CTRL><C> or <BREAK>. The current line is
canceled and MBASIC returns to command level.

Examples
AUTO

generates lines 1@, 20, 30, 4¢....
AUTO 100, 50

generates lines 100, 15@, 20@, 254....

Radio fhaek

-]8-

TRS-XENIX MBASIC TRS-80 ° KEYWORDS

CALL Statement

CALL variable [paremeter list]

Transfers program control to a machine language subroutine stored at
variable.

Variable contains the address where the subroutine starts in
memory. Variable may not be an array variable.

If variable is zero, then the character string "<variable>" is

used to search for the location to start execution. "<variable>"
has to match the symbolic subroutine name used when the subroutine
was either assembled or compiled. Remember that all variable names
must be in capitals. The C compiler modifies all subrountine names
by prefixing an underscore. Thus, the subroutine FO0 is
represented internally as FOO. MBASIC first searches for F00. If
this is not found, then it searches for FO00 and starts execution at
_F00. The value of the address (in this case F00) is returned in
<variable>. Subsequent calls using the same <variable> avoids

the search phase and starts execution at the variable's value.

For this reason, all <variable's> used must be either single or
double precision. They cannot be an integer; an integer, is not
large enough to hold the 24-bit address of the 68000.

A
m
<
=
o
o)
O
)

Example

12¢° CALL MYROUT(I,J,K)

Parameter list contains the values that are passed to the
external subroutine. Parameter list may contain only variables.

See Appendix E.
Example

119 MYROUT = &HD@QQ
120 CALL MYROUT(I,J,K)

transfers program control to an assembly-language routine stored at
address D@P@. The values of I, J. and K are passed to the routine.

Radio fhaek

-79-

KEYWORDS TRS-80 °© TRS-XENIX MBASIC

CDBL Function
COBL (number)

Converts number to double precision.

CDBL returns a 14-digit value. This function may be useful if you

want to force an operation to be performed in double precision, even
though the operands are single precision or integers.

Sample Program

210 A=454.67
220 PRINT A; CDBL(A)
RUN
454,67 454.67
Ok

Radio Sfhaek

-8g-

TRS-XENIX MBASIC KEYWORDS

TRS-80 °

CHAIN Statement

CHAIN [MERGE] filespec [,1ine] [,ALL] [,DELETE
line-line]

Loads a MBASIC program named filespec, chains it to a "main"
program, and begins running it.

Line is the first line to be run in the CHAINed program. If
omnitted, execution begins at the first program line of the CHAINed
program. Line is not affected by the RENUM command.

The ALL option passes every variable in the main program to the
CHAINed program. If omitted, the main program must contain a COMMON
statement to pass variables.

The MERGE option "overlays" the lines of filespec with the main
program. See MERGE to understand how MBASIC overlays (merges)
program lines.

The DELETE option deletes lines in the overlay so that you can
MERGE in a new overlay.

Examples

A
m
<
=
o
oY)
O
n

CHAIN PROG2

loads PROG2, chains it to the main program currently in memory, and
begins executing it.

CHAIN SUBPROG.BAS, ALL

loads, chains and executes SUBPROG.BAS. The values of all the
variables in the main program are passed to SUBPROG.BAS.

Sample Program 1

10 REM THIS PROGRAM DEMONSTRATES CHAINING USING COMMON TO PASS
VARIABLES.

20 DIM A$(2),B$(2)

30 COMMON A$(),BS$()

40 A$(1)="VARIABLES IN COMMON MUST BE ASSIGNED"

50 A$(2)="VALUES BEFORE CHAINING"

Radie fhaek

-81-

KEYWORDS TRS-80 ° TRS-XENIX MBASIC

6¢ B$(1)="":B$(2)=""

7¢ CHAIN"PROG2"

8¢ PRINT: PRINT B$(1): PRINT: PRINT B$(2): PRINT
90 END

Save this program using the 'A' option as "PROGl". Save "filespec",
A saves the program in ASCII format. Enter the NEW command then
type:

19 REM THE STATEMENT “DIM A$(2),B$(2)" MAY ONLY BE EXECUTED
ONCE.

20 REM HENCE, IT DOES NOT APPEAR IN THIS MODULE.

30 COMMON A$(),B$()

40 PRINT: PRINT A$(1);A$(2)

5 B$(1)="NOTE HOW THE OPTION OF SPECIFYING A STARTING LINE
NUMBER"

60 B$(2)="WHEN CHAINING AVOIDS THE DIMENSION STATEMENT IN
'PROGL'. "

7¢ CHAIN "PROG1",80

80 END

Save this program as "PROG2" using the 'A' option. Type NEW. Load
"PROG1" and run it. Your screen should display:

VARIABLES IN COMMON MUST BE ASSIGNED VALUES BEFORE
CHAINING. NOTE HOW THE OPTION OF SPECIFYING A STARTING
LINE NUMBER WHEN CHAINING AVOIDS THE DIMENSION
STATEMENT IN "PROG1",

Sample Program 2
Type NEW and this program:

10 REM THIS PROGRAM DEMONSTRATES CHAINING USING THE MERGE AND
ALL OPTIONS.

20 A$="MAINPRG"

30 CHAIN MERGE "OVRLAY1",1000,ALL

4@ END

Save this program as "MAINPROG". Enter the NEW command then type:

100@ PRINT A$;"HAS CHAINED TO OVRLAY1.*®

1019 A$="OVRLAY1"

1029 B$="OVRLAY2"

193¢ CHAIN MERGE "OVRLAY2",100@,ALL,DELETE 1020-1050
1949 END

Radio Sfhaek

-82-

TRS-XENIX MBASIC KEYWORDS

TRS-80 °

Save

this program on disk as "OVRLAY1" using the A option. Enter

the NEW command then type:

Save

1009 PRINT A$; " HAS CHAINED TO ";B$;"."
101g END

this program on disk as "OVRLAY2" using the A option. Load

"MAINPROG" and run it.

Your

Note:

screen will display:

MAINPROG HAS CHAINED TO OVRLAY1.
OVRLAY1 HAS CHAINED TO OVRLAY2.

The CHAIN statement Teaves the files OPEN and preserves the
current OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not preserve
variable types or user-defined functions for use by the chained
program. That is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEF FN
statements containing shared variables must be restated in the
chained program.

When using the MERGE option, user-defined functions should be
placed before any CHAIN MERGE statements in the program.
Otherwise, the user-defined functions will be undefined after
the merge is complete.

Radio fhaek

-83-

A
m
<
=
o
)
O
w

KEYWORDS TRS-80 ° TRS-XENIX MBASIC

CHR$ g ~ Function
CHR$(code)

Returns the character corresponding to an ASCII or control code.

This is the inverse of the ASC function. CHR$ is commonly used to
send a special character to the display.

Examples
PRINT CHR$(35)

prints the character corresponding to ASCII code 35 (the character
is #).

Sample Program

The following program lets you investigate the effect of printing
each of the 256(P-255) codes on the display.

109 CLS
11¢ INPUT"TYPE IN THE CODE (@-255)";C
120 PRINT CHRS$(C); JUST PRINTED CODE* C

130 GOTO 119

Radio fhaek

-84-

TRS~-XENIX MBASIC KEYWORDS

TRS-80 °

CINT Function

CINT (number)

Converts number to integer representation.

CINT rounds the fractional portion of number to make it an
integer.

For example, CINT(1.5) returns 2; CINT(-1.5) returns -2. The result
is a two-byte integer.

Sample Program

PRINT CINT(17.65)
18
Ok

Radio fhaek

-85~

SAHOMAZIN

KEYWORDS TRS-80 © TRS-XENIX MBASIC

CLEAR Statement

CLEAR

CLEAR ,[memory space] ,[stack space]

Clears the value of all variables, closes all open files and sets
the amount of memory space and stack space.

Memory space must be an integer. It indicates how many bytes are

to be allocated for program, variable, and stack space. The default
is the current amount allocated. 31,085 bytes are allocated upon
entry to MBASIC. Memory space may be as large as 16,777,215.

Memory space is position dependent; if omitted, the commas must
still be specified.

Stack space must also be an integer. This sets aside memory for
temporarily storing internal data and addresses during subroutine
calls. This number may be as large as 16,777,215. The default is the
current amount allocated (1,024 bytes are allocated upon entry to
MBASIC). An "Qut of memory" error occurs if there is insufficient
stack space for program execution. The FRE and MEM functions do not
count stack space.

Note: MBASIC allocates string space dynamically. An "Out of string
space" error occurs only if no free memory is left for MBASIC.

Since CLEAR initializes all variables, you must use it near the
beginning of your program, before any variables have been defined
and before any DEF statements. CLEAR used with either of its two
options causes data written using LPRINT statements to be output to
the printer.
Examples:

CLEAR

clears all variables and closes all files. Memory allocations
remain unchanged.

CLEAR , 3200

clears all variables and closes all files; allocates 320@ bytes for
program, variables, and stack space.

Radio fhaek

-86-

TRS-XENIX MBASIC KEYWORDS

TRS-80 °

CLEAR ,61000, 200

clears all variables and closes all files; allocates 61000 bytes for
program and variable space, and 20 bytes for stack space.

CLEAR ,,2000

clears all variables and closes all files; 20@@ bytes of memory are
allocated for stack space.

A
m
<
=
o
oY)
O
)

Radio fhaek

-87-

KEYWORDS TRS-80 © TRS~-XENIX MBASIC

CLOSE Statement
CLOSE [buffer,...]

Closes access to a file.

Buffer is the number of the buffer used to OPEN the file. If no
buffers are specified, all open files are closed.

This command terminates access to a file through the specified
buffers. If a buffer was not assigned in a previous OPEN
statement, then

CLOSE buffer
has no effect.

Do not remove a diskette which contains an Open file. CLOSE the file
first. This is because the last records may not have been written to
disk yet. Closing the file writes the data, if it hasn't already
been written. Also, the disk must be unmounted before it can be
removed from the drive. Please refer to the /etc/mount and
/etc/umount commands in the XENIX User's Guide.

See also OPEN and the chapter on "Disk Files".
Examples

CLOSE 1, 2, 8

terminates the file assignments to buffers 1,2, and 8. These
buffers can now be assigned to other files with OPEN statements.

CLOSE FIRST% + COUNT%

terminates the file assignment to the buffer specified by the sum
FIRST% + COUNT%.

Radio Shaek

-88-

o

TRS-XENIX MBASIC

TRS-80 °© KEYWORDS

CLS Statement

CLS

Clears the screen.

CLS fills the display with blanks and moves the cursor to the

upper-left corner. Alphanumeric characters and graphics blocks are
wiped out.

Sample Program

540 CLS

55 FOR T =1 TO 24

560 PRINT STRING$(79,33)
57¢ NEXT I

580 GOTO 540

A
m
<
=
o)
X
O
w

Radio Sfhaek

-89-

KEYWORDS TRS-80 ° TRS-XENIX MBASIC

COMMON Statement
COMMON variable,...

Passes one or more variable(s) to a CHAINed program.

This statement is used in conjunction with CHAIN. COMMON may appear
anywhere in a program, but we recommend using it at the beginning.

The same variable cannot appear in more than one COMMON statement.
To specify array variables, append "()" to the variable name. If
all variables are to be passed, use CHAIN with the ALL option and
omit the COMMON statement.

Note: Array variables used in a COMMON statement must have been
declared in a DIM statement.

Example
99 DIM D()
1@ COMMON A, B, C, D(),G$
11¢ CHAIN "PROG3", 10

line 100 passes variables A, B, C, D and G$ to the CHAIN command in
line 11@.

Note: The CLEAR command clears COMMON variables.
See also CHAIN and CLEAR.

Radio fhaek

-9g-

TRS-XENIX MBASIC KEYWORDS

TRS-80 °

CONT Statement

CONT

Resumes program execution.

You may only use CONT if the program was stopped by the <BREAK> key,
<CTRL><C>, a STOP or an END statement in the program.

CONT is primarily a debugging tool. During a break or stop in
execution, you may examine variable values (using PRINT) or change
these values using immediate lines or commands. Then type CONT
<ENTER> and execution continues with the current variable values.

You cannot use CONT after EDITing your program lines or otherwise

changing your program. CONT is also invalid after execution has
ended normally.

Example

10 INPUT A, B, C

20 K=A"2405.3

30 L=B"3/.26

4¢ STOP

5@ M=C*4(*K+10@: PRINT M

SAHOMAINA

Run this program.
You will be prompted with

?
Type: 1, 2, 3

The program will halt execution and then you can type any immediate
command that you wish.

For example:
PRINT L

displays 30.76923876923. You can also change the value of A, B, or
C.

Radio fhaek

-91-

KEYWORDS TRS-80 °© TRS-XENIX MBASIC

For example:
C=4
changes the value of C in the program. Type:
CONT
Your screen will display 259.99999996152
See also STOP.

Radio fhaek

-92-

TRS-XENIX MBASIC KEYWORDS

TRS-80 °

CoS Function
COS (number)

Computes the cosine of number.

COS returns the cosine of number in radians. The angle must be
given in radians. When number is in degrees, use COS(number *
.P1745329).
The result is always double precision.
Examples

Y = COS(X * ,01745329)

returns the cosine of X, if X is an angle in degrees.

PRINT COS(5.8) - COS(85 * .42)

prints the arithmetic (not trigonometric) difference of the two
cosines.

SAHOMAIN

Radie fhaek

-93-

KEYWORDS TRS-80 ° TRS-XENIX MBASIC

CSNG Function

CSNG(number)

Converts number to single precision.

Example
PRINT CSNG(.1453885509)

prints .145389. Note that only six significant digits are printed
and the sixth digit (9) is rounded.

Sample Program

280 V# = 876.2345678#

290 PRINT V#; CSNG(V#)
RUN
876.2345678 876.235

Radio Shaek

-94-

TRS-XENIX MBASIC KEYWORDS

TRS-80 °©

CvD, CVI, CVS Functions

CVD(eight-byte string)
CVS(four-byte string)
CVI (two-byte string)

Convert string values to numeric values.

These functions let you restore data to numeric form after it is
read from disk. Typically, the data has been read by a GET
statement, and is stored in a direct-access file buffer.

CVD converts an eight-byte string to a double-precision number.
CVS converts a four-byte string to a single-precision number. CVI
converts a two-byte string to an integer.

CVD, CVI, and CVS are the inverses of MKD$, MKI$, and MKSS$,
respectively.

Examples

Suppose the name GROSSPAY$ references an eight-byte field in a
direct-access file buffer, and after GETing a record, GROSSPAY$
contains an MKD$ representation of the number 13123.38. Then the
statement

A# = CVD(GROSSPAY$)

assigns the numeric value 13123.38 to the double-precision variable
A#‘

Sample Program

1429 OPEN "R", 1, "TEST.DAT"

1439 FIELD 1, 2 AS I1$, 4 AS 12§, 8 AS I3$
1449 GET 1

145¢ PRINT CVI(I1$), CVS(I2$), CVD(I3$)
146¢ CLOSE

This program opens a file named TEST.DAT which is assumed to have
been previously created. (For the program which creates the file,
see the section on MKD$, MKI$, and MKS$). CVI, CVS, and CVD are used
to convert string data back to numeric form.

Radie fhaek

-95-

SAHOMAIN

KEYWORDS ™TRS-80 ° TRS-XENIX MBASIC

DATA Statement
DATA constant,...

Stores numeric and string constants to be accessed by a READ
statement.

This statement may contain as many constants (separated by commas)
as will fit on a line. Each will be read sequentially, starting with
the first constant in the first DATA statement, and ending with the
last item in the last DATA statement.

Numeric expressions are not allowed in a DATA list. If your string
values include leading blanks, colons, or commas, you must enclose
these values in double quotation marks.

DATA statements may appear anywhere it is convenient in a program.

The data types in a DATA statement must match up with the variable

types in the corresponding READ statement, otherwise a syntax error
in Tine # occurs.

Examples

1340 DATA NEW YORK, CHICAGO, LOS ANGELES, PHILADELPHIA, DETROIT
stores five string data items. Note that quote marks aren't needed,
since the strings contain no delimiters and the leading blanks are
not significant.

1350 DATA 2.72, 3.14159, ©.9174533, 57.29578
stores four numeric data items.

136@ DATA "SMITH, T.H.", 38, "THORN, J.R.", 41
stores both types of constants. Quote marks are required around the
first and third items.
Sample Program

LIST

19 PRINT “CITY", “STATE", “ZIP™“
20 READ C$,S$,Z

3@ DATA DENVER, COLORADO, 8p211

Radio fhaek

-96-

TRS-XENIX MBASIC

TRS-80 © KEYWORDS

49 PRINT C$,S$,Z

This program READS string and numeric data from the DATA statement
in line 3@, and displays on your screen:

CITY STATE ZIP
DENVER COLORADO 80211

Radie fhaek

-97-

SAHOMAIN

KEYWORDS TRS-80 ° TRS~-XENIX MBASIC

DATES Function
DATES

Returns the current date in the specified string variable.

The operator sets the date when TRS-XENIX is started up.

During a program, if you request the date, MBASIC assigns it to the
specified string variable. For example:

A$ = DATES

assigns the date string to A$. If you print AS$:
PRINT A$

it is displayed in this fashion:
$3-12-1983

which means March 12, 1983.

Sample Program

139¢ PRINT "Inventory Check:"

1199 IF DATES$ = @1-31-198@ THEN PRINT "“Today is the last day of
January 198@. Time to perform monthly inventory.": END

111¢ A$ = LEFT$ (DATE$,5): B$ = RIGHTS (A$,2)

112¢ B = VAL (BY) _

113¢ PRINT 31-B "days until inventory time"

Radio fhaek

-98-

TRS~XENIX MBASIC KEYWORDS

TRS-80 °

DEFDBL/INT/SNG/STR Statement

DEFDBL letter,...
DEFINT letter,...
DEFSNG Tetter,...
DEFSTR letter,...

Defines any variables beginning with letter(s) as: (DBL) double
precision, (INT) integer, (SNG) single precision, or (STR) string.

Note: A type declaration character always takes precedence over a
DEF statement.

Examples
10 DEFDBL L-P

classifies all variables beginning with the letters L through P as
double-precision variables. Their values include 14 digits of
precision, and all 14 are printed out.

10 DEFSTR A

classifies all variables beginning with the letter A as string
variables.

190 DEFINT I-N, W,Z

classifies all variables beginning with the letters I through N
along with W and Z as integer variables. Their values are in the
range -32768 to 32767.

19 DEFSNG I, Q-T
classifies all variables beginning with the letters I and Q through

T as single-precision variables. Their values include seven digits
of precision, and all seven are printed out.

Radio fhaek

-99-

SAHOMAIM

KEYWORDS TRS-80 © —IRS-XENIX MBASIC

DEF FN Statement

DEF FN function name [(argument,...)] =function
definition

Defines function name according to your function definition.

Function name must be a valid variable name. The type of variable
used determines the type of value the function will return. For
example, if you use a single-precision variable, the function will
always return single-precision values.

Argument represents those variables in function definition that
are to be replaced when the function is called. If you enter several
variables, separate them by commas.

Function definition is an expression that performs the operation

of the function. A variable used in a function definition may or may
not appear in argument. If it does, MBASIC uses the argument's to
perform the function. Otherwise, it uses the current value of the
variable.

Once you define and name a function (by using this statement), you
can call it and MBASIC performs the associated operations.

Examples
DEF FNR=RND(9¢)+9

defines a function FNR to return a random value between 10 and 99.
Notice that the function can be defined with no arguments.

210 DEF FNW#(A#,B#)=(A#-B#)*(A#-B#)
280 T=FNW#(1#,d#)

defines function FNW# in line 21@. Line 28@ calls that function and
replaces parameters A# and B# with parameters I# and J#. (We assume
that I# and J# were assigned values elsewhere in the program).

Note: Using a variable as an parameter in a DEF FN statement has no
effect on the value of that variable. You may use that variable in
another part of the program without interference from DEF FN.

Radie fhaek

-100-

TRS-XENIX MBASIC KEYWORDS

TRS-80 °

DELETE Statement

DELETE 1inel - line2

Deletes from linel through line2 of a program in memory.

A period (".") can be substituted for either linel or line2 to
indicate the current line number.

Examples
DELETE 79

deletes line 7@ from memory. If there is no line 7@, an error will
occur.

DELETE 5@-11¢
deletes Tines 5@ through 118 inclusive.
DELETE -40¢
deletes all program lines up to and including line 40.

DELETE -.

A
m
<
=
O
Y
O
2]

deletes all program lines up to and including the line that has just
been entered or edited.

DELETE .

deletes the program line that has just been entered or edited.

Radie fhaek

-101-

KEYWORDS TRS-80 © TRS-XENIX MBASIC

DIM Statement

DIM array (dimension(s)), array (dimension(s)),...

Sets aside storage for arrays with the dimensions you specify.

This statement is useful for structured data processing.

Arrays may be of any type: string, integer, single precision or
double precision, depending on the type of variable used to name the
array. If no type is specified, the array is classified as single
precision.

When you create the array, MBASIC reserves space in memory for each
element of the array. All elements in a newly- created array are set
to zero (numeric arrays) or the null string (string arrays).

Note: The lowest element in a dimension is always zero, unless
OPTION BASE 1 has been used. See OPTION BASE for more information.

Arrays can be created implicitly, without explicit DIM statements.
Simply refer to the desired array in a MBASIC statement, e.q.,

A(5) = 300
creates array A and assigns element A(5) the value of 3@@. Each
dimension of an implicitly-defined array is 11 elements deep,
subscripts @¢-14.
Examples

DIM AR(100)

sets up a one-dimensional array AR(), containing 101 elements:
AR(@), AR(1l), AR(2),..., AR(98), AR(99), and AR(10@).

Note: The array AR() is completely independent of the variables AR.
DIM L1%(8,25)
sets up a two-dimensional array L1%(,), containing 9 x 26 integer

elements, L1%(@,0), L1%(1,0), L1%(2,0),...,L1%(8,0), L1%(@,1),
L1%(1,1),...,L1%(8,1),...,L1%(@,25), L1%(1,25),..., L1%(8,25).

Radio fhaek

-102-

TRS-XENIX MBASIC KEYWORDS

TRS-80°

Two-dimensional arrays like AR(,) can be thought of as a table in
which the first subscript specifies a row position, and the second
subscript specifies a column position:

g, 0,1 g,2 9,3 #,23 9,24 9,25
1,9 1,1 1,2 1,3 cee 1,23 1 1

7.0

7,1 7,2 7,3 7,23 7,24 7,25
8,9 8,1 8,2 8,3 8,23 8,24 8,25
DIM B1(2,5,8), CR(2,5,8), LY$(50,2)

sets up three arrays:

B1(,,) and CR (, ,) are three-dimensional, each containing 3*6*9
elements.

LY(,) is two-dimensional, containing 51*3 string elements.

Radio fhaek

-103-

SAHOMAIM

KEYWORDS TRS~-XENIX MBASIC

TRS-80 °

EDIT Statement
EDIT line

Enters the edit mode so that you can edit line.
See the chapter on the "Edit Mode" for more information.
Examples
EDIT 100
enters edit mode at line 100.
EDIT .

enters edit mode at current line,

Radio fhaek

-194-

TRS-XENIX MBASIC KEYWORDS

TRS-80 °

END Statement

END

Ends execution of a program.

This statement may be placed anywhere in the program. It forces
execution to end at some point other than the last sequential Tline.

When the END statement is encountered it spools the LPRINT buffer to
the Tine printer.

An END statement at the end of a program is optional.
Sample Program

4¢ INPUT S1, S2

5¢ GOSUB 10¢

55 PRINT H

60 END

100 H=SQR(S1*S1 + S2*S2)
110 RETURN

line 6@ prevents program control from “crashing" into the

subroutine., Line 100 may only be accessed by a branching statement,
such as GOSUB in line 50.

Radie fhaek

-1¢5-

SAHOMAIM

KEYWORDS TRS-80 ° TRS-XENIX MBASIC

EOF Function
EOF (buffer)

Detects the end of a file.

This function checks to see whether all characters up to the

end-of -file marker have been accessed, so you can avoid "Input past
end" errors during sequential input.

EOF (buffer) returns @ (false) when the EOF record has not been
read yet, and -1 (true) when it has been read. The buffer number
must access an OPEN file.

This function is valid for any file which is opened for input. A
file opened to "KYBD: " is at its end when CTL-D is pressed.

Sample Program

The following sequence of lines reads numeric data from DATA.TXT
into the array A(). When the last data character in the file is
read, the EOF test in line 1508 "passes", so the program branches
out of the disk access loop.

147¢ DIM A(100) 'ASSUMING THIS IS A SAFE VALUE
148¢ OPEN "I", 1, "DATA.TXT"
1490 1% = @

15¢¢ IF EOF (1) THEN GOTO 1540

1519 INPUT#1, A(I%)

1520 1% = 1% + 1

153¢ GOTO 1500

1540 REM PROG. CONT. HERE AFTER DISK INPUT

Radio Shaek

-106-

TRS-XENIX MBASIC KEYWORDS

TRS-80 °

ERASE Statement
ERASE array,...

Erases one or more arrays from a program.

This lets you to either redimension arrays, or use their previously
allocated space in memory for other purposes.

If one of the parameters of ERASE is a variable name which is not
used in the program, an "Illegal Function Call" occurs.

Example
440 DIM C(1@), F(19)
45@ ERASE C,F
46¢ DIM F(99)

line 450 erases arrays C and F. Line 460 redimensions array F.

Radie fhaek

-1p7-

A
m
<
=
o
)
.
)

KEYWORDS TRS-80 ° TRS-XENIX MBASIC

ERL Statement
ERL

Returns the line number in which the most recent error occurred.

This function is primarily used inside an error-handling routine. If
no error has occurred when ERL is called, line number @ is returned.
Otherwise, ERL returns the line number in which the error occurred.
If the error occurred in the command mode, 65535 (the largest number
representable in two bytes) is returned.
Examples

PRINT ERL
prints the line number of the error.

E = ERL

stores the error's line number for future use.

7 el - ?(\n%g hin€ & on which errop nofnled

Radio Shaek

-1¢8-

TRS-XENIX MBASIC KEYWORDS
‘ > TRS-80 °

ERR Statement

ERR

Returns the error code (if an error has occurred).

_ERR is only meaningful inside an error-handling routine accessed by
ON ERROR GOTO. See Appendix A for MBASIC's Error Codes.

Example
IF ERR = 7 THEN 100@ ELSE 2000
branches the program to line 1000 if the error is an "Qut of Memory"

error (code 7); if it is any other error, control goes instead to

Tine 200@.

?grfwwuﬂﬁ PVWﬁ”fff@f'CQéGi

SAHOMAIM

Radio Shaek

-109-

KEYWORDS TRS-XENIX MBASIC

TRS-80 °

ERROR Statement
ERROR code

Simulates a specified error during program execution.

Code is an integer expression in the range @ to 255 specifying one
of MBASIC's error codes.

This statement is mainly used for testing an ON ERROR GOTO routine.
When the computer encounters an ERROR code statement, it proceeds
as if the error corresponding to that code had occurred. (Refer to
the Appendices for a listing of error codes and their meanings).

Example

ERROR 1

a "Next Without For" error (code 1) "occurs" when MBASIC reaches
this line.

Sample Program

19 ON ERROR GOTO 70

20 READ A

3¢ PRINT A

49 GOTO 20

5@ PRINT “DATA HAS BEEN READ IN"

6@ END

7¢ IF ERR = 4 THEN RESUME 50

80 ON ERROR GOTO @

9¢ DATA 4, -2, 0, 5,9, 2, 2, 31,7, 13,1

This program "traps" the Out of Data error, since 4 is the code for
that error.

Radio fhaek

-110-

TRS~XENIX MBASIC KEYWORDS

TRS-80 °

EXP Function

EXP(number)

Calculates the natural exponential of number,

Returns e (base of natural logarithms) to the power of number.
This is the inverse of the LOG function; therefore, number =

LOG(EXP(number)). The number you supply must be less than or
equal to 87.3365.

The result is always double precision.
Example

PRINT EXP(-2)
prints the exponential value .13533528323662.
Sample Program

310 INPUT "NUMBER"; N
320 PRINT "E RAISED TO THE N POWER IS" EXP(N)

Radio fhaek

-111-

A
m
<
=
@)
X
O
w

KEYWORDS TRS-80 ° TRS-XENIX MBASIC

FIELD Statement

FIELD buffer, length AS field name,...

Divides a direct-access buffer into one or more fields. Each field
is identified by field name and is the length you specify.

Field name must be a string variable.

This divides a direct file buffer so that you can send data from
memory to disk and disk to memory. FIELD must be run prior to GET or
PUT.

Before "fielding" a buffer, use an OPEN statement to assign that
buffer to a particular disk file. (The random-access mode, i.e.,
OPEN "R",... must be used). The sum of all field lengths can be Tess
than or equal the record length assigned when the file was OPENed.

You may use the FIELD statement any number of times to "re-field" a
file buffer. "Fielding" a buffer does not clear the buffer's
contents; only the means of accessing it. Field definitions are
ignored after a file is closed.

See also the chapter on "Disk Files", OPEN, CLOSE, PUT, GET, LSET,
and RSET.

Example
FIELD 3, 128 AS A$, 128 AS BS

tells MBASIC to assign two 128-byte fields to the variables A$ and
B$. If you now print A$ or B, you will see the contents of the
field. Of course, this value would be meaningless unless you have
previously used GET to read a 256-byte record from disk.

Note 1: A1l data--both strings and numbers--must be placed into the
buffer in string form. There are three pairs of functions (MKI$/CVI,
MKS$/CVS, and MKD$/CVD) for converting numbers to strings and
strings to numbers.

FIELD 3, 16 AS NM$, 25 AS ADS$, 1@ AS CY$, 2 AS ST$,7 AS ZP$
assigns the first 16 bytes of buffer 3 to field NM$; the next 25

bytes to AD$; the next 1@ to CY$; the next 2 to ST$; and the next 7
to ZP$.

Radio fhaek

-112-

RS-XENIX MBASIC KEYWORDS
L TRS-80 °

Note 2: String variables assigned in the FIELD statement should
only be used with LSET and RESET. DO NOT redefine string
variables used in FIELD statements within your program.

Radio fhaek

-113-

A
m
<
s
@)
=y
O
2]

KEYWORDS TRS-80 ° TRS-XENIX MBASIC

FIX Function
FIX(number)

Returns the truncated integer of number.

A1l digits to the right of the decimal point are simply chopped off,
so the resultant value is a whole number,

The result is the same precision as the argument (except for the
fractional portion).

Examples

PRINT FIX (2.6)
prints 2.

PRINT FIX(-2.6)

prints -2.

Radio fhaek

-114-

TRS-XENIX MBASIC KEYWORDS

TRS-80 °

FOR/NEXT Statement

FOR variable = initial value TO final value [STEP
increment]

NEXT [variable]

Establishes a program loop.

A loop allows for a series of program statements to be executed over
and over a specified number of times.

MBASIC executes the program lines following the FOR statement until
it encounters a NEXT. At this point, it increases variable by STEP
increment. If the value of variable is less than or equal to

final value, MBASIC branches back to the line after FOR, and
repeats the process. If variable is greater than final value, it
completes the loop and continues with the statement after NEXT.

If increment has a negative value, then the final value of
variable is actually lower than the initial value.

MBASIC always sets the final value for the Toop variable before
setting the initial value.

A
m
<l
=
o
X
O
w

Note: MBASIC skips the body of the loop if initial value times the

sign of STEP increment exceeds final value times the sign of
STEP increment.

Example

20 FOR H=1 T0 2 STEP -2
3¢ PRINT H
49 NEXT H

the initial value of H times the sign of STEP increment is greater
than the final value of H times the sign of STEP increment,
therefore MBASIC skips the body of the loop. (The sign of STEP
increment is negative in this case).

Sample Program

820 I=5

83 FORI=1T0TI+5
840 PRINT I;

850 NEXT

RUN

Radio fhaek

-115-

KEYWORDS TRS-XENIX MBASIC

TRS-80 °

this loop is executed ten times. It produces the following output:
1 2 3 45 6 7 8 9 10
Nested Loops

FOR/NEXT Tloops may be "nested". That is, a FOR...NEXT loop may be
placed within the context of another FOR...NEXT loop.

The NEXT statement for the inside loop must appear before the NEXT
for the outside loop. If nested loops have the same end point, a
single NEXT statement may be used for all of them.

Sample Program

880 FOR I =170 3

89@ PRINT "OUTER LOOP"
900 FOR J =1 T0 2

919 PRINT "INNER LOOP"
920 NEXT J

930 NEXT I

This program performs three "“outer loops" and within each, two
"inner loops".

NEXT can be used to close nested loops by listing the
counter-variables. For example, delete line 92¢ and change 93§ to:

NEXT Jd, I

Note: In nested loops, if the variable(s) in the NEXT statement is
omitted, the NEXT statement matches the most recent FOR statement.

Radio fhaek

-116-

TRS-XENIX MBASIC KEYWORDS

TRS-80 °

FRE ' Function

FRE (dummy number)

Returns the amount of free memory space.
FRE returns the amount of space in bytes.
Examples

PRINT FRE(®)

prints the amount of free memory. The memory that the program stack
occupies is included in this total.

SAHOMAIM

Radio fhaek

-117-

KEYWORDS TRS-80 °© TRS-XENIX MBASIC

GET Statement

GET buffer [,record]

Gets a record from a direct disk file and places it in a buffer.
Before using GET, you must OPEN the file and assign it a buffer.
When MBASIC encounters GET, it reads the record number from the file
and places it into the buffer. The actual number of bytes read
equals the record length set when the file is OPENed.

If record is omitted, MBASIC gets the next record (after the last
GET) and reads it into the buffer.

Examples
GET 1

gets the next record into buffer 1.
GET 1, 25

gets record 25 into buffer 1.

Radio Shaek

-118-

TRS-XENIX MBASIC KEYWORDS

TRS-80 °

GOSUB Statement
GOSUB 1line

Goes to a subroutine, beginning at line.

You can call a subroutine as many times as you want. When the
computer encounters RETURN in the subroutine, it returns control to
the statement which follows GOSUB.

GOSUB is similar to GOTO in that it may be preceded by a test
statement. Every subroutine must end with a RETURN.

Example

GOSUB 140¢
branches control to the subroutine at 100@.
Sample Program

269 GOSUB 280

270 PRINT "BACK FROM SUBROUTINE": END
280 PRINT "EXECUTING THE SUBROUTINE"
299 RETURN

transfers control from line 260 to the subroutine beginning at line
28@. Line 299 instructs the computer to return to the statement
immediately following GOSUB.

Radio fhaek

-119-

SAHOMAIM

KEYWORDS TRS-80 © TRS-XENIX MBASIC

GOTO Statement
GOTO Tine

Goes to the specified Tine.

When used alone, GOTO line results in an unconditional (automatic)
branch. However, test statements may precede the GOTO to effect a
conditional branch.

You can use GOTO in the command mode as an alternative to RUN. This

lets you pass values assigned in the command mode to variables in
the execute mode.

Example

GOTO 109
transfers control automatically to line 10@.
Sample Program

10 READ R

20 PRINT "R=";R

30 A=3.14*R"2

49 PRINT "AREA =";A
5¢ GOTO 1¢

60 DATA 5,7,12

RUN

line 1@ reads each of the data items in line 6@; line 5@ returns

program control to line 1@. This enables MBASIC to calculate the
area for each of the data items.

Radio Sfhaek

-12¢-

IRS-XENTX MBASIC TRS-80 ® KEYRORDS

HEX$ Function
HEX$ (number)

Calculates the hexadecimal value of number.

HEX$ returns a string which represents the hexadecimal value of the
argument. The value returned is like any other string: it cannot be
used in a numeric expression.That is, you cannot add hex strings.
You can concatenate them, though.
Examples

PRINT HEX$(3@), HEXS$(50), HEX$(90)
prints the following strings:

1E 32 5A

Y$ = HEX$(X/16)
Y$ is the hexadecimal string representing the integer quotient X/16.

1¢ Y$ = HEX$(15) + HEX$(15)
20 PRINT Y$

prints FF.

Radio fhaek

-121-

KEYWORDS TRS-80 ° TRS-XENIX MBASIC

IF...THEN...ELSE Statement

IF expression THEN statement(s) or line [ELSE
statement(s)] or [line]

Tests a conditional expression and makes a decision regarding
program flow.

If expression is true, control proceeds to the THEN statement or
line. If not, control jumps to the matching ELSE statement,
line, or down to the next program line.

Examples
IF X > 127 THEN PRINT "OUT OF RANGE" : END

passes control to PRINT, then to END if X is greater than 127. If X
is not greater than 127, control jumps down to the next line in the
program, skipping the PRINT and END statements.

If A < B PRINT "A < B" ELSE PRINT "B < A"

tests the first expression, if true, prints "A < B". Otherwise, the
program jumps to the ELSE statement and prints "B < A",

IFX>Q0ANDY < @ THEN Y = X + 180

assigns the value X + 180 to Y if both expressions are true.
Otherwise, control passes directly to the next program line,
skipping the THEN clause.

IF A$ = "YES" THEN 21¢ ELSE IF A$ = "NO" THEN 40¢ ELSE 370

branches to line 21@ if A$ is YES. If not, the program skips over to
the first ELSE, which introduces a new test. If A$ is NO, then the
program branches to Tine 4¢@. If A$ is any value besides NO or YES,
the program branches to line 37@.

IF THEN ELSE statements may be nested. However, you must take care
to match up the IFs and ELSEs. (If the statement does not contain
the same number of ELSE's and IF's, each ELSE is matched with the
closest unmatched IF.)

Radio fhaek

-122-

—————DRSXENIX MRASIC TRS-80 ° XEYU0R0S

Sample Program

1940 INPUT "ENTER TWO NUMBERS"; A, B
1950 IF A > B THEN PRINT “A > B"; ELSE IF A < B THEN PRINT
“A < B"; ELSE PRINT "A = B" ’

This program prints the relationship between the two numbers
entered.

Radie fhaek

-123-

KEYWORDS _ TRS-80 © —IBS-XENDX MBASIC

INKEY$ Function

INKEY$

Returns a keyboard character.

Returns a one-character string from the keyboard without having to
press <ENTER>. If no key is pressed, a null string (length zero) is
returned. Characters typed to INKEY$ are not echoed back to the
display.

INKEY$ is invariably put inside some sort of loop. Otherwise,
program execution would pass through the Tine containing INKEY$
before a key could be pressed.
Example

A$ = INKEYS
Sample Program

10 A$ = INKEYS
20 IF A$ = "" THEN 10

this causes the program to wait for a key to be pressed.

Radio fhaek

-124-

IRS-XENIX MBASIC __ TRS-80 °© KEYWORDS

INPUT Statement

INPUT [;] [“prompt string";] variablel, variable2,...

Inputs data from the keyboard into one or more variables.

When MBASIC encounters this statement, it stops execution and
displays a question mark. This means that the program is waiting for
you to type data.

INPUT may specify a list of string or numeric variables, indicating
string or numeric values to be input. For instance, INPUT X$, X1,
2%, 71 calls for you to input a string literal, a number, another
string literal, and another number, in that order.

The number of data items you supply must be the same as the number
of variables specified. You must separate data items by commas.

Responding to INPUT with too many or too few items, or with the
wrong type of value, causes MBASIC to print the message "?Redo from
start". No values are assigned until you provide an acceptable
response.

If a prompt string is included, MBASIC prints it before the

question mark. This helps the person inputting the data to enter it
correctly. The prompt string must immediately follow INPUT. It
must be enclosed in quotes and followed by a semicolon.

If INPUT is immediately followed by a semicolon, any carriage
returns pressed as part of the response are not echoed.

You can enter any valid constant. 2, 105, 1, 3#, etc. are all valid
constants.

Examples

INPUT Y%

when MBASIC reaches this line, you must type a number and press
<ENTER> before the program will continue.

INPUT SENTENCES$

when MBASIC reaches this Tline, you must type in a string. The string

wouldn't have to be enclosed in quotation marks unless it contained
a comma, a colon, or a leading blank.

Radio fhaek

-125-

KEYWORDS TRS-80 © —IRS-XENDCMBASIC

INPUT "ENTER YOUR NAME AND AGE (NAME, AGE)"; N$, A

would print a message on the screen which would help the person at
the keyboard to enter the right sort of data.

Sample Program

5@ INPUT "HOW MUCH DO YOU WEIGH"; X
6@ PRINT "ON MARS YOU WOULD WEIGH ABOUT" CINT(X * .38) "POUNDS"

Radio fhaek

~-126-

————IBS-XENIX _MBASIC . TRS-80 © -KEYWORNS

INPUT# Statement

INPUT# buffer, variable,...

Inputs data from a sequential disk file and stores it in a program
variable.

Buffer is the number used when the file was OPENed for input.

Variable contains the variable name(s) that will be assigned to
the item(s) in the file.

With INPUT#, data is input sequentially. That is, when the file is
opened, a pointer is set to the beginning of the file. The pointer
advances each time data is input. To start reading from the
beginning of the file again, you must close the file buffer and
re-open it.

INPUT# doesn't care how the data was placed on the disk-- whether a
single PRINT# statement put it there, or whether it required ten
different PRINT# statements. What matters to INPUT# is the position
of the terminating characters and the EOF marker.

When inputting data into a variable, MBASIC ignores leading blanks.
When the first non-blank character is encountered, MBASIC assumes it
has encountered the beginning of the data item.

The data item ends when a terminating character is encountered or
when a terminating condition occurs. The terminating characters
vary, depending on whether MBASIC is inputting to a numeric or
string variable.

Numeric values: MBASIC begins input at the first character which is
neither a space or a carriage return. It ends input when it
encounters a space, carriage return, or a comma.

String values: MBASIC begins input with the first character which is
neither a space nor carriage return. It ends input when it
encounters a carriage return or comma. One exception to this rule:
If the first character is a quotation mark, the string will consist
of all characters between the first quotation mark and the second.
Thus, a quoted string may not contain a quotation mark as a
character.

If the end-of-file is reached when a numeric or string item is being
INPUT, the INPUT is terminated

Radio fhaek

-127-

KEYWORDS TRS-80 © —IRS-XENIX MBASIC

Examples
INPUT#1, A,B

sequentially inputs two numeric data items from disk and places them
in A and B. Buffer #1 is used.

INPUT#4, AS, BS, C$

sequentially inputs three string data items from disk and places
them in A$, B$, and C$. Buffer #4 is used.

Radio fhaek

-128-

IRS-XENIX MBASI(TRS'BD ® KEYWORDS

INPUTS Function

INPUT$(numberl [,number2])

Inputs a string of characters from either the keyboard or a
sequential file.

Numberl is the number of characters to be input. It must be a
value in the range 1 to 32767. Number? is a buffer which accesses
a sequential input file.

INPUT$ (numberl) inputs a string of characters from the keyboard.
When the program reaches this line, it stops until you (or any
operand) type numberl number of characters. (You don't need to
press <ENTER> to signify end-of-line). The character(s) you type
are not displayed on the screen. Any character, except <BREAK>, is
accepted for input. No characters are echoed.

INPUT$ (numberl, number?2) inputs the string from the disk file
associated with buffer number,

Examples
A$ = INPUT$(5)

assigns a string of five keyboard characters to A$. Program
execution is halted until the operator types five characters.

A$ = INPUTS$(11,3)

assigns a string of 11 characters to A$. The characters are read
from the disk file associated with buffer 3.

Sample Programs

This program shows how you could use INPUT$ to have an operator
input their telephone number. By using INPUT$, the operator can type
in the number without anyone seeing it on the video display.

119 LINE INPUT “TYPE IN YOUR AREA CODE "; F$
12¢ PRINT "TYPE IN YOUR PHONE NUMBER--###-####"
139 P$ = INPUT$(8)

14@ F$ = u(u + F$ + u)u + P$

15¢ PRINT F$

Radio fhaek

-129-

KEYMORDS TRS-80 ° IRS-XENIX MBASIC

In the program below, line 1¢@ opens a sequential input file (which
we assume has been previously created). Line 200 retrieves a string
of 7@ characters from the file and stores them in T§. Line 300

closes the file,

109 OPEN "I, 2, "TEST.DAT"

200 T$ = INPUT$(70,2)
309 CLOSE

Radio fhaek

-130-

————IRS-XENIX MRASIC _ TRS-80 °© KEYWORDS

INSTR Function

INSTR(Linteger,] stringl, string2)

Searches for the first occurrence of string2 in stringl, and
returns the position at which the match is found.

Integer specifies a position in stringl. It must be a value in
the range 1 to 32767.

This function lets you search through a string to see if it contains
another string. If it does, INSTR returns the starting position of
the substring in the target string; otherwise, it returns zero. Note
that the entire substring must be contained in the search string, or
zero is returned.

Optional integer sets the position for starting the search. If
omitted, INSTR starts searching at the first character in stringl.

Examples

In these examples, A$ = “LINCOLN":
INSTR(A$, "INC")

returns a value of 2.

INSTR(AS, "12")

returns a zero.

INSTR(A$, "LINCOLNABRAHAM")
returns a zero. For a slightly different use of INSTR, look
* INSTR (3, "1232123*, "12")

which returns 5,

Sample Program
The program below uses INSTR to search through the addresses

contained in the program’'s DATA lines. It counts the number of
addresses with a specified county zip code (761--) and returns that

Radio fhaek

-131-

KEYWORDS TRS-80 © ——IBS-XENIX MRASIC

number. The zip code is preceded by an asterisk to distinguish it
from the other numeric data found in the address.

360 RESTORE

37¢ COUNTER = ¢

390 READ ADDRESSS$

395 IF ADDRESS = "$END" THEN 410

490 IF INSTR(ADDRESS$, "*761") <> @ THEN COUNTER = COUNTER +1

495 GOTO 390

41¢ PRINT "NUMBER OF TARRANT COUNTY, TX ADDRESSES IS" COUNTER:
END

42¢ DATA "5950 GORHAM DRIVE, BURLESON, TX *76148"

43¢ DATA "71 FIRSTFIELD ROAD, GAITHERSBURG, MD *2g76@"

440 DATA "100Q TWO TANDY CENTER, FORT WORTH, TX *761¢2"

45@ DATA "16633 SOUTH CENTRAL EXPRESSWAY, RICHARDSON, TX
*75080"

46¢ DATA “$END"

Radio fhaek

-132-

IRS-XENIX MRASI(C TRS"BO ® KEYWORNS

INT Function
INT (number)

Converts number to integer value.

This function returns the largest integer which is not greater than
the number,

The result has the same precision as the argument except for the
fractional portion. Number is not limited to the range - 32768 to
32767.
Examples

PRINT INT(79.89)
prints 79.

PRINT INT (-12.11)

prints -13.

Radio fhaek

-133-

KEYWORDS _ TRS-80 © —IRS-XENDXMBASIC

KILL Statement
KILL filename

"Ki1ls" (deletes) filename from disk.
You may KILL any type of disk file. However, if the file is
currently OPEN, a "File already open" error occurs. You must CLOSE
the file before deleting it.
You can also add a pathname to this statement. If you do not
include a pathname, MBASIC searches for the file in the current
directory.
Example

KILL "FILE.BAS"
deletes this file named FILE.BAS from the current directory.

KILL "ACCOUNTING/DATA"
deletes the file DATA from the directory ACCOUNTING, located in your

current directory (we are not showing the entire pathname to
simplify this example).

Radio fhaek

-134-

——————IBS=XENIX MBASIC—— TRS-80 °© KEYW0RDS,

LEFTS Function

LEFT$(string, integer)

Returns the leftmost integer characters of string.

If integer is equal to or greater than LEN (string), the entire
string is returned.

Examples:

PRINT LEFT$("BATTLESHIPS", 6)
prints BATTLE.

PRINT LEFT$("BIG FIERCE DOG", 20)

prints BIG FIERCE DOG, since the string is less than 2§ characters
long.

Sample Program

74 A$ = "TIMOTHY"

750 B$ = LEFT$(AS, 3)

760 PRINT B$; "--THAT'S SHORT FOR "; A$
RUN

TIM--THAT'S SHORT FOR TIMOTHY

ok

line 750 stores the three leftmost characters of A$ and stores them

in B$. Line 760 prints these three characters, a string, and the
original contents of AS$.

Radio fhaek

-135-

KEYWORDS TRS-80 © —IRS=XENIX MBASIC

LEN Function

LEN(string)

Returns the number of characters in string.

Examples
X = LEN(SENTENCES)
gets the length of SENTENCE$ and stores it in X.
PRINT LEN("CAMBRIDGE") + LEN("BERKELEY")
prints 17.

Radio fhaek

~136-

[RS-XENTX _MRASIC TRS"BO ® KXEYWORDS

LET Statement

LET variable = expression

Assigns the value of expression to variable.

MBASIC doesn't require assignment statements to begin with LET, but
you might want to use it to be compatible with versions of MBASIC
that do require it.

Examples
LET A$ = "A ROSE IS A ROSE"
LET Bl = 1.23
LET X =X - 71

In each case, the variable on the left side of the equals sign is
assigned the value of the constant or expression on the right side.

Sample Program

55¢ P = 1@@1: PRINT "P =" P
560 LET P = 2001: PRINT "NOW P = "P

Radio Shaek

-137-

KEYWORDS TRS-80 © —IR:-XENIX MBASIC

LINE INPUT Statement

LINE INPUTL; J["prompt message";] string variable

Inputs an entire line (up to 254 characters) from the keyboard.

LINE INPUT is a convenient way to input string data without having
to worry about accidental entry of delimiters (commas, quotation
marks, carriage returns, etc.).

LINE INPUT is similar to INPUT, except:

- The computer does not display a question mark when waiting for
input.

- Each LINE INPUT statement can assign a value to only one
variable.

- Commas and quotes can be used as part of the string input.

- Leading blanks are not ignored--they become part of variable.

The only way to terminate the string input is to press <ENTER>.
However, if LINE INPUT is immediately followed by a semicolon,
pressing <ENTER> does not echo a carriage return at the display.

Some situations require that you input commas, quotes, and leading
blanks as part of the data. LINE INPUT serves well in such cases.

Examples:
LINE INPUT A$
inputs A$ without displaying any prompt.
LINE INPUT "LAST NAME, FIRST NAME? “; N$

displays a prompt message and inputs data. Commas do not terminate
the input string, as they would in an INPUT statement.

You may abort a LINE INPUT statement by pressing <CTRL><C>. MBASIC
returns to command level. Typing CONT resumes execution at LINE
INPUT.

LINE INPUT is restricted to 254 characters.

Radie fhaek

-138-

e LIRS XENT Y MRASIC . TRS-80 © KEYWORDS,

LINE INPUT# Statement

LINE INPUT# buffer, variable

Inputs an entire Tine from a sequential data file to a string
variable.

Buffer is the number under which the file was OPENed.

This statement is useful when you want to read an ASCII-format
MBASIC program file as data, or when you want to read in data
without following the usual restrictions regarding leading
characters and terminators.

LINE INPUT# reads everything from the first character up to:

- a line feed character
- the end-of-file
- the 32,767th character

Other characters encountered--quotes, commas, leading blanks, line
feed, carriage return sequences--are included in the string.

Example

If the data on disk was saved in ASCII format it would look like
this:

19 CLEAR 500
20 OPEN "I", 1, "PROG"

then the statement
LINE INPUT#1, A$

could be used repetitively to read each program line, one at a time.

Radio fhaek

-139-

KEYWORDS TRS-80 © ——IRSXENIX MBASIC

LIST Statement

LIST [startlinel-Lendline] [,filename]

Lists a program in memory to the display.

Startline specifies the first line to be listed. If omitted,
MBASIC starts with the first Tine in your program.

Endline specifies the last line to be listed.. If omitted, MBASIC
ends with the last line in your program.

Filename identifies the destination file of the listing. If you
omit filename, MBASIC lists the specified lines to the display.

E xamples

LIST

displays the entire program. To stop the automatic scrolling, press
{CTRL><S>. This freezes the display. Press <CTRL><Q> to continue.

LIST 50

displays line 5¢.
LIST 5@-85

displays lines in the range 5@-85.
LIST .-

displays the program line that has just been entered or edited, and
all higher-numbered lines.

LIST -227

displays all lines up to and including 227.
LIST , “EMP"

lists an entire program to a file named EMP.
LIST 227-

Lists all lines starting with line 227 to the end of the file.

Radio fhaek

-14¢-

IRS_XFNIX MBASIC TRS'BO ® . KEYWORDS

LLIST Statement

LLIST [startlinel-[endline]

Lists program lines in memory to the printer.

The only difference between LLIST and LIST is that LLIST lists the
lines on printer. See LIST.

Examples

LLIST
lists the entire program to the printer. To stop this process, press
<CTRL><S>. This causes control to return to MBASIC and therefore
aborts LLIST.

LLIST 68-90

prints lines in the range 68-9¢.

\

Radio fhaek

-141-

_KEYWORDS TRS-80 ® —IRS-XENIX MBASIC

LOAD Statement

LOAD filename, [R]

Loads filename, a MBASIC program, into memory.

The R option causes the program to then run. (LOAD with the R
option is equivalent to the command RUN filename, R).

LOAD without the R option wipes out any resident MBASIC program,
clears all variables, and CLOSES all OPEN files. LOAD with the R
option leaves all OPEN files open and runs the program
automatically.

You can use either of these commands inside programs to allow
program chaining (one program calling another).

If you attempt to LOAD a non-MBASIC file, a "Direct statement in
file" error will occur.

Example

LOAD "PROGI1.BAS"

Radio fhaek

~-142-

e IRS-XENLX MBASIC . TRS-80 © ——XEXW0R0S

LOC Function
LOC (buffer)

Returns the current position in the file.
Buffer is the buffer under which the file was OPENed.

With direct-access files, LOC returns the number of the last record
read or written to the direct file.

With sequential-access files, LOC returns the number of 128-byte
blocks read from or written to the file since it was OPENed.

For files OPENed to "KYBD:", LOC returns 1 if any characters are
ready to be read from standard input. Otherwise, it returns @.
KYBD: is a "device". For more information on devices, see OPEN and
Appendix G.

Example
IF LOC(1)>55 THEN END

if the current record number is greater than 55, this statement ends
program execution.

A
m
<
=
o
s
O
2]

Sample Program

1319 A$ = "WILLIAM WILSON™
1320 GET 1

1330 IF N$ = A$ THEN PRINT "FOUND IN RECORD" LOC(1): CLOSE: END
1349 GOTO 1320

This is a portion of a program. Elsewhere the file has been opened
and fielded. N$ is a field variable. If N§ matches A$, the record
number in which it was found is printed.

Radio fhaek

-143-

KEYWORDS TRS-80 ° TRS-XENIX MBASIC

LOCK Statement
LOCK [#]buffer [,READ] [,WAIT] [, rangel

Restricts access by other programs to the file assigned to buffer
in the specified range of records or for the entire file.

Buffer is the buffer number used to OPEN the file.

The READ option, when specified, allows another program to read the
locked area of the file; but not write to it. If the READ option is
omitted, total access is denied to another program.

The WAIT option tells MBASIC to wait if the file being accessed is
already locked. When the file is UNLOCKed, the program continues
and the new lock is applied. For this option to work properly, both
programs must contain a lock statement. You can interrupt the WAIT
by pressing <CTRL><C>. To resume the WAIT, type CONT.

If you do not use the WAIT option, control is returned to the
program immediately with an accompanying error message. All of the
usual MBASIC error handling can be used to trap and examine this
error (i.e., ON ERROR GOTO). If error trapping is not active the
"Permission denied" error message is returned.

Range specifies the region of the file to be locked and is used
for random access files only. The syntax for range is

recordl TO record?, where recordl and record? are inclusive.
Recordl is optional, if omitted 1 is used.

Note: If a program is run that does not contain a LOCK statement,
and attempts to access a locked file, the program "waits" until the
file is unlocked.

Deadlocks

It is possible to get into a deadlock situation when WAITing for a
lock request. For example:

Program 1 Program 2
19 OPEN "R", 1, "A", 32 19 OPEN "R", 1, "A", 32
20 OPEN "R", 2, "B", 32 2¢ OPEN "R"“, 2, "B", 32
30 LOCK 1, 1 T0O 5 3¢ LOCK 2, 1 TO 10
49 LOCK 2, WAIT, 1 TO 1@ 4 LOCK 1, WAIT, 1 T0 5
®
Radie fhaek

-144-

JRS-XENIX MBASIC TRS-80 ® KEYWORNDS

Program 1 opens Files A and B. File A is locked and File B is
locked with the WAIT option. At the same time, Program 2 opens and
locks Files A and B, but in this program File A is locked with the
WAIT option. If you run these two programs simultaneously, on
seperate terminals, the overlapping of LOCK statements with the WAIT
option causes a deadlock situation.

TRS-XENIX attempts to detect any deadlock situations. When a
deadlock situation is detected error message "Deadlock" is returned.

Multiple LOCKS

Multiple LOCK statements have a cumulative affect. Locking records 1
through 3 and then locking records 1@ through 10@ leaves records 1
through 3 and 1¢ through 1@ locked. Locking a record which is
already locked has no effect, the record remains locked. A record
locked multiple times with different locking arguments (i.e. READ)
has the lock characteristics of the last executed LOCK statement.
For example if you lock record 1 without the READ option and then
relock it with the READ option, record 1 will be locked with the
READ option.

It is recommended that you do not open a single file on multiple
buffers simultaneously. If it becomes necessary to open a single
file multiple times, be aware that Tocks applied using different
buffer numbers against the same file act just as multiple LOCK
statements do against a single file. The following program displays
this:

10 OPEN "R", 1, "payroll.dat", 32
2¢ OPEN "R", 2, "payroll.dat", 32
30 LOCK #1, 1 TO 3

4@ LOCK #2, READ, .2 T0 5

This program locks records 1 through 5 of the file payroll.dat. In
addition, records 2 through 5 are locked in the READ mode.
Therefore, even though different buffer numbers were given, both of
the specified record locks were executed on the same file. Also, the
first buffer that is closed releases all locks against the file,
including locks made using another buffer number. If buffer number 2
is closed in the above example, then all locks are released,
including records 1 through 3 that were locked for buffer number 1.

Radio fhaek

-145-

KEYWORDS TRS-80 ® — IRS-XENIX MEASIC

Important: Records are locked based upon their position and size

in the file. The unit of measure used is the byte. If you open a
file multiple times with different record lenghts and apply locks, a
portion of a record can become Tlocked.

Sample Program

19 OPEN "R", 1, "employee.data", 32
20 LOCK 1, 1 TO 200

3¢ FOR N% = 1 TO 200

49 GET 1, N%

53 PRINT NAME$

60 PRINT ADDRESS$

70 PRINT TELS$

80 NEXT N%

90 CLOSE 1

This program opens the file employee.data and locks the records 1
through 20@. The information of each record is written out and
then the total file is unlocked with the CLOSE statement. If LOCK
fails, the "Permission denied" error message is returned.

Radio fhaek

-146-

— IRS-YENTX MRASIC TRS-80 © KEYWORDS

LOF Function

LOF (buffer)

Returns the number of bytes in the file.
Buffer is the number under which the file was OPENed.

LOF is valid for any file. Files OPENed to "LPT1:", “KYBD:", or
“SCRN:" always return @.

Example 5o o
Y = LOF(5)

assigns to Y the number of bytes in the file accessed by buffer 5.

Radio fhaek

-147-

KEYWORDS TRS-80 © ———IBS-XENIX MRASIC

LOG Function
LOG(number)

Computes the natural Tlogarithm of number,

This is the inverse of the EXP function. The result is always in
double precision.

Examples
PRINT LOG(3.14159)
prints the value 1.1447290411851.
Z = 1@ * LOG(Ps/P1)
performs the indicated calculation and assigns the value to Z.
Sample Program

This program demonstrates the use of LOG. It utilizes a formula
taken from space communications research.

540 INPUT “DISTANCE SIGNAL MUST TRAVEL (MILES):"; D

550 INPUT "SIGNAL FREQUENCY (GIGAHERTZ)"; F

560 L = 96.58 + (20 * LOG(F)) + (20 * LOG(D))

570 PRINT "SIGNAL STRENGTH LOSS IN FREE SPACE IS" L "DECIBELS."

Radie fhaek

-148-

e RS- XENIX MBASIC . TRS-80) ¢~ KEYWORDS,

LPOS Function
LPOS (number)

Returns the column position for the device "LPT1:".
Number is a dummy argument.
Example

100 IF LPOS(X)>6@ THEN LPRINT "Column 6@"

Radio fhaek

-149-

KEYWORDS TRS-80 © —IRS-XENIX MBASIC

LPRINT, LPRINT USING Statement

LPRINT data,...

LPRINT USING format; data,...

Prints data to the printer.

To use these commands, you must execute an END statement in your
program, This is because with a multi-user system, MBASIC stores in
memory the data you specify. It will not print data until: 1)

It executes an END statement or 2) You leave MBASIC by typing
SYSTEM.

A better way to print data at the printer is to OPEN the device as a
file by specifying "LPT1l:" as the filename. Print the data to the
device, then close "LPT1:". This spools the data file to the
printer.
Examples

LPRINT (A * 2)/3
prints the value of expression (A * 2)/3.

LPRINT TAB(5@¢) "TABBED 5@"

moves the line printer carriage to TAB position 50 and prints
“TABBED 5@". (Refer to the TAB function).

LPRINT USING “#####.#"; 2.17
sends the formatted value PPPP2.2 to the line printer.
See PRINT and PRINT USING for more information.
Sample Program
This illustrates how to use a file for printing data to the printer.
5 OPEN "“O", 1, "LPTI:"
10 PRINT #1, "Name"
20 PRINT #1, "Address"
30 CLOSE #1

See QPEN for more information.

Radio fhaek

~150-

IRS=XENLX MRASIC TRS-80 ® KEYWORDS

LSET Statement

LSET field name = data

Sets data in a direct-access buffer field name.
Before using LSET, you must have used FIELD to set up buffer fields.

See also the chapter on "Disk Files", OPEN, CLOSE, FIELD, GET, PUT,
and RSET.

Example

Suppose NM$ and AD$ have been defined as field names for a direct
access file buffer. NM$ has a length of 18 characters; AD$ has a
length of 25 characters. The statements

LSET NM$
LSET AD$

"JIM CRICKET, dJR."
"2000 EAST PECAN ST."

set the data in the buffer as follows:
JIMPCRICKET,JR. PP 20Q@BPEASTEYPECANEST . ppppph

Notice that filler blanks were placed to the right of the data
strings in both cases. If we had used RSET statements instead of
LSET, the filler spaces would have been placed to the left. This is
the only difference between LSET and RSET.

If a string item is too large to fit in the specified buffer field,
it is always truncated to the right. That is, the extra characters
on the right are ignored. This applies to both LSET and RSET.

Radio fhaek

-151-

KEYWORDS TRS-80 © ———IBS=XENIX MBASIC

MEM Function

MEM

Returns the amount of memory.

MEM performs the same function as FRE. MEM returns the number of
unused bytes in memory.

This function may be used in the immediate mode to see how much
space a resident program occupies, or it may be used inside a
program to avert "Qut of memory" errors. MEM requires no argument,
The internal program stack is not part of this total.

Example
PRINT MEM

Enter this command (in the immediate mode, no line number is
needed), The number returned indicates the amount of leftover

memory, that is, memory not being used to store programs, variables,
strings, or the stack.

Sample Program

1619 IF MEM < 80 THEN 1630
1629 DIM A(15)
163@ REM PROGRAM CONTINUES HERE

If fewer than 8@ bytes of memory are left, control switches to

another part of the program. Otherwise, an array of 16 elements is
created.,

Radie fhaek

-152-

e IRS-XENIX MRASIC TRS-80 © _KEYWORDS

MERGE Statement
MERGE filename

Loads filename, a MBASIC program, and merges it with the program
currentTy in memory.

Filename specifies a MBASIC file in ASCII format (a program saved

with the A option). If filename is a constant, it must be enclosed
in quotes.

Program lines in the disk program are inserted into the resident
program in sequential order. For example, suppose that three of the
lines from the disk program are numbered 75,85 and 9%, and three of
the lines from the current program are numbered 7@, 8@, and 9¢. When
MERGE is used on the two programs, this portion of the new program
will be numbered 70, 75, 8@, 85, 90,.

If Tine numbers on the disk program coincide with line numbers in

the resident program, the disk program's lines replace the resident
program's lines.

MERGE closes all files and clears all variables. Upon completion,
MBASIC returns to the command mode.

Example

Suppose you have a MBASIC program on disk, PROG2.TXT (saved in

ASCII), which you want to merge with the program you've been working
on in memory. Then we use:

MERGE "PROG2.TXT"
merges the two programs.
Sample Programs
MERGE provides a convenient means of putting program modules
together. For example, an often-used set of MBASIC subroutines can
be tacked onto a variety of programs with this command.
Suppose the following program is in memory:

8J REM MAIN PROGRAM

9¢ GOSUB 1000
1090 REM PROGRAM LINE

Radio fhaek

-153-

KEYWORDS TRS-80 © ——IB3:-XENLX MBASIC

11¢ REM PROGRAM LINE
120 REM PROGRAM LINE
13¢ END

And suppose the following subroutine, SUB.TXT, is stored on disk in
ASCII format:

1000 REM BEGINNING OF SUBROUTINE
101¢ REM SUBROUTINE LINE

1020 REM SUBROUTINE LINE

193¢ REM SUBROUTINE LINE

1040 RETURN

You can MERGE the subroutine with the main program with:
MERGE “SUB.TXT"
and the new program in memory is:

80 REM MAIN PROGRAM

9¢ GOSuUB 10¢9

1090 REM PROGRAM LINE
11¢ REM PROGRAM LINE
120 REM PROGRAM LINE
13¢ END

1000 REM BEGINNING OF SUBROUTINE
1919 REM SUBROUTINE LINE
1920 REM SUBROUTINE LINE
1030 REM SUBROUTINE LINE
1040 RETURN

Radio Sfhaek

-154-

— IRSXENIY MRASIC__ TRS-80 ° KEYUORDS

MIDS Statement

MID$(oldstring, position, [length]) = replacement
string

Replaces a portion of a oldstring with replacement string.

Oldstring is the variable name of the string you want to change.

Position is a number specifying the position of the first
character to be changed.

Length is a number specifying the number of characters to be
replaced. If omitted, all of replacement string is used.

Replacement string is the string to replace a portion of
oldstring. The length of the resultant string is always the same
as the original string., If replacement string is shorter than
length, the entire replacement string is used.

Examples:

A$ = "LINCOLN"

MID$ (A$, 3, 4) = "12345": PRINT A$
returns LI1234N.

MID$ (A$, 5) = "@1": PRINT A$
returns LINC@IN.
MID$ (A$, 1, 3) = "xkxu: PRINT A$

returns ***COLN.,

Radio fhaek

-155-

KEYWORDS TRS-80 © —IRS-XENIX MBASIC

MID$ Function

MID$(string, integer [,number])

Returns a substring of string, beginning with the integer
character.

If integer is greater than the number of characters in string,
MID$ returns a null string.

Number is the number of characters in the substring. If omitted,
MBASIC returns all right most characters, beginning with the
character at position integer..
Examples
If A$ = "WEATHERFORD" then
PRINT MID$(AS, 3, 2)
prints AT.
F$ = MID$(AS, 3)
puts ATHERFORD into F$.

Sample Program

200 INPUT "AREA CODE AND NUMBER (NNN-NNN-NNNN)"; PH$
219 EX$ = MID$(PHS, 5, 3)
220 PRINT "NUMBER IS IN THE " EX$ " EXCHANGE."

The first three digits of a local phone number are sometimes called
the exchange of the number. This program Tooks at a complete phone
number (area code, exchange, last four digits) and picks out the
exchange of that number.

Radio Shaek

-156-

—_— IRSXENIX MRASIC TRS-80 ° KEYWORDS

MKD$, MKIS$, MKS$ Function

MKI$(integer expression)
MKS$(single-precision expression)
MKD$ (doubTe-precision expression)

Convert numeric values to string values.

Any numeric value that is placed in a direct file buffer
with an LSET or RSET statement must be converted to a string.

These three functions are the inverse of CVD, CVI, and CVS. The
byte values which make up the number are not changed; only one byte,
the internal data-type specifier, is changed, so that numeric data
can be placed in a string variable.

MKD$ returns an eight-byte string; MKI$ returns a two-byte string;
and MKS$ returns a four-byte string.

Example

LSET AVG$ = MKS$(@.123)
Sample Program

135¢ OPEN "D", 1, "TEST.DAT"

1360 FIELD 1, 2 AS I1$, 4 AS 12%, 8 AS 13§
137 LSET I1$ = MKI$(3000)

1380 LSET 12$ = MKS$(3p00. 1)
1390 LSET 13$ = MKD$ (3000 . g0@gl)
14009 PUT 1

1419 CLOSE

‘For a program that retrieves the data from TEST.DAT, see
CVD/CVI/CVS.

Radio fhaek

-157-

KEMRQS TRS'BD ® IRS-XENIX MBﬁSIC

NAME Statement

NAME old filename AS new filename

Renames old filename as new filename.

With this statement, the data in the file is left unchanged.
Example

NAME "FILE" AS “FILE.OLD"
renames FILE as FILE.OLD.

NAME B$ AS A$

Renames B$ as AS.

Radie fhaek

-158-

——————TRSXENLC MBASIC—— TRS-80 © KEXUORDS

NEW Statement

NEW

Deletes the program currently in memory and clears all variables.
NEW returns you to the command mode.
Example

NEW

Radio fhaek

-159-

KEYWORDS TRS-80 © ——IRS-XENIX MBASIC

OCTS$ Function

OCT$(number)

Computes the octal value of number.

OCT$ returns a string which represents the octal value of number.

The value returned is like any other string--it cannot be used in a
numeric expression.

Examples

PRINT OCT$(30), OCT$(50), OCT$(99)
prints the following strings:

36 62 132

Y$ = 0CT$(X/84)

Y$ is a string representation of the integer quotient X/84 to base
8.

Radie fhaek

-160-

— TRSYENIX MBASIC TRS-80 © ——————KEYNORDS

ON ERROR GOTO Statement
ON ERROR GOTO 1line

Transfers control to line if an error occurs.

This lets your program "recover" from an error and continue
execution. (Normally, you have a particular type of error in mind
when you use the ON ERROR GOTO statement).

ON ERROR GOTO has no effect unless it is executed before the error
occurs, To disable it, execute an ON ERROR GOTO @. If you use ON
ERROR GOTO @ inside an error-trapping routine, MBASIC stops
execution and prints an error message.

The error-handling routine must be terminated by a RESUME statement.
See RESUME.

Example
10 ON ERROR GOTO 1500

branches program control to line 150@ if an error occurs anywhere
after line 14.

Radio fhaek

-161-

KEYWORDS TRS-80 © —IRS-XENIX MBASIC

ON...GOSUB Statement

ON number GOSUB linel, line2,...

Goes to a subroutine at the line specified by the value of
number.

Number must be between @ and 255. For example, if number's value
is three, the third line number on the list is the destination of
the branch.

If number's value is zero or greater than the number of items on
the Tist (but less than or equal to 255), MBASIC continues with the
next executable statement. If number is negative or greater than
255, an "Illegal function call"™ error occurs.

Example

ON Y GOSUB 1000, 2000, 3000

if Y = 1, the subroutine beginning at 100@ is called. If Y = 2, the
subroutine at 200¢ is called. If Y = 3, the subroutine at 300¢ is
called.

Sample Program

43¢ INPUT “CHOOSE 1, 2, OR 3" ; 1
449 ON I GOSUB 500, 60@, 700

45@¢ END

5@@ PRINT "SUBROUTINE #1": RETURN
60@ PRINT "SUBROUTINE #2": RETURN
700 PRINT "SUBROUTINE #3": RETURN

Radie fhaek

-162-

IRS-XFNIX _MRASIC TRS'BO ® KEYWQRNS

ON...GOTO Statement

ON number GOTO line, line,...

Goes to the 1ine specified by the value of number.

Number is a numeric expression between @ and 255.

This statement is very similar to ON...GOSUB. However, instead of

branching to a subroutine, it branches control to another program
line.

The value of number determines to which line the program will
branch. For example, if the value is four, the fourth line number on
the 1ist is the destination of the branch. If there is no fourth
1ine number, control passes to the next statement in the program.

If the value of expression is negative or greater than 255, an

"I1legal function call" error occurs. Any amount of line numbers may
be included after GOTO.

Example
ON MI GOTO 150, 16¢, 17¢, 150, 180

tells MBASIC to "Evaluate MI,

if the value of MI equals one then go to line 15@;
if it equals two, then go to 160;

if it equals three, then go to 170;

if it equals four, then go to 15@;

if it equals five, then go to 180;

if the value of MI doesn't equal any of the numbers one through
five, advance to the next statement in the program",

Radio fhaek

-163-

KEYWORDS TRS-80 °© TRS-XENIX MBASIC

OPEN 2.0 Statement

N .\
> /.

OPEN mdde, buffer, filename [,record length]

Mode is a string expression whose first character is one of the
following:

0 (opens the file for output)? vhes Seavenhiod oece sna
I (opens the file for input) . e il J
A (opens a sequential file for output, with the

pointer positioned at the end-of-data)
R (opens a random (direct)-access file)
D (opens a random (direct)-access file)

or

OPEN filename [FOR mode] AS buffer [LEN=record length]

Mode is a string expression whose value is:

INPUT (opens the file for input)

OUTPUT (opens the file for output)

APPEND (opens a sequential file for output, with the
pointer positioned at the end-of-data)

RANDOM (opens a random (direct)-access file. If mode
is omitted RANDOM is used.)

Opens a disk file.

Buffer is an integer between 1 and 255. It specifies the area in
memory that will be used to access the file. This number will be
associated with the file for as long as the file is OPEN.

Filename specifies a TRS-XENIX file.

Record length is an integer which sets the record length for
direct-access files. This length can be as large as 32767 bytes.
The default is 256 bytes.

Examples
OPEN "0", 1, "CLIENTS.TXT"
opens the file CLIENTS.TXT for output. Buffer 1 is used. If the file

does not exist, it is created. If it already exists, its previous
contents are lost.

Radio fhaek

-164-

e LB XENTX_MBASIC . TRS-80 © KEYWORDS

OPEN "D", 2, "DATA.BAS"

opens the file DATA.BAS in random-access mode. Buffer 2 is used.
OPEN “"TEST.BAS" FOR OUTPUT AS 5

opens the file TEXT.BAS for output. Buffer 5 is used.

See the chapter on "Disk Files" for programming information.

Radio Sfhaek

-165-

—KEYHORDS TRS-80 © —IRS=LFNIX MRASIC

OPTION BASE Statement

OPTION BASE n

Sets n as the minimum value for an array subscript.
N may be 1 or @. The default is @.
If the statement

OPTION BASE 1

is executed, the lowest value an array subscript may have is one.

Radio fhaek

~-166-

e IR XENTX MBASIC . TRS-80 © KEYWORDS

PEEK Function

PEEK (memory location)

Returns a byte from memory location.

The memory location of MBASIC's User-readable data includes
MBASIC's variables and stack, User's program, User's variables,
strings, and File Data Blocks.

The value returned is an integer between @ and 255.
PEEK is the complementary function of the statement POKE.
Example

A = PEEK (&H5APQ)

Radio fhaek

-167-

KEYWORDS TRS-80 © ——IB3-XENIX MBASIC

POKE Statement

POKE memory location, data byte

Writes data byte into memory Tocation.

Data byte must be a decimal number between @ and 255.
Memory location must be inside MBASIC's User-writable data space
which includes User's variables, strings, and File Data Blocks.

POKE is the complementary statement of PEEK. The argument to PEEK is
a memory location from which a byte is to be read.

PEEK and POKE can be used for storing data efficiently.

[t is not recommended to use PEEK and POKE because you run the risk
of destroying your program and data and it also prevents software
portability.

Example

10 POKE &H5AQQ, &HFF

; prke . Tried xanf
e whle bhappn X -
i bk msst asthiy psible Bork

Radio fhaek

-168-

IRS-XENIX MBASI(TRS'BD ® KEYWORNDS

POS Function

POS (dummy number)

Returns the column position for the device "SCRN:"
Number is a dummy argument.

POS returns a number from 1 to 80 indicating the current column
position of the cursor on the display.

Example
PRINT TAB(4@) POS(9)
Sample Program

15¢ CLS

160 A$ = INKEYS

17¢ IF A$ = "" THEN 160

189 IF POS(X) > 7@ THEN IF A$ = CHR$(32) THEN A$ = CHR$(13)
190 PRINT A$;

200 GOTO 160

See Appendix G for more information.

Radio fhaek

-169-

KEYWORDS TRS-80 © ——IBS-XENIX MBASIC

PRINT Statement

PRINT data,...

Prints numeric or string data on the display.

MBASIC prints the values of the data items you list in this
statement.

You may separate the data items by commas or semicolons. If you use
commas, the cursor automatically advances to the next tab position
before printing the next item. (MBASIC divides each line into five
tab positions, at columns @, 14, 28, 42, and 56). If you use
semicolons, it prints the items without any spaces between them. For
example,

PRINT C$;T$,M$
works the same way as
PRINT C$TEMS

A semicolon or comma at the end of a line causes the next PRINT
statement to begin printing where the last one left off. If you do
no trailing punctuation is used with PRINT, the cursor drops down to
the beginning of the next line.

Single-precision numbers with six or fewer digits that can be
accurately represented in ordinary (rather than exponential) format,
are printed in ordinary format,

Double-precision numbers with 14 or fewer digits that can be
accurately represented in ordinary format, are printed using the
ordinary format.

MBASIC prints positive numbers with a leading blank. It prints all
numbers with a trailing blank.

To insert strings into this statement, surround them with quotation
marks.

Example

PRINT "DO"; “NOT"; "LEAVE"; "SPACES"; "BETWEEN";
"THESE"; "“WORDS"

Radio fhaek

-17¢-

RS XN L MRASIL e TRS-80 ° KEYWORDS

prints on the display: DONOTLEAVESPACESBETWEENTHESEWORDS
Sample Program

60 INPUT “ENTER THIS YEAR"; Y

78 INPUT “ENTER YOUR AGE";A

8@ INPUT "ENTER A YEAR IN THE FUTURE";F

90 N=A+(F-Y)

109 PRINT "IN THE YEAR"F"YOU WILL BE"N"YEARS OLD"
RUN

Since F and N are positive numbers, PRINT inserts a space before and
after them; therefore, your display should look similar to this
(depending on your input):

IN THE YEAR 2004 YOU WILL BE 46 YEARS OLD
If we had separated each expression in line 10@ by a comma,

10¢ PRINT "IN THE YEAR",F,"YOU WILL BE",N,"YEARS OLD"
our display would show:

IN THE YEAR 2004 YOU WILL BE 46 YEARS OLD

MBASIC moved to the next tab position after printing each data item.

Radio Shaek

-171-

_KEYWORDS _ —— TRS-80 © ~——IRS-XENIX MBASIC

PRINT USING Statement

PRINT USING format; data item,...

Prints data items using a format specified by you.

Format consists of one or more field specifier(s), or any
alphanumeric character.

Data item may be string and/or numeric value(s).

This statement is especially useful for printing report headings,
accounting reports, checks, or any other documents which require a
specific format.

With PRINT USING, you may use certain characters (field specifiers)
to format the field. These field specifiers are described below.
They are followed by sample program lines and their output to the
screen,

Specifiers for String Fields:
! Print the first character in the string only.

PRINT USING "!I"; "PERSONNEL"
P

\spaces\ Print 2+ n characters from the string. If you type the
backslashes without any spaces, MBASIC prints two
characters; with one space, MBASIC prints three
characters, and so on. If the string is longer than the
field, the extra characters are ignored. If the field is
longer than the string, the string is left-justified and
padded with spaces on the right.

PRINT USING "\ \"; "PERSONNEL"
(three spaces between the backslashes)
PERSO

& Print the string without modifications.

1¢ A$="TAKE":B$="RACE"
2¢ PRINT USING "1";A$
30 PRINT USING "&";B$

TRACE

Radio fhaek

-172-

IRS=XENIX MBASIC TRS"BO ® KEYWORNS

L,

Specifiers for Numeric Fields:

#

Print the same amount of digit positions as number signs
(#). If the number to be printed has fewer digits than
positions specified, the number is right-justified
(preceded by spaces). Numbers are rounded as necessary.
You may insert a decimal point at any position. In that
case, the digits preceding the decimal point are always
printed (as zero, if necessary).

If the number to be printed is larger than the specified
numeric field, a percent sign (%) is printed in front of
the number. If rounding the number exceeds the field, a
percent sign is also printed in front of the rounded
number.

PRINT USING "##.##";111.22
%111.22

If the number of digits specified exceeds 24, an "Illegal
function call" occurs.

PRINT USING "##.##";.75
0.75

PRINT USING "###.4##";876.567
876.57

Print the sign of the number. The plus sign may be typed
at the beginning or at the end of the format string.

PRINT USING "+##.## "; -98.45,3.58,22.22,-.9 -98.45
+3.50 +22.22 -0.90 '

PRINT USING "##.##+ "; -98.45,3.50,22.22,-.9 98.54-
3.50+ 22.22+ @.90-

(Note the use of spaces at the end of a format string to
separate printed values).

Print a negative sign after negative numbers (and a space
after positive numbers).

PRINT USING "###.#-"; -768.660
768.7-

Radio fhaek

-173-

KEYWORDS TRS-80 °© TRS-XENIX MBASIC

*k

$$

*x§

PV NP VN

Fi1l leading spaces with asterisks. The two asterisks also
establish two more positions in the field.

PRINT USING "**####"; 44.0

*kxk (4

Print a dollar sign immediately before the number.
This specifies two more digit positions, one of which is
the dollar sign.

PRINT USING “$$##.##"; 112.789¢
$112.79 ‘ '

Fi11 leading spaces with asterisks and print a dollar sign
immediately before the number.

PRINT USING “**$##, ##"; 8.333
*%%$8.33

Print a comma before every third digit to the left of the
decimal point. The comma establishes another digit
position.

PRINT USING "####,.##"; 1234.5
1,234.50

Print in exponential format. The four carats are placed
after the digit position characters. You may specify any
decimal point position.

PRINT USING ".####°~~~; 888888
. 8889E+06

Print next character as a literal character.

PRINT USING " !##.## 1";12.34
112.34!

Sample Program

420 CLS: A$ = "**$i# #if###.## DOLLARS"
43¢ INPUT "WHAT IS YOUR FIRST NAME"; F$
44 INPUT “WHAT IS YOUR MIDDLE NAME"; M$
45¢ INPUT "WHAT IS YOUR LAST NAME"; L$
469 INPUT "ENTER AMOUNT PAYABLE"; P

47¢ CLS : PRINT "PAY TO THE ORDER OF *";

Radio fhaek

-174-

———IRSXENIX WRASIC TRS-80 ° KEVUORDS

480 PRINT USING "!! Il "5 F$; "."; M§; .
490 PRINT LS
50@ PRINT :PRINT USING A$; P

In line 480, each ! picks up the first character of one of the
following strings (F§, ".", M$, and "." again). Notice the two
spaces in "!!pHIp", These two spaces insert the appropriate spaces
after the initials of the name (see below). Also notice the use of
the variables A$ for format and P for item list in line 5@0¢. Any
serious use of the PRINT USING statement would probably require the
use of variables at least for item list rather than constants.
(We've used constants in our examples for the sake of better
illustration).

When the program above is run, the output should look something like
this:

WHAT IS YOUR FIRST NAME? JOHN
WHAT IS YOUR MIDDLE NAME? PAUL
WHAT IS YOUR LAST NAME? JONES
ENTER AMOUNT PAYABLE? 12345.6
PAY TO THE ORDER OF J. P. JONES

*rxxk§12 435,60 DOLLARS

Radio fhaek

~-175-

KEYWORDS TRS-80 © —IRSXENIX MBASIC

PRINT @ : Statement

PRINT®@ location,
PRINT@ (row, column),

Specifies exactly where printing is to begin.

The location specified must be a number between @ and 1919. It can
also be a a pair of numbers (r, c), where 24>r=>Q and 79=>c=>f.

Whenever you instruct MBASIC to PRINT @ the bottom line of the
display, it generates an automatic line feed; everything on the
display moves up one line. To suppress this automatic line feed, use
a trailing semicolon at the end of the statement.
Examples

PRINT @ (11,39), "
prints an asterisk in the middle of the display.

PRINT @ @, "=

prints an asterisk at the top left corner of the display.

Radie fhaek

-176-

[RS-XENTYX MRASIC TRS'BD ® XEYWQRNS

PRINT TAB(n) Statement

Moves the cursor to the n position on the current line (or on
succeeding lines if you specify TAB positions greater than 79).

TAB may be used more than once in a print Tist.

Since numerical expressions may be used to specify a TAB position,

TAB can be very useful in creating tables, graphs of mathematical
functions, etc..

TAB can't be used to move the cursor to the left. If the cursor is
to the right of the specified position, the TAB statement will
simply be ignored.
Example

PRINT TAB(5) ™"TABBED 5"; TAB(25) "TABBED 25"
Notice that no punctuation is needed after the TAB modifiers.

Sample Program

229 CLS

23¢ PRINT TAB(2) "CATALOG NO." TAB(16) "DESCRIPTION OF ITEM";
24Q PRINT TAB (39) "QUANTITY"; TAB(51) "“PRICE PER ITEM";

245 PRINT TAB (69) "TOTAL PRICE"

Radio fhaek

-177-

KEYWORDS TRS-80 © ——IRSXENDOMBASIC

PRINT# Statement

PRINT# buffer, iteml, item2,...

Prints data items in a sequential disk file.
Buffer is the buffer number used to OPEN the file for input.

When you first OPEN a file for sequential output, MBASIC sets a
pointer to the beginning of the file--that's where PRINT# starts
printing the values of the items. At the end of each PRINT#
operation, the pointer advances, so values are written in sequence.

A PRINT# statement creates a disk image similar to what a PRINT to
the display creates on the screen. For this reason, make sure to
delimit the data so that it will be input correctly from the disk.

PRINT# does not compress the data before writing it to disk. It
writes an ASCII-coded image of the data.

Examples
If A = 123.45

PRINT#1,A
writes this nine-byte character sequence onto disk:

B123.45p carriage return
The punctuation in the PRINT 1list is very important. Unquoted commas
and semicolons have the same effect as they do in regular PRINT
statements to the display. For example, if A = 2300 and B = 1.303,
then

PRINT#1, A,B
<ENTER>

writes the data on disk as
B 2300 ppppbpppppp 1.303p carriage return
The comma between A and B in the PRINT# list causes 1@ extra spaces

in the disk file. Generally you wouldn't want to use up disk space
in this way, so you should use semicolons instead of commas.

Radio fhaek

-178-

IRS-XFNTX MRBASIC TRS-80 ® KEYWORDS

Files can be written in a carefully controlied format using PRINT#
USING. You can also use this option to control how many characters
of a value are written to disk.

For example, suppose A$ = "LUDWIG", B$ = "VAN", and C$ =
"BEETHOVEN". Then the statement

PRINT#1, USING"!, I, \ \";A$;B$;C$
would write the data in nickname form:

L.V.BEET

(In this case, we didn't want to add any explicit delimiters). See
PRINT USING for more information on the USING option.

Radio fhaek

-179-

KEYWORDS TRS-80 ® —IRS-XENDX MBASIC

PUT Statement

PUT buffer, [record]

Puts a record in a direct-access disk file.
Buffer is the same buffer used to OPEN the file.

Record is the record number you want to PUT into the file.
It is an integer between 1 and 32,767. If omitted, the current
record number is used.

This statement moves data from the buffer into a specified place in
the file.

The first time you access a file via a particular buffer, the next
record is set equal to one. (The next record is the record whose
number is one greater than the last record accessed).

If record is higher than the end-of-file record number, then
record becomes the new end-of-file record number.

The first time you use PUT after OPENing a file, you must specify
the record.

See the chapter on "Disk Files" for programming information.
PUT 1

writes the next record from buffer 1 to a direct-access file.
PUT 1, 25

writes record 25 from buffer 1 to a direct-access file.

Radie fhaek

-18¢-

JRS-XFNIX MRASIC TRS-80 ® KEYWORNS

RANDOMI ZE Function
RANDOMIZE [expression]

Reseeds the random number generator.

If your program uses the RND function, every time you load it,
MBASIC generates the same sequence of pseudorandom numbers.
Therefore, you may want to put RANDOMIZE at the beginning of the
program. This will help ensure that you get a different sequence of
pseudorandom numbers each time you run the program.

If expression is omitted, MBASIC prompts for a seed value:
Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

RANDOMIZE needs to execute just once.

Sample Program

600 CLS: RANDOMIZE

61¢ INPUT "PICK A NUMBER BETWEEN 1 AND 5"; A

620 B = RND(5)

639 IF A = B THEN 650

640 PRINT "YOU LOSE, THE ANSWER IS" B "--TRY AGAIN."

645 GOTO 610

650 PRINT "YOU PICKED THE RIGHT NUMBER -- YOU WIN!": GOTO 61¢

Radio fhaek

-181-

—KEYHORDS TRS-80 © —IRS-XENLX MBASIC

READ Statement

READ variablel, variable2,...

Reads values from a DATA statement and assigns them to variables.

MBASIC assigns values from the DATA statement on a one-to-one basis.
The first time READ is executed, the first value in the first DATA
statement is used; the second time, the second value is used, and so
on.

A single READ may access one or more DATA statements (each DATA
statement is accessed in order), or several READs may access the
same DATA statement.

The values read must agree with the variable types specified in list
of variables, otherwise, a "Syntax error" occurs. If the number of
variables in list of variables exceeds the number of elements in the
DATA statement(s), an "Qut of data" error message is printed.

Radio Sfhaek

-182-

[RS=XENTX MBASIC TRS'BO ® KEYRORDS

If the number of variables specified is lower than the number of
elements in the DATA statement(s), subsequent READ statements begin
reading data at the first unread element.

Example
READ T

reads a numeric value from a DATA statement and assigns it to
variable "T".

Sample Program

This program illustrates a common application for the READ and DATA
statements.

40 PRINT "NAME", "AGE"

5¢ READ N$

6@ IF N$="END" THEN PRINT "END OF LIST": END
79 READ AGE

80 IF AGE<18 THEN PRINT N$, AGE

9¢ GOTO 5¢

100 DATA “SMITH, JOHN", 3@, "ANDERSON, T.M.", 20
119 DATA "JONES, BILL", 15, "DOE, SALLY", 21
120 DATA "COLLINS, W.P.", 17: END

Radio fhaek

-183-

KEYWORDS TRS-80) © ——IBS-XENIX MBASIC

REM Statement

REM

Inserts a remark line in a program.

REM instructs the computer to ignore the rest of the program line.
This allows you to insert remarks into your program for
documentation. Then, when you look at a listing of your program, or
someone else does, it will be easier to figure it out.

If REM is used in a multi-statement program line, it must be the
last statement in the line.

You may use an apostrophe (') as an abbreviation for :REM.
Sample Program
120 REM CALCULATE AVERAGE VELOCITY

13¢ FOR I=1 TO 20
149 SUM=SUM + V(I)

OR
120 FOR I=1 TO 2¢ '"CALCULATE AVERAGE VELOCITY
13@ SUM=SUM + V(I)
140 NEXT I
®
Radie fhaek

-184-

IRS-XENIX MBASIC — TRS-80 °© KEYWORDS

RENUM Statement

RENUM [new linel, [linel, [increment]

Renumbers a program, starting at line, using new line as the
first new line and increment for the new sequence.

If you omit new line, MBASIC starts numbering at line 1.
If you omit the line, it renumbers the entire program.
If you omit increment, it jumps 1@ numbers between lines.

RENUM also changes all line number references appearing after GOTO,
GOSUB, THEN, ON ...GOTO, ON...GOSUB, ON ERROR GOTO, RESUME, and
ERLLrelational operator].

Examples

RENUM

renumbers the entire resident program, incrementing by 1¢'s. The new
number of the first line will be 1.

RENUM 600, 5000, 100
renumbers all lines numbered from 500¢ up. The first renumbered Tine

will become 6@¢, and an increment of 100 will be used between
subsequent Tines.

RENUM 10000, 1000

renumbers line 10@@ and all higher-numbered lines. The first
renumbered line will become line 1000@. An increment of 10 will be
used between subsequent Tline numbers. '

RENUM 100, , 100
renumbers the entire program, starting with a new Tine number of

193, and incrementing by 10@'s. Notice that the commas must be
retained even though the middle argument is gone.

Radio fhaek

-185-

W TRS'BD ® [BS-XENTX MRASIC

Error Conditions

1.

RENUM cannot be used to change the order of program lines. For

example, if the original program has lines numbered 10,20, and
3%, then the command:

RENUM 15, 30

is illegal, since the result would be to move the third line of
the program ahead of the second. In this case, and FC (illegal
function call) error occurs, and the original program is left
unchanged.

RENUM will not create new line numbers greater than 65529.
Instead, an FC error occurs, and the original program is left
unchanged.

If an undefined line number is used inside your original
program, RENUM prints a warning message, "“undefined line XXXX
in YYYY", where XXXX is the original line number reference and
YYYY is the original number of the line containing XXXX. Note
that RENUM renumbers the program in spite of this warning
message. It does not change the incorrect line number
reference, but it does renumber YYYY, according to the
parameters in your RENUM command.

Radio fhaek

-186-

e JRS=XENTX MBASIC . TRS-80 © KEYWQR0S

RESTORE Statement

RESTORE [1inel]

Restores a program's access to previously-read DATA statements.

This lets your program re-use the same DATA lines.
If 1line is specified, the next READ statement accesses the first
jtem in the specified DATA statement.

Sample Program

160 READ X$

1790 RESTORE

180 READ Y$

190 PRINT X$, Y$

20@ DATA THIS IS THE FIRST ITEM, AND THIS IS THE
SECOND

When this program is run,
THIS IS THE FIRST ITEM THIS IS THE FIRST ITEM

is printed on the display. Because of the RESTORE statement in line
17@, the second READ statement starts over with the first DATA item.

Radio fhaek

-187-

KEYHORDS TRS-80 © —IRS=XENIX MBASIC

RESUME Statement

RESUME [linel
RESUME NEXT

Resumes program execution after an error-handling routine.

RESUME without an argument and RESUME @ both cause the computer to
return to the statement in which the error occurred.

RESUME 1ine causes the computer to branch to the specified line
number .,

RESUME NEXT causes the computer to branch to the statement following
the point at which the error occurred.

A RESUME that is not in an error-handling routine causes a "RESUME
without error" message.

Examples

RESUME

if an error has occurred, this line transfers program control to the
statement in which it occurred.

RESUME 1@
if an error has occurred, transfers control to line 14.
Sample Program

10 ON ERROR GOTO 990

éGO IF (ERR=23¢) AND(ERL=9¢) THEN PRINT "TRY AGAIN" :
RESUME 8¢ -

Refer to Appendix A for more on the Error Codes.

Radio fhaek

-188-

—IRSXENIY MRASIC TRS-80 © KEVWORDS,

RETURN Statement

RETURN

Returns control to the Tine immediately following the most recently
executed GOSUB.

If the program encounters a RETURN statement without execution of a
matching GOSUB, an error occurs.

Sample Program

330 PRINT "THIS PROGRAM FINDS THE AREA OF A CIRCLE"
34 INPUT "TYPE IN A VALUE FOR THE RADIUS"; R

35@ GOSUB 37¢

360 PRINT "AREA IS" ; A: END

370 A = 3.14 * R * R

38@ RETURN

Radio fhaek

-189-

KEYWORDS TRS-80 © —IRSXENIX MBASIC

RIGHTS$ Function

RIGHT$(string, number)

Returns the rightmost number characters of string.
RIGHT$ returns the last number characters of string. If LEN
(string) is Tess than or equal to number, the entire string is
returned,
Examples:
PRINT RIGHT$("WATERMELON", 5)
prints MELON.
PRINT RIGHT$("MILKY WAY", 25)
prints MILKY WAY.

Sample Program

85¢ RESTORE: ON ERROR GOTO 88¢

860 READ COMPANYS

87 PRINT RIGHT$(COMPANYS$, 2), : GOTO 860

880 END

89¢ DATA "BECHMAN LUMBER COMPANY, SEATTLE, WA"

90¢ DATA "ED NORTON SEWER SERVICE, BROOKLYN, NY"

919 DATA "HAMMON MANUFACTURING COMPANY, HAMMOND, IN"

This program prints the name of the state in which each company is
located.

Radio fhaek

-19¢0-

—————IRS=XENLX MRASIC .. TRS-80 ° KEYIWQROS.

RND Function
RND {number)

Generates a pseudorandom number between @ and number.
Number must be greater than or equal to @ and less than 32768.

RND produces a pseudorandom number using the current "seed" number.
MBASIC generates the seed internally, therefore, it 1is not
accessible to the user. RND may be used to produce random numbers
between @ and 1, or random integers greater than @, depending on the
argument.

RND(@) returns a double-precision value between § and 1, RND(number)
returns an integer between 1 and number. For example, RND(55)
returns a pseudorandom integer between 1 and 55. RND(55.5) returns a
pseudorandom number between 1 and 56 (the argument is rounded). If
number is negative, a function call error occurs.

Examples
A = RND(2)
assigns A a value of 1 or 2.

A = RND(45)

assigns A a random integer between 1 and 45.
PRINT RND (@)

prints a decimal fraction between @ and 1.

Radio fhaek

-191-

KEYWORDS TRS-80 © —IRS-XENIX MBASIC

RSET Statement

RSET field name = data

Sets data in a direct-access buffer field.

This statement is similar to LSET. The difference is that with RSET,
data is right-justified in the buffer.

See LSET for details.

Radio fhaek

~-192-

e LRS = XENLX_MBASIC . TRS-80 © KEYWQRDS

RUN Statement

RUN [Tinel

RUN“fiTename, [R]
Runs a program.
RUN followed by a Tine or nothing at all simply executes the
program in memory, starting at line or at the beginning of the

program.

RUN followed by a filename loads a program from disk and then runs
it. Any resident MBASIC program is replaced by the new program.

Optional R Teaves all previously OPEN files open. If omitted,
MBASIC closes all open files.

RUN automatically CLEARS all variables.
Examples |
RUN
starts execution at Towest Tine number.
RUN 100

starts execution at line 1¢¢.

RUN "PROGRAM.A"
loads and executes PROGRAM.A.
RUN "EDITDATA", R

loads and executes EDITDATA, leaving OPEN files open.

Radio Shaek

-193-

KEYWORDS TRS-80 © —IRS=XENIX NEASIC

SAVE Statement
SAVE filename, [A], [P]

Saves a program in a disk file under filename.

If filename already exists, its contents will be lost as the file
is re-created.

SAVE without the A option saves the program in a compressed
format. This takes up less disk space. It also helps SAVEs and
LOADs to be performed faster. MBASIC programs are stored in RAM
using compressed format.

Using the A option causes the program to be saved in ASCII format.
This takes up more disk space. However, the ASCII format allows you
to MERGE this program later on. Also, data programs which will be
read by other programs must usually be in ASCII.

For compressed-format programs, a useful convention is to use the
extension .BAS. For ASCII-format programs, use .TXT.

The P option protects the file by saving it in an encoded binary
format.

Examples
SAVE "FILE1.BAS.JOHN"

saves the resident MBASIC program in compressed format. The file
name is FILE1l; the extension is .BAS.

SAVE “"MATHPAK.TXT", A

saves the resident program in ASCII form, using the name
MATHPAK.TXT, on the first non-write-protected drive.

Radie fhaek

-194-

TR XENLLMRASIC— TRS-80 ° KEYNOROS

SGN Function
SGN (number)

Determines number's sign.
If number is a negative number, SGN returns -1,
If number is a positive number, SGN returns 1.
If number is zero, SGN returns @.
Examples

Y = SGN(A * B)

determines what the sign of the expression A*B is, and passes the
appropriate number (-1,8,1) to Y.

ON SGN(X)+2 GOTO 10¢, 200, 300

branches to 100 if X is negative, 200 if X is @, and 3¢@ if X is
positive.

Radio fhaek

-195-

KEYWORDS TRS-80 © ——IRSXENIX MBASIC

SHELL Function

SHELL ("command")

Returns the process ID of TRS-XENIX command. This process
executes command. Control is returned to MBASIC, without waiting
for the process to terminate.
Example

X = SHELL ("date")

stores the process ID in x and returns to MBASIC. A few seconds
later your screen displays:

Sat Jan 29 $6:36:06 EST 1983

Note: Only numeric variables can store this value.

Radio fhaek

-196-

e IRS=XENIX MBASIC . TRS-80 © ———XEYUIRIS

SHELL Statement

SHELL [“command"]

Executes a TRS-XENIX command and returns to MBASIC.

If command is omitted, SHELL halts the execution of MBASIC and
executes the TRS-XENIX SHELL program. To exit the SHELL press

<CTRL><D> and return to MBASIC.
Example
SHELL "1s"

displays the listing of your current directory, then returns control
to MBASIC.

Radio fhaek

-197-

KEYWORDS TRS-80 © —IRS-XENIX MBASIC

SIN Function
SIN(number)

Computes the sine of number.

Number must be in radians. To obtain the sine of number when

number is in degrees, use SIN(number * .P1745329). The result is
always double precision,

Examples

PRINT SIN(7.96)
prints .994385315@281.
Sample Program

6600 INPUT "ANGLE IN DEGREES"; A
670 PRINT "SINE IS"; SIN(A * ,P1745329)

Radio fhaek

-198-

IRS-XENIX MRASIC TRS-80 ® KEYWORDS

SPACES Function
SPACE $(number)

Returns a string of number spaces.
Number must be in the range @ to 32767.

Example

PRINT "DESCRIPTION" SPACE$(4) "TYPE" SPACE$(9)
“QUANTITY"

prints DESCRIPTION, four spaces, TYPE, nine spaces, QUANTITY.
Sample Program

92@ PRINT "Here"

93¢ PRINT SPACE$(13) "is"

94 PRINT SPACE$(26) "an"

95@ PRINT SPACE$(39) "example"
960 PRINT SPACE$(52) "of"

97¢ PRINT SPACE$(65) "SPACE$"

Radio fhaek

-199-

KEYWORDS TRS-80 ® __JTRS-XENIX MRBASIC

SPC Function

SPC (number)

Returns a string of number blanks.

Number is in the range @ to 32767. SPC does not use string space.
The left parenthesis must immediately follow SPC.

SPC may only be used with PRINT, LPRINT, or PRINT# .
Example

PRINT "HELLO" SPC(15) "THERE"
prints HELLO, 15 spaces, THERE

Radie fhaek

-200-

— IRSXFNIY MRASIC TRS-80 °© KEYWORDS

SQR Function
SQR (number)

Calculates the square root of number,
The number must be greater than zero.
The result is always double precision.
Example

PRINT SQR(155.7)
prints 12.478.
Sample Program

68¢ INPUT "TOTAL RESISTANCE (OHMS)"; R
690 INPUT "TOTAL REACTANCE (OHMS)"; X
700 7 = SQR((R * R) + (X * X))

71¢ PRINT "TOTAL IMPEDANCE (OHMS) IS" Z

This program computes the total impedance for series circuits.

Radio fhaek

-201-

KEYHORDS TRS-80 © ——R3S-XENIX MBASIC

STOP Statement
sToP

Stops program execution.

When a program encounters a STOP statement, it prints the message
BREAK IN, followed by the line number that contains the STOP. STOP
is primarily a debugging tool. During the break in execution, you
can examine variables or change their values.

The CONT command resumes execution at the point it was halted. But

if the program itself is altered during the break, CONT cannot be
used.

Sample Program
2260 X = RND(1@)
227@ STOP
2280 GOTO 2269
A random number between 1 and 10 is assigned to X, then program

execution halts at line 227@3. You can now examine the value X with
PRINT X. Type CONT to start the cycle again.

Radio fhaek

-202-

JRS-XFNTX MBASIC TRS-80 °© KEYWORDS

STRS Function
STR$ (number)

Converts number into a string.
If number is positive, STR$ places a blank before the string.

While arithmetic operations may be performed on number, only
string functions and operations may be performed on the string.

Example

S$ = STR$(X)
converts the number X into a string and stores it in S§.
Sample Program

5 REM ARITHMETIC FOR KIDS
1¢ INPUT "“TYPE A NUMBER"; N
15 ON LEN(STR$(N)) GOSUB 3@, 108, 200, 300, 400, 500

Radio fhaek

-203-

KEYWORDS TRS-80 ¢ —lRO=XENIX MBASIC

STRINGS Function

STRING$ (number, character)

Returns a string of number characters.
Number must be in the range @ to 32767.

Character is a string or an ASCII code. If you use a string
constant, it must be enclosed in quotes.

A1l the characters in the string will have either the ASCII code
specified, or the first letter of the string specified.

STRINGS is useful for creating graphs or tables.
Examples:

B$ = STRINGS$(25, "X")
puts a string of 25 "X"s into BS.

PRINT STRING$(50, 10)

prints 5@ blank lines on the display, since 1¢ is the ASCII code for
a line feed.

Sample Program

1049 CLEAR 300

1050 INPUT "TYPE IN THREE NUMBERS BETWEEN 33 AND
159(N1,N2,N3)"; N1, N2, N3

1060 CLS: FOR I = 1 TO 4: PRINT STRING$(28, N1): NEXT I

107¢ FOR J = 1 TO 2: PRINT STRING$(4@, N2): NEXT J

1089 PRINT STRINGS$(8@, N3)

Radio fhaek

-204-

e JRSCXENIX MBASIC . TRS-80 © KEYWORDS

SWAP Statement

SWAP variablel, variable?

Exchanges the values of two variables.

Variables of any type may be SWAPed (integer, single precision,
double precision, string). However, both must be of the same type,
otherwise, a "Type mismatch" error results.

Either or both of the variables may be elements of arrays. If one or
both of the variables are non-array variables which have not been
assigned values, an "ITlegal Function Call" error results.

Example
SWAP Fl#, F2#

swaps the contents of F1# and F2#. The contents of F2# are put into
F1#, and the contents of Fl# are put into F2#.

Sample Program

10 A$="ONE":B$="ALL":C$="FOR"
20 PRINT A$ C$ BS

30 SWAP AS$, BS

49 PRINT A$ C$ BS

RUN

ONEFORALL

ALLFORONE

Radio fhaek

-2(5~

KEYHORDS TRS-80 © —IRS=XENIX MBASIC

SYSTEM Statement

SYSTEM
Closes all files and exits MBASIC. The resident MBASIC program will
be Tost.
Example
SYSTEM
returns you to TRS-XENIX level.

When SYSTEM is executed it spools the LPRINT buffer to the line
printer.

Radio fhaek

-2(6-

—lRSXENIX MBASIC . TRS-80 © KEXWORDS.

TAB Function
TAB (number)

Spaces to position number on the display.
Number must be in the range 1 to 32767.

If the current print position is already beyond space number, TAB
goes to that position on the next line. Space one is the leftmost
position; the width minus one is the rightmost position.

TAB may only be used with the PRINT and LPRINT statements.

Sample Program

10 PRINT "NAME" TAB(25) "AMOUNT":PRINT
20 READ A%, BS

3@ PRINT A$ TAB(25) BS

49 DATA "G.T.JONES","$25.0@"

RUN

The display shows:

NAME AMOUNT
G.T.JONES $25.00
Radio fhaek

~207-

_KEYWORDS TRS-80 °© JRS-XENIX MBASIC

TAN Function
TAN (number)

Computes the tangent of number.
Number must be in radians. To obtain the tangent of number when
it is in degrees, use TAN (number * ,11745329). The result is always
double precision.
Examples
PRINT TAN(7.96)
prints -9.3969620130868

Sample Program

72¢ INPUT "ANGLE IN DEGREES"; ANGLE
730 T = TAN(ANGLE * .p1745329)
74@ PRINT "TAN IS" T

Radio Sfhaek

-208-

[RS-XENTX MRASIC TRS-80 ® KEYWORDS

TIMES Function

TIMES

Returns the time of the day.
This function lets you use the time in a program.

The operator sets the time initially when TRS-XENIX is started up.
When you request the time, TIMES$ supplies it using this format:

14:47:18
which means 14 hours, 47 minutes and 18 seconds (24-hour clock).
Example
A$ = TIMES
stores the current time in AS.
Sanple Program
114¢ IF LEFT$(TIMES, 5) = "1@:15" THEN PRINT "Time is

19:15 A.M.--time to pick up the mail." : END
1150 GOTO 1140

Radio fhaek

-209-

KEYWORDS TRS-80 ° TRS-XENIX MBASIC

TROFF, TRON Function

TROFF
TRON

Turn the "trace function" on/off.

The trace function lets you follow program flow. This is helpful for
debugging and analyzing of the execution of a program.

Each time the program advances to a new line, TRON displays that
line number inside a pair of brackets. TROFF turns the tracer off.

Sample Program

2299 TRON
2309 X = X * 3.14159
2310 TROFF

Lines 2299 and 2310 above might be helpful in assuring you that line
230@ is actually being executed, since each time it is executed
[2300]1 is printed on the Display.

After a program is debugged, the TRON and TROFF statements can be
removed.

Radio fhaek

-21¢-

IRS-XENTX MBASIC TRS'BO ® KEYWORNS

UNLOCK Statement
UNLOCK [#]buffer [rangel

Releases access restrictions placed upon a file.

UNLOCK releases Tlocks in the specified range on the file opened
with the number buffer.

Range is specified only if the file is open for random access. The
syntax for range is recordl TO record?2.

Sample Program

19 OPEN “"R", 1, "employee.data", 32
20 INPUT "Record number"; N%
3¢ If N%>20Q THEN 119

49 LOCK 1, N%

53 GET 1, N%

6@ PRINT NAMES$

7¢ PRINT ADDRESS$

80 PRINT TELS

9@ UNLOCK 1, N%

199 GOTO 3¢

119 CLOSE 1

This program opens the file employee.data and locks the records
requested. As the information of each record requested is written
out, the corresponding record is unlocked. This process continues
until you request a record number larger than 204@.

Radio fhaek

-211-

KEYWORDS TRS-80 ® ___TRS-XENIX MBASIC _______

VAL Function

VAL(string)

Calculates the numerical value of string.

VAL is the inverse of the STR$ function; it returns the number
represented by the characters in a string argument. This number may
be integer, single precision, or double precision, depending on the
range of values and the rules used for typing all constants.

For example, if A$ = "12" and B$ = "34" then VAL(A$ + "." + BY)
returns the value 12.34 and VAL (A$ + "E" + B$) returns the value
12E34, that is, 12 * 19734,

VAL terminates its evaluation on the first character which has no
meaning in a numeric term.

If the string is non-numeric or null, VAL returns a zero.
Examples
PRINT VAL ("10¢ DOLLARS™")
prints 10d.
PRINT VAL("1234E5")
prints 1.234E+08.
B = VAL("3" + "&! 1 M2n)

assigns the value 3 to B (the asterisk has no meaning in a numeric
term).

Sample Program

10 READ NAMES$, CITYS$, STATES, ZIPS

20 IF VAL(ZIPS) < 9000Q OR VAL(ZIP$) > 96699 THEN PRINT NAMES$
TAB(25) "OUT OF STATE"

3¢ IF VAL(ZIP$) > 90801 AND VAL (ZIP$) <= 90815 THEN PRINT
NAME$ TAB(25) "LONG BEACH"

Radio fhaek

-212-

IBS-YXENTX MRASIC TRS-BO ® KEYWORDS

VARPTR Function

VARPTR(variable or buffer)

Returns the absolute memory address.

VARPTR can help you locate a value in memory. When used with
variable, it returns the address of the first byte of data
identified with variable.

When used with buffer, it returns the address of the file's data
buffer. If the variable you specify has not been assigned a name, or
the file has not been opened, an "Illegal Function Call" occurs.

If VARPTR (integer variable) returns address K:

Address K contains the most significant byte (MSB) of 2-byte
integer.

Address K + 1 contains the least significant byte (LSB) of integer.

If VARPTR (single-precision variable) returns address K:

(K)* = exponent of value. High bit is sign bit. Bias is 64
(K) + 1 = MSB of BCD mantissa (2 digits)

(K) + 2 = next MSB (2 digits)

(K) +3 = 1LSB (2 digits)

If VARPTR (double-precision variable) returns K:

K)y=* = exponent of value. High bit is sign bit. Bias is 64
(K) + 1 = MSB of BCD mantissa (2 digits)

(K + 2 = next MSB (2 digits)

(K) + 3 = next MSB (2 digits)

(K) + 4 = next MSB (2 digits)

(K) + 5 = next MSB (2 digits)

(K) + 6 = next MSB (2 digits)

(K +7 = LSB (2 digits)

Note: You cannot return VARPTR to an integer variable.

For single and double-precision values, the number is stored in
normalized exponential form, so that a decimal is assumed before the
MSB. 64 is added to the exponent. Furthermore, the high bit of MSB
is used as a sign bit. It is set to @ if the number is positive or
to 1 if the number is negative. See examples below.

Radio Shaek

-213-

KEYWORDS TRS-80 ® ——IRS=XENTX MBASIC,

*(K) signifies "contents of address K"

If VARPTR (string variable) returns K:

(K)* = MSB length of string

(K + 1) = LSB length of string

(K +2) = MSB of string value starting address

(K + 3) = next MSB of string value starting address
(K + 4) = LSB of string value starting address

The address will probably be in high RAM where string storage space
has been set aside. But, if your string variable is a constant (a
string literal), then it will point to the area of memory where the
program line with the constant is stored, in the program buffer
area. Thus, program statements Tike A$="HELLO" do not use string
storage space.

VARPTR (array variable) returns the address for the first byte of
that element in the array. The element consists of 2 bytes if it is
an integer array; 5 bytes if it is a string array; 4 bytes if it is
a single precision array; and 8 bytes if it is a double precision
array.

The first element in the array is preceded by:

1. A sequence of two bytes per dimension, each two-byte pair
indicating the "depth" of each respective dimension.

2. A single byte indicating the total number of dimensions in the
array.

3. Three bytes indicating the total number of elements in the
array.

4. A two-byte pair containing the ASCII-coded array name.

5. A one-byte type-descriptor(#2 = Integer, §5=String, 04 =
Single=Precision, #8 = Double-Precision).

I[tem 1 immediately precedes the first element, Item 2 precedes Item
1, and so on.

The elements of the array are stored sequentially with the first
dimension-subscripts varying "fastest", then the second, etc.

Examples
Al = 2 is stored as follows:
2 = 2X19 (to the first)

So exponent of A is 64+l = 65 (called excess 64)

Radio fhaek

-214-

——e IRS=XENIX MBASIC __ TRS-80 © KEYWQRNS

The high bit of the exponent is set to zero to indicate a positive
number.

So Al = 2 is stored as:

(K)* 65
(K)y +1 32
(K) + 2 /]
(K) + 3 1)
Al = -5 is stored as:
(K)* 192
Ky +1 8¢
(K) + 2 /)
Ky + 3 @
Al = 123.456 is stored as:
(K)* 67
(K +1 18
(Ky +2 52
(K +3 86

Al = -123.456 is stored as:

(K)* 195
(K) +1 18
Ky +2 52
(K)y +3 86

The following program will allow you to see the contents of a single
precision variable.

10 INPUT “ENTER A NUMBER "; A!
20 B = VARPTR(A!)
30 FOR I = B TO B+3
40 PRINT PEEK(I)

5@ NEXT I

60 END

RUN

ENTER A NUMBER? 10¢
67

16

)

g
Ok

Radio Shaek

-215-

KEYWORDS TRS-80) ¢ ~——1IBRS=XENIX MBASIC

To look at double precision use:

19 INPUT “ENTER A NUMBER "; A
20 B = VARPTR(A)

30 FOR I = B TO B+7

4 PRINT PEEK(I)

5@ NEXT I

60 END

RUN

ENTER A NUMBER? 123456789

Radio fhaek

-216-

IRS=XENIX MBASI{ TRS'BO ® KFVWHQ

WHILE....WEND Statement

WHILE expression

i]oop statements}
WEND

Execute a series of statements in a Toop as long as a given
condition is true.

If expression is not zero (true), MBASIC executes loop statements
until it encounters a WEND. MBASIC returns to the expression. If
it is still true, MBASIC repeats the process. If it is not true,
execution resumes with the statement following the WEND statement.

WHILE/WEND Toops may be nested to any level. Each WEND matches the
most recent WHILE. An unmatched WHILE statement causes a "WHILE
without WEND" error, and an unmatched WEND causes a "WEND without
WHILE" error.

Sample Program

99 'BUBBLE SORT ARRAY A$

10¢ FLIPS=1 'FORCE ONE PASS THRU LOOP

110 WHILE FLIPS

115 FLIPS=0

120 FOR I=1 TO J-1 'J = NUMBER OF ELEMENTS IN A$()
130 IF A$(I)>A$(I+1)THEN SWAP A$(I), A$(I+1): FLIPS=1
140 NEXT I

15¢ WEND

This program sorts the elements in array A$. Control falls out of
the WHILE loop when no more SWAPS are performed on line 130.

Radio fhaek

-217-

KEYWORDS TRS-80 ° IRS-XENIX MBASIC

WIDTH Statement

WIDTH buffer, size

or

WIDTH device, size

Sets the size for lines to be printed from a file which is OPENed
for output.

Size must be an integer between 1 and 255. It sets the number of
characters that can be printed on one line. If size is 255, the

line width is "infinite", that is, MBASIC never inserts a carriage
return

Device identifies a device such as "LPT1:" or "SCRN:". For more
information on devices, see OPEN and Appendix G.

Buffer is the buffer used to OPEN the file.

WIDTH buffer, size changes the line width of the file associated
with buffer. That is, if more than size bytes are output on one
line to the file, MBASIC forces a new file.

WIDTH device, size has no effect on files currently OPENed to
that device. A subsequent OPEN device FOR OUTPUT AS number will
use size for width while the file is OPEN.

Sample Program

Suppose that line 10 is in a file which is accessed by buffer 1.
The file is currently OPEN for output:

19 PRINT "DON QUIXOTE DE LA MANCHA"
RUN

DON QUIXOTE DE LA MANCHA

0K

WIDTH 1, 15

RUN
1] ¢

DON QUIXOTE DE
LA MANCHA

e/ T T e (,wd%\ oy ¢l s /’r_le' i
roliefgs TSRS de e B

Radio fhaek

IR " - D F oy

-218-

—IBSYFNIY MRASIC TRS-80 °© KEVWORDS

WRITE Statement
WRITE [data,...]

Writes data on the display.

WRITE prints the values of the data items you type. If data is
omitted, MBASIC prints a blank line. The data may be numeric
and/or string. They must be separated by commas.

When the data is printed, each data item is separated from the
last by a comma. Strings are delimited by quotation marks. After
printing the last item on the list, MBASIC inserts a carriage
return,

Example

10 A=95:B=76:C$="G00D BYE"
20 WRITE A,B,C$
RUN
95, 76, "GOOD BYE"
0K

SAHOMAIM

Radio fhaek

-219-

KEYWORDS TRS-80) © ——IRS=XENTX _MBASIC

WRITE# Statement

WRITE# buffer, data,...

Writes data to a sequential-access file.

Buffer must be the number used to OPEN the file.

The data you enter may be numeric or string expressions.

WRITE# inserts commas between the data items as they are written to
disk. It delimits strings with quotation marks. Therefore, it is not
necessary to put explicit delimiters between the data.

The items on data must be separated by commas.

WRITE# inserts a carriage return after writing the last data item to
disk.

For example, if

A$="MICROCOMPUTER" and B$="NEWS"
the statement

WRITE#1, A$,B$
writes the following image to disk:

"MICROCOMPUTER™", "NEWS"

Radio fhaek

-220-

~ Appendices

MBASIC Reference Manual

saopueddy |
i

ey
%

IRS-XENTX MBASIC . TRS-80 © ——ARRENMIX A

Appendix A

Error Messages
Number Message

1 NEXT without FOR

A variable in a NEXT statement does not correspond to
any previously executed, unmatched FOR statement
variable.

2 Syntax error

MBASIC encountered a line that contains an incorrect
sequence of characters (such as unmatched
parenthesis, misspelled command or statement,
incorrect punctuation, etc.). MBASIC automatically
enters the edit mode at the line that caused the
error.

3 Return without GOSUB

MBASIC encountered a RETURN statement for which
there is no matching GOSUB statement.

4 Qut of data

MBASIC encountered a READ statement but there are no
DATA statements with unread items remaining in the
program.

5 [1Tegal function call
A parameter that is out of range is passed to a math

or string function. An FC error may also occur as the
result of:

>
o
o
m
pd
=
>
>

1. A negative or unreasonably large subscript.
2. A negative or zero argument with LOG.

3. A negative argument to SQU.

4. A negative mantissa with a noninteger
exponent,

Radio Sfhaek

225

APPENDIX A

10

11

5. An improper argument to MID$, LEFT$, RIGHTS,
PEEK, POKE, TAB, SPC, STRINGS$, SPACE$, INSTR,
or ON...GOTO.

Overflow

The result of a calculation is too large to be
represented in MBASIC numeric format. If underflow
occurs, the result is zero and execution continues
without an error.

Out of memory

A program is too large, or has too many FOR loops or
GOSUBs, too many variables, or expressions that are
too complicated.

Undefined 1ine number

A nonexistent line is referenced in a GOTO, GOSUB,
IF...THEN...ELSE, or DELETE statement.

Subscript out of range

An array element is referenced either with a
subscript that is outside the dimensions of the array
or with the wrong number of subscripts.

Duplicate Definition

Two DIM statements are given for the same array; or,
a DIM statement is given for an array after the
default dimension of 10 has been established for that
array.

Division by zero

An expression includes division by zero, or the
operation of involution results in zero being raised
to a negative power. MBASIC supplies machine infinity
with the sign of the numerator as the result of the
division; or it supplies positive machine infinity
as the result of the involution. Execution then
continues.

Radio fhaek

TRS-80 © ~———IBS=XENIX MBASIC 0o

226

12

13

14

15

16

17

18

19

TRS-M;E__ TRS-80 °© APPENDIX A

~

ITlegal direct

A statement that is illegal in direct mode is entered
as a direct mode command.

Type mismatch

A string variable name is assigned a numeric value or
vice versa; a function that expects a numeric
argument is given a string argument or vice versa.

Out of string space

String variables have caused MBASIC to exceed the
amount of free memory remaining. MBASIC allocates
string space dynamically, until it runs out of
memory .

String too long

An attempt is made to create a string more than 32767
characters 1long.

String formula too complex

A string expression is too long or too complex. The
expression should be broken into smaller expressions.

Can't continue
An attempt is made to continue a program that:
1. Has halted due to an error.

2. Has been modified during a break in
execution.

3. Does not exist.
Undefined user function.

An attempt is made to call a function which has not
been defined.

No RESUME

An error handling routine is entered but contains no
RESUME statement.

Radio fhaek

227

>
2
3
m
Z
o
>
>

APPENDIX A TRS-80 °© TRS-XENIX MBASIC

20

21

22

23

26

29

30

50

51

RESUME without error

A RESUME statement is encountered before an error
handling routine is entered.

Unprintable error

An error message is not available for the error
condition which exists.

Missing operand
An expression contains an operator with no operand.
Line buffer overflow

An attempt has been made to input a line that has too
many characters,

FOR without NEXT

A FOR statement was encountered without a matching
NEXT.

WHILE without WEND
A WHILE statement does not have a matching WEND.
WEND without WHILE

A WEND statement was encountered without a matching
WHILE.

Field overflow

A FIELD statement is attempting to allocate more
bytes than were specified for the record length of a
random file.

Internal error
An internal malfunction has occurred in MBASIC.

Report to Radio Shack the conditions under which the
message appeared.

Radio fhaek

228

52

53

54

55

57

58

61

62

Bad file number

A statement or command references a file with a file
number (buffer number) that is not open or is out of
the range of file numbers specified at
initialization.

File not found

A LOAD, KILL, or OPEN statement references a file
that does not exist on the current disk.

Bad file mode

An attempt is made to use PUT, GET, or LOF with a
sequential file,/ to LOAD a random file, or to execute
an OPEN statement with a file mode other than I, O,
R, A or D.

File already open

A sequential output mode OPEN statement is issued for
a file that is already open; or a KILL statement is
given for a file that is open.

Device 1/0 error =~ .

an Input/Output error occurred., This is a fatal
error; the operating system cannot recover it.

File already exists

The filespec specified in a NAME statement is
identical to a filespec already in use on the disk.

Disk full
A1l disk storage space is in use.

Input past end

>
o
o
m
Z
=
3
>

An INPUT statement is executed after all the data in
the file has been INPUT, or for a null (empty) file.

To avoid this error, use the EOF function to detect
the end-of -file.

Radio fhaek

229

63

64

66

67

68

70

73

77

APPENDIX A

Bad record number

In a PUT or GET statement, the record number is
either greater than the maximum allowed (32,767) or
equal to zero.

Bad file name

An illegal form is used for the filename with a LOAD,
SAVE, KILL, or OPEN statement (e.g., a filename with
too many characters).

Direct statement in file

A direct statement is encountered while LOADing an
ASCII-format file. The LOAD is terminated.

Too many files

An attempt is made to create a new file (using SAVE
or OPEN) when all directory entries are full.

Device Unavailable

An attempt is made to access a device which is not
ready or unavaiable.

Permission Denied

An attempt is made to either: access a LOCKed file;
OPEN a file for read without read permission or for
write without write permission; LOAD a file without
load permission, or SAVE a file without save
permission.

Advanced Feature

An attempt is made to use a feature which has not
been implemented yet.

Deadlock
TRS-XENIX MBASIC has detected a deadlock.

Radio fhaek

TRS-80 © ——IRS-XENIX MBASIC

230

TRS-80 °

Appendices

Radio fhaek

JRS-XENIX MBASIC ____ TRS-80 © ——AERENDIX R

Appendix B

Reserved Words

A reserved word with a dollar-sign ("$") after it may be used as a
numeric variable name if the dollar-sign is dropped. For instance,
CHR and CHR# are valid variable names. However, DEF statements may

not be used to assign values to this type of variable.

AND
ATN
CHR$
CONT
DATA
DEF
EOF
EXP
FRE
IMP
LEFTS
LOAD
LPRINT
MKI$
NOT
OUTPUT
RANDOM
RESUME
SAVE
SQR
SYSTEM
TRON
VARPTR
XOR

ABS
AUTO
CINT
N
DATES
DELETE
EQV
FIELD
GET
INKEY $
LEN
LOCK
LSET
MKS$
oCcT$
PEEK
RANDOMIZE
RETURN
SGN
STEP
TAB(
TROFF
WAIT

ALL APPEND
BASE CALL
CLEAR CLOSE
CSNG CvD
DEFINT DEFSNG
DIM EDIT
ERASE ERL
FILES FIX
GOSUB GOTO
INPUT INSTR
LET LINE
LOC LOF
MEM MERGE
MOD NAME
ON OPEN
POKE POS
READ REM
RIGHT$ RND
SHELL SIN
STOP STRS
TAN THEN
UNLOCK USING
WEND WHILE
®
Radie fhaek

231

AS
COBL
CLS
CVI
DEFDBL
ELSE
ERROR
FN
HEX$
INT
LIST
LOG
MID$
NEW
OPTION
PRINT
RENUM
RSET
SPACE$
STRINGS
TIME
USR
WIDTH

ASC
CHAIN
COMMON
CVS
DEFSTR
END
ERR
FOR

IF
KILL
LLIST
LPOS
MKD$
NEXT
OR

PUT
RESTORE
RUN
SPC(
SWAP
TO

VAL
WRITE

>
3
U
m
z
9
>
w

IRS-XENIX MBASIC TRS-80 ® APPENDIX C

Appendix C
Converting TRSDOS BASIC Programs to MBASIC

This Appendix is divided into three parts:

Part I BASIC Files
Part II Conversion Commands
Part III Conversion Procedures

Please read all three sections for a full understanding of this
Appendix.

Part I / BASIC Files

A BASIC file can be transferred from one of three sources: a
TRSDOS-II (4.9 or later) System diskette, a TRSDOS-II (4.0 or later)
SAVE diskette, or a TRSDOS 2.Qa System diskette. Each of these
sources has a unique procedure for converting to TRS-XENIX.

There are two types of BASIC files: BASIC Program Files and BASIC
Data Files.

BASIC Program Files. This file can be either compressed or ASCII
format. Knowing the type of format is important when transferring
files to TRS-XENIX.

Compressed Format. A BASIC program file stored in compressed
format is fixed Tength (type F) and has a record length of 256
bytes. A compressed BASIC program is stored by using the BASIC SAVE
command without the A option.

The compressed format of TRSDOS BASIC and TRS-XENIX MBASIC are
different, therefore TRSDOS BASIC compressed format files must be
converted to TRS-XENIX MBASIC ASCII format. This is explained in
detail later.

TRSDOS-II 4.x System Diskette -- To transfer a compressed
BASIC program file stored on a TRSDOS-II 4.x System diskette to
TRS-XENIX, refer to Procedure 1 in Part III of this Appendix.

Radie fhaek

233

>
v
o
m
Z
9
>
o

e APPEND X C TRS-80 © ——IRS-XENIX MBASIC

TRSDOS-IT 4.x SAVE Diskette -- To transfer a compressed BASIC

program stored in TRSDOS-II 4.x SAVE format to TRS-XENIX, refer
to Procedure 2 in Part III of this Appendix.

TRSDOS 2.Pa System Diskette -- To transfer a compressed BASIC
program stored on a TRSDOS 2.fa System diskette to TRS-XENIX,
refer to Procedure 3 in Part III of this Appendix.

ASCII Format. A BASIC program file in ASCII format is fixed
length (type F) and has a record length of 1 byte. As ASCII BASIC
program stored by using the BASIC SAVE command with the A option.

Note: If a TRSDOS ASCII BASIC program is transferred to TRS-XENIX,
extensive editing may be required to properiy pad MBASIC keywords to
the correct syntax. If you have TRSDOS BASIC programs stored in the
ASCII format, it is suggested that you save them again in compressed
format. You can do this by loading your program into TRSDOS BASIC
and resaving it without the A option.

TRSDOS-IT 4.x System Diskette -- To transfer an ASCII BASIC
program stored on a TRSDOS-II 4.x System diskette to TRS-XENIX,
refer to Procedure 4 in Part III of this Appendix.

TRSDOS-IT 4.x SAVE Diskette -- To transfer an ASCII BASIC
program stored in TRSDOS-II 4.x SAVE format to TRS-XENIX, refer
to Procedure 5 in Part III of this Appendix.

TRSDOS 2.@a System Diskette -- To transfer an ASCII BASIC
program stored on a TRSDOS 2.Pa System diskette to TRS-XENIX,
refer to Procedure 6 in Part III of this Appendix.

BASIC Data Files. BASIC Data Files are files which have been
created by BASIC programs. There are two types of BASIC Data Files,
sequential access and random access.

Refer to Chapter 5 for more information on BASIC Data Files.

Sequential Access

TRSDOS-II 4.x System Diskette -- To transfer a sequential

access data file stored on a TRSDOS-II 4.x System diskette to
TRS-XENIX, refer to Procedure 7 in Part III of this Appendix.

TRSDOS-IT 4,x SAVE Diskette -~ To transfer a sequential
access data file stored in TRSDOS-II 4.x SAVE format to
TRS-XENIX, refer to Procedure 8 in Part III of this Appendix.

Radio Shaek

234

TRS-XENIX MBASIC TRS-80 ° APPENDIX C

>
O
o
m
Z
o
X
@

TRSDOS 2.@a System Diskette -- To transfer a sequential
access data file stored on a TRSDOS 2.@a System diskette to
TRS-XENIX, refer to Procedure 9 in Part III of this Appendix.

Direct Access

TRSDOS-II 4.x System Diskette -- To transfer a direct access
data file stored on a TRSDOS-II 4.x System diskette to
TRS-XENIX, refer to Procedure 10 in Part III of this Appendix.

TRSDOS-II 4.x SAVE Diskette -- To transfer a direct access
data file stored in TRSDOS-II 4.x SAVE format to TRS-XENIX,
refer to Procedure 11 in Part III of this Appendix.

TRSDOS 2.0a System Diskette -- To transfer a direct data file
stored on a TRSDOS 2.@a System diskette to TRS-XENIX, refer to
Procedure 12 in Part III of this Appendix.

Part II / Conversion Commands

The TRS-XENIX commands tx and bp are used to transfer TRSDOS-II

BASIC files to TRS-XENIX. The tx command transfers a TRSDOS-II -
file to TRS-XENIX. The bp command then converts the transferred

BASIC compressed format program file into an ASCII format that

MBASIC can read and execute.

The syntax for tx is:

tx :d options Tfspec Xfspec.braw

Refer to the tx command in your TRS-XENIX Operations Guide for
an explanation of options.

The syntax for bp is:
bp Xfspec.braw $stpec.bas

TRSDOS-II file specification

TRS-XENIX file specification containing
TRSDOS-II BASIC compressed format
TRS-XENIX destination file specification
specifies the drive that contains the
TRSDOS-II diskette. :d is required.

Where: Tfspec
Xfspec.braw

Xfspec.bas
:d

Radie fhaek

235

APPENDIX C TRS-80 ° e IRS-XENIX MBASIC

The FCOPY command copies disk files that were created and stored
on a TRSDOS 2.0a System diskette to a disk formatted by TRSDOS-16 or
TRSDOS-II and vice versa. You must FCOPY any disk files created

with
tx.

TRSDOS before you can use them with the conversion command

The syntax for FCOPY is:

Where: Tfspec

FCOPY Tfspec TO T-IIfspec [options]

TRSDOS file specification
TRSDOS-II file specification

T-IIfspec

Refer to your TRSDOS-II or TRSDOS-16 owner's manual for an
explanation of options.

Important Notes:

1.

2.

Part

For information on the size of variables allowed and syntax
padding requirements, refer to Appendices D and H.

TRSDOS BASIC programs designed to use Z8@ machine language
subroutines cannot run successful without the subroutines being
rewritten in 68000 machine language and the BASIC source
changed from using the DEF USR and USR commands to the CALL
command. If you desire to use the machine language subroutines
with MBASIC, you need the TRS-XENIX Development System.

II1 / Conversion Procedures

This procedure transfers the TRSDOS-II BASIC compressed program
file PROGRAM/BAS stored on a TRSDOS-II 4.x System diskette in
Drive @, to TRS-XENIX.

tx :@ -va PROGRAM/BAS program.braw

transfers the compressed format of PROGRAM/BAS to TRS-XENIX and
stores the file in the temporary program file program.braw.

bp program.braw >program.bas

converts program.braw into ASCII format and stores the file
in program.bas.

Radie fhaek

236

JRS-XENIX MBASIC TRS-80 ° APPENDIX C

rm program.braw
removes the temporary program file program.braw.
This procedure transfers the TRSDOS-II BASIC compressed program
file SPROGRAM/BAS stored on your TRSDOS-II 4.x SAVE diskette in
Drive @, to TRS-XENIX.

tx :@ -rva SPROGRAM/BAS sprogram.braw
transfers the compressed format of SPROGRAM/BAS to the
TRS-XENIX and stores the file in the temporary program file
sprogram.braw.

Pp sprogram.braw >sprogram.bas

converts sprogram.braw into ASCII format and stores the file
in sprogram.bas.

rm sprogram.braw
removes the temporary program file sprogram.braw.
This procedure transfers the TRSDOS BASIC compressed program
file TPROGRAM/BAS, stored on your TRSDOS 2.@%a System diskette
in Drive @, to TRS-XENIX.
Boot up your system with a TRSDOS-II 4.x System diskette in
Drive @ to TRS-XENIX and your TRSDOS 2.@a System diskette in
Drive 1.

FCOPY TPROGRAM/BAS:1 TO PROGRAM/BAS:@

copies TPROGRAM/BAS to your TRSDOS-II diskette and renames it
as PROGRAM/BAS.

Reboot your system under the TRS-XENIX with your 4.x System
diskette in Drive 0.

tx :@ -va PROGRAM/BAS program.braw
transfers the compressed format of PROGRAM/BAS to the TRS-XENIX
and stores the file in the temporary program file
program. braw.

bp program.braw >program.bas

Radio fhaek

>
o
o
m
Z
=
>
O

237

APPENDIX C TRS-80 ® IRS-XENIX MBASIC

converts program.braw into ASCII format and stores the file
in program,bas.

rm program.braw
removes the temporary program file program.braw.

4. This procedure transfers the TRSDOS-II ASCII program file
PROGRAM/TXT, stored on your 4.x System diskette in Drive @, to
TRS-XENIX,

tx :@ -vax PROGRAM/TXT program.bas

transfers PROGRAM/TXT to TRS-XENIX and stores it in
program, bas.

5. This procedure transfers the TRSDOS-II ASCII program file -
SPROGRAM/TXT, stored on your TRSDOS-II 4.x SAVE diskette in
Drive @, to TRS-XENIX.

tx :@ -vaxr SPROGRAM/TXT sprogram.bas

transfers SPROGRAM/TXT to TRS-XENIX and stores it in
sprogram. bas.

6. This procedure transfers the TRSDOS ASCII program file
TPROGRAM/TXT, stored on your TRSDOS 2.fa System diskette in
Drive @, to TRS-XENIX.

Boot your system with a TRSDOS-II 4.x System diskette in Drive
@ and your TRSDOS 2.0a System diskette in Drive 1l..

FCOPY TPROGRAM/TXT:1 TO PROGRAM/TXT:@

copies TPROGRAM/TXT to your TRSDOS-II diskette and stores it in
PROGRAM/TXT.

Reboot your system under TRS-XENIX with your TRSDOS-II 4.x
System diskette in Drive §.

tx :@ -vax PROGRAM/TXT program.bas

transfers PROGRAM/TXT to TRS-XENIX and stores it in
program, bas.

7. This procedure transfers the TRSDOS-II sequential data file
PROGRAM/DAT, stored on your TRSDOS-II 4.x System diskette in
Drive @, to TRS-XENIX.

Radio fhaek

238

— TRS-YFNIX MBASIC TRS.80 °® APPENDIY. C

>
o
U
m
pr
=
X
@]

tx :@ -vax PROGRAM/DAT program.dat

{ﬂ‘ . transfers PROGRAM/DAT to TRS-XENIX and stores it in
-/ % program.dat

8. é This procedure transfers the TRSDOS-II sequential data file
| SPROGRAM/DAT, stored on your TRSDOS-II 4.x SAVE diskette in
Drive @, to TRS-XENIX.

tx :@ -vaxr SPROGRAM/DAT sprogram.dat

transfers SPROGRAM/DAT to TRS-XENIX and stores it in
sprogram.dat.

9. This procedure transfers the TRSDOS sequential data file
TPROGRAM/DAT, stored on your TRSDOS 2.@a System diskette in
Drive @, to TRS-XENIX.

Boot up your system with a TRSDOS-II 4.x System diskette in
Drive @ and your TRSDOS 2.Pa System diskette in Drive 1.

FCOPY TPROGRAM/DAT:1 TO PROGRAM/DAT:@

copies TPROGRAM/DAT to your TRSDOS-II diskette and stores it in
PROGRAM/DAT.

Reboot your system under TRS-XENIX with your TRSDOS-II 4.x
diskette in Drive @.

tx :@ -vax PROGRAM/DAT program.dat

transfers PROGRAM/DAT to TRS-XENIX and stores it in
program.dat.

1¢. This procedure transfers the TRSDOS-II random data file
PROGRAM/RDT, stored on your TRSDOS-II 4.x System diskette in
Drive @, to TRS-XENIX.

tx :@ -va PROGRAM/RDT program.rdt

transfers PROGRAM/RDT to TRS-XENIX and stores it in
program.rdt.

11. This procedure transfers the TRSDOS-II random data file

SPROGRAM/RDT, stored on your TRSDOS-II 4.x SAVE diskette in
Drive @, to TRS-XENIX.

Radio fhaek

239

APPENDIX C TRS-80 ° TRS-XENIX MBASIC

12,

tx :@ -var SPROGRAM/RDT sprogram.rdt

transfers SPROGRAM/RDT to TRS-XENIX and stores it in
sprogram.rdt.

This procedure transfers the TRSDOS random data file
TPROGRAM/RDT, stored on your TRSDOS 2.fa System diskette in
Drive @, to TRS-XENIX.

Boot up your system with a TRSDOS-II 4.x System diskette in
Drive § and your TRSDOS 2.0a System diskette in Drive 1.

FCOPY TPROGRAM/RDT:1 TO PROGRAM/RDT:@

Copies TPROGRAM/RDT to your TRSDOS-II diskette and stores it in

PROGRAM/RDT

Reboot your system under TRS-XENIX with your TRSDOS-II 4.x
System diskette in Drive @.

tx :@ -va PROGRAM/RDT program.rdt

transfers PROGRAM/RDT to TRS-XENIX and stores it in
program.rdt.

Radie fhaek

249

——— IRS-XENIX MBSIC ___ TRS.80 © ~——APPENDIX D

Appendix D
Differences Between TRSDOS BASIC and TRS-XENIX MBASIC

TRS-XENIX offers several enhancements over TRSDOS BASIC. The two
most important ones are: It can be accessed by multiple users and
it has more memory capacity. This appendix discusses these
enhancements and other differences between the two BASICs.

1. Keywords. The definitions and/or syntaxes of certain keywords
vary between TRSDOS BASIC and TRS-XENIX MBASIC. See: CLEAR, EOF,
LIST, LLIST, LOC, LOF, LPRINT, OPEN, POS, SYSTEM, VARPTR, and
WIDTH in Chapter 7.

TRS-XENIX MBASIC does not support the following TRSDOS BASIC
keywords: ROW, INP, OUT, ERR$, DEFUSR, USR.

TRSDOS BASIC does not support the following TRS-XENIX MBASIC
keywords: LOCK, LPOS, PEEK, POKE, SHELL, UNLOCK, WHILE..WEND,
WIDTH, WRITE, and WRITE#. For a detailed discussion of these new
keywords, see Chapter 7.

*2. Error Messages and Codes. The codes for TRS-XENIX MBASIC are
different than those for TRSDOS BASIC. Refer to Appendix A for
a list of error codes and messages for TRS-XENIX MBASIC.

*3. Precision of Variables. TRS-XENIX MBASIC assumes all your
variables are double precision, unless you specify otherwise.
TRSDOS BASIC assumes your variables are single precision.

4. Loading MBASIC. Chapter 1 of this manual explains how to load
TRS-XENIX MBASIC.

5. Filespecs. Under TRS-XENIX MBASIC, filespecs may be as long as
the largest legal string variable, that is, 32767 characters.
Under TRSDOS BASIC, filespecs can be up to eight characters
long.

6. Files. TRS-XENIX MBASIC allows 17 files to be OPEN at one
time; TRSDOS BASIC allows only 15.

7. Memory Space. Your program, variables and string space
(combined) may total up to 16777215 bytes in TRS-XENIX, compared
to 33608 bytes in TRSDOS BASIC. (Remember, however, that your
computer's memory capacity also limits the amount of memory
MBASIC can use. The 16777215 bytes are only available if you
have a 16-megabyte computer).

Radio fhaek

\) : ~ N o T AT .2 R P
VLOF i XeUiX = #of jytes in recard ¢ TRSDES = iest écesc

241

>
o
.
m
Z
=
>
O

19.

APPENDIX D TRS-80 © —IRS=XNIX MAASIL

Strings. In TRS-XENIX, string variables and string expressions
may contain up to 32767 characters each. In TRSDOS, they may
only contain up to 255 characters each.

Devices. With TRS-XENIX, you can access "devices" other than
disk files. To access these devices, use the same syntax as for
accessing files. For more information, see Appendix C and OPEN.

Assembly-Language Subroutines. TRSDOS BASIC operates under

the Z8¢ microprocessor; TRS-XENIX operates under the 6800¢
processor. If your program has assembly-language subroutines,
these subroutines need to be compatible with the 6803(¢
processor. Do not use any subroutines until you have re-written
them for the 68000 processor. See Appendix F, Loading
Assembly-Language Files, for more information.

TRS-XENIX in a Multi-User Environment:

1.

*2.

ASCII Codes. If your program uses ASCII codes, make sure they
represent only text characters (codes 32 to 127). ASCII codes
for video control characters, graphics characters and special
characters may vary between different types of terminals.
Therefore, each terminal may interpret a single ASCII code in a
different way. TRS-XENIX MBASIC can clear the screen (through
the CLS statement) and position the cursor (through the TAB
function) in a multi-user environment. However, it does not
support other video control functions, such as switching to
double-sized characters, reverse video, etc.

Files. If more than one user is accessing a single disk file

at the same time, unexpected results may occur (such as loss of
a file's contents). To avoid this, use the LOCK and UNLOCK
commands. It is important to understand these commands before
attempting to access files in a multi-user environment.

Radio Sfhaek

242

IRS-XENIX MBASIC ____ TRS-80 © ————APPENDIX F

Appendix E
Machine Language Interface to TRS-XENIX MBASIC

The CALL statement supports standard "C" calling conventions.
When executing the CALL statement, all parameters must be
variables. Also, no previously unreferenced scalar variable may
follow an array element in the parameter list. If you attempt
this, an "I1legal function call" error is generated.

The called routine has the following environment upon entry:
Stack Pointer-->Return Address (32 bits)--Tow memory
Pointer to value of 1lst parameter... (32 bits)

Pointer to value of last parameter (32 bits)--high memory

On exit, parameters are left on the stack (MBASIC will remove
them). The called routine may destroy registers af, al, d@, and
dl but all other registers must be preserved.

Radio fhaek

243

m
Z
O
>
m

e IRS=XENIX MBASIC ____ TRS-80 © APPENDIX F

Appendix F

Loading Assembly Language Files

MBASIC for the 6800@ provides a TRS-XENIX integrated mechanism for
loading assembly language programs. To link and load assembly
language files with MBASIC, start by using the -1 ("el") option with
the MBASIC command line. The file can be any relocatable file
(either a.out, b.out, or x.out that has not been processed with 1d
utility without the -r option. See the TRS-XENIX manual A.OQUT(5)).
Only one file per -1 is allowed; if more than one file needs to be
loaded, use additional -1 parameters. For example: If the assembly
language files were asml.s and asm2.s a possible syntax to assemble
and run MBASIC with these assembly language files would be:

as -0 asml.o asml.s
as -0 asm2.0 asm2.s
mbasic -1 asml.o -1 asm2.0

When the -1 option is used, the relocatable file

Jusr/bin/b68k.o is loaded with all the specified assembly

Tanguage files and the "C" library, and a local file named b68k.o is

produced and executed. If no -1 option appears in the command line,

the file /usr/bin/b68k is executed. (/usr/bin/b68k is -
the result of having loaded /usr/bin/b68k.o with the "C"

library.)

It is important to understand that a local version of MBASIC is the
executing program when the -1 option is used with mbasic command.
By local it is meant that a copy of b68k now resides in the user's
current directory. This version of MBASIC contains the assembly
language programs not the version of MBASIC residing in /bin. A
new copy of MBASIC will be created in the current directory each
time mbasic is executed with the -1 option. If the same set of
assembly Tanguage routines are to be used again the user might wish
to execute the local version of MBASIC called b68k that was

created the first time mbasic was executed with the -1 option. The
user can execute this local version of MBASIC by specifying the
local file name. This would be the pathname to the current
directory followed by b68k. Often the user profile is set to
search for local copies of a file first. If this is the case then
specifying b68k will surfice.

>
o
o
m
Z
=
<
-

To sum up, MBASIC under TRS-XENIX on the 68000 creates a special
version of MBASIC called b68k when machine level routines are to

be interfaced with MBASIC. If these machine level routines are to
be called during MBASIC program execution this special version of

Radio Shaek

245

e APPENDIX F TRS-80 © —IR:-XENDCMBASIC

MBASIC must be executing. It will be executing as a result of using
the -1 option with mbasic TRS-XENIX command or by executing a local
version of MBASIC directly after it has been created by an initial
use of the mbasic command.

Radio fhaek

246

e IRS-XENIX MBASIC _ TRS-80 © ————ARBENDIX G

Appendix G

Device Handling

TRS-XENIX Devices

TRS-XENIX MBASIC supports Generalized Device I/0. This means that
you can access "devices" other than disk files by using the same
syntax which has always been used by MBASIC to access disk files.
TRS-XENIX MBASIC supports the following “devices":

The Screen Device

The device "SCRN:" allows files to be opened to your computer
screen for output. All data written to a file which is opened to
"SCRN:" is directed to the standard output device (Screen). For
example:

OPEN “"SCRN:" for OUTPUT as #1
PRINT#1, N$

allows you to output to your computer screen and writes the value -
of N$ into the file assigned to buffer number 1, which is your
computer screen.

The Keyboard Device

The device "KYBD:" allows files to be opened to your computer
keyboard for input. A1l data read from a file which is opened to
"KYBD:" comes from the standard input device (Keyboard). For
example:

OPEN "KYBD:" for INPUT as #1
INPUT#1, N$

allows you to input from your keyboard and inputs the value of

N$ into your program from the file assigned to buffer number 1,
which is your keyboard.

Radio fhaek

>
O
U
m
=
o
>
o

247

APPENDIX & TRS-80 © ——IRS-AENIX MBASIC

The Printer Device

The device "LPT1:" allows files to be opened to your printer for
output. All data written to a file which is opened to "LPT1:" is
directed to the line printer. For example:

OPEN "LPT1:" for OQUTPUT as #1

WRITE#1, S$
opens an output file to your line printer and writes the value of
S$ to the file assigned.

TRS-XENIX pipes

TRS-XENIX supports pipes, which transfer the output of one
program into the input of another program. Opening a file to
device "pipe:.." opens a pipe, forks, and executes the specified
child process. For example:

LIST "PIPE: Tpr"
generates a listing to the Ipr spooler.

OPEN "pipe:1s -1" for INPUT AS #1
allows the directory to be read via buffer number 1.

LIST 5@, "PIPE:write david"

lists line 50 on *david's™ terminal using the write utility.

Line Printer Support

The command LLIST line number-line number is synonymous with
the command LIST line number-line number, "LPT1:". Both

commands cause a listing to be sent to the line printer spooler.
If <CTRL C> is pressed during either of these commands, the
output is discarded.

LPRINT causes an invisible file number to be opened to a line
printer spooler. This spooled output is released by the
statements END, SYSTEM, and CLEAR. If CLEAR is used without
parameters it does not release spooled LPRINT output.

If two files are opened to "LPT1:", their output is not
intermixed, but spooled separately, nor is their output
intermixed with LPRINT output.

Radio fhaek

248

—IRS-XENIX MBASIC _____ TRS-80 © APPENDIX H

H XIAN3ddv

Appendix H

Decimal Math Representation

The following describes the internal representation of numbers in
TRS-XENIX MBASIC:

Double precision contains eight bytes as follows: One bit sign
followed by 7 bits of biassed exponent followed by fourteen
digits of mantissa, 4 bits each. If the sign bit is 1, the number
is negative. The unbiassed exponent (biassed exponent - 64) is
the power of 10 that the mantissa is to be multiplied by. The
mantissa represents a number between (.10000000000000 and
$.99999999999999. For example -.P0@0@123456789 would be
represented by the hexadecimal number BB1234567890000Q.

External Representation Internal Representation

-9.9999999999999D+62 FF99999999999999

-1D-64 8110000000000000

] PIXXXXXXXXXXXXXX

1D-64 g110000000000000 -
9.9999999999999D+62 7F99999999999999

Single precision contains four bytes as follows: One bit sign
followed by 7 bits of biassed exponent followed by six digits of
mantissa, 4 bits each. If the sign bit is @, the number is
positive. If the sign bit is 1, the number is negative. The
unbiassed exponent (biassed exponent - 64) is the power of 10
that the mantissa is to be multiplied by. The mantissa
represents a number between @.100000 and $.999999. For example,
15.6 would be represented by the hexadecimal number 421560¢0.

External Representation Internal Representation
-9.99999E+62 FF999999
-1E-64 81100009
@ PAFXXXXXX
1E-64 @1100000
9.99999E+62 7F999999
®
Radio fhaek

249

Integers are represented by a 16 bit 2's complement signed
binary number. Integer math a is identical to that of Binary

Math.
External Representation Internal Representation
-32768 8000
-1 FFFF
1) 0009
1 g001
32767 7FFF

Radio Shaek

250

" Y

TRS-XENIX MBASIC TRS-80 © INDEX
INDEX

-- A -- GOSUB.vvevrneeenoreoeeennnen 119
ABS . ittt iitenteennnanns 73, 75 GOTO. v iiiinneerecancnanenns 120
absolute value..cveeeieenenes 75 ON GOTO.eveeneeceoonocaoannse 163
absolute memory address....... 213 ON GOSUB. i eiueeereeeneeannnns 162
Access restrictions........... 211 unconditional..eeeveeececens 120
LOCK .t eeeretnnenaananas 144-146 Buffer...oeeeenns 61, 88, 143, 164

Record Locking.....eev.. 144-146

File Lockinge.eeeeeaeans 144-146 -~ C --

UNLOCK e s eevnenennnennnonnens 211
Accessing Files Ccompiler.iiieiieeeeeensacanes 79
Direct-Access Files...vev.... 67 CALL.eereinennneennnnn 72, 79, 243
Sequential FileS.veveveenannns 61 machine language subroutine..79
Addition...veieieinennnenns 47, 48 Carriage Return..veeeeeennnenes 31
e 53 COBL.vvevvrnenneancennnanss 73, 8@
arctangent....ciiiiiiieiiiannen 77 CHAIN..covvevvennns 71, 81, 83, 90
aArgument....eeeeeescereasencans 69 Character Data..eeeececnrcaesnas 32
ArraY.eeeeenasnn 35, 102, 107, 166 Characters....ieeecececanns 30, 38
one-dimensional......... 36, 102 Y 3 38
redimension..eeeeeeeeeeeanes 197 CHRS et e ettt trnenennnnnns ..74, 84
two-dimensional..... 36, 102-103 CINT .t tiieeiieecncannnanns 73, 85
three-dimensional............ 36 Classifies VariableS.eeeeeeennn 41
ASC .t iniiennrerenncennannns 73, 76 CLEAR. .vvvevrnennnns 7@, 86-87, 90
ASCII code...vvennn. 76, 84, 204 CLOSE..evveennnns 61, 71, 88, 134
ASCII CharacterS...c.ceeeee. 38, 61 CLSeieiiieeennceenanancenns 72, 89
ASCII Format....covvuunn. 194, 234 column position..eeeeaees 149, 169
Assembly Language Files...245-246 COMMON. . vevveevocnnnnsse 74, 81, 99
Y 77 Command Mode...eeeeecnneennnnas 15
AUTO e teneennnacncenenennas 72, 78 logical Tine.ieieeneencenenns 15
physical Tine..eeeeececennens 15
Complex expressioN..eeeee.. 54, 58
- B -- Complex numeric expression..... h&
Complex string expression...... 59
BASIC DATA FileSeeeeeraneaennn 234 Compressed Format....194, 233-234
BASIC Program Files........... 233 Conditional Branching......... 120
Boolean operators...c.ieeveeeenn. 53 Concatenate...cevveeeinneeceens 50
AND .t ieiiinereoconceonnconnns 53 CONT . it neteeecnocnnnasannnns 202
EQV. i iiieeienenecnanncnonns 54 Constants...ceviieennns 33, 34, 57
IMP ettt i titieeeennennenns 54 TNPUL e ittt st ttennanneannse 34
T U 53 NUMEriC. e eeeeecessoscnsensns 96
ORuiiietienerecenannnessnnans 53 PRINTINGeeeeeeerasennaccannas 34
XOR:iueeiueueososeannonnnnnnns 53 SEring.eeeerieecenseesesonnnns 96
o o 235 control code..vieienrennannneans 84
Branching..eeeeveeeneens 120, 163 CoONVersSioN. . .eeeeeennscesssense 44
conditional.eeveeeennnennnss 120 double precision...eeeeevenes 44

®
Radie fhaek

253

INDEX

TRS-XENIX MBASIC

TRS-80 °

single precision..ceeeeceenns 44 DEFINT (integer)...42, 7¢, 83, 99
Conversion Procedures..... 236-240 DEFSNG (single precision)...... 42
Converting numbers....ceeeeeeee 80 78, 83, 99
double precision....ceeeeeeens 80 DEFSTR (string)....42, 7¢, 83, 99
integer..vieiecennecnnns 85, 133 DELETE. s veinenenrecncncons 72, 101
string valuesS..veeieeenennns 157 Deleteieveriiinenennnnnns see EDIT
single precision...eeeeeeeens 94 delete fileS.eveeereeeenennnans 134
Converting Numeric Data........ 43 delimiters..cieeeirececnncnees 63
C0S.ireeerenerencncncnsnnes 73, 93 deviceS.eeeereeenanas 74, 149, 169
COSTMB.teeeeeesenscossasencones 93 DIMecivinnnes 36, 70, 9¢, 102-103
O] 73, 94 dimensionS..eeeeeereceennanans 192
Current date..ieveineenennrnnes 98 Direct Access Fileiviveeennanan 65
Current Line.cieeeeeeeenncconne 20 112, 151, 235
Current Line Number............ 21 CLOSE. . iivirenneesenssocenans 65
Current Program Line...veeeuees 19 CVDetieeeneoonncsencnsnsnsns 65
CVDerivrieeenennocecocnnnnns 71, 95 CVIieeiiienenneonanncans 65, 112
OVl iiiiietieiiieeccencnannnns 95 VS iiiiietnrenecncnsnannns 65
BV Sttt iiereteereanecannsnnns 95 D" MOd€erseenriencnenscannas 65
FIELD.ieiieeineneennnannnans 65
-~ D -- BET e eieieeenenresesncnannnns 65
Data.ceeerececonnnnens 29, 32, 61 LOC.sereiineneenanecncasonnas 65
inputting keyboard..... 138, 124 LSET/RSET.eeveeennannns 65, 192
125-126, 129 MKDS e e e eeeieienneansnannnas 65
NUMEr TC . eeeeeeeeanesannnnnns 73 [8 65, 112
30 o 1 1« F 73 MKSS e eeeiieiieireneesanonnans 65
DATA. ttteeeneenanans 78, 96-97,182 MKSS/CVS . e iiiieieeennnnnnns 112
DATES e e iiiienennenneaannns 74, 98 MKSS/CVD .t iiiineenannnanes 112
deadlock situations........... 145 OPEN. . eeieerenoncosencnsanans 65
debugging..veeiieeeenencennenes 72 e 65
debugging tool...ieviiinennns 202 reCOrdS. s eeeesnsessncasnsnans 65
Decimal Math Representation Writing.eeeeeeoooconosoocccns 189
..................... 249-25¢ Direct Disk fileceeeeeaennen. 118
Declaration Tags....... 44, 42-43 Diskeveornrevenanneans 61, 88, 134
double precision...cceeeeesn. 43 disk files....... 74, 88, 144, 151
INtEgE . e eeiereneesennannnes 42 158, 164, 165, 180
single precision.....eeeeeen. 43 ACCESSTINGuerennresococnnnnns 144
SEring..eieiiiieiereeencennns 43 lengtheeeeeeeerenereenennnns 147
] 86 Printing..ceecececescnnecans 178
DEFDBL (double precision)...... 42 PeNAMiNg..eeeesessossncnsaas 158
79, 83, 99 restricted..cveeeeeccennnens 144
DEFDBL/INT/SNG/STR. e eeeenenen 99 sequential.eeeeeecercncenans 178
DEF FNuveereeeeenennnn 78, 83, 100 Writing..ieeeeeeenennnns 178, 18¢
Defines disk input....coveeeeeenns see DATA
function defination......... 100 DivisSion.ieeeeeerenrencanns 47-48
function name...cevevvnennns 100 Double precision....... 33, 37, 38
4g-41, 42, 45, 8¢
95, 99, 249

@®

Radio fhaek

254

255

TRS-XENIX MBASIC TRS-80 °© INDEX
declaration tab......cveveeens 43 0 73, 114
converting to integer........ 44 Formatted printing.......cce.... 172
converting to single precision FOR/NEXT . eieenreenconnns 71, 115-116
....... 45 FRE.:eeeeeeeennanensesas?3, 117, 152
Free memory SPaC..eceecececsese 117
-~ E -- FunctionS.eeeeeeeeeennenns 33, 56-57
211 O 19, 22, 25, 72 59, 69, 73
......................... 104 definition..cevveeinennnene... 100
current Tine.iviieeeeenenneens 20 NAME. e eeeeeessaosssscssnsensas 100
current line number.......... 21
current program line......... 19 -~ G --
deleteeeeeeneeeneennnnnes 22, 25 N 77, 118
NSErt . ieieeiiieenceeenconens 22 GOSUB.vvevneensoconsencannns 71, 119
SYNntax error..ceeeeeceses 19, 23 GOTO.eeeeeenrnnnonconconnnns 71, 120
current program line......... 19
ENDeevennnnnn 22-23, 71, 105, 150 -~ H --
end-of-data...cveveenennnnnnnns 64 HEXS oo eeieiereneeneennnnns 74, 121
end of a fileceveieeennnennnnn 106 hexadecimal valu€.ceeeeeenecaens 121
EOF et et ieiiiennnneans 61, 74, 106 Hierarchy operators......cceee... 54
ERASE. it iiiiiieneenennnns 79, 107
ERLuveeerereneencennnannns 72, 198 -1 --
ERR i terettteeteeenrennnns 72, 109 IF/THEN. ct et tincncncerananncncnn 52
ERROR .ttt ieeeeeeennennnns 72, 119 IF...THEN...ELSE........ 71, 122-123
error handling...eceeeeeeeeenns 188 INKEYS . e vereereennonnnennnns 74, 124
error line number.......ccee... 108 Immediate LineS.ieeeeeeeeeeconens 16
-ERROR MESSAGES.....cevuevus 225-231 IMP . it ietereeeenenssocncccncnnns 54
error return.. .. iiiiiieeennan 199 Input.eiiiiiiiiiiiiiiinnceesenss 34
EQVeiiiiiiieieeneneonnnsncnnns 54 INPUT . ceeiieerorennnnas 72, 125-126
Exchange variableS...ceeeeenen. 205 INPUT#. e ieiiinnennns 61, 71, 127-128
Execution Mode...vveeenernenns 17 INPUTS et ieeeeennennnns 74, 129-13¢
Execution Stop.ceeereeareeennns 202 Input
EXP ettt it ineenrnnnnes 73, 111 keyboard........ 124, 125-126, 129
Exponentiation.............. 47-48 inputting data...ccvvineneennnnns 72
Exponential, natural.......... 111 Input/Output functions........... 74
EXpressions...ceeeeeens. 3¢, 32, 57 Insert (EDIT)uieeeneeeecnnnns 21, 22
COMPT X st eienceeoeenannnonnns 57 Insert subcommand (EDIT)........ 23
conditional..ceeveveennennnnn 122 INSTR. e eeetanevenonnenne 73, 131-132
double precision............ 157 I 73, 133
NUMEriC. e eeueeeeeneeennns 32, 33 Integer.eoveeeeeenens 33, 37, 46, 42
numeric data..eeeeeeeeevannns 32 44, 95, 99, 133, 25¢
STMpPle..ieeiereeeneeeeecnanas 57 declaration tag..eeeeeecececess 42
single precision............ 157 converting to double precision.44
converting to single precision.44
-— F - truncated....oiiiiiiieinnneans 114
FCOPY it iiiiiiiitiineencnnnnnns 236 Integer Divide.iveieivienennennss 31
FIELD.ereeerenennnnnn 66, 71, 112
®
Radioe fhaek

INDEX

TRS-XENIX MBASIC

TRS-80 °

K -- —_M -
Keyboard Device..ecieeeennnens 247 Manipulates Data....cevenvennn. 46
Keyboard Input.......... 138, 124, Machine Language Subroutine....79
125-126, 129 MEM, e eeeeereeencenannnnnans 73, 152
KEyWordS.eueeeeeeeeeannanaanse 69-7¢ MEMOTY eeeeeeronnnns 3¢, 33, 34, 36
KILLeeoeooeenoennoooncanns 72, 134 amount of ceviveinennnnenenn 152
KYBDeoveeieoruoooooeoeononnns 143 location...eeeeeeeeenne 167, 168
MEMOTY SPACEC.eeeereecanrossonnes 86
-~ L -- MERGE. ceveeeereeencens 72, 153-154
R I 74, 135 MIDSeeieeeennnnnn 78, 74, 155-156
LEN.eeieeeeroennaneeannnns 73, 136 MKDS e e eeieeernnenrononnnns 71, 157
2 O 70, 137 1 I RPN 71, 157
LINE O Y PR 71, 157
immediate line........ 15-16, 17 Mode.eeriiienneeneeaonnsnnanonas 61
logical 1in€.eeeeeeenenns 15, 31 Multiplication..eeeeeeenees 47-48

physical Tine...cevvunnn. 15, 31

program line...... 15-16, 19, 21 -~ N -~
Line Edit Mode.....evunn.. see EDIT NAME .. e iieiienennannnnnnne 72, 158
Line Feed.vevivennneennneaennnn 31 natural exponential........... 111
LINE INPUT..vvenrenvnnnnss 72, 138 natural Togaritm....cevecenenes 148
LINE INPUT#........... 6l, 71, 139 nested TOOPS.eceeeveeecencanans 116
Line Printer Support.......... 248 NEW. eeienerenenneonens 72, 82, 159
Line Terminalor.eeeeeecereonees 31 Normalized valu€..ceveeceeanens 37
0) 72, 140 O 53
LLIST it ieiieeennecnnns 72, 141 NotationS..vvieeeeieeeeeennenenns 4
LOAD . cveeeeeevonsennnnanns 72, 142 NUMEriC.eeenreenccnnnnans .33, 57
LOCesenerenenocsonnosnnonannas 143 Numeric Data...... 32, 37, 47, 73
LOCK e eeeeeeoeneonnnnnn 71, 144-146 Numeric ExpressionS...... 32, 33,
reCOrdS.eeeeeneeeeeennonenss 144 e 47, 5@, 53, 59
disk fileS.eeeieereeeennnnn 144 Numeric OperatorsS...ceeececcess 47
LOF .ttt ieeteeeenennnnnns 74, 147 Numeric RelationS..ceeeeeeeeeess 50
KYBDeuvrernoroeeoeanoononne 147 Numeric valueS..ceeeeensesenoans 95

I 147

SCRN .t et eettenennnnanns 147, 169 -~ 0 -~
LOG.iieirieeencnaonneaanns 73, 148 octal value.eeeeereeeevnnncnns 160
LPOS. et irieenecncnnceanns 74, 149 OCT e eieneeerecennanannns 74, 1690
column position....ceeeeenen. 149 ON ERROR GOTO...72, 1¢9, 110, 116
deVIiCReiieneneeeonnnenenanse 149 ON...GOSUB. . eeeverennnnnss 71, 162
1 149 ON...GOTO. . eeeeeeeennnanes 71, 163
LPRINT . s eteneeeeannnns 72, 86, 150 One dimensional array...ceceseces 36
LPRINT USING.eeeueneennnnn 72, 150 OPEN..ocvevene 61, 71, 88, 164-165
Logical expressionS........ 32, 58 1170 Yo [J A AR 165
Logical Operators.....ceeeeeee. 53 OperandS..cevececescsansaoss 46-47
BooTean.vevveeeeeerenceennens 53 OperatorS..eieeeeesrcennees 46, 47
0 23 P 71, 151 hierarchy..ceeeeeeeecesscesens 54

®
Radioe fhaek

256

TRS-XENIX MBASIC TRS-80 °© INDEX
10giCaleeecnceensecnccensecns 46 pseudorandomnumber....cc.eeee.s 191
NUMEYrTCeeeeoseocennsaneonns 46-47 PUT et eeeeneceensasansanss 72, 180
relational...eviiienenenncnns 46
SEring.eeeeeeeeeieecncncecans 46 -- R --

OPTION BASE...vevvveennen 70, 166 random number.....cceeeeeennoas 191
ORiteeeresncnscosonsasesncnnnns 53 random number generator....... 181
Order of Oeprations.........oce. 55 RANDOMIZE. sveverennnnnnns 7@, 181
outputting data...eeeveeennnees 72 READ.eeivisnnennns 78, 96, 182-183
reCOrd..eeeececosanoanens 66, 144
-— P - lengtheeieieeiniiieennananns 164
parameter...c.eceececerccesanees 69 LOCK. s eeeenonnseososancenans 144
ParentheseS..eeeeeeeeenccas 54-55 redimension arrayS..c.eeeececes 197
PEEK svveeenennecnnees 73, 167, 168 Relational ExpressSionS...eeeees 32
pipes, TRS-XENIX.ieeveveeunnnn 248 5@-52, 58
POKE. . eveeereneennnns 72, 167, 168 Relational Operator........ 5@-51
POS.eeiirerenenanacesanen 74, 169 REM. i teteenencnnneneasesannnns 184
PRINT.ceevnnnnans 34, 72, 17¢-171 remark 1in€..ceeeerenvnncannans 184
PRINT#..ccvvvnnn. 61, 71, 178-179 RENAMES s evevvenersnsnasnnnans 158
PRINT # USING....evueveerannnn. 179 RENUM. cvvevnnnns ceernenns 185-186
PRINT USING...... 72, 172-176, 179 Representing Data.eeeeeseecanns 33
PRINT Buvevvnnnnennenanens 72, 176 constantsS.eeeeriivencnenncnns 33
PRINTED .vevveennenneonennanens 172 variablesS.eveveeeeeees Cereoens 33
formatted......coevvvuvnnn.. 172 Y 2 72, 192
PRINT TABueveoreeoonocnans 72, 177 Reserved WordS...eeeveesnes 35, 231
PRINT# USING....c.v... 61, 71, 172 RESTORE..eiverecrennnennns 78, 187
Printer Device.c.eeeeeeenennn, 248 RESUME. .evieeeeennnns 72, 161, 18
Printing..cviecicecnnensns eess176 RETURN..oevveernnnnns 71, 119, 18
position...... trececanannas 176 RIGHTS...covtns Chececaenan 74, 19
process IDieeeeeeeeeceecenanes 196 RND . evieoeencoansonnacnnne 73, 191
Program..ceceseececsase veel30, 31 RoUNding.eeeeeeseneesesocananne 44
see LIST, LLIST RUN. veerieenncenaanns 16, 73, 193
SAVE.tertastoaesnescasanrane 194
Lo T 142 -~ S --
Program LineS..c.veeeens 16, 19, 21 SAVE. s iveieirenenoennences 73, 194
Program LOOpPS.eeieeeeeensennes 115 Screen Device.eeeiereessosoees 247
nesting.eseeeeeececenaennns 116 SCRN. i eeverevnnsncnscansnanss 169
Programs..ceecencerscesennnnas 159 Sequential-Access Files.......,61
deleteeeneneirecnenennennnns 159 234-235
diSKeveeeeeronoaroesnsennnne 159 CLOSE.ciieeernnnocrconnannnns 61
SAVING.eieeeenrooensnancnans 194 Creating.ieeeeeseesececcnnnes 62
108dTINgeeeeececrsncoscnsnens 142 o N 61
EXeCULTON. v tetevencnonnans 193 INPUT#.civeevonnrancenananns 61
MEMO Y ceeeensenosonssannsons 159 LINE INPUT#. . eetenteneennnnes 61
rENUMDEr et eireeneencnnnns 185 LOC.eeieeneeenneceesonncsnnnas 61
STOP executioN..eeeeeeeocons 202 PRINT#:eeieeeerenenssnnnnnens 61
®
Radio fhaek

257

INDEX

TRS-XENIX MBASIC

TRS-80 °
PRINT# USING...oeeveeeeenanns 61 String Operator..cceeeieenennns 50
OPEN. veveereeeensosenannsnes 61 String Space..eeeeeeeneeecanes .86
WRITE# e e ieeeieerenenennanonns 61 String ValueS.ieveeieroneoennns 95
updating..veeeeeerenneecnenns 64 STRINGS . .vvveerneenrannnnn 74, 204
Sequential Disk file...vuenn.. 127 Subscripted Variables.......... 35
SGN .t vttt rneeneeesonsensonnnnse 195 subroutine....c...... 69, 119, 162,
SHELL eeviineneeeennaas 73, 196-197 189
Simple Expression..eeeeieceases 57 retU M. et iieieecensnconnas 189
Simple VariableS..ieeeeeeeeenes 35 Subtraction...coeevieennen. 47, 49
SIN it iteeneenaennenanns 73, 198 SHAP . it eetietreeeeennennns 79, 2@5
o 198 Syntax error..c.ceeeeeeceeas 19, 23
Single Precision....... 33, 40-41, SYSTEM. . vviernnnnnnn 73, 15@, 206
43, 45, 95, 99, 249 system functions.....cevevuenns 72
SPACES .t et ireeeenenonanens 74, 199
SPCuiieeeeneeececnoannneans 74, 200 -—T --
A 73, 201 TAB.iveeeeosoenanannann 74, 177, 207
SqUAre YoOl...veveeevennnnnens 201 TAN ..t eeeoensocensanonnss 73, 208
Stack SPaCe.e.eeeveccecnnenenann 86 tangent..ceeeereeeerenncennnns 208
Statements....ceeeeeennnen 3@, 31, T mMS e iieeeieeennsessoncscncons 4
46, 69, 79, 73 Three-dimensional array....... 36
DAT A, t ittt iieteeeecnanenanns 187 TIMES . e e iineanenennn 74, 209
IF/THEN. c e v eieieerenenennanes 52 time of dayeseveeeeoeooccnaces 209
STOP . iiitteneeensooncnnonas 79, 71 trace function.....eeevecenen. 210
Storing Data...eeeevecnnnns 33, 36 TROFF . eteeeeesseannsannns 72, 210
double precision....eeveee.. 33, TRON. .. eveeeeneecncenneans 72, 210
37, 4¢-43 TRS-XENIX pip€Seeseceeccccenns 248
integer.ieeeeeeecnennees 33, 37 truncated integer....ceveeeee. 114
MEMO Y ¢t teeeesceeooncanncnnnse 36 Two-dimensional array......... 36
NUMETiC.eeeeeeeconceoceancnns 33 EXetteienesnnenosanssensonnans 235
single precision.eeeeeeeens. 33,
37, 40-43 - U --
SErinNgeeee e eiiiieeenneeenns 33 UNLOCK e s eeeenennnennanann 72, 211
STRS e eeereniinnennns 74, 203, 212
Strings..... 3¢, 33, 38-39, 42, 57 -V -
ASCII characters......... 38, 61 VAL . eieeonenneeeoennnens 73, 212
blanksS.eeeeeeeiieennoenanens 200 Variables.......... 3¢, 33, 34, 57
NUTT seeiiereeennnnconnoconnes 39 ClassifieSeeeennesecnoseeanns 41
L7111 7=Y P 203 Variable NameS..eceveeeeoeenans 35
replacement...cccivenenecnnns 155 VARPTR. ceeeevenennense 73, 213-216
searchesS.....cev.s 131, 156, 190
SPACES cevreencsscoonssacnes 199 -— W --
String data..ceeereennneneennes 73 WHILE.. . WEND....cevuennnn. 71, 217
String expressions.... 32, 51, 59 1 72, 218
character data....cieevevene. 32 WRITE. . eeeeeeenanenanneens 72, 219
String Function.....ceeeevnnn... 74 WRITE#. . eeveeeeeeaeans 6l, 72, 220
String Length...veeeneneneenn. 136
— X -
XOR. i eriererateneensessoannaons 53
®
Radio fhaek

258

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION
AUSTRALIA BELGIUM U. K.
91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE WEST MIDLANDS WS10 7JN

02/83-SP Printed in U.S.A.

