
r

ltadl8/haeK

TRS-XENIXTM Operating System

MBASle Interpreter
(Multi-user)

CUSTOM MANUFACTURED IN U.S.A. BY RADIO SHACK, A DIVISION OF TANDY CORPORATION

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM ARADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A

RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
I. CUSTOMER OBLIGATIONS

A. CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the "Equipment"), and any copies of Radio
Shack software included with the Equipment or licensed separately (the "Software") meets the specifications, capacity, capabilities,
versatility, and other requirements of CUSTOMER.

B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its installation.

II. RAOIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing
defects. THIS WARRANTY IS ONLY ApPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION. The warrantyds void if the Equipment's case or cabinet has been opened, or if the Equipment or Software has been
subjected to improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period, the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of
adefect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole
expense. RADIO SHACK has no obligation to replace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this
paragraph. Software is licensed on an "AS IS" basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a
Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf
of RADIO SHACK.

D. Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUOING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

III. LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
"EQUIPMENT" OR "SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE". IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE".

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "SOFTWARE"
INVOLVED.

B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software.
C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years

after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or
Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above Iimitation(s) or exclusion(s) may
not apply to CUSTOMER.

IV. RAOIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-Up license to use the RADIO SHACK Software on one computer, SUbject to the following
provisions:
A. Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.
B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to

the Software.
C. CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this

function.
D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically

provided in this Software License. Customer is expressly prohibited from disassembling the Software.
E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in

the operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for
TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each
one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER.

G. All copyright notices shall be retained on all copies of the Software.

V. APPLICABILITY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER.

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and/or licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK.

VI. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER m.ay have other rights Which vary
from state to state.

Addendum

~. 9\e~~~~'i~~~i~~~
TRS~~:X,MBASr-C ,MaAuti. ".~' .. ~:~~~.~;~

~

74

87

1':L~F J;:¢.t~~llS::;'t'lle' ·~~per Q~ ..,,~'iI(~. ;~ ~t' ~~~ 'J .no't :the,
::t~n~.;..of-file;, 'r~cprd pumb~ff ~~:.,~·t:~'t~ ~.'.

'C~A.R=",~.~;t~~~.1. :'?'J'$fJl,

c::<::lear:tt,~~fl:l::~variab~es:'and 'c19ses~all .. t;i-l~$;
.alit¢~te~:Ql~~~ ~¥~~s~o~ ~~~i~r"arii*~~¥,~~l:~ble
sp~ce'~,;~ri~:}:G~.0.0g J~~~tes fpt:s'taQ.~&s:e~ce,,:

'ljf~;· DIM Ai an ~fi:ay type'- is: nQ:~{,~I?~s:~ied~,,:tlte
,:arr. J fEfcla~~if:ied ~~ ..doub~ef~;.~q+:~JC?R~_~()'t:
s.iri·" ·;';'prec~S!ion.

KILf:r',:-:; _Y6ii may.)dll 'a- .file,.~~h~~,:i,~oa;~,n.
-fol:l~OW:$~'Tas~XENI~ ~onv~p-:t.Jonsco· ". "; .

...·- ..1·· --

-
164 OPEN -- The option RANDOM for mode does not

exist. If the mode is omitted, RANDOM is
automatically selected.

Also, the record length can be as large as 32715
bytes, not 32767 as stated.

Note: The maximum number of files that can be
opened at one time is 17.

194 SAVE -- notes on the ~ option:
.. !, " ..

The P optiollof SAVE tells MEASIC to save the
program as a protected file. A protected file is
a binary encrypted BASIC program that has been

:' , diC r am~,1.ed by,aspee i ~ 3;- algor i thm .
.~ , r'· j." \ : :. '1 ,A, - ::! E

:~MBASIC' allows only certain stat~~ents to be
executed while a protected file-'-I-s in memory.
They are:

RANDOMIZE
KILL
RUN

CONT
LOAD
SYSTEM

DATE$
NAME
TIME

FILES
NEW

An error occurs if you try to use any other
statement.

Also, the example at the bottom of the page should
read:

SAVE "MATHPAK.TXT", A

saves the resident program in ASCII form, using
the name MATHPAK.TXT.

Radio Shack
8759329

-- 2 --

----------- TRS-BO ® ----------

ADDENDUM

MBASIC Reference Manual

A new keyword has been added to TRS-XENIX BASIC.' -Please'
insert the attached page to add liON BREAK II to your MBASIC
Reference Manij~l. .

Thank You!
Radi 0 Shack

A Division of Tandy Corporation

---------lIadlelhaell---------

TRS-XENIX MBASIC KEYWORDS
----------- TRS-BO ® ----------

ON BREAK GOSUB

ON BREAK GOSUB line

Statement

Transfers control to line if <BREAK> is pressed.

Normally <BREAK> terminates the program execution. But ON
BREAK lets you use the <BREAK> key as a switch to execute
the specified subroutine.

Examp1e

10 CLS
20 ON BREAK GOSUB 70
3ll' PRINT@ I, "*"
35 I = I + 1
4ll' IF I < 0 OR I > 1919 THEN 13ll'
5ll' GOTO 30
6ll' RETURN
7ll' ON BREAK GOSUB 2ll'
8ll' PRINT@ I, "."
9ll' I = I - 1

100 IF I < 0 OR I > 1919 THEN 130
110 GOTO 80
12ll' RETURN
13ll' END

The first part of the program prints asterisks (*) starting
at Position 0. When you press the <BREAK> key, control
passes to subroutine beginning at Line 70. This subroutine
prints periods (.). When you press <BREAK> again, control
goes back to subroutine beginning at Line 2ll'. When the
cursor position is less than 0 or more than 1919, execution
ends.

875-9541

----------lIad.elhaell----------

IMPORTANT

Installing MBASle On Your Hard Disk

Please read all these directions before installing MBASIC on your hard disk. This lets
you become familiar with the entire procedure and help make the installation
smoother. During the installation be sure to watch the screen and answer all the
prompts.

To begin installing the package:

1. Turn on all peripherals and then turn on the computer.

2. Log in as root (to install MBASIC, you must be logged in as root).

3. At the root prompt (H) type:

install (E N T E R J

The screen shows Installation Menu. It also shows the prompts
1) to install or q) to quit.

4. Enter CD to install MBASIC.

5. At the prompt:

Insert diskette in Drive G and press <ENTER>

insert your TRS-XENIX MBASIC diskette in Drive Gand press (E N T E R J.

The next screen shows the name of the package being installed, the version number,
and the catalog number. At the bottom of the screen a welcoming message appears.

When TRS-XENIX finishes, the message:

Installation complete - Remove the diskette, then press < ENTER>

appears. Pressing (E N T E R J returns the menu to the screen. You are then prompted
to press:

1) to install another application, or
q) to quit.

Your installation of MBASIC is now complete. Press CQJ to quit and return to
TRS-XENIX.

Note: You should never write protect your hard disk when running TRS·XENIX or
MBASIC.

ltadl8/haeK
A DIVISION OF TANDY CORPORATION

FORT WORTH, TEXAS 76102

-----------TRs-ao ® ----------

TRS-XENIX MBASIC Interpreter

Reference Manual

----------lIadlOlhaell----------

(

XENIX Operating System Software: Copyright 1983 Microsoft
Corporation. All Rights Reserved. Licensed to Tandy
Corporation.

Restricted rights: Use, duplication, and disclosure are
subject to the terms stated in the customer Non-Disclosure
Agreement.

"tsh" and "tx" Software: Copyright 1983 Tandy Corporation.
All Rights Reserved.

TRS-XENIX BASIC Software: Copyright 1983 Microsoft
Corporation. All Rights Reserved. Licensed to Tandy
Corporation.

TRS-XENIX BASIC Reference Manual: Copyright 1983 Tandy
Corporation. All Rights Reserved.

Reproduction or use without express written permission from
Tandy Corporation, of any portion of this manual is
prohibited. While reasonable efforts have been taken in the
preparation of this manual to assure its accuracy, Tandy
Corporation assumes no liability resulting from any errors
or omissions in this manual, or from the use of the
information contained herein.

XENIX is a trademark of Microsoft.

UNIX is a trademark of Bell Labor.atories.

----------- TRS-SO ® ----------

Introduction

This is a reference manual for the TRS-XENIX MBASIC language.
TRS-XENIX MBASIC is designed to run under the TRS-XENIX Disk
Operating System.

TRS-XENIX MBASIC is an "interpreter." When you run a program, it
executes each statement one at a time. This makes it quick and easy
to use. It also allows you to take advantage many of TRS-8~
features, such as:

• Faster running programs
• Larger programs

and TRS-XENIX features of:

• Multi -user
• Multi -task i ng

About this Manual

This is a reference manual, not a tutorial. We assume you already
know BASIC and are using this manual to quickly find the information
you need.

Section I--Operations. This section shows how to
load MBASIC. It also demonstrates how to write, run
and save a MBASIC program on disk.

Section II--The MBASIC Language. This section includes
a definition for each of MBASIC's keywords (statements
and functions) in alphabetical order. In addition,
it shows how to write a program to store data on disk.

If you have been using TRSDOS BASIC read Appendix D, "Differences
Between TRSDOS BASIC and TRS-XENIX MBASIC" and Appendix C,
"Transferring Files From TRSDOS BASIC to TRS-XENIX".

---------lIadI8/haell---------

-3-

____..I..LINI.IoT,g,:B0WolPiQl...IC....T...lwONIIo---__ TRS-BO ® __......TAR,}oS-;;,jXu;E;,gNI.IoI.A.X..lMI:.LIB~AI,,;ISu.I....C _

Terms and Notations

For clarity and brevity, we use some special notation and type
styles in this manual.

CAPITALS

lowercase underlined

••• (ellipsis)

X'NNNN

O'NNNN

<keyname>

[](square brackets)

1ine

buffer

indicate material which must be entered
exactly as it appears.

represent words, letters, characters or
values you supply from a set of acceptable
entries.

indicates that preceding i terns may be
repeated.

indicates that NNNN is a hexadecimal
number.

indicates that NNNN is an octal number.

indicates one of the keys from your
keyboard.

indicate that the enclosed entry is
optional.

indicates a blank space character (ASCII
code 32). For example, in

mbasic ~~ progr

there are two blank spaces between MBASIC
and PROG.

a numeric expression that identifies a
MBASIC program line. Each line has a number
bet~een 0 and 65529.

a number between 1 and 255. This refers to
an area in memory that MBASIC uses to
create and access a disk file. Once you
use a buffer to create a file, you cannot
use it to create or access any other file;
you must first close the first file. You
may only access a file with the buffer used
to create it.

---------Itadlo/haell---------

-4-

___.....TR;,;o;S_-~XE;;,;;N:.=.I~X~M;;:;:BA~SlO:lI.:o;,C__ TRS-BO ®I.u.NTLIlR~QQw.liUAlC....TI~QIII.N _

[parameters]

pathname

[arguments]

syntax

integer

string

number

dummy number
or dummy string

information you supply to specify how a
command is to operate. Parameters enclosed
in brackets are optional.

a sequence of directory names seperated by
slashes (/) followed by a filename.

expressions you supply for a function to
evaluate. Arguments enclosed in brackets
are optional.

a command with its parameter(s), or a
function with its argument(s). This shows
the format to use for entering a keyword in
a program line.

any integer expression. It may consist of
an integer, or several integers joined by
operators. Integers are whole numbers
between -32768 and 32767.

any string expression. It may consist of a
string, or several strings joined by
operators. A string is a sequence of
characters which is to be taken verbatim.

any numeric expression. It may consist of
a number, or several numbers joined by
operators.

a number (or string) used in an expression
to meet syntactic requirements, but whose
value is insignificant.

---------Itadle/haell---------

-5-

____Ilo,I;NLLTA:ROl£llD"IiUl.llr.CT.LoIIoll0UllN TRS-BO ® T.LIR:I.oiiSt.:::-"'XEI;,INI.II~X...lMI:IlRIKAWSiol,jIC...... _

This manual is organized as follows:

Section I. Operations

Chapter 1.

Chapter 2.

Sarnpl e Sess ion

Command Mode
Execution Mode

Chapter 3. Line Edit Mode

Machine Language Interface to TRS-XENIX
MBASIC

Error Messages

Reserved Words

Device Handling

Decimal Math Representation

MBASIC Statements and Functions

Loading Assembly Language Files

Converting TRSDOS BASIC Programs to MBASIC

Differences Between TRSDOS BASIC and
TRS-XENIX MBASIC

Introduction to MBASIC Statements and
Functi ons

Chapter 4.

Chapter 5.

Chapter 6.

Chapter 7.

Appendices

Appendix A

Appendix B

Appendix C

Append ix D

Appendix E

Appendix F

Appendix G

Appendix H

Section II. The MBASIC Language

MBASI C Concepts

Disk Files

---------ltadI8/haell---------

-6-

f,

Operations
MBASle Reference Manual o

"C
(I)

D1-o·
:::s
fn

.-

-----------TRS-BO ® ----------

Section II Operations

---------ltadI8Ihaell---------

----------- TRS-BO ® ----------

Chapter 1/ Sample Session

The easiest way to learn how MBASIC operates is to write and run a
program. This chapter provides sample statements and instructions to
help familiarize you with the way MBASIC works.

The main steps in running a program are:

A) Loading MBASIC
B) Typing the program
C) Editing the program
D) Running the program
E) Saving the program on disk
F) Loading the program back into memory

---------Itadlo/haell---------

-9-

___~S;:.;AM~P.,:;,L,:;.E..:;S:.:;,E~SS~I~QNl.1... TRS..BO ® __~TBIMSI.::-A1XE~NloIooIXA",,&;IM.WIBA;MlS~IC~ _

Loading MBASIC

After you power up your system and install the system diskette, the
prompt "login:" appears.

To answer this prompt, type in your "login" name and press <ENTER>.
(Refer to your XENIX operations manual for further information on
the mkuser routine.)

You are now prompted to type your password.

Your password was also assigned during the mkuser routine. Type in
your assigned password. The echo on the screen for your input is
turned off for this prompt.

The words "Welcome to TRS-XENIX" now appear on your screen along
with a dollar sign prompt: "$". This indicates that you are at the
operating system level in your current directory.

To load MBASIC into the system, type:

mbasic<ENTER>

A paragraph with copyright information is displayed, followed by: OK

You may now begin using MBASIC.

---------Itadlelhaell---------

-1~-

____T:..:.lR~S-II.lIX:.;;:EN~Iio=:.X...:.M.:.=Bw.:AS"I..C__ TRS-SO ® __.....SAMKI'-!PLIYE_S.E...S...SI...OIIIN _

Options for Loading MBASIC

mbasic [program] [-m memory size] [-e]

When starting up MBASIC, you can also specify a set of options. They
are:

To exit MBASIC use the SYSTEM command. Type:

system <ENTER>

indicates how many bytes of memory are to be
allocated for program, variable, and stack
space. If omitted TRS-XENIX MBASIC attempts to
allocate 32,767 bytes of memory.

specifies a program to run immediately after
MBASIC is started.

tells MBASIC to suppress echoing of user's
input, the "OK" prompt, the "1" prompt
associated with an INPUT statement and the sign
on copyright information. This option is useful
for MBASIC programs which are written to be
TRS-XENIX filters.

program

-e

-m memory size

-
to close all files and return to the operating system level in your
current directory. (See chapter 7 for more information on SYSTEM.)

Exampl es

$ mbasic -m 45~56

initializes MBASIC; allocates 45~56 bytes of memory for program,
variable, and stack space. MBASIC uses part of this memory
allocation to initialize internal buffers; therefore only 43631
bytes are free for execution.

$ mbasi c

initializes MBASIC in the command mode. After internal buffers there
are 31~87 bytes of free memory.

---------Itadlelllaell---------

-11-

___,;;:SAM~PL:;,;E_S~E;,;,S;:;.:SI:.:=:O:.;.N TRS-BO ® __....T~RS~-;.Q,IXEir.&lN""'IA.X,.I;jM~8A:;u.Sw.IC..... _

$ mbasi c -e

initializes MBASIC in the command mode but echoing of your input,
the "0k II prompt, the "?" prompt associ ated with an INPUT statement,
and the sign on copyright information is suppressed.

Typing the Program

Let's write a small MBASIC program. Before pressing <ENTER> after
each line, check the spelling. If you have made any mistakes while
typing, use the <BACKSPACE> key to correct them.

1~ A$="WILLIAM SHAKESPEARE WROTE II <ENTER>
15 B$="THE MERCHANT OF VENICE" <ENTER>
2~ PRINT A$; B$ <ENTER>

Check your program again. If there is a mistake on a line, retype
the entire line, including the line number, immediately after the
current line.

For example, suppose you had typed:

15 B$="THE VERCHANT OF VENICE II

2~ PRINT A$ B$

After line 2~, type

15 B$="THE MERCHANT OF VENICE" <ENTER>
RUN <ENTER>

Your screen should display:

WILLIAM SHAKESPEARE WROTE THE MERCHANT OF VENICE

MBASIC replaced line 15 in the original program with the most recent
line 15.

MBASI C "reads II yo ur program 1i nes in numeri ca1 order. It doesn It
matter if you entered line 15 after line 2~; it will still read and
execute 15 before "looking" at 2~.

---------lIadI8/haell---------

-12-

____...T~R.S.;;.-XQlE....NyI.&lX"""'l.MBIIIoIA;MS...I...C....__ TRS-BO ® SAalMI:IoIP....'f __S...fSoJoS~TloIoQIIIN.... _

Note: When you type in a program in lowercase, all
the lowercase characters are converted to
uppercase with the exception of the contents of
string .variables or constants and remarks (REM).

MBASIC has a powerful set of commands in the llline edit mode ll • This
mode is discussed in Chapter 3.

Saving the Program on Disk

You can save any of your MBASIC programs on disk. To do this, you
assign it a IIfilename ll •

For example, if you wanted to save the program we just wrote, you
could assign it the filename IIAUTHORII. Type the following command:

SAVE IIAUTHORII <ENTER>

It takes a few seconds for MBASIC to find a place to store our
program. When this process is completed, it displays OK. The program
is now saved on disk and stored in your current directory.

Filenames do not go through case conversion. They are saved exactly
as typed. For example, the files IIAUTHOR II and lI author ll will be saved
exactly as typed; therefore they will be considered as two separate
fi 1es.

Important Note: A filename can also have an
optional extension. A filename including an
extension can have a maximum of fourteen
characters. A period 11.11 is included between the
filename and the extension. The pathname of a file
can have up to 32767 characters. For example:

/usr/inventory/june1982/general.stock

The filename in this example is general.stock.

Exampl e

SAVE IIAUTHOR.WIL II

---------lIadlo/llaell---------

-13-

____SAM.;;.;,;,,;Pl;;;,;:E;..S_E_S;;;,;:SI_O._,N TRS.BO ® __..:.TR~S;:';;-AlXE;o:,:Nl.AoIX~M~BA~S~ICraf... _

Loading the Program

If, after typing or running other programs, you wanted to go back
and use thi s program agai n, you would have to "LOAD" it back into
memory. Simply type: LOAD "filename, R

Exampl e

LOAD "AUTHOR ", R <ENTER>

tells MBASIC to load the program "AUTHOR" from disk into memory;
optional R tells MBASIC to run it.

The SAVE and LOAD commands are discussed in more detail in Chapter
7.

----------Itadlelhaell----------

-14-

----------- TRS-BO ® ----------

Chapter 2/ Command And Execution Modes

This chapter describes MBASICls command and execution modes. The
command mode is for typing in program lines and immediate commands.
The execution mode is for executing programs and immediate lines.

Conmand Mode

Whenever you enter the command mode, MBASIC displays a prompt:

Ok (prompt)

While you are in the command mode, MBASIC displays the prompt at the
beginning of the first logical line (the line you are typing in).

A logical line is a string of up to 255 characters and is always
terminated by pressing <ENTER>. A physical line, on the other hand,
is one line on the display. A physical line contains a maximum of 8@
ch aracters.

For example, if you type 1@~ R1s and then press <ENTER>, you have
two physical lines, but only one logical line.

In the command mode, MBASIC does not IIread ll your input until you
complete the logical line by pressing <ENTER>. This is called IIline
input ll

, as opposed to II character input".

Interpretation of a Line

MBASIC always ignores leading spaces or tabs in the line--it jumps
ahead to the first non-white character. If this character is not a
digit, MBASIC treats the line as an immediate line. If it is a
digit, MBASIC treats the line as a program line.

For exampl e:

Ok
PRINT liTHE TIME IS " TIME$ <ENTER>

--------- ftadI8/haell---------

-15-

__...C~OM:.:;M.::.:A:.:.:.NO~&-=E~X.=.:EC~Uo.;.;TI~O~N__ TRS.BO ® __....TR~SI";;;-A1XElIII.lN....IXQ"",,I;,IM""BA;MIS:.6.:ICrw... _

MBASIC takes this as an immediate line.

If you type:

Ok
1~ PRI NT liTHE TIME IS II TIME$ <ENTER>

MBASIC takes this as a program line.

Immediate Lines

An immediate line consists of one or more statements separated by
colons. The line is executed as soon as you press <ENTER>. For
example:

Ok
CLS: PRINT liTHE SQUARE ROOT OF 2 IS" SQR(2)

is an immediate line. When you press <ENTER>, MBASIC executes it.

Program Lines

A program line consists of a line number in the range ~ to 65529,
followed by one or more statements separated by colons. A program
line may contain a maximum of 251 characters. When you press
<ENTER>, the line is stored in the program text area of the memory,
along with any other lines you have entered this way. The program is
not executed until you type RUN or another execute command. For
example:

1~~ CLS: PRINT liTHE SQUARE ROOT OF 2 IS" SQR(2)

is a program line. When you press <ENTER>, MBASIC stores it in the
program text area. To execute it, type:

RUN <ENTER>

Special Keys in the Command Mode

............

<BACKS PACE>
or <CTRL ><H>

<SPACE BAR>

Backspaces the cursor, erasing the preceding
character in the line. This allows you typing
errors.

Enters a blank space character and advances the
cursor.

---------Itadle/haell---------

-16-

____...Ta.RS...-....X....F.....N....IXra...a;MIIllRIQA...SI...C TRS.BO ® _C....l!1Ii11M;uAIIlN.....O...&IIlI-liEioIX""'ECWI~IT~T....O...N----

Special Keys in the Execution Mode

When MBASIC is executing statements (immediate lines or programs),
it is in the execution mode. In this mode, the contents of the
video display are under program control.

<CTRL ><C>
or <BREAK>

\ (backslash)

<CAPS>

<ENTER>
or <CTRL ><J>

Execution Mode

<CTRL><S>

<CTRL><Q>

<CTRL><C>
or <BREAK>

<ENTER>

<ESC>

Interrupts line entry and starts over with a new
1i nee

When followed by <ENTER> starts a new physical line
without ending the current logical line.

Switches the display to either all uppercase or
upper/lowercase mode.

Ends the current logical line. MBASIC "takes" the
line.

Pauses execution.

Continues execution.

Terminates execution and returns you to command
mode.

Interprets data entered from the keyboard with the
INPUT statement.

Allows you to exit the insert command while in the
MBASIC editor.

Note: The <BREAK> key has a different meaning on terminals
than it does on the console. We recommend that you use
<CTRL><C> instead of <BREAK> on any terminal not mentioned
above.

---------Itadlolhaell---------

-17-

--

-----------TRS-BO ® ----------

Chapter 3/ Line Edit Mode

This mode enables you to "debug" (correct) programs quickly and
efficiently. It allows you to correct a program line without having
to re-type the entire line.

If MBASIC encounters a syntax error while executing a program, it
automatically puts you in the "line edit mode". The display shows:

Syntax Error in line number
OK
line number

(line number represents the program line in which the error
occurred.) In this case, you can use the edit mode commands and
subcommands described later in this Chapter.

However, if you wish to activate the line editor yourself (because
you have noticed a mistake or wish to make a change in a long
program line), type:

EDIT line number <ENTER>

This lets you edit the specified line number. (If the line number
you specify does not exist, an "Undefinedline number" error occurs).

You may also type:

EDIT •

The period after EDIT means that you want to edit the current
program line, the last line entered, the last line altered or a line
in which an error has occurred.

For example, type in and <ENTER> the following line:

1~~ FOR I = 1 TO 1~ STEP .5: PRINT I, 1*2, 1*3: NEXT

---------Itadle/haell---------

-19-

___--=L;,:.:IN~E:...=.:ED;.:,I.:..T TRS.BO ® __..:,jTR~S~-~XE;.:.:N~IX::...:..:M~BA~S~IC~ _

(This line will be used in exercising all the edit subcommands
described below).

Now type EDIT 1~~ and press <ENTER>. MBASIC displays:

This starts the editor. You may now begin editing line 1~~.

Special Keys in the Edit Mode

<ENTER>

Pressing <ENTER> in the edit mode records all the changes you made
in the current line and returns you to the command mode.

Space bar

Pressing the space bar moves the cursor over one space to the right
and displays any character stored in the preceding position. For
example, using line 1~~ entered above, put MBASIC in the edit mode
so the display shows:

Now press the space bar. The cursor moves over one space and the
first character of the program line is displayed. If this character
was a blank, then a blank is displayed. Press the space bar again
until you reach the first non-blank character:

1~~ F

is displayed. To move over more than one space at a time, type the
desired number of spaces first, then press the space bar. For
example, type 6 and press the space bar. The display should show
something like this (depending on how many blanks you inserted in
the line):

1~~ FOR I =

Now type 8 and press the space bar. The cursor moves over eight
spaces to the right, and eight more characters are displayed.

1~~ FOR I = 1 TO 1~

---------lIadlelhaell---------

-20-

___....,l,T~RS~-;AXE~N.J.IIIAX..&;M.IoIIIB:g;AS~I~C__ TRS.BO ®L.....IN...E...IElor.IIIpIolooIT~ _

L (List Line)

displays the remainder of the program line (unless MBASIC is under
one of the insert subcommands listed below). The cursor drops down
to the next line of the display, reprints the current line number,
and moves to the first position of the line.

For example, when the display shows

press L (without pressing <ENTER> key). Line 1~~ is displayed:

1~~ FOR I = 1 TO 1~ STEP .5: PRINT I, 1*2, 1*3: NEXT
1~~

This lets you look at the line in its current form while you're
doing the editing.

Insert Subcommand Mode

The insert subcommand mode allows you to add material to a line
while editing it. The three keys you can use to enter this
subcommand mode are X, I and H.

X (Extend Line)

Displays the rest of the current line. Typing X also moves the
cursor to the end of the line and puts MBASIC in the insert
subcommand mode. This enables you to add material to the end of the
line.

For example, using line 1~~, when the display shows

press X (without pressing <ENTER» and the entire line is displayed;
notice that the cursor now follows the last character on the line:

1~~ FOR I = 1 TO 1~ STEP .5: PRINT I, 1*2, 1*3: NEXT

We can now add another statement to the line, or delete material
from the line by using the <BACKSPACE> key. For example, type

: PRINT "DONE II

---------ltadI8Ihaell---------

-21-

_____l_.IN;,;,:Eo....=,;:ED;.:,I.:.T TRS.BO ® __..:.T~RS,",-,QOXE~Nw.IXg.",:,;jM:.KlBA~S:;a,IC¥... _

at the end of the line. Now press <ENTER>. If you type LIST 1~~, the
display should show something like this:

1~~ FOR I = 1 TO 1~ STEP .5: PRINT I, 1*2, 1*3: NEXT: PRINT
IIDONEII

Note: If you want to continue editing the line, press <ESC> to get
out of the insert subcommand mode.

I (Insert)

Inserts material beginning at the current cursor position on the
1i nee

For example, type and <ENTER> the EDIT 1~~ command, then use the
space bar to move over to the decimal point in line 1~~. The display
shows:

1~~ FOR I = 1 TO 1~ STEP •

Suppose you want to change the increment from .5 to .25. Press the
I key (don't press <ENTER» and MBASIC now lets you insert material
at the current position. Type 2 now, and the display shows:

1~~ FOR I = 1 TO 1~ STEP .2

You have made the necessary change, so press <ESC> to escape from
the insert subcommand. Now press the L key to display the remainder
of the line and move the cursor back to the beginning of the line:

1~~ FOR I = 1 TO 1~ STEP .25: PRINT I, 1*2, 1*3: NEXT: PRINT
IIDONE II

Note: You can also exit the insert subcommand and save all changes
by pressing <ENTER>. This returns you to command mode.

H (Hack and Insert)

Deletes the remainder of a line and lets you insert material at the
current cursor position.

For examp~e, using line 1~~, enter the edit mode and space over
until just before the PRINT IIDONEII statement. Suppose you wish to
delete this statement and insert an END statement. The display
shows:

---------lIadlelhaell---------

-22-

___.......T.w.RS¥.O-~Xt.ll;E:.J.INI~Xt....loololMBlG&.AIIl'S...IClll-__ TRS-BO ®l...I,y,NE........EoIl'D....U'-- _

1~~ FOR I = 1 TO 1~ STEP .25: PRINT I, 1*2, 1*3: NEXT:

Type H, then type END. Press <ENTER>. List the line:

1~~ FOR I = 1 TO 1~ STEP .25: PRINT I, 1*2, 1*3: NEXT: END

should be displayed.

Note: To continue editing the line, press <ESC> this takes you out
of the insert subcommand mode.

A (Cancel and Restart)

Moves the cursor back to the beginning of the program line and
cancels editing changes already made.

For example, if you have added, deleted, or changed something in a
line, and you wish to go back to the beginning of the line and
cancel the changes already made: first press <ESC> (to escape from
any subcommand you may be executing); then press A. The cursor drops
down to the next line, displays the line number and moves to the
first character position.

E (Save Changes and Exit)

Ends editing and saves all changes made. You must be in edit mode,
not executing any subcommand, when you press E to end editing.

Q (Cancel and Exit)

Ends editing and cancels all changes made in the current editing
session. If you've decided not to change the line, type Q to cancel
changes and leave the edit mode.

If a syntax error is detected during program execution, MBASIC
starts the editor. To examine variable values, you must press Q or
<ENTER> before typing any other command.

nO (Delete)

Deletes the specified number n of characters to the right of the
cursor. The deleted characters appear enclosed in backslashes.

--------- ftadIG/haell---------

-23-

____L:;.;:I~N::;;,E...:;E;.:;;;D.:.IT:.... TRS-BO ® __....TRy"S""'-a1XE.....N....IXg"""wMII'IBA...S....I C..... _

For example~ using line 1~~~ space over to just before the PRINT
statement:

1~~ FOR I = 1 TO 1~ STEP .25:

Now type 190. This tells MBASIC to delete 19 characters to the right
of the cursor. The display should show something like this:

1~~ FOR I = 1 TO 1~ STEP .25: \PRINT I~ 1*2, I*3:\NEXT: END

When you list the complete line~ you will see that everything from
the PRINT to the next statement has been deleted.

nC (Change)

Lets you change the specified number of characters beginning at the
current cursor position. If you type C without a preceding number~

MBASIC assumes you want to change one character. When you have
entered n number of characters~ MBASIC returns you to the edit
mode (so-you're not in the ~ subcommand).

For example, using line 1~~, suppose you want to change the final
value of the FOR-NEXT loop, from "1~" to "15". In the edit mode~

space over to just before the "0" in "1~".

1~~ FOR I = 1 TO 1

Now type C. MBASIC assumes you want to change just one character.
Press 5~ then press L. When you list the line, you'll see that the
change has been made.

1~~ FOR 1 = 1 TO 15 STEP .25: NEXT: END

would be the current line if you've followed the editing sequence in
th is chapter.

nSc (Search)

Searches for the nth occurrence of the character c, and moves
the cursor to that position. If you don't specify-a value for n~

MBASIC searches for the first occurrence of the specified character.
If character ~ is not found, cursor goes to the end of the line.

Note: MBASIC only searches through characters to the right of the
cursor.

---------Itadlo/haell---------

-24-

____T"""'RIMS""-;aXolilolENlIoIlIo&lX...MwBIllliAiIIIISIoloI...C__ TRS-BO ® '...IWlN...E_E...Q...I...T _

For example, using the current form of line 1~~, type EDIT 1~~

<ENTER>. then press 2S:. This tells MBASIC to search for the second
occurrence of the colon character. The display should show:

1~~ FOR I = 1 TO 15 STEP .25: NEXT

You may now execute one of the subcommands beginning at the current
cursor position. For example, suppose you want to add the counter
variable after the NEXT statement. Type I to enter the insert
subcommand, then press the spacebar to insert a space and type the
variable name,!. That's all you want to insert, so press .<ESC> to
escape from the insert subcommand mode. The next time you list the
line, it should appear as:

1~~ FOR I = 1 TO 15 STEP .25: NEXT I: END

nKc (Search and Kill)

Deletes all characters up to the nth occurrence of character c,
and moves the cursor to that position.

For example, using the current version of line 1~~, suppose we
wanted to delete the entire line up to the END statement. Type EDIT
1~~ <ENTER>, then type 2K:. This tells MBASIC to delete all
characters up to the 2nd occurrence of the colon.

1~~ \FOR I = 1 TO 15 STEP .25: NEXT 1\

should be displayed. The second colon still needs to be deleted, so
type D. The display now shows:

1~~ \FOR I = 1 TO 15 STEP .25: NEXT 1\\:\

Press <ENTER> and type LIST 1~~ <ENTER>

Line 1~~ should look something like this:

1~~ END

n <BACKSPACE>

Moves the cursor to the left by n spaces. If no number n is
given, the cursor moves back one-space. When the cursor-backspaces,
all characters in its path are displayed in a backwards format, but
they are not deleted. from the program. Use the space bar to advance
the cursor forward and re-display the characters.

----------lIadlo/haell---------

-25-

-

BASIC Language
MBASle Reference Manual

aJ»
(J)

o
....

. S»
::::J

CQ
·c

S»
CQ
<D

-----------TRS·BO ® ----------

SECTION III The MBASIC Language

---------Itad-e/haell---------

----------- TRS-BO ® ----------

Chapter 4/ MBASIC Concepts

This chapter describes how to use the full power of TRS-XENIX
MBASIC. This information can help programmers build powerful and
efficient programs. If you are still something of a novice, you
might want to skip this chapter for now, keeping in mind that the
information is here when you need it.

The chapter is divided into four sections:

A. Overview - Elements of a Program. This section defines many of
the terms we will be using in the chapter.

B. How MBASIC Handles Data. Here we discuss how MBASIC classifies
and stores data. This shows you how to get MBASIC to store your data
in its most efficient format.

C. How MBASIC Manipulates Data. This gives you an overview of all
the different operators and functions you can use to manipulate and
tes t your data.

D. How to Construct an Expression. Understanding this topic will
help you in constructing powerful statements instead of using many
short ones.

---------ftadle/haell---------

-29-

___--'M~BK;iAlllIIS...I C~C~Q&llNLIIIC...Ea;.PT...S.... TRS.BO ® __.....TaR..S-.X..E..IlN....T...X....MIOIlRIoI/iA;a",S....T..C _

Overview - Elements of a Program

This overview defines the elements of a program. A program is made
up of "statements"; statements may have several "expressions."

We will refer to these terms during the rest of this chapter.

Program

A program is made up of one or more numbered lines. Each line
contains one or more MBASIC statements. MBASIC allows line numbers
from ~ to 65529 inclusive. You may include up to 251 characters per
line, not including the line number (see note below). You may also
have two or more statements to a line, separated by colons.

Note: MBASIC allows you to input more than 251 characters per line;
however, unpredictable results can occur if the number of characters
exceeds 251.

Each program can hold 16,777,215 bytes of data. This includes the
user program, variables and strings. However, you are limited by
the actual amount of memory in MBASIC. Refer to your current
operators manual for this information.

Here is a sample program:

Line
number

MBASIC
statement

Co1on between
statements

MBASIC
statement

1~~ CLS: FOR I = 1 TO 15
11~ PRINT "NUMBER ";1
12~ FOR J = 1 TO 5~~: Next J
13~ NEXT I
14~ END

When MBASIC executes a program, it handles the statements one at a
time, starting with the first and proceeding to the last. Some
statements, such as GOTO, ON ••• GOTO, GOSUB, change this sequence.

Statements

A statement is a complex instruction to MBASIC, telling MBASIC to
perform specific operations. For example:

GOTO 1~~

---------lIadlOlllaell---------

-30-

___.....:.;TR_S_-_XE_N;,;;,I~X_M;,;;oBA;,,;,;S~I,,;;,C__ TRS-BO ® __....MIiWIBIlii\AlIIIIiSIWiIIC....CIItoIIQUoIN...CE...P....TS...... _

Tells MBASIC to perform the operations of (1) locating line 1~~ and
(2) executing the statement on that line.

END

Tells MBASIC to perform the operation of ending execution of the
program.

Many statements instruct MBASIC to perform operations with data. For
example, in the statement:

PRINT"SEPTEMBER REPORT"

the data is SEPTEMBER REPORT. The statement instructs MBASIC to
print the data inside quotes.

line Termination

The line terminator for ASCII files under the TRS-XENIX operating
system is the new line character. Under TRS-XENIX the new line
character is represented by a carriage return or a line feed. Either
a carriage return or a line feed will terminate a BASIC line.

line Continuation

Continuing a single logical line across several physical lines is
done by preceding the line terminator with the backslash character
"\". For example:

IF NAME = "SARA" \
THEN PRI NT "TRUEU \
ELSE PRINT "FALSE" \

The backslashes were typed before the carriage returns were typed,
thus causing the 3 physical lines to appear to BASIC as a single
logical line.

A backslash placed in any other position will have its normal
meaning as an integer divide. The internal representation for line
continuation used in binary files remains the same for all versions
of TRS-XENIX BASIC.

---------Itadle/haell---------

-31-

___...MI.IllB:g,AS.I~C~C.¥iQNwC~E...P"""T~S TRS.BO ® T"RMlSr.::-~Xf....NI.IoI...X....lMI;/,IBiMiA....S~IC..... _

Express;ons

An expression is actually a general term for data. There are four
types of expressions:

1. Numeric expressions, which are composed of numeric data.

Examples:

(l + 5.2) /3
D
5*B
3.7682
ABS (X) + RN D(13)
SIN(3 + E)

2. String expressions, which are composed of character data.

Examples:

A$
"STRING"
"STRING" + "DATA"
MO$ + "DATA"
MID$(A$,2,5) + MID$(IMAN",1,2)
M$ + A$ + B$

3. Relational expressions, which test the relationship between two
expressions.

Exampl es:

A = 1
A$>B$

4. Logical expressions, which test the logical relationship between
two expressi ons.

Exampl es:

A$ = "YES" AND B$ = "NO"
c>5 OR M<B OR ~>2

578 AND 452

----------Itadlolhaell---------

-32-

_____TRo;o;s_-~XE..N~IX~M~BAo.:.;S~I,;:"C__ TRS.BO ® MIi&IB"lAIllI.oSI~C_ClIQQcuNMlCE...P...TS.... _

Functions

Functions are automatically subroutines. Most MBASIC functions
perform computations on data. Some serve a special purpose, such as
controlling the video display or providing data on the status of
MBASIC. You may use functions in the same manner that you use any
data: as part of a statement.

These are some of MBASIC's functions:

INT
ABS
STRING$

For example, ABS returns the absolute value of a numeric expression.
The following example shows how this function works:

PRINT ABS(7*(-5» <ENTER>
35

Ok

How MBASIC Handles Data

MBASIC offers several different methods of handling your data. Using
these methods properly can greatly improve the efficiency of your
program. In this section we discuss:

1. Ways of Representing Data
a. Constants
b. Vari ables

2. How MBASIC Stores Data
a. Numeric (integer, single precision, double

precision)
b. Stri ng

3. How MBASIC Classifies Constants
4. How MBASIC Classifies Variables
5. How MBASIC Converts Data

Ways of Representing Data

MBASIC recognizes data in two forms: directly (as constants), or by
reference to a memory location (as variables).

---------lIadlolhaell---------

-33-

___......MIlli8Ag;S~I~C~CQlIIlNIoI.1CME...P...TlII.S TRS-BO ® T....RMSl,;;-"'XE"INLlI..X...,jMl:IIRIKAa.;lSIoI.IC..... _

Constants

All data is input into a program as "constants" - values which are
not subject to change. For example, the statement:

PRINT "1 PLUS 1 EQUALS"; 2

contains one string constant,

1 PL US 1 EQUALS

and one numeric constant

2

In these examples, the constants "input" to the PRINT statement.
They tell PRINT what data to print on the display.

These are more examples of constants:

3.14159
1. 775E+3
"NAME TITLEU
57

Variables

"L. O. SMITH"
"0123456789ABCDEF"
-123.45E-8
"AGE"

A variable is a place in memory where data is stored. Unlike a
constant, a variable's value can change. This allows you to write
programs dealing with changing quantities. For example, in the
statement:

AS = "OCCUPATION"

The variable AS now contains the data OCCUPATION. However, if this
statement appeared later in the program:

AS = "FI NANCE"

The variable AS would no longer contain OCCUPATION. It would now
contain the data FINANCE.

---------Itadlo/haell---------

-34-

____T..R_.S-._X;,:EN:.;,;:I:.;:,X_M,:,,;;B,;,,;;AS;,.=I,&,C__ TRS.BO ® a;&IMBiKlAIal;SI...C...a.aCO.NIIICEIr,l;P....TS.... _

Variable Names

In MBASIC, variables are represented by names. Variable names must
begin with a letter, A through Z. This letter may be followed by one
or more characters (digits or letters).

For example:

AM A Al BALANCE EMPLOYEE2

are all valid and distinct variable names.

Variable names may be of any length up to 4~ characters.

Reserved Words

Certain combinations of letters are reserved as MBASIC keywords and
operator names. These combinations cannot be used in variable names.

For example:

OR LEN OPTION

cannot be used as variable names.

But keywords may appear inside variable names. For example:

BORE STRLEN OPTIONC

See the Appendix B on MBASIC's reserved words.

Simple and Subscripted Variables

Variables may also be IIsubscripted ll so that an entire list of data
can be stored under one variable name. This method of data storage
is called an array. For example, an array named A may contain
these elements (subscripted variables):

A(~) A(l) A(2) A(3) A(4)

You may use each of these elements to store a seperate data item,
such as:

A(~) = 5.3
A(l) = 7.2

---------ltadlOlhaell---------

-35-

___..M.:.;;B~A~SI:;,;C-..,;;,;CQ~N~C,;;;,;EP-.llT.:l'S TRS-BO ® __...ITI.QR....S-::.lX:t.loEAN....IX~MWl:BA;MlSLol.IC..... _

A(2) = 8.3
A(3) = 6.8
A(4) = 3.7

In this example, array A is a one-dimensional array, since each
element contains only one subscript. An array may also be
two-dimensional, with each element containing two subscripts. For
example, a two-dimensional array named X could contain these
elements:

X(0,0) = 8.6
X(l,0) = 7.3

X(0,l) = 3.5
X(l ,1) = 32. 6

With MBASIC, you may have as many dimensions in your array as you
would like. Here is an example of a three-dimensional array named L
which contains these eight elements:

L(0,0,0) = 35233
L(0,0,1) = 52000

L(1,0,0) = 33333
L(1,0,1) = 53853

L(0,1,0) = 96522
L(0,1,1) = 10255

L(1,1,0) = 96253
L(l,l,l) = 79654

Each index of the array is limited to the range 0 to 32767. MBASIC
assumes that all arrays contain 11 elements in each dimension. If
you want more elements you must use the DIM statement at the
beginning of your program to dimension the array.

For example, to dimension array L, put this line at the beginning of
the program:

DIM(l,l,l)

to allow room for two elements in the first dimension; two in the
second, and two in the third for a total of 2*2~2 = 8 elements.

Arrays are discussed later in this chapter.

How MBASIC Stores Data

The way that MBASIC stores data determines the amount of memory it
consumes and the speed in which MBASIC can process it.

---------ltadIG/haell---------

-36-

___.....TRo:.;:;S;..-~XE;;,:.:N:.:.IX~M~BA~S;.:,I~C__ TRS..BO ® MWlB"-lAIllIooSlIIoliC'-ClIQQwNMlCE...r...TS.... _

Numeric Data

You may get MBASIC to store all numbers in your program as either
integer, single precision, or double precision. In deciding how to
get MBASIC to store your numeric data, remember the tradeoffs.
Integers are the most efficient and the least precise. Double
precision is the most precise and least efficient. For information
on the internal representation of numbers refer to Appendix H.

Integers
(Speed and Efficiency, Limited Range)

To be stored as an integer, a number must be whole and in the range
of -32768 to 32767. An integer value requires only two bytes of
memory for storage. Arithmetic operations are faster when both
operands are integers.

For example:

1 32~~ -2 -12345

can all be stored as integers.

Single Precision
(General Purpose, Full Numeric Range)

Single precision numbers can include up to six significant digits,
and can represent normalize9 values* with exponents up to 64.
Refer to Appendix H for more information on the range of single
precision numbers.

A single precision value requires four bytes of memory for storage.
MBASIC assumes a number is double precision if you do not specify
the level of precision.

* In this ~anual, normalized value is one in which exactly one digit
appears to the left of the decimal point. For example, 12.3
expressed in normalized form is 1.23 X 1~.

For example:

-37-

---------lIadlo/haell---------

can all be stored as single precision values.

123.456-2~~~34 1.774E6 6.024E-231~.0~1

___.......MMlB;WAlII<SIwCIIooooaIlCiM,QNIIolClME...P..T...S TRS.BO ® __...LjTRIloISili:-~X""EAN,L,jIXL.l:iM(,gRAAS...II.IoC _

Note: When used in a decimal number, the symbol E stands for "single
precision times 1~ to the power of ••• " Therefore 6.024E-23
represents the single precision value:

6.024 X 1~-23

Double Precision
(Maximum Precision, Slowest in Computations)

Double precision numbers can include up to 14 significant .digits,
and can represent values in the same range as that for single
precision numbers. A double precision value requires eight bytes of
memory for storage.

For example:

1~1~234578

-8. 7777651~1~
3.141592653589
8. 0010~7~8D12

can all be stored as double precision values.

Note: When used in a decimal number, the symbol D stands for "double
preci si on times 1~ to the power of. •• II Therefore 8.0~1~~7~8D12

represents the value

8.~1~~7~8 X 1~12

The default type for a variable is double precision.

For more information on Numeric data refer to Appendix H.

Strings

Strings (sequences of characters) are useful for storing non-numeric
information such as names, addresses, text, etc. You may store any
ASCII characters as a string.

For example, the data constant:

Jack Brown, Age 38

can be stored as a string of 18 characters. Each character (and
blank) in the string is stored as an ASCII code, requiring one byte

---------Itadlo/haell---------

-38-

___.....:.oTR~S_-~XE:;,;;N:.=.I~X..:.M~8AWlS'-II.C__ TRS-BO ® __-'&IMBIU;jAtM.SIWlC~CQ~NLIIIICE....P..&.T.S _

of storage. Five bytes of overhead are added to the present contents
of the string.

MBASIC would store the above string constant internally as:

Hex
Code

ASCII
Char­
acter

A string can be up to 32767 characters long. Strings with length
zero are called "null ll or "empty".

How MBASIC Classifies Constants

When MBASIC encounters a data constant in a statement, it must
determine the type of the constant: string, integer, single
precision, or double precision. First, we will list the rules MBASIC
uses to classify the constant. Then we will show you how you can
override these rules, if you want a constant stored differently:

Rule 1

If the value is enclosed in double-quotes, it is a string. For
example:

"YES"
"3331 Waverly Way"
"123456789lJ"

are all classified as strings.

Rule 2

If the value is not in quotes, it is a number. (An exception to this
rule is during data input by an operator, and in DATA lists. See
INPUT, INKEY$, and DATA)

---------Itadlo/haell---------

-39-

___...:;M.:.:::B~AS~I~C..:C~O;:.:.NC~E;,.:.,P.:.;TS=,--__ TRS-BO ® __..LT,Q,.RSil.:-:.A,XEWNIoLI40¥..&:MIaR8ra,.;Su.I....C _

For example:

12311(,11
1
-7.3214E + 6

are all numeric data.

Rule 3

Whole numbers in the range of -32768 to 32767 are integers. For
example:

123511
-12
1(,1(,112

are integer constants.

Rule 4

If the number is not an integer and contains six or fewer digits, it
is single precision. For example:

123456
-1.23
1. 3321

are all classifed as single precision.

Rule 5

If the number contains more than six digits, it is double precision.
For example, these numbers:

123456789(,11234
-1(,1(,111(,1(,1(,1(,1(,1(,1(J(J(,1.1
2. 777(,1(J(,1321

are all classified as double precision.

Type Declaration Tags

You can override MBASIC·s normal typing criteria by adding the
following "tags" to the end of the numeric constant:

----------lIadlolhaell---------

-4~-

____T_R_S-_x;,;;,EN;,;,;I~X..:.M.:.::B:.:;AS:.=I,o;;,C__ TRS-BO ® __....:.;:,;MB~A~SI~C~CQ~N~CEli.I.P..:.TS~ _

Makes the number single precision. For example, in the
statement:

A = 12.3456789@1234!

the constant is classified as single precision, and shortened
to six digits: 12.3457.

E Single precision exponential format. The E indicates the
constant is to be multiplied by a specific power of 1@. For
example:

A = 1. 2E5

stores the single precision number 120@@@ in A.

Makes the number double precision. For example, in statement:

PRINT 3#/7

D

the first constant is classified as double precision before the
division takes place.

Double precision exponential format. The D indicates the
constant is to be multiplied by a specified power of 1@. For
example:

A = 1.23456789D-1

The double precision constant has the value 0.123456789.

How MBASIC Classifies Variables

When MBASIC encounters a variable name in the program, it classifies
it as either a string, an integer, a single precision number, or a
double precision number.

MBASIC classifies all variable names as double precision initially.
For exampl e:

AB AMOUNT Xy L

are all double precision initially. If this is the first line of
your program:

LP = 1. 2

---------ltadI8/haell---------

-41-

___....r.;M~B:wA¥oSIa.lC~C...QNIoIlC..E....P...T...S TRS.BO ® __....wTBIMS...-;QXoIiojENIIoIJIooIlX......."MBIlIIiA..S...J.C _

MBASIC classifies LP as a double precision variable.

However, you may assign different attributes to variables by using
definition statements at the beginning of your program:

DEFSTR - Defines variables as string.
DEFINT - Defines variables as integer.
DEFSNG - Defines variables as single precision.
DEFDBL - Defines variables as double precision. (Since MBASIC

classifies all variables as double precisio~

initially, you would only need to use DEFDBL if one of
the other DEF statements were used.

For example:

DEFSTR L

makes MBASIC classify all variables which start with L as string
variables. After this statement, the variables:

L LP LAST

can all hold string values only.

Type Declaration Tags

As with constants, you can always override the type of a variable
name by adding a type declaration tag at the end. There are four
type declaration tags for variables:

% Integer
! Single precision
Double precision
$ String

For example:

I% FT% NUM% COUNTER%

are all integer variables, regardless of what attributes have been
assigned to the letters I, F, N, and C.

T! RY! QUAN! PERCENT!

---------ltatlIG/haell---------

-42-

____T..R_S-....X...EN..I..X_M._B....AS...I...C__ TRS.BO ® __..:M:.:.;;B~AS~Iko¥C...lCIQIIO:a:NCl'IIEIol.PT.&.lIS,--__

are all single preclslon variables, regardless of what attributes
have been assigned to the letters T, R, Q, and P.

X# RR# PREV# LSTNUM#

are all double preclslon variables, regardless of what attributes
have been assigned to the letters X, R, P, and L.

Q$ CA$ WRO$ ENTRY$

are all string variables, regardless of what attributes have been
assigned to the letters Q, C, W, and E.

Note that any given variable name can represent four different
variables. For example:

A5# A5! A5% A5$

are all valid and distinct variable names.

One further implication of type declaration: Once you define a
type declaration tag it has no effect on that particular variable
name. For example, after the statement:

OEFSTR C

the variable referenced by the name Cl is identical to the variable
referenced by the name Cl$.

How MBASIC Converts Numeric Data

Often your program might ask MBASIC to assign one type of constant
to a different type of variable. For example:

A% = 2.34

In this example, MBASIC must first convert the single preC1Slon
constant 2.34 to an integer in order to assign it to the integer
var i ab1e A% •

You might also want to convert one type of variable to a different
type, such as:

A# = A%
A! = A#
A! = A%

---------Itadlelllaeli---------

-43-

___""""MoWiIB~ASlWI~C..lCIQlQ~NC¥.lE.:.P,,&,;TSlC-.__ TRS-BO ® __-,TaRSIIII.;-;,g,XwEN,uI,a,X..&iM"",BA~S....IC _

The conversion procedures are listed on the following pages.

Single or double precision to integer type

MBASIC rounds the fractional portion of the number.

Note: The original value must be greater than or equal to -32768,
and less than 32768.

Exampl es

A% = 32766.9

assigns A% the value 32767.

A% = 2.503

assigns A% the value 2500.

A% = -123.45678901234578

assigns A% the value -123.

A% = -32767.5

assigns A% the value -32768.

Integer to single or double precision

The converted value looks like the original value with zeros to the
right of the decimal place.

Exampl es

A# = 32767

Stores 32767.~~~~0~~~ in A# and would print 32767.

A! = -1234

Stores -1234.0~ in A! and would print -1234.

---------ltadI8/haell---------

-44-

____T_R..S-_X...EN...I_.X...M...B_AS...I...C__ TRS..BO ® __....:M:.:.=B..AS~I~C....:C:.;::;O.::.;NC~Eo:..PT:.::S:...-__

Double to single precision

This involves converting a number with up to 14 significant digits
into a number with no more than six. MBASIC rounds off the least
siginificant digits to produce a six-digit number.

Exampl es

Al = 1.23456789~124567

stores 1.23457 in AI. The statement:

PRINT A

displays the value 1.23457.

A! = 1.3333333333333

stores 1.33333 in AI.

Single to double precision

To make this conversion, MBASIC simply adds trailing zeros to the
single precision number. For example:

A# = 1. 5

stores 1.5~~~~~~~~~~~~ in A# and would print 1.5.

Illegal Conversions

MBASIC cannot automatically convert numeric values to string, or
vice versa. For example, the statements:

A$ = 1234
A% = 111234 11

are illegal. They would return a IIType mismatch ll error. (Use STR$
and VAL to accomplish such conversions.)

---------Itadle/haell---------

-45-

____M...Bw;ASwI..,C..CyQ;w,NCllolE...P...TS TRS-BO ® __.....T~RSlll,;;;-:.AX...ENu.JAX"",MIIIBA~S,y,J~C _

How MBASIC Manipulates Data

You have many fast methods you may use to get MBASIC to count, sort,
test, and rearrange your data. These methods fall into two
categories:

1. Operators
a. numeric
b. stri ng
c. relational
d. logical

2. Functi ons

Operators

An operator is the single symbol or word which signifies some action
to be taken on either one or two specified values referred to as
operands.

In general, an operator is used like this:

operand-l operator operand-2

6 + 2

The addition operator + connects or relates its two operands, 6 and
2, to produce the result 8.

Operand-l and -2 can be expressions.

A few operations take only one operand, and are used like this:

operator operand

5

The negation operator - acts on a single operand 5 to produce the
result negative 5.

Neither 6 + 2 or -5 can stand alone; they must be used in statements
to be meaningful to MBASIC. For example:

A = 6 + 2
PRINT -5

---------Itadlolhaell---------

-46-

____...ITIoIiIRlIIIS...-A1XEIooINIoIJoQX.......MWlBAa.S...J...C TRS-BO ® ,aaMIoijRAraoS...I..C......C°IollNIIICIIIE""P....TooiIS _

Operators fall into four categories:

• Numeric
• Stri ng
• Relational
• Logical

based on the kinds of operands they require and the results they
produce.

Numeric Operators

Numeric Operators are used in numeric expressions. Their operands
must always be numeric, and the results they produce are one numeric
data item.

In the description below, we use the terms integer, single
precision, and double precision operations. Integer operations
involve two-byte operands, single precision operations involve
four-byte operands, and double precision operations involve
eight-byte operands. The more bytes involved, the slower the
operation.

There are five different numeric operators. Two of them, sign + and
sign -, are unary, that is, they have only one operand. A sign
operator has no effect on the precision of its operand.

For example, in the statement:

PR I NT -77, +77

the sign operators - and + produce the values negative 77 and
positive 77, respectively.

Note: When no sign operator appears in front of a numeric term, + is
assumed.

The other numeric operators are all binary, that is, they all take
two operands.

These operators are, in order of precedence:

-47-

---------Itadlo/haell---------

*, /
+,-

Exponentiation
Multiplication, Division
Addition, Subtraction

____M_BA~S.::.;IC::;"",;,;CO~N:.;;;CE_P.:.TS TRS.BO ® __..:.T~RS~-,g,:XEIiI.:olNI.It.iIXI:o.ooIJ,M.:g,BA.IaIIS.&.lIC,,-__

Exponentiation

The symbol ~ denotes exponentiation. It converts both its operands
to double precision, and returns a double precision result.

For exampl e:

PRINT 6~. 3

prints 6 to the .3 power.

Multiplication

The * operator is the symbol for multiplication. Once again, the
operation is done with the precision of the more precise operand
(the less precise operand is converted).

Exampl es:

PRINT 33 * 11

integer multiplication is performed.

PRINT 33 * 11.1

double precision multiplication is performed.

PRINT 12.3456789~1234 * 11

double precision multiplication is performed.

Division

The / symbol is used to indicate ordinary division. Both operands
are converted to single precision or double precision, depending on
their original precision:

• If either operand is double precision, then both are converted to
double precision and eight-byte division is performed.

Examples:

PRINT 3/4

double precision division is performed.

---------lIadI8Ihaell---------

-48-

__--T-R-S-....;;X.EN-I-X...;,M-B-AS-I~C--TRS.BO ® __..:M:..:.=B:.:.AS~I~C..:CgO;::.:NC~E;:.PT.:.;;S:..-__

PRINT 3.8/4

double precision division is performed.

PRINT 3/1.23456789~1234

double precision division is performed.

Addition

The + operator is the symbol for addition. The addition is done with
the precision of the most precise operand (the less precise operand
is converted).

For example, when one operand is integer type and the other is
single precision, the integer is converted to single precision and
four-byte addition is performed. When one operand is single
precision and the other is double precision, the single precision
number is converted to double precision and eight-byte addition is
performed.

Exampl es:

PRINT 2 + 3

integer addition is performed.

PRINT 3.1 + 3

double precision addition is performed.

PRINT 1.23456789~1234 + 1

double precision addition is performed.

Subtraction

The - operator is the symbol for subtraction. As with addition, the
operation is done with the precision of the most precise operand
(the less precise operand is converted).

Examples:

PRINT 33 - 11

integer subtraction is performed.

---------Itadle/haell---------

-49-

____M..BA~S~IC~CO~N~CE;;,;,P_T~S TRS.BO ® __....T,y;RS..-;,g,XlIIIEN....Ia,X....M""BAgaS...loMoC _

PRINT 33 - 11.1

double precision subtraction is performed.

PRINT 12.3456789@1234 - 11

double precision subtraction is performed.

String Operator

MBASIC has a string operator (+) which allows you to concatenate
(link) two strings into one. This operator should be used as part of
a string expression. The operands are both strings and the resulting
value is one piece of string data.

The + operator links the string on the right of the sign to the
string on the left. For example:

PRINT IICATSII + IILOVEU + IIMICE II

prints:

CATSLOVEMICE

Since MBASIC does not allow one string to be longer than 32767
characters, you will get an error if your resulting string is too
long.

Relational Operators

Relational operators compare two numeric or two string expressions
to form a relational expression. This expression reports whether the
comparison you set up in your program is true or false. It returns a
-1 if the relation is true; a 0 if it is false.

Numeric Relations

This is the meaning of the operators when you use them to compare
numeric expressions:

<
>
=

Les s than
Greater than
Equal to

---------ltadI8/haell---------

-5(1-

____T..R;;;O'S-_xi,,;;,EN;,;;;I~X_M,;,;;B;;.._ASiioiilI'""C__ TRS.BO ® __..r.;,uMBlaIAI¥.SIiWlC"""'llQCQI&IlNI.KjCE~P....T..S _

<> or ><
=< or <=
=> or >=

Not equal to
Less than or equal to
Greater than or equal to

Examples of true relational expressions:

1 < 2
2 <> 5
2 <= 5
2 <= 2
5 > 2
7 = 7

String Relations

The relational operators for string expressions are the same as
above, although their meanings are slightly different. Instead of
comparing numerical magnitudes, the operators compare their ASCII
sequence. This allows you to sort string data:

<
>

>< or <>
<=
>=

Precedes
Follows
Does not have the same precedence
Precedes or has the same precedence
Follows or has the same precedence

MBASIC compares the string expressions on a character-by-character
basis from left to right. When it finds a non-matching character, it
checks to see which character has the lowest ASCII code. The
character with the lowest ASCII code is the smallest (precedent) of
the two stri ngs.

Examples of true relational expressions:

The ASCII code for A is decimal 65; for Bit's 66.

"CODE" < "COOL"

The ASCII code for 0 is 79; for D it's 68.

If while making the comparision, MBASIC reaches the end of one
string before finding non-matching characters, the shorter string is
the precedent. For example:

---------ltadlOlhaell---------

-51-

___.......MIoIIlB"""AS~IfroOIC"'-'¥C~QNa:ClUlE..P..To¥oS TRS.BO ® __....IoITR~S...-""'X~ENIIolII.IIX....,.MRWliAiIolS...I ...C__......._

"TRAIL" < "TRAILER"

Leading and trailing blanks are significant. For example:

" A" < "All

ASCII for the space character is 32; for A, it's 65.

The string on the left is four characters long; the string on the
right is five.

How to Use Relational Expressions

Normally, relational expressions are used as the test in an IF/THEN
statement. For example:

IF A = 1 THEN PRI NT "CORRECT II

MBASIC tests to see if A is equal to 1. If it is, MBASIC prints the
message "CORRECT".

IF A$ < B$ THEN 5~

if string A$ alphabetically precedes string B$, then the program
branches to line 5~.

IF R$ = "YES" THEN PRINT A$

if R$ equals YES then the message stored as A$ is printed.

However, you may also use relational expressions simply to return
the true or false results of a test. For example:

PRINT 7 = 7

prints - 1 since the relation tested is true.

PRINT "A" > "B"

prints ~ because the relation tested is false.

---------Itadlo/haell---------

-52-

_____TR_S_-.-;,oxE=-N~I~X_Mololii08w;;AS;,;;I~C__ TRS.BO ® MIiU8i11iilA~SIWlC~CQi&UNIMICE...P.....TS..... _

Logical Operators

Logical operators make logical comparlslons. Normally, they are used
in IF/THEN statements to make a logical test between two or more
relations. For example:

IF A = 1 OR C = 2 THEN PRINT X

The logical operator, OR, compares the two relations A = 1 and C =
2.

Logical operators may also be used to make bit comparisions of two
numeric expressions.

For this application, MBASIC does a bit-by-bit comparision of the
two operands, according to predefined rules for the specific
operator.

Note: The operands are converted to integer type, stored internally
as 16-bit, two's complement numbers. To understand the results of
bit-by-bit comparisions, you need to keep this in mind.

The following table summarizes the action of Boolean operators in
bit manipulation.

\
~

Meaning of First Second
Operator Operation Operand Operand Result

AND When both bi ts 1 1 1
are 1, the re- I 0 0
sults will be l. 0 1 0
Otherwise, the 0 0 0
result will be 0.

OR Result wi 11 be 1 1 1 1
un 1ess both bits 1 0 1
are 0. 0 1 1

0 0 0

NOT Result is oppo- 1 0
site of bit. 0 1

XOR Resu lt wi 11 be 1 1 0
1 when both bits 1 0 1
are opposite. 0 1 1

0 0 0

---------lIadle/haeli---------

-53-

___......MIIIB~AllIoSliWC~CiMoQNI&iCIlllE..P....T...S TRS-BO ® __.....TRu..Sli.ii-;,gX...EANT.l"jX~M...RQASIli,jT...C _

EQV

IMP

Resu It wi 11 be 1 1 1
1 when both bi ts 1 Ii' Ii'
are the same. Ii' 1 Ii'

Ii' Ii' 1

Result will be 1 1 1
1 unless the first 1 Ii' Ii'
bit is 1 and Ii' 1 1
the second bit Ii'. Ii' Ii' 1
is zero.

Hierarchy of Operators

When your expressions have multiple operators, MBASIC performs the
operations according to a well-defined hierarchy, so that results
are always predictable.

Parentheses

When a complex expression includes parentheses, MBASIC always
evaluates the expressions inside the parentheses before evaluating
the rest of the expression. For example, the expression:

8 - (3 - 2)

is evaluated like this:

3 - 2 = 1
8 - 1 = 7

With nested parentheses, MBASIC starts evaluating the innermost
level first and works outward. For example:

4 * (2 - (3 - 4»

is evaluated like this:

3 - 4 = -1
2 - (-1) = 3
4 * 3 = 12

---------ltadI8/haell---------

-54-

_____TR...S_-_xE:;,;,N:.=.I~X...M..BA_S.I_C__ TRS-BO ® __-'IIMBiIKlAtM.SI...C......CQII&IJN~CEIiIoIP..&.T..S~ _

Order of Operations

When evaluating a sequence of operations on the same level of
parenthesis, MBASIC uses a hierarchy to determine what operation to
do first.

The two listings below show the hierarchy MBASIC uses. Operators are
shown in decreasing order of precedence and are executed as
encountered from left to right:

For Numeric Operations:

A or (Exponentiation)
+,- (Unary sign operands [not addition and

subtraction])

*,/ (Multiplication and division)

+,- (Addition and subtraction)
<,>,=,<=,>=,<>

NOT
AND
OR
XOR
EQV
IMP

For String Operations:

+
<,>,=,<=,>=,<>

For example, in the line:

X*X + 5A 2.8

MBASIC finds the value of 5 to the 2.8 power. Next it multiplies
X*X, and finally adds the value of 5 to the 2.8. If you want MBASIC
to perform the indicated operations in a different order, you must
add parentheses. For example:

(X* (X + 5» A2. 8

or

---------lIadle/haell---------

-55-

___..,&,;IMIIIIBIiloIASIllliI~C~CQlIoINI&aC~E...P...TSIllo- TRS-BO ® T.&.IRa..lSI.:-,AjXfIlolN...I.AX_M~RiKAwSiololIC.... _

X* (X + 5) ~2. 8

Here1s another example:

IF X= ~ OR Y > 0 AND Z = 1 THEN 255

The relational operators = and> have the highest precedence, so
MBASIC performs them first, one after the next, from left to right.
Then the logical operations are performed. AND has a higher
precedence than OR, so MBASIC performs the AND operation before OR.

If the above line looks confusing because you can't remember which
operator is precedent over which, then you can use parentheses to
make the sequence obvious:

IF X = ~ OR «Y >~) AND (Z = 1» THEN 255

Functions

A function is a built-in sequence of operations which MBASIC
performs on data. MBASIC functions save you from having to write a
MBASIC routine, and they operate faster than a MBASIC routine would.

Exampl es:

SQR (A + 6)

tells MBASIC to compute the square root of (A + 6).

tells MBASIC to return a substring of the string A$, starting with
the third character, with a length of 2.

MBASIC functions are described in more detail in Chapter 7.

If the function returns numeric data, it is a numeric function and
may be used in a numeric expression. If it returns string data, it
is a string function and may be used in a string expression.

---------Itadle/haell---------

-56-

____T:.:.:R,;;"s-~X:.=.:EN~I;.:.:,X..:.M.:.=;B~AS"I~C__ TRS-BO ® MI,;,/,IB"lAio5lSI~C~CQAlINM.lCE....P....TS... _

How to Construct an Expression

Understanding how to construct an expression will help you put
together powerful statements, instead of using many short ones. In
this section we will discuss the two kinds of expressions you may
construct:

· Simpl e
• Complex

as well as how to construct a function.

As we have stated before, an expression is actually data. This is
because once MBASIC performs all the operations, it returns one data
item. An expression may be string or numeric. It may be composed of:

· Constants
• Variables
• Operators
• Functions

Expressions may be either simple or complex:

A simple expression consists of a single term: a constant,
variable or function. If it is a numeric term, it may be preceded by
an optional + or - sign, or by the logical operator NOT.

For example:

+A 3.3 -5 SQR(8)

are all simple numeric expressions, since they only consist of one
numeric term.

A$ STRING$ (2~,A$) IIWORDII

are all simple string expressions, since they only consist of one
string term.

---------rtadle/haell---------

-57-

___.....MIIII8:r;1iAS~ILaC"""""C~ONlI.lC~EI&.P...TolI&.S TRS.BO ® __....IoITRIMS...-iAX...ENIIol'I.IlXIoooIOIiMRYoIA.SI.Io'....C _

Here's how a simple expression is formed:

r--..
NOT
'-J

CONSTANT

VARIABLE

FUNCTION

A complex expression consists of two or more terms (simple
expressions) combined by operators. For example:

A-I X+3.2-Y 1=1 A AND B ABS (B) +LOG (2)

are all examples of complex numeric expressions. (Notice that you
can use the relational expression (1=1) and the logical expression
(A AND B) as a complex numeric expression since both actually return
numeri c data.)

A complex numeric expression is formed using the following
operators:

AS + BS "Z" + zS STRINGS(I~, "A") + "M"

are all examples of complex string expressions.

----------lIadlolhaell---------

-58-

,~-

____T;,:,;R~S-_X=EN:.:.;::I~X..:.M.:.=B~AS;;.=I~C__ TRS-BO ® __...Ii&IMBIa;jAIlI&oSIwCt..aIIoJCQQlNI.MoICEwP.T....S _

A complex string expression is formed using the following
operator:

Most functions, except functions returning system information,
require that you input either or both of the following kinds of
data:

One or more numeric expressions
• One or more string expressions

This is how a function is formed:

If the data returned is a number, the functi on may be used as a term
in a numeric expression. If the data is a string, the function may
be used as a term in a string expression.

SIN(A) STR$(X) VAL (A) LOG(.53)

are all examples of functions.

---------lIadlelhaell---------

-59-

----------- TRS-BO ® ----------

Chapter 5/ Disk Files

You may want to store data on your disk for future use. To do this,
you need to store the data in a "disk file". A disk file is an
organized collection of related data. It may contain a mailing list,
a personnel record, or almost any kind of information. This is the
largest block of information on disk that you can address with a
single command.

To transfer data from a MBASIC program to a disk file, and
vice-versa, the data must first go through a "buffer". This is an
area in memory where data is accumulated for further processing.

With MBASIC, you can create and access two types of disk files. The
difference between these two types is that each is created in a
different "mode". The mode you choose determines what kind of access
you will have to the file: sequential access or direct access.

Sequential-Access Files

With a sequential-access file, you can only access data in the same
order it was stored: sequentially. To read from or write to a
particular section in the file, you must first read through all the
contents in the file until you get to the desired section.

Data is stored in a sequential file as ASCII characters. Therefore,
it is ideal for storing free-form data without wasting space between
data items. However, it is limited in flexibility and speed.

The statements and functions used with sequential files are:

OPEN
PRINT#
PRI NT# USI NG

WRITE#
INPUT#
LINE INPUT#

EOF
LOC
CLOSE

These statements and functions are discussed in more detail in
Chapters 6 and 7.

---------Itadlo/haell---------

-61-

____...w.Q....Is.u;K~E6IIL...E...S&._ TRS-BO ® __..6ITRII.oS~-:.AX,l;"lENII"II.oflXlo.l:loMRIIlAa.;Sy,IMC _

Creating a Sequential-Access File

1. To create the file~ OPEN it in "0" (output) mode and assign it a
buffer number (1 to 255).

Exampl e

OPEN "O"~ 1~ "LIST.EMP"

opens a sequential output file named LIST/EMP and gives buffer 1
access to this file.

2. To write data to the file~ use the WRITE# statement (you can also
use PRINT#).

Exampl e

WRITE# 1~ N$

writes variable N$ to the file~ using buffer 1 (the buffer used
to OPEN the file). Remember that data must go through a buffer
before it can be written to a file.

3. To ensure that all the data was written to the file~ use the
CLOSE statement.

Example

CLOSE 1

closes access to the file~ using buffer 1 (the same buffer used
to OPEN the file).

Sample Program

10 OPEN "O"~ 1~ "LIST.EMP"
21} LINE INPUT "NAME? "; N$
30 IF N$="DONE" THEN 6~

41} WRITE#I~ N$
50 PRINT: GOTO 20
60 CLOSE 1
RUN

Note: The file "LIST.EMP" stores the data you input through the
aid of the program~ not the program itself (the program
manipulates data). To save the program above~ you must assign it
a name and SAVE it (refer to Chapter 1).

---------Itadlolhaell---------

-62-

____T_R_.S-.X_EN...I_.X_M._B_ASIO.:OI._C__ TRS-BO ®tI'oQI...S~K...r.F...I.IiIoILE...SIoooo.. _

Exampl e

SAVE "PAYROLL II

would save the program under the name "PAYROLL II • This would
enable you to edit, add or delete program lines later.

4. To access data in the file, reOPEN it in the "m (input) mode.

Exampl e

OPEN "m, 1, "LIST.EMp lI

OPENs the file named LIST.EMP for sequential input, using buffer
1.

5. To read data from the file and assign it to program variables,
use either INPUT# or LINE INPUT#.

Exampl es

INPUT#l, N$

reads a string item into N$, using buffer 1 (the buffer used when
the file was OPENed).

LINE INPUT#l, N$

reads an entire line of data into N$, using buffer 1.

INPUT# and LINE INPUT# each recognize a different set of
IIdelimiters" for reading data from the file. Delimiters are
characters that define the beginning or end of a data item. See
Chapter 7 for a detailed explanation of these statements.

Sampl e Program

1~ OPEN 11m, 1, "LIST.EMplI
2~ IF EOF(l), THEN 1~~

3~ INPUT#l, N$
4~ PRINT N$
5~ GOTO 2~

l~~ CLOSE

---------Itadlo/haell---------

-63-

____..P""I~SK_F....loIIWLEIrolIS TRS.BO ® ToIooIiR...S_-...XEIOIIN....J..X..,l;M~,BIQAS...J...C _

Updating a Sequential-Access File

You can add data at the end of a sequential-access file. But if you
simply open the file in "0" mode and start writing the data, you
will destroy the file's current contents.

Follow these steps instead:

1) OPEN the existing file in the "A" mode for sequential output,
after the pointer is positioned at the end-of-data.

2) Write the additional data to the new file.

Now you have a file on disk that includes all the previous data,
plus the data you just added in step two.

The following program illustrates this technique. It builds upon the
file we previously created under the name LIST.EMP.

Note: Read through the entire program first. If you encounter MBASIC
words (commands or functions) that are unfamiliar to you, refer to
Chapter 7 for their definitions.

NEW
11} OPEN "A", 1, "LIST.EMP"
21} LI NE INPUT "TYPE A NEW NAME OR PRESS <N>"; N$
31} IF N$="N" THEN 6~

4~ WRITE#l, N$
5~ GOTO 21}
61} CLOSE 1
RUN

If you wanted the program to print on your display the information
stored in the updated file, add the following lines:

70 OPEN "1", 1, ILISTjEMP"
81} IF EOF(1) THEN 21}1}1}
91} LINE INPUT#l, N$
ll}l} PRI NT N$
1l~ GOTO 81}
21}1}1} CLOSE
RUN

Once you have run this program, save it.

---------ltadIG/haell---------

-64-

___.......TaRS..-o,gXolllolENloI.iII..uX"""'MOUIBg,JAIMoSIwC'--__ TRS-BO ®O""I...SK.......E..I,Iooj1F...S..... _

Example

SAVE IIPAYROLL 211 'saves the new program

Direct-Access Files

With a direct-access file, you can access data almost anywhere on
disk. It is not necessary to read through all the information, as a
with sequential-access file. This is possible because in a
direct-access file, information is stored and accessed in distinct
units called IIrecordsll. Each record is numbered.

Creating and accessing direct-access files requires more program
steps than sequential-access files. However, direct-access files are
more flexible and easier to update. They generally take up less room
on disk because MBASIC stores them in packed binary format.

The maximum number of logical records is 32,767. Each record may
contain between 1 and 32767 bytes.

The statements and functions used with direct-access fi 1es are:

OPEN FIELD LSET jRSET
GET PUT CLOSE
LOC MKD$ MKI$
MKS$ CVD CVI
CVS

These statements and functions are discussed in more detail in
Chapters 7.

Creating a Direct-Access File

1. To create the file, OPEN it for direct access in 110
11 mode.

Exampl e

OPEN, 110
11

, 1, IILISTINGII, 32

opens the file named IILISTINGII, gives buffer 1 direct access to
the file, and sets the record length to 32 bytes. (If the record
length is omitted, the default is 256 bytes). Remember that data
is passed to and from disk in records.

®---------,lIadlolhaell---------

-65-

____.ar;D..l S~Kl-oI.;fI....LYlE~S TRS-BO ® T...R....S...-Q,jXE...N...I...X...MiMlBIIiIA...SI...C _

2. Use the FIELD statement to allocate space in the buffer for the
variables that will be written to the file. This is necessary
because you must place the entire record into the buffer before
putting it into the disk file.

Exampl e

FIELD 1, 2~ AS N$, 4 AS A$,8 AS P$

allocates the first 2~ positions in buffer 1 to string variable
N$, the next four positions to A$, and the next eight positions
to P$. N$, A$ and P$ are now "field names". The field statement
is ignored after the file is closed.

3. To move data into the buffer, use the LSET statement. Numeric
values must be converted into strings when placed in the buffer.
To do this, use the "make" functions: MKI$ to make an integer
value into a string, MKS$ for a single precision value, and MKD$
for a double precision value.

Exampl e

LSET N$=X$
LSET A$=MKS$(AMT)

4. To write data from the buffer to a record (within a direct-access
disk file), use the PUT statement.

PUT 1, CODE%

writes the data from buffer 1 to a record with the number CODE%.
(The percentage sign at the end of a variable specifies that it
will store on ly integers.)

The followin~ program writes information to a direct-access file:

1~ OPEN "0", 1, "LISTING", 32
2~ FIELD 1, 2~ AS N$, 4 AS A$, 8 AS P$
3~ INPUT "2-DIGIT CODE OR ~ TO END"; CODE%
35 IF CODE%=0 THEN 12~

4~ INPUT "NAME"; X$
5~ INPUT "AMOUNT"; AMT
6~ INPUT II PHONE "; TEL $
7~ LSET N$ = X$
8~ LSET A$ = MKS$(AMT)

---------lIadI8Ihaell---------

-66-

____T.:.:.;R~S-;;.:;X~EN~I~X_M.:.=B~AS;:.:;I~C__ TRS-BO ® --"'QI....SIQ,K...E..loIIoILE..S _

9~ LSET P$ = TEL$
1~~ PUT #1, CODE%
11~ GOTO 3~

12~ CLOSE

Every time the PUT statement is executed, a record is written to
the file. The two-digit code that is input in line 3~ becomes the
record number.

Once you have run this program, save it.

Exampl e

SAVE IIDIRECTORY II 'saves the new program

Accessing a Direct-Access File

1. OPEN the file in 110 11 mode (IIRII can also be used).

Example

2. Use the FIELD statement to allocate space in the random buffer
for the variables that will be read from the file.

Example

FIELD 1, 2~ AS N$, 4 AS A$, 8 AS P$

3. Use the GET statement to read the desired record from a direct
disk file into a direct buffer.

Exampl e

GET 1, CODE%

..•

gets the record numbered CODE% and reads it into buffer 1.

4. Convert string values back to numbers using the IIconvertll
functions: CVI for integers, CVS for single precision values, and
CVD for double precision values.

Exampl e

PRINT N$
PRINT CVS(A$)

---------- ftadlelhaell----------

-67-

____~DI;,;;S~K...;F_=Io=.l:;,;;ES=__ TRS-BO ® __....TMlRS...-.X....EN...J..X....M....BAIiMoSw,J...C _

The program may now access the data in the buffer.

The following program accesses the direct-access fi le "LISTING"
created with the previous program.

1~ OPEN "0", 1, "LISTING", 32
2~ FIELD 1,2~ AS N$,4 AS A$,8 AS P$
3~ INPUT "2-DIGIT CODE OR ~ TO END"; CODES
35 IF CODES = ~ THEN 1~~~

4~ GET #1, CODES
5~ PRINT N$
6~ PRINT USING "$$###.##"; CVS(A$)
7~ PRINT P$: PRINT
8~ GOTO 3~

1~~~ CLOSE

After typing this program, SAVE it and RUN it.

---------Itadlolhaell---------

-68-

-----------TRS·BO ® ----------

Chapter 6/ Introduction To MBASIC Statements And Functions

MBASIC is made up of keywords. These keywords instruct the computer
to perform certain operations.

Chapter 7 describes all of MBASIC·s keywords. This chapter explains
the format used in Chapter 7. It also introduces you to MBASIC's two
types of keywords: statements and functions.

Format for Chapter 7

Keyword

Syntax parameter(s) or (argument(s»

explanation of parameters or arguments

Brief definition of keyword.

Detailed definition of keyword.

Exampl e(s)

Scl1lp1e Program (s)

This format varies slightly, depending on the complexity of each
keyword. For instance, some keywords are used alone (without
parameters or arguments). Others have several possible syntaxes. As
a general rule, definitions for statements are longer than
definitions for functions. That is because a statement is a complete
instruction to MBASIC, while a function is a built~in subroutine
which may only be used as part of a statement.

---------ladlOlhaell---------

-69-

____I....N....TR...O'_'_'TO........KE....y...WO....R..DS TRS.BO ® TR_S...-;,;,;;XE..N._IX.......MB_.A;,;;,SI;,,;;C _

Some keywords have several sample programs. We added programs to
illustrate useful applications which may not be readily apparent.
Remember that this manual is to be used as a reference, not a
tutorial on how to program in MBASIC.

For a definition of the terms and notation used in Chapter 7, see
page 3-5 of the Introduction.

Statements

A program is made up of lines; each line contains one or more
statements. A statement tells the computer to perform some operation
when that particular line is executed. For example,

100 STOP

tells the computer to stop executing the program when it reaches
line 100.

Statements for
space are:

CLEAR

COMMON
DATA

DEFDBL
DEF FN

DEFINT
DEFSNG
DEFSTR
DIM
ERASE
LET

MID$
OPTION BASE
RANDOMIZE
READ

RESTORE
SWAP

assigning values to variables and defining memory

clears all variables, indicates memory to be
allocated for program, variable, and stack
space.
passes variables to a CHAINed program.
stores data in your program so that you may
assign it to a variable.
defines variables as double precision.
defines a function according to your
specifications.
defines variables a~ integers.
defines variables as single precision.
defines variables as strings.
dimensions an array.
erases an array.
assigns a value to a variable (the keyword LET
may be omi tted).
replaces a portion of a string.
declares the minimum value for array subscripts.
reseeds the random number generator.
reads data stored in the DATA statement and
assigns it to a variable.
restores the DATA pointer.
exchanges the values of variables.

---------ltadlOlhaell---------

-71J-

____..IoT~RSllloO-_XYlE.w.N..IX~M...B~A...SIwC.....__ TRS.BO ® _.....LIANT....R».Q&...Iojm~KlI&;,f ...yW...Q.u:RioIoIQIMS _

Statements for altering program sequence:

CHAIN

END
FOR/NEXT
GOSUB
GOTO

IF ••• THEN ••• ELSE

ON ••• GOSUB

ON ••• GOTO

RETURN

STOP
WHILE. .. WEND

loads another program and passes variables to
the current program.
ends a program.
establishes a program loop.
transfers program control to the subroutine
transfers program control to the specified line
number.
evaluates an expression and performs an
operation if conditions are met.
evaluates an expression and branches to a
subroutine.
evaluates an expression and branches to another
program 1i ne.
returns from a subroutine to the calling
program.
stops program execution.
executes statements in a loop as long as a given
condition is true.

Statements for storing and accessing data on disk:

CLOSE
CVD

CVI

CVS

FIELD
GET
INPUT#
LINE INPUT#
LOCK

LSET

MKD$

MKI$

MKS$

OPEN
PRINT#
PRINT# USING

closes access to a disk file.
restores data from a direct disk file to double
precision.
restores data from a direct disk file to
integer.
restores data from a direct disk file to single
precision.
organizes a direct-access buffer.
gets a record from a direct-access file.
inputs data from a disk file.
inputs an entire line from a disk file.
restricts access to specified portions of a
fi 1e.
moves data (and left-justifies it) to a direct
fi 1e buffer.
converts a double-precision number to string for
direct-access write.
converts an integer to string for direct-access
write.
converts a single-precision number to string for
direct-access write.
opens a disk file.
writes data to a sequential disk file.
writes data to a disk file using the specified
format.

---------Itadlo/haell---------

-71-

___..,;I_N_TR_O_T~O;;".;,;;KE_Y_WO_R_DS TRS.BO ® __..:.T~RS£,;-~XEli,I;Nu.IXA..,&;,IMI.WlBA:;aSu.ICk... _

PUT
RSET

UNLOCK
WRITE#

puts a record into a direct-access file.
moves data (and right-justifies it) to a direct
file buffer.
releases access restrictions placed on a file.
writes data to a sequential file.

Statements for debugging a program:

CONT
ERL
ERR
ERROR
ON ERROR GOTO
RESUME
TROFF
TRON

continues program execution.'
returns the line number where an error occurred.
returns an error code after an error.
simulates the specified err-or.
sets up an error-trapping routine.
terminates an error-handling routine.
turns the tracer off.
turns the tracer on.

Statements for inputting data from the keyboard or outputting data
to the video display or the line printer:

CLS
INPUT
LINE INPUT
LIST
LUST
LPRINT
LPRINT USING
PRINT
PRINT USING
PRINT @
PRINT TAB
WIDTH

WRITE

clears the display.
inputs data from the keyboard.
inputs an entire line from the keyboard.
lists a program to the display.
lists program to line printer.
prints an entire line to the display.
prints to printer using a specified format.
prints to the display.
prints to the display using a specified format.
specifies exactly where printing is to begin.
moves cursor to specified tab position.
sets the printed line width for the file which
is opened for output.
prints data at the display.

Statements for performing system functions or entering other modes
of operation:

AUTO
CALL
DELETE
EDIT
KILL
LOAD
MERGE
NAME
NEW
POKE

automatically numbers program lines.
calls an assembly-language subroutine.
erases program lines from memory.
edits program lines.
deletes a disk file.
loads a program from disk.
merges a disk program with a resident program.
renames a disk file.
erases a program from RAM.
writes a byte into a memory location.

--------- ftadle/haell---------

-72-

___--I.iTR~S~-,g"IXE~N....IQ"X,.I,;iM~BA~S,,*,I.li'.C__ TRS-SO ® __IiIoIlNL.LTRI»iQ""-LlTO~KE~YI.aW.w.lQRIMiID:lIi.S _

Numeric Functions (return a number):

A function is a built-in subroutine. It may only be used as part of
a statement.

Most MBASIC functions return numeric or string data by performing
certain built-in routines. Special print functions are used to
control the video display.

renumbers a program.
executes a program.
sa ves a program on di sk.
calls a TRS-XENIX command and returns to MBASIC.
returns to TRS-XENIX.

Functions

RENUM
RUN
SAVE
SHELL
SYSTEM

ABS
ASC
ATN
COBL
CINT

COS
CSNG
EXP
FIX
FRE

INSTR
INT

LEN
LOG
MEM
PEEK
RNO
SGN
SHELL

SIN
SQR
TAN
VAL
VARPTR

computes the absolute value.
returns the ASCII code.
computes the arctangent
converts to double precision.
returns the largest integer not greater than the
parameter.
computes the cosine.
converts to single precision
computes the natural exponential.
truncates to whole number.
returns the number of bytes in memory not being
used.
searches for a specified string.
returns the largest whole number not greater
than the argument.
returns the length of the string.
computes the natural logarithm.
returns the amount of memory.
returns a byte from a memory location.
returns the pseudorandom number.
returns the sign.
executes a TRS-XENIX command, returns the
process 1.0., and returns to MBASIC.
calculates the sine.
calculates the square root.
computes the tangent.
evaluates a string.
returns the address for a buffer.

---------lIadlo/haell---------

-73-

____I=..:.;N~TR~O~T~O~KE:.:.Y.::.:WO~R~DS~_TRS..BO ® __..:.lTR~S:.;;;,-X::.l;E.:.:.N:.:;IX~MB'-'lA~SI~C~__

String Functions (return a string value):

CHR$
DATE$
HEX$

LEFT$
MID$
OCT$
RIGHT$
SPACE$
STR$
STRING$
TIME$

returns the specified character
returns today's date.
converts a decimal value to a hexadecimal
string.
returns the left portion of a string.
returns the mid-portion of a string.
converts a decimal value to an octal string.
returns the right portion of a string.
returns a string of spaces.
converts to string type.
returns a string of characters.
returns the time.

Input/Output Functions (perform miscellaneous functions with the
keyboard, display, disk files, or "devices"):

INKEY $
INPUT$

POS

SPC
EOF
LOC
LOF

LPOS

TAB

returns the keyboard character
returns a string of characters from either the
keyboard or a sequential disk file.
returns the cursor column position on the
display.
prints spaces to the display.
checks for end-of-file.
returns the current disk file record number.
returns the disk file1s end-of-file record
number.
returns the column position at the line
printer.
spaces to a tab position.

---------lIadlolhaell---------

-74-

----------- TRS·BO ® ----------

Chapter 7/ Statements And Functions

ABS Function

ABS(number)

Computes the absolute value of number.

ABS returns the absolute value of the argument, that is, the
magnitude of the number without respect to its sign.

If number is greater than or equal to zero,
ABS(number)=number. If number is less than zero, ABS(negative
number)=number.

Exampl e

x = ABS(Y)

computes the absolute value of Y and assigns it to X.

Sanpl e Program

1(1(1 INPUT "WHAT'S THE TEMPERATURE OUTSIDE (DEGREES F)"; TEMP
11(1 IF TEMP < 0 THEN PRI NT "THAT I SII ABS (TEMP) "BELOW ZERO!

BRR! ": END
12(1 IF TEMP = 0 THEN PRI NT "ZERO DEGREES! MITE COLD! ": END
130 PRI NT TEMP "DEGREES ABOVE ZERO? BALMY! ": END

---------Itad.elllaell---------

-75-

_____K...E_YWw.;Q'-lolR~DS TRS-BO ® __....ToIolilRS.,.-;,Q,XEwN.....Ia,X_MIoIIIIBA~S,""IM.C _

ASC

ASC{string)

Function

Returns the ASCII code for the first character of string.

The value is returned as a decimal number. If string is null, an
"Illegal function call" error occurs.

Exampl e

prints 65, the ASCII code for "A".

Sampl e Program

ASC can be used to make sure that a program is recelvlng the proper
input. Suppose you've written a program that requires the user to
input hexadecimal digits ~-9, A-F. To make sure that only those
characters are input, and exclude all other characters, you can
insert the following routine.

1~~ INPUT "ENTER A HEXADECIMAL VALUE C0-9,A-F)";N$
11~ A=ASCCN$) 'get ASCII code
12~ IF A>47 AND A<58 OR A>64 AND A<71 THEN PRINT "OK.": GOTO

1~~
13~ PRINT "VALUE NOT OK." : GOTO 1~~

---------aadlo/haell---------

-76-

____T_R_S-_X_EN_I_X_M_B_AS_I_C__ TRS.BO ® K._.E.YW_O,;,,;,;RD...S _

ATN

ATN(number)

Functi on

Computes the arctangent of number in radians.

ATN returns the angl e whose tangent is number. The result is
always double precision, regardless of number's numeric type.

To convert this value to degrees, multiply ATN(number) by
57.29578.

Exampl e

x = ATN(Y/3)

computes the arctangent of Y/3 and assigns the value to X.

---------Itadlolhaell---------

-77-

____._K_.Ey...W_OR_D...S TRS-BO ® __...:.T;,;oRS..-._XE:,;,;N_IX-.....:.;,M_.BA._S.=.;IC _

AUTO

AUTO [line][,increment]

Statement

Automati cally generates a 1i ne every time you press <ENTER>.

AUTO begins numbering at line and displays the next line using
increment. The default for both values is 1~. A period (.) can be
substituted for line. In this case, MBASIC uses the current line
number.

IF AUTO generates a line number that has already been used, it
displays an asterisk after the number. To save the existing line,
press <ENTER> immediately after the asterisk. AUTO then generates
the next line number.

To turn off AUTO, press <CTRL><C> or <BREAK>. The current line is
canceled and MBASIC returns to command level.

Exampl es

AUTO

generates lines 1~, 2~, 3~, 4~ ••••

AUTO 1~~, 5~

generates lines 1~~, 15~, 2~~, 25~....

----........-----lIadlOlllaell---------

-78-

____T_R_.S-_X...EN;,;,;I;,;,;X...M_B...AS...I...C__ TRS.BO ® K._E._YW...O....RD...S _

CALL

CALL variable [paremeter list]

Statement

Transfers program control to a machine language subroutine stored at
variable.

Variable contains the address where the subroutine starts in
memory. Variable may not be an array variable.

If variable is zero, then the character string "<variable>1I is
used to search for the location to start execution. lI<variable>1I
has to match the symbolic subroutine name used when the subroutine
was either assembled or compiled. Remember that all variable names
must be in capitals. The C compiler modifies all subrountine names
by prefixing an underscore. Thus, the subroutine FOO is
represented internally as FOO. MBASIC first searches for FOD. If
this is not found, then it searches for FOO and starts execution at

FOD. The value of the address (in this-case FDD) is returned in
<variable>. Subsequent calls using the same <variable> avoids
the search phase and starts execution at the variable's value.
For this reason, all <variable's> used must be either single or
double precision. They cannot be an integer; an integer, is not
large enough to hold the 24-bit address of the 68@@@.

Example

12@ CALL MYRDUT(I,J,K)

Parameter list contains the values that are passed to the
external subroutine. Parameter list may contain only variables.

See Append ix E.

Exampl e

11@ MYRDUT = &HD0@@
12@ CALL MYRDUT(I,J,K)

transfers program control to an assembly-language routine stored at
address D~@. The values of I, J. and K are passed to the routine.

---------Itadle/haell---------

-79-

_____K_EY_W_OR_D_S TRS.BO ® T_RS...-....XE...oN-.I...X....M;,;,;BA_S_I...C _

CDBl

CDBl(number)

Converts number to double precision.

Functi on

CDBL returns a 14-digit value. This function may be useful if you
want to force an operation to be performed in double precision, even
though the operands are single precision or integers.

Sampl e Program

21~ A=454.67
22~ PRINT A; CDBL(A)
RUN
454.67454.67

Ok

---------Radlo/haell---------

-8~-

____T_R_S-_X_EN_I_X_M_B_AS_I_C__ TRS..BO ® K_E_YW_O_R_DS _

CHAIN Statement

CHAIN [MERGE] filespec [,line] [,ALL] [,DELETE
line-line]

Loads a MBASIC program named filespec, chains it to a "main"
program, and begins running it.

Line is the first line to be run in the CHAINed program. If
omitted, execution begins at the first program line of the CHAINed
program. Line is not affected by the RENUM command.

The ALL option passes every variable in the main program to the
CHAINed program. If omitted, the main program must contain a COMMON
statement to pass variables.

The MERGE option "overlays" the lines of filespec with the main
program. See MERGE to understand how MBASIC overlays (merges)
program lines.

The DELETE option deletes lines in the overlay so that you can
MERGE in a new overlay.

Exampl es

CHAIN PROG2

loads PROG2, chains it to the main program currently in memory, and
begins executing it.

CHAIN SUBPROG.BAS, ALL

loads, chains and executes SUBPROG.BAS. The values of all the
variables in the main program are passed to SUBPROG.BAS.

Sampl e Program 1

l~ REM THIS PROGRAM DEMONSTRATES CHAINING USING COMMON TO PASS
VARIABLES.

2~ DIM A$(2),B$(2)
3~ COMMON A$(),B$()
4~ A$(l)="VARIABLES IN COMMON MUST BE ASSIGNED"
5~ A$(2)="VALUES BEFORE CHAINING"

---------lIadlo/haell---------

-81-

____...K...Ey...W....,OR...O...S TRS-BO ® T...RS..-.....X_EN...I ...X...M....BA_S..I ...C _

6(3 B$(1)=II .. : B$(2)=II II

7(3 CHAI N"PROG2 II

8(3 PRINT: PRINT B$(I): PRINT: PRINT B$(2): PRINT
9f} END

Save this program using the IA I option as IPROGl". Save "filespec",
A saves the program in ASCII format. Enter the NEW command then
type:

1(3 REM THE STATEMENT "DIM A$(2),B$(2)" MAY ONLY BE EXECUTED
ONCE.

2(3 REM HENCE, IT DOES NOT APPEAR IN THIS MODULE.
3(3 COMMON A$(),B$()
4(3 PRINT: PRINT A$(I);A$(2)
5(3 B$(I)="NOTE HOW THE OPTION OF SPECIFYING A STARTING LINE

NUMBER II

6(3 B$(2)="WHEN CHAINING AVOIDS THE DIMENSION STATEMENT IN
IPROGl l

."

7(3 CHAIN IPROGl",8f}
8f} END

Save this program as IPROG2" using the IA I option. Type NEW. Load
"PROGP and run it. Your screen should display:

VARIABLES IN COMMON MUST BE ASSIGNED VALUES BEFORE
CHAINING. NOTE HOW THE OPTION OF SPECIFYING A STARTING
LINE NUMBER WHEN CHAINING AVOIDS THE DIMENSION
STATEMENT IN IPROGl".

Sampl e Program 2

Type NEW and this program:

If} REM THIS PROGRAM DEMONSTRATES CHAINING USING THE MERGE AND
ALL OPT! ONS.

2f} A$="MAINPRG"
3(3 CHAIN MERGE "0VRLAY1",If}f}f},ALL
4f} END

Save this program as "MAINPROG". Enter the NEW command then type:

If}f}(3 PRINT A$;"HAS CHAINED TO OVRLAYl."
If}I(3 A$=IOVRLAYl"
If}2f} B$=IOVRLAY2"
If}3(3 CHAIN MERGE IOVRLAY2",If}f}f},ALL,DELETE If}2(3-1f}5f}
If}4f} END

---------ltadI8/haell---------

-82-

____T_R_S_-X_E_NI_X_M_B_AS_I_C__ TRS.BO ®;,K,;,;;E.;.;YW.;.;O.;.;;RD;;.;;S _

Save this program on disk as "OVRLAY1" using the A option. Enter
the NEW command then type:

10~~ PRINT A$; II HAS CHAINED TO II;B$;II.II
1~10 END

Save this program on disk as 1I0VRLAY2" using the A option. Load
"MAINPROGII and run it.

Your screen will display:

MAINPROG HAS CHAINED TO OVRLAY1.
OVRLAYl HAS CHAINED TO OVRLAY2.

Note:

The CHAIN statement leaves the files OPEN and preserves the
current OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not preserve
variable types or user-defined functions for use by the chained
program. That is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEF FN
statements containing shared variables must be restated in the
chained program.

When using the MERGE option, user-defined functions should be
placed before any CHAIN MERGE statements in the program.
Otherwise, the user-defined functions will be undefined after
the merge is complete.

---------lIadlo/haell---------

-83-

_____K_Ey...W...OR_D_S TRS.BO ® __....;,T.-RS;;.,-...X..EN.-I...X...M;,:;BA_S;,;;;I...C _

CHR$

CHR$(code)

Function

Returns the character corresponding to an ASCII or control code.

This is the inverse of the ASC function. CHR$ is commonly used to
send a special character to the display.

Examples

PRI NT CHR$ (35)

prints the character corresponding to ASCII code 35 (the character
is I).

Sampl e Program

The following program lets you investigate the effect of printing
each of the 256(0-255) codes on the display.

l(iJ(iJ CLS
ll(iJ INPUT"TYPE IN THE CODE (0-255)";C
12(iJ PRINT CHR$(C);" JUST PRINTED CODE" C
13(iJ GOTO ll(iJ

---------"ltadlo/haell---------

-84-

____T_R_S-_X_EN_I_X_M_B_AS_I_C__ TRS.BO ® K,,;,;;E_YW_O_R,;.bS~ _

CINT

CINT(number)

Functi on

Converts number to integer representation.

CINT rounds the fractional portion of number to make it an
integer.

For example, CINT(I.5) returns 2; CINT(-1.5) returns -2. The result
is a two-byte integer.

Sampl e Program

PRINT CINT(17.65)
18

Ok

---------Iadle/haell---------

-85-

____..;";K;;";EY;",;,;W._OR,,,;,;;D,;;,,S TRS.BO ® T...RS..-...X...EN_I...X...M.-B_AS....I..C _

CLEAR

CLEAR

CLEAR ,[memory space] ,[stack space]

Statement

Clears the value of all variables, closes all open files and sets
the amount of memory space and stack space.

Memory space must be an integer. It indicates how many bytes are
to be allocated for program, variable, and stack space. The default
is the current amount allocated. 31,085 bytes are allocated upon
entry to MBASIC. Memory space may be as large as 16,777,215.
Memory space is position dependent; if omitted, the commas must
still be specified.

Stack space must also be an integer. This sets aside memory for
temporarily storing internal data and addresses during subroutine
calls. This number may be as large as 16,777,215. The default is the
current amount allocated (1,024 bytes are allocated upon entry to
MBASIC). An "0 ut of memory" error occurs if there is insufficient
stack space for program execution. The FRE and MEM functions do not
count stack space.

Note: MBASIC allocates string space dynamically. An "0 ut of string
space" error occurs only if no free memory is left for MBASIC.

Since CLEAR initializes all variables, you must use it near the
beginning of your program, before any variables have been defined
and before any OEF statements. CLEAR used with either of its two
options causes data written using LPRINT statements to be output to
the pri nter.

Exampl es:

CLEAR

clears all variables and closes all files. Memory allocations
remain unchanged.

CLEAR , 32~~

clears all variables and closes all files; allocates 32~~ bytes for
program, variables, and stack space.

---------lIadle/haell-~-------

-86-

____T_R_S-_X_EN_I_X_M_B_AS_I_C__ TRS-BO ® K_E_YW_O_RD_S _

CLEAR ,61~~~, 2~~

clears all variables and closes all files; allocates 61~~~ bytes for
program and variable space, and 2~~ bytes for stack space.

CLEAR ,,2~~~

clears all variables and closes all files; 2~~~ bytes of memory are
allocated for stack space.

---------Itadlo/haell---------

-87-

____..;.;K.;;;.EY;.;.;W.OR;.;,;D_s TRS-BO ® __..:.T;.;;RS;..-.;,;,;XE:.:.;N~IX~M:;.BA~S_IC _

CLOSE

CLOSE [buffer, ...]

Closes access to a file.

Statement

Buffer is the number of the buffer used to OPEN the file. If no
buffers are specified, all open files are closed.

This command terminates access to a file through the specified
buffers. If a buffer was not assigned in a previous OPEN
statement, then

CLOSE buffer

has no effect.

Do not remove a diskette which contains an Open file. CLOSE the file
first. This is because the last records may not have been written to
disk yet. Closing the file writes the data, if it hasn't already
been written. Also, the disk must be unmounted before it can be
removed from the drive. Please refer to the /etc/mount and
/etc/umount commands in the XENIX User's Guide.

See also OPEN and the chapter on "Disk Files".

Exampl es

CLOSE 1, 2, 8

terminates the file assignments to buffers 1,2, and 8. These
buffers can now be assigned to other files with OPEN statements.

CLOSE FIRST% + COUNT%

terminates the file assignment to the buffer specified by the sum
FIRST% + COUNT%.

---------lIadI8Ihaell---------

-88-

____T_R_S-_X_EN_I_X_M_B_AS_I_C__ TRS-BO ® K_E_YW_O_R_DS _

CLS

CLS

Clears the screen.

Statement

CLS fills the display with blanks and moves the cursor to the
upper-left corner. Alphanumeric characters and graphics blocks are
wi ped out.

Sampl e Program

54~ CLS
55~ FOR I = 1 TO 24
56~ PRINT STRING$(79,33)
57~ NEXT I
58~ GOTO 54~

----------Itadlelhaell---------

-89-

_____KE..,y....W...OR...O_s TRS-BO ® T_RS_-_XE_N:.:.:IX~M_8A_S.::.;;IC _

COMMON

COMMON variable, •••

Statement

Passes one or more variable(s) to a CHAINed program.

This statement is used in conjunction with CHAIN. COMMON may appear
anywhere in a program, but we recommend using it at the beginning.

The same variable cannot appear in more than one COMMON statement.
To specify array variables, append II()11 to the variable name. If
all variables are to be passed, use CHAIN with the ALL option and
omit the COMMON statement.

Note: Array variables used in a COMMON statement must have been
declared in a DIM statement.

Exampl e

99 DIM D()
1~~ COMMON A, B, C, D(),G$
11~ CHAIN IIPROG3 11 , 1~

line 1~~ passes variables A, B, C, D and G$ to the CHAIN command in
1i ne 1l~.

Note: The CLEAR command clears COMMON variables.

See also CHAIN and CLEAR.

----------Itadlolhaell---------

-911-

____T_R_S-_X_EN_I_X_M_B_AS_I_C__ TRS-SO ® -...;.K;,;,EY,;.;,W;,.;.O,;.;,;RD;,,;;S;.

CONT

CONT

Resumes program execution.

Statement

You may only use CONT if the program was stopped by the <BREAK> key,
<CTRL><C>, a STOP or an END statement in the program.

CONT is primarily a debugging tool. During a break or stop in
execution, you may examine variable values (using PRINT) or change
these values using immediate lines or commands. Then type CONT
<ENTER> and execution continues with the current variable values.

You cannot use CONT after EDITing your program lines or otherwise
changing your program. CONT is also invalid after execution has
ended normally.

Exampl e

1~ INPUT A, B, C
2~ K=A"'24~5.3

3~ L=B"'3/.26
41,1 STOP
50 M=C*4~*K+l~~: PRINT M

Run thi s program.
You will be prompted with

?

Type: 1, 2, 3

The program will halt execution and then you can type any immediate
command that you wish.

For example:

PRINT L

displays 30.76923~76923. You can also change the value of A, B, or
C.

---------Itadlolllaell---------

-91-

_____KE;;,,;y.....W..;;.,OR_D,.;;.S TRS-BO ® __....T_RS...-_XE...N_IX........M...BA...S_IC _

For example:

C=4

changes the value of C in the program. Type:

CONT

Your screen will display 259.99999996152

See also STOP.

---------Itadlolhaell---------

-92-

____T_R_S-_X_EN_I_X_M_B_AS_I_C__ TRS-BO ® K_EY_W_O_RD_S _

cos

cos (number)

Function

Computes the cosine of number.

COS returns the cosine of number in radians. The angle must be
given in radians. When number is in degrees, use COS(number *
.01745329) •

The result is always double precision.

Exampl es

y = COS(X * .01745329)

returns the cosine of X, if X is an angle in degrees.

PRINT COS(5.8) - COS(85 * .42)

prints the arithmetic (not trigonometric) difference of the two
cosines.

---------lIadlo/haell---------

-93-

\

_____KE...,y..W...,OR...D_S TRS-BO ® T...RS...-...XE...N_IX........MB...A_.S_IC _

CSNG

CSNG (n umber)

Converts number to single precision.

Exampl e

PRINT CSNG(.14538855~9)

Functi on

prints .145389. Note that only six significant digits are printed
and the sixth digit (9) is rounded.

Sample Program

28~ V# = 876.2345678#
29~ PRINT VI; CSNG(V#)
RUN
876.2345678 876.235

---------ltadI8Ihaell---------

-94-

____T_R_S-_X_E_NI_X_M_B_AS_I_C__ TRS.BO ® K_E_YW_O_R_DS _

CYD, CYI, CYS

CVD(eight-byte string)
CVS(four-byte strin~)
CVI(two-byte strlng

Functions

Convert string values to numeric values.

These functions let you restore data to numeric form after it is
read from disk. Typically, the data has been read by a GET
statement, and is stored in a direct-access file buffer.

CVD converts an eight-byte string to a double-precision number.
CVS converts a four-byte string to a single-precision number. CVI
converts a two-byte string to an integer.

CVD, CVI, and CVS are the inverses of MKD$, MKI$, and MKS$,
respectively.

Exampl es

Suppose the name GROSSPAY$ references an eight-byte field in a
direct-access file bUffer, and after GETing a record, GROSSPAY$
contains an MKD$ representation of the number 13123.38. Then the
statement

A# = CVD(GROSSPAY$)

assigns the numeric value 13123.38 to the double-precision variable
A#.

Sampl e Program

142~ OPEN "R ", 1, IlTEST. DArn
1430 FIELD 1, 2 AS 11$, 4 AS 12$, 8 AS 13$
144~ GET 1
1450 PRINT CVI(I1$), CVS(I2$), CVD(I3$)
146~ CLOSE

This program opens a file named TEST.DAT which is assumed to have
been previously created. (For the program which creates the file,
see the section on MKD$, MKI$, and MKS$). CVI, CVS, and CVD are used
to convert string data back to numeric form.

---------Itadle/haell---------

-95-

_____K...EY;.;,,;W...OR_D...S TRS.BO ® T...,RS...-_x"..EN...I ...X....M_BA_S...I ...C _

DATA

DATA constant, •••

Statement

Stores numeric and string constants to be accessed by a READ
statement.

This statement may contain as many constants (separated by commas)
as will fit on a line. Each will be read sequentially, starting with
the first constant in the first DATA statement, and ending with the
last item in the last DATA statement.

Numeric expressions are not allowed in a DATA list. If your string
values include leading blanks, colons, or commas, you must enclose
these values in double quotation marks.

DATA statements may appear anywhere it is convenient in a program.
The data types in a DATA statement must match up with the variable
types in the corresponding READ statement, otherwise a syntax error
in line # occurs.

Exampl es

134~ DATA NEW YORK, CHICAGO, LOS ANGELES, PHILADELPHIA, DETROIT

stores five string data items. Note that quote marks aren1t needed,
since the strings contain no delimiters and the leading blanks are
not si gnifi cant.

135~ DATA 2.72, 3.14159, 0.0174533, 57.29578

stores four numeric data items.

136~ DATA "SMITH, T.H.", 38, "THORN, J.R.", 41

stores both types of constants. Quote marks are required around the
first and third items.

Sampl e Program

LIST
1~ PRINT II CITY ", "STATE", "ZIpl
2~ READ C$,S$,Z
3~ DATA DENVER, COLORADO, 8~211

----------ltadI8/haell---------

-96-

____T_R_S-_X_EN_I_X_M_BA_S_I_C__ TRS.BO ® K_E;.;.YW,;,;.O;.;.R_DS;.... _

4@ PRINT C$,S$,Z

This program READS string and numeric data from the DATA statement
in line 3@, and displays on your screen:

CITY
DENVER

STATE ZI P
COLORADO 8@211

---------lIadlelhaell---------

-97-

_____K_EY_W_OR_D_S TRS-BO ® T_RS_-.;,;,X;;,;,EN,;,;;I_X_M~BA~S;,;;,I_C _

DATE$

DATE$

Functi on

Returns the current date in the specified string variable.

The operator sets the date when TRS-XENIX is started up.

During a program, if you request the date, MBASIC assigns it to the
specified string variable. For example:

A$ = DATE$

assigns the date string to A$. If you print A$:

PRINT A$

it is displayed in this fashion:

03-12-1983

which means March 12, 1983.

Sampl e Program

1090 PRINT IIInventory Check: 1I

1100 IF DATE$ = 01-31-1980 THEN PRINT "Today is the last day of
January 1980. Time to perform monthly inventory.": END

1110 A$ = LEFT$ (DATE$,5): B$ = RIGHT$ (A$,2)
1120 B = VAL(B$)
1130 PRINT 31-B "days until inventory time"

---------lIadlo/haell---------

-98-

____T_R_S-_X_E_NI_X_M_B_AS_I_C__ TRS-BO ® K_E_YW_O_R_DS _

DEFDBL/INT/SNG/STR

DEFDBL letter, •••
DEFINT letter, •••
DEFSNG letter, •••
DEFSTR letter, •••

Statement

Defines any variables beginning with letter(s) as: (DBL) double
precision, (INT) integer, (SNG) single precision, or (STR) string.

Note: A type declaration character always takes precedence over a
DEF statement.

Exampl es

1~ DEFDBL L-P

classifies all variables beginning with the letters L through P as
double-precision variables. Their values include 14 digits of
precision, and all 14 are printed out.

1~ DEFSTR A

classifies all variables beginning with the letter A as string
variables.

1~ DEFINT I-N, W,Z

classifies all variables beginning with the letters I through N
along with Wand Z as integer variables. Their values are in the
range -32768 to 32767.

1~ DEFSNG I, Q-T

classifies all variables beginning with the letters I and Q through
T as single-precision variables. Their values include seven digits
of precision, and all seven are printed out.

---------lIadlo/haell---------

-99-

____...KloMf...yawOllWRololIIO...S TRS-BO ® __...ITI.QB.S-:J;X...E.IIoNIIol:X~M8Y.CAwS~ICr._. _

OfF FN Statement

OfF FN function name [(argument, •••)] =function
definition

Defines function name according to your function definition.

Function name must be a valid variable name. The type of variable
used determines the type of value the function will return. For
example, if you use a single-precision variable, the function will
always return single-precision values.

Argument represents those variables in function definition that
are to be replaced when the function is called. If you enter several
variables, separate them by commas.

Function definition is an expression that performs the operation
of the function. A variable used in a function definition mayor may
not appear in argument. If it does, MBASIC uses the argument's to
perform the function. Otherwise, it uses the current value of the
vari able.

Once you define and name a function (by using this statement), you
can call it and MBASIC performs the associated operations.

Exampl es

DEF FNR=RND(9~)+9

defines a function FNR to return a random value between 1~ and 99.
Notice that the function can be defined with no arguments.

21~ OEF FNW#(A#,B#)=(A#-B#)*(A#-B#)
28~ T=FNW#(I#,J#)

defines function FNW# in line 21~. Line 28~ calls that function and
replaces parameters A# and B# with parameters I# and J#. (We assume
that I# and J# were assigned values elsewhere in the program).

Note: Using a variable as an parameter in a DEF FN statement has no
effect on the value of that variable. You may use that variable in
another part of the program without interference from DEF FN.

---------ltadI8/haell---------

-l~(I-

____T_R_S-_X_EN_I_X_M_BA_S_I_C__ TRS-BO ® -K-E-YW-O-R-DS-----

DELETE

DELETE line! - line2

Statement

Deletes from linel through line2 of a program in memory.

A period (".") can be substituted for either linel or line2 to
indicate the current line number.

Exampl es

DELETE 7rJ

deletes line 7rJ from memory. If there is no line 7rJ, an error will
occur.

DELETE 5rJ-llrJ

deletes lines 5rJ through llrJ inclusive.

DELETE -4rJ

deletes all program lines up to and including line 4rJ.

DELETE -

deletes all program lines up to and including the line that has just
been entered or edited.

DELETE •

deletes the program line that has just been entered or edited.

---------Itadle/haell---------

-uu-

_____K....EY_W....,OR...D...S TRS.BO ® T...RS..-....X...EN.-I...X...M...B...AS...I-.C _

DIM Statement

DIM array (dimension(s», array (dimension(s», •••

Sets aside storage for arrays with the dimensions you specify.

This statement is useful for structured data processing.

Arrays may be of any type: string, integer, single precision or
double precision, depending on the type of variable used to name the
array. If no type is specified, the array is classified as single
precision.

When you create the array, MBASIC reserves space in memory for each
element of the array. All elements in a newly- created array are set
to zero (numeric arrays) or the null string (string arrays).

Note: The lowest element in a dimension is always zero, unless
OPTION BASE 1 has been used. See OPTION BASE for more information.

Arrays can be created implicitly, without explicit DIM statements.
Simply refer to the desired array in a MBASIC statement, e.g.,

A(5) = 3~(J

creates array A and assigns element A(5) the value of 3~(J. Each
dimension of an implicitly-defined array is 11 elements deep,
subscripts ~-I(J.

Examples

DIM AR (l(J~)

sets up a one-dimensional array AR(), containing l(Jl elements:
AR(0), AR(I), AR(2), ••• , AR(98), AR(99), and AR(l(J(J).

Note: The array AR() is completely independent of the variables AR.

DIM L1%(8,25)

sets up a two-dimensional array Ll%(,), containing 9 x 26 integer
elements, Ll%(0,0), Ll%(1,0), Ll%(2,0), ••• ,Ll%(8,0), Ll%(0,1),
Ll%(1,1), ••• ,Ll%(8,1), ••• ,Ll%(0,25), Ll%(1,25), ••• , Ll%(8,25).

---------ltadI8/haell---------

-1(it2-

____T_R_S-...X_EN_I_X_M_B_AS_I_C__ TRS.BO ® K_E_YW_O_RD_S _

Two-dimensional arrays like AR(,) can be thought of as a table in
which the first subscript specifies a row position, and the second
subscript specifies a column position:

@,0
1,0

.
7,0
8,0

@,1
1,1

7,1
8,1

@,2
1,2

7,2
8,2

@,3
1,3

7,3
8,3

@,23
1,23

7,23
8,23

@,24
1,24

7,24
8,24

@,25
1,25

7,25
8,25

DIM 81(2,5,8), CR(2,5,8), LY$(5@,2)

sets up three arrays:
81(,,) and CR (, ,) are three-dimensional, each containing 3*6*9
elements.
LY(,) is two-dimensional, containing 51*3 string elements.

---------Itadle/haell---------

-lftJ3-

_____K_EY_W_OR_D_S TRS.BO ® TR_S_-_XE_N_IX_MB_A_S_IC _

EDIT

EDIT line

Statement

Enters the edit mode so that you can edit line.

See the chapter on the "Edit Mode" for more information.

Exampl es

EDIT 1~~

enters edit mode at line 1~~.

EDIT •

enters edit mode at current line.

----------Itadlo/haell---------

-104-

____T_R_S-_X_EN_I_X_M_B_AS_I_C__ TRS-BO ® K_EY_W_O_RD_S _

END

END

Statement

Ends execution of a program.

This statement may be placed anywhere in the program. It forces
execution to end at some point other than the last sequential line.
When the END statement is encountered it spools the LPRINT buffer to
the line printer.

An END statement at the end of a program is optional.

Sampl e Program

4~ INPUT Sl, S2
5~ GOSUB 1~~

55 PRINT H
6~ END
1~~ H=SQR(Sl*Sl + S2*S2)
11~ RETURN

line 6~ prevents program control from "crashing" into the
subroutine. Line 1~~ may only be accessed by a branching statement,
such as GOSUB in line 5~.

---------Itadle/haell---------

-1(15-

_____KE~Y.;,;,W~OR,;,;,D_S TRS-BO ® TR_S~-..XE_N~IX-..:.:.MB_A=.S=-IC~__

EOF

EOF(buffer)

Detects the end of a file.

Function

This function checks to see whether all characters up to the
end-of-file marker have been accessed, so you can avoid "Input past
end" errors during sequential input.

EOF(buffer) returns @(false) when the EOF record has not been
read yet, and -1 (true) when it has been read. The buffer number
must access an OPEN file.

This function is valid for any file which is opened for input. A
file opened to "KYBD: II is at its end when CTL-D is pressed.

Sampl e Program

The following sequence of lines reads numeric data from DATA. TXT
into the array A(). When the last data character in the file is
read, the EOF test in line 15@@ "passes", so the program branches
out of the disk access loop.

147~ DIM A(I@~) 'ASSUMING THIS IS A SAFE VALUE
148@ OPEN "1", 1, "DATA.TXT"
149~ 1% = @
15@@ IF EOF(I) THEN GOTO 154@
151~ INPUT#I, A(I%)
152~ 1% = 1% + 1
153@ GOTO 15@~

154@ REM PROG. CONT. HERE AFTER DISK INPUT

---------ltadI8/haell---------

-106-

____T_R_S-_X_EN_I_X_M_B_AS_I_C__ TRS.BO ® K_E_YW_O_R_DS _

ERASE

ERASE array, ...

Statement

Erases one or more arrays from a program.

This lets you to either redimension arrays, or use their previously
allocated space in memory for other purposes.

If one of the parameters of ERASE is a variable name which is not
used in the program, an "Illegal Function Call" occurs.

Exampl e

44~ DIM C(l~), F(l~)

45~ ERASE C,F
46~ DIM F(99)

line 45~ erases arrays C and F. Line 46~ redimensions array F.

---------t1adlo/haell---------

-l{l7-

_____K..Ey.W._OR_D.;.S TRS-BO ® __....:.T;,;,:RS~-,;,;,;XE-.:.;N~IX;,;"",;,.;,MB:;:.A;,:,S,;,;:IC~__

ERL

ERL

Statement

Returns the line number in which the most recent error occurred.

This function is primarily used inside an error-handling routine. If
no error has occurred when ERL is called, line number 0 is returned.
Otherwise, ERL returns the line number in which the error occurred.
If the error occurred in the command mode, 65535 (the largest number
representable in two bytes) is returned.

Exampl es

PRINT ERL

prints the line number of the error.

E = ERL

stores the error's line number for future use.

---------lIadlolhaell---------

-1~8-

____T_R_S-_X_EN_I_X_M_B_AS_I_C__ TRS.BO ®;.K,;,;;;,EY~W;.;;,O.;.;,;RD;;.;;S _

ERR

ERR

Statement

Returns the error code (if an error has occurred).

_ERR is only meaningful inside an error-handling routine accessed by
ON ERROR GOTO. See Append ix A for MBASI CiS Error Codes.

Example

IF ERR = 7 THEN10~~ ELSE 2~~~

branches the program to 1i ne 10~~ if the error is an "Out of Memory"
error (code 7); if it is any other error, control goes instead to
line 2~~0.

f e r(~ ()..) (1/ pv' I n+- e ((or '-. d

---------lIadlo/haell---------

-lli9-

_____K_EY_W_OR_D_s TRS-BO ® TR_S_-_XE_N_IX~M8_A_S_IC _

ERROR

ERROR code

Statement

Simulates a specified error during program execution.

Code is an integer expression in the range @to 255 specifying one
of MBASIC·s error codes.

This statement is mainly used for testing an ON ERROR GOTO routine.
When the computer encounters an ERROR code statement, it proceeds
as if the error corresponding to that code had occurred. (Refer to
the Appendices for a listing of error codes and their meanings).

Exampl e

ERROR 1

a "Next Without For" error (code 1) "occurs" when MBASIC reaches
this line.

Sampl e Program

1@ ON ERROR GOTO 7@
2~ READ A
3~ PRINT A
4~ GOTO 2@
5@ PRINT "DATA HAS BEEN READ IN"
6~ END
7~ IF ERR = 4 THEN RESUME 5~

8~ ON ERROR GOTO @
9~ DATA 4, -2, @, 5, 9, 2, 2, 31, 7, 13, 1

This program "traps" the Out of Data error, since 4 is the code for
that error.

----------Itadlolllaell---------

-11(1-

____T_R_S-_X_EN_I_X_M_B_AS_I_C__ TRS..BO ® K_E_YW_O_RD_S _

EXP

EXP(number)

Functi on

Calculates the natural exponential of number.

Returns e (base of natural logarithms) to the power of number.
This is the inverse of the LOG function; therefore, number =
LOG(EXP(number». The number you supply must be less than or
equal to 87.3365.

The result is always double precision.

Exampl e

PRINT EXP(-2)

prints the exponential value .13533528323662.

Sampl e Program

31~ INPUT IINUMBER II; N
32~ PRINT liE RAISED TO THE N POWER 15 11 EXP(N)

---------Itadle/haell---------

-111-

_____K_EY_W_OR_D_s TRS.BO ® __..;.T;,;,;;RS;..-.;.;.;XE;;.;.;N~IX;;..;.;.MB;;;.A,;,;;,S.;.;:IC~__

FIELD Statement

FIELD buffer, length AS field name, •••

Divides a direct-access buffer into one or more fields. Each field
is identified by field name and is the length you specify.

Field name must be a string variable.

This divides a direct file buffer so that you can send data from
memory to disk and disk to memory. FIELD must be run prior to GET or
PUT.

Before "fielding" a bUffer, use an OPEN statement to assign that
buffer to a particular disk file. (The random-access mode, i.e.,
OPEN "R", ••• must be used). The sum of all field lengths can be less
than or equal the record length assigned when the file was OPENed.

You may use the FIELD statement any number of times to "re-fi el d" a
file buffer. "Fielding" a buffer does not clear the buffer's
contents; only the means of accessing it. Field definitions are
ignored after a file is closed~

See also the chapter on "Disk Files", OPEN, CLOSE, PUT, GET, LSET,
and RSET.

Exampl e

FIELD 3, 128 AS A$, 128 AS B$

tells MBASIC to assign two 128-byte fields to the variables A$ and
B$. If you now print A$ or B$, you will see the contents of the
field. Of course, this value would be meaningless unless you have
previously used GET to read a 256-byte record from disk.

Note 1: All data--both strings and numbers--must be placed into the
buffer in string form. There are three pairs of functions (MKI$/CVI,
MKS$/CVS, and MKD$/CVD) for converting numbers to strings and
strings to numbers.

FIELD 3, 16 AS NM$, 25 AS AD$, 1~ AS CY$, 2 AS ST$,7 AS ZP$

assigns the first 16 bytes of buffer 3 to field NM$; the next 25
bytes to AD$; the next 1~ to CY$; the next 2 to ST$; and the next 7
to ZP$.

---------ltadI8/haell---------

-112-

____T_R_S_-X_E_NI_X_M_B_AS_I_C__ TRS..BO ® K_E..Y_WO,;.,R_DS,;.... _

Note 2: String variables assigned in the FIELD statement should
only be used with LSET and RESET. DO NOT redefine string
variables used in FIELD statements within your program.

---------ltadI8/haell---------

-113-

_____K_.EY;.;,;W.;,;OR;.;,;;;D..;,S TRS-BO ® __...;T.;,;RS;;,.-,.;,;X,;:,;EN,;,:I.,;,;,X.,;,M,;;;;8;,,;;AS;,:I.,;;.C _

FIX

FIX (number)

Functi on

Returns the truncated integer of number.

All digits to the right of the decimal point are simply chopped off,
so the resultant value is a whole number.

The result is the same precision as the argument (except for the
fractional portion).

Exampl es

PRINT FIX (2.6)

prints 2.

PRINT FIX(-2.6)

prints -2.

---------ftadlo/haell---------

-114-

____T_R_S-_X_E_NI_X_M_B_AS_I_C__ TRS.BO ® K_EY_W_O_RD_S _

FOR/NEXT Statement

FOR variable = initial value TO final value [STEP
increment]

NEXT [variable]

Establishes a program loop.

A loop allows for a series of program statements to be executed over
and over a specified number of times.

MBASIC executes the program lines following the FOR statement until
it encounters a NEXT. At this point, it increases variable by STEP
increment. If the value of variable is less than or equal to
final value, MBASIC branches back to the line after FOR, and
repeats the process. If variable is greater than final value, it
completes the loop and continues with the statement after NEXT.

If increment has a negative value, then the final value of
variable is actually lower than the initial value.
MBASIC always sets the final value for the loop variable before
setting the initial value.

Note: MBASIC skips the body of the loop if initial value times the
sign of STEP increment exceeds final value times the sign of
STEP increment.

Exampl e

20 FOR H=l TO 2 STEP -2
3~ PRINT H
40 NEXT H

the initial value of H times the sign of STEP increment is greater
than the final value of H times the sign of STEP increment,
therefore MBASI C sk ips the body of the loop. (The si gn of STEP
increment is negative in this case).

Sampl e Program

820 1=5
83~ FOR I = 1 TO I + 5
84~ PRINT I;
85~ NEXT
RUN

---------lIadI8/haell---------

-115-

_____K_EY_W_OR_D_S TRS-BO ® T_RS...-";,,,,;oXE..N_IX-.......,;.M_.;,BA._S_IC _

this loop is executed ten times. It produces the following output:

1 2 3 4 5 6 7 8 9 1~

Nes ted Loops

FOR/NEXT loops may be "nested". That is, a FOR .•• NEXT loop may be
placed within the context of another FOR ••• NEXT loop.
The NEXT statement for the inside loop must appear before the NEXT
for the outside loop. If nested loops have the same end point, a
single NEXT statement may be used for all of them.

Sampl e Program

88~ FOR I = 1 TO 3
89~ PRINT "OUTER LOOP"
9~~ FOR J = 1 TO 2
91~ PRINT "INNER LOOP"
92~ NEXT J
93~ NEXT I

This program performs three "outer loops" and within each, two
"inner loops".

NEXT can be used to close nested loops by listing the
counter-variables. For example, delete line 92~ and change 93~ to:

NEXT J, I

Note: In nested loops, if the variable(s) in the NEXT statement is
omitted, the NEXT statement matches the most recent FOR statement.

---------Itadle/haell---------

-116-

____T_R_S-_X_EN_I_X_M_B_AS_I_C__ TRS..BO ® K_E_YW_O_R_DS _

FRE

FRE(dummy number)

Returns the amount of free memory space.

FRE returns the amount of space in bytes.

Exampl es

PRINT FRE([3)

Functi on

prints the amount of free memory. The memory that the program stack
occupies is included in this total.

----------ltadI8/haell---------

-117-

_____K_EY_W_OR...D...S TRS-BO ® T,;,;,;RS...-._XE..N;.;,;IX;,;""",;,,;M,;;,;,8A,;,;;S,;.;IC _

GET

GET buffer [,record]

Statement

Gets a record from a direct disk file and places it in a buffer.

Before using GET, you must OPEN the file and assign it a buffer.

When MBASIC encounters GET, it reads the record number from the file
and places it into the buffer. The actual number of bytes read
equals the record length set when the file is OPENed.

If record is omitted, MBASIC gets the next record (after the last
GET) and reads it into the buffer.

Exampl es

GET 1

gets the next record into buffer 1.

GET 1, 25

gets record 25 into buffer 1.

---------lIadlo/haell---------

-118-

____T_R_S-_X_EN_I_X_M_B_AS_I_C__ TRS.BO ® K_E_YW_O_RD_S _

GOSUB

GOSUB 1ine

Statement

Goes to a subroutine, beginning at line.

You can call a subroutine as many times as you want. When the
computer encounters RETURN in the subroutine, it returns control to
the statement which follows GOSUB.

GOSUB is similar to GOTO in that it may be preceded by a test
statement. Every subroutine must end with a RETURN.

Exampl e

GOSUB 1~~~

branches control to the subroutine at 1~~~.

Sampl e Program

26~ GOSUB 28~

27~ PRINT "BACK FROM SUBROUTINE": END
28~ PRI NT "EXECUTI NG THE SUBROUTI NE"
29~ RETURN

transfers control from line 26~ to the subroutine beginning at line
28~. Line 29~ instructs the computer to return to the statement
immediately following GOSUB.

---------ltadI8/haell---------

-119-

____..K..EY_W..OR_D_S TRS.BO ® T_RS...-_X_EN...I_X...M_BA_S_I_C _

GOTO

6OTO line

Statement

Goes to the specified line.

When used alone, GOTO line results in an unconditional (automatic)
branch. However, test statements may precede the GOTO to effect a
conditional branch.

You can use GOTO in the command mode as an alternative to RUN. This
lets you pass values assigned in the command mode to variables in
the execute mode.

Exampl e

GOTO 1(}(}

transfers control automatically to line 1(}(}.

Sample Program

1(} READ R
2(} PRINT IIR=II;R
3(} A=3.14*R~2

4li' PRINT IIAREA =II;A
5(} GOTO 1(}
6li' DATA 5,7,12
RUN

line 1(} reads each of the data items in line 6li'; line 5li' returns
program control to line 1(}. This enables MBASIC to calculate the
area for each of the data items.

---------Itadlo/haell---------

-120-

____...TR....s...-OAX....EN...II.IIX~MRWoIAa..S....I ...C__ TRS-BO ®K:loI;E~ylllw0I.llR....n~s _

HEX$ Functi on

HEX${number)

Calculates the hexadecimal value of number.

HEX$ returns a string which represents the hexadecimal value of the
argument. The value returned is like any other string: it cannot be
used in a numeric expression.That is, you cannot add hex strings.
You can concatenate them, though.

Examples

PRINT HEX$(3~), HEX$(5~), HEX$(9~)

pri nts FF.

prints the following strings:

I~ Y$ = HEX$(15) + HEX$(15)
2~ PRINT Y$

5A32

Y$ = HEX$(X/16)

IE

Y$ is the hexadecimal string representing the integer quotient X/16.

---------lIadI8/haell---------

-121-

_____K...EY;.;,;W.._OR_D...s TRS.BO ® __..:.T:;.::RS~-~XE::.:.:N~IX;,:""",,:,,:MB~A~S.:.;IC~__

IF ••• THEN••• ELSE Statement

IF expression THEN statement(s) or line [ELSE
statement(s)] or [line]

Tests a conditional expression and makes a decision regarding
program flow.

If expression is true, control proceeds to the THEN statement or
line. If not, control jumps to the matching ELSE statement,
line, or down to the next program line.

Exampl es

IF X > 127 THEN PRINT "OUT OF RANGE": END

passes control to PRINT, then to END if X is greater than 127. If X
is not greater than 127, control jumps down to the next line in the
program, skipping the PRINT and END statements.

If A < B PRINT "A < B" ELSE PRINT "B < A"

tests the first expression, if true, prints "A < B". Otherwise, the
program jumps to the ELSE statement and pri nts "B < A".

IF X > 0 AND Y <> 0 THEN Y = X + 180

assigns the value X+ 180 to Y if both expressions are true.
Otherwise, control passes directly to the next program line,
skipping the THEN clause.

IF AS = "YES" THEN 210 ELSE IF AS = "NO" THEN 400 ELSE 370

branches to line 210 if AS is YES. If not, the program skips over to
the first ELSE, which introduces a new test. If AS is NO, then the
program branches to line 400. If AS is any value besides NO or YES,
the program branches to line 370.

IF THEN ELSE statements may be nested. However, you must take care
to match up the IFs and ELSEs. (If the statement does not contain
the same number of ELSE's and IF's, each ELSE is matched with the
closest unmatched IF.)

---------lIadlo/haell---------

-122-

___....T.RoJ.lS-..x~E..NT...xloo.lllOMRIMAwS....Tc TRS-BO ®KIoIiF_YolllWOWlR"'D~S _

Sample Program

1~4~ INPUT IIENTER TWO NUMBERS II ; A, B
1~5~ IF A > B THEN PRINT IIA > BII; ELSE IF A < B THEN PRINT

IIA < BII; ELSE PRINT "A = B"

This program prints the relationship between the two numbers
entered.

---------Itadlolhaell---------

-123-

____....K~E....y.a.WQX.lR,»jD~S TRS-BO ® __....ITI,gBIIII,;S-;;,,:X....E.u.NI"'X~MBr.u;AMlS~IC..... _

INKEY$

INKEY$

Functi on

Returns a keyboard character.

Returns a one-character string from the keyboard without having to
press <ENTER>. If no key is pressed, a null string (length zero) is
returned. Characters typed to INKEY$ are not echoed back to the
display.

INKEY$ is invariably put inside some sort of loop. Otherwise,
program execution would pass through the line containing INKEY$
before a key could be pressed.

Exampl e

A$ = INKEY$

Sampl e Program

1(1 A$ = INKEY $
2(1 IF A$ = "" THEN 1(1

this causes the program to wait for a key to be pressed.

---------Itadle/haell---------

-124-

-,

____..,ITI.IlRilMSO=-AjXEI.IN....I-.aX~M.&oIiRA~S.i.lII.IoC TRS-BO ®KloIiE...Y..wyoRlIoIp...Silo- _

INPUT Statement

INPUT [;] ["prompt string";] variable1, variable2, •••

Inputs data from the keyboard into one or more variables.

When MBASIC encounters this statement, it stops execution and
displays a question mark. This means that the program is waiting for
you to type data.

INPUT may specify a list of string or numeric variables, indicating
string or numeric values to be input. For instance, INPUT X$, Xl,
Z$, Zl calls for you to input a string literal, a number, another
string literal, and another number, in that order.

The number of data items you supply must be the same as the number
of variables specified. You must separate data items by commas.

Responding to INPUT with too many or too few items, or with the
wrong type of val ue, causes MBASIC to print the message II?Redo from
start ll

• No values are assigned until you provide an acceptable
response.

If a prompt string is included, MBASIC prints it before the
question mark. This helps the person inputting the data to enter it
correctly. The prompt string must immediately follow INPUT. It
must be enclosed in quotes and followed by a semicolon.

If INPUT is immediately followed by a semicolon, any carriage
returns pressed as part of the response are not echoed.

You can enter any valid constant. 2, 1~5, 1, 3#, etc. are all valid
constants.

Examp1es

INPUT Y%

when MBASIC reaches this line, you must type a number and press
<ENTER> before the program will continue.

INPUT SENTENCE$

when MBASIC reaches this line, you must type in a string. The string
wouldn1t have to be enclosed in quotation marks unless it contained
a comma, a colon, or a leading blank.

---------ltadI8/haell---------

-125-

____....:K~Eo:.:YW~O~R~DS~ TRS-BO ® __...T~RSiI,;;;-;Q,jXEiIIIlN.....I ...X .I:lMIWIBA:IIISI.IIICIII- _

INPUT "ENTER YOUR NAME AND AGE (NAME, AGE)II; N$, A

would print a message on the screen which would help the person at
the keyboard to enter the right sort of data.

Sampl e Program

5~ INPUT "HOW MUCH DO YOU WEIGH"; X
60 PRINT liON MARS YOU WOULD WEIGH ABOUT" CINT(X * .38) "POUNDS"

---------ltadlOlhaell---------

-.126-

_____TIoIlR~SIilii-AlXF...N.wI...X~M...RA;a"S...IIoIoC TRS.BO ®IIKioo&;F....y..w...oRIIoI°...S..... _

INPUTI

INPUTI buffer, variable, •••

Statement

.-.

Inputs data from a sequential disk file and stores it in a program
variable.

Buffer is the number used when the file was OPENed for input.

Variable contains the variable name(s) that will be assigned to
the item(s) in the file.

With INPUT#, data is input sequentially. That is, when the file is
opened, a pointer is set to the beginning of the file. The pointer
advances each time data is input. To start reading from the
beginning of the file again, you must close the file buffer and
re-open it.

INPUT# doesn1t care how the data was placed on the disk-- whether a
single PRINT# statement put it there, or whether it required ten
different PRINT# statements. What matters to INPUT# is the position
of the terminating characters and the EOF marker •

When inputting data into a variable, MBASIC ignores leading blanks.
When the first non-blank character is encountered, MBASIC assumes it
has encountered the beginning of the data item.

The data item ends when a terminating character is encountered or
when a terminating condition occurs. The terminating characters
vary, depending on whether MBASIC is inputting to a numeric or
string variable.

Numeric values: MBASIC begins input at the first character which is
neither a space or a carriage return. It ends input when it
encounters a space, carriage return, or a comma.

String values: MBASIC begins input with the first character which is
neither a space nor carriage return. It ends input when it
encounters a carriage return or comma. One exception to this rule:
If the first character is a quotation mark, the string will consist
of all characters between the first quotation mark and the second.
Thus, a quoted string may not contain a quotation mark as a
character.

If the end-of-file is reached when a numeric or string item is being
INPUT, the INPUT is terminated

---------Itadlo/haell---------

-127-

____......K....F....yWIlol0MRWIID:IIIoS TRS-BO ® T.I.IRiMiS...- ...Xf...NI.II..X...."Ii&IRIM;AwS...IC...... _

Exampl es

INPUT#1, A,B

sequentially inputs two numeric data items from disk and places them
in A and B. Buffer #1 is used.

INPUT#4, A$, B$, C$

sequentially inputs three string data items from disk and places
them in A$, B$, and C$. Buffer #4 is used.

---------lIadI8/haell---------

-128-

____..a.TaBSooli-...Xw.FoIIN...TX...M;y;RIoQA,.SI....C.....__ TRS.BO ®IlIoK...Ey....w....°oUlRloI.In~s _

INPUT$

INPUT$(number1 [,number2])

Functi on

Inputs a string of characters from either the keyboard or a
sequential file.

Numberl is the number of characters to be input. It must be a
value in the range 1 to 32767. Number2 is a buffer which accesses
a sequential input file.

INPUT$(numberl) inputs a string of characters from the keyboard.
When the program reaches this line, it stops until you (or any
operand) type numberl number of characters. (You don It need to
press <ENTER> to signify end-of-line). The character(s) you type
are not displayed on the screen. Any character, except <BREAK>, is
accepted for input. No characters are echoed.

INPUT$(numberl,number2) inputs the string from the disk file
associated with buffer number.

Examples

A$ = INPUT$(5)

assigns a string of five keyboard characters to A$. Program
execution is halted until the operator types five characters.

A$ = INPUT$(11,3)

assigns a string of 11 characters to A$. The characters are read
from the disk file associated with buffer 3.

Sampl e Programs

This program shows how you could use INPUT$ to have an operator
input their telephone number. By using INPUT$, the operator can type
in the number without anyone seeing it on the video display.

11@ LINE INPUT "TYPE IN YOUR AREA CODE "; F$
12@ PRINT "TYPE IN YOUR PHONE NUMBER--###-####"
13@ P$ = INPUT$(8)
14@ F$ = "(" + F$ + ")" + P$
15@ PRINT F$

---------ltadI8Ihaell---------

-129-

____~K....EYwWIolllQ~RQIIIolS"__ TRS.BO ® T.LIR_SIo.=-,AjXE~NIoII..AX~M~8i1l:AwSo&.:ICw... _

In the program below, line 1~~ opens a sequential input file (which
we assume has been previously created). Line 2@@ retrieves a string
of 7@ characters from the file and stores them in T$. Line 3@@
closes the file.

1~@ OPEN "1", 2, "TEST.DArn
2~~ T$ = INPUT$(7@,2)
3@~ CLOSE

---------lIadlelhaell---------

-130-

_____TWlR~Si,;;-...XE...NIIoIII.IXIooo_l:lMiIiJ,BAa.Sil.OI...C TRS-BO ®KioIiEioIv..wlol°PIl,j°Io,&,;S;a",.. _

INSTR

INSTR{[integer.] stringl. string2)

Functi on

Searches for the first occurrence of string2 in stringl. and
returns the position at which the match is found.

Integer specifies a position in stringl. It must be a value in
the range 1 to 32767.

This function lets you search through a string to see if it contains
another string. If it does, INSTR returns the starting position of
the substring in the target string; otherwise, it returns zero. Note
that the entire substring must be contained in the search string, or
zero is returned.

Optional integer sets the position for starting the search. If
omitted, INSTR starts searching at the first character in stringl.

Exampl es

In these examples, A$ = IlLINCOLN II :

INSTR{A$, IIINCII)

returns a value of 2.

INSTR(A$, 1112 11)

returns a zero.

INSTR(A$, IILINCOLNABRAHAMII)

returns a zero. For a slightly different use of INSTR, look
at

which returns 5.

Sampl e Program

The program below uses INSTR to search through the addresses
contained in the program's DATA lines. It counts the number of
addresses with a specified county zip code (761--) and returns that

---------lIadlolhaell---------

-131-

____~KEloo.IyI.llWIoWlQR~QMlSlooo... TRS.BO ® __...,jlloUll...S-;;"tXWlE...N....TX.....aMIIIRA:IoolSIoIoI'C'- _

number. The zip code is preceded by an asterisk to distinguish it
from the other numeric data found in the address.

36~ RESTORE
37~ COUNTER = ~

39~ READ ADDRESS$
395 IF ADDRESS = II $END II THEN 41~

4~~ IF INSTR (ADDRESS$, 11*761") <> Ii' THEN COUNTER = COUNTER +1
4~5 GOTO 39~

41~ PRI NT IINUMBER OF TARRANT COUNTY, TX ADDRESSES IS II COUNTER:
END

42~ DATA 11595~ GORHAM DRIVE, BURLESON, TX *76148 11

43~ DATA 1171 FIRSTFIELD ROAD, GAITHERSBURG, MD *2~76~1I

44~ DATA 1I1(J~~ TWO TANDY CENTER, FORT WORTH, TX *761~211

45~ DATA 1116633 SOUTH CENTRAL EXPRESSWAY, RICHARDSON, TX
*75~8(J1I

46~ DATA II $END II

----------lIadI8Ihaell----------

-132-

____..TaRSIlli-...Xw,F.uN"""TX....MiIoIiBwaA..ST...c TRS-BO ®K....FY...WIUo°.a.aROI.ID....S _

INT

I NT(number)

Functi on

Converts number to integer value.

This function returns the largest integer which is not greater than
the number.

The result has the same precision as the argument except for the
fractional portion. Number is not limited to the range - 32768 to
32767.

Exampl es

PRINT INT(79.89)

prints 79.

PRINT INT (-12.11)

prints -13.

---------Iadlolhaell---------

-133-

____..aIKE...Y..v.WQ~R~p~S TRS-BO ® TWilRlIlI.S...-X....E...N...IX........MMlBAiJlljS...IC---

KILL

KILL filename

IIKills ll (deletes) filename from disk.

Statement

You may KILL any type of disk file. However, if the file is
currently OPEN, a IIFile already open ll error occurs. You must CLOSE
the file before deleting it.

You can also add a pathname to this statement. If you do not
include a pathname, MBASIC searches for the file in the current
directory.

Example

KILL IIFILE. BASil

deletes this file named FILE. BAS from the current directory.

KILL IIACCOUNTING/DATA II

deletes the file DATA from the directory ACCOUNTING, located in your
current directory (we are not showing the entire pathname to
simplify this example).

---------Itadlolhaell---------

-134-

____.&.lTRIIoOsiWll-loAxliOolfNIIoIT~X_.l1llMRI;IIA..S...T..C__ TRS-BO ®KioIiEoIoYw~O~R""n~s _

LEFT$

LEFT$(string, integer)

Functi on

Returns the leftmost integer characters of string.

If integer is equal to or greater than LEN (string), the entire
string is returned.

Exampl es:

PRINT LEFT$(IIBATTLESHIPSII, 6)

pri nts BATTLE.

PRINT LEFT$(IIBIG FIERCE OOGII, 20)

prints BIG FIERCE DOG, since the string is less than 20 characters
long.

Sampl e Program

740 A$ = IITIMOTHY II
750 B$ = LEFT$(A$, 3)
760 PRINT B$; 1I--THAT 1S SHORT FOR II; A$
RUN
TIM--THAT'S SHORT FOR TIMOTHY
Ok

line 750 stores the three leftmost characters of A$ and stores them
in B$. Line 760 prints these three characters, a string, and the
original contents of A$.

---------ltadI8/haell---------

-135-

_____K~E...y...WQWl8.lo1i1D:ar.S TRS.BO ® TI.IlBiMS..-XUFi.U"NloLIA,X..&:MwRiDlASIi.II~C _

LEN

LEN(string)

Functi on

Returns the number of characters in string.

Exampl es

X = LEN(SENTENCE$)

gets the length of SENTENCE$ and stores it in X.

PRINT LEN(IICAMBRIDGP) + LEN(IIBERKELEYII)

prints 17.

---------Itadlo/haell---------

-136-

_____T,a,RoJ,;S-;:"jX"'F.uNI.I.T ...X ..IlM:.IIIRI.caA.;a,ST&.IC TRS.BO ®K..EY...WIUo°olllRioIoID.S _

LET

LET variable = expression

Statement

Assigns the value of expression to variable.

MBASIC doesn't require assignment statements to begin with LET, but
you might want to use it to be compatible with versions of MBASIC
that do require it.

Examples

LET A$ = "A ROSE IS A ROSE"
LET B1 = 1. 23
LET X = X - Zl

In each case, the variable on the left side of the equals sign is
assigned the value of the constant or expression on the right side.

Sampl e Program

550 P = 1001: PRINT "P =" P
560 LET P = 2001: PRINT "NOW P = "P

---------lIadlo/haell---------

-137-

____...:.K:,:;E~YW~O~R~OS~ TRS.BO ® __....TUoIRS"'"i-;ajXE....N....Ia.X....MIMlBA..S....IC _

LINE INPUT Statement

LINE INPUT[;]["prompt message";] string variable

Inputs an entire line (up to 254 characters) from the keyboard.

LINE INPUT is a convenient way to input string data without having
to worry about accidental entry of delimiters (commas, quotation
marks, carriage returns, etc.).

LINE INPUT is similar to INPUT, except:

- The computer does not display a question mark when waiting for
input.

- Each LINE INPUT statement can assign a value to only one
variable.

- Commas and quotes can be used as part of the string input.
- Leading blanks are not ignored--they become part of variable.

The only way to terminate the string input is to press <ENTER>.
However, if LINE INPUT is immediately followed by a semicolon,
pressing <ENTER> does not echo a carriage return at the display.

Some situations require that you input commas, quotes, and leading
blanks as part of the data. LINE INPUT serves well in such cases.

Exampl es:

LINE INPUT A$

inputs A$ without displaying any prompt.

LINE INPUT "LAST NAME, FIRST NAME? "; N$

displays a prompt message and inputs data. Commas do not terminate
the input string, as they would in an INPUT statement.

You may abort a LINE INPUT statement by pressing <CTRL><C>. MBASIC
returns to command level. Typing CONT resumes execution at LINE
INPUT.

LINE INPUT is restricted to 254 characters.

---------Itadlolhaell---------

-138-

____....TAR~S·lIojx""'EOIIINIoIoIX .IlMIIoIIiB..A.S'...C.....__ TRS-BO ®K_EyololW..Q....R"'D~S _

LINE INPUT#

LINE INPUT# buffer, variable

Statement

Inputs an entire line from a sequential data file to a string
variable.

Buffer is the number under which the file was OPENed.

This statement is useful when you want to read an ASCII-format
MBASIC program file as data, or when you want to read in data
without following the usual restrictions regarding leading
characters and terminators.

LINE INPUT# reads everything from the first character up to:

. a line feed character
- the end-of-file
- the 32,767th character

Other characters encountered--quotes, commas, leading blanks, line
feed, carriage return sequences--are included in the string.

Exampl e

If the data on disk was saved in ASCII format it would look like
this:

l(iJ CLEAR 5(iJ(iJ
2(iJ OPEN "I", 1, "PROG"

then the statement

LINE INPUT#1, A$

could be used repetitively to read each program line, one at a time.

---------ltadI8/haell---------

-139-

____......KlIIE....yWIlolQ"'RIoIGD~S TRS.BO ® T..BMlS...-"'XE...N...IooIIX....M...BillliAMilS...ICMo- _

LIST

LIST [startline]-[endline] [,filename]

Statement

Lists a program in memory to the display.

Startline specifies the first line to be listed. If omitted,
MBASIC starts with the first line in your program.

Endline specifies the last line to be listed •. If omitted, MBASIC
ends with the last line in your program.

Filename identifies the destination file of the listing. If you
omit filename, MBASIC lists the specified lines to the display.

Exampl es

LIST

displays the entire program. To stop the automatic scrolling, press
<CTRL><S>. This freezes the display. Press <CTRL><Q> to continue.

LIST 5~

displays line 5~.

LIST 5~-85

displays lines in the range 5~-85.

LIST .-

displays the program line that has just been entered or edited, and
all higher-numbered lines.

LIST -227

displays all lines up to and incl uding 227.

LIST, "EMp l

lists an entire program to a file named EMP.

LIST 227-

Lists all lines starting with line 227 to the end of the file.

---------ltadI8/haell---------

-14~-

____...TRIIooSil,;-WIox....FN...I...X.....MR...AlIoiS...I...C__ TRS.BO ®KioIiE."YAlwQOIIIR"'"n~S _

lUST

llIST [startlineJ-[endlineJ

Lists program lines in memory to the printer.

Statement

The only difference between LLIST and LIST is that LLIST lists the
lines on printer. See LIST.

Exampl es

LLIST

lists the entire program to the printer. To stop this process, press
<CTRL><S>. This causes control to return to MBASIC and therefore
aborts LUST.

LUST 68-9~

prints lines in the range 68-9~.

\

---------lIadlO/haell---------

-141-

____~K;;;;.;Eyo.:.:W~OR_=_D~S TRS.BO ® __..IT~RS~-;,g,XwENIAIAX..MIlliBA~Sw.I,M,C _

LOAD

LOAD filename, [R]

Statement

Loads filename, a MBASIC program, into memory.

The R option causes the program to then run. (LOAD with the R
option is equivalent to the command RUN filename, ~).

LOAD without the R option wipes out any resident MBASIC program,
clears all variables, and CLOSES all OPEN files. LOAD with the R
option leaves all OPEN files open and runs the program
automati cally.

You can use either of these commands inside programs to allow
program chaining (one program calling another).

If you attempt to LOAD a non-MBASIC file, a "Direct statement in
file" error will occur.

Exampl e

LOAD "PROGl. BAS II

---------lIadlOlhaell---------

-142-

____..T,y,RS..,-...X..F...N...'.X...M....RII;lA..S..' Cloooo..__ TRS.BO ®AK"'F.I.lywlll0.&llRU,jn~S _

LOC

LOC(buffer)

Functi on

Returns the current position in the file.

Buffer is the buffer under which the file was OPENed.

With direct-access files, LOC returns the number of the last record
read or written to the direct file.

With sequential-access files, LOC returns the number of 128-byte
blocks read from or written to the file since it was OPENed.

For files OPENed to "KYBD:", LOC returns 1 if any characters are
ready to be read from standard input. Otherwise, it returns 0.
KYBD: is a "device". For more information on devices, see OPEN and
Appendix G.

Exampl e

IF LOC(1»55 THEN END

if the current record number is greater than 55, this statement ends
program execution.

Samp1e Program

1310 A$ = "WILLIAM WILSON"
132~ GET 1
133~ IF N$ = A$ THEN PRINT "FOUND IN RECORD" LOC(l): CLOSE: END
134~ GOTO 132~

This is a portion of a program. Elsewhere the file has been opened
and fielded. N$ is a field variable. If N$ matches A$, the record
number in which it was found is printed.

---------lIadI8/haell---------

-143-

_____KE...y.....WO_R._,D..S TRS-eo ® __...I.T~RS~-,.Q,XEIii.loNIo:loI,g"X...I.iMl.I'IBA~S",Io¥.C _

LOCK

LOCK [#]buffer [,READ] [,WAIT] [, range]

Statement

Restricts access by other programs to the file assigned to buffer
in the specified range of records or for the entire file.

Buffer is the buffer number used to OPEN the file.

The READ option, when specified, allows another program to read the
locked area of the file; but not write to it. If the READ option is
omitted, total access is denied to another program.

The WAIT option tells MBASIC to wait if the file being accessed is
already locked. When the file is UNLOCKed, the program continues
and the new lock is applied. For this option to work properly, both
programs must contain a lock statement. You can interrupt the WAIT
by pressing <CTRL><C>. To resume the WAIT, type CONT.

If you do not use the WAIT option, control is returned to the
program immediately with an accompanying error message. All of the
usual MBASIC error handling can be used to trap and examine this
error (i.e., ON ERROR GOTO). If error trapping is not active the
"Permission denied" error message is returned.

Range specifies the region of the file to be locked and is used
for random access files only. The syntax for range is
record1 TO record2, where recordl and record2 are inclusive.
Recordl is optional, if omitted 1 is used.

Note: If a program is run that does not contain a LOCK statement,
and attempts to access a locked file, the program "waits" until the
file is unlocked.

Deadlocks

It is possible to get into a deadlock situation when WAITing for a
lock request. For example:

Program 1
1~ OPEN "R", 1, IIA II , 32
2~ OPEN IIR II , 2, "B", 32
3~ LOCK 1, 1 TO 5
4~ LOCK 2, WAIT, 1 TO 1~

Program 2
1~ OPEN IIR", 1, IIA II , 32
2~ OPEN IIR", 2, "B", 32
3~ LOCK 2, 1 TO 1~

4~ LOCK 1, WAIT, 1 TO 5

---------Itadlo/haell---------

-144-

____..T...RIII;S-..xiWlF...N~J...X..M....RIoIiIAMSololIC TRS-BO ®AK..f.wyW...O.lllRioIoID~S -

Program 1 opens Files A and B. File A is locked and File B is
locked with the WAIT option. At the same time, Program 2 opens and
locks Files A and B, but in this program File A is locked with the
WAIT option. If you run these two programs simultaneously, on
seperate terminals, the overlapping of LOCK statements with the WAIT
option causes a deadlock situation.

TRS-XENIX attempts to detect any deadlock situations. When a
deadlock situation is detected error message "Deadlock" is returned.

Multiple LOCKS

Multiple LOCK statements have a cumulative affect. Locking records 1
through 3 and then locking records 1@ through 1@@ leaves records 1
through 3 and 1@ through 1@@ locked. Locking a record which is
already locked has no effect, the record remains locked. A record
locked multiple times with different locking arguments (i.e. READ)
has the lock characteristics of the last executed LOCK statement.
For example if you lock record 1 without the READ option and then
relock it with the READ option, record 1 will be locked with the
READ option.

It is recommended that you do not open a single file on multiple
buffers simultaneously. If it becomes necessary to open a single
file multiple times, be aware that locks applied using different
buffer numbers against the same file act just as multiple LOCK
statements do against a single file. The following program displays
thi s:

1@ OPEN "R", 1, "payroll.dat", 32
2@ OPEN "R", 2, "payroll.dat", 32
3@ LOCK #1, 1 TO 3
4@ LOCK #2, READ,,2 TO 5

This program locks records 1 through 5 of the file payroll.dat. In
addition, records 2 through 5 are locked in the READ mode.
Therefore, even though different buffer numbers were given, both of
the specified record locks were executed on the same file. Also, the
first buffer that is closed releases all locks against the file,
including locks made using another buffer number. If buffer number 2
is closed in the above example, then all locks are released,
including records 1 through 3 that were locked for buffer number 1.

---------lIadlo/haell---------

-145-

____...K~E;,;,,;YWIWOWoilR~DS TRS.BO ® __"""'Ta.RS..-;aXEwN....la,X..MIMBAIiIIISw,loMoC---

Important: Records are locked based upon their position and size
in the file. The unit of measure used is the byte. If you open a
file multiple times with different record lenghts and apply locks, a
portion of a record can become locked.

Samp1e Program

111 OPEN "R", 1, "employee.data", 32
211 LOCK 1, 1 TO 211lJ
311 FOR N% = 1 TO 211lJ
4lJ GET 1, N%
5lJ PRINT NAME$
611 PRINT ADDRESS$
7lJ PRI NT TEL $
811 NEXT N%
9lJ CLOSE 1

This program opens the file employee.data and locks the records 1
through 2~11. The information of eac~ record is written out and
then the total file is unlocked with the CLOSE statement. If LOCK
fails, the "Permission denied" error message is returned.

----------ftadI8/haell---------

-146-

,-_.....• - -

____.I.ITRII";S:l,;-....x.l:.lENII.lIUXI",,,ll,MRIMAjI,,;;SloloI...C-- TRS.BO ® ...KWiF...y.wQ....R...n...S _

LOF

LOF(buffer)

Functi on

Returns the number of bytes in the file.

Buffer is the number under which the file was OPENed.

LOF is valid for any file. Files OPENed to "LPT1:", "KYBD:", or
"SCRN:" always return ~.

Example

Y = LOF(5)

assigns to Y the number of bytes in the file accessed by buffer 5.

---------lIatilo/haell---------

-147-

____.....IlK...E....YWa.lQI'I:RloIijD'lIIIS TRS-BO ® __....TI.IilRo.)S,;;o-Xw;F;,gN...IX~Mr.uRAoAS~I...C _

LOG

LOG(number}

Function

Computes the natural logarithm of number.

This is the inverse of the EXP function. The result is always in
double precision.

Exampl es

PRINT LOG(3.14159}

prints the value 1.144729~411851.

Z = 1~ * LOG(Ps/Pl}

performs the indicated calculation and assigns the value to Z.

Sample Program

This program demonstrates the use of LOG. It utilizes a formula
taken from space communications research.

54~ INPUT "DISTANCE SIGNAL MUST TRAVEL (MILES):"; D
55~ INPUT "SIGNAL FREQUENCY (GIGAHERTZ)"; F
56~ L = 96.58 + (2~ * LOG(F» + (2~ * LOG(D»
57~ PRINT "SIGNAL STRENGTH LOSS IN FREE SPACE IS" L "DECIBELS."

---------lIadle/haell---------

-148-

____...TR~S..-iioIlIX....FNIIoIJWlX.......MBWlA.S...J...C__ TRS-BO ®DoKEl;",;yl.llwlol.l°lARLIonS~ _

LPOS

LPOS(number)

Functi on

Returns the column position for the device IILPTl:II.

Number is a dummy argument.

Exampl e

1~~ IF LPOS(X»6~ THEN LPRINT IIColumn 6~1I

----------lIadI8/haell---------

-149-

_____K_E_YW_OOoiOiR~DS TRS-BO ® __....TIaolRSII.ii-;aXE....N...I,u"X....MIIlCI8A~Sw.IoM.C _

LPRINT~ LPRINT USING

LPRINT data~ •••
LPRINT USING format; data~ •••

Statement

Prints data to the printer.

To use these commands, you must execute an END statement in your
program. This is because with a multi-user system, MBASIC stores in
memory the data you specify. It will not print data until: 1)
It executes-an-END statement or 2) You leave MBASIC by typing
SYSTEM.

A better way to print data at the printer is to OPEN the device as a
file by specifying ILPTl:" as the filename. Print the data to the
device, then close ILPTl:". This spools the data file to the
printer.

Examples

LPRINT (A * 2)/3

prints the value of expression (A * 2)/3.

LPRINT TAB(5~) "TABBED 5~"

moves the line printer carriage to TAB position 5~ and prints
"TABBED 50". (Refer to the TAB functi on).

LPRINT USING "#####.#"; 2.17

sends the formatted value ~~~~2.2 to the line printer.

See PRINT and PRINT USING for more information.

Sampl e Program

This illustrates how to use a file for printing data to the printer.

5 OPEN "0", 1, ILPTl:"
1~ PRINT #1, "Name"
2~ PRINT #1, "Address"
3~ CLOSE #1

See OPEN for more information.

---------lIadlolhaell---------

-15(1-

____...Ta.RS,;a,;-..x""E.IlIN...'x ..IlMilljBlIiiA~ST.IoIc TRS-BO ®K...EYololw....o...R~n~S _

lSET

lSET field name = data

Statement

Sets data in a direct-access buffer field name.

Before using LSET, you must have used FIELD to set up buffer fields.

See also the chapter on "Disk Files", OPEN, CLOSE, FIELD, GET, PUT,
and RSET.

Exampl e

Suppose NM$ and AD$ have been defined as field names for a direct
access file buffer. NM$ has a length of 18 characters; AD$ has a
length of 25 characters. The statements

LSET NM$ = "JIM CRI CKET, JR."
LSET AD$ = "2~~~ EAST PECAN ST."

set the data in the buffer as follows:

JIM~CRICKET,JR.~~~ 2~~~~EAST~PECAN~ST.~~~~~~

Notice that filler blanks were placed to the right of the data
strings in both cases. If we had used RSET statements instead of
LSET, the filler spaces would have been placed to the left. This is
the only difference between LSET and RSET.

If a string item is too large to fit in the specified buffer field,
it is always truncated to the right. That is, the extra characters
on the right are ignored. This applies to both LSET and RSET.

---------lIadIGlhaell---------

-151-

____......IK~E..yolllWiMoQR~QI'lIS'__ TRS.BO ® T.&.IRMSI.iiii-IAXEWNI.II..X...lMIaiRIKAMlS~IC.... _

MEM

MEM

Functi on

Returns the amount of memory.

MEM performs the same function as FRE. MEM returns the number of
unused bytes in memory.

This function may be used in the immediate mode to see how much
space a resident program occupies, or it may be used inside a
program to avert "Out of memory" errors. MEM requires no argument.
The internal program stack is not part of this total.

Exampl e

PRINT MEM

Enter this command (in the immediate mode, no line number is
needed). The number returned indicates the amount of leftover
memory, that is, memory not being used to store programs, variables,
strings, or the stack.

Sampl e Program

161~ IF MEM < 8~ THEN 163~

162~ DIM A(15)
163~ REM PROGRAM CONTINUES HERE

If fewer than 8~ bytes of memory are left, control switches to
another part of the program. Otherwise, an array of 16 elements is
created.

---------lIadle/hael(---------

-152-

____....TioIIRoo1IS,;;,-xA.lFI;,IN...I..X..&loMIOalBA.S~I...C TRS.BO ®KioIiEioIy..w:wQI'IRQw.;S~ _

MERGE

MERGE filename

Statement

Loads filename, a MBASIC program, and merges it with the program
currently in memory.

Filename specifies a MBASIC file in ASCII format (a program saved
with the A option). If filename is a constant, it must be enclosed
in quotes.

Program lines in the disk program are inserted into the resident
program in sequential order. For example, suppose that three of the
lines from the disk program are numbered 75,85 and 90, and three of
the lines from the current program are numbered 70, 80, and 90. When
MERGE is used on the two programs, this portion of the new program
will be numbered 70, 75, 80, 85, 90,.

If line numbers on the disk program coincide with line numbers in
the resident program, the disk program's lines replace the resident
program's lines.

MERGE closes all files and clears all variables. Upon completion,
MBASIC returns to the command mode.

Exampl e

Suppose you have a MBASIC program on disk, PROG2.TXT (saved in
ASCII), which you want to merge with the program you've been working
on in memory. Then we use:

MERGE "PROG2.TXT"

merges the two programs.

Sampl e Programs

MERGE provides a convenient means of putting program modules
together. For example, an often-used set of MBASIC subroutines can
be tacked onto a variety of programs with this command.

Suppose the following program is in memory:

80 REM MAIN PROGRAM
9~ GOSUB 10~~

10~ REM PROGRAM LINE

---------Itadlo/haell---------

-153-

____~KE...y...WMlQRIMD'ollIS TRS-BO ® __...Tr.uR_S-...Xw.f.aN...IX~MWoIBA:a.lS....I ...C _

110 REM PROGRAM LINE
120 REM PROGRAM LINE
130 END

And suppose the following subroutine, SUB. TXT, is stored on disk in
ASCI I format:

1000 REM BEGINNING OF SUBROUTINE
1010 REM SUBROUTINE LINE
1020 REM SUBROUTINE LINE
1030 REM SUBROUTINE LINE
1040 RETURN

You can MERGE the subroutine with the main program with:

MERGE IISUB.TXP

and the new program in memory is:

8~ REM MAIN PROGRAM
90 GOSUB 1000
10~ REM PROGRAM LINE
110 REM PROGRAM LINE
120 REM PROGRAM LINE
130 END
10~0 REM BEGINNING OF SUBROUTINE
1010 REM SUBROUTINE LINE
1020 REM SUBROUTINE LINE
1030 REM SUBROUTINE LINE
1~4~ RETURN

---------Itadlolhaell---------

-154-

_____T...R...S-;;,.X..,E.uN...T..X..M;y;BIIoIIIA."S...TC.....__ TRS-BO ®K...FYIolW..Q..RiWQ~S _

MID$ Statement

MID${oldstring, position, [length]) = replacement
string

Replaces a portion of a oldstring with replacement string.

Oldstring is the variable name of the string you want to change.

Position is a number specifying the position of the first
character to be changed.

Length is a number specifying the number of characters to be
replaced. If omitted, all of replacement string is used.

Replacement string is the string to replace a portion of
oldstring. The length of the resultant string is always the same
as the original string. If replacement string is shorter than
length, the entire replacement string is used.

Exampl es:

A$ = "LI NCOLN II

MID$ (A$, 3, 4) = "12345": PRINT A$

returns LI1234N.

MID$ (A$, 5) = "01": PRINT A$

returns LINC01N.

MID$ (A$, 1, 3) = "***": PRINT A$

returns ***COLN.

---------lIadlOlhaell---------

-155-

_____K_E_YW~O_.;;R;;o;DS TRS-BO ® __..TalRS~-iQiXEIroIiN...Ia.X..IOIMIMjBA
Ii1II
S....I

Mo
C _

MID$

MID$(string, integer [,number])

Functi on

Returns a substring of string, beginning with the integer
character.

If integer is greater than the number of characters in string,
MID$ returns a null string.

Number is the number of characters in the substring. If omitted,
MBASIC returns all right most characters, beginning with the
character at position integer ••

Exampl es

If A$ = "WEATHERFORD" then

PRINT MID$(A$, 3, 2)

pri nts AT.

F$ = MID$(A$, 3)

puts ATHERFORD into F$.

Sample Program

2~~ INPUT "AREA CODE AND NUMBER (NNN-NNN-NNNN)"; PH$
21~ EX$ = MID$(PH$, 5, 3)
22~ PRINT "NUMBER IS IN THE" EX$ " EXCHANGE."

The first three digits of a local phone number are sometimes called
the exchange of the number. This program looks at a complete phone
number (area code, exchange, last four digits) and picks out the
exchange of that number.

----------ltadI8/haell---------

-156-

____IIiojIRIIooS,.,;-loAXoloOolENII.IT...Xo...lalMBIoMA..S...T...C__ TRS-BO ®LIKE~Y"lWlLlO~RQu.;S:..... _

MKD$, MKI$, MKS$

MKI${integer expression)
MKS${Sinele-preCision expression)
MKD${dou le-precision expression)

Convert numeric values to string values.

Functi on

.--.

Any numeric value that is placed in a direct file buffer
with an LSET or RSET statement must be converted to a string.

These three functions are the inverse of CVD, CVI, and CVS. The
byte values which make up the number are not changed; only one byte,
the internal data-type specifier, is changed, so that numeric data
can be placed in a string variable.

MKD$ returns an eight-byte string; MKI$ returns a two-byte string;
and MKS$ returns a four-byte string.

Exampl e

LSET AVG$ = MKS$(0.123)

Sampl e Program

1350 OPEN IIDII, 1, IITESLDArn
1360 FIELD 1, 2 AS 11$, 4 AS 12$, 8 AS 13$
1370 LSET 11$ = MKI$(3000)
138~ LSET 12$ = MKS$(3~~~.1)

1390 LSET 13$ = MKD$(30~~.0~0~1)

14~~ PUT 1
141@ CLOSE

For a program that retrieves the data from TEST.DAT, see
CVD/CVI/CVS.

----------lIadI8I11aell---------

-157-

____..aIKE...yollWQMoIR~D..S TRS-BO ® __...lTI.QRM:S-~XUl.EANI....X.....MBIKA:MilSI.AOICI6- _

NAME

NAME old filename AS new filename

Statement

Renames old filename as new filename.

With this statement, the data in the file is left unchanged.

Exampl e

NAME IlFILE II AS IlFILE-OLDII

renames FILE as FILE.OLD.

NAME B$ AS A$

Renames B$ as A$.

----------ltatilOlllaell---------

-158-

____T...R..S..·loIox..FN..T..X_MBIiMA...S...T..C__ TRS-BO ® ----..."ioIifiloJ,yIMlWQiINIRw,ig~S-----

NEW

NEW

Statement

Deletes the program currently in memory and clears all variables.

NEW returns you to the command mode.

Exampl e

NEW

---------ftadIGlhaell---------

-159-

____~K....EywWUlQ~RII';;DS'__ TRS.BO ® __....TWlR....S,;;j,j-XIWlEIIIlIN~IX......M....BQlAS....lloIIIC _

OCT$

OCT$(number)

Functi on

Computes the octal value of number.

OCT$ returns a string which represents the octal value of number.
The value returned is like any other string--it cannot be used in a
numeric expression.

Exampl es

PRINT OCT$(3~), OCT$(50), OCT$(9~)

prints the following strings:

36 62 132

Y$ = OCT$(X/84)

Y$ is a string representation of the integer quotient X/84 to base
8.

---------Itadlo/haell---------

____....TAoRs,},;:-~X~E,lJNIX....._::M~B~A~ST&.IC TRS.BO ® ...IlroK""Ey....WIll.°IllRi.LID~S _

ON ERROR GOTO

ON ERROR GOTO line

Transfers control to line if an error occurs.

Statement

Thi s 1ets your program "recover" from an error and conti nue
execution. (Normally, you have a particular type of error in mind
when you use the ON ERROR GOTO statement).

ON ERROR GOTO has no effect unless it is executed before the error
occurs. To disable it, execute an ON ERROR GOTO 0. If you use ON
ERROR GOTO 0 inside an error-trapping routine, MBASIC stops
execution and prints an error message.

The error-handling routine must be terminated by a RESUME statement.
See RESUME.

Exampl e

10 ON ERROR GOTO 150~

branches program control to line 15~~ if an error occurs anywhere
after line 1~.

---------lIadI8Ihaell---------

-161-

____..K~Eo:.:YW:;,;;O~R~DS=__ TRS.BO ® __....TWilRS...-.alXE...N...I,y"X..,MIMlBAOoIllS...I.C- __

ON ••• GOSUB

ON number GOSUB linel, line2, •••

Statement

Goes to a sUbroutine at the line specified by the value of
number.

Number must be between ~ and 255. For example, if number's value
is three, the third line number on the list is the destination of
the branch.

If number1s value is zero or greater than the number of items on
the list (but less than or equal to 255), MBASIC continues with the
next executable statement. If number is negative or greater than
255, an "Illegal function call" error occurs.

Exampl e

ON Y GOSUB 1@@@, 2@@@, 3~@@

if Y = 1, the subroutine beginning at 1@@@ is called. If Y = 2, the
sUbroutine at 2@@~ is called. If Y = 3, the subroutine at 3@~~ is
call ed.

Sampl e Program

43~ INPUT "CHOOSE 1, 2, OR 3" ; I
44~ ON I GOSUB 5~@, 6~@, 7@@
45@ END
5~@ PRI NT "SUBROUTI NE #P: RETURN
6@@ PRINT "SUBROUTINE #2": RETURN
7~~ PRINT "SUBROUTINE #3": RETURN

----------Itadlolhaell----------

-162-

~--,

____..lTIoIIR...s.:.-.llWxEI;,INI.III.IX~MalRA;",SiWI....C TRS-SO ®K""E_Y..WO..R...Q~S _

ON ••• GOTO

ON number GOTO line, line, •••

Statement

Goes to the line specified by the value of number.

Number is a numeric expression between ~ and 255.

This statement is very similar to ON ••• GOSUB. However, instead of
branching to a subroutine, it branches control to another program
1i nee

The value of number determines to which line the program will
branch. For example, if the value is four, the fourth line number on
the list is the destination of the branch. If there is no fourth
iine number, control passes to the next statement in the program.

If the value of expression is negative or greater than 255, an
"Illegal function cal,.. error occurs. Any amount of line numbers may
be included after GOTO.

Example

ON MI GOTO 15~, 16~, 17~, 15~, 18~

tells MBASIC to "Evaluate MI,
if the value of MI equals one then go to line 15~;

if it equals two, then go to 16~;

if it equals three, then go to 17~;

if it equals four, then go to 15~;

if it equals five, then go to 18~;

if the value of MI doesn't equal any of ~he numbers one through
fi ve, advance to the next statement in the program".

----------ftadlolhaell----------

-163-

_____KE_Y_WO~R_D_S TRS-BO ® TR..S..-X..E...N_IX.......MB..A..SI_C _

OPEN
'{ 0
~)(- .~) Statement

OPEN mode, buffer, filename [,record length]

Mode is a string expression whose first character is one of the
foll owi ng:

or

o (opens the file for output)l use: se
I (opens the file for input) J
A (opens a sequential file for output, with

pointer positioned at the end-of-data)
R (opens a random (direct)-access file)
D (opens a random (direct)-access file)

(f rcf? ~S'~~~,1i1 (1
..J

the

OPEN filename [FOR mode] AS buffer [LEN=record length]

Mode is a string expression whose value is:

INPUT
OUTPUT
APPEND

RANDOM

(opens the file for input)
(opens the file for output)
(opens a sequential file for output, with the
pointer positioned at the end-of-data)
(opens a random (direct)-access file. If mode
is omitted RANDOM is used.)

Opens a disk file.

Buffer is an integer between 1 and 255. It specifies the area in
memory that will be used to access the file. This number will be
associated with the file for as long as the file is OPEN.

Filename specifies a TRS-XENIX file.

Record length is an integer which sets the record length for
direct-access files. This length can be as large as 32767 bytes.
The default is 256 bytes.

Examples

OPEN "0 ", 1, "CU ENTS. TXru

opens the file CLIENTS.TXT for output. Buffer 1 is used. If the file
does not exist, it is created. If it already exists, its previous
contents are lost.

---------rtadle/haell---------

-164-

____...TRIIooS;a,;-;,.,x....ENIlIoI'I.IXo...lalMRIiMA..S....'C__ TRS.BO ® ...Ki.liF;,I,y&lWo~Rwn~s _

OPEN 110 11 , 2, IIDATA.BASII

opens the file DATA. BAS in random-access mode. Buffer 2 is used.

OPEN IITEST.BASII FOR OUTPUT AS 5

opens the file TEXT. BAS for output. Buffer 5 is used.

See the chapter on IIDisk Files ll for programming information.

---------Iadlolhaell---------

-165-

____......IlK....E...YWIl.lQ"RloIIlD."S TRS.BO ® T....JlMSa.:-~XIi.lENII.III.lIX...MIOIlRI¥AIo.lS....I ..C _

OPTION BASE

OPTION BASE n

Statement

Sets n as the minimum value for an array subscript.

~ may be 1 or ~. The default is ~.

If the statement

OPTION BASE 1

is executed, the lowest value an array subscript may have is one.

---------Itad.elhaell---------

-166-

____...TAoRS,),;-~Xu;;F.IIN...IXA..I:M:IIlBlAA.STl.lc TRS-BO ® ...a.IKFlO.Iv..WIWO.PO....Soa.- _

PEEK

PEEK(memory location)

Functi on

',~

Returns a byte from memory location.

The memory location of MBASIC's User-readable data includes
MBASIC's variables and stack, User's program, User's variables,
strings, and File Data Blocks.

The value returned is an integer between 0 and 255.

PEEK is the complementary function of the statement POKE.

Exampl e

A = PEEK (&H5A00)

)
!,'

)

---------lIadlo/haell---------

-167-

_____KWIIE,..YHaoIIOIIWRo5olDS TRS-aO ® __....TMlRS...-iQjXE...N...I.X...MIIiIlBAOMS...IC---

POKE

POKE memory location, data byte

Statement

I

Writes data byte into memory location.

Data byte must be a decimal number between ~ and 255.
Memory location must be inside MBASIC's User-writable data space
which includes User's variables, strings, and File Data Blocks.

POKE is the complementary statement of PEEK. The argument to PEEK is
a memory location from which a byte is to be read.

PEEK and POKE can be used for storing data efficiently.

It is not recommended to use PEEK and POKE because you run the risk
of destroying your program and data and it also prevents software
portabil ity.

Exampl e

1~ POKE &H5A0~, &HFF

---------Itadlo/haell---------

-168-

____....TRa.,S..-...X....fNIIolII.IXo...lOlOMBw.sAMlS....IC__ TRS-BO ® ...KlroIiE~Yalw°I.Ll:RLIojn~S _

POS

POS(dummy number)

Functi on

Returns the column position for the device "SCRN:"

Number is a dummy argument.

POS returns a number from 1 to 8~ indicating the current column
position of the cursor on the display.

Exampl e

PRINT TAB(4~) POS(0)

Sampl e Program

15~ CLS
16~ A$ = INKEY$
17~ IF A$ = 1111 THEN 16~

18~ IF POS(X) > 7~ THEN IF A$ = CHR$(32) THEN A$ = CHR$(13)
19~ PRINT A$;
2~(3 GOTO 16~

See Appendix Gfor more information.

---------ltadI8Ihaell------...----

-169-

_____K~E;;,,:,Y~WO~R~OO1l:iS TRS..BO ® __...T~RlIIlo;S-~X....E.u.NlwX~MBIII'AwS ...ICIII.- _

PRINT

PRINT data, •••

Statement

Prints numeric or string data on the display.

MBASIC prints the values of the data items you list in this
statement.

You may separate the data items by commas or semicolons. If you use
commas, the cursor automatically advances to the next tab position
before printing the next item. (MBASIC divides each line into five
tab positions, at columns 0, 14, 28, 42, and 56). If you use
semicolons, it prints the items without any spaces between them. For
exampl e,

PRINT C$;T$,M$

works the same way as

PRINT CTM$

A semicolon or comma at the end of a line causes the next PRINT
statement to begin printing where the last one left off. If you do
no trailing punctuation is used with PRINT, the cursor drops down to
the beginning of the next line.

Single-precision numbers with six or fewer digits that can be
accurately represented in ordinary (rather than exponential) format,
are printed in ordinary format.

Double-precision numbers with 14 or fewer digits that can be
accurately represented in ordinary format, are printed using the
ordinary format.

MBASIC prints positive numbers with a leading blank. It prints all
numbers with a trailing blank.

To insert strings into this statement, surround them with quotation
marks.

Exampl e

PRINT 1100 11
; IINOTII; IILEAVEII; IISPACES II ; IIBETWEEN II ;

IITHESEII; IIWORDS II

---------Itadle/haell------------

-17~-

____"""'TRg,;S;w·....x..ENIlIoiT...xio-llloMQlBA..S...T..C__ TRS-BO ® -IoiKEIiolYWlwIWQ-.RDwoSll-- _

prints on the display: DONOTLEAVESPACESBETWEENTHESEWORDS

Sarnpl e Program

6@ INPUT IIENTER THIS YEAR II ; Y
7@ INPUT IIENTER YOUR AGE II;A
8@ INPUT IIENTER A YEAR IN THE FUTUREII;F
9(1 N=A+(F·Y)
1@@ PRINT IIIN THE YEARIIFIIYOU WILL BEIINIIYEARS OLDII
RUN

Since F and N are positive numbers, PRINT inserts a space before and
after them; therefore, your display should look similar to this
(depending on your input):

IN THE YEAR 2@(14 YOU WILL BE 46 YEARS OLD

MBASIC moved to the next tab position after printing each data item.

If we had separated each expression in line 1(1(1 by a comma,

1@@ PRINT IIIN THE YEAR II ,F,lIyOU WILL BE II ,N,IIYEARS OLDII

our display would show:

IN THE YEAR YOU WILL BE 46 YEARS OLD

----------rtadI8Ihaell----------

-171-

____......K..E...yw'l.ilQ"'Raa;POllloS TRS-BO ® T....R.SI,;;;-AX....EN.IoIliooQX...MIOI.lB"'AMjSIoloI...C----

PRINT USING

PRINT USING format; data item, •••

Statement

Prints data items using a format specified by you.

Format consists of one or more field specifier(s), or any
alphanumeric character.

Data item may be string and/or numeric value(s).

This statement is especially useful for printing report headings,
accounting reports, checks, or any other documents which require a
specific format.

With PRINT USING, you may use certain characters (field specifiers)
to format the field. These field specifiers are described below.
They are followed by sample program lines and their output to the
screen.

Specifiers for String Fields:

Print the first character in the string only.

PRINT USING II!"; IIPERSONNEL"
P

\spaces\ Print 2+ n characters from the string. If you type the
backslashes without any spaces, MBASIC prints two
characters; with one space, MBASIC prints three
characters, and so on. If the string is longer than the
field; the extra characters are ignored. If the field is
longer than the string, the string is left-justified and
padded with spaces on the right.

PRINT USI NG "\ \ II; IIPERSONNEL II
(three spaces between the backslashes)
PERSO

& Print the string without modifications.

10 A$="TAKE II :B$=IIRACE II
2(J PRINT USING "!II;A$
3(J PRINT USING II&";B$

TRACE

---------Itadlo/haell---------

-172-

____...T,aRSol,;-;;,jXw"F.IIN...I ...X """M"""Bj,gA..,),S....TC......__ TRS-BO ®K..Fy.&.lw....Q.IIlRu.ln~S _

Specifiers for Numeric Fields:

Print the same amount of digit positions as number signs
(#). If the number to be printed has fewer digits than
positions specified, the number is right-justified
(preceded by spaces). Numbers are rounded as necessary.
You may insert a decimal point at any position. In that
case, the digits preceding the decimal point are always
printed (as zero, if necessary).

If the number to be printed is larger than the specified
numeric field, a percent sign (%) is printed in front of
the number. If rounding the number exceeds the field, a
percent sign is also printed in front of the rounded
number.

PRI NT US ING "##. ##" ;111. 22
%111. 22

If the number of digits specified exceeds 24, an "Illegal
function call II occurs.

PRINT USING "##.##";.75
~L 75

PRINT USING "###.##";876.567
876.57

+ Print the sign of the number. The plus sign may be typed
at the beginning or at the end of the format string.

PRINT USING "+##.## "; -98.45,3.50,22.22,-.9 -98.45
+3.50 +22.22 -0.90

PRINT USING "##.##+ "; -98.45,3.50,22.22,-.9 98.54­
3.50+ 22.22+ 0.90-

(Note the use of spaces at the end of a format string to
separate printed values).

Print a negative sign after negative numbers (and a space
after positive numbers).

PRINT USING "###.#-"; -768.660
768.7-

---------lIadIG/haell---------

-173-

_____K_Ey..W._OR...D...s TRS-BO ® __....:.T~RS~-~XI;;,l,EN.:.,:;I~X..:.;M~BA~S"'I~C _

** Fill leading spaces with asterisks. The two asterisks also
establish two more positions in the field.

PRINT USING "**####"; 44.0
****44

$$ Print a dollar sign immediately before the number.
This specifies two more digit positions, one of which is
the dollar sign.

PRINT USING "$$##.##"; 112.7890
$112.79 ..

**$ Fill leading spaces with asterisks and print a dollar sign
immediately before the number.

PRINT USING "**$##.##"; 8.333
***$8.33

Print a comma before every third digit to the left of the
decimal point. The comma establishes another digit
position.

PRINT USING "####,.##"; 1234.5
1,234.50

Print in exponential format. The four carats are placed
after the digit position characters. You may specify any
decimal point position.

PRINT USING ".####----"; 888888
•8889E+06

Print next character as a literal character.

PRINT USING "_1##.##_' ";12.34
!l2.34!

Samp1e Program

420 CLS: A$ = "**$##,######.## DOLLARS"
430 INPUT "WHAT IS YOUR FIRST NAME"; F$
440 INPUT "WHAT IS YOUR MIDDLE NAMEU; M$
450 INPUT "WHAT IS YOUR LAST NAME"; L$
460 INPUT "ENTER AMOUNT PAYABLE"; P
470 CLS : PRINT "PAY TO THE ORDER OF ";

---------lIadI8Ihaell---------

-174-

____""'Ta.RS.-..x....E..N...IX_M....BIAA..S'wC TRS-BO ®K..EYololw...Q..RioIoIQ~S _

480 PRINT USING II!! !! II; F$;
490 PRINT L$
500 PRINT :PRINT USING A$; P

II II.. , M$; II II.. ,

In line 480, each! picks up the first character of one of the
following strings (F$, 11.11, M$, and 11.11 again). Notice the two
spaces in II!! ~! !~II. These two spaces insert the appropri ate spaces
after the initials of the name (see below). Also notice the use of
the variables A$ for format and P for item list in line 500. Any
serious use of the PRINT USING statement would probably require the
use of variables at least for item list rather than constants.
(We've used constants in our examples for the sake of better
illustration).

When the program above is run, the output should look something like
th is:

WHAT IS YOUR FIRST NAME? JOHN
WHAT IS YOUR MIDDLE NAME? PAUL
WHAT IS YOUR LAST NAME? JONES
ENTER AMOUNT PAYABLE? 12345.6
PAY TO THE ORDER OF J. P. JONES

*****$12,435.60 DOLLARS

--------- ftadIG/haell---------

-175-

____...:K~Eo.:.YW::.;Q~R~DS=__ TRS.BO ® __...TIoWRS,""-,Q,jXEIMN...Ia,X.....MIoKjBA....S...I~C _

PRINT @

PRINT@ location,
PRINT@ (row, column),

Statement

Specifies exactly where printing is to begin.

The location specified must be a number between ~ and 1919. It can
also be a a pair of numbers (~, ~), where 24>r=>0 and 79=>c=>0.

Whenever you instruct MBASIC to PRINT @the bottom line of the
display, it generates an automatic line feed; everything on the
display moves up one line. To suppress this automatic line feed, use
a trailing semicolon at the end of the statement.

Exampl es

PR I NT @ (11,39), "* II

prints an asterisk in the middle of the display.

prints an asterisk at the top left corner of the display.

---------Itadlelhaell---------

-176-

____...T..RS,.,;-;;,jX...EoIIN...IX......,.;M;y;RUlIAooJ,ST....C.....__ TRS.BO ® K_Fy...w...OIlllROoIoIQ~S _

PRINT TAB(n) Statement

Moves the cursor to the n position on the current line (or on
succeeding lines if you specify TAB positions greater than 79).

TAB may be used more than once in a print list.

Since numerical expressions may be used to specify a TAB position,
TAB can be very useful in creating tables, graphs of mathematical
functions, etc.

TAB can't be used to move the cursor to the left. If the cursor is
to the right of the specified position, the TAB statement will
simply be ignored.

Exampl e

PRINT TAB(5) IITABBED 511
; TAB(25) IITABBED 25 11

Notice that no punctuation is needed after the TAB modifiers.

Sample Program

220 CLS
230 PRINT TAB(2) IICATALOG NO. II TAB(16) "DESCRIPTION OF ITEW';
240 PRINT TAB (39) "QUANTITY "; TAB(51) "PRICE PER ITEM II ;
245 PRI NT TAB (69) IITOTAL PRI CE"

---------Itadlo/haell---------

-177-

_____KI,},IEwy..u.WQx.lR~D~S TRS..BO ® __....TIoIolR.S...-X....E...N...JX......M""BAiAIIlSIolioI....C---

PRINT#

PRINT# buffer, item!, item2, •••

Statement

Prints data items in a sequential disk file.

Buffer is the buffer number used to OPEN the file for input.

When you first OPEN a file for sequential output, MBASIC sets a
pointer to the beginning of the file--that's where PRINT# starts
printing the values of the items. At the end of each PRINT#
operation, the pointer advances, so values are written in sequence.

A PRINT# statement creates a disk image similar to what a PRINT to
the display creates on the screen. For this reason, make sure to
delimit the data so that it will be input correctly from the disk.

PRINT# does not compress the data before writing it to disk. It
writes an ASCII-coded image of the data.

Examples

If A = 123.45

PRINT#l,A

writes this nine-byte character sequence onto disk:

~123.45~ carriage return

The punctuation in the PRINT list is very important. Un quoted commas
and semicolons have the same effect as they do in regular PRINT
statements to the display. For example, if A = 2300 and B = 1.3~3,

then

PRINT#l, A,B
<ENTER>

writes the data on disk as

~ 230~ ~~~~~~~~~~ 1.3~3~ carriage return

The comma between A and B in the PRINT# list causes 1~ extra spaces
in the disk file. Generally you wouldn't want to use up disk space
in this way, so you should use semicolons instead of commas.

---------Itadle/haell---------

-178-

____...T...R...S-;t"jx...E...N..T..X...M;y,BIIIilA....S..TC"____ TRS-BO ®KEIIi.IYWlwllol0Ill.Rn..s~ _

Files can be written in a carefully controlled format using PRINT#
USING. You can also use this option to control how many characters
of a value are written to disk.

For example, suppose A$ = "LUDWIG", B$ = "VAN", and C$ =
"BEETHOVEN". Then the statement

PRINT#l, USING"!, !, \ \";A$;B$;C$

would write the data in nickname form:

L. V. BEET

(In this case, we didn't want to add any explicit delimiters). See
PRINT USING for more information on the USING option.

---------lIadI8/haell---------

-179-

_____K~E...yw~Qa.;RloIIiODS TRS-BO ® __....Ta.RS.r.;;-~XE~Nw.I.X..IOIMIMIBAOIIIlS...,.IC..... _

PUT

PUT buffer, [record]

Puts a record in a direct-access disk file.

Statement

Buffer is the same buffer used to OPEN the file.

Record is the record number you want to PUT into the file.
It is an integer between 1 and 32,767. If omitted, the current
record number is used.

This statement moves data from the buffer into a specified place in
the file.

The first time you access a file via a particular buffer, the next
record is set equal to one. (The next record is the record whose
number is one greater than the last record accessed).

If record is higher than the end-of-file record number, then
record becomes the new end-of-file record number.

The first time you use PUT after OPENing a file, you must specify
the record.

See the chapter on "Disk Files" for programming information.

PUT 1

writes the next record from buffer 1 to a direct-access file.

PUT 1, 25

writes record 25 from buffer 1 to a direct-access file.

---------Itadle/haell---------

-18~-

____~TARS~-~x..F.IIN.a.TXA...I:M:wRw.A~SI...c TRS-BO ® ...A.K,I;,Ey.l.lwlL°.LllRi.Lln~S _

RANDOMIZE

RANDOMIZE [expression]

Functi on

Reseeds the random number generator.

If your program uses the RND function, every time you load it,
MBASIC generates the same sequence of pseudorandom numbers.
Therefore, you may want to put RANDOMIZE at the beginning of the
program. This will help ensure that you get a different sequence of
pseudorandom numbers each time you run the program.

If expression is omitted, MBASIC prompts for a seed value:

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

RANDOMIZE needs to execute just once.

Sampl e Program

6~~ CLS: RANDOMIZE
61~ INPUT IIPICK A NUMBER BETWEEN 1 AND 511

; A
62~ B = RND(5)
63~ IF A = B THEN 65~

640 PRINT IIYOU LOSE, THE ANSWER ISII B II __ TRY AGAIN. II
645 GOTO 61~

650 PRINT IIYOU PICKED THE RIGHT NUMBER -- YOU WIN!II: GOTO 610

---------ltadI8Ihaell---------

-181-

____...aIKE..y.aW....QROMlD~S TRS-BO ® TLIlR~S.::.-XIWiEioUN~IA.X..M&YBa.AS~JIoIilC _

READ

READ variablel, variable2, •••

Statement

Reads values from a DATA statement and assigns them to variables.

MBASIC assigns values from the DATA statement on a one-to-one basis.
The first time READ is executed, the first value in the first DATA
statement is used; the second time, the second value is used, and so
on.

A single READ may access one or more DATA statements (each DATA
statement is accessed in order), or several READs may access the
same DATA statement.

The values read must agree with the variable types specified in list
of variables, otherwise, a f1Syntax error fl occurs. If the number of
variables in list of variables exceeds the number of elements in the
DATA statement(s), an flOut of data fl error message is printed.

---------lIadlo/haell---------

-182-

____"""T.aR~S-~xw;FOIlINIoIoT...X....M;y,BIolilA..S..TCIoo.___ TRS.BO ®KE'-lyI.llWIl.l°il(,jRnI.l,,;S~ _

If the number of variables specified is lower than the number of
elements in the DATA statement(s), subsequent READ statements begin
reading data at the first unread element.

Examp1e

READ T

reads a numeric value from a DATA statement and assigns it to
vari ab1e liT".

Sampl e Program

This program illustrates a common application for the READ and DATA
statements.

413 PRINT II NAME II , "AGP
513 READ N$
60 IF N$="END" THEN PRINT "END OF LIST": END
713 READ AGE
813 IF AGE<18 THEN PRINT N$, AGE
913 GOTO 513
11313 DATA "SMITH, JOHN", 313, "ANDERSON, ToM.", 213
1113 DATA "JONES, BILL", 15, II DOE , SALLY", 21
1213 DATA "COLLINS, W.P.", 17: END

---------lIadlo/haell---------

-183-

____......lK~E...y.uW:.v.QI,},lRDIGIlS'"_ TRS-BO ® T""'R_Sr.;;;-AXE....NIoII"QX...MIi&IB""AMlS~IC..... _

REM

REM

Statement

Inserts a remark line in a program.

REM instructs the computer to ignore the rest of the program line.
This allows you to insert remarks into your program for
documentation. Then, when you look at a listing of your program, or
someone else does, it will be easier to figure it out.

If REM is used in a multi-statement program line, it must be the
last statement in the line.

You may use an apostrophe (I) as an abbreviation for :REM.

Sample Program

12~ REM CALCULATE AVERAGE VELOCITY
130 FOR 1=1 TO 2~

14~ SUM=SUM + V(I)

OR

12~ FOR 1=1 TO 2~

13~ SUM=SUM + V(I)
14~ NEXT I

ICALCULATE AVERAGE VELOCITY

--------- ftadle/haell---------

-184-

____...T....R..S...-,a,XE..NlIoIlI.oIIX.......M...RAaoS....I....C TRS-BO ®tiKloIifOolov..w"'oR""o...S... _

RENUM

RENUM [new line], [line], [increment]

Statement

Renumbers a program, starting at line, using new line as the
first new line and increment for ~new sequence.

If you omit new line, MBASIC starts numbering at line 1~.

If you omit the line, it renumbers the entire program.
If you omit increment, it jumps 1~ numbers between lines.

RENUM also changes all line number references appearing after GOTO,
GOSUB, THEN, ON ••. GOTO, ON •.• GOSUB, ON ERROR GOTO, RESUME, and
ERL[relational operator].

Exampl es

RENUM

renumbers the entire resident program, incrementing by l~ls. The new
number of the first line will be 1~.

RENUM 6~~, 5~~~, 1~~

renumbers all lines numbered from 5~~~ up. The first renumbered line
will become 6~~, and an increment of 1~~ will be used between
subsequent lines.

RENUM 1~~~~, 1~~~

renumbers line 1~~~ and all higher-numbered lines. The first
renumbered line will become line 1~~~~. An increment of 1~ will be
used between subsequent line numbers.

RENUM 1~~, , 1~~

renumbers the entire program, starting with a new line number of
10~, and incrementing by l~~ls. Notice that the commas must be
retained even though the middle argument is gone.

---------ltadIG/haell---------

-185-

_____,QK...E...ywlllol0""Rw,P&.lS TRS-BO ® __....",TAR~S-;;'OXIloliF;"IlN....T...X....MI:&lB~Aot.,;Sl.l.TC _

Error Conditions

1. RENUM cannot be used to change the order of program lines. For
example, if the original program has lines numbered 111,211, and
311, then the command:

RENUM 15, 311

is illegal, since the result would be to move the third line of
the program ahead of the second. In this case, and FC (illegal
function call) error occurs, and the original program is left
unchanged.

2. RENUM will not create new line numbers greater than 65529.
Instead, an FC error occurs, and the original program is left
unchanged.

3. If an undefined line number is used inside your original
program, RENUM prints a warning message, "undefined line XXXX
in YYYY", where XXXX is the original line number reference and
YYYY is the original number of the line containing XXXX. Note
that RENUM renumbers the program in spite of this warning
message. It does not change the incorrect line number
reference, but it does renumber YYYY, according to the
parameters in your RENUM command.

---------Itadlolhaell---------

-186-

(

____....TRIJo,;s;a,;;-....x,j;,jEN~II.IXo_l;llMB~A;a,;;Slo&oI ...C__ TRS-BO ® ..KWiiF..v..WOIollR...n...s _

RESTORE

RESTORE [l i ne]

Statement

Restores a program's access to previously-read DATA statements.

This lets your program re-use the same DATA lines.
If line is specified! the next READ statement accesses the first
item in the specified DATA statement.

Sampl e Program

is printed on the display. Because of the RESTORE statement in line
17~! the second READ statement starts over with the first DATA item.

16~ READ X$
17(1 RESTORE
18~ READ Y$
19(1 PRINT X$! Y$
2(1~ DATA THIS IS THE FIRST ITEM! AND THIS IS THE

SECOND

When this program is run!

THIS IS THE FIRST ITEM THIS IS THE FIRST ITEM

----------ltadlOlhaell----------

-187-

_____KIoioIE...y....WQ...RoMID..S TRS..BO ® T....RYIIS,;;;;,-XIWIE...N...Ia,X.M...BiIOIIlASIIWI....C..... _

RESUME

RESUME [line]
RESUME NEXT

Statement

Resumes program execution after an error-handling routine.

RESUME without an argument and RESUME ~ both cause the computer to
return to the statement in which the error occurred.

RESUME line causes the computer to branch to the specified line
number.

RESUME NEXT causes the computer to branch to the statement following
the point at which the error occurred.

A RESUME that is not in an error-handling routine causes a "RESUME
without error" message.

Examples

RESUME

if an error has occurred, this line transfers program control to the
statement in which it occurred.

RESUME 1~

if an error has occurred, transfers control to line 1~.

Sampl e Program

1~ ON ERROR GOTO 9~~

9~~ IF (ERR=23~) AND(ERL=9~) THEN PRINT "TRY AGAIN"
RESUME 8~

Refer to Appendix A for more on the Error Codes.

---------ftadle/haell---------

-188-

____...TRIIolOS;w;-..x....FNIIoII...X-.l:ollMBIoMAiIooiS...IC__ TRS-BO ® ...IKIr.liE_y~w°IolliR"'"p~S _

RETURN

RETURN

Statement

Returns control to the line immediately following the most recently
executed GOSUB.

If the program encounters a RETURN statement without execution of a
matching GOSUB, an error occurs.

Sampl e Program

33~ PRINT "THIS PROGRAM FINDS THE AREA OF A CIRCLE"
34~ INPUT "TYPE IN A VALUE FOR THE RADIUS"; R
35~ GOSUB 37~

36~ PRINT "AREA IS" ; A: END
37~ A = 3.14 * R * R
38~ RETURN

---------lIadI8/haell---------

-189-

____...:;K~E.:.lYW::,:,;O~R.l'lDS'__ TRS.BO ® __....T.QIRSII,;-;AXEwN....IA,X..MLWlBA~S,...I""C _

RIGHT$

RIGHT$(string, number)

Function

Returns the rightmost number characters of string.

RIGHT$ returns the last number characters of string. If LEN
(string) is less than or equal to number, the entire string is
returned.

Examples:

PRINT RIGHT$("WATERMELON", 5)

prints MELON.

PRINT RIGHT$("MILKY WAY", 25)

prints MILKY WAY.

Sampl e Program

850 RESTORE: ON ERROR GOTO 880
860 READ COMPANY$
87~ PRINT RIGHT$(COMPANY$, 2), GOTO 860
880 END
890 DATA "BECHMAN LUMBER COMPANY, SEATTLE, WA"
90() DATA "ED NORTON SEWER SERVICE, BROOKLYN, NY"
910 DATA "HAMMON MANUFACTURING COMPANY, HAMMOND, IN"

This program prints the name of the state in which each company is
located.

---------lIadI8/haell---------

-190-

____..IT'-IlR~S_-.A.lxE~N...I..X_aaMgjBAII.S;wI...C TRS.BO ®K..F"'v..W...ORIIoIDIoIoiSiIIo- _

RND

RND(number)

Functi on

Generates a pseudorandom number between ~ and number.

Number must be greater than or equal to ~ and less than 32768.

RND produces a pseudorandom number using the current "seed" number.
MBASIC generates the seed internally, therefore, it is not
accessible to the user. RND may be used to produce random numbers
between ~ and 1, or random integers greater than ~, depending on the
argument.

RND(0) returns a double-precision value between ~ and 1, RND(number)
returns an integer between 1 and number. For example, RND(55)
returns a pseudorandom integer between 1 and 55. RND(55.5) returns a
pseudorandom number between 1 and 56 (the argument is rounded). If
number is negative, a function call error occurs.

Exampl es

A = RND(2)

assigns A a value of 1 or 2.

A = RND(45)

assigns A a random integer between 1 and 45.

PRINT RND (0)

prints a decimal fraction between ~ and 1.

--------- ftadIG/haell---------

-191-

____..:.K~Eo:..:YW~O~R~DS='__ TRS-BO ® __.....T~RS~-;.Q,XEw·N...IA,X..MLWiBAr;MSw.I~C _

RSET

RSET field name = data

Sets data in a direct-access buffer field.

Statement

This statement is similar to LSET. The difference is that with RSET,
data is right-justified in the buffer.

See LSET for details.

---------Itadlo/haell---------

-192-

____...T...R...$-;;,ox...F...N...' ..X...M;y,BilQAIooI$..' C.....__ TRS-SO ®K...Eyololw..Q...R...Q~S _

RUN

RUN [l i ne]
RUN /f1lename, [R]

Runs a program.

Statement

RUN followed by a line or nothing at all simply executes the
program in memory, starting at line or at the beginning of the
program.

RUN followed by a filename loads a program from disk and then runs
it. Any resident MBASIC program is replaced by the new program.

Optional R leaves all previously OPEN files open. If omitted,
MBASIC closes all open files.

RUN automatically CLEARS all variables.

Examples

RUN

starts execution at lowest line number.

RUN 1(1(1

starts execution at line 1(1(1.

RUN "PROGRAM.A"

loads and executes PROGRAM.A.

RUN "EDITDATA", R

loads and executes EDITDATA, leaving OPEN files open.

---------ltadI8Ihaell---------

-193-

_____K~Ewy.AWQ:I'IRoloIilPOll'S TRS..BO ® TIoIolRYlIS...-Xa.a,EMIIN...UQ"",IOMIoWBiIOIoIASlIIoIX....C _

SAVE

SAVE filename, [A], [P]

Statement

Saves a program in a disk file under filename.

If filename already exists, its contents will be lost as the file
is re-created.

SAVE without the A option saves the program in a compressed
format. This takes up less disk space. It also helps SAVEs and
LOADs to be performed faster. MBASIC programs are stored in RAM
using compressed format.

Using the A option causes the program to be saved in ASCII format.
This takes-up more disk space. However, the ASCII format allows you
to MERGE this program later on. Also, data programs which will be
read by other programs must usually be in ASCII.

For compressed-format programs, a useful convention is to use the
extension .BAS. For ASCII-format programs, use .TXT.

The P option protects the file by saving it in an encoded binary
format.

Exampl es

SAVE IIFILEl.BAS.JOHNII

saves the resident MBASIC program in compressed format. The file
name is FILE1; the extension is .BAS.

SAVE IIMATHPAK.TXP, A

saves the resident program in ASCII form, using the name
MATHPAK.TXT, on the first non-write-protected drive.

---------Itadle/haell---------

-194-

____..&T...R~S·..x..EOIlIN...T...x..liM""BWlA.,},SololTc TRS.BO ®K,a;;,E:YIolW....Q.R..D~S-----

SGN

SGN(number)

Functi on

Determines number's sign.

If number is a negative number, SGN returns -1.
If number is a positive number, SGN returns 1.
If number is zero, SGN returns 0.

Exampl es

Y = SGN(A * B)

determines what the sign of the expression A*B is, and passes the
appropriate number (-1,0,1) to Y.

ON SGN(X)+2 GOTO 100, 200, 300

branches to 100 if X is negative, 200 if X is 0, and 300 if X is
positive.

---------lIadI8/haell---------

-195-

_____KlIllIE"""ywYolQIWoRlIllID..S TRS-BO ® __....TIoIolRIMSOiiij-x;w,EoIlIN...IX"'-IOMIoIIIBIOIiIAS~IIoIIIC _

SHELL

SHELL ("command")

Functi on

Returns the process 10 of TRS-XEN1X command. This process
executes command. Control is returned to MBAS1C, without waiting
for the process to terminate.

Exampl e

x = SHELL (Ildate")

stores the process 10 in x and returns to MBAS1C. A few seconds
later your screen displays:

Sat Jan 29 06:36:06 EST 1983

Note: Only numeric variables can store this value.

---------ftadlo/hael(---------

-196-

____..ToMR..S-...XiWlf.uN...I.X..M....R...AIMS...IC~__ TRS.BO ®IlIroK""Ey.l.lwlL°.LllRu.ln~s _

SHELL Statement

Executes a TRS-XENIX command and returns to MBASIC.

If command is omitted, SHELL halts the execution of MBASIC and
executes the TRS-XENIX SHELL program. To exit the SHELL press
<CTRL><D> and return to MBASIC.

Exampl e

SHELL 1I1sll

displays the listing of your current directory, then returns control
to MBASIC.

---------lIadI8Ihaell---------

-197-

____..loK~Eo.:.:YW~O:.:.;R=_DS~ TRS-BO ® __....T~RS,&,;;;-J;l,jXEIollN.....IA.X,.&;IM.w,tBA;;aS.....IC..... _

SIN

SIN (number)

Functi on

Computes the sine of number.

Number must be in radians. To obtain the sine of number when
number is in degrees, use SIN(number * .01745329). The result is
always double precision.

Exampl es

PRINT SIN(7.96)

prints .994385315~281.

Sampl e Program

66~ INPUT "ANGLE IN DEGREES"; A
67~ PRINT "SINE IS"; SIN(A * .01745329)

---------lIadle/haell---------

-198-

____...TRg",SM-;"ax....EN...I...XlooolaMIoIIBAa.;S..T..C__ TRS-BO ®KE...v"IwlIoI°..Ro...Sillo- _

SPACES

SPACE$(number)

Returns a string of number spaces.

Number must be in the range 0 to 32767.

Exampl e

Function

PRINT IIDESCRIPTIONII SPACE$(4) IITYPP SPACE$(9)
II QUANTITY II

prints DESCRIPTION, four spaces, TYPE, nine spaces, QUANTITY.

Sampl e Program

920 PRINT IIHere li
930 PRI NT SPACE$ (13) IIi s II
940 PRINT SPACE$(26) lIan li
950 PRINT SPACE$(39) lIexampleli
960 PRINT SPACE$(52) lI of li
97~ PRINT SPACE$(65) IISPACE$II

---------lIadlelhaell---------

-199-

____~K....Ey....H~Q~BWo1pS.... TRS.BO ® T~RMiSI.iiii-lA.XEWNI.II..AX....MI:&IRIKA~SI.l.IC..... _

SPC

SPC(number)

Functi on

Returns a string of number blanks.

Number is in the range 0 to 32767. SPC does not use string space.
The left parenthesis must immediately follow SPC.

SPC may only be used with PRINT, LPRINT, or PRINT# •

Exampl e

PRINT IIHELLO II SPC(l5) IITHEREII

prints HELLO, 15 spaces, THERE

---------Itadlo/haell---------

-200-

____....TR..sjl,,;;-~xolOolFNIAoII...X_MBIoMAa.lS....I ..C__ TRS-BO ® ...lKl.IiF.yWIllO~R'LlP~S _

SQR

SQR(number)

Calculates the square root of number.

The number must be greater than zero.

The result is always double precision.

Examp1e

PRINT SQR(155.7)

prints 12.478.

Function

Sampl e Program

68~ INPUT IITOTAL RESISTANCE (OHMS)II; R
69~ INPUT IITOTAL REACTANCE (OHMS) II; X
7~~ Z = SQR«R * R) + (X * X»)
710 PRINT IITOTAL IMPEDANCE (OHMS) ISII Z

This program computes the total impedance for series circuits.

----------ltadI8I11aell---------

-2(11-

____.....KIoME..y.uWoMoQR~Pl'aS'__ TRS-BO ® T....RMS&,;;;-iAXWENIoII..aX_MI;IjR~AMiSw.ICa..- _

STOP

STOP

Statement

Stops program execution.

When a program encounters a STOP statement, it prints the message
BREAK IN, followed by the line number that contains the STOP. STOP
is primarily a debugging tool. During the break in execution, you
can exami ne vari ables or change thei r val ues.

The CONT command resumes execution at the point it was halted. But
if the program itself is altered during the break, CONT cannot be
used.

Sampl e Program

226~ X = RND(l~)

227~ STOP
228~ GOTO 226~

A random number between 1 and 1~ is assigned to X, then program
execution halts at line 227~. You can now examine the value Xwith
PRINT X. Type CONT to start the cycle again.

---------lIadlo/haell---------

-2~2-

____ToI.I:RioIIsl,;;,-.A.lxE;;"IlNu.T....x..l1M:&IlBla,A..STLl.c TRS-BO ® ...Ki.l:E.ywal°I.l/lR'-IolQ~S _

STR$

STR$(number)

Function

Converts number into a string.

If number is positive" STR$ places a blank before the string.

While arithmetic operations may be performed on number, only
string functions and operations may be performed on the string.

Exampl e

S$ = STR$(X)

converts the number X into a string and stores it in S$.

Sample Program

5 REM ARITHMETIC FOR KIDS
1~ INPUT "TYPE A NUMBER"; N
15 ON LEN(STR$(N)) GOSUB 3~, 1~0, 2~~, 3~~, 4~~, 5~~

---------Itafllo/haell---------

-2£13-

_____K-=E;,:,oYW~O;;,.,;Ro;,;DS TRS..BO ® __....T~RS""'-OQOXE....N....IA.X..IoOMIMlBA~S....IM.C _

STRINGS

STRING$(number, character)

Returns a string of number characters.

Function

Number must be in the range ~ to 32767.

Character is a string or a~ ASCII code. If you use a string
constant, it must be enclosed in quotes.

All the characters in the string will have either the ASCII code
specified, or the first letter of the string specified.

STRING$ is useful for creating graphs or tables.

Exampl es:

B$ = STRING$(25, "X")

puts a string of 25 "X"s into B$.

PRINT STRING$(5~, l~)

prints 5~ blank lines on the display, since l~ is the ASCII code for
ali ne feed.

Sample Program

1~4Vl CLEAR 3~~

1~5~ INPUT "TYPE IN THREE NUMBERS BETWEEN 33 AND
159(Nl,N2,N3)"; Nl, N2, N3

1~6~ CLS: FOR I = 1 TO 4: PRINT STRING$(2~, Nl): NEXT I
1~7Vl FOR J = 1 T~ 2: PRINT STRING$(4~, N2): NEXT J
1~8~ PRINT STRING$(8~, N3)

---------Itadlolhaell---------

-204-

____...TARsolo;-::"X..F,gN...IX~M:&I.lRIa.A",J,ST&.IC TRS-BO ® ...Ill.K""'EY.LIW....°.lllR....n~S _

SWAP

SWAP variablel, variable2

Statement

Exchanges the values of two variables.

Variables of any type may be SWAPed (integer, single preclslon,
double precision, string). However, both must be of the same type,
otherwise, a "Type mismatch" error results.

Either or both of the variables may be elements of arrays. If one or
both of the variables are non-array variables which have not been
assigned values, an "Illegal Function Cal'" error results.

Exampl e

SWAP Fl#, F2#

swaps the contents of Fl# and F2#. The contents of F2# are put into
Fl#, and the contents of Fl# are put into F2#.

Sampl e Program

l~ A$="0NE ": B$=" ALL ": C$="FOR II

2~ PRINT A$ C$ B$
3~ SWAP A$, B$
4~ PRINT A$ C$ B$
RUN
ONEFORALL
ALLFORONE

---------ltadI8/haell---------

-2gS-

____.....K...E...yWIlolO...BwcO...S TRS..BO ® T.LIBMiSL:-"",XEwN&.II..clX..,jMg,jB~AMlS~IC..... _

SYSTEM

SYSTEM

Statement

Closes all files and exits MBASIC. The resident MBASIC program will
be lost.

Exampl e

SYSTEM

returns you to TRS-XENIX level.

When SYSTEM is executed it spools the LPRINT buffer to the line
printer.

---------lIadle/haell---------

-2~6-

____.....TR..s..·...x...FNIIWT...X_MB~A..S...T...C__ TRS-BO ® ----....KioIi~""'Y.WQIINRw.iC~£-----

TAB

TAB (number)

Spaces to position number on the display.

Number must be in the range 1 to 32767.

Functi on

If the current print position is already beyond space number, TAB
goes to that position on the next line. Space one is the leftmost
position; the width minus one is the rightmost position.

TAB may only be used with the PRINT and LPRINT statements.

Sampl e Program

10 PRINT IINAME II TAB(25) IIAMOUNP:PRINT
20 READ A$, B$
30 PRINT A$ TAB(25) B$
40 DATA IG.T.JONESI,I$25.ll'0"
RUN

The display shows:

NAME

G. T. JONES

AMOUNT

$25.00

--------- ftadIG/haell---------

-2fA7-

____......a.;K~E....YWa.lQ"I;RYIlp~S TRS.BO ® T.&.IBMiS~-IA.Xf....NIoII..A·X....Mg,j8",AMlS...I C.... _

TAN

TAN (number)

Functi on

Computes the tangent of number.

Number must be in radians. To obtain the tangent of number when
it is in degrees, use TAN (number * .11745329). The result is always
double precision.

Exampl es

PRI NT TAN (7 • 96)

prints -9.396962~13~868

Sample Program

72~ INPUT IIANGLE IN DEGREES II; ANGLE
73~ T = TAN (ANGLE * .01745329)
74~ PRINT IITAN IS II T

---------Itadlo/haell---------

-208-

____....TRIlIioosilo:-..xol.lENIIooIT~X......MBIoJoIA_Sw.T....C__ TRS-BO ® ...KlIoI;F..YaW°IolliR"'n~S _

TIME$

TIME$

Function

Returns the time of the day.

This function lets you use the time in a program.

The operator sets the time initially when TRS-XENIX is started up.
When you request the time, TIME$ supplies it using this format:

14:47:18

which means 14 hours, 47 minutes and 18 seconds (24-hour clock).

Exampl e

A$ = TIME$

stores the current time in A$.

Sanp1e Program

1140 IF LEFT$(TIME$, 5) = "10:15" THEN PRINT "Time is
10:15 A.M.--time to pick up the mail." : END

1150 GOTO 1140

---------ltadI8/haell---------

-2~9-

_____KE_Y~W~OR_D~S TRS..BO ® __..:.T~RS~-~XE;;.:;N:.:.I,g"X~M~BA~S~I.x.C _

TROFF, TRON

TROFF
TRON

Turn the "trace functi on II on/off.

Functi on

The trace function lets you follow program flow. This is helpful for
debugging and analyzing of the execution of a program.

Each time the program advances to a new line, TRON displays that
line number inside a pair of brackets. TROFF turns the tracer off.

Sampl e Program

229(3 TRON
23(3(3 X = X * 3.14159
231(3 TROFF

Lines 229(3 and 231(3 above might be helpful in assuring you that line
23(3(3 is actually being executed, since each time it is executed
[23(3(3J is printed on the Display.

After a program is debugged, the TRON and TROFF statements can be
removed.

---------Itadlo/haell---------

-210-

____..T,aR..S-;;,jXw,f.uN...I ..X..M;y,BIQAIooIS...ICIo6oo..__ TRS.BO ®KEIiOoIY~wloW°..Rn...S;a.... _

UNLOCK

UNLOCK [#]buffer [range]

Statement

Releases access restrictions placed upon a file.

UNLOCK releases locks in the specified range on the file opened
with the number buffer.

Range is specified only if the file is open for random access. The
syntax for range is record1 TO record2.

Samp1e Program

1~ OPEN IIR II , 1, lI employee.data ll
, 32

2~ INPUT IIRecord number ll
; N%

3~ If N%>2~~ THEN 11~

4~ LOCK 1, N%
5~ GET 1, N%
6~ PRINT NAME$
7~ PRINT ADDRESS$
8~ PRINT TEL$
9~ UNLOCK 1, N%
1~~ GOTO 3~

11~ CLOSE 1

This program opens the file employee.data and locks the records
requested. As the information of each record requested is written
out, the corresponding record is unlocked. This process continues
until you request a record number larger than 2~~.

---------lIadlo/haell---------

-211-

____..,;K_E_YW~O_R:.;;,;DS TRS..BO ® __..r.T~BS~-oaXI;;,I,ENy,I,Q,X..:.MIKIBA~S,*,I~C _

VAL

VAL{stri ng)

Functi on

Calculates the numerical value of string.

VAL is the inverse of the STR$ function; it returns the number
represented by the characters in a string argument. This number may
be integer, single precision, or double precision, depending on the
range of values and the rules used for typing all constants.

For example, if A$ = "12" and B$ = "34" then VAL(A$ + 11." + B$)
returns the value 12.34 and VAL(A$ + "E" + B$) returns the value
12E34, that is, 12 * 1@A34.

VAL terminates its evaluation on the first character which has no
meaning in a numeric term.

If the string is non-numeric or null, VAL returns a zero.

Exampl es

PRI NT VAL ("1~~ DOLLARS ")

prints 10~.

PRINT VAL (11234E5")

prints 1.234E+08.

assigns the value 3 to B (the asterisk has no meaning in a numeric
term) .

Sampl e Program

10 READ NAME$, CITY$, STATE$, ZIP$
20 IF VAL(ZIP$) < 9~~~@ OR VAL(ZIP$) > 96699 THEN PRINT NAME$

TAB(25) 1I0UT OF STATP
30 IF VAL(ZIP$) > 9@8@1 AND VAL(ZIP$) <= 9@815 THEN PRINT

NAME$ TAB(25) "LONG BEACW

---------ftadle/haell---------

-212-

____...T.RS~-..x....F.IIN...IX...MiWiIB..A~ST...c TRS-BO ®K...Fy.ww..Q...RI&oID~S _

VARPTR

VARPTR(variable or buffer)

Functi on

Returns the absolute memory address.

VARPTR can help you locate a value in memory. When used with
variable, it returns the address of the first byte of data
identified with variable.

When used with buffer, it returns the address of the file1s data
buffer. If the variable you specify has not been assigned a name, or
the file has not been opened, an "Illegal Function Call" occurs.

If VARPTR (double-precision variable) returns K:

If VARPTR (integer variable). returns address K:
Address K contains the most significant byte (MSB) of 2-byte
integer.
Address K + 1 contains the least significant byte (LSB) of integer.

If VARPTR (single-precision variable) returns address K:

, --'., (K)*
(K) + 1
(K) + 2
(K) + 3

(K)*
(K) + 1
(K) + 2
(K) + 3
(K) + 4
(K) + 5
(K) + 6
(K) + 7

= exponent of value. High bit is sign bit. Bias is 64
= MSB of BCD mantissa (2 digits)
= next MSB (2 digits)
= LSB (2 digits)

= exponent of value. High bit is sign bit. Bias is 64
= MSB of BCD mantissa (2 digits)
= next MSB (2 digits)
= next MSB (2 digits)
= next MSB (2 digits)
= next MSB (2 digits)
= next MSB (2 digits)
= LSB (2 digits)

Note: You cannot return VARPTR to an integer variable.

For single and double-precision values, the number is stored in
normalized exponential form, so that a decimal is assumed before the
MSB. 64 is added to the exponent. Furthermore, the high bit of MSB
is used as a sign bit. It is set to @if the number is positive or
to 1 if the number is negative. See examples below.

---------lIadle/haell---------

-213-

____...aK...EY..WUIl0IUoRQ""S''''__ TRS-BO ® T,I,IRMS",-,AjXF,"",NLlI.,AX...IMl:LIR;&,C;AWS".IC...... _

*(K) signifies "contents of address K"

If VARPTR (string variable) returns K:

(K)*
(K + 1)
(K + 2)
(K + 3)
(K + 4)

= MSB length of string
= LSB length of string
= MSB of string value starting address
= next MSB of string value starting address
= LSB of string value starting address

The address will probably be in high RAM where string storage space
has been set aside. But, if your string variable is a constant (a
string literal), then it will point to the area of memory where the
program line with the constant is stored, in the program buffer
area. Thus, program statements like A$="HELLO" do not use string
storage space.

VARPTR(array variable) returns the address for the first byte of
that element in the array. The element consists of 2 bytes if it is
an integer array; 5 bytes if it is a string array; 4 bytes if it is
a single precision array; and 8 bytes if it is a double precision
array.

The first element in the array is preceded by:
1. A sequence of two bytes per dimension, each two-byte pair

indicating the "depth" of each respective dimension.
2. A single byte indicating the total number of dimensions in the

array.
3. Three bytes indicating the total number of elements in the

array.
4. A two-byte pair containing the ASCII-coded array name.
5. A one-byte type-descriptor(02 = Integer, 05=String, 04 =

Single=Precision, 08 = Double-Precision).

Item 1 immediately precedes the first element, Item 2 precedes Item
1, and so on.

The elements of the array are stored sequentially with the first
dimension-subscripts varying "fastest", then the second, etc.

Exampl es

A! = 2 is stored as follows:

2 = 2X1~ (to the first)

So exponent of A is 64+1 = 65 (called excess 64)

---------ftadle/haell---------

-214-

___......TIoaR..S-;wx....F....NI....X~MBIoMAI.iIS""'IC......_- TRS-BO ®IKi.l:E..y~WQIoIIiR"'QI.;lI,S _

The high bit of the exponent is set to zero to indicate a positive
number.

So A! = 2 is stored as:

(K)* 65
(K) + 1 32
(K) + 2 0
(K) + 3 0

A! = -5 is stored as:

(K)* 192
(K) + 1 80
(K) + 2 0
(K) + 3 0

A! = 123.456 is stored as:

(K)* 67
(K) + 1 18
(K) + 2 52
(K) + 3 86

A! = -123.456 is stored as:

(K)* 195
(K) + 1 18
(K) + 2 52
(K) + 3 86

The following program will allow you to see the contents of a single
precision variable.

10 INPUT "ENTER A NUMBER "; A!
20 B = VARPTR(A!)
30 FOR I = B TO B+3
40 PRI NT PEEK (I)
50 NEXT I
6(1 END
RUN
ENTER A NUMBER? 100
67
16
Ii'
o
Ok

---------ltatlI8/haell---------

-215-

____...K;y"E...yW...O""'RoM;DS.... TRS-BO ® __..&oT.RS....-OQ,XE""N....' ..X....MIMBA""'Sw.IC _

To look at double precision use:

l(il INPUT IIENTER A NUMBER II; A
2(il B = VARPTR(A)
3(il FOR I = B TO B+7
4(il PRI NT PEEK (I)
5(il NEXT I
6(il END
RUN
ENTER A NUMBER? 123456789
73
18
52
86
12(il
144
o
o
Ok

---------Itadle/haell---------

-216-

____..Ta.RS~-:.l:X~E.u.N..IXIl...IOM&I.IBIa.AS..I....C TRS-BO ®K,I;,Ey,l,lwll.lo0.lllRi.I.ID~S _

WHILE •••• WEND

WHILE expression

.
{loop statements}

WEND

Statement

Execute a series of statements in a loop as long as a given
condition is true.

If expression is not zero (true), MBASIC executes loop statements
until it encounters a WEND. MBASIC returns to the expression. If
it is still true, MBASIC repeats the process. If it is not true,
execution resumes with the statement following the WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND matches the
most recent WHILE. An unmatched WHILE statement causes a "WHILE
without WEND" error, and an unmatched WEND causes a "WEND without
WHILE" error.

Sample Program

9~ 'BUBBLE SORT ARRAY A$
1~~ FLIPS=l 'FORCE ONE PASS THRU LOOP
11~ WHILE FLI PS
115 FLIPS=0
12~ FOR 1=1 TO J-1 IJ = NUMBER OF ELEMENTS IN A$()
130 IF A$(I»A$(I+1)THEN SWAP A$(I), A$(I+1): FLIPS=l
14~ NEXT I
15~ WEND

This program sorts the elements in array A$. Control falls out of
the WHILE loop when no more SWAPS are performed on line 13~.

---------ltadI8/haell---------

-217-

____.....,I;iK....EoL.yHIIlQIlU:R~p'aloS TRS..BO ® T.I.IBMSI.:-~XIiolFNI.III.QX_MI:&lR~AMlSI.loI....C _

WIDTH Statement

WIDTH buffer, size

or

WIDTH devi ce, size

Sets the size for 1i nes to be pri nted from a file which is OPENed
for outpu~

Size must be an integer between 1 and 255. It sets the number of
characters that can be printed on one line. If size is 255, the
line width is "infinite", that is, MBASIC never inserts a carriage
return

Device identifies a device such as ILPT1:" or "SCRN: II • For more
information on devices, see OPEN and Appendix G.

Buffer is the buffer used to OPEN the file.

WIDTH buffer, size changes the line width of the file associated
with buffer. That is, if more than size bytes are output on one
line to the file, MBASIC forces a new file.

WIDTH device, size has no effect on files currently OPENed to
that device. A subsequent OPEN device FOR OUTPUT AS number will
use size for width while the file is OPEN.

Sampl e Program

Suppose that line 1~ is in a file which is accessed by buffer 1.
The file is currently OPEN for output:

/''(~. P."

1~ PRINT IIDON QUIXOTE DE LA MANCHA II
RUN
DON QUIXOTE DE LA MANCHA
OK

WIDTH 1, 15
RUN
Ok

DON QUIXOTE DE
LA MANCHA
Ok

---------lIadI8/haell---------

-218-

____....TARS~-;;,jx~F.IIN.&.TXa....IlM:&IilRlI;iA,;)"SToI.Ic--- TRS-BO ®K_EY..W..O..R...D~S _

WRITE

WRITE [data, •••]

Statement

Writes data on the display.

WRITE prints the values of the data items you type. If data is
omitted, MBASIC prints a blank line. The data may be numeric
and/or string. They must be separated by commas.

When the data is printed, each data item is separated from the
last by a comma. Strings are delimited by quotation marks. After
printing the last item on the list, MBASIC inserts a carriage
return.

Exampl e

1~ A=95:B=76:C$="GOOO BYE"
2~ WRITE A,B,C$
RUN
95, 76, "GOOD BYEU

OK

---------rtadI8/haell---------

-219-

____......IKwf....Y..W,w,OQ,jROIMS.... TRS-BO ® T.IoIRi.oOSt.;;-....XEI;,INI.IT..X...lM~R;K;AwS....TCIoo.- _

WRITE#

WRITE# buffer, data, •••

Statement

Writes data to a sequential-access file.

Buffer must be the number used to OPEN the file.

The data you enter may be numeric or string expressions.

WRITE# inserts commas between the data items as they are written to
disk. It delimits strings with quotation marks. Therefore, it is not
necessary to put explicit delimiters between the data.

The items on data must be separated by commas.

WRITE# inserts a carriage return after writing the last data item to
disk.

For exampl e, if

A$="MICROCOMPUTER" and B$="NEWS"

the statement

WRITE#1, A$,B$

writes the following image to disk:

"MICROCOMPUTER", "NEWS"

---------Itadlo/haell---------

-220-

____....TWiR...S_-AxE...NIIOI~X......MiII&BA""Sol.lI...C TRS-BO ®IA;a,r;P;.l;p.E.IIN~n.L.iTX~Al_.. _

Appendix A

Error Messages

Number

1

2

3

4

5

Message

NEXT without FOR

A variable in a NEXT statement does not correspond to
any previously executed, unmatched FOR statement
variable.

Syntax error

MBASIC encountered a line that contains an incorrect
sequence of characters (such as unmatched
parenthesis, misspelled command or statement,
incorrect punctuation, etc.). MBASIC automatically
enters the edit mode at the line that caused the
error.

Return without GOSUB

MBASIC encountered a RETURN statement for which
there is no matching GOSUB statement.

Out of data

MBASIC encountered a READ statement but there are no
DATA statements with unread items remaining in the
program.

Illegal function call

A parameter that is out of range is passed to a math
or string function. An FC error may also occur as the
result of:

l. A negative or unreasonably large subscript.

2. A negative or zero argument with LOG.

3. A negative argument to SQU.

4. A negative mantissa with a noninteger
exponent.

---------- ftadI8/haell---------

225

____""'A;y,P...P...f,y,N""PI....X:t.."I;A..... TRS-BO ® __......T,g,R.S-:;".X"'E;,j,JN....' ...X..,jMi:l,jRIiIoCAa.;S....' ...C _

5. An improper argument to MID$, LEFT$, RIGHT$,
PEEK, POKE, TAB, SPC, STRING$, SPACE$, INSTR,
or ON ••• GOTO.

6

8

9

10

11

Overflow

The result of a calculation is too large to be
represented in MBASIC numeric format. If underflow
occurs, the result is zero and execution continues
without an error.

Out of memory

A program is too large, or has too many FOR loops or
GOSUBs, too many variables, or expressions that are
too complicated.

Undefined line number

A nonexistent line is referenced in a GOTO, GOSUB,
IF ••. THEN ••. ELSE, or DELETE statement.

Subscript out of range

An array element is referenced either with a
subscript that is outside the dimensions of the array
or with the wrong number of subscripts.

Duplicate Definition

Two DIM statements are given for the same array; or,
a DIM statement is given for an array after the
default dimension of 10 has been established for that
array.

Division by zero

An expression includes division by zero, or the
operation of involution results in zero being raised
to a negative power. MBASIC supplies machine infinity
with the sign of the numerator as the result of the
division; or it supplies positive machine infinity
as the result of the involution. Execution then
conti nues.

---------Itadlo/haell---------

226

_____TIoIiR...sr.;;-oax~ENIIoII...Xa...l,;jMIMBQlAS...JwC TRS-SO ®A~p;,a;P.f.llNQ""'I"..X~Alo._ _

12

13

14

15

16

17

18

19

I 11 ega1 di rect

A statement that is illegal in direct mode is entered
as a direct mode command.

Type mismatch

A string variab1~ name is assigned a numeric value or
vice versa; a function that expects a numeric
argument is given a string argument or vice versa.

Out of string space

String variables have caused MBASIC to exceed the
amount of free memory remaining. MBASIC allocates
string space dynamically, until it runs out of
memory.

String too long

An attempt is made to create a string more than 32767
characters long.

String formula too complex

A string expression is too long or too complex. The
expression should be broken into smaller expressions.

Can It conti nue

An attempt is made to continue a program that:

l. Has halted due to an error.

2. Has been modified during a break in
execution.

3. Does not exist.

Undefined user function.

An attempt is made to call a function which has not
been defined.

No RESUME

An error handling routine is entered but contains no
RESUME statement.

---------Itadlo/haell---------

227

____A...P_PE_.N_D._IX.........A TRS-BO@ __..:.TR~S~-~XEli.:lNl.;l;,IX~M~BA~S~IC~ _

RESUME without error

21

22

23

26

29

3~

5~

51

A RESUME statement is encountered before an error
handling routine is entered.

Unprintable error

An error message is not available for the error
condition which exists.

Missing operand

An expression contains an operator with no operand.

Line buffer overflow

An attempt has been made to input a line that has too
many characters.

FOR without NEXT

A FOR statement was encountered without a matching
NEXT.

WHILE without WEND

A WHILE statement does not have a matching WEND.

WEND without WHILE

A WEND statement was encountered without a matching
WHILE.

Field overflow

A FIELQ statement is attempting to allocate more
bytes than were specified for the record length of a
random fi 1e.

Internal error

An internal ma~function has occurred in MBASIC.
Report to Radio Shack the conditions under which the
message appeared.

---------lIadle/haell---------

228

____..T.uR¥os-;;,;;,jX~EIoIolN~IAX..M....B"'AI.IIoS...I C.,.,..__ TRS-BO ®,gAl'"P'-IPE....NllilnI.l.IX...A..... _

52

53

54

55

57

58

61

62

Bad fi 1e number

A statement or command references a file with a file
number (buffer number) that is not open or is out of
the range of file numbers specified at
initialization.

Fil e not found

A LOAD, KILL, or OPEN statement references a file
that does not exist on the current disk.

Bad fi 1e mode

An attempt is made to use PUT, GET, or LOF with a
sequential file,! to LOAD a random file, or to execute
an OPEN statement with a file mode other than I, 0,
R, A or D.

File already open

A sequential output mode OPEN statement is issued for
a file that is already open; or a KILL statement is
given for a file that is open.

Device I/O error

an Input/Output error occurred. This is a fatal
error; the operating system cannot recover it.

File already exists

The filespec specified in a NAME statement is
identical to a filespec already in use on the disk.

Disk full

All disk storage space is in use.

Input past end

An INPUT statement is executed after all the data in
the fil e has been INPUT, or for a null (empty) fi 1e.
To avoid this error, use the EOF function to detect
the end-of -fil e.

---------ltadI8/haell---------

229

___...,;,,;,AP;.,:,P,.:;EiIo:olND~I~X...IA.:..- TRS-BO ® __....TaaRS...-;,goXE.....N....la.X""'"MIMlBA...S....IC...... _

63

64

66

67

68

70

73

77

Bad record number

In a PUT or GET statement, the record number is
either greater than the maximum allowed (32,767) or
equal to zero.

Bad fi 1e name

An illegal form is used for the filename with a LOAD,
SAVE, KILL, or OPEN statement (e.g., a filename with
too many characters).

Direct statement in file

A direct statement is encountered while LOADing an
ASCII-format file. The LOAD is terminated.

Too many files

An attempt is made to create a new file (using SAVE
or OPEN) when all directory entries are full.

Device Unavailable

An attempt is made to access a device which is not
ready or unavaiable.

Permission Denied

An attempt is made to either: access a LOCKed file;
OPEN a file for read without read permission or for
write without write permission; LOAD a file without
load permission, or SAVE a file without save
permission.

Advanced Feature

An attempt is made to use a feature which has not
been implemented yet.

Deadlock

TRS-XENIX MBASIC has detected a deadlock.

---------lIadlolllaell---------

230

-----------TRS..BO ® ----------

Appendices

---------Itadlo/haell---------

___.......TIoIolIR....S-""'X....f,y,NI...X.........MRIII'AwS....I C TRS.BO ®A;w;P.P....fNII&.P&.I.I....X""'B~ _

Appendix B

Reserved Words

A reserved word with a dollar-sign ("$") after it may be used as a
numeric variable name if the dollar-sign is dropped. For instance,
CHR and CHR# are valid variable names. However, DEF statements may
not be used to assign values to this type of variable.

AND
ATN
CHR$
CONT
DATA
DEF
EOF
EXP
FRE
IMP
LEFT$
LOAD
LPRINT
MKI$
NOT
OUTPUT
RANDOM
RESUME
SAVE
SQR
SYSTEM
TRON
VARPTR
XOR

ABS ALL
AUTO BASE
CINT CLEAR
COS CSNG
DATE$ DEFINT
DELETE DIM
EQV ERASE
FI ELD FILES
GET GOSUB
INKEY $ INPUT
LEN LET
LOCK LOC
LSET MEM
MKS$ MOD
OCT$ ON
PEEK POKE
RANDOMIZE READ
RETURN RI GHT$
SGN SHELL
STEP STOP
TAB(TAN
TROFF UNLOCK
WAIT WEND

APPEND
CALL
CLOSE
CVD
DEFSNG
EDIT
ERL
FIX
GOTO
INSTR
LINE
LOF
MERGE
NAME
OPEN
POS
REM
RND
SIN
STR$
THEN
USING
WHILE

AS
CDBL
CLS
CVI
DEFDBL
ELSE
ERROR
FN
HEX$
INT
LIST
LOG
MID$
NEW
OPTION
PRINT
RENUM
RSET
SPACES
STRING$
TIME
USR
WIDTH

ASC
CHAIN
COMMON
CVS
DEFSTR
END
ERR
FOR
IF
KILL
LLIST
LPOS
MKD$
NEXT
OR
PUT
RESTORE
RUN
SPC(
SWAP
TO
VAL
WRITE

---------ltadI8/haell---------

231

____...T...BSIIlIoi-..X....E...N...IXu-IoM...BIIiiIAiW,S...JC TRS-BO ® --'A;y;P.P...EIIlNQloIoIlIoollX.....C _

Appendix C

Converting TRSDOS BASIC Programs to MBASIC

This Appendix is divided into three parts:

Part I
Part II
Part II I

BASIC Fil es
Conversion Commands
Conversion Procedures

Please read all three sections for a full understanding of this
Appendix.

Part I / BASIC Files

A BASIC file can be transferred from one of three sources: a
TRSDOS-II (4.0 or later) System diskette, a TRSDOS-II (4.0 or later)
SAVE diskette, or a TRSDOS 2.0a System diskette. Each of these
sources has a unique procedure for converting to TRS-XENIX.

There are two types of BASIC files: BASIC Program Files and BASIC
Data Files.

BASIC Program Files. This file can be either compressed or ASCII
format. Knowing the type of format is important when transferring
files to TRS-XENIX.

Compressed Format. A BASIC program file stored in compressed
format is fixed length (type F) and has a record length of 256
bytes. A compressed BASIC program is stored by using the BASIC SAVE
command without the ~ option.

The compressed format of TRSDOS BASIC and TRS-XENIX MBASIC are
different, therefore TRSDOS BASIC compressed format files must be
converted to TRS-XENIX MBASIC ASCII format. This is explained in
detail 1ater.

TRSDOS-II 4.x System Diskette -- To transfer a compressed
BASIC program file stored on a TRSDOS-II 4.x System diskette to
TRS-XENIX, refer to Procedure 1 in Part III of this Appendix.

---------lIadI8/haell---------

233

___--'AI.I.P.l.lPEIIolIN""D....IX:.l.~C TRS-BO ® __....ITIoYR....S-""X....E,y,NlwX.......MBIil/iA..S.....IC...... _

TRSDOS-II 4.x SAVE Diskette -- To transfer a compressed BASIC
program stored in TRSDOS-II 4.x SAVE format to TRS-XENIX, refer
to Procedure 2 in Part III of this Appendix.

TRSDOS 2.0a System Diskette -- To transfer a compressed BASIC
program stored on a TRSDOS 2.0a System diskette to TRS-XENIX,
refer to Procedure 3 in Part III of this ApP,endix.

ASCII Format. A BASIC program file in ASCII format is fixed
length (type F) and has a record length of 1 byte. As ASCII BASIC
program stored by using the BASIC SAVE command with the A option.

Note: If a TRSDOS ASCII BASIC program is transferred to TRS-XENIX,
extensive editing may be required to properly pad MBASIC keywords to
the correct syntax. If you have TRSDOS BASIC programs stored in the
ASCII format, it is suggested that you save them again in compressed
format. You can do this by loading your program into TRSDOS BASIC
and resaving it without the A option.

TRSDOS-II 4.x System Diskette -- To transfer an ASCII BASIC
program stored on a TRSDOS-II 4.x System diskette to TRS-XENIX,
refer to Procedure 4 in Part III of this Appendix.

TRSDOS-II 4.x SAVE Diskette -- To transfer an ASCII BASIC
program stored in TRSDOS-II 4.x SAVE format to TRS-XENIX, refer
to Procedure 5 in Part III of this Appendix.

TRSDOS 2.0a System Diskette -- To transfer an ASCII BASIC
program stored on a TRSDOS 2.0a System diskette to TRS-XENIX,
refer to Procedure 6 in Part III of this Appendix.

BASIC Data Files. BASIC Data Files are files which have been
created by BASIC programs. There are two types of BASIC Data Files,
sequential access and random access.

Refer to Chapter 5 for more information on BASIC Data Files.

Sequential Access

TRSDOS-II 4.x System Diskette -- To transfer a sequential
access data file stored on a TRSDOS-II 4.x System diskette to
TRS-XENIX, refer to Procedure 7 in Part III of this Appendix.

TRSDOS-II 4.x SAVE Diskette -- To transfer a sequential
access data file stored in TRSDOS-II 4.x SAVE format to
TRS-XENIX, refer to Procedure 8 in Part III of this Appendix.

---------Itadlolhaell---------

234

____T.:.:.;R~S-;;,:;X~E::,;:NI~X...:.M~B~AS'_l;Ioli'C__ TRS-BO ® ...gAIl.lPPUlE.u,NDK,jIIo.QX....lCw... _

TRSDOS 2.0a System Diskette -- To transfer a sequential
access data file stored on a TRSDOS 2.0a System diskette to
TRS-XENIX, refer to Procedure 9 in Part III of this Appendix.

Direct Access

TRSDOS-II 4.x System Diskette -- To transfer a direct access
data file stored on a TRSDOS-II 4.x System diskette to
TRS-XENIX, refer to Procedure 1~ in Part III of this Appendix.

TRSDOS-II 4.x SAVE Diskette -- To transfer a direct access
data file stored in TRSDOS-II 4.x SAVE format to TRS-XENIX,
refer to Procedure 11 in Part III of this Appendix.

TRSDOS 2.0a System Diskette -- To transfer a direct data file
stored on a TRSDOS 2.0a System diskette to TRS-XENIX, refer to
Procedure 12 in Part III of this Appendix.

Part II/Conversion Commands

The TRS-XENIX commands tx and bp are used to transfer TRSDOS-II
BASIC files to TRS-XENIX. The tx command transfers a TRSDOS-II
file to TRS-XENIX. The bp command then converts the transferred
BASIC compressed format program file into an ASCII format that
MBASIC can read and execute.

The syntax for tx is:

tx :d options Tfspec Xfspec.braw

Refer to the tx command in your TRS-XENIX Operations Guide for
an explanation of options.

The syntax for bp is:

bp Xfspec.braw)Xfspec.bas

Where: Tfspec
Xfspec. braw

Xfspec. bas
:d

= TRSDOS-II file specification
= TRS-XENIX file specification containing

TRSDOS-II BASIC compressed format
= TRS-XENIX destination file specification
= specifies the drive that contains the

TRSDOS-II diskette. :d is required.

---------lIadI8/haell---------

235

Where:

___~A;.;PP-=E~ND=-=I~X_CI'.- TRS.BO ® __....T.w.;RS..;."w,XE...N...I,y"X.....MII&IBAIor.aS...I.C _

The FCOPY command copies disk files that were created and stored
on a TRSDOS 2.0a System diskette to a disk formatted by TRSDOS-16 or
TRSDOS-II and vice versa. You must FCOPY any disk files created
with TRSDOS before you can use them with the conversion command
tx.

The syntax for FCOPY is:

FCOPY Tfspec TO T-IIfspec [options]

Tfspec = TRSDOS file specification
T-IIfspec = TRSDOS-II file specification

Refer to your TRSDOS-II or TRSDOS-16 owner's manual for an
explanation of options.

Important Notes:

1. For information on the size of variables allowed and syntax
padding requirements, refer to Appendices 0 and H.

2. TRSDOS BASIC programs designed to use Z8~ machine language
subroutines cannot run successful without the subroutines being
rewritten in 68~~~ machine language and the BASIC source
changed from using the DEF USR and USR commands to the CALL
command. If you desire to use the machine language subroutines
with MBASIC, you need the TRS-XENIX Development System.

Part III/Conversion Procedures

1. This procedure transfers the TRSDOS-II BASIC compressed program
file PROGRAM/BAS stored on a TRSDOS-II 4.x System diskette in
Drive 0, to TRS-XENIX.

tx :0 -va PROGRAM/BAS program.braw

transfers the compressed format of PROGRAM/BAS to TRS-XENIX and
stores the file in the temporary program file program.braw.

bp program.braw >program.bas

converts program.braw into ASCII format and stores the file
in program. bas.

---------Itadlo/haell---------

236

)

____"""T,QR...S-;;,jx~E..uNw..IA.X"""M;g,BII;lA~SololICillo_ __ TRS-BO ® ~A;U;P.P""ENWQWIUlX...a..C _

rm program. braw

removes the temporary program file program.braw.

This procedure transfers the TRSDOS-II BASIC compressed program
file SPROGRAM/BAS stored on your TRSDOS-II 4.x SAVE diskette in
Drive ~, to TRS-XENIX.

tx :~ -rva SPROGRAM/BAS sprogram.braw

transfers the compressed format of SPROGRAM/BAS to the
TRS-XENIX and stores the file in the temporary program file
sprogram.braw.

bp sprogram.braw >sprogram.bas

converts sprogram.braw into ASCII format and stores the file
in sprogram.bas.

rm sprogram.braw

removes the temporary program file sprogram.braw.

3. This procedure transfers the TRSDOS BASIC compressed program
file TPROGRAM/BAS, stored on your TRSDOS 2.~a System diskette
in Drive ~, to TRS-XENIX.

Boot up your system with a TRSDOS-II 4.x System diskette in
Drive ~ to TRS-XENIX and your TRSDOS 2.~a System diskette in
Dri ve 1.

FCOPY TPROGRAM/BAS:l TO PROGRAM/BAS:~

copies TPROGRAM/BAS to your TRSDOS-II diskette and renames it
as PROGRAM/BAS.

Reboot your system under the TRS-XENIX with your 4.x System
diskette in Drive ~.

tx :~ -va PROGRAM/BAS program.braw

transfers the compressed format of PROGRAM/BAS to the TRS-XENIX
and stores the fil~ in the temporary program file
program.braw.

bp program.braw >program.bas

---------ltadI8Ihaell---------

237

___~A:.:PP..liEoI:'ND~I~X~Cl'... TRS-BO ® __..L1QlRS.r.;;;-;.Q,XEwN....IA,X..MI.WiBA~Sw.I.w.C _

converts program.braw into ASCII format and stores the file
in program. bas.

rm program. braw

removes the temporary program file program.braw.

4. This procedure transfers the TRSDOS-II ASCII program file
PROGRAM/TXT, stored on your 4.x System diskette in Drive 0, to
TRS-XENIX.

tx :0 -vax PROGRAM/TXT program. bas

transfers PROGRAM/TXT to TRS-XENIX and stores it in
program. bas.

5. This procedure transfers the IRSDOS-II ASCII program file·
SPROGRAM/TXT, stored on your TRSDOS-II 4.x SAVE diskette in
Drive 0, to TRS-XENIX.

tx :0 -vaxr SPROGRAM/TXT sprogram.bas

transfers SPROGRAM/TXT to TRS-XENIX and stores it in
sprogram.bas.

6. This procedure transfers the TRSDOS ASCII program file
IPROGRAM/TXT, stored on your TRSDOS 2.0a System diskette in
Drive 0, to TRS-XENIX.

Boot your system with a TRSDOS-II 4.x System diskette in Drive
o and your TRSDOS 2.0a System diskette in Drive 1••

FCOPY TPROGRAM/TXT:1 TO PROGRAM/TXT:0

copies TPROGRAM/TXT to your TRSDOS-II diskette and stores it in
PROGRAM/TXT.

Reboot your system under JRS-XENIX with your TRSDOS-II 4.x
System diskette in Drive 0.

tx :0 -vax PROGRAM/TXT program. bas

transfers PROGRAM/TXT to TRS-XENIX and stores it in
program. bas.

7. This procedure transfers the TRSDOS-II sequential data file
PROGRAM/OAT, stored on your TRSDOS-II 4.x System diskette in
Drive 0, to TRS-XENIX.

---------lIadle/haell---------

238

____.&.lTBQ,osilo:-:.AX.llolENII.lJUlX~M8~A_S""'J....C__ TRS.BO ® ...AA""PP",E;,gN~OI.l..ix~c _

tx :~ -vax PROGRAM/OAT program.dat

i-i transfers PROGRAM/OAT to TRS-XENIX and stores it in
program.dat

8. This procedure transfers the TRSDOS-II sequential data file
SPROGRAM/DAT, stored on your TRSDOS-II 4.x SAVE diskette in
Drive ~, to TRS-XENIX.

tx :~ -vaxr SPROGRAM/DAT sprogram.dat

transfers SPROGRAM/DAT to TRS-XENIX and stores it in
sprogram.dat.

9. This procedure transfers the TRSDOS sequential data file
TPROGRAM/DAT, stored on your TRSDOS 2.0a System diskette in
Drive ~, to TRS-XENIX.

Boot up your system with a TRSDOS-II 4.x System diskette in
Drive 0 and your TRSDOS 2.0a System diskette in Drive 1.

FCOPY TPROGRAM/DAT:1 TO PROGRAM/DAT:~

copies TPROGRAM/DAT to your TRSDOS-II diskette and stores it in
PROGRAM/OAT.

Reboot your system under TRS-XENIX with your TRSDOS-II 4.x
diskette in Drive ~.

tx :~ -vax PROGRAM/OAT program.dat

transfers PROGRAM/OAT to TRS-XENIX and stores it in
program.dat.

1~. This procedure transfers the TRSDOS-II random data file
PROGRAM/ROT, stored on your TRSDOS-II 4.x System diskette in
Drive ~, to TRS-XENIX.

tx :~ -va PROGRAM/ROT program.rdt

transfers PROGRAM/ROT to TRS-XENIX and stores it in
program.rdt.

11. This procedure transfers the TRSDOS-II random data file
SPROGRAM/RDT, stored on your TRSDOS-II 4.x SAVE diskette in
Drive ~, to TRS-XENIX.

---------Itadlo/haell---------

?3Q

____A_P_PE_.N:.:;,D,:,:;IX.:....o:;.C TRS-BO ® __..:.T~RS~-~XE:;,;,:N:oill.I~X~M=BA~S:oill.I¥.C _

tx :~ -var SPROGRAM/ROT sprogram.rdt

transfers SPROGRAM/ROT to TRS-XENIX and stores it in
sprogram.rdt.

12. This procedure transfers the TRSOOS random data file
TPROGRAM/ROT, stored on your TRSDOS 2.~a System diskette in
Drive ~, to TRS-XENIX.

Boot up your system with a TRSDOS-II 4.x System diskette in
Drive ~ and your TRSDOS 2.~a System diskette in Drive 1.

FCOPY TPROGRAM/ROT:1 TO PROGRAM/ROT:~

Copies TPROGRAM/RDT to your TRSDOS-II diskette and stores it in
PROGRAM/ROT

Reboot your system under TRS-XENIX with your TRSDOS-II 4.x
System diskette in Drive ~.

tx :~ -va PROGRAM/ROT program.rdt

transfers PROGRAM/ROT to TRS-XENIX and stores it in
program.rdt.

---------Itadlo/haell---------

24{1

___......T~BS~-;,g,:XEli.l.NI.AoIAX..M,l,I;CBg,;ASlWI~C__ TRS.BO ® ...,gjAPI;"I;P..EIIIND...I,A,X...P'-- _

Appendix D

Differences Between TBSDOS BASIC and TBS-XENIX MBASIC

TRS-XENIX offers several enhancements over TRSDOS BASIC. The two
most important ones are: It can be accessed by multiple users and
it has more memory capacity. This appendix discusses these
enhancements and other differences between the two BASICs.

1. Keywords. The definitions and/or syntaxes of certain keywords
vary between TRSDOS BASIC and TRS-XENIX MBASIC. See: CLEAR, EOF,
LIST, LLIST, LOC, LOF: LPRINT, OPEN, POS, SYSTEM, VARPTR, and
WIDTH in Chapter 7.

TRS-XENIX MBASIC does not support the following TRSDOS BASIC
keywords: ROW, INP, OUT, ERR$, DEFUSR, USR.

TRSDOS BASIC does not support the following TRS-XENIX MBASIC
keywords: LOCK, LPOS, PEEK, POKE, SHELL, UNLOCK, WHILE •• WEND,
WIDTH, WRITE, and WRITE#. For a detailed discussion of these new
keywords, see Chapter 7.

-2. Error Messages and Codes. The codes for TRS-XENIX MBASIC are
different than those for TRSDOS BASIC. Refer to Appendix A for
a list of error codes and messages for TRS-XENIX MBASIC.

-3. Precision of Variables. TRS-XENIX MBASIC assumes all your
variables are double precision, unless you specify otherwise.
TRSDOS BASIC assumes your variables are single precision.

4. Loading MBASIC. Chapter 1 of this manual explains how to load
TRS-XENIX MBASIC.

5. Filespecs. Under TRS-XENIX MBASIC, fi lespecs may be as long as
the largest legal string variable, that is, 32767 characters.
Under TRSDOS BASIC, filespecs can be up to eight characters
long.

6. Files. TRS-XENIX MBASIC allows 17 files to be OPEN at one
time; TRSDOS BASIC allows only 15.

7. Memory Space. Your program, variables and string space
(combined) may total up to 16777215 bytes in TRS-XENIX, compared
to 336~8 bytes in TRSDOS BASIC. (Remember, however, that your
computer's memory capacity also limits the amount of memory
MBASIC can use. The 16777215 bytes are only available if you
have a 16-megabyte computer).

---------Itadle/haell---------

241

V', T/\5Du,!; 'C: !,",~, rIc-
-:/ / I_A!
VI'/Of!'6'

____""'A;y;P....P...E,LIiNP""'X...Xlo.o\jD:.... TRS.BO ® __.......T,QR..lS,;;,-XA.lF.N...I..X...I:IlMRg,tA;,;SI.II...C _

8. Strings. In TRS-XENIX, string variables and string expressions
may contain up to 32767 characters each. In TRSDOS, they may
only contain up to 255 characters each.

9. Devices. With TRS-XENIX, you can access "devices" other than
disk files. To access these devices, use the same syntax as for
accessing files. For more information, see Appendix C and OPEN.

1~. Assembly-Language Subroutines. TRSDOS BASIC operates under
the Z8~ microprocessor; TRS-XENIX operates under the 68~~~

processor. If your program has assembly-language subroutines,
these subroutines need to be compatible with the 68~~~

processor. Do not use any subroutines until you have re-written
them for the 68~gg processor. See Appendix F, Loading
Assembly-Language Files, for more information.

TRS-XENIX in a Multi-User Environment:

1. ASCII Codes. If your program uses ASCII codes, make sure they
represent only text characters (codes 32 to 127). ASCII codes
for video control characters, graphics characters and special
characters may vary between different types of terminals.
Therefore, each terminal may interpret a single ASCII code in a
different way. TRS-XENIX MBASIC can clear the screen (through
the CLS statement) and position the cursor (through the TAB
function) in a multi-user environment. However, it does not
support other video control functions, such as switching to
double-sized characters, reverse video, etc.

-2. Files. If more than one user is accessing a single disk file
at the same time, unexpected results may occur (such as loss of
a file's contents). To avoid this, use the LOCK and UNLOCK
commands. It is important to understand these commands before
attempting to access files in a multi-user environment.

---------lIadI8/haell---------

242

____..ITI.IlB....S..-AixE....NiIoII~Xto..lOlMoWiBAg,S....II.IoC TRS-BO ® ·..IA=a.lP;"l;p.E.UlN.&.Ion"""'IX~F~ _

Appendix E

Machine Language Interface to TRS-XENIX MBASIC

The CALL statement supports standard "C" calling conventions.
When executing the CALL statement, all parameters must be
vari ab1es. Also, no previously unreferenced sca1 ar vari able may
follow an array element in the parameter list. If you attempt
thjs, an "Illegal function call" error is generated.

The called routine has the following environment upon entry:
Stack Pointer-->Return Address (32 bits)--low memory
Pointer to val ue of 1st parameter ••• (32 bits)
Pointer to value of last parameter (32 bits)--high memory

On exit, parameters are left on the stack (MBASIC will remove
them). The called routine may destroy registers a0, a1, d0, and
d1 but all other registers must be preserved.

---------Itadle/liaell---------

243

____...T,wR""S-...XiWlEoIoINIoIoI..X...M...BIIilAlI'S...IC.....__ TRS.BO ® ,QA~ppl;,lfIollN.....D...IX.......f _

Appendix F

Loading Assembly Language Files

MBASIC for the 68~~0 provides a TRS-XENIX integrated mechanism for
loading assembly language programs. To link and load assembly
language files with MBASIC, start by using the -1 ("el") option with
the MBASIC command line. The file can be any relocatable file
(either a.out, b.out, or x.out that has not been processed with ld
utility without the -r option. See the TRS-XENIX manual A.OUT(5».
Only one file per -1 is allowed; if more than one file needs to be
loaded, use additional -1 parameters. For example: If the assembly
language files were asml.s and asm2.s a possible syntax to assemble
and run MBASIC with these assembly language files would be:

as -0 asml.o asml.s
as -0 asm2.0 asm2.s
mbasic -1 asml.o -1 asm2.0

When the -1 option is used, the relocatable file
/usr/bin/b68k.o is loaded with all the specified assembly
language files and the "C" library, and a local file named b68k.o is
produced and executed. If no -1 option appears in the command line,
the file /usr/bin/b68k is executed. (/usr/bin/b68k is
the resultOf havi ng 'loaded /usr/bi n/b68Co wi th the "C"
li brary.) --

It is important to understand that a local version of MBASIC is the
executing program when the -1 option is used with mbasic command.
By local it is meant that a copy of b68k now resides in the user's
current directory. This version of MBASIC contains the assembly
language programs not the version of MBASIC residing in /bin. A
new copy of MBASIC will be created in the current directory each
time mbasic is executed with the -1 option. If the same set of
assembly language routines are to be used again the user might wish
to execute the local version of MBASIC called b68k that was
created the first time mbasic was executed with the -1 option. The
user can execute this local version of MBASIC by specifying the
local file name. This would be the pathname to the current
directory followed by b68k. Often the user profile is set to
search for local copieSOf a file first. If this is the case then
specifying b68k will surfice.

To sum up, MBASIC under TRS-XENIX on the 68~~~ creates a special
version of MBASIC called b68k when machine level routines are to
be interfaced with MBASIC-.---If these machine level routines are to
be called during MBASIC program execution this special version of

---------lIadlo/haell----------

245

___-w.A:.:.pp.:;E~ND~I;"gX...:F"""'_ TRS-BO ® __....TaJRS..-IQ,XEwN....Ia,X..MIMBAIilaS""IolI&oC _

MBASIC must be executing. It will be executing as a result of using
the -1 option with mbasic TRS-XENIX command or by executing a local
version of MBASIC directly after it has been created by an initial
use of the mbasic command.

----------lIatlI8I11aell---------

246

____...T,QR..s-....XiYIE.uN~IAX...M;u,BIIiilA~SoiolICIll___ TRS.BO ® ...cA~P.P,ll,jENII.IDiAoIIUlX...,g,G _

Appendix G

Device Handling

TRS-XENIX Devices

TRS-XENIX MBASIC supports Generalized Device I/O. This means that
you can access "devices" other than disk files by using the same
syntax which has always been used by MBASIC to access disk files.
TRS-XENI X MBASI C supports the fo 11 owi ng "devi ces":

The Screen Device

The device "SCRN:" allows files to be opened to your computer
screen for output. All data written to a file which is opened to
"SCRN:" is directed to the standard output device (Screen). For
example:

OPEN "SCRN:" for OUTPUT as 11
PRINTI1, N$

allows you to output to your computer screen and writes the value
of N$ into the file assigned to buffer number 1, which is your
compUter screen.

The Keyboard Device

The dev i ce "KY BD: II allows fi 1es to be opened to your computer
keyboard for input. All data read from a file which is opened to
"KYBD:" comes from the standard input device (Keyboard). For
example:

OPEN "KY BD: II for INPUT as 11
INPUTIl, N$

allows you to input from your keyboard and inputs the value of
N$ into your program from the file assigned to buffer number 1,
which is your keyboard.

---------lIadlo/haell---------

247

____oIilA~P...PE...·NIIlD""IAX....lG..... TRS-BO ® __~TRIMS;a,;-:.AX...FNI&olIloIX~MBIII:Aa.lS....I ..C _

The Printer Device

The device ILPT1:" allows files to be opened to your printer for
output. All data written to a file which is opened to ILPT1:" is
directed to the line printer. For example:

OPEN "LPT1: II for OUTPUT as #1
WRITE#l, S$

opens an output file to your line printer and writes the value of
S$ to the file assigned.

TRS-XENIX pipes

TRS-XENIX supports pipes, which transfer the output of one
program into the input of another program. Opening a file to
device "pipe: •. " opens a ~pe, forks, and executes the specified
child process. For example:

LIST "PIPE: lpr"

generates a listing to the lpr spooler.

OPEN "pipe:ls -1" for INPUT AS #1

allows the directory to be read via buffer number 1.

LIST 5(3, "PIPE:write david"

lists line 5(3 on "david's" terminal using the write utility.

Line Printer Support

The command LlIST line number-line number is synonymous with
the command LIST line number-line number, "LPTl:". Both
commands cause a listing to be sent to the line printer spooler.
If <CTRL C> is pressed during either of these commands, the
output is discarded.

LPRINT causes an invisible file number to be opened to a line
printer spooler. This spooled output is released by the
statements END, SYSTEM, and CLEAR. If CLEAR is used without
parameters it does not release spooled LPRINT output.

If two files are opened to "LPT1:", their output is not
intermixed, but spooled separately, nor is their output
intermixed with LPRINT output.

---------lIadlo/haell---------

248

___.......T~R-.;S-~X..E.u.NlyX~MBIII'AMilS....ICIll...__ TRS-SO ® a1Ap...P...f.NQ....IIooIIXIo.ololoH----

Appendix H

Decimal Math Representation

The following describes the internal representation of numbers in
TRS-XENIX MBASIC:

Double precision contains eight bytes as follows: One bit sign
followed by 7 bits of biassed exponent followed by fourteen
digits of mantissa, 4 bits each. If the sign bit is 1, the number
is negative. The unbiassed exponent (biassed exponent - 64) is
the power of 1~ that the mantissa is to be multiplied by. The
mantissa represents a number between ~.1~~~~~~~~~~~~~ and
0.99999999999999. For example -.0~~~~123456789 would be
represented by the hexadecimal number BB123456789@~~~~.

External Representation

-9.99999999999990+62
-10-64
~
10-64
9.99999999999990+62

Internal Representation

FF99999999999999
811~~~0~~~~~~~~~
0~xxxxxxxxxxxxxx

0110~~0~~~~~@~~~
7F99999999999999

Single precision contains four bytes as follows: One bit sign
followed by 7 bits of biassed exponent followed by six digits of
mantissa, 4 bits each. If the sign bit is ~, the number is
positive. If the sign bit is 1, the number is negative. The
unbiassed exponent (biassed exponent - 64) is the power of 1~

that the mantissa is to be multiplied by. The mantissa
represents a number between 0.1~@0~@ and 0.999999. For example,
15.6 would be represented by the hexadecimal number 42156~~~.

External Representation

-9. 99999E+62
-lE-64
o
1E-64
9.99999E+62

Internal Representation

FF999999
811~~~@~
0~xxxxxx

011~~~~~
7F999999

---------Itatllolhaell---------

249

___....:;:,AP:.:.P.,;;E~ND~I~X...lH~ TRS-BO ® __....TaJRS""-iQlXE...N...I,g"XooIiIMIMlBAOMS...IC... _

Integers are represented by a 16 bit 2 IS compl ement si gned
binary number. Integer math a is identical to that of Binary
Math.

External Representation

-32768
-1
~
1
32767

Internal Representation

8@@@
FFFF
~@@@
OO@l
7FFF

---------lIadle/haell---------

25f6

____T_RS_-_X_EN_I_X_M_BA_S_IC__ TRS.BO ® ..;I;.;.;,ND;,.;E;.;.;X _

INDEX

-- A --
ABS•.. 73, 75

absolute value ••..••..••.•.•. 75
absolute memory address .••..•• 213
Access restrictions •.........• 211

LOCK 144-146
Record Locking .••....•.. 144-146
File Locking •.•.••...... 144-146
UNLOCK ••••••••••.••••••.•••• 211

Accessing Files
Direct-Access Files .•..•..... 67
Sequential Files .•........... 61

Add i t ion 47, 48
AN D•••••••••••••••••••••••••••• 53
arctangent ??
argument 69
Array •...•.•.•.. 35, 1~2, 1~7, 166

one-dimensional 36, 1~2
redimension •.••...•...••.•.. 1~7
two-dimensional •.... 36, 1~2-1~3

three-dimensional •..••••..... 36
ASC 73, 76

ASCII code .•......•• 76, 84, 2~4

ASCII Characters .••....••.. 38, 61
ASCII Format .•.•...•....• 194, 234
Assembly Language Files ... 245-246
ATN ••••••••••••••••••••.••••••• 77
AUTO ••••••••••••••••••••••• 72, 78

-- B --

BASIC DATA Files••...••... 234
BASIC Program Files ...•...•... 233
Boolean operators •...•••••...•. 53

AND •••••••••••••••••••••••••• 53
EQV •••••••••••••••••••••••••• 54
IMP ••••....•....••..••...••.. 54
NOT•••••••••••••••••••••••••• 53
OR ••••••••••••••••••••••••••• 53
XOR •••••••••••••••••••••••••• 53

bp .••.•••••..•.•...••..•.•.... 235
Branching ..••...•...••.. 12~, 163

conditional ..•....•...••.... 12~

GOSUB 119
GOlD 12~

ON GOTO 163
ON GOSUB 162
unconditional .••.....•..•••• 12~

Buffer•.••• 61, 88, 143, 164

-- C --

C compiler 79
CALL•.....•...•• 72, 79, 243

machine language subroutine .. 79
Carri age Return .•••••....•...•• 31
CDBL •.•••.•.•••..•••••••••• 73, 80
CHAIN •............• 71, 81, 83, 9~

Character Data •..•••••...•••... 32
Characters ...•....•....•••. 3~, 38

ASC II ...•...••.••....•...•.•• 38
CHR$ ••••.•••••••••••••••••• 74, 84
CINT••......:.73, 85
Classifies Variables••.••.. 41
CLEAR•..•.... 7~, 86-87, 9~

CLOSE ...••......• 61, 71,88, 134
CLS ••••.••••••••••••••••••• 72, 89
column position •.••.•••.• 149, 169
COMMON •........••...... 7~, 81, 9~

Command Mode •...•.•...•••...... 15
logical line ...••.•...••.••.. 15
physical line •..•••••.••..... 15

Complex expression •..•.••.. 54, 58
Complex numeric expression .•... 58
Complex string expression •.•.•• 59
Compressed Format ...• 194, 233-234
Conditional Branching ..•.•••.. 12~
Concatenate••.•••...••...•. 5~
CONT •••••.•.•••••••••••••••••• 20'2
Constants .•...•..•••••. 33, 34, 57

input•....... 34
numeri c•....... 96
PRINTing 34
string 96

control code•.•.••...84
Conversion 44

double precision •.•••••....•. 44

---------lIadle/haell---------

253

____I_N_DE.....X TRS-BO ® TR_S_-X_E_N_IX_MB_A_S_IC _

single precision •••...•••••.• 44
Conversion Procedures ••••• 236-24~
Converting numbers ••.•.•.••...• 8~

double precision ••...•.••.•.. 8~
integer •..••••..•••••••• 85, 133
string values •..•••••••••••• 157
single precision •..•....••... 94

Converting Numeric Data •.•.•.•. 43
COS •...................•.•. 73, 93
cos; ne 93
CSNG ••••••••••••••••••••••• 73, 94
Current date •..•••••••••••••••• 98
Current Line ...•••••••..•..•••• 2~

Current Line Number •••••••••••• 21
Current Program Line •.••••..••• 19
CVD •••••••••••••••••••••••• 71, 95
CV I •••••••••••••••••••••••.•••• 95
CVS•••••••••••••••••••••••••••• 95

-- D --
Data 29, 32, 61

inputting keyboard •.•.• 138, 124
125-126, 129

numeric•............ 73
string 73

DATA••••••••••.••••• 7~, 96-97,182
OATE$ 74, 98
deadlock situations •.•..•...•• 145
debugging ••.••..••.•.•..•.•..•. 72
debugging tool •••.••..•.•••••• 2~2

Decimal Math Representation
................... .. 249-250

Declaration Tags ••••••• 4~, 42-43
double precision •..•.•.•.•••. 43
integer •......••..•••..••..•. 42
single precision ••••..••.•••• 43
st r in 9•••••••••••••••••••••• •43

DEF •••••••••••••••••••••••••••• 86
DEFDBL (double precision) ••.... 42

7~, 83, 99
DEFDBL/INT/SNG/STR•••••.••••••• 99
DEF FN ••••••••...••.•. 7~, 83, 1~~

Defines
function defination •...•••.. 1~~
function name •.••••••••••.•. 1~~

DEFINT (integer) ••• 42, 7~, 83, 99
DEFSNG (single precision) •••.•. 42

7~, 83, 99
DEFSTR (string) •••• 42, 7~, 83, 99
DELETE .•••.••.•.•••••.•••• 72, 1~1

Delete see EDIT
delete files ...•.•.•••••••.••• 134
delimiters 63
devices ..•....••.•... 74, 149, 169
DIM •...•....•. 36, 7~, 9~, 1~2-1~3

dimensions ..••.••••••••••••... l~2
Direct Access File .•..•••...••. 65

112, 151, 235
CLOSE •••••••••....•...•...•.• 65
CVD ...••.•..••..•.......•••.. 65
CVI .••••.•....•.•...•.•• 65, 112
CVS •••••••••••••••••••••••••• 65
110 11 mode ••••••••••••••••••••• 65
FIELD ..•..••....•••...••..... 65
GET•••••••••.•••••••••••••••• 65
LOC ••••••••...•••.••••••••••• 65
LSET/RSET•...•••..•.••. 65, 192
MKD$ ••••••••••••••••••••••••• 65
MKI$ •.•••••••.••••••••• 65, 112
MKS$ ••••••••••••••••••••••••• 65
MKS$/CVS ...•.•....••..•...•. 112
MKS$/CVD •.•••..•••..•••••••• 112
OPEN ••••••••••••••••••••••••• 65
PUT •••••••••••••••••••••••••• 65
records · 65
wr i tin g••.••....•.•.•..•••.. 18(a

Direct Disk file .••..•.••.••.. 118
Disk ••••.•.••••••••.. 61,88,134
disk files .•.•.•• 74, 88, 144, 151

158, 164, 165, 18~

accessing •........•..•...••• 144
length .•••.••••••••••••••••• 147
printing•.•••..•.......•...• 178
renami ng 158
restri cted ••..••.••..•...••• 144
sequential 178
writing •.•..•••...•.••• 178, 18~

disk input •..•...•••••••. see DATA
Division ...•••...•..••..... 47-48
Double precision ••••••• 33, 37, 38

4~-41, 42, 45, 8~

95, 99, 249

---------ltadI8/haell---------

254

-,",!,, T_RS_-_X_EN_I_X_M_BA_S_IC__ TRS-BO ® I_ND_E_X _

declaration tab .••....••.•••. 43
converting to integer •.•.•..• 44
converting to single precision

...... . 45

-- E --
EDIT ..•.•.•..•.... 19, 22, 25, 72

........................ . 10'4
current line•... 20
current line number •••....... 21
current program line ...•..... 19
delete 22, 25
insert 22
syntax error ..•.••...•..• 19, 23
current program line .••..•... 19

END ••.•.••..• 22-23, 71, 1~5, 15~

end-of-data 64
end of a file ...•.•........•.. 1~6
EOF 61, 74, 1~6

ERASE 70, 107
ERL ••....••••....•...•.... 72, 108
ERR •..••••..•......•••.•.. 72, 109
ERROR 72, 110
error handling .•.•..••••..•..• 188
error line number •••...•.•.•.• 1~8

ERROR MESSAGES •..•••••..•• 225-231
error return •...••..••.••..... 1~9
EQV•••••••••••••••••••••••••••• 54
Exchange variables .••..•••...• 2~5

Execution Mode••••••••.•.. 17
Execution Stop •••....•..•••..• 2~2

EXP 73, 111
Exponentiation •......•..••.. 47-48
Exponenti al, natural •......... 111
Expressions •......•.•.. 3~, 32, 57

complex .•.................... 57
conditional .•••.•.••..•••.•. 122
double precision •••.....•••• 157
Numeric ..•...........•... 32, 33
numeric data .•.•...•....•.•.. 32
simple 57
single precision•••....• 157

-- F --
FCOPV 236
FIELD ...•••.•......•• 66, 71, 112

FIX 73, 114
Formatted printing .•.•.•••..••.• 172
FOR/NEXT ...•••.•.•...•.• 71, 115-116
FRE ••••••.•••......•••• 73, 117, 152
Free memory space ..•...••...•.•• 117
Functions .••.•...••••••••• 33, 56-57

59, 69, 73
definition lfJ0
narne •••••••••••••••••••••••••• 1@0

-- G --
GET••••.•••••••••••••••••••• 77,118
GOSUB 71, 119
GOTO · 71, 120

-- H --
HEX$.••..•••••.•......•....• 74, 121
hexadecimal value ...•••.••..••.. 121
Hierarchy operators •••..••••.•..• 54

-- I --
IF /THEN .•••.•••..•••.•.••.•.•••.. 52
IF •.• THEN •.. ELSE .•••••.• 71, 122-123
INKEY$ •..•••.••••.••••••••.. 74, 124
Immediate Lines •••••.•..•••••.••. 16
IMP .••••••.••••....•••..•••.•.••. 54
Input 34
INPUT•••.••....•.••••.•• 72, 125-126
INPUT#•..••...•••... 61, 71, 127-128
INPUT$..•••..•.••.••..•• 74, 129-13~

Input
keyboard•.. 124, 125-126, 129

inputting data .••...••••••.....•• 72
Input/Output functions .•••••.••.. 74
Insert (EDIT) •••••.••.••.•... 21, 22
Insert subcommand (EDIT) •....... 23
INSTR••.•.••.••••••••.•• 73, 131-132
INT 73,133
Integer •.••••..••..•• 33, 37, 4~, 42

44, 95, 99, 133, 25~

declaration tag •••••••..•.••..• 42
converting to double precision.44
converting to single precision.44
truncated 114

Integer Divide ••..••.•.••••••••.• 31

---------ftadI8/haell---------

255

____I_ND_E_X TRS.BO ® TR_S_-X_E_N_IX_MB_A_S_IC _

-- K --
Keyboard Device•...••••..• 247
Keyboard Input •••...•... 138, 124,

125-126, 129
keywords 69-7@
KILL• 72, 134
KYBD ••••••.•••••••.••••••••••• 143

-- L --
LEFT$ 74, 135
LEN•.....••.•• 73, 136
LET•.............. 70, 137
LINE

immediate line .••••.•. 15-16, 17
logical line •....•....•.. 15, 31
physical line .•...••...•• 15, 31
program line .••.•• 15-16, 19, 21

Line Edit Mode •..•..•••.. see EDIT
Line Feed 31
LINE INPUT••.••••..•••..•. 72, 138
LINE INPUT#•....•...•. 61, 71, 139
Line Printer Support ..•.•••... 248
Line Terminator .•....•••..••..• 31
LIST•...... 72, 14~

LLIST 72, 141
LOAD 72, 142
LOC ••••••••••••••••••••••••••• 143
LOCK ..•....•..•......• 71, 144-146

records 144
disk files .•..••••..••••.•.. 144

LOF •..•...••........•••... 74, 147
KYBD •••••••••••••••.•••••••• 147
LPTI ..•........•............ 147
SCRN 147, 169

LOG•......... 73, 148
LPOS 74, 149

column position••••.•.•• 149
deY i ce•........... 149
LPTI ..•.•...•............... 149

LPRINT•••..•...••..••• 72, 86, 150
LPRINT USING•...•••.•• 72, 150
Logical expressions ..•••••• 32, 58
Logical Operators .•......••.••• 53

Boolean .•.................... 53
LSET.....................• 71, 151

-- M--
Manipulates Data ..••.••••...••. 46
Machine Language Subroutine .••. 79
MEM•..•....•.•.•. 73, 152
Memory .•••.•.•.•... 30, 33, 34, 36

amount of•......... 152
location .•....•..•...•• 167, 168

memory space•....... 86
MERGE 72, 153-154
MID$ ••.•...•••••• 70, 74, 155-156
MKD$ •..••••••••.•.•••••••• 71, 157
MKI$ •••.....••••••••••••.• 71, 157
MKS$ •••.•....••••.•••••..• 71, 157
Mode•......... 61
Multiplication .•••••••.•••• 47-48

-- N --
NAME •••••••••••••••••••••• 72, 158
natural exponential .•••....••• 111
natural logaritm •..•...•....•• 148
nested loops •.••..•.••••••.... 116
NEW .••••...•...••••... 72, 82, 159
Normalized value ..•••.•.••••... 37
NOT 53
Notations•...............•. 4
Numeric ••••••••••••••••••;-~.33, 57
Numeric Data•• 32,37,47,73
Numeric Expressions .••.•. 32, 33,

...••.•••••.•• 47, 5~, 53, 59
Numeric Operators ...••.•••..•.. 47
Numeric Relations ...•.....•••.. 50
Numeric values •.•.••.•.•••..•.. 95

-- 0 --
octal value ..••••••.•••.•.•.•• 16~

OCT$ 74, 160
ON ERROR GOTO ••• 72, 109, 110, 116
ON .•• GOSUB ..•.•.••.•••..•• 71, 162
ON •.. GOTO •••••.•.•••.•••.. 71, 163
One dimensional array ••.••••.•• 36
OPEN .•.•••••.. 61, 71,88, 164-165

mode• 165
Operands .•.•.............•.. 46-47
Operators•.. 46, 47

hierarchy•..•.. 54

----------Itadlo/haell---------

256

____T_RS_-_X_EN_I_X_M_BA_S_IC__ TRS-BO ® I_ND_E_X _

logical •..••.•.....•.•.•..... 46
numeric .••.••••......•.... 46-47
relational•••.... 46
st r i n9•••••••••••••••••••••• •46

OPTION BASE •..•...••..•.. 70, 166
OR,••••••••••••••••••••••••••••• 53
Order of Oeprations ••..•.•••.•• 55
outputting data •....••........• 72

-- P --
parameter•......•.....•... 69
Parentheses ..•••...•••.•.•. 54-55
PEEK ••••••..•.••..•.. 73, 167, 168
pipes, TRS-XENIX •.••..••...••. 248
POKE ..•••......•••••. 72, 167, 168
pas 74, 169
PRINT...••..••.•• 34, 72, 170-171
PRINT#•••....•.•• 61, 71, 178-179
PRINT # USING .•.•......•••.••• 179
PRINT USING ••••.. 72, 172-176, 179
PRINT @••........•.......• 72, 176
PRINTED 172

formatted 172
PRINT TAB ••••..•••••••.••• 72, 177
PRINT# USING .•••••••. 61, 71, 172
Printer Device ••..••••••••..•. 248
Pr i ntin9 176

position 176
process 10 •.••.••...••.•.•...• 196
Program 30, 31

see LIST, LUST
save ..•...••.••...•.......•. 194
load 142

Program Lines ..•••....• 16, 19, 21
Program Loops ••..••..••••..••. 115

nesting 116
Programs 159

delete 159
disk 159
saving 194
loading 142
execution 193
memory •...•..••••••..•••.•.• 159
renumber 185
STOP execution ••••.•••••..•• 202

pseudorandomnumber ••...•..•••. 191
PUT 72, 18~

-- R --
random number ••••...•.•..••••. 191
random number generator ••.•.•. 181
RANDOMIZE .••••...•••••••. 70, 181
REAO .•....••.•.•.. 7~, 96, 182-183
record 66,144

length 164
LOCK ••...•...••••.•.•.•••.•• 144

redimension arrays •••.••••..•• 107
Relational Expressions .••.•.••• 32

50-52, 58
Relational Operator ..•.•.•• 50-51
REM ••••••••••••••••••••••••••• 184
remark line 184
Ren ames •••••••••••••••••••••• 158
RENUM••..••..•..•••.•.••.• 185-186
Representing Data •••..••••••••• 33

constants 33
variables•...... 33

RSET 72, 192
Reserved Words •••.••..•.•• 35, 231
RESTORE ••.••....••.•••.••. 70, 187
RESUME •••..•.•••••..• 72, 161, 18:
RETURN •.••••.••..••.• 71, 119, 18
RIGHTt•..••••.••.••.•••..• 74, 19.
RND •••••.••••••••••••••••• 73, 191
Rounding 44
RUN ..•........•••••.•• 16, 73, 193

-- S --
SAVE ?3, 194
Screen Device ..•..•..•••••••.. 247
SCRN •••••••••••••••••••••••••• 169
Sequential-Access Files •.•..••• 61

234-235
CLOSE ••••••••.••••••••••••••• 61
creating 62
EOF •••••••••••••••••••••••••• 61
INPUT# 61
LINE INPUT# •••••••.••••.••.•• 61
LOC ••.••.•.••.•.•••..•••...•• 61
PRINT# 61

---------lIadlo/haell---------

257

____I_ND_E_X TRS-BO ® TR_S_-X_E_N_IX_MB_A_S_IC _

PRINT# USING .•••••••..•.••••. 61
OPEN ••••••••••••••••••••••••• 61
WRITE# ••.••.•.••..•....•••••• 61
updating ..•.....•....•....... 64

Sequential Disk file •...•••... 127
SGN ••••••••••••••••••••••••••• 195
SHELL •.•••••.••.••••.. 73, 196-197
Simple Expression ••.•.•........ 57
Simple Variables .••.•..••••••.. 35
SIN 73, 198
sine 198
Single Precision •.....• 33, 4~-41,

43, 45, 95, 99, 249
SPACE$..•....•.•..•••..••• 74, 199
SPC ••••••••••••••••••••••• 74, 20fJ
SQR 73, 2@1
square root .••.•..•••.••.•.••. 2~1
Stack space 86
Statements .•.•.•..•..••••. 3~, 31,

46, 69, 7~, 73
DATA •••••••••••••••••••••••• 187
IF/THEN 52

STOP •.•.••••••.•..•....•.•• 7f/J, 71
Storing Data .•••.••••....•• 33, 36

double precision••..•••• 33,
37, 4~-43

integer 33, 37
memory ••••••••••••••••••••••• 36
numeri c 33
single precision•••...•. 33,

37, 4~-43

string ..•••..•...•...••..•.•• 33
STR$ •..•.•..•.....••• 74, 2~3, 212
Strings .•..• 3~, 33, 38-39, 42, 57

ASCII characters .••.••..• 38, 61
blanks ...•.•.••..•...•••.•.. 2@~
nu11 ••••••••••...•••..••••.•• 39
number •..........••.•....... 203
replacement •••.•••••..••.••. 155
searches ••...•••• 131, 156, 19~

spaces •......•.••.••..•.... 199
String data .•...............••. 73
String expressions ..•. 32, 51, 59

character data .••••.•...•.••. 32
String Function •...••..•.••••.. 74
String Length •.•...••••..•...• 136

String Operator •••.•.••••.•..•• 5~

String Space•.•..........•...... 86
String Values•.... 95
STRING$ •.•..•••••••••••••. 74, 2~4

Subscripted Variables ••.••••••. 35
subroutine ...••••... 69, 119, 162,

189
return ..•...•..........••... 189

Subtraction .•••..••...•.••• 47, 49
SWAP 70, 205
Syntax error ••••....••••.•• 19, 23
SYSTEM •....••••••..•. 73, 15~, 2~6

system functions •••..••.•••••.• 72

-- T --
TAB •..••....••••••••• 74, 177, 2~7

TAN .••••..•..••••••••.•.•• 73, 20'8
tangent •.........•....•••..... 20'8
Terms ..•.....•.....•.•..••...... 4
Three-dimensional array ••••••• 36
TIME$ 74, 209
time of day 209
trace function •••••••••....••• 21~
TROFF 72, 210
TRON •••••••••••••••••••••• 72, 21~

TRS-XENIX pipes •••••••••••.•.• 248
truncated integer .•••••••••••• 114
Two-dimensional array •..•••••• 36
tx 235

-- U --
UNLOCK .•.•.•...•..••.••..• 72, 211

-- V --
VAL 73, 212
Variables •••.•••••• 3~, 33, 34, 57

classifies•.•••.•...••• 41
Variable Names •••••••••.•..•••• 35
VARPTR •..••••••.••.•• 73, 213-216

-- W--
WHILE •.. WEND •.•••••••••••• 71, 217
WIDTH 72, 218
WRITE •...........•.....•.. 72, 219
WRITE#......•.••...•.• 61, 72, 22~

-- X --
XQR •••••••••••••••••••••••••••• 53

---------lIadI8/haell---------

258

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION
AUSTRALIA

91 KURRAJONG ROAD
MOUNT DRUm, N.S.W. 2770

02/83-SP

BELGIUM

PARe INDUSTRIEL DE NANINNE
5140 NANINNE

U. K.

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

Printed in U.S.A.

