READ ME FIRST

All computer software is subject to change, correction, or improvement as the manu-
facturer receives customer comments and experiences. Radio Shack has estab-
lished a system to keep you immediately informed of any reported problems with
this software, and the solutions. We have a customer service network including rep-
resentatives in many Radio Shack Computer Centers, and a large group in Fort
Worth, Texas, to help with any specific errors you may find in your use of the pro-
grams. We will also furnish information on any improvements or changes that are
“cut in” on later production versions.

To take advantage of these services, you must do three things:

(1) Send in the postage-paid software registration card included in this manual
immediately. (Postage must be affixed in Canada.)

(2) If you change your address, you must send us a change of address card
(enclosed), listing your old address exactly as it is currently on file with us.

(3) As we furnish updates or “patches”, and you update your software, you must
keep an accurate record of the current version numbers on the logs below.
(The version number will be furnished with each update.)

Keep this card in your manual at all times, and refer to the current version numbers
when requesting information or help from us. Thank you.

APPLICATIONS SOFTWARE OP. SYSTEM
VERSION LOG VERSIONLOG

dBASE II Addendum
TANDY COMPUTER PRODUCTS

Important Notice to ABASE II Users
Cat. No. 26-5352

This addendum replaces the information about system requirements
on page 1 and the information on pages 2 and 3 of the dBASE I
Introduction in your 4BASE II operator's manual. This software
is compatible with various Tandy computers. Before you attempt
to run the software, please find your computer's configuration in
the list below, and follow the instructions provided for that
configuration.

Minimum Configqurations
Tandy 1@@@: 256K memory, 2 disk drives, VM-2 monitor, printer

Tandy 12@@: 256K memory, 1 disk drive with a hard disk, VM-3
monitor, video card, printer

Tandy 2@@@: 256K memory, 2 disk drives, VM-1 monitor, printer

Loading Instructions
Tandy 120@/2¢8f Single-Drive Hard Disk Systems

1. Start up MS-DOS under hard disk control so that the C> prompt
is displayed and you are in the \ directory.

2. If you want to copy your files into a sub-directory, you must
first create that directory. 1If you do not want a directory,
skip this step.

a. At the C> prompt, type:

MRDIR \<directory name> [ENTER]

dBASE II Addendum

TANDY COMPUTER PRODUCTS

b. Change to the new directory by typing:
CD \<directory name> [ENTER]

Place your dBASE II diskette in Drive A, and at the C>
prompt, type:

COPY A:*.* C: [ENTER]

When the C> prompt reappears, your files have been moved to
your hard disk.

Tandy 190¢@ Single- and Double-Drive Systems

Turn on your computer, and place an MS-DOS system diskette in
Drive A.

Press the reset button.
At the A> prompt, type:
COPYDOS [ENTER])

Note: If you have a single disk drive, when prompted to
insert a diskette in Drive B, remove the diskette in
Drive A, and replace it with the diskette required for
Drive B.) '

Insert a blank, unformatted Tandy 1@@# diskette in Drive B.
(First, be sure that the diskette's write-protect notch is
not covered.) Close the drive door, and press the space bar
to continue. COPYDOS formats the Drive B diskette. It then
asks if you want to format another diskette. Press [N].

COPYDOS asks you to insert your application program diskette
in Drive A and a blank, formatted diskette in Drive B.
Remove the system diskette from Drive A, and replace it with
your ABASE II diskette. The Drive B diskette is already
formatted, so press the space bar to continue.

dBASE II Addendum

TANDY COMPUTER PRODUCTS

When prompted, remove the ABASE I1 diskette from Drive A, and
insert the system diskette. Press the space bar to continue.

COPYDOS copies the MS-DOS files to the Drive B diskette.
Once COPYDOS finishes executing, your Drive B diskette is a
bootable dBASE II diskette.

Tandy 2@@@ Double-Drive System

Converting a Tandy 1f@@/12¢F diskette so that it runs efficiently
on a Tandy 2#@@ computer is a simple task. The steps for
completing the conversion are provided below.

Turn on your Tandy 208d computer.

Insert a Tandy 2@@@ MS-DOS system diskette in Drive A, and
press the reset switch.

Place a blank, unformatted diskette in Drive B, and type the
following command:

FORMAT B: /S [ENTER]
After the diskette has been formatted, the system is
transferred. This makes your diskette bootable. When it is
finished, you are prompted to format another diskette. If
you wish to format another diskette, type:

Y [ENTER]
When you have finished formatting, type:

N [ENTER]

Remove the system diskette from Drive A, and replace it with
your master application diskette. Type:

COPY A:*.* B: [ENTER]

dBASE IL Addendum
TANDY COMPUTER PRODUCTS

As each file is copied, the file name is displayed on your
screen. When all the files are copied, the A> prompt is
displayed.

6. Remove your master application diskette from Drive A, and put
it in a safe place. Use the original only to make working
copies of your application.

dBASE Il Addendum

TANDY COMPUTER PRODUCTS

Backup Instructions for the Sample Program Diskette

Single-Drive Systems

1.

Insert an MS-DOS system diskette in Drive A, and type:
FORMAT A: [ENTER]

You are prompted to insert a blank, unformatted diskette in

Drive A and press any key. When the formatting is finished,

you are prompted to format another diskette. Press [N].

Remove the formatted diskette, and replace it with the MS-DOS
system diskette. Type:

DISKCOPY [ENTER]
You are prompted to switch out the appropriate diskettes in

Drive A until the diskette has been successfully copied. You
are than prompted to copy another diskette. Press [N].

Double-Drive Systems

1.

Insert an MS-DOS system diskette in Drive A, and type:
FORMAT B: [ENTER]

You are prompted to insert a blank, unformatted diskette in
Drive B and press any key. When the formatting is complete,
you are prompted to format another diskette. Press [N].

To copy the diskette, type the following:

DISKCOPY A: B: [ENTERI]
You are prompted to place the application diskette in Drive A
and a blank, formatted diskette in Drive B, When you have

done this, press the space bar. When the copy is complete,
you are prompted to copy another diskette. Press [N].

dBASE II Addendum
TANDY COMPUTER PRODUCTS

Tandy 1P@@ Printer Configuration Instructions

Before starting your application, you must assure that the
printer you are using is set up to work with your Tandy 198f. To
accomplish this, find your printer on the list below, and follow
the indicated steps.

If your printer is: Do this:
IBM-compatible (IBM, Epson, etc.) No action required
LPVIII

DMP12d

DMP 280

DMP 4@ Set NL/CR switch to
DMP42§ CR

DMPS @@

DMP21gg

DWPIIL

DWPIIb

DWP4lg Follow Procedure I
DwWp2l1@

Other Follow Procedure II

Procedure I
1. At the MS-DOS prompt, type:
lpinst [ENTER])
The screen shows:

Does your printer automatically linefeed
after a carriage return?

2. Press [Y].

dBASE II Addendum
TANDY COMPUTER PRODUCTS

When the printer configuration process is finished, the MS-DOS
prompt returns to the screen. The printer configuration
procedure need be performed only once. Now, whenever you run the
application, the printer configuration is done automatically.
(The LPINST command builds a new autoexec.bat file and then
appends any existing autoexec.bat file to the newly-built
autoexec.bat file.)

Procedure II
1. At the MS-DOS prompt, type:
lpinst [ENTER)
The screen shows:

Does your printer automatically linefeed
after a carriage return?

2. Press [Y) or [N]. If you are not sure about the answer
you should give, run a printout test. If the printer
doublespaces lines, return to MS-DOS, run LPINST as
instructed above, and answer [Y]. Again, run a printout
test to ensure that the printer is performing as expected.

Note: If you do not want the system to automatically configure
itself for your printer (for example, if you change
printers frequently), you can manually reconfigure the
system by issuing a simple "MODE" command at the MS-DOS
prompt.

To turn off the extra linefeed, type:

1f (ENTER])
Then, when the system prompt returns to the screen, type:

mode lfoff [ENTER]

dBASE 11 Addendum
TANDY COMPUTER PRODUCTS

To turn on the extra linefeed, type:
1f [ENTER]

Then, when the system prompt returns to the screen, type:
mode 1fon [ENTER]

If you reset the computer, the system returns to its default

setting, LFON. After you issue the appropriate mode command,
your Tandy 1@@f is configured to work with your printer.

875-9616

Model 2000
dBASE 11
Cat. No. 26-5352

MODE

The program MODE is included on your diskette to permit you to select the video
mode in which to run dBASE Il. Four optlons are available with the MODE utility:

BW — black and white

COLOR — color (avallable only if you have a color graphics board and a
color monitor)

40 — 40 characters per line

80 — 80 characters per iine

In addition to the four options given above you may enter a question mark (?) to
display help documentation.

To select the appropriate video mode you must execute MODE before running
dBASE Il. The default mode I8 set to BW, 80 characters. To specity an option other
than the default, simply enter MODE followed by at least one of the options
presented above. For example, you may set color by entering the following at the
system prompt:

MODE COLOR

TANDY

875-9458

e

“1e

i

N

a E .
. " ‘ :
. o
, -
. .) .

Model 2000
dBASE 11
Cat. No. 26-5352

SAMPLE DATABASES AND COMMAND FILES

The sample program diskette which is Included with the product, contains sample
databases and command flles to be used as examples of some of the applications for
dBASE II. These flles are Intended to be useful as they are and are internally
documented so that you can customize them to suit your own purposes. Each set of
programs listed below Is progressively more involved, so you can start at a level com-
fortabie to you and work up. To utllize these applications, place the dBASE Il program
diskette in Drive A and the sample program diskette in Drive B. Execute dBASE and at
the dot prompt enter:

SET DEFAULT TO B:
Each appiication can then be run by entering BO followed by the name of the main
program of each application. For example, the checkbook example may be run by
entering:

DO CHXMENU
The main program of each group Is boldfaced.

TICKLE FILE MANAGEMENT FILES (CARDFILE)

CMAIN.PRG TEX.DBF CPRINT.PRG KEYWORD.NDX
APPECARD.FMT TICKLE.NDX TICKLE.FRM EDITCARD.FMT
CHECKBOOK MANAGEMENT FILES

CHXMENU.PRG CHXINPUT.FMT CHXDEPOS.FMT CHXBOOK.MEM
CHECKS.DBF DEPOSITS.DBF

INVENTORY MANAGEMENT
IMAIN.PRG INVENT.DBF ISETUP.PRG I'BYNMBR.NDX
INVMAINT.PRG I'BYDESC.NDX INVQUAN.PRG INV'CONS.FRM
INVREAD.PRG INV'PRTR.FRM INVRPRT.PRG

PERSONNEL MANAGEMENT FILES
EMAIN.PRG EMPLOYEE.DBF ESETUP.PRG EMPSCRN.FMT
EMP-ENTR.PRG EMP-UPD.FMT EMP-UPD.PRG EMP-PRT.FRM
EMP-TERM.PRG EMP-CONS.FRM EMP-RPRT.PRG E'BYNMBR.NDX
EMPLOYEE.MEM E'BYNAME.NDX

TANDY

s
ey
2
[T

M A

e

Cunatvs
v e W

P

e Tod

PR

“aw

cnn

"ew

dBASE II Technical Notes

If a database field is defined with a width greater than 70, the 71st character is
not shown when a LIST or DISPLAY command is executed.

To view the 71st character, use EDIT or BROWSE.

Attempts to produce a report from a database file containing no data results in
extraneous characters being displayed or data from another database file
shown in the report.

Execute reports from a command file. In the command file precede the report
command with the conditional statement:

IF# < >0

If this conditional statement is met, there is data in the file. If there is no data
in the file, # is equal to 0 and no report is printed.

When utilizing the JOIN command to create a single database with fields from
separate databases, the secondary database is left open and displays the
message:

FILE CURRENTLY IN USE

To close the secondary database, at the dot prompt, enter:

SELECT SECONDARY

When the dot prompt is again displayed, type:

USE

Any MODIFY STRUCTURE command following a MODIFY COMMAND entry
results in extraneous characters displayed on the screen.

Perform a USE <database> immediately before executing the MODIFY
STRUCTURE command.

In BROWSE, ctl-B pans to the right moving the cursor to the next field as it
pans. However, ctl-Z pans to the left but does not move the cursor as it pans.

PACK does not release disk space or update the database file size when
deleted records are removed with this command. As subsequent records are
added to the database file, the empty space from the PACK is reused.

EJECT ON/OFF applies only to those line printers that have the capability to
perform form feeds, including the LP 2150 and DMP series of printers with the
exception of the DMP 100 and DMP 120.

*** The CLEAR and USE commands do not always close files left open as the
result of syntax errors.

If you receive the message FILE CURRENTLY IN USE and the USE or CLEAR com-
mand does not correct it, quit dBASE i and begin again.

dBASE II Manual Corrections and Additions
In the manual, DISPLAY STRUCTURE and LIST STRUCTURE cause slightly different
results than the example screens illustrate. The header proceeding the display of the
database STRUCTURE is:

STRUCTURE FOR FILE: X:< database fllename >
.DBF

where X is the drive Indicator.

Part A Changes
Contents, Sectlon1 Entering data into your database begins on page 13.

Pago 2, Introduction You must use a formatted disk to make a backup. Replace
the existing note with the following:

Note: If your disk has not been formatted, follow the instructions under
“Formatting Data Diskettes’ before performing a DISKCOPY.

Page 12, Creating Databagses After the first sentence, add the following:
A numeric field may be defined with up to nine decimal places.

Page 13, Creating Databases There should be a colon between the words ZIP and
CODE on the flrst screen.

Page 14, Creating Databases The record number on the screen should be 00003.

Page 23, Creating Databases At the bottom of the page, insert ¢? State¢ after
name and insert ¢? Name# after skip.

Section II, Contents Summarizing data and eliminating details begins on page 58.

Page 32, Expressions The last name on the screen should be Edmunds, Jim
rather than Destry, Ralph.

Page 34, Expressions The number of bytes used on the screen is 00061 instead of
00084.

Page 35, Expressions The result of the second problem is 0.00713 rather than
0.00644.

Page 38, Expressions The record number for Clinker, Duane should be 00002.

Page 40,

Page 41,

Page 42,

Page 43,

Page 44,

Page 49,

Page 50,

Expressions On the screen, there should be nine spaces after Pat and
nine spaces after is.

Expresslons The fields on the screen should appear as follows.

FLD NAME TYPE WIDTH DEC
001 CHECK:DATE c 007
002 CHECK:NMBR C 005
003 CLIENT c o003
004 JOBNUMBER N 003
005 NAME C 020
006 DESCRIP C 020
007 AMOUNT N 009 002
008 BILL:DATE c 007
009 BILL:NMBR c 007
010 HOURS N 006 002
011 EMP:NMBR N 003
TOTAL 00091

The sentence below the screen should indicate that dBASE |l lists the
first 22 (or fewer) fields.

Expresslons Delete record 00002 Brown, John from the screen. Record 3
becomes record 2 and record 4 becomes record 3. Add the following as
record 4.

00004 EDMUNDS, JIM 392 Vicarious Way
Atlanta GA 30328

Expressions The first screen should say:
.copy to temp structure

In the Advanced Programmers section, add ¢DISPLAY STRUCTURE¢
before ¢Liste.

Expressions The Records Copied and Number of Records should be
00005. Delete the parenthetical phrase (see Review. CMD, Section VI) from
the first paragraph.

Expresslons Replace the last paragraph with the following information.

A CustCode should be added to each record in the Names database
starting with the second record. The first record remains unchanged for a
subsequent example of an alternate method of making updates to the
database.

To update the second record, ¢USE Names+¢ then type ¢EDIT 2¢. Use the
full screen editing features of dBASE to position the cursor beside the
CUSTCODE prompt and enter #1002¢. To move to the next record, type
#ctl-Ce. Continue entering customer codes as four digit numbers with the
record number as the last two digits (1003, 1004, 1005, and so on).

Expressions Add .F.to the number in the last column of the first and last
records on the screen.

Page 52,

Page 54,

Page 55,

Page 56,

Page 57,

Page 58,

Expressions Delete record 2 from the screen. Record 3 becomes record
2 and record 4 becomes record 3. The CustCode of the new record 2 is
1002. The CustCode of the new record 3 is 1003. Insert the following
record 4.

00004 EDMONDS, JIM 392 Vicarious Way
Atlanta GA 30328 1004

The CustCode of record 9 is 1014. The CustCode of record 14 is 1013.

Expressions On the screen, Clinker, Duane is record 00002, and the
CustCode for this record is 1002.

Expresslons On the screen, the number after Alazar, Pat should be
98206 followed by record 2 rather than 3.

Expressions The screen should show L =66,W = 80 after Page Width. At
the bottom of the page, delete the apostrophes from around the last 770
you type.

Expressions On the screen, add 00/00/00 under the page number line.
Change the first paragraph to the foliowing:

An additional heading may be added to the report at runtime by typing
¢SET HEADING TO character string¢ prior to executing the REPORT com-
mand. The character string may be up to 60 characters and spaces with no
quotation marks.

Expressions On the screen, 00014 bytes are used instead of 00012
bytes. Insert the following after the first sentence in the second paragrph
from the bottom:

If the database named in the TOTAL command already exists, the key field
and the fields being totaled must be defined in the structure of the sum-
mary database. If the named database does not exist, all fields wlll be
transferred from the database in use to create a new database.

If you have already created a database file named TEMP in a previous ex-
ample in this manual, please remove TEMP before continuing with this ex-
ample by entering:

DELETE FILE TEMP

Sectlon lll,Contents Delete TEXT and .FMT from the commands list.

Page 62,

Page 64,

Command Flles In the first sentence, use ctl-W to get back to the
dBASE Il prompt. To rename the main dBASE file, type:

A> ¢RENAME DBASE.COM DO.COMe

At the bottom of the page, delete the apostrophes around the 730. Change
Supplier to Name. :

Command Files In the example, insert SKIP after STORE Index + 1 TO
Index.

Page 73, Command Flles Delete the RESET paragraph from the page.

Page 89, Organization In the fourth paragraph on the page, the last sentence
should show DBMS rather than DMBS.

Part B

Contents Section 4.1 Functions begins on page 9. The section heading Rules of
Commands should be Rules to Operate By.

Page 1, dBASE Delete the text beginning at the second paragraph to the
sentence “The sign-on message...”.

Page 40, ACCEPT The example use 22 bytes and 37 bytes respectively.

Page 48, BROWSE The up arrow, or cti-E, backs up to the previous data field. The
down arrow, or ctl-X, advances to the next data field. The right arrow, or
ctl-D advances to the next character. The left arrow, or ctl-S, backs up to
the previous character.

Page 88, INPUT In the example, the word EVERYTHING is misspelled.

Page 89, INPUT A total of 59 bytes is used in the example.

Page 97, LOCATE When using LOCATE with the NEXT clause, the message END

OF FILE ENCOUNTERED is displayed if the expression cannot be found
within the scope of the NEXT.

Page 98, LOCATE The message END OF FILE ENCOUNTERED is displayed instead
of END OF FILE.

Page 123, REPORT This example has 12 records instead of the 16 indicated.

Page 126, REPORT Celete the games on 07/07/82 and 07/23/82. The scores are
changed to the following: List = 112; Anna = 135; Wayne = 91; game
total = 338. Delete the Report Form Orders example.

Page 128, RESET Delete this page.

Page 129, RESTORE The total bytes used in the examples are 43, 0, and 43 respec-
tively.

Page 131, SAVE The total bytes used in the examples are 43, 0, and 43 respective-
ly.

Page 142, STORE Delete EOF (L) .T. from the example. This example uses 43 bytes.

Page 143, SUM In the example, 7 bytes are used rather than the 6 bytes indicated.

Page 148, TOTAL Create a database named CALLS with fields PART:NO and
AMOUNT as shown in the example.

i

it

~

and g i

aa

2

Cat. No. 26-5352

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK AND TANJY COMPUTER
EQUIPMENT AND SOFTWARE PURCHASED FROM A RADIO SHACK COMPARY-QWNED COMPU'ER
CENER RETAIL STORE OR FROM A RADIO SHACK FRANCHISEE OR DEALER AT ITS
AUTHORIZED LOCATION

LIMITED WARRANTY
CUSTOMER 0BLIGATIONS

CUSTOMER assumres full responsibility 1hat th:s computer narcware purchased it~e Equigment and any
copes of software included with the Equipment or hiceTsed Sepa’ately 1the Software 4 mreets the speciiica-
1075 capacity. capabilties. versatlty anc otner requirements ot CUSTOMER
8 CUSTOMER assumes full responsb ity for the condition and ef'ectiveness of the operating envircnment 1=
which the Equipment arg Software are 10 furction. and for its instal'at:or
RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE
For 3 penod of minety (30) ca encar days ‘rem the date of the Radio Shack sales gocument recevet ugo”
purchase o tre Equipment. RADIO SHACK warrants to the osiginal CUSTOMER tat tne Equ prrient and the
med LM updT which the Software s stored s tree from manufacluring detects THIS WARRANTY IS ONLY
APPLICABLE *0 PUACHASES OF RADIO SHACK AND TANDY EUUIPME“—T BY THE ORIGINAL CUSTOMER
FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS RETAIL STORES AND FROM RADIO
SHACK FRANCRISEES AND DEALERS AT ITS AUTHORIZED LOCATION ~hre warranty is void if the
Equpment's case or cabnet has been opened. or ¥ the Equipment or Software has been subected to
improper 0r abnormal use I @ manufacturing defect 1s discovered cuting the stated warranty perrod fhre
gefective Equ:pment must be returned to a Radio Shack Computer Center a Rado Shack retail store
participatirg Radio Shack franchisee or Radio Shack dea'er for regar 2long with a copy of the sales
gocument ot lease agreemert The onginal CUSTOMER S sole and exclusve remegy in tne event of a delect
15 imiteg to the correction of the defect by repar replacement. or returg 0f the purchase price. at RADIO
SHACK § election ang sole expense RADIQ SHACK has no obligation to repiace of repar expendable ilems
RADIQ SHACK makes no warranly as to the design. capabiily. capacity. or suitabihty for use of f=e
Software. except as provided in tmis paragraph. Software 15 ucenseg on ar AS IS Lasis. without
watrarty The ongnal CUSTOMER'S exclusive remedy. im the event of a Software manutacturing gefect. s
I rega of replacement within thrly 1301 calercar days of tne date of the Racid Srack sales Socument
receved upcn hcense of the Softsare e defective So'tware shall Se refturned to 2 Rac.o Snack Computer
Center a Rag:o Smack *etail store particgaling Ragio Shack “ranchisee o1 Radio Srack dedler 21ong with
he sales document
Excert as provided heren no erployee. aget Naﬂcn see. cealer O Of7er persC™ 1S AutnI/IZeT 16 gve any
warrantes of any nature o~ Benail of RADIO SHA(
EXCEPT AS PR&VIDED HEREIN. RADIO SHACK MAK[S NO EXPRESS WARRANTIES AND ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAA PLRPQOSE IS LIMITED IN ITS
OURATION TO THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FOR™H HEREIN
Sume states ¢o Not allow "M itatigns €7 Aow 197G an IMphes warranty 1asts $o tre above IMIAldMSY may
not apply to CUSTOMER
. llMlIAIION OF LIABILITY
EXCEP™ AS PROVIDED HEREIN. RADIO SHACK SHALL HAVE NO LIABILITY QR RESPONSIBILITY "0
CUSTOMER OR ANY OTHER PERSON OR ENTITY WiTH RESPECT TQ ANY LIABILITY LOSS OR DAMAGE
CAUSED OR ALLEGED TQ BE CAUSED DIRECTLY OR INDIRECTLY BY EQUIPMENT OR SOFTWARE
SOLD. LEASED. LICENSED OR FURNISHED BY RADIQ SHACK. INCLUDING. BUT NOT LIMITED TO. ANY
INTERRUPTION OF SERVICE LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENIAL
DAMAGES RESULING FROM THE USE OR OPERATION OF THE EQUIPMENT OR SOFTWARE ' INNQ
EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS QR ANY INDIRECT SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING QUT OF ANY BREACH OF THIS WARRANTY QR 1% ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE LEASE LICENSE USE OR ANTICIPATED USE OF THE
EQUIPMENT OR SOFTWARE
NOTWITHSTANDING THE ABOVE LIMITATIQNS AND WARRANTIES RADtD SHACK S LIABILITY
HEREUNOER FOR DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL %07 EXCEED THE AMOUNT
PAID BY CUSTOMER FOR THE PARTICULAR EQUIPMENT OR SOFTWARE INVOLVED
RADIQ SHACK shait =gt be liab'e tor any gamages causec by delay ~ celivering or *ur~ shrg Equpment
ang or Software
No actc~ arsing out of any claimeg breact 0 this Warranty or tra=sactions under t~ s Warsanty may e
Brougnt more than two (2) years after the cause of acticn ras accrues or more trar foyr idi years after the
gate of tre Ragip Snack sales gccumert tor the Equipmert or Sc'tware. whichever ! st occurs
Some states o not al ow the IMitation Or exclusion 0f ircidental 0 comsequential Txmages s3 the aSove
hmitation(s) or exclusionis) may not ageiy 10 CUSTOMER
. RADIO SHACK SOFTWARE LICENSE
R&DIQ SHACK grants to CUSTOMER a non-exciusive. pa ¢-ug | cense 1o use tne SoMtware =~ one computer sutiect
10 the *3ilowing provisions
Esltepl as otherwise provided in tms Softwace License appiiceble copyr ght iaws sma’ apply to the B
oftware
Titie to the medium On which the Sctware 15 recorded Jrassette and or iskeiter or stored 1ROM) s
trarsterred t¢ CUSTOMER but not title to the Software
CUSTOMER may use Scttwate o~ one "ost cOMpuler and access that So'twars througn one of mare
terminais if the Sattware permits s tunctgn
CUSTOMER shall not use make fanifacture or "eprodLce copes of Software except ‘or use on one
computer and as s specilically providec ~ th's Software License Custcme: is exprass'y prombited ‘ror
disasserbing the Sotteare
CUSTOMER 'S perm ted to make agaitional coptes of tne So‘tware only ‘or backuy or drcval purposes or
11 agoitigral copies are required N the operat:on of one compuler with the Software but only 10 the extent
fhe Sottware ailows a Sackup copy to be made However ‘or TRSDOS Sc'tware CUSTOMER 15 perrneg
1o maxe 2 irnted number o' additional cogies tor CLSTOMER S own use
CUSTOMER may resell o* crstribute unmoc fieg copies of the Scitware prov ced CLSTOMER has curchase
ane copy of the Scftware 107 eacr ore s0lg or distributed Tre provisions of th's Scitaare Licerse shatl aiso
be annhca..w 10 tnirg paties recev:~g cop es of the Software from CLSTOMER
G r:ght nolices sha be 'eiamec ¢n 3ll copres of tre Software
APPLICABILITV OF WARRANTY
he te'ms and conditions o* this Warranty are apg!cable as between RADIO SHACK ang CLSTOMER to
eitrer 3 sa'e of the Equipmen anrg or So‘tware License 10 CUSTOMER or to 3 transacton wneredy RADIO [
SHACK selis or conveys such EQu prent 1o a tm.ra party fo° 'ease to CUSTOMER 1
Tre hirmitations ¢f nabiity ang Warranty grovis.cns herein s=all imure 1o tee benefit ot RADIO SHACK . tre
%ul'%‘c:" owner ang or licenscr ¢f the Softaare ang any manu‘acturer of the Ecu oment soid by RADIO
A
VI STATE LAW RIGHTS
The aarrates grarted reren give the original CLSTOMER spect.c fega rghts anc tre otiginal CUSTOMER may
haee oter rGm1s which vary ‘rom state 1o state

(This page is intentionally left blank)

© 1882 Ashton.Tate
Reproduction By Any Method Is Strictly Prohibited

dBASE Ii.

Assembly Language
Relational Database
Management System

USER MANUAL

dBASE II®
Computer Program and User Manual
Copyright ©1981, 1983 Ashton-Tate as an unpublished work;
Confidential, Proprietary Material

All Rights Reserved
Licensed to Tandy Corporation

This program and manual are the property of Ashton-Tate and embody proprietary, confidential and
trade secret information of Ashton-Tate. The dBASE II program and manual are protected by trade
secret and copyright laws. The dBASE II program shall be used only in conformance with the terms of
the Limited Warranty and Software License contained in this manual. Use of the dBASE II program
other than as expressly authorized is prohibited and a violation of the copyright laws.

Violation of copyright laws or misappropriation of trade secrets can result in criminal prosecution, fines
and imprisonment in addition to civil damages.

Reproduction of any portion of this manual without express written permission from Tandy Corporation
and Ashton-Tate is prohibited. While reasonable efforts have been taken in the preparation of this
manual to assure its accuracy, Tandy Corporation and Ashton-Tate assume no liability resulting from
any errors or omissions in this manual, or from use of the information contained herein.

10987654321

DEFINITION OF PRODUCT

When you purchase dBASE II you should receive the following:
MS=DOS System Diskette with dBASE II Programs.
dBASE II User Manual.

Diskette of sample databases.

One set of three function key templates.

(This page is intentionally left blank)

© 1982 Ashton-1ato
Reproduction By Any Methiod 1a Strictly Prohibited

PART A

CONTENTS
Introduction and Installation:
Introductionol 1
System Requirements 1
dBASE II Specifications 1

Disk Preparation
Making a ‘Working’ and ‘Backup’ Copy

of the dBASE II diskette................... 2
Formatting Data Diskettes 3
Installing dBASE II on your Hard Disk 3
Backing Up files from Hard Disk 4
Restoring files to Hard Disk................... 4
File naming conventions 4
Typographic conventions used in this manual 6
BringingupdBASE II. 7
Section I:
How to CREATE adatabase 11
Entering data into your new database 12
Modifying datainadatabase 14
Full Screen Editing Features 15
An introduction to dBASE II to commands and the

error correctiondialogccoiiiiiiiiinnn, 16
Expanding commands with expressions 17
Looking at yourdatarecords 20
Positioning yourself in the database 21
The interactive ? command 23
Adding more records to a database 24
Cleaningupadatabase 26
Section ISummaryoi i 28

Section II:

Using expressions for selection and control 31
Constants and variables 31
dBASE Iloperatorsocviiveeennennnnnn. 35
Logical operatorsoiiiiiiiiiiiiiinan., 36
Substring logical operatori 38
String 0peratorsci.iiiiiiiiiiiiiaaant 39
Changing an empty database structure 40
Duplicating databases and structures 41
Adding and deleting fields with data in the database . 44
Dealing with MS-DOS and *‘foreign files”. 47
Renaming database fields 48
Modifyingdatarapidly 49
Organizing your databases 51
Finding the informationyouwant 53
Getting information out of all thatdata 55
Automatic counting and summing 57
Summarizing data and eliminating details 58
Section I Summary ..., 60
982 Ashton-Tete

M ate
Reproduction By Any Method Is Strictly Prohibited

CREATE

EDIT, BROWSE

USE, DISPLAY, LIST
LIST

DISPLAY

GO, GOTO, SKIP

?

APPEND, INSERT
DELETE, RECALL, PACK

STORE

MODIFY

COPY

COPY, USE, MODIFY
COPY, APPEND
COPY, APPEND
REPLACE, CHANGE
SORT, INDEX

FIND, LOCATE
REPORT

COUNT, SUM
TOTAL

Section lli:

Setting up a command file
{writing your first program)
Making choices and decisions
Repeating a process
Procedures (subsidiary command files)
Entering data interactively during a run
Placing data and prompts exactly where you
want them
A command file that summarizes what we’ve learned
Working with multiple databases

Generally useful system commands and functions
A few words about programming and planning
your command files

Section IV:

Expanding your control with functions
Changing dBASE II characteristics and defaults
Merging records from two databases
JOINING entire databases
Full screen editing and formatting

Formatting the printedpage
Settingup and printingaForm.
Time to regroup

Section V:

Database Basics
A brief introduction to database organization
dBASE II Records, Files and Data Types
dBASE I1 OPERATIONS SUMMARY
dBASE II FUNCTION SUMMARY
dBASE 11 COMMAND SUMMARY
Commands grouped by what you want done

100 File structure

101 File operations

102 Organizing database

102 Combining databases

102 Editing, updating, changing data

103 Using variables

104 Interactive input

104 Searching

104 Output

105 Programming

* 1982 Ashton.Tate

Reproduction By Any Methad Is Strictly Prohibited

MODIFY COMMAND
<file>
IF.ELSE..ENDIF

DO WHILE..

DO <file>

WAIT, INPUT, ACCEPT

@..SAY..GET

SELECT PRIMARY/
SECONDARY

SET..

UPDATE

JOIN

SET FORMAT TO SCREEN
@..SAY..GET..PICTURE..
SET FORMAT TO PRINT
@..SAY..USING

INTRODUCTION... 1

Introduction

dBASE Il is a database management tool that allows easy manipulation of small and
medium sized databases using English-like commands. With dBASE II you can:

® C(Create complete database systems.

® Easily add, delete, edit, display and print data from your database, with a
minimum of data duplication on file.

® Gain a large measure of program/data independence, so that when you change
your data you don’t have to change your programs, and vice-versa.

® Generate reports from one or more databases, automatically do multiplication,
division, sub-totals, totals and other data manipulation every time you use them.

® Use the full-screen editing capability to set up a screen format, so that you see
exactly what you're going to get, and enter data by simply “filling in the blanks.”

dBASE Il is an extremely powerful system. To get the most out of it, please take the time to
read the instructions before you start using it. The time will be well spent.

Systems Requirements
dBASE Il requires the following hardware and software environment:

Tandy Model 2000 with MS™-DOS operating system.

256K bytes minimum of memory

One or more mass storage devices (usually floppy disk drives).
Optional text printer {for some commands).

dBASE |l Specifications

Records per database file 65535 max
Characters per record 1000 max

Fields per record 32 max
Characters per field 254 max

Largest number +1.8x 1063 approx.
Smallest number +1x 10~ 63 approx.
Numeric accuracy 10 digits
Character string length 254 characters max
Command line length 254 characters max
Report header length 254 characters max
Index key length 100 characters max
Expressions in SUM command 5 max

MS is the trademark of Microsoft Corporation.

1982 Ashtun-Tate
Reproduction By Any Method 1s Strictly Prohibited

INTRODUCTION... 2

Disk Preparation

If you have a Model 2000 configured with floppy diskette drives, follow the disk preparation
instructions described below on Making a ‘Working’ and ‘Backup’ Copy of the dBASE 11 Diskette,
and in the section on Formatting Data Diskettes. Hard disk users should skip to the section on
Installing dBASE II on your Hard Disk and continue reading the next two sections on Backing
Up and Restoring Hard Disk files.

BEFORE YOU DO ANYTHING ELSE, MAKE A COPY OF THE dBASE Il DISK. STORE THE
ORIGINAL IN A SAFE PLACE AND USE THE COPY.

Making a ‘Working' and ‘Backup’ Copy of the dBASE |l diskette

In order to protect yourself against accidental loss of any portion of your new product, you should
never use your distribution disk copy of dBASE II to run the dBASE II program. Instead, you
should employ it solely for the purpose of making ‘working’ and ‘backup’ copies of the
program.

After you have made a working and backup copy of the program following the directions given
below, store your dBASE II distribution disk away in a safe place. If a bad power surge should
ever strike — and we certainly hope it never will — your dBASE II Master will always be
there on your shelf to turn a potential disaster into a mere inconvenience.

To make your ‘working’ and ‘backup’ copies of dBASE II, you may simply copy the contents
of your dBASE II distribution diskette onto blank disks using your disk copy utility,
DISKCOPY.

To carry out this procedure, first ‘boot’ your system with your dBASE II distribution
diskette in drive A. When your system prompt A> appears on the screen, enter the following
command:

DISKCOPY A: B: <enter>
Note: Here and elsewhere ‘<enter>’ denotes your console’s ENTER key.

As soon as your system’s DISK COPYing utility has been taken into memory, your computer
will prompt you to place the ‘source’ of the copy operation into drive A, and the ‘target’ of
the copy operation in drive B.

Place a blank disk in drive B, and enter any console character to execute the copy.

Note: If your blank disk has not been formatted, your system will automatically format it
before executing the copy operation.

When the copy operation has been successfully completed, your system will ask you if you
wish to make another copy. Enter Y to make another copy.

When your system prompts you to place the ‘source’ in drive A and the ‘target’ in drive B,
simply replace the disk in drive B with another blank disk (leave the distribution disk in
drive A), and press any key to execute the copy operation once again.

When your system finishes the copy operation, and asks you if you wish to make another -
copy, enter N to exit the DISKCOPY program and return to the A>.

© 1882 Ashton-Tate
Reproduction By Any Method s Strictly Prohibited

INTRODUCTION...3

Remove the dBASE II distribution disk from drive A, return it to its protective envelope,
and store it away in a safe place. Remove the new disk from drive B.

At this point mark one of your new copies of dBASE 1l as your ‘working’ copy, and the other
as your dBASE II ‘backup’. Place your ‘working’ copy in drive A, and put aside your ‘backup’
for safekeeping.

For more information about your system’s DISKCOPYing utility, see your DOS system
manual.

Formatting Data Diskettes

If you wish to save your data on separate diskettes, you must format the blank diskette
before you can use it. To format a blank diskette or reformat an old diskette, type:

FORMAT I[drivel:

Where drive specifies the drive in use. Immediately after you enter the FORMAT command,
MS-DOS displays a format prompt followed by instructions to insert a diskette. Insert a blank
diskette or a diskette to be reformatted and press any key. As the diskette is formatted, the
dashed formatting line turns to periods to indicate the format has not encountered errors. A
question mark in place of a dash indicates that the corresponding track on the disk contains
flawed sectors. This causes no problems, however, because FORMAT locks out the flawed
sectors so that MS-DOS never writes to them. When the FORMAT is complete, the screen
shows the total disk space, the number of bytes in bad sectors, and the number of bytes
available on the disk. You are prompted to format another diskette. If you wish to format
another disk press <Y ><enter>. When you have finished formatting, press <N><enter>to the
format question.

Installing dBASE |l on your Hard Disk

In what follows, we will assume that you have already formatted your hard disk according
to the instructions in your Introduction to Model 2000 Manual. Moreover, we will assume
that disk drive C is your hard disk drive and disk drive A is one of your floppy disk drives.
(If your configuration is different simply enter the appropriate drive name in the place of drive
A and C below.)

To place the contents of your dBASE II distribution diskette onto your hard disk, simply
‘boot’ your system, and when your system prompt C> appears on the screen, place the
distribution diskette in disk drive A. Now enter:

COPY A:DBASE".* C./V <enter>
Note: Here and elsewhere ‘ <enter> denotes your console’s ENTER key.

This tells your computer to copy all dBASE 1I files on A (the distribution disk) to hard disk
drive C. (DBASE*.* means ‘all dBASE files’. */V’ tells your computer to check over all the
copied files and verify that they are error free.)

When your system prompt reappears, take the distribution disk out of drive A, return it to
its protective envelope, and store it in a safe place.

INTRODUCTION... 4

Backing Up files from Hard Disk

Loss of information stored on hard disk, although not likely, can be disastrous — simply because
of the amount of information. Therefore, you should always keep and update floppy diskette
copies of hard disk information. Make copies immediately, then store them in a safe place.

To make copies, first use the FORMAT command to organize a blank diskette into a filing
system in which you can put disk files. Then use the BACKUP command to copy files from
the hard disk to the formatted diskettes.
To copy all files from the hard disk to a formatted diskette in Drive A, type:

BACKUP C:\ A:/S<enter>

Whenever the BACKUP command fills a diskette, it prompts you to insert another, Follow
the prompts until BACKUP is finished.

Often you may want to copy only those files modified since the last backup. To do so, type:
BACKUP*.* A:/M<enter>

All the files in the current directory that have been modified since last backup are copied
to the diskette in Drive A. (See the MS-DOS Commands Reference Manual for an explanation
of “‘current directory.”)

Restoring Files to Hard Disk

If you keep a complete set of backup diskettes, restoring your hard disk system is straight-
forward. Simply insert a backup diskette into Drive A and type:

RESTORE A: C:\ /S<enter>

RESTORE copies all files from the backup diskette to the hard disk. The RESTORE command
works only with diskettes that have been created using the BACKUP command.

File Naming Conventions

A file name is the way that a unique file is identified on a disk drive. File names may have
up to three parts. These are:

1. Thedrive name (optional).
2. The file name itself.

3. The file extension (optional).
Example: d:filename.ext

The drive name is simply the letter from “A” to “D” which identifies the disk drive contain-
ing the file you wish to create or access. Drive names must be separated from the file name
itself by a colon (:). This ‘part’ of the file name is optional, and may be omitted if you are address-
ing the ‘logged’, i.e., currently active, disk drive. If the drive name is not used, the following
colon must be omitted.

INTRODUCTION...§

The maximum length of the file name itself is 8 characters. You may create or access your
file names using upper or lower case characters, since your operating system will convert all
file name entries to upper case before reading them or writing them to disk.

The file extension simply provides both you and your operating system or program with a
way of identifying and handling files individually or as a group according to their function.

For example, files containing programs which can be executed by your operating system
should have the extension “.COM.” On the one hand, this enables your operating system to
identify which files can and cannot be opened and processed as operating system programs
(or command files). On the other hand, this enables you to quickly identify all your
operating system programs when you look over your disk file directory.

The essential dBASE II disk files are:

DBASE.COM
DBASEOVR.COM
DBASEMSG.TXT (the help file)

Note: For dBASE II, the executable program name is DBASE.COM. Since the “.COM”
extension identifies the dBASE II file as a program which can be opened and processed by
your operating system, you may initiate the dBASE program by simply entering “dBASE”
in response to your system prompt (e.g., “A>"). It is not necessary to include the “.COM”
extension in your command, since your system will assume that the called file is a “.COM”
file unless otherwise instructed.

The maximum length of the file extension is 3 characters, and must be separated from the
file name by a period (). The period must be omitted when the extension is not used.

Command files written in the dBASE program language for execution by dBASE II use the
extension “.PRG.” Their extension thus distinguishes them from your operating systems
programs.

The other file name extensions used by dBASE II are:

DBF = database files FRM = report form files
TXT = external files (delimited) NDX = index files
FMT = screen format files MEM = memory files

Your file names and extensions should not contain spaces or any of the following characters,
since your operating system employs them in special ways:

/<>, =2*[]
Multiple file manipulation using your system’s wildcards:

The “?” and “*” are your operating system’s “wildcards”. Used in the file name portion of
certain commands (e.g. copying a file with COPY), “?” and “*” will allow you to specify
several or even all the files on a disk as the object of a command’s action. This is done by
‘masking’ portions of the file name specified in the command so that — from your
computer’s ‘point of view’ — it ‘matches’ the names of all the files you wish to affect.

* 1982 Ashton - Tate
Reproduction By Any Method Ix Strictly Prohibited

INTRODUCTION...6

Note: “Wildcards” cannot be used when creating file names. They are only used to designate
groups of existing files.

One or more “?” in the name or extension portion of a file specified as the object of a
command will tell your computer to act as though the names of all files on the ‘logged’ disk
drive have ‘matching’ characters in the positions in which the “?”s appear.

The “*” tells your computer to act as though the names of all files on the logged disk drive
have ‘matching’ characters from the position in which the * appears in the designated file
name to the end of the portion of the file name in which it is used. Separate “*”s must be
used to mask characters in the file name and the file name extension (“*.*” is used to
designate all the files on the logged drive.)

Note: Wildcards may not be used in the drive name portion of the file name.
File Name examples:

valid names without wildcards:
A:TEST.DBF B:FRED.LET C:JANE.TXT COPY.COM TEST.PRG

invalid names:
T:TEST FRED,MARY.DAT A:A:READ.ME COPY/COM

valid names with wildcards:
TE*.DAT B:TEST.* FRED?.DAT A:*.COM C:DB*.*

For more information about file naming conventions and “wild cards,” see your operating
system manual.

Typographic conventions used in this manual:
Lowercase in the screen representations (in squares) indicates material that you type in.

Uppercase in the screen representations indicates the dBASE II prompts and responses. In
text, uppercase is used for dBASE Il commands.

* ...* will be used in the text of this manual to set off dBASE II commands and materials
you type. Occasionally, they may be used in the screen representations if needed for clarity.
DO NOT TYPE THE SYMBOLS.

[...] square brackets will be used to indicate parts of a dBASE II command that are
optional.

< ... >angle brackets designate portions of a dBASE II command that are to be filled in
with real information. E.g.: <filename> means the name of a file is to be inserted. They are
also used in text to bracket field names and file names.

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

7
{

INTRODUCTION...7

<enter> means press the carriage return or “enter” key on your keyboard. DO NOT TYPE
THIS WORD, NOR THE SYMBOLS.

Bringing up dBASE

1. Turn on your Model 2000.

2. Floppy Disk Users: Insert your dBASE II diskette into Drive A, the lower floppy disk
drive.

Be sure the diskette’s read/write window (oval-shaped window) points into the drive
and the diskette’s label faces up. After fully inserting the diskette, turn the drive
latch so that it blocks the drive opening.

3. Press the RESET switch.

4. MS-DOS loads into memory. This loading takes about five seconds. Then the screen
shows a startup/copyright message. The message ends with this prompt:

Enter new date:

If the screen is blank or shows an error message instead of the startup message...

® The diskette may be in backwards. Remove the diskette — even if the drive light is on
— and correctly insert it.

® Adjust the video controls that are on the front of the monitor.

® Press RESET to reload MS-DOS.

If your screen is still blank, it may be because you're using a monitor other than the
one in the normal configuration. To let the computer know your configuration is different,
press <F12>, and without releasing <F12>, press RESET.
5. Enter the current date in the mm-dd-yy format.
For example, for June 14, 1984, type:
6-14-84 <ENTER>

The screen shows the time elapsed since you loaded MS-DOS and asks for the new time:

Current time is 0:00:11.59
Enter new time:

You can skip this question by pressing <ENTER>. If you want to set the time, enter
it in the 24-hour format, hh:mm:ss.ce. (cc represents hundredths of a second.) Include
as much or as little of the time as you want.

“ 1982 Ashton Tate
Reproduction By Any Method s Strictly Prohrbited

INTRODUCTION...8

For example, type:
14:30 <ENTER>

for 2:30 p.m. @

6. After you enter the time, MS-DOS displays its system prompt, which is A> if you are
operating under floppy disk control or C> if you are operating under hard disk control.
Your Model 2000 is now under the control of MS-DOS and is ready for use.

7. Bring up dBASE II by typing:

dBASE <enter>

dBASE II loads into memory, displays a sign-on message and shows the prompt dot (.) to
indicate that it is ready to accept commands.

To show you how powerful and easy to use dBASE II actually is, the first thing we’ll do is
create a database and enter data into it.

It will only take a few minutes.

Additional information concerning the various facets of dBASE II may be accessed by using
the HELP facility on the dBASE II System Disk. Once in dBASE II type HELP dBASE.

INTRODUCTION... 9

(This page is intentionally left blank)

© 1982 Ashton-Tate
Reproduction By Any Method v Strietly Prohibited

INTRODUCTION...10

(This page is intentionally left blank)

© 1982 Ashlon-Tate
Reproduction By Any Mcthod Is Strictly Prohibiled

Section |:

How toCREATE adatabaseccvt 11
Entering data into your new database 13
Modifying datainadatabase00 14
Full Screen Editing Features 15
An introduction to dBASE 1l commands and the

error correctiondialog 16
Expanding commands with expressions 17
Looking at yourdatarecords 20
Positioning yourself in the database 21
The interactive ? command 23
Adding more records toadatabase 24
Cleaningupadatabase.....................cooontn 26
Section ISummaryo 28

CREATE

EDIT, BROWSE

USE, DISPLAY, LIST
LIST

DISPLAY

GO, GOTO, SKIP

2

APPEND, INSERT
DELETE, RECALL, PACK

In this section, we create a database and enter data. We also introduce you to some dBASE
II commands that will be developed and added to throughout the rest of this manual. For a

complete definition of a command, check Part II.

(This page is intentionally left blank)

© 1982 Ashton.Tate
Reproduction By Any Method Is Strictly Prohibited

CREATING DATABASES ... 11

How to CREATE a database

We'll start by creating a database of names for a mailing list system. Each record in the
database will contain the following information:

NAME: up to 20 characters long
ADDRESS: up to 22 characters long
CITY: up to 20 characters long
STATE: 2 characters long

ZIP CODE: 5 characters

First, type *CREATE®.
dBASE Il responds with: ENTER FILENAME:.

Enter a filename starting with a letter and up to 8 characters long (limited by MS DOS), no
colons, no spaces. Since this: is a file of names, let’s call it something that makes sense to a
human being: type “Names".

When you hit <enter>, dBASE II creates a file called <NAMES.DBF>. The part of the name
after the period is the MS-DOS file name extension, and is short for data base file (Section
V, File Types)

In a database management system, each one of the items that we want to enter into a single
related grouping is called a field and the grouping is called a record (Section V, Database
Basics). In our example, each record will have 5 fields. dBASE needs to know the name of
each field, what type of data it will contain, how long it is and how many decimal places if
the data is numeric.

. Create
ENTER FILENAME: names
ENTER RECORD STRUCTURE AS FOLLOWS

FIELD NAME.TYPE WIDTH DECIMAL PLACES
001

N Y

Field names can be up to 10 characters long, and may be entered in upper and/or lowercase.
The name must start with a letter and cannot contain spaces, but can contain digits and
embedded colons. Don’t abbreviate any more than you have to: the computer will
understand what you mean, but people might not.

The type of data is specified by a single letter: C for Character, N for Numeric and L for
Logical. In this case, all fields contain character data.

1982 Ashton-Tate
Reproduction By Any Method le Stractly Prohubited

CREATING DATABASES ... 12

Field width can be any length up to 254 characters. If the field is numeric and decimal
places are specified, remember that the decimal point also takes one character position.

We know what names we want to give our fields, the type of data that they will contain, and
their lengths so type the information in now. Here’s what the screen looks like when you're
finished:

' . create \

ENTER FILENAME:names
ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME, TYPE WIDTH,DECIMAL PLACES

001 name,c,20
002 address,c,22
003 city,c,20
004 state,c,2
005 zip code,c,5

BAD NAME FIELD
005 zip:code,c.5
006 <return>

Notice what happened at field 5: we made an error by entering a space in the field name, so
dBASE II told us what the error was and gave us a chance to correct it.

Notice also that the data type for the zip code was specified as “character,” even though we
normally think of the digits here as numbers.

This was done because a dBASE Il command such as *TOTAL® can total all the numeric
fields in a record (without you specifically listing them all). Doing so with the zip code field
would simply be a waste of time. We can still use the relational operators (“greater than,”
“less than,” “equal or not equal to”) with the character data, so this will not interfere with
any zip code sorting we may want to do later.

When dBASE 11 asked us for the specifications for a sixth field, we hit <enter> to end the
data definition. dBASE II saved the data structure, then asked if we wanted to enter data in
it.

The < Names.DBF> database is immediately ready for data entry, so type ’y’. Next we'll
tell you how to enter the data.

“ 1982 Ashton Tate
By Any Method Is Strictly Probibited

CREATING DATABASES ... 13

Entering data into your new database

The record number and all the fields will be displayed starting in the upper left-hand corner
of the screen, with the cursor at the first character position of the first field.

RECORD 00001
NAME
ADDRESS :
CITY :
STATE

ZIP CODE :

Field lengths are indicated by two colons. When a field is filled or you hit <enter>, the
cursor jumps down to the next field. The cursor can be moved back up to a previous field by
pressing the up arrow or holding the control key down and pressing the letter E once:
fcontrol-E¥, abbreviated as® ctl-E¥. When you are finished with the field, dBASE I presents
another empty record.

To stop entering data, hit <enter> when the cursor is at the first character position of the
first field in a new record.

Enter the following names and addresses. We'll be using them soon to show you some of the
powerful features of dBASE II.

ALAZAR, PAT 123 Crater Rd., Everett, WA 98206 \

BROWN, JOHN 456 Minnow PL., Burlington, MA 01730
CLINKER, DUANE 789 Charles Dr., Los Angeles, CA 90036
DESTRY, RALPH 234 Mahogany St., Deerfield, FL 33441
EMBRY, ALBERT 345 Sage Ave., Palo Alto, CA 94303
FORMAN. ED 456 Boston St.. Dallas, TX 75220
GREEN, TERRY 567 Doheny Dr., Hollywood, CA 90046
HOWSER, PETER 678 Dusty Rd.. Chicago. IL 60631

_),

* 1982 Ashton-Tate
Reproduction By Any Method s Strictly Prohibited

CREATING DATABASES ... 14

If you make any mistakes that can't be corrected by backspacing and writing over them,
read the next two pages on editing before moving on to the next record. If you accidentally
get back to the dBASE dot prompt, type:

*use Names®
*APPEND®

and continue with your entries. (This will be explained later in the manual).

To stop entering data, after you've entered the last zip code and while you are on the first
character of the first field of the next record, hit <enter>. If you have typed in some data
or moved the cursor, hold the control key down and press the letter “Q” (*control- Q’)

dBASE leaves the data entry mode and presents its dot prompt () to show you that it's ready
for your commands.

If you want to stop now, simply type OQUIT'.

QUIT must be typed every time you terminate a dBASE II session. This automatically
closes all files properly. Unless you do so, you may destroy your database.

Note: Later, you'll be told how to set up FORMAT FILES (FMT extension) that allow you
to format the screen any way you want it. When a format file is being used, the fields and
prompts will appear on the screen wherever you want them, rather than as the automatic
listing you've just seen. With a format file, you'll also be able to use only fields that you
select, rather than all the fields in the database. This applies to the CREATE, APPEND,
EDIT and INSERT commands.

Modifying data with EDIT and BROWSE

If you made any errors in the entries, you can correct them quickly and easily in the Full
Screen Edit mode. Type:

*USE Names®
*EDIT < number> *

where “number” is the number of one of the records in the database.
dBASE brings up the entire record and you can use the Full Screen Editing commands to

modify any or all of the da.t.a in the record. To move to tl.'ne next record, use *cti-C*. To move
to the previous record, use ctl- R*.To try it, type *epiT 3°.

RECORD 00009 DELETED

NAME :CLINKER, DUANE
ADDRESS :789 Charles Dr.
CITY :Los Angeles
STATE :CA

ZIP:CODE :90036

© 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

CREATING DATABASES... 15

If you mark a record for deletion by using *ctl- U*, “DELETED" appears at the top of the
screen. Pressing ctl u! agam removes the word and un-deletes” the record. If you *LIST®
(pp. 16 and 18) or *DISPLAY® (pp. 16 and 20) your database, you will see an asterisk next to
all records marked for deletion.

To abort full-screen editing, use ‘ctl‘Q'. This does not make the changes that were on the
screen when you exited.

To exit gracefully and save the changes made so far, use *ctl-W*.
BROWSE FIELDS [< field list>])
is one of the most powerful dBASE Il commands for editing and displaying data.

BROWSE shows up to 19 records displaying as many fields from each record as will fit
within your screen “window.” *ctl-B* moves the window right one field; *ctl-Z* moves the
window left.

Fields (not records) longer than 80 characters “wrap” around your screen so that you always
see the entire field. If you specify a list of fields (separated by commas), only those fields
will be displayed.

The FULL SCREEN and EDIT commands (next page) will move your cursor around within
fields, field to field, and record to record. You can make any changes you want to w1thm the
database and these will be saved if you exit with *ctl-W*, ignored if you exit with *ctl- Q

Full Screen Features: (not applicable on command line)

down arrow or ctl-X moves cursor down to the next field.

up arrow or ctl-E moves cursor back to the previous field.

right arrow or ctl-D moves cursor ahead one character.

left arrow or ctl-S moves cursor back one character.

<INSERT> or ctl-V toggles between overwrite and insert modes.

<DELETE> or ctl-G deletes the character under the cursor.

<BACKSPACE> deletes the character to the left of the cursor.

<PRINT> or ctl-P toggles your printer ON and OFF.

ctl-W saves any changes made and resumes normal dBASE II operation.

¢tl-Q quits and returns to normal dBASE 1l operation without making changes, even in the
MODIFY mode.

EDIT *BROWSE® functions: (Do not use ctl-R or ctl-U in *APPEND * mode)
ctl-C writes the record to disk and advances to the next record.
ctl-R writes the record to disk and backs up to the previous record.
ctl-U toggles the record deletion mark on and off.

1942 Auhton Tate
Heproduction lh Any Muethod Is Strictly Prohiited

CREATING DATABASES ... 16

BROWSE functions:
cti-B pans the window right one field.
ctl-Z pans the window left one field.

MODIFY functions
ctl-T deletes current field, moves all the lower fields up.
ctl-Y blanks current field to the right of cursor position, leaves all fields where they were.
cti-N moves fields down one position to make room for insertion of a new field at the cursor
position.

APPEND functions
cil.C writes the record to disk and advances to the next record.
< Enter> when cursor is at the initial position of a new record resumes normal dBASE I[

operation.
ctl-Q erases the record and resumes normal dBASE Il operation.

e A

PREVIOUS RECORD
DELETE FIELD
/DE LETE DATA

4|/
EXIT—NO SAVE—@@@@-@@——DELETE RECORD
@4@@;@__@

' l —? v;‘;?‘l—INSERT FIELD

' NINSERT OVERWRITE—iL SER_TJ

k NEXT RECORD

An introduction to dBASE Il commands and the error correction dialog (USE, LIST,
DISPLAY)

Exit —SAVE

dBASE Il commands are generally verbs. You type them in when you see the dBASE II dot
() prompt.

When you want to tell dBASE II which database file you want to work with, you type *use
< tilename> .

To look at the record you are on, type *DISPLAY®.

To see all. the records in the database, type *UsST®. (To stop and start the scrolling. use
control-S™.)

CREATING DATABASES ... 17

dBASE II command.s can be.alzbrevi.ated to four letters, but if you use more letters they
must all be correct (*DISPLAY®, *DISP* and *DISPLA® are valid commands; DISPRAY is not).

The command line is scanned and you are prompted with error messages when mistakes are
detected. You get a second chance to make corrections without having to retype the entire
line.

Type *EDUT 3°.

Edut 3 \
T "UNKNOWN COMMAND

Edut 3

CCRRECT AND RETRY (Y/N)? y

CHANGE FROM u

CHANGE TO

Edit3

MORE CORRECTIONS (Y/N)? n

dBASE Il repeats a command it does not know. If you decide to change it. you do not have to
retype the entire command.

In response to "CHANGE FROM ~ type in enough of the wrong part of the command so that it
is unambiguous, then hit < enter>.

In response to "CHANGE TO " type in the replacement for the material you want changed.

In this example, we changed only a single letter, but you'll find this feature useful when you
are testing and debugging long command lines.

Tip: The *ERASE® command erases the screen and positions the prompt dot at the upper
left-hand corner of the screen so that you can start new commands with a clean slate.

Expanding commands with expressions and relational operators (LIST)

One of the most powerful features of dBASE II is the ability to expand and “tailor” the
commands.

You can add “phrases” and expressions to most commands to further define what the
commands will do. Commands can be entered in upper and lowercase letters, and command
lines can be up to 254 characters long. To extend the line beyond the width of your display,
type in a semicolon (;) as the last character on the line (no space after it). dBASE II will use
the next line as part of the command.

1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

CREATING DATABASES ... 18

Since dBASE I1 is a relational DBMS, you'll find the relational operators useful:

:less than

: greater than

: equal to

: less than or equal to

: greater than or equal to

VAILVA

These commands mean exactly what the explanation on the right says. They generate a
logical value as a result (True or False). If the expression is True, the command is
performed. If the expression is false, the command is not performed.

Earlier, we mentioned that the }.IST command will show all the records in the database (to
stop and start the scrolling, use "ctl-S"). The full form of the command is:

LIST [OFF] [FOR < expression>|
If the optional OFF is used, the record numbers will not be displayed.

If the optional FOR clause is used, dBASE II will list only the records for which the
expression is true. Type the following, using single quotes around the character data (more
on data types in Section II):

'USE Names’

*LisT?

usT oFfF

LIST FOR Zip:Code = ‘9'

:LIST OFF FOR Zip:Code <.‘8’°
LIST FOR Name="GREEN'

Notice that when you enter only part of the contents of the field, that is all that is compared
by dBASE. We did not need Mr. Green's full name, for example, although we might have
used it if our database contained several GREEN’s.

- 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

CREATING DATABASES ... 19

)

. use names

st

00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206
00002 BROWN, JOHN 456 Minnow PI. Burtington MA 01730
00003 CLINKER. DUANE 789 Charles Dr. Los Angeles CA 90036
00004 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00005 EMBRY,ALBERT 345 Sage Avenue Palo Alto CA 94303
00006 FORMAN, ED 456 Boston St. Dallas TX 75220
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA 90046
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631

. st of

ALAZAR. PAT 123 Crater Rd. Everett WA 98206
BROWN, JOHN 456 Minnow PI. Buriington MA 01730
CLINKER. DUANE 789 Charles Dr. Los Angeles CA 90036
DESTRY. RALPH 234 Mahogany St. Deerfield FL 33441
EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303
FORMAN, ED 456 Boston St. Dallas TX 75220
GREEN. TERRY 567 Doheny Dr. Hollywood CA 90046
HOWSER, PETER 678 Dusty Rd. Chicago IL 60631

. hist for 2ip code ='9’

00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206
00003 CLINKER. DUANE 789 Charles Dr. Los Angeles CA 90036
00005 EMBRY. ALBERT 345 Sage Avenue Palo Alto CA 94303
00007 GREEN. TERRY 567 Doheny Dr Hollywood CA 90046
. st for zip code < '8’

00002 BROWN, JOHN 456 Minnow PI. Burlington MA 01730
00004 DESTRY, RALPH 234 Mahogany St Deerfield FL 33441
00006 FORMAN.ED 456 Boston St. Dallas TX 75220
00008 HOWSER.PETER 678 Dusty Rd Chicago iL 60631

. st for name ="GREEN’

00007 GREEN. TERRY 567 Doheny Dr Hollywood CA 90046

o

In addition to precisely selecting data from your database, the LIST command can be used
to provide you with system information.

LIST STRUCTURE® shows you the structure of the database in USE.

*LIST FILES® shows the names of the database (.DBF) files on the logged-in drive. * LIST
FILES ON <drive> * shows the database files on another drive (do NOT use the usual MS—
DOS colon).

€ 1982 Ashton-Tate
Reproduction Hy Any Method ls Strictly Prohibited

CREATING DATABASES ... 20

(use names X

. list structure

STRUCTURE FOR FILE: NAMES.DBF
NUMBER OF RECORDS: 00008
DATE OF LAST UPDATE:00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 NAME Cc 020
002 ADDRESS Cc 022
003 cITY C 020
004 STATE [002
005 ZIP:CODE Cc 005
-*TOTAL** 00070
. list files
DATABASE FILES #RCDS LAST UPDATE
NAMES DBF 00008 00/00/00

_ J

Looking at data with DISPLAY
The *DISPLAY* command is similar to *LIST®. Its full form is:

[All]
DISPLAY [Record n] [OFF][FOR < expression> |
[Nextn]

This gives you the option of specifying the scope for the *DISPLAY* command (also *LsT.

Specifying “Record n” d:aplays only that record “Next n” dlsplays the next "n” records,
including the current record. *DISPLAY ALLY is the same as LIST’, except that *LIST® will
scroll all the records in the database up the screen, while *DISPLAY ALL* shows you the
database in groups of 15 records at a time (pressing any key displays the next 15 records).

Type the following:

*DISPLAY ALL®
DISPLAY Record 3
DISPLAY Next 4

1982 Ashion-Tat
Reproduction By Any Method Is Strbﬂly Prohibited

CREATING DATABASES ... 21

00002
00003
00004
00005
00006
00007
00008

. display
00003

. display
00003
00004
00005
00006

-

(. display all
00001 ALAZAR, PAT

BROWN, JOHN
CLINKER, DUANE
DESTRY, RALPH
EMBRY, ALBERT
FORMAN, ED
GREEN, TERRY
HOWSER, PETER

record 3
CLINKER, DUANE

next 4

CLINKER, DUANE
DESTRY, RALPH

EMBRY, ALBERT

FORMAN.ED

123 Crater Rd.
456 Minnow PI.
789 Charles Dr.

234 Mahogany St.

345 Sage Avenue
456 Boston St.
567 Doheny Dr.
678 Dusty Rd.

789 Charles Dr

789 Charles Dr.

234 Mahogany St.

345 Sage Avenue
456 Boston St.

Everett
Burlington
Los Angeles
Deerfield
Palo Alto
Dallas
Hollywood
Chicago

Los Angeles

Los Angeles
Deerfield
Palo Alte
Dallas

\

WA 98206
MA 01730
CA 90036
FL 33441
CA 94303
TX 75220
CA 90046
IL 60631

CA 90036

CA 90036
FL 33441
CA 94303

TX 75220)

As with *LIST?, the optional FOR clause can be used to select specific data by using logical
expressions.

The DISPLAY command can also be used like the LIST command for system functions:

DISPLAY STRUCTURE = LIST STRUCTURE.

DISPLAY FILES = LIST FILES.

BOTH? LIST? and * DISPLAY * can show you specific types of files on a drive using the MS-DOS

“wild cards.” *DISPLAY FILES LIKE *.COM ON B’, for example, would display all the “.COM”
files on drive B.

*DISPLAY FILES LIKE < wild card> *

Positioning commands (GO or GOTO and SKIP)

Once you have your database set up, you can also move from record to record quickly and
easily with dBASE II. Type the following:

USE Names

‘coTor®
DISPLAY

‘coBoTTOM®

*DisPLAY®
coT05
*DISPLAY®
*

DIsPLAY

.
Reproduction By

1982 Ashton-Tate
Any Method Is Strictly Prohibited

CREATING DATABASES ... 22

K:se names ‘

. gotop

. display

00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206 Q
s

. go bottom
. display
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631

.goto5
. display
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303

.8

. display
\00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631 J

GO TOP (or *GOTO TOP®) moves you to the first record in the database. *Go BOTTOM®
moves you to the last record. You can go to a specific record by using $GOTO <number>?
(or? GO <number>*(And you can even eliminate the GO and just specify the record number).

SKIP moves you to the next record. *SKIP = n®* moves you forward or backward “n" records.
You can also use *SKIP + < variable/expression>>, with the number of records skipped
determined by the value of the variable or expression (both defined later). Type the
following:

:DISPLAY:
'skip—3*
*DISPLAY
skipt
DISPLAY

ﬂsplay
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631

. skip—3
RECORD:00005

. display
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303

. skip
RECORD:00006

. display
00006 FORMAN,ED 456 Boston St. Dallas TX 75220J

* 1982 Ashton-Tate
Reproduction By Any Method le Strictly Prohibited

CREATING DATABASES ... 23

The interactive ? command

The *?* command allows you to use dBASE II in the calculator mode. Simply type in the
question mark and a space followed by the quantity or mathematical function you want
evaluated and dBASE II will provide the answer on the next line. Using ?? puts the answer
on the same line.

Type the following:

*273/3.0000°
:? 73.00/3*
773/3*

.7 73/3.0000 N

243333
.273.00/3
24.33
.?73/3
24
.STORE 73/3t0s

kZd
The *?* command shows the answers to a mathematical operation to the same number of
decimal places as the maximum in the numbers entered.

You can also think of *?* as meaning: “What is . . .,” with the dots replaced by an expression,
a variable (a field name or a memory variable), a dBASE II function or a list of these
separated by commas. Type the following:

*USE Names®
*, 0

6
4 le:COde.
7 Name
*skip®
*GO BOTTOM®
4 Clty.

* 1942 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

CREATING DATABASES... 24

. use names \

.6

. ? zip:code
75220

. ? name
FORMAN, ED

. ? state

TX

. skip
RECORD: 00007
. ?name
GREEN, TERRY
. g0 bottom

. ?2city

K CHICAGO J

In the section on functions and commands, we’ll show you how the *2* can be used to access
other dBASE II functions, and to display CRT prompts to the operator from a command file.

Adding more data with the APPEND and INSERT commands

You can add data to any database quickly and easily with a one- word command. First choose
the database file into which you want to enter data by typing *USE < filename> * , then
typing in the command *APPEND®:

*USE Names®
*APPEND®

f . use names \
. append

RECORD # 00009

NAME
ADDRESS :
CIty

STATE

k_ _ ZIP:CODE : : /

dBASE II responds by displaying the record number that follows the last record in the file
and the fields for that database. If you fill in the record, it is added onto the end of the file
(appended).

* 1182 Ashtan-Tate
Repriduction Ry :\n) Method Is Strictly Probited

CREATING DATABASES... 25

The display includes the names of the fields, with colons showing field lengths. The cursor is
at the first position where you can start to enter data. If you fill up the entire field with
data, the cursor automatically moves down to the next field. If not, hit <enter>.

If there is no data to be entered in a field, use <enter> to move the cursor to the next field.
Character fields will automatically be filled with blanks, numeric fields will show a zero.
When entering numeric data, if there are no digits after the decimal, there is no need to type
the decimal. dBASE II automatically puts in the decimal point and the necessary number of
following zeros.

Records can be inserted into a specific location in a database (to keep them alphabetical, for
example) by typing:

INSERT [BEFORE] [BLANK]

Using the word *INSERT* alone inserts the record Jjust after the current record. Specifying
BEFORE will insert the record just be.fore the curren’t record. In either case, you are
prompted the same way as with the *APPEND® and *CREATE® commands. If BLANK is

specified, an empty record is inserted and there are no prompts.

Add the following names alphabetically to the < Names.DBF > database:

EDMUNDS. JM 392 vicarious Way. Atlanta. GA 30328
INDERS. PER 321 Sawtelle Blvd . Tucson. AZ 85702
JENKINS, TED 210 Park Avenue, New York. NY 10016

The sequence of commands is:

USE Names

050

INSERT BEFORE® {enter the data for the first name)
*APPEND® (enter the data for the last name)

In the *INSERT® mode, when you fill the last field, dBASE 11 will return to the command
mode (dot prompt).

To exit the *APPEND® mode, at the beginning of a new, blank record hit <enter>.

In either mode, you can exit from inside a record by using *ctl-W*. This will save what has
been entered up to that point and return you to the command mode.

With both the APPEND and INSERT commands, you'll later learn how to set up a
FORMAT FILE (.FMT extension) to show only selected fields from the database and any
special prompt that you might want to include.

< 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

CREATING DATABASES ... 26

Cleaning up a database (DELETE, RECALL, PACK)
Deletions can be made directly from dBASE II as well as in the *EDIT* mode.
To delete the current record, type *DELETE®.

To delete more than one record, use the form *DELETE <scope>’, where the scope is the
same for other dBASE Il commands: All, Record n, or Next n.

To make the deletions conditional, expand the command to:
DELETE [scope] [FOR < expression> |

where “expression” is a condition or set of conditions that must be met. (This is developed in
more detail in Section II.)

Type *DELETE FILE < drive> :< filename> * to delete a file. But once you've done this, the data
is gone forever, so be careful.

Unlike files, records marked for deletion can be recovered. Rather than erasing the data,
*DELETE® marks each record with an asterisk. You will see the asterisks when you *LIST® or
*DiSPLAY? the records. dBASE II then ignores these records, and does not use them in any
processing.

To restore the records, use the following command:

RECALL [scope] [FOR < expression>]

This operates the same way tpeLeTet does, with the scope and condition being optional. If a
conditional expression is used, it does not have to be the same as was used to mark the

records for deletion.

At some point, however, you will want to clean up your files to clarify displays or to make
more room for storage. To do this, type:

*pACK®.

This erases all records marked for deletion, and tells you how many records are in the
database.

Note: once you use this command, the records are lost forever.

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

To see how these commands work, type the following:

*usE .Names'

*usT

DELETE RECORD 2
DELETE RECORD 4

CREATING DATABASES ... 27

*ust?

*RECALL RECORD 4°

*ust?

*pack®

*ust?

The screen below shows the first few records in our < Names.DBF> as we perform these

commands.
. hst
00001 ALAZAR, PAT 123 Crater Rd Everett WA 98206
00002 *BROWN, JOHN 456 Minnow P!. Burlington MA 01730
00003 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00004 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00005 EDMUNDS, JIM 392 Vicanous Way Atlanta GA 30328
. detete record 2
00001 DELETION(S)
. delete record 4
00001 DELETION(S)
. hst
00001 ALAZAR.PAT 123 Crater Rd Everett WA 98206
00002 *BROWN, JOHN 456 Minnow PL. Burlington MA 01730
00003 CLINKER.DUANE 789 Charles Dr. Los Angeles CA 90036
00004 *DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00005 EDMUNDS, JIM 392 Vicarious Way Atlanta GA 30328
recall record 4
00001 RECALLI(S)
. list
00001 ALAZAR.PAT 123 Crater Rd. Everett WA 98206
00002 *BROWN, JOHN 456 Minnow P Burlington MA 01730
00003 CLINKER. DUANE 789 Charles Dr. Los Angeles CA 90036
00004 DESTRY,RALPH 234 Mahogany St Deerfield FL 33441
00005 EDMUNDS. JIM 392 Vicarious Way Atlanta GA 30328
. pack
PACK COMPLETE, 00004 RECORDS COPIED
. list
00001 ALAZAR. PAT 123 Crater Rd. Everett WA 98206
00002 CLINKER.DUANE 789 Charles Dr Los Angeles CA 90036
00003 DESTRY.RALPH 234 Mahogany St Deerfield FL 33441
00004 EDMUNDS. JIM 392 Vicanous Way Atlanta GA 30328

N

1962 Awhton Tate

Keproduction By Any Method Is Strictly Prohibited

CREATING DATABASES ... 28

Section | Summary

At this point, you have learned about the power over data that a relational database
management system like dBASE Il can give you.

You can now *CREATE® a new database and start entering data in minutes.

if you .want to change the data, this is easily done with 'EDIT', ’DELETE', *RECALL® and
PACK™.

You can *APPEND® or *INSERT® more data as required, ar.ld ‘LISI' an:i *DISPLAY® entire
files or precisely selected records. You can also "GOTO" and °SKIP® around within a
database quickly and easily.

Additionally, dBASE II can be used interactively as a powerful calculator (and more) with
the 7" command.

We have introduced you to expressions and how they can be used to expand the power of
dBASE II commands. In the next section, we will go into this in more detail and show you

how to get useful information out of your databases quickly and easily.

Before that, please *CREATE® these two files, as we will need them for other examples.

~

. create
ENTER FILENAME: MoneyQut
ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME, TYPE, WIDTH, DECIMAL PLACES

001 Check:Date,C,7
002 Check:Nmbr,C,5
003 Client,C.3

004 JobNumber,N,3
005 Name,C,20

006 Descrip,C,20
007 Amount,N.9,2
008 Bill:Date.C,7
009 Bill:Nmbr,C,7
010 Hours,N,6.2
011 Emp:Nmbr,N,3

\ 012

* 1982 Ashton-Tate
Reproduction By Any Method Ix Strictly Prohibited

CREATING DATABASES... 29

create
ENTER FILENAME: Orders
ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME, TYPE, WIDTH. DECIMAL PLACES

001 CustNmbr.C9
002 Item.C.20

003 Qty.N4

004 Price.N.7.2
005 Amount,N 9.2
006 BackOrdr.L,1

007 OrdrDate.C.6
008

~

< 1952 Ashton. Tate
Reproduction By Any Methad Is Steictly Prombuted

CREATING DATABASES... 30

(This page is intentionally left blank)

© 1982 Ashton-Tate
Reproduction By Any Method lu Strictly Prohibited

Section ll:

Using expressions for selection and control 31

Constantsand variablescooill 31 STORE

dBASE Il 0operatorscoovvirieeniinininins 35

Logical operatorscoiiiiiiiiinaina.. 36

Substring logical operatorciiiiniiiaa 38

String operatorsiiiiiiiiiiiiiii i 39

Changing an empty database structure 40 MODIFY
Duplicating databases and structures................ 41 COPY

Adding and deleting fields with data in the database . 44 COPY, USE, MODIFY
Dealing with MS-DOS and “foreign files”........... 47 COPY, APPEND
Renaming databasefields 48 COPY, APPEND
Modifyingdatarapidly il 49 REPLACE, CHANGE
Organizing your databasesc.ooonn 51 SORT, INDEX
Finding the informationyouwant 53 FIND, LOCATE
Getting information out of all thatdata 55 REPORT

Automatic counting and summing 57 COUNT, SUM
Summarizing data and eliminating details 57 TOTAL

Section IISummary ... 60

In this section, we develop the use of expressions to modify dBASE II commands. This may
be the most important part of learning how to use dBASE II effectively.

The dBASE Il commands can be learned fairly easily because they are English-like, and
learning another command is a matter of increasing your vocabulary (and your repertoire)
by another word.

Expressions, combined with the commands, give you the fine control you need to manipulate
your data to perform specific tasks. Once you have learned how to handle expressions, you
will only have to learn two more things about programming to be able to write effective
applications command files. (These are how to make decisions and how to repeat a sequence
of commands, covered in Section IID.

1982 Ashton-Tate
Reproduction By Any Method s Strictly Prohibited

(This page is intentionally left blank)

© 1082 Ashton-Tate)
Reproduction By Any Method Ia Strictly Prohibited

EXPRESSIONS ... 31

Using expressions for selection and control

We gave you a brief introduction to expressions that can be used with dBASE Il commands
in Section I.

As you saw, they are a powerful way to extend the commands and manipulate your data
quickly and easily. Many dBASE Il commands can be modified in the form:

* < COMMAND> [FOR < expression> *

This extended power gives you a flexibility that you simply do not get with other database
management systems. We've been told by experienced programmers that they can write a
program (a dBASE Il command file) for an application in as little as one-tenth the time it
would take them using BASIC or even higher level languages such as COBOL, FORTRAN
and PL/1.

But to take advantage of this power, you need to understand how to work with expressions
and operators, then how to combine the modified commands into command files that will
perform the same tasks again and again.

The next few pages will get you started. Ultimately, experience is going to be the best
teacher.

Reminder: as we introduce commands through the text, we try to explain a particular
aspect of the command that will allow you to do a few more things with your database. This
means that we do not cover the entire command at one time. To find out all that a command
can do, use the summary at the end of Part I and the definitions of Part 1.

Note: If, after you've finished this Section, you are still uncertain about how to write
expressions that make the dBASE Il commands do exactly what you want done, you may
want to look at some beginning programming texts at your local library. Most of them
discuss expressions within the first two chapters or so.

Constants and variables (STORE)

Expressions irl dBASE Il are used to help select and manipulate the data in your database
(see DISPLAY). The quantity that you manipulate may be either a constant or a variable.

Constants are data items that do not change, no matter where they appear in a database or
within the computer. They are literal values because they are exactly what they represent.
Examples are numerals such as 3 and the logical values Tand F.

Characters and character strings (all the printable characters plus spaces) can also be
constants, but must be handled a bit differently.

Strings are simply a collection of characters (including spaces, digits and symbols) handled,
modified, manipulated and otherwise used as data. A substring is a portion of any specific string.

Fn2 Nahtan Lot
Harproudus ton By Ana Metbaad Is Steanls Pronstannt

EXPRESSIONS...32

If a character or collection of characters is to be treated as a string constant, it must be
enclosed in single or double quotes or in square brackets so the computer understands that it
is to deal with the characters as characters. To see what we mean, get dBASE II up on your
computer and USE <Names>. Type:

*dBASE®

USE Names®
? ‘Name'*

*7 Name

In response to the first “What is...” (the M command), the computer responded with NAME
because that was the value of the constant. When you eliminated the single quotes, the
computer first checked to see if the word was a command. It wasn’t, so it then checked to see
if it was the name of a variable.

Variables are data items that can change. Frequently they are the names of database fields
whose contents can change. In this case, the computer found that our database had a field
called <Name> so it gave us the data that was in that field at that time. Type the
following:

skip 3
*7 Name

. use names \

.?’Name’
Name

. ? Name
ALAZAR, PAT
.skip3
RECORD: 00004
. ? Name

KDESTRY. RALPH /

Now type *USE®. Since we do not specify a file name, the computer simply closes all files.

If we type *7 Name® again, the computer tells us that we made an error. In this case, we
tried to use a variable that did not exist because we were no longer using a file with a
matching field name.

The variables can also be memory variables rather than field names. dBASE II reserves an
area of memory for storing up to 64 variables, each with a maximum length of 254
characters, but with a maximum total of 1536 characters for all the variables.

You might want to think of this as a series of 64 pigeon-holes available for you to tuck data
into temporarily while working out a problem.

* 1982 Ashton-Tate
Reproduction By Any Method In Strictly Prohihited

EXPRESSIONS...33

Variable names can be any legal dBASE II identifier (start with a letter, up to ten
characters long, optional embedded colon and numbers, no spaces).

You can use a memory variable for storing temporary data or for keeping input data
separate from field variables. In one session, for example, we might “tuck” the date into a
pigeon-hole (variable) called < Date>. During the session, we could get it by asking for
< Date>, then place it into any date field in any database without having to re-enter it.

To get data (character, numeric or logical) into a memory variable, you can use the *sToRe*
command. The full form is:

*STORE < expression> TO < memory variable> *
Type the following:

:STORE “How's it going so far?” 10 Message'
’STORE 10 TO Hours .
‘STORE 17.35 TO Pay:Rate

? Pay:Rate*Hours

*
? Message

/. STORE "How's 1t going so far?” TO Message \

How's it going so far?
.STORE 10 TO Hours
10
.STORE 17.35TO Pay:Rate
1735
. ? Pay:Rate*Hours
17350

. ? Message
kHow's 1t going so far? /

Notice that we used double quotes around the character string (a constant) in the first line
because we wanted to use the single quote as an apostrophe inside the string.

*

If this isn’t clear yet, try experimenting with and without the quotes to get the distinction
between constants and variables. To start you off, type the following:

*STORE 99 TO Variable®

*STORE 33 TO Another®

*STORE Variable/Another TO Third
*STORE ‘99’ TO Constant®

*3 Variable/Another®

2 vanable/3

*7 Constant/3°

*DISPLAY MEMORY *

© 1982 Ashton-Tate
Reproduction By Any Method s Strictly Prohibited

EXPRESSIONS ... 34

e ™

. Store 99 to Variable
99
. STORE 33 To Another
33
. STORE Variable/Another TO Third
3
.STORE '99' TO Constant
99
. ? Variable/Another
3
. ? Vanable/3
33
. ? Constant/3
*** SYNTAX ERROR ***
?

? CONSTANT/3

. DISPLAY MEMORY

MESSAGE) How's 1t going so far?
HOURS (N) 10
PAY RATE (N) 17.35
VARIABLE (N) 99
ANOTHER {N) 33
THIRD (N) 3
CONSTANT) 99
k **TOTAL** 07 VARIABLES USED 00084 BYTES USED

Entering a value into a variable automatically tells dBASE II what the data type is. From
then on, you cannot mix data types (by trying to divide a character string by a number, for
instance.)

Rules: Character strings that appear in expressions must be enclosed in matching single or
double quote marks or square brackets. Character strings may contain any of the printable
characters (including the space). If you want to use the ampersand (&) as a character, it
must be between two spaces because it is also used for the dBASE II macro function
(described later).

The last command in the prekus screen repr.esent.atlon is another form of *DISPLAY® that
you'll find useful. (You can also *LIST MEMORY®.)

You can eliminate a memory vana?]e by typmg *RELEASE< name> * , or you can get rid of
all the memory variables by typing “RELEASE ALL®.

A2 Ashtun Tat
Reproduction By 1\n) Method I \lrvul) Prohbited

EXPRESSIONS...35

Type the following (you may want to *ERASE * the screen first):

*DISPLAY MEMORY *
*RELEASE Another®
*DISPLAY MEMORY®
:RELEASE ALL® .
DISPLAY MEMORY

Tip: When naming any variables, try to use as many characters as necessary to make the
name meaningful to humans.

Another tip: If you use only nine characters for database field names, when you want to use
the name as a memory variable, you can do so by putting an “M” in front of it. What it
stands for will be clearer when you come back to clean up your programs later than if you
invented a completely new and different name.

dBASE ll operators

Operators are manipulations that dBASE 1l performs on your data. Some of them will be
familiar; others may take a bit of practice.

Arithmetic operators should be the most familiar. They generate arithmetic results.

() : parentheses for grouping

* : multiplication
‘ : division

+ : addition

- : subtraction

The arithmetic operators are evaluated in a sequence of precedence. The order is:
parentheses; multiply and divide; add and subtract. When the operators have equal
precedence, they are evaluated from left to right. Here are some examples:

17/33*72.00 + 8 = 45.09 (divide, multiply then add)
17/433*72.00000 + 8) = 0.00644 (multiply, add then divide}
17/33*172.00 + 8) = 41.21 (divide. add then multiply)

Relational operators make comparisons, then generate logical results. They take action
based on whether the comparison is True or False.

: less than

: greater than

:equal to

: not equal to

: less than or equal to

: greater than or equal to

VAAITVA
IIV

1982 Ashton Tate
Repraduction By Any Methad L Strictly Prohibited

EXPRESSIONS ... 36

Type the following:

’USE Names'

:LIST FOR Zip:Code < ='7ooog"
LIST FOR Address < > ‘123"

LIST FOR Name = ‘HOWSER'

/. LIST FOR Zip:Code < ='70000"

00003 DESTRY, RALPH 234 Mahogany St. Deerfield FL3344]
00004 EDMUNDS, JIM 392 Vacarious Way Atlanta GA 30328
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631
00010 JENKINS, TED 210 Park Avenue New York NY 10016

. LIST FOR Address< >'123"

00002 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00003 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00004 EDMUNDS, JIM 392 Vicarious Way Atlanta GA 30328
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303
00006 FORMAN, ED 456 Boston St. Dallas TX 75220
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA 90046
00008 HOWSER, PETER 678 Dusty Rd. Chicago 1L 60631
00009 INDERS, PER 321 Sawtelle Bivd. Tuscon AZ 85702
00010 JENKINS, TED 210 Park Avenue New York NY 10016
. LIST FOR Name="HOWSER’
\00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631 /
The logical operators greatly expand the ability to refine data and manipulate records and

databases. Explaining them in depth is beyond the scope of this manual, but if you are not
familiar with them, most computer texts have a chapter very near the beginning that
explains their use. They generate logical results (True or False). They are listed below in the
order of precedence within an expression (NOT. is applied before . AND,, etc.):

0 : parentheses for grouping
.NOT. : Boolean not (unary operator)
AND. : Boolean and

OR. :Booleanor
$: substring logical operator
(substring search)

*LIST FOR (JobNumber=730 .OR. JobNumber=731);
AND. (Bill:Date > ='791001" .AND;
Bill:Date < = '791031")

displays all the October, 1979 records for costs billed against job numbers 730 and 731
(notice how the command was extended to a second and third line with the semi-colons).

+ 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

EXPRESSIONS...37

If you're not familiar with logical operators, start with the basic fact that these operators
will give results that are True or False. In our example, dBASE II asks the following
questions about each record:

1) Is JobNumber equal to 730 (T or F)?

2) Is JobNumber equal to 731 (T or F)?

3) Is Bill:Date greater than or equal to ‘791001" (T or F)?
4) Is Bill:Date less than or equal to ‘791031’ (T or F)?

dBASE II then performs three logical tests (OR., AND., .AND.) before deciding whether the
record should be displayed or not.

Parentheses are used as they would be in an arithmetic expression to clarify operations and
relations. Because of the first AND., dBASE II will display records only when the conditions
in both parenthetical statements are true.

Evaluating the first expression, it first checks the < Job:Number> field. If the value in the
field is 730 or 731, this sub-expression is set to True. If the field contains some other value,
this sub-expression is False and the record will not be displayed.

If the first sub-expression is true, dBASE II must still check the contents of the
< Bill:Date> field to evaluate the second sub-expression. If the contents of the field are
between ‘791001’ and ‘791031, inclusive, this expression is true, too, and the record will be
displayed. Otherwise, the complete expression is false and dBASE II will skip to the next
record, where it proceeds through the same evaluation.

Let’s try some of this with < Names.DBF>. Type the following:

USE Names *

DISPLAY all FOR Zip:Code > '5° AND. Zip:Code < ‘9"
DISPLAY all FOR Name < ‘F'*

DISPLAY all FOR Address > ‘400" .AND. Address < ‘700"

+
*
*
*
*DISPLAY all FOR Address > ‘400" .OR. Address < ‘700"

1952 Ashton Tate
Bepriductin By Any Methed 1s Strictly Probibited

EXPRESSIONS... 38

s

~

. USE Names

. DISPLAY all FOR Zip:Code >'5' AND.Zip:Code <9’

00006 FORMAN, ED 456 Boston St. Dallas TX 75220
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631
00009 INDERS, PER 321 Sawtelle Blvd. Tucson AZ 85702
. DISPLAY all FOR Name < ‘F'

00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206
00002 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00003 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00004 EDMUNDS, JIM 392 Vicarious Way Atlanta GA 30328
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303
. DISPLAY all FOR Address > '400"AND.Address < '700'

00006 FORMAN.ED 456 Boston St. Dallas TX 75220
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA 90046
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL60631

. DISPLAY all FOR Address > '400.0R.Address < ‘700"

00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206
00002 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00003 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00004 EDMUNDS, Jiv 392 Vicarious Way Atlanta GA 30328
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303
00006 FORMAN, ED 456 Boston St. Dallas TX 75220
00007 GREEN, TERRY 567 Dohney Dr. Hollywood CA 90046
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631
00009 INDERS, PER 321 Sawtelie Bivd. Tucson AZ 85702

00010 JENKINS, TED 210 Park Avenue New York NY lOOl()J

Notice what happened with the last command: all the records were displayed. If you're not
familiar with logical operators, this kind of non-selective “selection” will have to be guarded
against.

The § substring logical operator is extremely useful because of its powerful search
capabilities. The format is:

‘< substring> $ <string> ¢

This operator searches for the substring on the left within the string on the right. Eitker or
both terms may be string variables as well as string constants. To see how this works, type the
following:

*USE Names®

*LIST FOR ‘EE’ $ Name®

:LIST FOR7'$ Addres‘s’
LIST FOR ‘CA'S State

*2 00" $ *Hollywood’ *

‘Gos*

*DISPLAY *

*7 State $ “CALIFORNIA"®

1982 Awhton Tate
Reproduction By Any Method 1s Strictly Prohibited

EXPRESSIONS ... 39

/,USE Names \

.LIST FOR 'EE"$ Name

00007 GREEN. TERRY 567 Doheny Dr Hollywood CA 90044
.LISTFOR 7" $ Address

00003 CLINKER, DUANE 789 Charles Drive Los Angeles CA 90038
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA 90044
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631
.LIST FOR 'CA’ % State

00003 CLINKER, DUANE 789 Charles Drive Los Angeles CA 30038
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA 90044
700" $ 'Hollywood’

T

.go5

. display

00005 EMBRY, ALBERT 345 Sage Avenue Palo Aito CA 94303
. ? State $ "Cahfornia”

T

o _J

With this function we could have, for example, simplified the structure of our mailing list
names file. The states could have been entered as part of the address. To call out names
within a specific state, we could have simply typed the following, where XX is the
abbreviation for the state we want:

* < COMMAND> FOR'XX'$ Address®
String operators generate string results.

+ = string concatenation (exact)
— = string concatenation (moves blanks)

Concatenation is just another one of those fancy computer buzzwords. All it really means is
that one character string is stuck on to the end of another one. Type the following:

USE Names*

? Name + Address’

? Name — Address®

? 'The name in this record 1s " + Name;
- *and the address is '+ Address®

.
*
.
*

1952 Ashton Tate
Heproduction By Any Method s Stecthy Frobibated

EXPRESSIONS... 40

. USE Names

. ? Name + Address

ALAZAR, PAT 123 Crater Rd.

. ? Name — Address

ALAZAR, PAT 123 Crater Rd.

. ? ‘The name in the record is ° + Name — * and the address is ° + Address
The name in this record is ALAZAR, PAT and the address is 123 Crater Rd.

The *+* and *-* both join two strings. The “plus” sign joins the string exactly as they are
found. The “minus” sign moves the trailing blanks in a string to the end of the string. They
are not eliminated, but for many purposes this is enough, as they do not show up between
the strings being joined.

If you want.to eliminate the trailing blanks, you can use the *TRIM* function. This is used
by typmg STORE TRIM{< varuable>). TO <variable>*. As an example, we could have
typed: *STORE TRIM(Name) TO (Name)* to eliminate the blanks following the characters of
the name.

To eliminate all of the trailing blanks in our example, we could have typed: *STORE
TRIM{Name - Address) TO Example’.

Now that we’ve introduced you to expressions and dBASE II operators, we’ll continue with
other dBASE II commands. We'll be giving you some practice in using expressions and
operators as we work our way up to developing command files.

Changing an empty database structure (MODIFY)

Warning: the < MODIFY> command will destroy your database. Please follow instructions
carefully.

When there is no data in your database, the OMODIFY‘ command is the fastest and easiest
way to add, delete, rename, resize or otherwise change the database structure. This destroys
any data in the database so don't use it after you've entered data. (Later we’ll show you a way
to do so, safely.)

< MoneyOut.DBF> has no data in it yet, so we'll work with it. A useful change would be to
rename <JobNumber> to <Job:Nmbr> so that the abbreviation is consistent with
<Emp:Nmbr> and < Bill:Nmbr>. Type the following:

USE MoneyOut

LIST STRUCTURE® (page 19)
‘MODIFY STRUCTURE*
y’ (in response to the question)

1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

EXPRESSIONS... 41

(. use MoneyOut \
. hst structure

STRUCTURE FOR FILE: MONEYOUT.OBF
NUMBER OF RECORDS: 00000
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC
001 CLIENT C 004
002 JOBNUMBER C 003
003 BILL:DATE C 006
004 SUPPLIER C 028
005 DESCRIP C 010
006 HOURS N 006 002
007 EMP:NMBR C 002
008 AMOUNT N 009 002
009 BILL.NMBR C 006
olo CHECK NMBR C 005
011 CHECK DATE C 006
--TOTAL-I 00086

. modify structure
KMODIFY ERASES ALL DATA RECORDS PROCEED?(Y/N) 'y’ J

dBASE 11 erases the screen and lists the first 16 (or fewer) fields in the database. Use the
down arrow or *ctl-X* co move down one field. Just type in the new field name over the old
one (use a space to blank out the extra letter).

You can exit *MODIFY* in either of two ways: ctl-W changes the structure on disk, then
resumes normal dBASE 11 operation;ctl-Q quits and returns to normal dBASE Il operation
without making the changes. This actually gets you back without destroying the database,
but play it safe and have a backup file (see the following).

Duplicating databases and structures (COPY)

Duplicating a file without going back to your computer operating system is
straightforward. Type the following:

'USE Names®

COPY TO Temp

:uss Temp® .

*DISPLAY STRUCTURE
LIST

© 1982 Ashton-Tate
Reproduction By Any Method ls Strictly Prohibited

EXPRESSIONS... 42

/ . use names \
. copy to temp

00010 RECORDS COPIED

. use temp

. display structure

STRUCTURE FOR FILE: TEMP.DBF

NUMBER OF RECORDS: 00010

DATE OF LAST UPDATE: 00/00/00

PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC

001 NAME C 020

002 ADDRESS C 022

003 CITY Cc 020

004 STATE Cc 002

005 ZIP:CODE Cc 005

TOTAL 00070
. list
00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206
00002 BROWN, JOHN 456 Minnow PI. Burlington MA Q1730
00003 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036
00004 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303
00006 FORMAN, ED 456 Boston St. Dallas TX 75220
00007 GREEN, TERRY 567 Doheny Dr. Hollywood CA 50044
00008 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631
00009 INDERS, PER 321 Sawtelle Blvd. Tucson AZ 85702

QOOIO JENKINS, TED 210 Park Avenue New York NY 10016‘/

Warning: When you *CoPY* to an existing filename, the file is written over and the old
data is destroyed.

*COPY TO TEMP® created a new database called < Temp.DBF>. It is identical to the
< Names.DBF>, with the same structure and the same data. The command can be
expanded even further:

*COPY TO < filename> [STRUCTURE] [FIELD list]®

With this command, you can copy only the structure or some of the structure to another file.
Type the following:

USE Names*

*
:COPY TO Temp STRUCTURE®
*

DISPLAY STRUCTURE®

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohabited

EXPRESSIONS... 43

/:nse names \

. copy structure to temp

.usetemp

. display structure

STRUCTURE FOR FILE.TEMP.DBF
NUMBER OF RECORDS:00000
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 NAME C 020
002 ADDRESS C 022
003 ciry C 020
004 STATE C 002
C 005

005 ZIP:CODE
K «=TOTAL** 00070 J

We can copy a portion of the structure by listing only the fields we want in the new
database. Type:

* *
USE Names
*COPY TO Temp STRUCTURE FIELDS Name, State®
* *
USE Temp
*DISPLAY STRUCTURE®

(< use names \

.Copy 1o temp structure field name, state
.use temp

. display structure

STRUCTURE FOR FILE:TEMP.DBF
NUMBER OF RECORDS:00000

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
Q01 NAME C 020
002 STATE C 002

\"TOTAL" 00023 /

For Advanced Programmers: COPY can also be used to give your program access to a
database structure. Type:

. *

USE Names
*COPY TO New STRUCTURE EXTENDED®
:USE .New’

LIST

1982 Ashton Tate
Hepraduction By Any Method I Stricely Prohibated

EXPRESSIONS... 44

(use Names
. copy to New structure extended

00006 RECORDS COPIED

. use New

. display structure

STRUCTURE FOR FILE: NEW.OBF
NUMBER OF RECORDS: 00006
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC

001 FIELD:NAME C 010

002 FIELD:TYPE C 001

003 FIELD:LEN N 003

004 FIELD:DEC N 003

TOTAL 00018

. list

00001 NAME c 20 o}
00002 ADDRESS Cc 22 (o]
00003 CITY c 20 0
00004 STATE c 2 0
00005 ZIP:CODE c 0]

5 _/

The <New.DBF> database records describe the < Names> database structure, and an
application program has direct access to this information (see Review.CMD, Section VI).

Alternatively, a file with the same structure as < New.DBF> could be embedded in a
program so that the operator could enter the structure for a file without learning dBASE II.
The program would then create the database for him with the following command:

CREATE < datafile> FROM < structurefile>#
Adding and deleting fields with data in the database

As you expand the applications for dBASE II, you’ll probably want to add or delete fields in
your databases.

'MODIIiY STIEUCTURE’ alone would destroy all the data in your database, but used with
coPY and *APPEND®, it lets you add and delete fields at will.

The strategy consists of copying the structure of the database you want to change to a
temporary file, then making your modifications on that file. After that is done, you bring in
the data from the old file into the new modified structure.

1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

EXPRESSIONS...45

As an example, we'll use our < Names> file and our < Orders> file. At some point, it would
be useful to list the orders placed by a given customer. This could be done easily by adding a
customer number field to < Names> file to match the field in the < Orders> file. To do so
without destroying the records we already have, type the following:

:USE Names* .
COPY TO Temp STRUCTURE
*usE Temp’

*MODIFY STRUCTURE®

y (in answer to the prompt)

Use the Full Screen Editing features to move down to the first blank field and type in the
changes in the appropriate columns (name is “CustNmbr”, data type is “C", length is 9). Now
type ctl-W* to save the changes and exit to the dBASE II dot prompt.

*DISPLAY STRUCTURE® to make sure that it's right. If it is we can add the data from
< Names> by typing:

*APPEND FROM Names®

We could also have changed field sizes: the *APPEND® command transfers data to fields
with matching names.

/. display structure \

STRUCTURE FOR FILE: TEMP.DBF
NUMBER OF RECORDS.00010
DATE OF LAST UPDATE :00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 NAME C 020
002 ADDRESS C 022
003 CITY c 020
004 STATE c 002
005 ZIP.CODE c 005
006 CUSTNMBR c 009

\ **TOTAL** 00079 /

Our new file <Temp> should now bave the new field we wanted to add and all of the old
data. *DISPLAY STRUCTURE® then *LIST® to make sure that a power line glitch hasn't
messed anything up.

If the data got transferred correctly, we can finish up by typing:

*COPY TO Names®
USE Names

1982 Ashton - Tate
Reproduction By Any Method Is Stractly Prohibited

EXPRESSIONS... 46

The *COPY® command writes over the old st.ructur% and data. After displaying and listing
the new < Names> file, you can DELETE FILE Temp .

To summarize, the procedure car be used to add or delete fields in a database in the
following sequence:

:uss <oldfile>* .
COPY TO < newfile> STRUCTURE
*USE < newfile> *
*MODIFY STRUCTURE®
:APPEND FROM < oldfile> ¢
COPY TO < oldfile>

/. use names \

. copy to temp structure

. use temp

. modify structure

MODIFY ERASES ALL DATA RECORDS..PROCEED?
(Y/N)'y'

. append from names
00010 records added

. copy to names
00010 RECORDS COPIED

. use names
. display structure

STRUCTURE FOR FILE: NAMES.DBF
NUMBER OF RECORDS:00010
DATE OF LAST UPDATE :00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 NAME C 020
002 ADDRESS C 022
003 CITY C 020
004 STATE C 002
005 ZIP:CODE C 005
006 CUSTNMBR C 009

k **TOTAL** 00079 /

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohabited

EXPRESSIONS...47

Dealing with MS-DOS and “’foreign’’ data files (more on COPY and APPEND)

dBASE II information can be changed into a form that is compatible with other processors
and systems (BASIC, PASCAL, FORTRAN, PL/1, etc.). dBASE II can also read data files
that have been created by these processors.

With MS-DOS, the System Data Format (abbreviated as SDF in dBASE II) includes a
carriage return and line feed after every line of text. To create a compatible data file (for
word processing, for example) from one of your databases, you use another form of the
COPY command. Type:

‘USE Names'
coPY TO SysData SDF

This command creates a file called <SysData.TXT>. Now 'QUIT' dBASE II and use your
word processor to look at the file. You'll find that you can work with it exactly as if you had
created it under MS-DOS.

The System Data Format also allows dBASE II to work with data from MS-DOS files.
However, the data must match the structure of the database that will be using it.

If we use a word processor to create a file called <NewData.TXT> we could add it to the
<Names.DBF> file. NOTE: the spacing of the data must match the structure of the database.
If the <NewData.TXT> file contained the following information:

FREITAG, JEAN 854 Munchkin Ave, Houston TX 77006
GOULD. NICOLE 73 Radnor Way Radnor PA 19089
PETERS, ALICE 676 Wacker Dr. Chicago IL 60606
GREEN, FRANK 441 Spicer Ave. Tampa FL 33622
(20) (25} (20} (2) (5)

we would add it to the <Names.DBF > file by typing the following:

*USE Names®
APPEND FROM NewData.TXT SDF

Adding data to an existing file from a system file takes only seconds.

The procedure is similar if your “foreign” files use different delimiters. A common data file
format uses commas between fields and single quotes around strings to delimit the data. To
create or use these types of data files, use the word DELIMITED instead of SDF. To see how
this words, type:

*COPY TO Temp DEUMITED®

then go back to your operating system to look at your data.

< 1982 Ashton-Tate
Repreduction By Any Method s Stractly Protubited

EXPRESSIONS... 48

If your system has a different delimiter, you can specify it in the command: *DELIMITED
[WITH <de||m|ter>]’ (do NOT type the “< and “>" symbols) If your system uses only
commas and nothing around strings, use: *DELIMITED WITH,

The full forms of *COPY* and *APPEND® for working with system data files are:

[SDOF]
COPY [scope] TO < filename>> [FIELD list] [STRUCTURE] [FOR < expression>]
[DELIMITED [WITH < delimiter>]]

APPEND FROM < filename> .TXT {SDF] [FOR < expression>]
[DELIMITED] [WITH < delimiter >]]

Both commands can be made selective by using a conditional expression, and the scope of
coPY can be specified as for other dBASE II commands.

Note: While dBASE II automatically generates extensions for files it creates, you must
specify the “TXT” filename extension when APPENDing from a system data file.

Note: With the APPEND command, any fields used in the <expression> must exist in the
database to which the data is being transferred.

Renaming database fields with COPY and APPEND

As we said earlier, *APPEND® transfers data from one file to another for matching fields. If
a field name in the FROM file is not in the file in USE, the data in that field will not be
transferred.

However, the full form does allow you to transfer only data, and we can use this feature to
rename the fields in a database. If we wanted to rename < CustNmbr> to <CustCode> in
< Names.DBF >, we would type:

USE Names®

COPY TO Temp SOF* (data only to Temp.TXT)
MODIFY STRUCTURE®

* APPEND FROM Temp.TXT SDF* (after changing field name)

Now when you *DISPLAY STRUCTURE®, the last field will be called <CustCode>. Don’t forget
to change the name of the <CustNmbrs> field in our <Orders> database so that the fields match.

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

EXPRESSIONS... 49

. use names
. copy to temp sdf

00015 RECORDS COPIED

. modify structure

MODIFY ERASES ALL DATA RECORDS..PROCEED?
(Y/N)Y

. append from temp.TXT sdf
00015 RECORDS ADDED

Data in a <.TXT> file created by using the SDF (or DELIMITED) option is kept in columns
that are spaced like the fields were in the original file. While you can edit a <.TXT> file
with your word processor, this can be dangerous:

Warning: Do not change field positions or sizes: the data you saved is saved by position, not
by name! If you change the field sizes when you modify the structure, you will destroy your
database when you bring the saved data back into it.

When you *copy* data toa < . TXT> file, you can use the full command to specify the scope,
fields and conditions (see earlier explanation.)

Modifying data rapidly (REPLACE, CHANGE)
Changes can be made rapidly to any or all of the records using the following command:

*REPLACE [scope] < field> WITH < exp> [, < field> WITH < exp>,..]
[FOR < expression> l’

This is an extremely powerful command because it REPLACES a “< field-that-you-name>
WITH < whatever-you-write-in-here>". You can REPLACE more than one field by using a
comma after the first combination, then listing the new fields and data as shown in the
center brackets.

The *“exp” can be specific new information (including blanks), or it could be an operation, such
as deducting state sales tax from all your bills because you have a resale number (REPLACE
all Amount WITH Amount/1.06).

You can also make this replacement conditional by using the FOR and specifying your
conditions as an expression.

To show you how this works, we need to add some data to both the <Names> and
< Orders> database files.

First, *USE Name”® then type *EDIT 1*. Now enter a *1001°* in the < CustCode> field, using
the full screen editing features to get into position. Use "ctl-C" to move on to the next record
when you are finished. Customer codes should be entered as four-digit numbers, with the
record number as the last two digits (1001, 1002, 1003, etc.).

© 1952 Ashion-Tate
Reproduction By Any Method Is Strictly Prohibited

EXPRESSIONS...50

Now *USE Orders® and *APPEND*® the following order information (do not type the column
headings):

£Cust) (Iitem) Qty) (Price.)
'1012 38567 5 .83‘
. 1003 83899 34 . 12‘
.1009 12829 7 .17.
1012 73833 23 147
*USE Orders®
:REPI;ACE All Amount WITH Qty*Price®
LIST
. use orders
. replace all amount with qty*price
00004 REPLACEMENT(S)
. hst
00001 1012 38567 5 083 4.15
00002 1003 83899 34 0.12 408 F.
00003 1009 12829 7 017 1.19 F.
00004 1012 73833 23 147 3381

\- J

You'll also find *REPLACE® useful in command files to fill in a blank record that you have
appended to a file. Data from memory variables in your program is frequently used to fill in
the blank fields.

Changes to a few fields in a large number of records can also be made rapidly by using:
CHANGE [scope] FIELD <list> [FOR < expression>]

The “scope’’ is the same as for other dBASE 11 commands. At least one field must be named,
but several field names can be listed if separated by commas. This command finds the first
record that meets the conditions in the ‘“‘expression”, then displays the record name and
contents with a prompt. To change the data in the field, type in the new information. To leave
it the way it was, hit < enter >. If the field is blank and you want to add data, type a space.
Use [all] for [scope] in order to change records sequentially.

Once you have looked at all the listed fields within a record, you are represented with the first
field of the next record that meets the conditions you set. To return to dBASE II, hit the

ESCAPE key.

© 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

EXPRESSIONS... 51

. use names \

change all freld custcode

RECORD: 00001

CUSTCODE‘ R

CHANGE? (ENTER A SPACE TO CHANGE AN EMPTY FIELD)
TO 1001

CUSTCODE: 1001
CHANGE? <enter>

RECORD: 00002

CUSTCODE.
kCHANGE? J

Reminder: If you want to make changes to a relatively small number of records, the
BROWSE command (page 16) may be what you need.

Organizing your databases (SORT, INDEX)

Data is frequently entered randomly, as it was in our < Names> database. This is not
necessarily the way you want it, soc dBASE II includes tools to help you organize your
databases by SORTING and INDEXING it.

INDEXED files allow you to locate records quickly (typically within two seconds even with
floppy disks).

Files can be sorted in ascending or descending order. The full command is:

*SORT ON < fieldname> TO < filename> [DESCENDING|®

The <fieldname> specifies the key on which the file is sorted and may be character or
numeric, (not logical). The sort defaults to ascending order, but you can over-ride this by

specifying the descending option.

To sort on several keys, start with the least important key, then use a series of sorts leading
up to the major key. During sorting, dBASE II will move only as many records as it must.
To sort our < Names>> file so that the customers are in alphabetical order, type:

.
*

USE Names®
SORT ON Name TO Temp*
JUSE .Temp‘
LIST
’COPY TO Names®

-

1982 Ashton Tate
Heprisfuction By Ans Methad 1 Stoactly Prolibited

EXPRESSIONS ...52

(use names

kooom RECORDS COPIED

. sort on name to temp

. SORT COMPLETE

. use temp

Llist

00001 ALAZAR, PAT 123 Crater Rd. Everett WA 98206 1001
00002 BROWN, JOHN 456 Minnow PI. Burlington MA 01730 1002
00003 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036 1003
00004 DESTRY, RALPH 234 Mahogany St. Deerfield FL 33441 1004
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303 1005
00006 FORMAN, ED 456 Boston St. Dallas TX 75220 1006
00007 FREITAG, JEAN 854 Munchkin Ave. Houston TX 77006 1011
00008 GOULD, NICOLE 73 Radnor Way Radnor PA 190891012
00009 GREEN, FRANK 441 Spicer Ave. Tampa FL 33622
00010 GREEN, TERRY 567 Doheny Dr. Hollywood CA 90044 1007
00011 HOWSER, PETER 678 Dusty Rd. Chicago IL 60631 1008
00012 INDERS, PER 321 Sawtelle Blvd. Tueson AZ 85702 1009
00013 JENKINS,. TED 210 Park Avenue New York NY 10016 1010
00014 PETERS, ALICE 676 Wacker Dr. Chicago IL 60606

. copy to names

_J

!Iote: .You may not SORT a database to itself. Instead, sort to a temporary file, then
COPY* it back to the original file name after you've confirmed the data.

A database can also be INDEXED so that it appears to be sorted. The form of the *iNDEX®
command is:

*INDEXON < key (variable/expression)> TO <index filename> ¢

This creates a file with the new name and the extension <.NDX>>. Only the data within the
“key"” is sorted, although it appears that the entire database has been sorted. The key may
be a variable name or a complex expression up to 100 characters long. It cannot be a logical
field. To organize our customer database by ZIP code, type:

:USE Names®
INDEX ON Zip:Code TO Zips®
*USE Names INDEX Zips®
*ust?
We could also index our database on three keys by typing:

*|NDEX ON Name + CustCode + State TO Compound®

* 1982 Ashton-Tate
Reproduction By Any Method la Strictly Prohibited

EXPRESSIONS...53

Numeric fields uged in this manner must be converted to character type. If CustCode were a
numeric field with 5 positions and 2 decimal places, STR® function (described later)
performs the conversion like this:

*INDEX ON Name + STR(CustCode,5,2) + State TO Compound‘

To take advantage of the speed built into an INDEX file, you have to specify it as part of the
UsE command:

*USE < database name> INDEX < index filename> *

Positioning commands (GO, GO BOTTOM, etc.) glven with an INDEX file in use move you
to positions on the index, rather than the database. ‘Go BOTTOM for example, will position
you at the last record in the index rather than the last record in the database.

Changes made to key fields when you ’APPEND’. ’EDIT’, °REPLACE‘, or *PACK® the
database, are reflected in the index file in USE.

Other index files for the database can be updated by typing: *SET INDEX TO <index File 1>,
<index File 2>, ... <index File n> *. Then perform your *APPEND®, *EDIT®, etc. All named
index files will now be current.

A major benefit of an INDEXED file is that it allows you to use the *FIND® command
(described next) to locate records in seconds, even with large databases.

Finding the information you want (FIND, LOCATE)

If you know what data you are looking for, you can use the FIND command (but only when
your database is indexed, and the index file is in USE). A typical FIND time is two seconds
with a floppy disk system.

Simply type FIND <character string> (without quote marks), where the “character string”
is all or part of the contents of a field.

This string can be as short as you like, but should be long enough to make it unique. “th”, for
example, occurs in a large number of words; “theatr” is much more limited. Type the
following:

USE Names INDEX les
FIND 10‘
DisPLAY
:FIND 9* .
DISPLAY
*DISPLAY Next 3°

1982 Ashton-Tate
Reproduction By Any Method s Strictly Prohibited

EXPRESSIONS ... 54

/- use names index zips \

.find 10

. display

00013 JENKINS, TED 210 Park Avenue New York NY 10016 1010
.find9

. display

00003 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036 1003

. display next 3

00003 CLINKER, DUANE 789 Charles Dr. Los Angeles CA 90036 1003
00010 GREEN, TERRY 567 Doheny Dr. Hollywood CA 90044 1007
00005 EMBRY, ALBERT 345 Sage Avenue Palo Alto CA 94303 1005 /

If the key is not unique, dBASE II finds the first record that meets your specifications. This
may or may not be the one you’re looking for. If no record exists with the identical key that
you are looking for, dBASE II displays NO FIND.

FIND can also be used with files that have been INDEXED on multiple keys. The
disadvantage of a compound key (which may not be a disadvantage in your application) is
that it must be used from the left when you access the data. That is, you can access the data
by using the FIND command and just the Name, or the Name and CustCode, or all three
fields, but could not access it using the State or CustCode alone. To do that, you would either
have to use the LOCATE command (next), or have another file indexed on the State field as
the primary key.

When looking for specific kinds of data, use
LOCATE [scope] [FOR < expression>]

This command is used when you are looking for specific data in a file that is not indexed on
the key you are interested in (file is indexed on zip codes, but you're interested in states,
etc.).

If you want to search the entire database between your pointer and the end of the file, you
do not have to specify the scope. If you do want to search the entire file, either specify “all”,
or first position the pointer at the start of the file (GO TOP). If you are looking for data in a
character field, the data should be enclosed in single quotes. Type the following:

:USE Names* .

.LOCATE I:OR Name='GOU’

.DISPLAY .

.LOCATE FOR Zip:Code)‘%’ .AND.Name < ‘G’
DISPLAY Name, Zip.Code

* 1982 Ashton-Tate
Reproduction By Any Method Ia Strictly Prohibited

EXPRESSIONS...55

If a record is found that meets the conditions in your expression, dBASE Il signals you with:
RECORD n. You can display or edit the record once it is located.

If there may be more than one record that meets your conditions, type CONTINUE to get the
next record number.

*CONTINUE®
*CONTINUE®
*CONTINUE®

If dBASE II cannot find your record within the “scope” that you defined, it will display: END
OF LOCATE or END OF FILE ENCOUNTERED.

. use names
. locate for Name="GOU"
RECORD: 00008

. display
00008 GOULD. NICOLE 73 Radnor Way Radnor PA 19089 1012

. locate for Zip:Code >'8 and Name < ‘G’
RECORD: 00001

. display Name, Zip:Code

00001 ALAZAR, PAT 98208
. continue

RECORD: 00003

. continue

RECORD: 00005

. continue
\ END OF FILE ENCOUNTERED

Getting information out of all that data (the REPORT command)

FIND and LOCATE are fine for locating individual records and data items, but in most
applications you will want 9ata summaries that include many records that meet certain
specifications. The "REPORT " command lets you do this quickly and easily.

If you are using single sheets or paper in your printer, first type *SET EJECT OFF* to turn the
initial formfeed off. Now select the database you want the report from and create your
custom report format by typing:

SET EJECT OFF
QUSE < database>
*REPORT"

dBASE II then leads you through a series of prompts to create a custom format for the
report. You specify which fields from the database you want, report and column headings,
which columns should be totaled, etc. The standard defaults are 8 columns from the left edge
of the paper for the page offset, 56 lines per page, and a page width of 80 characters.

§9R2 Ashton Tate
Hepraduetion By Any Methed In Steictly Prohibited

EXPRESSIONS... 56

You can try this with the files you've created on the demonstration disk, but the
<NAMES> and <ORDERS> databases that we've used as examples so far don’t have
enough data in them to really show you how powerful dBASE II can be. For our examples
from here on we will be using < MoneyOut.DBF> and other databases that are part of an
existing business system.

This would be a good time for you to create a database structure that you would actually use
in your business. Enter data in it, then substitute it for <MoneyOut> in our examples.

r . use MoneyOut \

. report

ENTER REPORT FORM NAME:JobCosts

ENTER OPTIONS, M = LEFT MARGIN, L = LINES/PAGE, W = PAGE WIDTH
PAGE HEADING? (Y?N) Y

ENTER PAGE HEADING: COST SUMMARY

DOUBLE SPACE REPORT? (Y/N) n

ARE TOTALS REQUIRED? (Y/N}y

SUBTOTALS IN REPORT? (Y/N) n

coL WIDTH,CONTENTS
001 10.Check:Date
ENTER HEADING: DATE

002 22,Name

ENTER HEADING: SUPPLIER

003 22, Descrip

ENTER HEADING: DESCRIPTION
004 12,Amount

ENTER HEADING: AMOUNT
ARE TOTALS REQUIRED? (Y/l;l) y
Q005 < enter>

K PAGE NO. 00001 J

When you have defined all the contents of the report, hit <enter> when prompted with the
next field number. dBASE II immediately starts the report to show you what you have
specified, and will go through the entire database if you let it. To stop the report, hit the
< escape> key.

At the same time, dBASE II saves the format in a file with the extension .FRM, so that you
can use it without having to go through the dialog again. The full form of the command is:

*REPORT FORM < formname> [scope] [FOR < expression> | [TO PRINT]'
By typing
REPORT FORM JobCosts FOR Job:Nmbr="770"

we can get a listing of all the job costs for job number 770 without having to redefine the
format.

© 1982 Ashton-Tate
Reproduction By Any Method [s Strictly Prohibited

EXPRESSIONS ... 57

KR;F’ORT FORM JobCosts FOR Job:Nmbr=770 \

PAGE NO 00001

COST SUMMARY
DATE SUPPLIER DESCRIPTON AMOUNT
810113 LETTER FONT TYPE 177.00
810113 ABLE PRINTER MAILER 805.00
810113 MARSHALL, RALPH TYPE 37.10
810113 MARSHALL. RALPH LAYOUT 200.00
810113 SHUTTERBUGS. INC. PHOTOGRAPHY 565.00

810113 MAGIC TOUCH RETOUCHING 56.00
TOTAL 1,840.10‘/

You can change the information in the heading by typing *SET HEADING TO character string®
(up to 60 characters and spaces, no quote marks). The “scope” defaults to “all” when not
specified.

The expression could have been expanded with other conditions, and the entire report could
have been prepared as a hardcopy by adding TO PRINT at the end of the command.

This report capability can be used for just about any business report, from accounts payable
(FOR Check:Nmbr="* "), to auto expenses (FOR Job:Nmbr ='4") to anything else you need.

Automatic counting and summing (COUNT, SUM)

In some applications, you won’t need to see the actual records, but will want to know how
many meet certain conditions, or what the total is for some specified condition (How many
widgets do we have in stock? How many are on back order? What is the total of our
accounts payable?)

For counting use:

COUNT [scope] [FOR conditions} [TO memory variable]

This command can be used with none, some or all of the modifiers.

Unqualified, it counts all the records in the database. The “scope” can be limited to one or a
specified number of records, and the “condition” can be any complex logical expression (see
earlier section on expressions). The result of the count can be stored in a memory variable,
which is created when the command is executed if it did not exist.

To get totals, use:

sum field(s)[scope) [FOR condition] [TO memory variable(s)]

1982 Ashton Tute
Reproduction By Any Method I» Strictly Prabibited

EXPRESSIONS...58

You can list up to 5 numeric fields to total in the database in USE. If more than one field is
to be totaled, the field names are separated by commas. The records totaled can be limited
by using the “scope” and/or conditional expressions after the FOR (Client <> ‘SEM’. AND.
Amount > 10...).

If memory variables are used (separated by commas), remember that totals are stored based
on position. If you don’t want to store the last fields in memory variables but do want to see
what the amounts are, there’s no problem: simply name the first few variables that you
want. If there’s a gap (you want to save the first, third and fourth field totals out of six),
name memory variables for the first four fields then RELEASE the second one after the
SUM is done.

. USE MoneyQut

. COUNT FOR Amount < 100 TO Small
COUNT = 00067

. SUM Amount FOR Job:Nmbr = 770 TO Cost

1640.10
. display memory
SMALL (N) 67
COSsT {N) 1640.10
TOTAL 02 VARIABLES USED 00012 BYTES USED

Summarizing data and eliminating details (TOTAL)

ToTAL works similarly to the sub-total capability in the REPORT command except that
the results are placed in a database rather than being printed out:

TOTALON < key> TO < database> [FIELDS list] [FOR conditions)

Note: The database that the information is coming from must be presorted or indexed on
the key that is used in this command.

This command is particularly useful for eliminating detail and providing summaries. The
screen shows what happens with our < MoneyOut> database:

:USE MoneyOut* .
INDEX ON Job:Nmbr TO Jobs
*USE MoneyOut INDEX Jobs®
*TOTAL ON Job:Nmbr TO Temp FIELDS Amount FOR Job:Nmbr > 699,
AND. Job:Nmbr < 800°*
:usr: Iemp’
usT

The new database has one entry for each job number, and a total for all the costs against
that job number in our <MoneyOut> database. One problem with the new database,
however, is that only two of the fields contain useful information.

* 1982 Ashton Tate
Reproduction By Any Method [s Strictly Prohibited

EXPRESSIONS... 59

This can be handled with one more command line. *TOTAL® transfers all the fields if the
database named did not exist, but uses the structure of an existing database. In the
commands above, we could have limited the fields in the new database by creating it first,
before we used the " TOTAL" command:

*COPY TO Temp FIELOS Job:Nmbr, Amount®

Now when we *TOTAL® to <Temp>, the new database will contain only the job numbers
and totals. Try it with your database.

This same technique can be used to summarize quantities of parts, accounts receivable or
any other ordered (SORTed or INDEXed) information.

ﬂE MoneyQut \

. INDEX ON Job Nmbr TO Jobs

0093 RECORDS INDEXED

. USE MoneyOut INDEX Jobs

. TOTAL ON Job.Nmbr TO Temp FIELDS AMOUNT FOR JOB Nmbr> 699.
AND.Job Nmbr< 800

00028 RECORDS COPIED

.USE Temp

LLIST

00011 810128 3145 SML 778 13800 LETTER FONT TYPE
810129 2633 0.00 [}

00ol2 8l1olz8 3152 SML 782 5949 MAGIC TOUCH BACKGROUND TONE
810129 429 000 0
00013 810129 3148 SMM 784 4600 LETTERFONT TYPE

810129 3003 000 0
00014 810129 3148 DOC 786 25100 LETTERFONT TYPE
810129 2764 0.00 0

(Partial Listing)

_ _J

* 1982 Ashton Tate
Hepreductin By Any Methad [x Stesctly Prabibited

EXPRESSIONS... 60

Section Il Summary
This section has broadened the scope of what you can now do with dBASE II.

We have shown you how different operators (arithmetic, relational and string) can be used
to modify dBASE II commands to give you a greater degree of control over your data than is
possible with other database management systems.

Since data structures are the basis of database systems, we have covered a number of
different ways in which you can alter these structures, with or without data in the database.

We have also shown you how to enter, alter, and find the specific information you may be
looking for. We have also introduced new global commands that make it possible for you to
turn all that data into information with a single command (COUNT, SUM, REPORT,
TOTAL).

In the next section, we will show you how to set up dBASE II command files (programs), so
that you can automate your information processes.

© 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

Section Il
Setting up a command file

(writing your first program) 61 MODIFY COMMAND
< file>
Making choicesand decisions 62 IF.ELSE..ENDIF
Repeatingaprocess 64 DO WHILE..
Procedures (subsidiary command files) 65 DO <file>
Entering data interactively duringarun 65 WAIT, INPUT, ACCEPT
Placing data and prompts exactly where you
wantthem 66 @.SAY.GET
A command file that summarizes what we’ve learned 69
Working with multiple databases 72 SELECT PRIMARY/
SECONDARY
Generally useful system commands and functions 73
A few words about programming and planning
yourcommandfiles 74

If you understand how to write expressions, you are very close to being able to write
programs.

There are four basic programming structures that you can use to get a computer to do what
you want to do:

Sequence
Choice/Decision
Repetition
Procedures

You've already seen that dBASE II processes your commands sequentially in the order in
which you give them. In this section we'll explain how you make choices (IF..ELSE), how
you can make the computer repeat a sequence of commands (DO WHILE..), and how to use
sub-files of commands (procedures).

Then we'll show you how to use these simple tools to write command files (programs) that
will solve your applications problems.

1982 Ashton Tate
Reproduction By Any Method Is Strictly Prohibited

(This page is intentionally left blank)

© 1982 Ashton-Tate
R dt By Any Method Prohibited

COMMAND FILES... 61
Setting up a command file (writing your first program)

The commands we've introduced so far are powerful and can accomplish a great deal, yet
only scratch the surface of the capabilities of dBASE II. The full power comes into play
when you set up command files so that the commands you enter once can be repeated over
and over.

When you create a command file you are programming the computer, but since dBASE II
uses English-like commands, it’s a lot simpler than it sounds. Also, because dBASE Il is a
relational database management system, you work with increments of data and
information, rather than bits and bytes.

To set up a command file, you list the commands you want performed in a MS-DOS file with
a <.PRG> extension to its name, using a text editor or word processor.

dBASE II starts at the top of the list and processes the commands one at a time until it is
done with the list.

Other computer languages operate exactly the same way. In BASIC the sequence is highly
visible because each program line is numbered. In other languages (dBASE Il among them),
the sequence is implied and the computer will process the first line on the page, then the
second line, etc. Some languages use separators (such as colons) between command
statements; dBASE II simply uses the carriage return to terminate the command line.

The only time the sequence is not followed is when the computer is specifically told to go
and do something else. Usually, this is based on some other conditions and the computer
must make a decision based on expressions or conditions that you have set up in the
command file. We’'ll tell you more about this later.

For now, let’s create a command file called <Test>.

You can do this using a text editor on word processor, but there’s an easier way with dBASE
I1. Type:

*MODIFY COMMAND Test®

dBASE II now presents you with a blank screen that you can write into using the full screen
editing features described earlier. Use them now to enter the short program at the bottom
of this page (do not type the “*” symbols).

The end of a line indicates the end of a command (unless you use a semicolon), so keep the
list of commands as shown below.

USE Names®
COPY Structure TO Temp FIELDS Name, ZipCode*

.
*
*
* APPEND FROM Names*
:COUNT FOR Name = ‘G'TO c*

DISPLAY MEMORY
*7 ‘We have just successfully completed our first command file’ ¢

€ 1982 Ashton Tate
Reproduction By Any Method 1s Strictly Prohibited

COMMAND FILES... 62

When you're finished, use clt-W to get back to the dBASE II prompt. Now type:

. *Do Test*

If you typed th.e program in exactly the way it was printed, it crashed. Now type *MODIFY
COMMAND Test™ again and insert a colon to correct the <Zip:Code > field name.

Once you get to writing larger command files on your own, you'll find that this built-in
editor is one of the most convenient features of dBASE 11, since you can write, correct and
change programs without ever having to go back to the system level of the computer.
Currently, this built-in editor can back up only about 5,000 characters, so editing should be
planned in one direction for larger files.

This command file itself is trivial but does show you how you can perform a sequence of
commands from a file with a single system command. This is similar to the way you use
.COM files in your operating system.

Tip: You may want to rename the main dBASE file to <DO.COM >, so that you can type
DO <filename> whether you're in’ your system or in dBASE II. To do this with MS-DOS,
type: A> *REN DO.COM=dBASE.COM

Making choices and decisions (IF..ELSE)

Choices and decisions are made in dBASE II with *IF.ELSE.ENDIF®. This is used much as it
is used in ordinary English: IF I'm hungry, I'll eat, (OR) ELSE I won’t. With a computer, you
use the identical construction, but you do have to use exactly the words that it understands.

Simple decisions: If only a single decision is to be made, you can drop the ELSE and use this
form:

IF condition .LAND. cond2. OR. cond3....]
do this command
lemd2]
[....]

ENDIF

The “condition” can be a series of expressions (up to a maximum of 254 characters) that can
be logically evaluated as being true or false. Use the logical operators to tie them together.
Using our <MoneyOQOut > file, we might set up the following decision:

IF Job:Nmbr = ‘730’ . AND. Amount > 99.99;
.OR. Supplier = ‘MAGIC TOUCH’;
.OR. Bill:Date > ‘791231’
do this command
lemd2]
[...]
ENDIF

1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

{

-

COMMAND FILES ... 63

If all the conditions are met, the computer will perform the commands listed between the IF
and the ENDIF (in sequence), then go on to the next statement following the ENDIF. If the
conditions are not met, the computer skips to the first command following the ENDIF.

Two choices: If there are two alternate courses of action that depend on the condition(s),
use the IF..ELSE statement this way:

IF condition (s)

do command(s) 1
ELSE

do command(s) 2
ENDIF

The computer does either the first set of commands or the second set of commands, then
skips to the command following the ENDIF.

Multiple choice: Frequently, you have to make a choice from a list of alternatives. An
example might be the use of a screen menu to select one of several different procedures that
you want to perform. In that case, you use the IF.ELSE.ENDIF construction.

This is the same IF.ELSE that we've described, but you use it in several levels (called
“nesting”), as shown below.

IF conditions 1
do commands 1
ELSE
IF conditions 2
do commands 2
ELSE
IF conditions 3
do commands 3
ELSE

ENDIF 3
ENDIF 2
ENDIF 1

This structure can be nested as shown as far as it has to be to choose the one set of
commands required from the list of alternatives. It is used frequently in the working
accounting system at the end of Part I.

Notice that each IF must have a corresponding ENDIF or your program will bomb.

Tip: dBASE Il does not read the rest of the line after an ENDIF, so you can add in any
identification you want to, as we did above. It helps keep things straight.

' 1982 Ashton-Tate
Reproduction By Any Methnd 1s Stractly Prohatited

COMMAND FILES ... 64

Repeating a process (DO WHILE..)

Repetition is one of the major advantages of a computer. It can continue with the same task
over and over without getting bored or making mistakes because of the monotony. This is
handled in most computer languages with the DO WHILE command:

DO WHILE conditions
do command (s)
ENDDO

While the conditions you specify are logically true, the commands listed will be performed.

Tip: Remember that these commands must change the conditions eventually, or the loop
will continue forever.

When you know how many times you want the process repeated, you use the structure like
this:

STORE 1 TO index * Start counter at 1
DO WHILE Index < 11 * Process 10 records
IF Item = ** * If there is no data,
SKIP * gkip the record and
LOOP * go back to the DO WHILE,
ENDIF blank * without doing ProcessA
DO ProcessA *Do file ProcessA.PRG
STORE Index+1 TO Index * Increase counter by 1
ENDDO ten times

In this example, if there is data in the <Item> field, the computer performs whatever
instructions are in another command file called ProcessA.PRG, then returns to where it was
in this command file. It increases the value of the variable Index by 1, then tests to see if
this value is less than 11. If it is, the computer proceeds through the DO WHILE
instructions again. When the counter passes 10, the computer skips the loop and performs
the next instruction after the ENDDO.

The LOOP instruction is used to stop a sequence and cause the computer to go back to the
start of a DO WHILE that contains the instruction.

In this case, if the Item field is blank, the record is not processed because the LOOP
command moves the computer back to the DO WHILE Index < 11. The record with the blank
is not counted, since we bypass the command line where we add 1 to the counter.

The problem with LOOP is that it short-circuits program flow, so that it’s extremely difficult
to follow program logic. The best solution is to avoid the LOOP instruction entirely.

Procedures (subsidiary command files)
The ability to create standard procedures in a language greatly simplifies programming of

computers.

1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

COMMAND FILES...65

In BASIC, these procedures are called sub-routines. In Pascal and PL/I, they are called
procedures. In dBASE II they are command files that can be called by a program that you
write.

In our previous example, we called for a procedure when we said DO ProcessA. “ProcessA” is
another command file (with a .PRG extension to its name). The contents of this command
file might be:

IF Status = M
DO PayMar
ELSE
IF Status = S
DO PaySingle
ELSE
IF Status = H
DO PayHouse
ENDIF
ENDIF
ENDIF
RETURN

Once again, we can call out further procedures which can themselves call other files. Up to
16 command files may be open at a time, so if a file is in USE, up to 15 other files can be
open. Some commands use additional files (REPORT, INSERT, COPY, SAVE, RESTORE
and PACK use one additional file; SORT uses two additional files).

This is seldom a limitation, however, since any number of files can be used if they are closed
and no more than 16 are open at any time.

A file is closed when the end of the file is reached, or when the *RETURN® command is issued
by a command file. The RETURN command returns control to the command file that called it
(or to the keyboard if the file was run directly).

The RETURN command is not always strictly necessary, as control returns to the calling file
when the end of a file is encountered, but it is good programming practice to insert it at the
end of all your command files.

Big tip: Notice that the command lines are indented in our examples. This is not
necessary, but it increases command file clarity tremendously, especially when you have
nested structures within other structures. Using all uppercase for the commands, and both
upper- and lowercase for the variables helps, too.

Entering data interactively during a run (WAIT, INPUT, ACCEPT)

For many applications, the command files will have to get additional data from the
operator, rather than just using what is in the databases.

* 1932 Ashton Tate
Heproduction By Any Metbod la Strictly Probibited

COMMAND FILES...66

Your command files can be set up so that they prompt the operator with messages that
indicate the kind of information that is needed. One good example is a menu of functions
from which one is selected. Another use might be to help ensure that accounting data is
entered correctly. The following commands can do this.

*WAIT [TO memory variable]’
halts command file processing and waits for a single ckaracter input from the keyboard
with a WAITING prompt. Processing continues after any key is pressed (as with the
dBASE II DISPLAY command).

If a variable is also specified, the input character is stored in it. If the input is a
non-printable character (< enter>, control character, etc.), a blank is entered into the
variable.

*INPUT [‘prompt’] TO memory variable®
accepts any data type from the CRT terminal to a named memory variable, creating
that variable if it did not exist.

If the optional prompting message (in single or double quotes, but both delimiters the
same) is used, it appears on the user terminal followed by a colon showing where the
data is to be typed in. The data type of the variable (character, numeric or logical) is
determined by the type of data that is entered. Character strings must be entered in
quotes or square brackets.

* ACCEPT ['prompt’] TO memory variable®
accepts character data without the need for delimiters. Very useful for long input
strings.

Tips on which to use when:

WAIT can be used for rapid entry (reacts instantly to an input), but should not be used when
a wrong entry can do serious damage to your database.

ACCEPT is useful for long strings of characters as it does not require quote marks. It should
also be used for single character entry when the need to hit <enter> can improve data
integrity.

INPUT accepts numeric and logical data as well as characters, and can be used like ACCEPT.

Placing data and prompts exactly where you want them (@..SAY..GET)

The .?', *ACCEPT® and *INPUT® commands can all be used to place prompts to the operator

on the screen.

Their common drawback for this purpose is that the prompts will appear just below the last
line already on the screen. This works, but there’s a better way.

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

COMMAND FILES... 67

If your terminal supports X-Y cursor positioning, another dBASE II command lets you
position your prompts and get your data from any position you select on the screen:

@ < coordinates> [SAY < ‘prompt'>1

This will position the prompt (entered in quotes or square brackets) at the screen
coordinates you specify. The coordinates are the row and column on the CRT, with 0,0 being
the upper left-hand “home” position. If we specified “9,34” as being the coordinates, our
prompt would start on the 10th row in the 35th column.

The SAY.. is optional because this command can also be used to erase any line (or portion of a
line) on the screen. Bring dBASE 11 up and type:

*ERASE®

@ 20,30 SAY ‘What?'
:@ 567 SAY ‘Here..'* .
1@ 1111 SAY “That's all*
@ 20. 0

.@ 5. 0.

@ 11.16

Instead of just showing a prompt, the command can be used to show the value of an
expression with one or more variables. The form is:

*@ < coordinates> [SAY < expression> |
Type the following in dBASE II:

*USE Names®
:@ 13.9 SAY Zip:Code?
@ 116§Avsmm0
SKIP 3
*@ 235SAY Name +°, ' + Address?

The command can be expanded further to show you the values of variables being used
{memory variables or field names in a database) at whatever screen position you specify.
(The variables used by both GET and SAY must exist before you call them out or you will get
an error.)

’@ < coordinates> [SAY < expression> J(GET < variable>]’

To see how this works, type the following (DO NOT QUIT dBASE when you're done—there's
more to come):

19582 Ashtion-Tate
Reproduction By Any Methud Is Strictly Peohibited

COMMANDFILES...68

Erase®
'USE Names®
@ 15, 5 SAY ‘State’ GET State*
@ 10, 17 GET Zip:Code*
*@ 5,0 SAY ‘Name' GET Name?’
(Stay in dBASE)

This sequence has positioned the values of the variables (with and without prompts) at
various places on the screen. With this facility, you can design your own input forms so that
the screens that your operator sees will look just like the old paper forms that were used
before.

To get data into the variables on the screen at your chosen locations, type:
*READ®

The cursor positions itself on the first field you entered. You can now type in new data, or
leave it the way it was by hitting <enter>. When you leave this field, it goes to the second
variable you entered.

Change the data in the remammg t\xo fields. When you finish with the last one, you are
back in dBASE II. Now type *DISPLAY®. The record now has the new data you entered.

As you can see, GET works somewhat like the INPUT and ACCEPT commands. It is much more
powerful than either because it allows you to enter many variables.

A database may have a dozen or two fields (up to 32), but for any given data entry
procedure, you may be entering data in only half a dozen of those. Rather than using
APPEND, which would list all the fields in the database on the screen, you can use * APPEND
BLANK' to create a record with empty fields, then GET only the data you want.

Our < Names> file is not a good example, but we can use it to show how to selectively get
data into a database with a large structure.

To give you more practice with command files, create a file called <Trial. PRG> with the following
commands in it:

erRASE

? ‘This procedure allows you to add new records to the'®
? 'NAMES.DBF database selectively. We will be adding"
?"only the Name and the Zip:Code now."

?

‘Type S to stop the procedure,"

? ‘<enter> to continue.’

WAIT TO Continue®

* & & & o o o
-~ .

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

COMMAND FILES... 89

* *

USE Names

*DO WHILE Continue < > ‘S’ .AND. Continue < > 's’
APPEND BLANK®

ERASE®

@ 10. 0 SAY "NAME" GET Name*

@ 10,30 SAY “ZIP CODE" GET Zip:Code*

READ®

* o o o o

? *Sto stop the procedure,"
? *<enter> to contlnue."
WAIT TO Continue

ENDDO*

RETURN®

* & & o o

When you're back to MS-DOS, type *dBASE Trial® (or *DO Trial* if you renamed the
dBASE.COM file as we suggested). Now enter data into several records. After you've
finished, LIST the file to see what you've added.

As you can see, data entry is simple and uncluttered.

The screen can be customized by placing prompts and variable input fields wherever you
want them.

Note: You must use the *ERASE® or *CLEAR GETS® command after every 64 *GET's®. Use
the latter command if you do not want to change the screen.

A command file that summarizes what we’ve learned

Before you read on, you can run the following file to see what it does. Type *dBASE Sample'
if you're in MS-DOS or *DO Sample® if you're in dBASE II. Respond to the prompts. After
you've run it, you can come back and go through the documentation. It summarizes most of
what we've covered so far and includes copious commentary.

srsanseranaesnanennnnnrannnrannnrrrr QAMDL E.PRG R T T T TR R 22 2)
.

*

This command file prompts the user with screen messages and accepts data into a
memory variable, then performs the procedure selected by the user. This is only a
program fragment, but it does work.

*

*

We haven’t written the procedures that are called by the menu yet, so instead, we can
have the computer perform some actions that show us what it does and which paths it
takes (stubbing).

Normally, dBASE II shows the results of the commands on the CRT. This can be
confusing, so we SET TALK OFF.

L T T

SET TALK OFF
USE MoneyQut
ERASE

1982 Ashton-Tate
Reproduction By Any Methed 1s Strictly Prohibited

COMMAND FILES ... 70

* It’s good housekeeping to erase the screen before you display any new data on it.
*

* Our substitute display function can be used to put information on the CRT screen like
* this:

?

?

?

?

? OUTGOING CASH MENU'
?

?

7 0 = Exit’

2 1 = Accounts Payable Summary’
7 2 = Enter New Invoices’
7 3 = Enter Payments Made'
?

[Your Choice is Number’
WAIT TO Choice

ERASE

* Since we haven’t developed the procedures to do these three items yet we’ll have the
* computer display different comments, depending on which alternative is selected from
* the menu.

IF Choice = '1’
@ 0,20 SAY ‘One’
ELSE
IF Choice = ‘2
@ 1,20 SAY ‘Two’
ELSE
IF Choice = '3’
@ 2,20 SAY ‘Three'
ELSE
@ 720
@ 820SAY 'ANY OTHER CHARACTER INPUT EXCEPT 1,2, 0R 3
@ 9,20 SAY ' CAUSES THIS COMMAND FILE TO TERMINATE AFTER
@ 10,20 SAY ‘PRINTING OUT THIS MESSAGE. NOTICE THAT THE
@ 11,20 SAY ‘DIGITS HAD TO BE IN QUOTE MARKS IN THE “IF"
@ 12,20 SAY ‘' STATEMENTS ABOVE BECAUSE THE WAIT COMMAND
@ 13,20 SAY * ACCEPTS ONLY CHARACTER INPUTS
@ 14,20 SAY
ENDIF 3
ENDIF 2
ENDIF 1

* Each IF must have a corresponding ENDIF. We've also put a label after the ENDIF to
* indicate which IF it belongs with, to make certain that we have closed all the loops.

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

COMMAND FILES ... 71

N N

2
INPUT ‘Do you want to continue (Yes or No)?" TO Decision
ERASE
IF Decision
INPUT “Okay let’s have a number, quickly” TO Number
ELSE
@ 10,20 SAY "WHY NOT? "
WAIT
ENDIF
ERASE
@ 10,20 SAY * I'M NOT READY FOR THAT. GOOD-BYE. "

* This next DO WHILE loop provides a delay of a few seconds to keep the last message on
* the CRT long enough to be read before the program terminates. You may find this useful
* in command files that you write. To change the delay time, either change the limit (100)
* or the step (+ 1).

STORE 1 TO X

DO WHILE X < 100
STORE X + 1 to X
ENDDO
ERASE
RETURN

You may want to run the program again. Try all the alternatives, then try entering inputs
that are definitely wrong. You'll see how the program works and how dBASE II handles
errors.

While it's only a program fragment and doesn’t do any useful work, <Sample.PRG > does
point up quite a few things:

1. Using ERASE frequently is good houskeeping that's easy to do.

2. Using indentation helps make the operation of the program clearer. That’s also
why we used upper- and lowercase letters. The computer sees them all as
uppercase, but this way is much easier for us humans.

3. The “?" can be used to space lines on the display and to show character strings (in
quotes or brackets).

4. The WAIT command waits for a single character before letting the program move
on. The input then must be treated as a character, the way we did in the nested IF's
by putting quotes around the values we were looking for.

< 1982 Ashton-Tate
Reproduction Ry Any Method ls Strictly Prohibited

COMMAND FILES ... 72

5. The INPUT command waits for and accepts any data type, but characters and
strings must be in single or double quotes or square brackets. When you have an
apostrophe in your message, use the double quote or square brackets to define the
string or the computer gets confused.

6. You don’t have to predefine variables. Just make up another name whenever you
need one (up to a maximum of 64 active at any one time).

7. Logical values can be treated in shorthand. “IF Decision” in the program worked
as if we had said: “IF Decision = T".

8. The RETURN at the end of the program isn’t necessary, but was tacked on because
you would need it if this were a sub-procedure in another command file. That’s
how the computer knows that it should go back where it came from, rather than
just quitting.

Working with multiple databases (PRIMARY, SECONDARY SELECT)

As we’ve seen, when you first start working with dBASE 11, you type *USE < filename> * to
tell dBASE 11 which file you're interested in, then proceed to enter data, edit, etc.

To work on a different database, you type *USE < NewFile> *. dBASE 1I closes the first file
and opens the second one, with no concern on your part. You can use any number of files this
way, both from your terminal and in command files. You can also close a file without
opening a new one by typing *use?.

When you USE a file, dBASE II “rewinds” it to the beginning and positions you on the first
record in the file. In most cases, this is exactly what you want. In some applications,
however, you will want to access another file or files without “losing your place” in the first
file.

dBASE II has an exceptionally advanced feature that permits you to work in two separate
active areas at the same time: PRIMARY and SECONDARY. You switch between them
with the *SELECT® command.

You are automatically placed in the PRIMARY area when you first start. To work on
another database without losing your position in the first one, type in ~“SELECT
SECONDA‘RY°, then *USE < newfile>*. To get back to the original work area, type *SELECT
PRIMARY ", then continue with that database.

The two work areas can be used independently. Any commands that move data and records
operate only in the area in USE.

Information, however, can be transferred from one area to the other using P. and S. as
prefixes for field names. If you are in the PRIMARY area, use the S. prefixes for field names
you need from the SECONDARY area; if you are in the SECONDARY area, use the P. prefix
for field names you need from the PRIMARY area.

' 1982 Ashton.Tate
Reproduction By Any Method Is Strictly Prohibited

COMMAND FILES...73

As an example, this command is used in the <NameTest.PRG> file in the accounting
system at the end of this Part of the manual. Individual records in a file in the PRIMARY
area are checked against all the records in another file in the SECONDARY area.

The same command is also used in the <TimeCalc.PRG>, <DepTrans.PRG> and
< Payroll. PRG > files.

While you may not think of an application now, keep the command in mind: you'll find it
useful.

Generally useful system commands and functions

MODIFY COMMAND < filename> lets you modify the named command file directly from
dBASE II using the normal full screen editing features.

BROWSE displays up to 19 records and as many fields as will fit on the screen. To see fields
off the right edge of the screen, use ctl-B to scroll right. Use ctl-Z to scroll left.

CLEAR resets dBASE II, clearing all variables and closing all files.

RESET is used after a disk swap to reset the operating system bit map. Please read the
detailed description in the command dictionary (Part II) before using it.

* allows comments in a command file, but the comments are not displayed when the
command file is executed. This allows notes to the programmer without confusing the
operator. There must be at least one space between the word or symbol and the comment,
and the note cannot be on the same line as a command. REPEAT: commands and comments
must be on separate lines.

REMARK allows comments to be stored in a command file, then displayed as prompts to the
operator when the file is used. There must be at least one space between the word and the

remark, and the remark cannot be on a command line.

RENAME <oldfile> TO <newfile> changes file names in the MS-DOS directory. Do NOT try
to rename files in USE.

You can also use the *?* command to call out the following functions:

is the record number function. When called, it provides the value of the current record
number.

* ig the deleted record function, and returns a True value if the record is deleted, False if not
deleted.

€ 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

COMMANDFILES...74

EQF is the end of file function. It is True if the end of the file in USE has been reached, False
if it has not been reached.

A few words about programming and planning your command files
The first thing to do when you want to set up a command file is to turn the computer off.

That’s right: that's where many programmers go wrong. They immediately start “coding” a
solution, before they even have a clear idea of what they're to do.

A much better approach is covered in a number of texts on structured programming and
some of the structured languages. One reference you might check is Chapter 2 in “An
Introduction to Programming and Problem Solving in Pascal” by Schneider, Weingart and
Perlman. Another is Chapters 1, 4 and the first few pages of 7 in “Pascal Programming
Structures” by Cherry. Then if you really want to get into programming, there’s an excellent
text on PL/I called “PL/I Structured Programming” by Joan Hughes.

Briefly, here’s the approach:
Start by defining the probiem in ordinary English. Make it a general statement.

Now define it further. What inputs will you have? What form do you want the outputs and
reports in?

Next, take a look at the exceptions. What are the starting conditions? What happens if a
record is missing?

Once you’ve defined what you want to do, describe the details in modified English. The texts
call it “pseudocode”. All this means is that you use English terms that are somewhat similar
to the instructions that the computer understands.

You might write your program outline like this:

Use the cost database
Print out last month's unpaid invoices
Write a check for each unpaid invoice.

Adding a bit more detail, it looks like this:

USE CostBase
Print out last month's unpaid invoices using the SUMMARY .FRM file
Start at the beginning of the database
And go through to the end:
If the invoice has not been paid
Pay the invoice
And enter it in the database
Do this for every record

* 1982 Ashton Tate
Reproduction By Any Method ls Strictly Prohibited

COMMANDFILES...75

In perhaps two more steps, this could be translated into a command file like this:

USE CostBase

* Print a hardcopy summary for December, 1980

REPORT FORM Summary FOR Bill:Date > = ‘801201 AND:
Bill:Date < ='801231" TO PRINT

GOTO TOP * Go to the first record
DO WHILE .NOT. EOF * Repeat for the entire file
IF Check-Nmbr="" * If the invoice isn’t paid,
DO WniteCheck * write a check, then
DO Update * update the records
ENDIF
SKIP * Go to the next record
ENDDO

The term top-down, step-wise refinement can be applied to this procedure, but that's
forty-three dollars worth of words to say: “Start at the top, then divide and conquer.”

Actually, it’s just a sensible approach to solving most kinds of problems. First state the
overall problem, trying to define what it is and what it isn't. Then gradually get into more
and more detail, solving the details that are easy to solve, putting the more complicated
details aside for later solution (again, perhaps in parts).

At this stage in our example, we haven’t done the <Summary.FRM> file nor the
<WriteCheck.PRG > and < Update.PRG > files, but it dosen’t matter.

And in fact, we're probably better off not worrying about these details because we can
concentrate on the overall problem solution. We can come back after we’ve tested our
overall solution and clean up these procedures then.

Tip: You can still test a partial program like this by using what programmers call stubs. Set
up the command files that you've named in the program and enter three items: a message
that let’s you know the program reached it, WAIT and RETURN. dBASE 11 will go to these
procedure files, give you the message, then return and continue with the rest of the program
after you hit any key.

9K2 Arhtan Tate
¥

1
Reproduction By Any Method 1s Strictls Prohibited

(This page is intentionally left blank)

©1882 Ashton-Tate
Reproduction By Any Method Ia Btrictly Prohiblted

SectionIV:

Expanding your control with functions 77
Changing dBASE II characteristics and defaults 80
Merging records from two databases 82
JOINING entire databases 82
Full screen editing and formatting 83
Formatting the printedpage 85
@..SAY..USING..

Setting up and printinga Form 86
Timetoregroup «...o.vvniniriuneniiiiiniiieennanns 87

SET..

UPDATE

JOIN

SET FORMAT TO
SCREEN @.SAY.GET..
PICTURE..

SET FORMAT TO PRINT

By now you should be writing command files that can perform useful work for you.

To help you further, in this section we will introduce more functions a few more commands
and go into quite a bit of detail on how you can print out your data in exactly the format you

want it.

€ 1982 Ashton Tate
Reproduction By Any Method Is Strictly Prombited

(This page is intentionally left blank)

* 1882 Ashton-Tato i
By Any Method 1» Strictly Prohibited

FUNCTIONS...77

Expanding your control with functions

Functions are special purpose operations that may be used in expressions to perform things
that are difficult or impossible using regular arithmetic, logical and string operations.
dBASE II functions fall into the same three categories, based on the results they generate.

Functions are called up by typing in *?* then a space and the function. They can be called
from the terminal or within command files.

Note: the parentheses shown below must be used.

Remember that “strings” are simply a collection of characters (including spaces, digits and
symbols) handled, manipulated and otherwise used as data. A “substring” is a portion of any
specific string.

Don’t worry about memorizing them now, but do scan the descriptions so that you know
where to look when you need one of them in a command file.

(< variable/string>)
is the lower- to uppercase function. It changes all the characters from ‘a’ ... ‘z’ in a string
or string variable to uppercase. Any other characters in the string are unaffected.
You'll see this used frequently in the accounting system (Section VD) to convert inputs
from the keyboard into a standard form in the files. This makes it simpler when
searching for data later, since you will know that all of the data is stored in uppercase,
regardless of how it was entered.

TYPE(< expression>)
is the data type function and yields a C, N,L or U, depending on whether the expression
data type is Character, Numeric, Logical, or Undefined.

INT(< variable expression>)
is the integer function. It “rounds off” a number with a decimal, but does it by throwing
away everything to the right of the decimal. The term inside the parentheses (you must
use the parentheses) can be a number, the name of a variable or a complex expression.
In the latter case, the expression is first evaluated, then an integer is formed from the
results.

Note that INT(123.86) yields 123, while INT(—-123.86) yields —123. A call to a
variable yields a truncated integer formed from the current value of that variable. If
we were on record 7 of MoneyOut.DBF, a call to INT(Amount) would produce 2333, the
integer part of $2,333.75.

To round to the nearest whole number (rather than chop), use this form: INT(value +
0.5). The value within parentheses is first determined, then the integer function of that
is taken.

The integer function can also be used to round a value to any number of decimal places.
INT(value*10 + 0.5)/10 rounds a value to the nearest decimal place because of the

1992 Ashton-Tate
Reproduction By Any Methud [Stractly Prahibited

FUNCTIONS...78

order of precedence of operations (parentheses, then integer, then divide). To round to
two places, use “100” in place of the “10”s. For 3 places, use “1000,” etc.

VAL(< variable/string/substring>)
is the string to integer function. It converts a character string or substring made up of
digits, a sign and up to one decimal point into the equivalent numeric quantity.
VAL(‘123’) yields the number 123. VAL(Job:Nmbr) yields the numeric value of the
contents of the job number field in our MoneyOut database, since we stored all Job
Numbers as characters. You can also use it with the substring operator:
VAL($(< string>)).

STR(< expression/variable/number> , < length> , < decimals>)
is the integer to string function. It converts a number or the contents of a numeric
variable into a string with the specified length and the specified number of digits to the
right of the decimal point. The specified length must be large enough to encompass at
least all the digits plus the decimal point. If the numeric value is shorter than the
specified field, the remaining portion is filled with blanks. If the decimal precision is
not specified, “0” is assumed.

This function is used quite often in the accounting system to simplify displays.
Numbers are converted to strings then concatenated with (joined to) other strings of
characters for displays.

LEN(< variable/string>)
is the string length function. It tells you how many characters there are in the string you
name. This can be useful when the program has to decide how much storage to allocate
for information with no operator intervention. However, if a character field variable
name is used, this function returns the size of the field, not the length of the contents
(since any unused positions are filled with blanks by dBASE ID).

$(< expression/variable/string>, < start> , <length>)
is the substring function. It selects characters from a string or character variable,
starting at the specified position and continuing for the specified length. The <length>
must be a string literal when used with the INDEX -on SAY commands.

As an examp]e if we had a variable called < Date> whose value was ‘810823’, the
function *$(Date.5.2)* wou]d give us ‘23’. To convert these numerals to a number, we
could use *VAL($(Date,5.2))*.

Don’t confuse this with the substring logical operator described in Section II.

@(< variablel/stringl > . < variable2/string2>)
is the substring search function. You might think of this as “Where is stringl AT in
string2?” When you use this function, it produces the character position at which the
first string or character variable starts in the second string or character variable. If the
first string does not occur, a value of “0” is returned.

One use for this is to find out where a specific string starts so that you can use the
preceding substring function. Another use is to find out if a specific string occurs at all.

© 1982 Ashton-Tat
Reproduction By Any Method In Slr;ﬂh Prohibited

FUNCTIONS ... 79
(If you only need to know whether one string is in another one, you can use the
relational string operator: Stringl8String2, Section II.)

You'll find these useful in a command file when the computer is searching without
operator intervention, and you can’t simply step in and look to see where the data is.

CHR(< number>)
yields the ASCII character equivalent of the number. Depending on how your terminal
uses the standard ASCII code, ? CHR(12) may clear your screen, CHR(14) might produce
reverse video while ? CHR(15) would cancel it. Other functions can be used to control
hardware devices, such as a printer. Check your manual—you’ll probably find a few
interesting features.

To get underlining on your printer, try joining a character string, the carriage return
and the underline like this: ? ‘stnng’ + CHR(13) + ' You could even set up a
command file that uses the LEN function to find out how long the string is, then
produces that many underline strokes.

is the macro substitution function. When the symbol is used in front of a memory
variable name, dBASE II replaces the name with the value of the memory variable
(must be character data). This can be used when a complex expression must be used
frequently, to pass parameters between command files, or in a command file when the
value of the parameter will be supplied when the program is run.

It could also be used.as an abbreviation of a command: *STORE ‘Delete Record TO p*.
The command: &D 5" would then delete record 5 when the program runs.

If the macro command is not followed by a valid string variable, it is skipped. This
means that you can use the symbol itself as part of a string without getting an error
indication.

FILE(< "filename” variable ‘expression >)
yields a True value if the file exists on the disk, False if it does not. If you use a specific
file name, use the quote marks. The name of a string variable does not require the
quote marks. You can also use any valid string expression: *FILEC'B:" +Database)* would

tell you whether the file name stored in the memory variable < Database> is on drive
B.

TRIM (< string>)
eliminates the trailing blanks in the contents of a string variable. This is done by
typing:

*STORE TRIM (< variable>) TO < newvariable> *
RANK (< string>)

returns the decimal value of the first character of a string. This function corresponds to
the ASC function common in many versions of BASIC.

1952 Anhiton Tate
Reproductn By Any Method 16 Stractly Probibited

FUNCTIONS... 80

Changing dBASE |l characteristics and defaults

dBASE II has a number of commands that control how it interacts with your system setup.
You can change these parameters back and forth “on the fly,” or set them up once at the
beginning of your command file and leave them. In many applications, the defaults will be
just what you need.

Parameters are changed in your command files (or interactively) by using the SET
command. In the list below, normal default values are underlined.

Once again, there’s no need to memorize these. As you work with the established defaults,
you can decide if you want to change any of the parameters on the list.

SET TALK ON Displays results from commands on console.
OFF Nodisplay.

SET PRINT ON Echoes all output to your ‘list’ device.
OFF No listing.

SET CONSOLE ON Echoes all output to your console.
OFF Console off.

SETSCREEN ON Turns on full screen operation for APPEND, EDIT, INSERT AND
CREATE commands.
OFF Turns full screen operation off.

\

i

SET FORMAT TO SCREEN sends output of @ commands to screen.
SET FORMAT TO PRINT sends output of @ commands to printer

SET FORMAT TO < FMT file> uses format previously created for APPEND, EDIT, INSERT
AND CREATE commands.

SET MARGIN TO < nnn> sets the left-hand margin on your printer (“nnn” < =254)

SET RAW ON DISPLAYs and LISTs records without spaces between the fields.
OFF DISPLAYs and LISTs records with an extra space between fields

SET HEADING TO < string> Changes the heading in the REPORT command

SET ECHO ON All commands in a command file are displayed on your console as they
are executed.
OFF Noecho
SET EJECT ON enables page feed with REPORT command
OFF disables page feed

SET STEP N Halts after completing each command, for debugging command files.

Normal continuous operation.

[eXe)
5
a

* 1982 Awhton Tate
Reproduction By Any Method I Strictly Prohibited

SETDEBUG ON
OFF

SETBELL ON
OFF

SETCOLON ON
OFF

SET CONFIRM ON

SET CARRY ON

SET INTENSITY ON
OFF

SET LINKAGE ON

O
5
Bl

SET EXACT ON

[©]
hal
hal

SETESCAPE ON
OFF

FUNCTIONS ... 81

sends output from the ECHO and STEP commands to the printer only
sends ECHO and STEP output to the screen

enables bell when field is full
disables bell

uses colons to delimit input variables on the screen
disables the colons

waits for < enter> before leaving a variable during full screen editing
leaves the variable when the field is full

carries data from the previous record forward to the new record when
in APPEND
shows a blank record in APPEND mode

enables dual intensity for full screen operations
disables dual intensity

permits databases to be linked for display with up to 64 fields and up to
2000 bytes per displayed record. The P. or S. prefix must be used when
field names are similar in both databases

disables linkage

requires that all characters in a comparison between two strings
match exactly

allows different length strings. E.g., 'ABCD’=‘AB’ would be True (Also
affects FIND command)

allows the < escape> key to abort command file execution
disables the < escape> key

*SET ALTERNATE TO <filename> ‘creates a file with a .TXT extension for saving
everything except full-screen displays that goes to your CRT screen. To start saving, type
*SET ALTERNATE ON®.

You can change the file that you are saving to by typing *SET ALTERNATE TO < newfile> *.

To stop, type‘ SET ALTERNATE OFF?. This also terminates when you QUIT dBASE II.

1982 Ashton-Tate
Heproductian By Any Mcthod I« Stractly Prombited

FUNCTIONS...82

Merging records from two databases (UPDATE)
Data can be transferred from one database file to another with the following command:

[ADD < field list>]
UPDATE FROM < database> ON < key> [REPLACE < field list>] [RANDOM)]
[REPLACE <field> WITH < from field> |

Note: Both databases must be presorted or indexed on the “key” field if the optional
RANDOM command is not used.

Without the RANDOM command, both files are “rewound” to the beginning, then key fields
are compared. If they are identical, then data from the FROM data base is either added
numerically to data in the USE file, or is used to replace data in the use file for the fields
specified in the field list. When “key” fields do not match, those records are skipped. This
command can be used to keep inventory updated, for example.

If the fields in both databases use the same names, you can simply list the fields in which
data is to be replaced. If the databases use different field names, you can use the second
form of the REPLACE option to specify which field in the USE database is to be replaced by
which field in the FROM database.

If RANDOM is used, the database being updated must be indexed on the “key” field, but the
FROM <file> records can be in any order. As each record is read from the FROM < file>,a
FIND command locates the correct record in the database being updated.

JOINing entire databases

JOIN is one of the most powerful commands in dBASE I1. It can combine two databases (the
USE files in the PRIMARY and SECONDARY work areas) to create a third database. The
form of the command is:

JOIN TO < newfile> ON < expression> [FIELD < hist>]

In operation, the command positions dBASE II on the first record of the primary USE file
and evaluates each of the records in the secondary USE file. Each time the “expression”
yields a true result, a record is added to “newfile.” If you are in the primary area when you
issue the JOIN command, prefix variable names from the secondary USE file with S.. If you
are in the secondary area, prefix variables from the primary USE file with P.. (See example
below.)

When each record in the secondary USE file has been evaluated against the first record of
the primary USE file, dBASE II advances to the second record of the primary USE file, then
evaluates all of the records from the secondary USE file again. This is repeated until all
records from the files have been compared against each other.

* 1982 Ashton-Tate
Reproduction By Any Method In Strictly Prohibited

FUNCTIONS...83

Note: This can take a great deal of time to complete if the two databases are very large. It
may also not be possible to complete at all if the constraints are too loose. Two files with
1,000 records each would create a JOIN database with 1,000,000 records if the JOIN
expression was always true, while dBASE II is limited to 65,535 records in any single
database.

To use the command, use this sequence of instructions:

USE Inventory

SELECT SECONDARY

USE Orders

JOIN TO NewFile FOR P.Part:Number=Part:Number;
FIELD Customer. item Amount.Cost

This creates a new database called < NewFile. DBF> with four fields: Customer, Item,
Amount and Cost. The structure of these fields (data type, size) are the same as in the two
joined databases. (Notice that the “P.” prefix is used to call a variable from the work area
not in USE.)

Full screen editing and formatting (TEXT/ENDTEXT, @..SAY..GET..PICTURE, .FMT
files)

To display or print a large block of text, the text can be bracketed like this:

TEXT

Any text you want can be entered here and will be sent directly to the screen or printer
without any command processing. The only exception is; lines that are continued using the
semicolon. Processing resumes after the command: ENDTEXT

For more precise format control, dBASE Il has a powerful series of commands that allow
you to position information precisely where you want it. You saw this in action in our
<Sample.PRG> program, where we used:

@ < coordinates> SAY [‘prompt’] GET < variable>

This command was able to position prompts and variables (and their values) at any location
we specified on the screen. When we listed a series of commands, then followed them with
READ, we were able to control the format of the entire screen. You might want to create and
run the following command file fragment to refresh your memory:

* 1982 Aehton Tate
Reproduction By Any Method s Strtly Prohibited

FUNCTIONS...84

STORE © "TO MDate
STORE " " TO MBalance
STORE * " TO MDraw

@ 5,5 SAY “Set date MM/DD/YY " GET MDate

@ 10,5 SAY “What is the balance? " GET MBalance

@ 15,5 SAY “How much is requested” GET MDraw

READ

ERASE

@ 5,5 SAY “Should we do an evaluation?” GET MEvaluate
READ

The command can also be used without the SAY phrase as @ < coordinates> GET < variable>
(with a later READ in the command file). This display only the colons delimiting the field
length for the variable.

Tip: In the SCREEN meode the line numbers do not have to be in order, but it’s good practice
to write them this way since they must be in order for PRINT formatting.

This command can also be expanded for special formatting like this:
@ < coordinates> SAY [expression] GET < variable> [PICTURE < format> |

The optional PICTURE phrase is filled in using the format symbols listed below. The
command:

@ 5,1 SAY “Today's date is” GET Date PICTURE '99/99/99'
would display:
Today's datei1s: / /
assuming that the Date variable was blank. In this example, only digits can be entered.
The GET function symbols are:
9 or # accepts only digits as entries.
A accepts only alphabetic characters.
converts character input to uppercase.
accepts any characters.

shows ‘$’ on screen.
shows ‘*’ on screen.

* A X T

With this command, you can format your menu and input screens any way you want them,
quickly and easily.

If you use only @..SAY..GET commands and comments (preceded by an asterisk), you can
save this as a format file with an .FMT extension. You can then use these format files for
custom input screens for your databases, rather than using the dBASE II default which

* 1982 Ashton Tate
Heproduction By Any Methed [s Strictly Prohibited

FUNCTIONS...85

simply lists all the fields in the database. The .FMT format file can include special
instructions, etc. that help the operator enter the correct data, and the names of only the
fields in which data is to be entered.

To use a .FMT format file, type:

SET FORMAT TO < filename>

Now when you use the APPEND, EDIT or INSERT commands, the format in the named file
will be displayed on the screen.

Formatting the printed page (SET FORMAT TO PRINT, @..SAY..USING)

When you SET FORMAT TO PRINT, the @ command sends its information to the printer
instead of the screen.

The GET and PICTURE phrases are ignored, and the READ command cannot be used.

Data to be printed on checks, purchase orders, invoices or other standard forms can first be
organized on the screen with this command, then printed exactly as you see it:

@ coordinates SAY variable/expression“string’ [USING format|
For printing, the coordinates must be in order. The lines must be in increasing order (print
line 7 before line 9, etc.). On any given line, the columns must be in order (print column 15

before column 63, etc.).

As in the SCREEN mode, the GET phrase can be used to output the current value of a
variable that you name, the result of an expression, or a literal string prompt message.

If the USING phrase is included, this command specifies which characters are printed as well
as where they appear on the page. The symbols used are:

9or # prints a digit only.

A prints alphabetic characters only

X prints any printable character.

$ prints a digit or a ‘$’ in place of a leading zero.
. e

prints a digit ora **’ in place of a leading zero.

The command @ 10,50 SAY Hours *Rate USING '$$$$$$$.99° could be used in both the screen and
the printer modes since it has no GET phrase. For Hours=8 and Rate=12.73, it would print
or display $$55101.84, useful for printing checks that are more difficult to alter.

1982 Ashton Tate
Keproduction By Any Method Is Stoictly Peotibited

FUNCTIONS ... 86

Setting up and printing a form

To set up a form, use measurements based on your printer spacing (ours prints 10 characters
per inch horizontally, with 6 lines per inch vertically).

The “Outgoing Cash Menu” that we used in our earlier command file could very well have
had another selection item called “4 = Write checks,” so we're going to do part of the
WriteCheck command file.

To start with, we'll have to input the date. The following command lines accept the date toa
variable called MDate, and checks to see whether it is (probably) right:

ERASE
SET TALK OFF
STORE * " TO MDate
STORE T TO NoDate
DO WHILE NoDate
@ 5,5 SAY “Set date MM/DD/YY" GET MDate PICTURE “99/99/99"
READ
IF VAL{$(MDate,1,2)) < 1:
.OR. VAL(${(MDate,1.2)) > 12;
OR.VAL(${MDate,4,2))) < 1;
OR.VAL($(MDate,4,2))) > 31;
OR. VAL($(MDate,7.2)) < > 83
STORE " " TO MDate
@ 7,5 SAY “**** BAD DATE, PLEASE RE-ENTER. ****"
STORE T TO NoDate
ELSE
STORE F TO NoDate
ENDIF
ENDDO because we now have a valid date
ERASE

In English, the above first sets the value of MDate to 8 blanks, then the @..SAY command
displays:

Set date MM/DD/YY: / /

When the date is entered, it is checked by the IF to see whether the month is in the range
1-12, day is in the range 1-31, and year=83. This is done in three steps:

® the substring function $ takes the two characters representing the month, day or
year (e.g., for month it starts in the 4th position and takes 2 characters)

® the VAL function converts this to an integer

® thisintegeris then compared against the allowed values

If the value is out of range, MDate is set to blanks again and an error message comes up.
When a date within the allowed range is entered, the program continues.

* 1982 Ashton-Tate
Reproduction By Any Method ts Strictly Prohibited

FUNCTIONS... 87

The printout for the check itself could be the next portion of the program. Using the
measurements of our checks, this is the list of commands:

@ 8.3 SAY Script* A character variable that prints the amount in script. This is filled in by
* another procedure called Chng2Scrpt. We stubbed this for now like this:
* STORE ‘Script Stub’ TO Script
* RETURN

11,38 SAY Vendr:Nmbr

11,50 SAY MDate

11,65 SAY Amount

13,10 SAY Vendor

14,10 SAY Address

15,10 SAY City:State

15,35 SAY Z2IP

17.10 SAY Who

PEPAAPO®®®

You can check this out on your screen before you print it, then switch from SCREEN to
PRINT modes with the SET command. The values for the variables are provided elsewhere
in your command file.

Longer forms are no problem: a printer page can be up to 255 lines long. To reset the line
counter, issue an *EJECT® command with the printer selected.

Time to regroup

Because dBASE 1I is such a powerful system, it has a large number of commands and
techniques for dealing with your database needs and allowing you to get more information
more easily than any other database system or file handler currently running on micros.

The easiest way to learn the techniques is to go through the examples and use them,
changing names as you go to reflect your needs rather than our examples.

You may want to check some of the other database structures, then see how they are used in
the programs. We tried to keep the field names and their individual structures the same for
all our databases to allow for file merges and other uses. Data from one database will fit into
corresponding fields in another, and with common names the transfer is straightforward.

You might want to check through the command files in the example programs. Most of the
dBASE Il commands have been used, and the files work the way they are set up. Each
program is intended to have a useful purpose now, and is well-documented so you can learn
the purpose of each. Also, each is intended to be modified as you grow and learn in dBASE.
The first command file is usually the main menu for the system, with sub-files selected by
pressing a number.

Writing these command files, we used the exact procedures that we recommended earlier:
first define the problem in a general sense. Gradually keep dropping down in levels of detail,
using ordinary English at first, then pseudocode, putting terms that dBASE Il would
understand in capitals when we finally got to that level.

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Probibited

FUNCTIONS...88

When we came up with something that had to be done, but we weren't sure how to do it, we
simply made up a procedure name for it, then went back to it later.

The indentation and mixture of upper- and lowercase letters was not done just for this
manual: it’s the way we work all the time. It makes writing the command files a lot easier
because you can see groupings of the structures that you are using.

The identifiers were pulled out of our semi-English pseudocode, modified a bit to fit within
the 10 characters allowed, but not enough to destroy the meaning.

Comments are sprinkled throughout the files for documentation, although in many cases
the programs are almost self-documenting because so many of the dBASE Il commands are
similar to English equivalents. You are invited to play with these programs at your leisure,
using the rules and techniques we have already discussed.

© 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibated

/

(This page is intentionally left blank)

© 1582 Ashiton-Tate
Reproduction By Any Method s Strictly Prohibited

(This page is intentionally left blank)

©1982 Ashton-Tate
Reproduction By Any Method 1a Strietly Prohibited

Section V:

Database Basicsc i 89
A brief introduction to database organization 90
dBASE II Records, Files and Data Types 91
dBASE IIOPERATIONS SUMMARY 94
dBASE Il FUNCTION SUMMARY 95
dBASE Il COMMAND SUMMARY 96
Commands grouped by what you wantdone 100

100 File structure

100 File operations

102 Organizing database

102 Combining databases

102 Editing, updating, changing data
103 Using variables

104 Interactive input

104 Searching

104 OQutput

105 Programming

* 1932 Ashton Tate
Beproduction By Any Method la Strictly Prohibited

(This page is intentionally left blank)

© 1982 Ashiton-Tate
Reproduction By Any Method Is Strictly Prohibited

ORGANIZATION...89

Database Basics

A database management system (DBMS) like dBASE II is considerably different from a file
handling system.

A file handling system is usually configured like this:

PAYROLL PAYROLL PAYROLL
FILES FROGRAMS OUTPUT

ACCOUNTING ACCOUNTING ACCOUNTING
FILES N PROGRAMS OUTPUT
INVENTORY INVENTORY INVENTORY
FILES PROGRAMS OUTPUT

The payroll programs process the payroll files. The accounting programs process the
accounting files. And the inventory programs process the inventory files. To get reports that
combine data from different files, a new program would have to be written and it wouldn't
necessarily work: the data may be incompatible from file to file, or may be buried so deeply
within the other programs that getting it out is more trouble than it's worth.

A database management system integrates the data and makes it much easier to get useful
information from your records, rather than just reams of data. Conceptually, a DMBS looks
something like this:

PR N

giﬂ ‘G nonﬁmacﬁzsnﬁsm ’Qﬁg&fms —
SYSTEM

DaTA procavis | >

DATABASE

Data is'monitored and manipulated by the DBMS, not the individual applications programs.
All of the applications systems have access to all of the data. In a file handling system, this
would require a great deal of duplicated data. Aside from the potential for entry errors, data
integrity is extremely hard to maintain when the same data is supposed to be duplicated in
different files: it never is.

To generate a new processing system in a file handling system, a new program and new files
must be set up. Using a DBMS, a new access program is written, but the data does not have
to be restructured: the DBMS takes care of it.

< 1982 Ashion-Tate
Repreduction By Any Method le Strictly Prohibited

ORGANIZATION... 90

If a new kind of data is added to a record (salary history in a personnel file, for example),
file handling programs have to be modified. With a DBMS, additions and changes have no
effect on the programs that don’t need to use the new information: they don't see it and
don’t know that it's there.

Database management systems come in two flavors: hierarchical and relational. These
terms refer to how the DBMS keeps track of data.

A hierarchical system tends to get extremely complex and difficult to maintain because the
relationships between the data elements are maintained with sets, linked lists, and pointers
telling the system where to go next. Very quickly, you can end up with lists of lists of lists
and pointers to pointers to pointers.

A relational database management system like dBASE Il is a great deal simpler. Data is
represented as it is, and the relation between data elements can be considered a
two-dimensional table like this one:

Col. 1 Col. 2 Col. 3 Col. 4 Col.5
Invoice Supplier Description Amount Number
Number

2386 Graphic Process Prints 23.00 BBQ-747
78622 Brown Engraving Litho plates 397.42 TFS-901
M1883 Air Freight, Inc. Shipping 97.00 SPT-233

Each row going across the table is called a record. Each column is called a field of the record.
Each entry in the table must be a single value (no arrays, no sets, etc.) All the entries in a
column must be of the same type. Each record (row) is unique, and the order of records
(rows) doesn’t matter.

When we show you more realistic examples later, you'll see that records don't get any more
complicated, just larger.

A brief introduction to database organization

Once you've got your database set up, you'll want to access your data in an orderly, ordered
manner.

€ 1982 Ashton-Tate
Reproduction By Any Method ls Strictly Prohibited

ORGANIZATION... 91

With some databases, the order in which you enter the data will be the order in which you
want to get your information out. In most cases, however, you'll want it organized
differently.

With dBASE II you can organize data using the SORT command or the INDEX command.
(Both of these are described in more detail in Section II: Organizing your databases.)

The SORT command moves entire records around to set up your database in ascending or
descending order on any field that you specify (name, zip code, etc.). This field is called the
key.

One drawback of sorting is that you may want to access the database on one field for one
application, on another field for a different application. Another drawback is that any new
records added are not in order, and would require a sort every time you entered data if you
wanted to maintain the order.

Finding data is also relatively slow, since the sorted database must be searched sequentially.
INDEXING is a way around these problems.

Indexing is a method of setting up a file using only the keys that you are interested in,
rather than the entire databases. A key is a database field (or combination of fields) that
make up the “subject” of the record. In an inventory system, the part number might be the
subject, and the amount-on-hand, cost, location, etc. the descriptive fields. In a personnel
database, names or employee numbers would probably make the best keys.

With an indexed database, the keys alone are organized, with pointers to the record to which
they belong. dBASE II uses a structure called B*-trees for indexes. This is similar to a
binary tree, but uses storage much more efficiently and is a great deal faster. A FIND
command (described in Section ID typically takes 2 seconds with a medium to large
database.

If you need your data organized on several different fields for different applications, you
can set up several index files (one for each of the fields) and use the appropriate index file
whenever required. You could have index files ordered by supplier name, by customer
number, by zip code or any other key, all for a single database.

New entries to a database are automatically added to the index file being used.

Another advantage of indexed databases is the rapid location of data that you are interested
in.

dBASE Il Capacities

dBASE II was designed to run on your micro so its scope stops short of infinity, but you’ll
find that you'll have to work at figuring out how to get to its maximums.

dBASE II limits you to 65,535 records per file, but with the memory and even “mass
storage” limitations of a micro, this is really no limitation at all.

€ 1982 Ashton-Tate
Reproduction By Any Method s Strictly Prohibited

ORGANIZATION...91a

Determining Disk Space

It is often useful to determine how much free storage space is left on a diskette. This can be
accomplished by using your CHKDSK.COM operating system utility program.

To discover the free space remaining on a ‘logged’ (active) disk drive containing the CHKDSK
program, simply enter:

CHKDSK <enter>
in response to your system prompt.

Your system will then report the amount of space available on the disk, the amount of space
occupied by the files on disk, and the amount of free and occupied space in your system’s
memory. All space is reported in “xxxx” number of bytes. (One byte is roughly equivalent
to one character of information.)

While ‘logged’ onto a drive containing a CHKDSK program, you may discover the same in-
formation for any other disk drive by simply including the name of the drive you wish to ‘check’
in the command.

For example, CHKDSK B: <cr> tells your system to present you with the information for the
disk in drive B. (The *:” must be included after the drive name.)

Note: You may discover the amount of space occupied by individual files on any disk drive
by simply asking your system to present you with the file directory for that drive.

ORGANIZATION ... 91b

(This page is intentionally left blank)

ORGANIZATION...92

A dBASE II record can be as large as 32 fields and 1000 characters long (whichever comes

12 43 48 1000

first):
...etc...

You might want to think of this as a 1000 .character long strip that you can segment any
way you want to up to the maximums, or shorten if you don’t need to use it all. You can have
four fields that use the full 1000 characters (254 characters per field maximum). Or a
record one character (and field) long. Or anything in between.

In our previous example, each record had five fields and the total record length was 58
characters:

Invoice Job
Number Supplier Description Amount Number
1 9 10 28 29 43 44 51 52 58
Data Types

As we said earlier, each field must contain a single type of data, and in dBASE II these are:

Character
All the printable ASCII characters, including the integers, symbols and spaces.

Numeric
Positive and negative numbers as large as 1.8 x 10< 63> down to numbers as small as
1.0 x 10< —63>. Accuracy is to ten digits, or down to the penny for dollar amounts as
high as $99,999,999.99.

Logical
These are true/false (yes/no) values that occupy a field one character long. dBASE II
recognizes T, t, Y and y as TRUE, while F, f, N and n are recognized as FALSE.

Field Names
Each field has a name so that dBASE II can recognize it when you want to find it. Field

names can be up to 10 characters (no spaces) long, and must start with a letter, but can
include digits and an embedded colon:

* 1982 Ashton-Tate
Reproduction By Any Methad e Strictly Prohibited

ORGANIZATION...93

A (valid)

A123456789 (valid)

Job:Number (valid: upper and lowercase okay)
A123,B456 (illegal comma)

Reading: (illegal: colon not embedded)

Tip: Use as many characters as it takes to make the name meaningful. ‘Job:Nmbr’ is a lot
better than ‘No. and infinitely better than ‘J’. Using a maximum of nine characters will
make handling memory variables much easier (discussed later).

Another tip: Once you get into setting up Command files, You’ll find it useful to use capital
letters for words that dBASE II understands and upper and lowercase for fields, variables
and other items that you control. You'll appreciate this the first time you go back into a
command file to make changes.

dBASE Il File Types

File names are limited to 8 characters and a 3 character extension after a period. You can
use the colon in the file name, but then you'll only be able to manipulate the files through
dBASE II: MS-DOS will store the files and get the names right, but won't recognize them if
you ask it to perform a function like DISKCOPY. Ten character long filenames aren’t a
problem: MS-DOS simply chops them down to eight. If you use upper and lower case letters
to name your files, MS-DOS will change them to capitals, but they’ll still show up better in
your command files.

A dBASE II file is simply a collection of information of a similar type under a single name,
something like a giant file folder. dBASE II operates with the six different file types
described below.

.DBF Database files:
This is where all your data is kept. The extension is assigned by dBASE II when you
CREATE a new file. Each .DBF file can store up to 65,535 records. Do not use a word
processor on these files.

.FRM Report form files
These files are automatically created by dBASE II when you go through the REPORT
dialog. They contain headings, totals, column contents, etc. They can be modified using
a word processor or text editor, but we recommend not using this practice: make your
changes using dBASE I1.

.PRG Command files
These files contain a sequence of dBASE II statements to perform frequently-used

functions, and can be as complex as a complete payroll system. These are created using
a text editor or word processor or MODIFY COMMAND.

.NDX Index files
These are automatically created by the INDEX command. Indexing provides very rapid
location of data in larger databases.

1982 Ashton Tate
Reproduction By Any Method Is Stnctly Protubited

ORGANIZATION...94

.MEM Memory files
These are automatically created when you SAVE the results of computations,
constants or variables that you will want later. You can SAVE up to 64 items, each up
to 254 characters long, then RESTORE them the next time you need them.

TXT Text output files
This file is created when you use the SET ALTERNATE command to store everything
that goes to the CRT on your disk, too. This feature can be used as a system logging
function, and the information can later be edited, printed, and/or saved. They are also
created when you COPY...SDF.

FMT format files

These files may only contain @..SAY statements and comments preceded by an
asterisk. Use them to format screens with the APPEND, INSERT and EDIT commands.

dBASE Il OPERATIONS SUMMARY
Arithmetic Operators (generate arithmetic results: p. 35)

) : parentheses for grouping

(

* : multiplication
/ : division

+ : addition

- : subtraction

Relational Operators (generate logical results: p. 35)

: less than

: greater than

: equal

: not equal

: less than or equal

: greater than or equal

]

VAIRNIVA
Q
A
v

Logical Operators (generate T/F logical results: p. 36)

() : parentheses for grouping

.NOT. : Boolean not (unary operator)
AND. : Boolean and

OR. : Boolean or

$: substring logical operator (p. 38)

(is string1 in string2?)
String Operators (generate string results: p. 39)

+ : string concatenation (joining)
- : string concatenation with blank shift-right

© 1882 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

ORGANIZATION...95

dBASE Il FUNCTION SUMMARY
record number (p. 73)

* deleted record (p. 73)

EOF end of file (p. 74)

{<varnable/string>) convert to uppercase (p. 77)

TYPE(< expression>) data type (p. 77)

INT(< variable‘/expression>) integer function (p. 77)

VAL(< vanable/string/substring>) string to integer (p. 78)

STR(< expression/variable/number>, < length> . < decimals>) integer to string (p. 78)
LEN(variable/string) string length (p. 78)

$lexpression‘vanable‘string>. < start>, <length>) substring select (p. 78)

@(< vanablel ‘stringl >, < variable2string2>) substring search (p. 78)

CHR(< number >) number to ASCII (p. 79)

&(< vanable>) macro substitution (p. 79)
FILE(< "tlename”/var/exp>) file exists? (p. 79)
TRIM (< string>) trailing blanks (p. 80)

RANK(< string>) ascii value of character (p. 80)

* 1982 Ashton-Tate
Heproduction By Any Method Is Strictly Prohibited

ORGANIZATION... 96

dBASE Il COMMAND SUMMARY

The following abbreviations are used in this summary:

<exp> = expression
<var> = variable
<str> = string

< coord> = coordinates

The symbols < .. > bracket items that are to be specified by the user. Square brackets [.. |
enclose optional items. In some cases, options are nested (themselves have other options).

?< exp | hst]>
Display an expression (or list separated by commas) (p. 23)

@ < coord> |SAY <exp> [USING ‘picture’]) [GET < var> [PICTURE ‘picture’]|
Format console screen or printer output (p. 67)

ACCEPT ['‘prompt’| TO < var>
Input a character string from the console, no quotes (p. 65)

APPEND [BLANK]|
APPEND FROM < filename> [SDF] [FOR < exp> |
IDELIMITED] [FOR < exp> |
Add data to a database (pp. 25, 48, 68)

CANCEL
Abort a command file execution

CHANGE [scope| FIELD < list> [FOR <exp>|
Make multiple changes to a database (p. 50)

CLEAR
Reset dBASE data files and memory variable environment (p. 73)

CONTINUE
Continue a LOCATE command (p. 55)

|SDF]
COPY [scope] TO < filename> [STRUCTURE] [FIELD <list>] [FOR < exp> |
[DELIMITED [WITH delimiter]]
Copy data from a database to another file (pp. 42, 47, 48)

COPY TO < filename> STRUCTURE EXTENDED
Creates a new DBF file whose records show the structure of the old file. (See also
CREATE < newfile> FROM <oldfile>) (p. 42)

COUNT [scope] [FOR <exp>][TO <var>|
Counts records that satisfy some condition (p. 57)

* 1982 Ashton-Tate
Reproduction By Any Method 1 Strictly Prohibited

ORGANIZATION...97

CREATE [< filename> |
Make a new database (p. 11)

CREATE < newfile> FROM <oldfile>

Creates < newfile> with structure determined by the data in the records of < oldfile>.
(See also COPY STRUCTURE EXTENDED) (p. 43)

DELETE [scope] [FOR <exp> |
Mark specified records for deletion (p. 26)

DELETE FILE < filename>
Erase a file from the system (p. 26)

DISPLAY [scope] [FOR < exp> | [OFF]
Show data based upon request (pp. 16, 20)

DISPLAY [scopej [< field> [.hst}]
Shows only the selected field(s) (p. 20)

DISPLAY STRUCTURE
Show structure of the database in USE (p. 21)

DISPLAY MEMORY
Show the contents of the memory variables (p. 32)

DISPLAY FILES [ON disk drive|
Show a disk directory (p. 21)

DISPLAY STATUS
Show current files open, index files and keys, and all SET parameters.

DO < filename>
Execute a command file (p. 62)

DO WHILE < exp>
Perform a group of commands repeatedly (p. 64)

EDIT
Alter the data in a database (p. 14)

EDIT [number!
Presents a specific record for editing (p. 14)

EJECT
Do a form feed on the printer

ELSE
Alternate execution path in an IF command (p. 62)

“ 1982 Ashton Tate
Reproduction By Any Method Is Strictly Prohibited

ORGANIZATION...98

ENDDO
Terminator for DO WHILE command (p. 64)

ENDIF /
Terminator for an IF command (p. 62) " /

ENDTEXT
Terminator for a TEXT command (p. 83)

ERASE
Clear console screen (pp. 17, 67)

FIND < key>
Locate a record in an indexed database based upon key value (no quotes needed for
character keys) (p. 53)

GO or GOTO [RECORD], or [TOP|, or [BOTTOM|, n
Position to a given place in a database (p. 22)

HELP [< command verb> |
Give a short explanation of a dBASE command

IF <exp>
Conditional execution command (p. 62)

INDEX ON < key> TO < filename>
Create an index file for the database in USE (p. 52)

INPUT [‘prompt’| TO < var>
Accept user inputs into memory variables. User prompt string is optional (p. 66)

INSERT [BEFORE}
|BLANK]
Add a new record to a database among other records (p. 25)

JOIN TO < filename> FOR < exp> [FIELDS < list> |
Create a database composed of matching records from two other databases (p. 82)

LIST
Show data records {(pp. 16, 17)

LOCATE |scope] [FOR <exp>|
Find the record that matches a condition (p. 54)

LOOP
Escape mechanism for DO WHILE groups {(p. 64)

’/
NOTE or *
A command file comment that is not displayed when the command file is run (p. 73) —

© 1982 Ashion-Tate
Reproduction By Any Method Is Strictly Prohibited

ORGANIZATION...99

MODIFY COMMAND < filename >
Permits modification of a file directly from dBASE II (p. 73)

MODIFY STRUCTURE
Alter the structure of a database. Destroys all data in the database (p. 40)
PACK
Eliminates records marked for deletion (p. 26)
QUIT
Terminate dBASE
READ
Enter full screen editing of a formatted screen. Accepts data into GET commands
(p. 68)

RECALL [scope] [FOR <exp>)
Unmark records that have been marked for deletion (p. 26)

RELEASE [<var> [Jist]]) or [ALL|
Eliminate unwanted memory variables (p. 34)

REMARK
A comment that is shown on the screen when the command file is run (p. 73)

RENAME <oldfile> TO <newfile>
Give a file a new name (p. 73)

REPLACE [scope] <field> WITH <exp> [<field> WITH <exp>..] [FOR < expression>
Alter data in a database. Make sure that you have a backup, because dBASE II will do
precisely what you ask it to do, even if it’s not exactly what you had in mind (p. 49)

REPORT [scope] [FORM < filename >) [TO PRINT] [FOR <exp>]
Generate a report (p. 56)

RESET
Tell MS DOS that a diskette swap may have occurred

RESTORE FROM < filename >
Remember SAVEd memory variables. Destroys all existing memory variables

RETURN
Terminate a command file and return to calling file

SAVE TO < filename >
Write memory variables to a file for future use

€ 1982 Ashton-Tate
Reproduction By Any Methed Ia Strictly Prohibited

ORGANIZATION...100

SELECT [PRIMARY] or [SECONDARY]
Switch working areas (p. 72)

SET parameter [ON], or [OFF|, or [TO < condition, filename> |
Dynamically reconfigure dBASE operation (p. 80)

SKIP £ < exp/number>
Move forward or backwards in the database (p. 22)

SORT ON < key> TO < filename> [ASCENDING]
|DESCENDING]
Generate a database that is sorted on a field (p. 51)

STORE < exp> TO <var>
Place a value into a memory variable (p. 33)

SUM |scopel < field [ist|> |TO < wvar [ist]> |[FOR <exp> |
Total fields in a database (p. 57)

TEXT
Display a block of text without special formatting until ENDTEXT encountered. (p. 83)

TOTAL TO < filename> ON < key> [FIELDS < field> [.list]>
Generate a database with sub-totals for records (p. 58)

UPDATE FROM < filename> ON < key> [ADD < field [list]>]
[REPLACE < field [list}>]
Modify a database with data from another database (p. 82)

USE < filename> [INDEX < filenames> |
Open a database file for future operations (p. 16)

USE
Close all previously opened database files.

WAIT ITO <var> |
Pause in program operation {for inputl (p. 66)

dBASE Il COMMANDS GROUPED FUNCTIONALLY
FILE STRUCTURE:

CREATE
Defines an entirely new file structure

CREATE < newfile> FROM < oldfile>
Creates a new file whose structure is described in the records of the old file

€ 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

ORGANIZATION ... 101

USE < oldfile>
COPY TO < newfile> STRUCTURE
These two commands combined create a new file with the same structure as an old file

USE < oldfile>
COPY TO < newfile> STRUCTURE EXTENDED
Create a new file that contains the structure of the old file as data

CREATE < newfile> FROM < oldfile>
Creates a new file whose structure is defined by the records in the old file

DISPLAY STRUCTURE
LIST STRUCTURE
Both show the structure of the file in USE

MODIFY STRUCTURE
Changes file names, sizes, and overall structure, but destroys data in the database

TO CHANGE STRUCTURE WITH DATA IN THE DATABASE:

USE < oldfile>

COPY TO < newfile>

USE < newfile>

MODIFY STRUCTURE
APPEND FROM < oldfile>
COPY TO < oldfile>

USE < oldfile>

DELETE FILE < newfile>

TO RENAME FIELDS WITH DATA IN THE DATABASE:

USE < oldfile>

COPY TO < newfile> SDF

MODIFY STRUCTURE

APPEND FROM < newfile> TXT SDF
DELETE FILE < newfile>

FILEOPERATIONS:

USE < filename>
Opens a file

USE < newfile>
Closes the old file, opens a new file

USE
Closes all files

© 1982 Ashton Tate
Repraductian By Any Method Is Strictly Prohibted

ORGANIZATION... 102

RENAME < oldname>> TO < newname>
Must NOT rename an open file

COPY TO < filename>
Creates a backup copy

CLEAR
Closes all files and erases all memory variables

SELECT [PRIMARY|{SECONDARY]
Allows two files to be independently open at the same time. Data can be transferred
with P.and S. prefixes

DISPLAY FILES [ON <d>]
Lists databases on logged-in drive (or drive specified), can use LIST instead

DISPLAY FILES LIKE < wildcard> [ON <d>)
Shows other types of files on drives

QuUIT
Closes both active areas, all files, terminates dBASE Il operation

ORGANIZING DATABASES:

SORT ON < key> TO < newfile>

INDEX ON < key> TO < newfile> h
Can use multiple keys for both commands " /

Combining Databases

COPY TO < newfile>
Creates a duplicate of the file in USE

APPEND FROM < otherfile>
Adds records to the file in USE

UPDATE FROM < otherfile> ON < key>
Adds to totals or replaces data in the file in USE. Both files must be sorted on the
<key>.

JOIN
Creates a third file from two other files

EDITING, UPDATING, CHANGING DATA:

DISPLAY, LIST, BROWSE
Let you examine the records

* 1982 Ashten Tate
Reproduction By Any Methad ls Strictly Prohabited

ORGANIZATION...103

DELETE
Marks record so it is not used

RECALL
Unmarks record

PACK
Erases deleted records

EDIT
Lets you make changes to specific records

REPLACE < field WITH data>
Global replacement of data in fields, can be conditional as with most dBASE II
commands

CHANGE FIELD
Edit based on field, rather than record

@ <coord> GET <var>
READ
Displays the variable, lets you change it

INSERT [BEFORE][BLANK|
Inserts a record in a database

UPDATE FROM < otherfile> ON < key>
Adds to totals or replaces data in file in USE from another file

MODIFY COMMAND < filename>
Allows changes to your command files without having to go through your text editor

USING VARIABLES:
(Allowed up to 64 memory variables plus any number of field names.)

LIST MEMORY. DISPLAY MEMORY
Both show the variables, their data types and their contents, returns the contents of a
character memory variable (i. e., provides a literal character string)

STORE < value> TO < var>
Sets up or changes variables

RELEASE <var>
Cancels the named variable

SAVE MEMORY TO < filename>
Stores memory variables to the named file (with .MEM extension)

1952 Ashton - Tate
Reproduction By Any Method [k Strictls Peahibited

ORGANIZATION... 104

RESTORE FROM < filename>
Reads memory variables back into memory (destroys any other existing memory
variables)

INTERACTIVE INPUT:

WAIT
Stops screen scrolling, continues with any key

WAIT TO < var>
Accepts character to memory variable

INPUT ['prompt’] TO < var>
Accepts any data type to a memory variable {creates it if it did not exist), character
input must be in quotes

ACCEPT ['‘prompt’] TO < var>
Same as INPUT, but no quotes around character input

@ < coord> SAY [‘prompt’] GET < var> |PICTURE]
READ
Displays memory variable, replaces it with new input

SEARCHING:

SKIP [+ <exp>]
Moves forward or backward a specific number of records

GO[TO] < number>, GO TOP, GO BOTTOM
Move you to a specific record, the first record, or the last record in the database

FIND < str>
Works with indexed file in USE, very fast

LOCATE FOR < exp>
CONTINUE
Searches entire database

OUTPUT:

?, DISPLAY, LIST
Show expressions, records, variables, structures

REPORT [FORM < formname> |
Creates a custom format for output, then presents data in that form when called

@ <coord> SAY <var/exp/str>
Formats output to screen or to printer (IUSING < format>] can be added to provide \
PICTURE format for the printer) Yy

* 1982 Ashton - Tate
Reproduction By Any Method Is Strictly Prohibsted

ORGANIZATION... 105

TEXT
Displays a block of text without special formatting with ? or @ <coord> SAY
command.

PROGRAMMING:
(Programs stored in COMMAND FILES with .PRG extension.)

DO <filename >
Starts the program

IF <conditions >
perform commands
ELSE
perform other commands
ENDIF Makes choices, single or
multiple (when nested)
DO WHILE <conditions >
perform commands

ENDDO <Conditions > must be
changed by something in
the loop eventually

DO CASE

CASE < expression> Multiple choices.

<commands >
CASE <expression>
<commands >
OTHERWISE
<commands >
ENDCASE

1882 Ashton Tate
Reproduction By Any Method 1a Strictly Prohibited

(This page is intentionally left blank)

© 1982 Ashion-Tata
Reproduction By Any Method Is 8trictly Prohibited

PART B

CONTENTS
1.0 Using dBASE ... i 1
2.0 System Requirementscooiiiiiiiiiii i, 4
3.0 ABASE Filesoiiiiiiiii it 5
3.1 DatabaseFilescoooiiiiiiiiiiii i 5
3.2 Memory Filesoooiiiiiiii i 6
3.3 Command Filescoooiiiiiiiii i 6
3.4 Report Form Filesc.ooiiiiiiiiiiii i, 7
3.5 TextOutputFiles iiiiiiii i, 7
3.6 Index Files oot e 7
3.7 FormatFilesoovueiniiiniii i e 7
4.0 Expressions 8
41 Functionso.iiiiiiiiiiii i e 8
4.2 OPErationsouuuui ittt 14
5.0 Macro Substitution ...t 18
6.0 Interfacing with Non-dBASE Processorcooovvvinennennnnn... 19
7.0 Classes of Commandsc.oiuuiiinieiiieiiiiiie i inannnnnnn, 20
8.0 Full Screen Operationcoiiiiiiiiiiiii i 23
9.0 Command Rulesooiiiiiiiiiiii i 25
9.1 Symbol Definitionscoovuiiiuiiiiiii s 25
92 Rulesof Commandscooiiiiiiiiiiiiiiiiiiiiii s 27
10.0 Machine Language Commandscoiviiiiiiniiinnnnn.... 31
Appendices
A) Listof Commandsoooiiiiiiiiiiiiiiiii i, 151
B) Limitations and Constraintsovviiniiniinnenennenninn, 154
C) Error MeSSAZES cuuii ettt ettt ettt 155
D)Set Color Toottt e 159

* 1982 Ashton-Tate
Reproduction By Any Method s Strictly Prohsbited

(This page is intentionally left blank)

* 1882 Ashton-Tate
Reproducticn By Any Method s Strictly Prohibited

dBASE...1

1.0 USING dBASE

To execute the dBASE program, place the dBASE distribution diskette (or preferably, a
copy of that diskette) into any available disk drive. Set that drive to be the default drive
(e.g. if the disk is placed into the “B” drive, type in “B:" followed by a carriage return) and
then type in the following line:

dBASE
The program will then be loaded into memory, and will start execution with a date request:
ENTER DATE AS MM/DD/YY OR RETURN FOR NONE;

This date will be posted on any database that is altered during the following run and will
also be printed in REPORT headings for any report generated in that run. The date is
checked for calendar accuracy. WARNING: The calendar check is not valid for February 29
in the years 1900 and 2100. A slash or any special character (except a period) may be used to
delimit the numbers.

Examples of valid dates:

1.181
0202 82
3/17/83

Then the sign-on message is displayed:

*** dBASE L VER 02.XX.XX***

The period on the second line is the dBASE prompt, indicating that dBASE is ready to
accept commands. Commands to dBASE are generally imperative sentences: a verb possibly
followed by phrases that give further direction about the action to be taken. dBASE scans
each line completely before executing any part of it. If dBASE detects an error in the
command then the user is notified via error messages on the console. Generally, the user
may correct the erroneous command and re-issue rather than re-enter the entire command.
When dBASE detects an error that it can’t describe explicitly, it assumes that the error is a
syntax error and displays the erroneous line with a question mark at the beginning of the
phrase that caused the confusion.

< 1962 Ashton.Tate
Reproduction By Any Method Is Stractly Prohabited

dBASE...2

Error recovery examples:

. DISPRAY MEMORY

*** UNKNOWN COMMAND

DISPRAY MEMORY erroneous command echoed
CORRECT AND RETRY? Y Yes, correct

CHANGE FROM :PR change the letters PR
CHANGE TO :PL to PL .

DISPLAY MEMORY after the change

MORE CORRECTIONS? (cr} enter = no more changes

.STORE {(2+2TO X
*** SYNTAX ERROR ***
? the string (2 +2 is indicated
STORE (2+2 TO X
CORRECT AND RETRY? Y
CHANGE FROM :+2
CHANGE TO : +2)
STORE (2+2) TO X

MORE CORRECTIONS? N N(o) more changes
4 the result
.SUMTO X
NO EXPRESSION TO SUM explanation
SUMTO X
CORRECT AND RETRY? N no change, abort this command

The program can also be executed in the following manner:
DBASE < filename >
This will load dBASE into memory, access a command file <filename>, and begin

immediate execution of the command file. This form is expecially useful when using dBASE
in a SUBMIT file or when using the chaining option of the dBASE QUIT command.

€ 1982 Ashton-Tate
Reproduction By Any Method la Strictly Prohibited

dBASE...3

CONTROL CHARACTERS

<PRINT> — Toggles print switch (see also SET PRINT command)

ctl-U — Deletes current line

ct-X — Deletes current line (except in full screen edit)

<BACKSPACE> — Deletes last character entered

<ESC> — Escapes from certain possibly long-running commands. I.e. DISPLAY,
COUNT, DELETE, INPUT, LIST, LOCATE, RECALL, REPLACE, SKIP,
AND SUM. Also ESC serves as an escape from ACCEPT, INPUT, REPORT
(dialogue), and WAIT. In all cases, ESC returns control to the interactive
monitor and displays a dot prompt.

When in a command file execution, dBASE checks for an ESC character before starting
every command line.

Note: This escape capability can be disabled by the SET ESCAPE OFF command.

* 1982 Avhton-Tate
Reproduction By Any Method Is Strictly Prohibited

REQUIREMENTS... 4

2.0 SYSTEM REQUIREMENTS

In order for dBASE to operate properly, a system with the following attributes should be
available.

a) Tandy Medel 2000 with MS-DOS operating system;
b) 256K bytes (or more) of memory including MS-DOS;

¢) Optional printer.

< 1982 Ashton.Tate N
Reproduction By Any Method Is Strictly Prohibited

FILES...5

3.0 dBASE FILES

Basically, a file is a collection of information residing on a mass storage device that
contains the user’s data. The information can be stored to or retrieved from the file. Files
can be grouped into six types, each one either concerned with a particular operation of or
created by dBASE.

All dBASE files have a name field of eight characters and a file type of three characters.
Listed below are the default file types used by dBASE. For each command that accesses a
file, the type field may be left off and dBASE will assume the default type for that
command. For instance, if a database file already has DBF as its type, then it need not be
gpecified in any of the file manipulation commands.

DATABASE FILES — .DBF
MEMORY FILES — MEM
COMMAND FILES — .PRG

REPORT FORM FILES — .FRM
TEXT OUTPUT FILES — .TXT
INDEX FILES — NDX
FORMAT FILES — .FMT

Any legitimate MS DOS filename may be used to refer to dBASE files. Remember, if during
an access of any file, the type is not supplied by the user, dBASE will assume the above file
types.

3.1 DATABASE FILES (.DBF)

Databases are what dBASE is all about. dBASE's database files consist of a structure record
and zero to 65535 data records. The structure record is essentially a map of the data record
format. The structure can contain up to thirty-two different entries. Each entry in the
structure refers to a field of data in the data records. The structure holds the following data:

The name of the data fields

The type of data within data fields

The size of the data fields

The position of the data within records

L IR 2R I

DATA FIELD NAME — The name may be up to 10 characters long. In all operations during
a dBASE run, the data fields will be referenced by this name. Field names are alphanumeric
(plus colons) by nature. However, fields must begin with a letter and colons must be
embedded in the name. Some examples follow.

© 1982 Ashton - Tate
Reproduction By Any Method ls Strictly Prohibited

FILES...6

Examples of data field names:

A

A123456789

ABC:DEF

A:B:C:D:E

ABCD: invalid, colon not embedded
ABC,DEF invalid, comma is illegal

DATA TYPE — dBASE allows three types of data to be used to specify the contents of the
data fields. They are: character strings (‘ABCD’), numeric quantities (2 or 5*18), and
logical values (true/false).

FIELD SIZE — This is the number of character positions (width) needed to contain the data
that will be placed into this field. Character string fields and numeric fields may be from 1
to 254 positions in length. The count for a numeric field should include the decimal point.
Logical fields are always one position in length. Also, for numeric fields, the number of
positions to the right of the decimal point may also be contained in the structure.

Once the structure has been defined, the user can enter data values into the fields for as
many records as are desired. Usually, there is only one structured data file available to the
user at any given time (this is referred to as the USE file or the file in USE). There is,
however, a way to use two databases at one time. See the commands SELECT and JOIN.

3.2 MEMORY FILES (.MEM)

Memory files are static files of memory which are divided into variables similar to data fields.
These variables are known as memory variables and are limited to 64 in number.

The values of memory variables are independent of the database in use. That is, the record
position of the file in USE has no bearing on the variables in the memory file. Memory
variables are used to contain constants, results of computations, and symbolic substitution
strings (see Section 5), etc. The rules of naming, typing, and sizing of memory variables are
identical to those of data fields described above.

The SAVE command will write all current memory variables to a memory file; and the
RESTORE command will read a saved memory file back into the memory variables.

3.3 COMMAND FILES (.PRG)

A command file contains a sequence of dBASE command statements. This provides the user
with a method of saving a set of frequently used command sequences which then allows one
to more easily manipulate database files.

Command files may be created and modified by text editors and/or word processors,
although dBASE now has the capability to create/edit command files itself with the
MODIFY COMMAND. Command files are started by the DO command. Command files may
contain any dBASE commands, however, one should be careful since some of the commands
(CREATE, INSERT, APPEND) require user inputs beyond the command file contents.

* 1982 Ashton-Tate
Reproduction By Any Method 1a Strictly Prohibited

FILES...7

Command files may be nested, i.e. command files may contain DO commands which are
then executed. Again, care should be exercised in that dBASE allows, at most, 16 files to be
open at any given time. Therefore, if there is a file in USE, only 15 command files may be
nested. Certain commands also use work files (e.g. SORT uses 2 additional files; REPORT,
INSERT, COPY, SAVE, RESTORE, and PACK each use one additional file). For instance, if
a SORT command is issued from the lowest command file in a nest, then only 13 levels of
command file could be used (i.e. the USE file, 2 SORT work files and 13 command files =
16). Whenever a command file issues the RETURN command or whenever the end-of-file is
encountered on a command file, the command file is closed and its resources are available
for other commands.

3.4 REPORT FORM FILES (.FRM)

The REPORT command either generates a new form file or uses an existing form file. The
form file contains instructions to the report generator on titles, headings, totaling, and
column contents. Form files are constructed by dBASE as part of the REPORT dialog. They
can be modified by text editors or word processors; however, it is fairly easy to make
mistakes and this practice is discouraged except for advanced dBASE users.

3.5 TEXT OUTPUT FILE (.-TXT)

The text output files are created when the “SET ALTERNATE TO <filename>" and “SET
ALTERNATE ON” commands have been specified. See SET command for more details.
Also, the COPY and APPEND commands assume a text (TXT) file whenever the SDF
(System Data Format) or DELIMITED options are used.

3.6 INDEX FILES (.NDX)

Index files are generated by the INDEX command of dBASE. They contain keys and
pointers to records of a database file. Indexing is a dBASE technique that gives rapid
location of data in a large database. See the INDEX command for more information.

3.7 FORMAT FILES (.FMT)

A format file contains only “@" statements and “*” comments. It is identified by the “SET
FORMAT TO <filename>" command and is activated by subsequent READ commands.
Like command files (which format files resemble), format files are created and modified by
any good text processor or the MODIFY COMMAND capability. Format files are not,
however, necessary. “*@™s and “*”’s statements are usually built into the command file that
needs them.

€ 1982 Ashton.Tate
Reproduction By Any Method Is Stractly Prohihited

EXPRESSIONS...8

4.0 EXPRESSIONS

An expression in dBASE is a group of simple items and operators that can be evaluated to
form a new simple value. For example “2 +2" is an expression that can be evaluated to the
value “4”. Expressions are not necessarily always numeric in nature. The expression
‘abc’ +‘def’ can be evaluated to the value ‘abcdef’ (character string concatenation), or the
expression 1> 2 can be evaluated to the logical (Boolean) value of “.F.” (false).

Expressions in dBASE are formed from the following components:

Database field variables

Memory variables

Constants within the commands (literals)
Functions

Operations

* * X *

VARIABLES — A variable in dBASE is any data field whose value may change. There are
two types of variables: data field names, (the information contained in the field of a dBASE
database record is subject to change any time the database is repositioned or edited); and
memory variable names (which contain information which is subject to change whenever a
STORE, RESTORE, COUNT, SUM, WAIT, ACCEPT, INPUT, etc. command is issued).

There are three types of variables:

Character strings
Numeric quantities
* Logical values

CONSTANTS — A constant (or literal) is a data item which has an invariant, self-defined
value. For instance, 1, ‘abc’, and .T. are constants which have a constant value regardless of
the position of the database or any memory variable commands. They are literals since they
ARE the value they represent (as opposed to variables which are names representing a
value). The values they represent are, respectively: a numeric one, a character string
(containing the letters “a”, “b”, and “c”), and a logical (Boolean) value of TRUE (“.T.").

Character string constants must be enclosed in single quotes ('), double quotes (™), or in
square brackets (|,]). If a character string contains one of these “delimiters”, then it should
be enclosed in a pair of one of the other ones. For example, the strings ‘abcldeflghi’ and
labc‘def’ghil are valid character strings while ‘abc’def*ghi’ is not.

Logical constants (true/false) are represented by “T", “t”, “Y”, or “y” for true values
(denoting true or yes) and “F”, “f”, “N”, or “n” for false values (denoting false or no).

* 1982 Achton-Tate
Reproduction By Any Method Ia Strictly Prohibited

EXPRESSIONS...9

4.1 FUNCTIONS

Functions are special purpose operations that may be used in expressions to perform things
that are difficult or impossible using regular expressions. In dBASE, there are three basic
types of functions: numeric, character, and logical. The function type is based on the type of
value that functions generate.

Integer Function
INT(< numeric expression>)

This function evaluates a numeric expression and discards the fractional part (if any) to
yield an integer value. The value of the INT function is the truncated value of the numeric
expression within.

Examples:

. 7INT(123.456)
123

. STORE 123.456 TO X
123.456

. ?INT(X)
123

Record Number Function:

#
Q@/ The value of the record number function is the integer corresponding to the current record
number.

Examples:

g

4 (assuming that a database is in USE and
. SKIP is positioned at record number 4)
L H

5

© 1982 Ashton-Tate
Reproduction By Any Method 1a Strictly Prohibited

EXPRESSIONS...10

String Function:
STR(< numeric expression>, < length> [< decimals>])

This function evaluates a numeric expression and yields a character string. The value of the
STR function is a character string of length <length>. If <decimals> are specified, it is
the number of digits to the right of the decimal point. All specifiers may be constants,
variables, or expressions.

Caution: When this function is used to generate a key for indexing, the specifiers MUST be
literals.

Example:
. 7 STR(123.456,9,3)
123.456
Substring Function

$(< char expression> < start >, <length>)

This function forms a character string from the specified part of another string. The value of the
substring function is a character string of length <length> filled with characters from the character
expression starting with character position <start> for <length> characters. <start> may be con-
stants, variables or expression. However, when used with the INDEX or SAY commands, <length>
must be a literal.

If <length> is longer than the <char expressions>, or if between the <length> and
<start> the <char expression> “runs out” of characters, then the result will be only those
characters that are there. See the following examples.

Caution: When the function is used to generate a key for indexing, the specifiers MUST be
literals.

Examples:

. ? $('abcdefghi’,3,3)
cde

. store3TOm
3

. store3TOn
3

. ? $('abcdefghi’',m,n)
cde

. ? $(‘abcdefghi’,6,7)
fghi

*"1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

EXPRESSIONS ... 11

String to Numeric Function
VAL(<char string >)

This function forms an integer from a character string made of digits, signs, and up to one
decimal point. The length of the integer is equal to the number of characters in the string. If
the character string begins with numeric characters but also contains non-numeric
characters, then the value generated by the VAL function equals the leading numeric
characters.

Another way to convert character numbers into numerics is the use of “&” (see 5.0 Macros).
The “&" will convert the string into a numeric (including the decimal) when the
substitution is encountered.

Examples:

. ?VAL('123)
123

. ?VAL('123xxx’)
123

. ?7VAL{'123.456)
123

. STORE '123.456' TO NUM

123456

. 714 + &NUM

137.456

Rank Function
RANK (< string>)

This function returns the ASCII value of the first character of the <string>. This function
corresponds to the ASC function in many versions of the BASIC language.

Example:

. 7 RANK('A)
65

Length Function
LEN(< char string>)
This function yields an integer whose value is the number of characters in the named string.
Example:
. STORE ‘abc’ TO STRING

. 7 LEN(STRING)
3

* 1982 Ashton - Tate
Reproduction By Any Method Is Strictly Prohibited

EXPRESSIONS...12
Deleted Record Function
*

This is a logical function which is . TRUE. if the current record has been marked for deletion,
and .FALSE. otherwise.

Example:
L7k
T (assuming that a database is in USE and

that its current record has been deleted
using the DELETE command)

End-of-File Function
EOF

This is a logical function which is .TRUE. if the end of file has been reached for the file in
USE (the current record will be the last record in the database).

Examples:
. PEOF
.F. (assuming that a database is in USE and
. GOTO BOTTOM is not positioned at the last record).
. 7EOF /)
F. W
. SKIP
. 7EOF
T.

Substring Search Function
@ (<char string 1>, < char string 2>)

This function yields an integer whose value is the chracter position in <char string 2>
which begins a substring identical to < char string 1>. If string 1 does not occur in string 2
then the @ function will be of value zero. Note: the @ function is similar to the substring
operator “$” except that it tells where the first string is found in the second string, and can
well be pronounced “where is string 1 AT in string 2”.

Example:

. 7 @ ('def’ /abcdefghi’)
4

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

EXPRESSIONS...13

Upper Case Function
(< char string expression>)

This function yields the same string as the character string expression except that all lower
case characters are converted to upper case.
Example:

. 7 '('abe)
ABC

Number to Character Function
CHR{< numeric expression>)

This function yields the ASCII character equivalent of the numeric expression. That is, if
the expression were the number 13, then CHR(13) generates a carriage return ASCII
character. This function is useful when the user needs to send direct controls to hardware
devices, most often printers.

Example:

. ?'abed’ + CHR(13) +°
abcd

Date Function
DATE()

This function will generate a character string that contains the system date in the format
XX/XX/XX. The character string always has a length of 8. Nothing goes between the
parentheses, they only indicate a function (to avoid problems with variables named
“DATE").

The dBASE system date can be entered at dBASE start-up time or at anytime using the
SET DATE TO command. With the SET DATE TO <string> (no quotation marks), no check-
ing is done, so the user can enter a date that is in MM/DD/YY, DD/MM/YY, or YY/MM/DD

format.

Examples:

. ? DATE(}

06/15/81

. STORE DATE() TO MEMVAR
06/15/81

. SETDATETO41 82

. ?DATE()

04/01/82

< 1882 Ashton-Tate
Reproduction By Any Method la Strictly Prohibited

EXPRESSIONS...14

File Function

FILE(< string exp>)

This is a logical function which is .TRUE. if the <string exp> exists and is .FALSE. if it
does not.

Example:

. USE TRACE
. 7 FILE{TRACE)
T

Type Function
TYPE(<exp>)

This function yields a one-character string that contains a ‘C’, ‘N’, ‘L', or ‘U’ if the <exp> is
of type Character, Numeric, Logical, or Undefined respectively. (TYPE returns a “U” if the
expression is not parsable, even if a variable’s parenthetic comments are syntactically
correct.)

Example:

. STORE 1 TO X
. ? TYPE(X)
N

Trim Function
TRIM{< cstring>)

The TRIM function removes trailing blanks from a field. Usually dBASE carries trailing
blanks on all variables to avoid column alignment problems on displays.

Note: This function must NOT be used in the INDEX command as the key length must be
computable for internal dBASE usage.

Examples:

. STORE'ABC'TO S
. 7LEN(S)

6
. STORE TRIM(S) TO S
. 7LEN(S)

3

4.2 OPERATIONS

There are four basic types of operations, arithmetic, comparison, logical and string. The
specific operators in each class are listed below, and examples follow for the less familiar
ones.

* 1982 Ashton-Tate -
Reproduction By Any Method Is Strictly Prohibited

EXPRESSIONS... 15

It is important to know that both “sides” of the operators must be the same type. That is, one
may only add integers to integers or concatenate characters with characters, adding an
integer to a character results in dBASE seeing a syntax error.

. STORE3TOA
3
. STORE'3'TOB
3
. 7A+B
*¥**x SYNTAX ERROR ***
2
?A+B
CORRECT AND RETRY(Y/N)?

This error occurs because numerics and characters are seen differently at the machine
level; a numeric 3 is just that—3 hex, while a character 3 has the ASCII value of 33 hex. The
program becomes confused, it does not know whether or not an addition is taking place ora
concatenation. Using the same variables as in the previous example:

. 7 A+VAL(B)
6

The string 3" has been converted to an integer and the addition performed.

ARITHMETIC OPERATORS (generate anthmetic results)

+
i

= addition

subtraction
multiplication

division

parentheses for grouping

:*]
o

Examples:

. 2(4+2)*3 An example of use of arithmetic
18 parentheses used for grouping in
. 744(2*3) calculations
10

COMPARISON OPERATORS (generate logical results)

< =lessthan
> =greater than
= =equal
< > or# =notequal
<= =less than or equal
> = =greater than or equal

$ =substring operator (e.g., if A and B are character strings, A$B will be TRUE
if and only if string A is equal to B, or is contained in B

* 19852 Ashton Tate
Reproductsan By Any Method [s Strctly Prohibited

EXPRESSIONS...16

Examples:

. ?‘abc'$'abedefghi’

T

. ? ‘abcd’'$'ghijkl’

.F.

. DISPLAY FOR '‘8080°'$TITLE Results in all records with ‘8080’
somewhere in the field TITLE being
displayed on the screen

An example of the $ substring operator

LOGICAL OPERATORS (generate logical results)

OR. = Booleanor
AND. = Boolean and
.NOT. = Boolean not (unary operator)

Examples:

. STORETTOA
T
. STOREFTOB
.F.
. 7A0R.B
T
. STORE NOT.BTOC
T
. 7A.AND.C
T.

STRING OPERATORS (generate string result)

+ = string concatenation
- = string concatenation with blanks moved to far right

Examples:

. STORE'ABCD 'TOA In a string concatenation the two strings

ABCD are just appended to each other.

. STORE‘EFGH'TO B

EFGH

. 7TA+B

ABCD EFGH

. STORE'ABCDE 'TOA In a string concatenation with blank
ABCDE move, the trailing blanks are moved to
. STORE1234 67'TOB the end of the string. Leading and
1234 67 embedded blanks are not altered.

. 7A-B

ABCDE1234 67

1982 Ashton-Tate
Any Method Ia Strictly Prohibited

EXPRESSIONS...17

Note: The lengthsof A—Band A +B are equal.

ORDER OF EXECUTION

Arithmetic, string and logical operators have an order in which they are satisfied. That is,
what operation is done before what other operations. The following table indicates the order
of precedence for each of the three major operator classes. In each of the “levels” (1, 2, etc.)
the order of execution is left-to-right.

Arithmetic operator String operator Logical
precedence precedence
1) parenthesis, functions parenthesis, functions .NOT.
2) unary +.— relations, ${substring op) AND.
3) +.— (concatenation) OR.
4) +.-
5) relations
Example:
. 77442*3

10

* 1982 Ashton Tate
Reproduction By Any Method Ia Stiictly Prohibited

MACRO...18

5.0 MACRO SUBSTITUTION

Whenever an ampersand (&) followed by the name of a character string memory variable is
encountered in a command, dBASE replaces the & and memory variable name with the
memory variable’s character string. This allows the user to define some parts of a command
once and call it out any number of times in various commands.

Macros are useful when complex expressions must be frequently used. They also allow
parameter passing within command file nests. All characters between the ampersand and
the next special character (including space) are taken as the memory variable name.

If the user desires to append characters to the symbolic substitution, then the memory
variable name should be terminated with a period. The period will be removed like the
ampersand at substitution time.

If an ampersand is not followed by a valid memory variable name then no expansion is
attempted and the ampersand remains in the command line.

Examples:

. ACCEPT ‘"Enter data disk drive letter'"'to DR

. STORE DR + ‘:DATAFILE' TO DR

USE &DR (at execution time this becomes
USE B:DATAFILE if “B” was entered in
response to the ACCEPT)

. STORE 'DELETE RECORD'TO T
&T 5 (at execution time will be DELETE
RECORD 5)

¢ 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

INTERFACING...19

6.0 INTERFACING WITH NON-dBASE PROCESSORS

dBASE can read data from files which were created by processors other than dBASE (e.g.
BASIC, FORTRAN, PASCAL) and can generate files which can be accepted by other
processors.

The APPEND command has the ability to read standard ASCII text files (using the MS
DOS convention of a line of text followed by a carriage return and line feed) by specifying
the SDF (System Data Format) option. Similarly, the COPY command generates standard
ASCII format files when the SDF option is used. Unless explicitly overridden, the file types
of files created with the SDF and DELIMITED options will be .TXT.

Some processors and languages read and write files in a delimited format. In this form all
fields are separated by commas and character strings are enclosed in quotes. dBASE can
APPEND and COPY these files when the DELIMITED keyword is included in the
command. If the DELIMITED feature is used, SDF is assumed.

Since some processors use single quotes and some use double quotes to delimit character
strings, APPEND will accept either. The COPY command normally generates single quotes
but will output any character as defined by the WITH phrase of the DELIMITED clause. It
is strongly recommended that only single and double quotes be used.

A special case occurs when a “,” is used in the WITH phrase for a COPY. All trailing blanks

in character strings and leading blanks in numerics are trimmed. Also, character strings
will not be enclosed with quotes or any other character.

Examples:

. USE <filename>.DBF
. COPY TO <filename>.TXT DELIMITED WITH **

. USE <filename>.DBF
. APPEND FROM «<filename>.TXT SDF

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

COMMANDS... 20

7.0 CLASSES OF COMMANDS

During the normal use of dBASE, various commands are used in combination to accomplish
a particular task. Such groups are shown below. Some dBASE commands are patterned
after the structured constructs that most “modern” computer languages use. These
commands are in the COMMAND FILE class of commands. There are some special rules
that control the use of these commands, which are expounded upon in section 9.0.

CREATION OF FILES - the following commands create database files and associated files:

* CREATE — create new structured database files

* COPY — copy existing databases to create copies

* MODIFY — alters database structures

* REPORT — create a report form file

* SAVE — copy the memory variables to mass storage

* INDEX — creates an index file

* REINDEX — realigns an old index file

* JOIN — outputs the JOIN of two databases

* TOTAL — outputs a database of totaled records
ADDITION OF DATA — the following commands add new data records to databases:

* APPEND — add data at end of a file

* CREATE — allows addition of data at creation

* INSERT — insert data into a file

EDITING OF DATA — the following commands edit the data within a database:
* CHANGE — edit columns of fields

* BROWSE — full screen window viewing and editing

* DELETE — marks records for deletion

* EDIT — alter specific data fields in a database

* PACK — removes records marked for deletion

* RECALL — erases mark for deletion

* REPLACE — replaces data fields with values

* READ — replaces data from user defined full-screen
* UPDATE — allows batch updates of a database

USER ASSISTANCE COMMANDS — the following commands give user on-line
information:

* DISPLAY — current information about datafile and system parameters
STATUS

* DISPLAY — show files on currently logged disk drive
FILES

* HELP — explanation of dBASE commands and other information

* 1982 Ashton-Tate
Reproduction By Any Method 1s Strictly Prohibited

COMMANDS... 21

DATA DISPLAYING COMMANDS — the following commands display selected data from a
database:

*@ — displays user formated data on the terminal or printer

* BROWSE — displays up to 19 records with as many fields as will fit on the screen

* COUNT — count the number of records that meet some conditional expression

* DISPLAY — displays records, fields, and expressions

* READ — displays data and prompting information in full-screen mode

* REPORT - format and display a report of data

* SUM — compute and display the sum of an expression over a group of database
records

*? — displays an expression list

* TEXT — displays a block of text data

POSITIONING COMMANDS — the following commands position the current record
pointer to records as directed:
* CONTINUE — positions to next record with conditions specified in the LOCATE

command
* FIND — positions to record corresponding to a key on indexed files
* GOTO — position to a specific record
* LOCATE — find a record that fits a condition
* SKIP — position forwards or backwards

FILE MANIPULATING COMMANDS — the following commands affect entire database
files:

* APPEND — append dBASE files or files in System Data Format (SDF)

* COPY — copy databases to other databases or SDF files

* DELETE — delete files

* DO — specifies a command file from which subsequent commands are to be
taken

* RENAME — renamea file

* SELECT — switches between USE file

* SORT — create a copy of a database which is sorted on one of the data fields

* USE — specifies the database file to be used for all operations until another

USE is issued

MEMORY VARIABLE COMMANDS — the following commands manipulate the memory
variables:

* ACCEPT — stores a char string into memory variables

* COUNT — stores counts into memory variables

* DISPLAY — can display memory variables

* INPUT — stores expressions into memory variables

* RESTORE — retrieves sets of stored memory variables

* SAVE — save the memory variables to a file

* STORE — stores expressions into memory variables

* SUM — stores sums into memory variables

* WAIT — accepts a single keystroke into a memory variable

1982 Ashton Tate
Reproduction By Any Method 1a Strictly Prohibited

COMMANDS... 22

COMMAND FILE COMMANDS — the following commands assist in the control and usage
of command files:

* ACCEPT — allows input of character strings into memory variables

* CANCEL — cancels command file execution

* DO — causes command files to be executed and allows structured loops in
command files

*IF — allows conditional execution of commands

* ELSE — alternate path of command execution within IF

* ENDDO — terminator for DO WHILE command

* ENDIF — terminator for IF command

* INPUT — allows input of expressions into memory variables

* LOOP — skips to beginning of DO WHILE

* MODIFY — allows editing of command files

* RETURN — ends a command file

* SET — sets dBASE control parameters

* WAIT — suspends command file processing

DEVICE CONTROLLING COMMANDS — the following commands control peripheral
devices like printers and terminals:

* EJECT — ejects a page on the list device

* ERASE — clears the terminal

« 1882 Ashton-Tate
Reproduction By Any Method ls Strictly Prohibited

FULL SCREEN...23

8.0 FULL SCREEN OPERATION

The following are cursor control keys for full screen operation:

left arrow. — Backs up to previous data field.

or cll-E

right arrow — Advances to next data field.

or ctl-X

ctl-S — Backs up one character in data field.
ctl-D — Advances one character in data field.
ctly — Clears out rest of current field to blanks.
<I:\ISERT> — Switches (toggles) between overwrite and insert modes.
ctlv

<DELETE> — Deletes character under cursor.

or ct-G

<BACKSPACE>— Deletes character to left of cursor.

ctl-Q — Aborts full screen and returns to normal dBASE control. Changes to
database variables are abandoned.

When in EDIT:

ctl-u — Switches (toggles) the current record between being marked for deletion and
unmarked.

ctlR — Writes current record back to disk and displays previous record i.e. backs up
a record.

ctl-C — Writes current record back to disk and displays next record i.e. advances to

next record.

ctl-W — Writes current record to disk and exits screen edit mode.

When in MODIFY

ctl-N — Moves all lines down one to make room for an insertion of a new line.
ctl-T — Deletes the line where the cursor is and moves all lower lines up.
ctl-C — Scrolls page down.

ctl-R — Scrolls line up; scrolls page up if at top of screen.

cti-wW — Writes data to the disk and resumes normal operations.

ctl-Q — Exits without saving changes.

* 1982 Ashton.Tate
Reproduction By Any Method Is Strictly Prohibited

FULL SCREEN... 24

When in APPEND, CREATE, or INSERT:
cti-C or ct-R — Write current record to disk and proceed to next record.

Carriage return when no changes have been made and cursor is in initial position —
terminate operation and resume normal dBASE operations.

When in BROWSE:

ctl-U — Switches (toggles) the current record between being marked for deletion and
unmarked.

ctl-R — Writes current record back to disk and displays previous record i.e. backs up
a record.

ctl-C — Writes current record back to disk and displays next record i.e. advances to

next record.

ctl-w — Writes current record to disk and exits screen edit mode.
ctl-Z — Pans the window left one field.
ctl-B — Pans the window right one field.

€ 1882 Ashton-Tate .
Reproduction By Any Method Is Strictly Prohibited

RULES...25

9.0 COMMANDS

The explicit definitions of the dBASE commands are in this section. The user should
familiarize him/herself with the information in this front material before reading the rest
of the command information.

9.1 SYMBOL DEFINITIONS

Understanding what the special symbols in the general formats of the dBASE commands
really mean is vitally important. Not only does it help in understanding just what the form
of the command really is, it helps to show the potential of each command. Please read the
following table thoroughly.

< commands> or < statements>
Means any valid dBASE statements; it also means whole statements. An IF without an
ENDIF, {(or a DO WHILE without an ENDDO), is only half of a statement, while a
REPORT is a whole statement in itself.

< char string> or <cstring>
Means any character string; character strings are those characters that are enclosed in
single quotes (') doublequotes ("), or square brackets (I]).

< delimiter>
Means any special character; special characters are those characters from the
keyboard that are punctuation marks like any of the following: "0 *=,@".

< exp>
Means an expression; an expression can be created by tacking together numbers,
functions, field names or character strings in any meaningful manner. “4 +8,” and “doc
= ‘3 .or. doc = ‘4’)” are both expressions as well as “$(‘abc’+ &somestr,n,3) =
‘abedefg’.”

<exp hst>
Means a list of expressions separated by commas; usually simple expressions are used.
Two of the examples in the previous paragraph are rather complicated, the first one
could be considered as simple.

< field>
Means any record field name; in one of the examples that are in the following
commands, one of the databases has field names like ITEM, COST, DATE, etc.

< field hst> or < list>
Means a list of record field names separated by commas.

< file> or < file name>
Means any filename; these are file names that must obey the rules for file names that
were stated in section 3.0

* 1982 Ashton-Tate
Reproduction By Any Method [s Stnictly Prohibited

RULES... 26

< form file>

Means the name of a report form file; see section 3.4 and the REPORT command for the
how and why of this type of file.

<index file>
Means the name of the file where indexing information is placed; see section 3.6 and
the INDEX command for the how and why of this type of file.

< key>
Means a field name on which the database will be indexed. There may be several indexes

for any given database, each on different (or on a combination of) keys. Keys may be
<expressions> or field names. See the INDEX command for more information.

< memvar>
Means any memory variable; memory variables are those variables that are created by
STOREsS or by use of a command that saves some value for later use (ACCEPT, INPUT,
etc.) There is a maximum of 64 memory variables allowed in dBASE.

< memvar list>
Means a list of memory variables separated by commas.

<n>
Means a literal; literals are numbers which are not gotten from memory variables or
calculations. “4 + 8” is not a literal, while “4” and “9876” are literals.

< scope>
Means a specification of the scope of the command; scope means how much does the
command cover. There are three values that <scope> may take on.

ALL
Means all the records in the file. ALL means that the file is rewound and whatever the
command ALL, the records in the file are searched for compliance. ALL is the default
for some of the commands. For other commands, the default will be the current record
(especially for the more potentially destructive commands like DELETE). Each
command description tells what is the default scope. In the case of using a FOR phrase
in any of the commands, ALL will be the default.

NEXT n
Means the next n records, including the current record; NEXT also begins with the
record currently being pointed at. An n must have a literal value, that is, it must not be
a memory variable or an expression.

RECORDn
Means only record n; again, n must not be a memory variable or an expression—it must
be a literal before it will work.

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

RULES ... 27

FOR <exp>
Any record so long as some logical expression has a true value. Unless otherwise
specified, the presence of a FOR clause causes ALL records to be scanned (with a
rewind of the database). It is exclusive of the WHILE clause.

WHILE < exp>
Operate on the next block of records, as long as some logical expression (<exp>) hasa
true value. For the command to execute at all, the expression must be true for the
current record. The command stops when the first false expression is encountered. The
presence of a WHILE clause implies NEXT 65534 unless otherwise specified and does
not rewind the database. It is exclusive of the FOR clause.

There are other special symbols used in the command formats. These are special to the
command and will be explained in the body of the command.

9.2 RULES TO OPERATE BY

As with all command “languages,” there are a set of rules which must be followed to
successfully operate the program. The following rules are to be used in translating the
general format of the commands into the more useful specific forms.

1. The verb of any command must be the first non-blank character of the command

line; the phrases may follow in any order. A verb is an action word; CREATE,

APPEND, REPORT, SET, DISPLAY and ERASE are all examples of verbs—they

. cause a specific action. Phrases are equivalent to adverbs; they more fully

(| describe the action. FOR, NEXT, and WITH are examples of words that begin
phrases. All of these example words are referred to as “keywords.”

2. Any number of blanks may be used to separate words and phrases. Remember
though, blanks are counted in the 254 limit described in Rule #3.

3. All commands must be less than 254 characters in length (even after a macro
expansion).

4. Commands and keywords can be abbreviated to the first four (or more) characters.
E.g. DISPLAY STRUCTURE could be input as DISP STRU or DISPL STRUCT or
etc. Just remember that the abbreviation must also be spelled correctly up to the
point where it ends.

5. Either upper or lower case letters may be used to enter commands, keywords, field
names, memory variable names, or file names.

6. Parts of the commands are optional, that is, some parts of the commands may be
left off when the command is used. Square brackets (| |) are used in the command
formats to show which phrases are the optional constructs that may be left off
These are the phrases which are used to modify the action of commands. The upper
case words are the keywords and they must be entered whenever the phrase that
contains them is used.

1952 Ashiton Tete
Repreduction By Any Method 1s Strictly Prohibited

RULES...28

7. A reserved word is a keyword that will generate an error if it is used for something
other than what it is supposed to be. There are no reserved words in dBASE.
However, certain field names and file names can cause difficulty, e.g., a command
file named WHILE will be incorrectly interpreted as a DO WHILE statement by
the DO command processor; ALL as a field name cannot be used in a number of
commands. (Also STATUS, STRUCTURE, FILE, RECORD). In general, it is a good
practice to avoid the use of dBASE keywords as field names or file names.

8. dBASE statements in a command file must nest correctly. To nest something
means that one statement must fit inside another statement. This is especially
important to proper execution of the IF-ELSE-ENDIF and the DO
WHILE-ENDDO groups. Indenting a command file will show if the statements are
correctly nested. dBASE does not catch nesting errors; it will, however, execute
the command file in an unknown manner. On the following page are examples of
how to correctly nest these two statements.

DO WHILE .NOT. EOF This is the correct way to nest. The

IF-ELSE-ENDIF statement is totally

statements within the DO WHILE-ENDDO

statement, just as the second DO

IF A.AND.B WHILE-ENDDO statement is totally

within the ELSE part of the

more statements IF-ELSE-ENDIF. It would be just as

easy to show more levels of nesting,

ELSE since dBASE allows many more levels
to exist.

DOWHILE A < =57

some more statements
ENDDO
even more statements
ENDIF
infinitely more statements

ENDDO

* 1982 Ashton-Tate
Reproduction By Any Method 1s Strictly Prohibited

DO WHILE .NOT. EOF
'statements
iF something changes values
ENDDO
}110re statements

ENDIF

© 1982 Ashiton-Tate

RULES...29

This is an example of a NO NO. The
ENDDO crossed over the boundary of
the IF-ENDIF group; that is, the two
statements do not nest properly.The
command file that holds these
statements will not work as expected
and dBASE will not explain why.

Reproduction By Any Method Is Strictly Prohibited

MACHINE LANGUAGE... 30

{This page is intentionally left blank)

© 1982 Ashton-Tate
By Any Method Is Strictly Prohibited

MACHINE LANGUAGE... 31

10.0 MACHINE LANGUAGE COMMANDS

SET CALL TO <address>

Sets the decimal address that will be called by a dBASE CALL command.

CALL [<memvar>]

Peforms a machine language call to the address set by a SET CALL TO or the default address
if no SET CALL has been done. There are about 254 bytes of stack available, the BX register
pair points to the first byte of the <memvars>. It is most important that no attempt be made
to lengthen or shorten a character string. Control can be passed back to dBASE with a RET
instruction.

LOAD (< file>]

This command loads a file that is assumed to be a .HEX file in INTEL HEX format into
memory.

POKE < address>,<data byte>[, < data byte> .. .]
Places data directly into memory
PEEK (< address>)

A function that returns a number corresponding to the unsigned binary value of the byte at
<address>.

1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

MACHINE LANGUAGE... 32

(This page is intentionally left blank)

©1982 Ashton-Tele
By Any Method la St Prohibited

?
? [<exp hst> |
7?7 [<explist>]

This command is a specialized form of the DISPLAY command; it is equivalent to DISPLAY
OFF <exp>. It can be used to show the value of an expression or list of expressions. The
question mark command (possibly pronounced “what is”") can use memory variables,
database fields, constants, or functions. A “?” with no expression spaces down a line on the
output. This feature is particularly useful in command files to “open up” the displays.

The second form of this command “??" behaves like a single “?” except that no line feed or
carriage return is done before the expression is printed. This can be used in command files
to output more than one expression to the same output line.

If a SET RAW ON command is in effect, then no spaces will be placed between items in a
list, otherwise one space separates items.

.
Examples:

. USE EXAMPLE
.4

LT #

4

. 7 NAME
CHANG. LEE

. ?75+9

14

Following is a sample command file that uses the ? to space out the display. The command
file is set up to be executed with the command: “DBASE D:FILE.” The dBASE response to
the command file follows the command file.

SET DEFAULT TO D

USE trace INDEX trace

DISP STRU

?

ACCEPT “Enter today's date.” TO dte
SET DATE TO &dte

RELEASE dte

RETURN

1982 Ashton Tate
Reproduction By Any Method Is Strictly Prohibited

..34

STRUCTURE FORFILE: TRACE.DBF
NUMBER OF RECORDS: 02359
DATE OF LAST UPDATE: 10/08/82

PRIMARY USE DATABASE
FLD NAME
001 up

002 TRFLD
003 DOC

004 DESCR
005 NATURE
006 STATUS
007 TESTED
** TOTAL**

Enter today's date:10 14 81

r

m

WIDTH
024
005
024
080
010
006
004

00154

COOO0000S

©1982 Ashton-Tale
Reproduction Dy Any Method 1s Strictly Prohibited

DEC

@...35

@

@ <coordinates> [SAY <exp> [USING <format>})
{GET <variable> [PICTURE < format>|]

This command works with the SET FORMAT TO, ERASE, EJECT, CLEAR, GETS and
READ commands and is a most powerful way to display specific, formatted information on
the screen or the printer. The way an “@" is interpreted changes according to how the SET
FORMAT TO command is used. Also whether or not one of the other commands has an
effect also depends on the SET command. All combinations are discussed below.

The <coordinates> are an “x,y” pair and may take on one of two meanings, either they are
screen coordinates or they are printer coordinates. The “x,y” denotes line (x) and column (y).
On the Model 2000, the screen oriented coordinates have an “x” range of 0-23, and a “‘y” range
of 0-79, that is 24 lines by 80 columns. dBASE uses the Oth line for messages to the user and
the user should avoid using it. The printer oriented coordinates have both an “x” and a *y”
range of 0-254. For either of these two meanings, the coordinats can be any literal, numeric
memory variable, or numeric expression. The SET FORMAT command is used to choose

between either of these two meanings.

The <coordinates> can also be relative addresses on the screen. That is, the new
<coordinates> can reference the ending location on the screen or printer. A
“$ + <expression>" construct is used to signal relative addressing and means the
<coordinate> where the last @-command left off plus the value of the expression. If an
@ 10,10 say ‘HI' had been issued, then @ $,$+2 say ‘THERE’ will generate “HI THERE” on
line 10 starting in column 10. Either the row or column can be relatively addressed. Only
positive offsets are allowed (e.g. $ — <expression> is NOT permitted).

When a SET FORMAT TO SCREEN command has been issued (which is the default), the
“@" command causes data to be displayed on the screen. A coordinate pair of 0,0 means the
first character location on the upper left corner of the display. (This is frequently referred to
as the home position.) The pair 10,15 means the 11th line and the 16th column of the
display. Again the Oth line on the screen should not be used. “@” commands may be issued
in any order to the screen. That is, one may SAY something to line 15 before one SAYs
something to line 10. Likewise columns may be filled in any order.

When a SET FORMAT TO PRINT command has been issued, the “@” command will cause
data to be printed on the printer. The coordinate pair 0,0 refers to the upper left hand corner
of the paper. “@” commands to the printer must be output in order. Much paper will be
wasted if this is not done. The user may like to pretend that a typewriter is being used
(indeed, it is). All commands to line 5 must preceed commands to line 6; also, all commands
to column 10 must preceed commands to column 20, etc. If this is not done, a page eject will
occur before the new line is printed.

When the SET FORMAT TO SCREEN has been issued, an ERASE will clear the screen of
all information that was previously on it, will release all the GETs (see below), and will
reset the cooordinates to 0,0. When the SET FORMAT TO PRINT has been issued, an
EJECT will do a page feed and reset the coordinates to 0,0.

* 1982 Auhton Tate
Reproduction By Any Method la Stractly P'rofabited

@...36

The SAY phrase is used to display an expression that will not be altered by subsequent
editing via the READ command. The USING subphrase is used to format the expression
emitted by the SAY phrase. Formatting directives are explained below. It is a good thing to
always use the USING subphrase. dBASE will take liberties with the expression if there is
no USING.

SAY phrases may be used on either the screen or the printer. GETs however, will only be
recognized when the SET FORMAT TO SCREEN command has been issued.

The GET phrase displays the current value of a field variable or memory variable. The
variable must exist prior to issuing of the GET and is subject to later editing by the READ
command. The PICTURE phrase may be used with a GET phrase to allow special
formatting and validation of the data as it is entered (see the READ command for further
information). If no PICTURE clause is given, then the data type (character, numeric or
logical) forms an implicit PICTURE.

If the data type of the field variable or memory variable in the GET is logical, then the data
validation allows only the characters ‘T", ‘F’, ‘Y’, ‘N’, and their lower case equivalents to be
entered.

A maximum of 64 GETs can be active at any given time. Either the ERASE command or the
CLEAR GETS command may be used to release the existing GETs.

When SET FORMAT TO SCREEN is in effect and if neither a SAY or a GET phrase is given,
then the remainder of the line indicated by the coordinates is cleared to spaces. Thus @ 10,0
will clear the entire 11th line.

When the SET FORMAT TO SCREEN is in effect,a READ must be issued in order to “fill”
the GETs. (See the READ command). However when SET FORMAT TO PRINT is in effect,
“@” commands require no subsequent READ commands to complete their action.

Not needing a READ to print allows the user to directly format the output for any
pre-printed material (such as checks, purchase orders, etc.) in a most convenient manner.
The user need only to remember that “@" commands must be issued as if one were typing on
a typewriter.

In using the SET FORMAT TO PRINT capability, it is often necessary to print out more
than one item. The ability to substitute memory variables for the coordinate values is
important. The following example is from a command file that generates a special report
form for a special task.

* 1982 Ashton-Tate
Reproduction By Any Method ls Strictly Probibited

SET FORMAT TO PRINT
GOTO TOP

STORE 7 TOCNTR

DO WHILE .NOT. EOF

IFCNTR > = 50
EJECT
STORE 7 TOCNTR
ENDIF

@ CNTR.12 SAY P USING ‘XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
@ CNTR.48 SAY D USING "XXXXXXXXXX
@ CNTR.64 SAY P]1 USING "XXXXXXXXXXXXXXXXXX’
@ CNTR.88 SAY U USING "XXXXXXXXXX
@ CNTR.104 SAY P2 USING "XXXXXXXXXXXXXXXXXX'
IFRCD< >0
@ CNTR.130 SAY RCD USING 9999
ENDIF
STORE CNTR + 1 TOCNTR
SKIP
ENDDO
RETURN

In this command file, a maximum of 57 lines will be printed on the printer before a page
eject is done. The purpose here was to print out most of the fields of a database (and
selectively print out one of the fields). Care must be taken to make sure enough room is
given to the SAY phrase to emit the variable. If the USING is shorter than the variable or
the field, the variable or field is truncated. The < format> for the USING (the ‘XXX...X")
strings are explained in the table below.

Also, in the SET FORMAT TO PRINT mode, if the coordinates of the next “@” allow
information to be printed on the same line but start it in a column that has already been
printed, the printer may not output the proper information. In fact, the printer may go to
the extreme right and print (in one square) all the information in the rest of the line. In the
SET FORMAT TO SCREEN mode, the old information will be written over by the new
information.

The last form of the SET FORMAT command is: SET FORMAT TO < format file>. When
this command is in effect and when a READ command has been issued, the “@” commands
are READ from the predesigned <format file>. In this manner, the user may design the
screen into a format for more specialized purposes. It is important to note here that the use
of format files is not necessary for use of “@s, since “@”s may reside in command files. See
READ for more information.

Formats:
Both the USING and PICTURE clauses have a format as their objective. The format is a

series of characters that indicate which characters appear on the screen or page. The
following table defines the characters and their functions:

* 1982 Ashton Tate
Reproduction By Any Method Is Strictly Prohibited

@...38

Format character SAY function GET function
causes the next number allows only a digit (1, 2...8, 9, 0)
to be output and the characters " “+" “-"

and " " {a space) to be entered

9 same as # same as #
X outputs the next character allows any character to be entered
A outputs the next character allows only alpha to be entered
$or* outputs either a digit or a output asis

$ or * instead of leading

zeros
! no effect converts lowercase alpha

characters to uppercase
Example:
.@ 5,1 SAY ‘ENTER PHONE NUMBER' GET PNO PICTURE ‘(999)999—9999"

The message ‘ENTER PHONE NUMBER’ would be displayed, followed by ‘(bbb) bbb-bbbb’
(b indicates a blank), assuming that the value of PNO was all blanks prior to issuance.
When (and if) the READ command is issued, only digits can be entered. The value of PNO
after the READ command might well be ‘(213)555-5555° after editing. All of the
non-functional characters in the PICTURE format are inserted into the variable. In this
example, the parentheses, minus sign and the blank are non-functional.

. @ 10,50 SAY HOURS*RATE USING ‘$$$$$$$.99'

This “@” command could be used with either the screen or the printer since it has no GET
phrase. It might well be used to print payroll checks. The dollar signs will be printed as long
as there are leading zeros in the item to be printed. If hours =40 and rate = 12.50, then
‘$$$$500.00’ will be displayed. This feature is known as floating dollar and is valuable for
printing checks that cannot be easily altered in value.

When commas are used in the integer part of a picture, they are replaced by the picture
character in front of them, if there are no significant digits in the item to the left of where
the comma would otherwise be placed.

.@ 10,50 SAY HOURS*RATE USING ‘$$%$,$$$.99'

Would output $$$$500.00 and specifically not output $$$,500.00.

“ 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

@...39

Normally, a number of “@” commands are issued then, if any GET phrases were included, a
READ command is issued to allow editing or data entry into the GET variables. In the
following example, the screen is formatted with several “@”s and a database is filled with
information according to these “@"s. The last record in the database will have a “0” in the
field “name”; this is the record that will be deleted, since it is not necessary.

SET FORMAT TO SCREEN
USE F.EXAMPLE

ERASE

DO WHILE NAME # 'O

APPEND BLANK
@ 50 SAY"ENTER NEXT NAME":
GET NAME PICTURE "XXXXXXXXXXXXXXXXXXXX"
@ 6.0 SAY'ENTER TELEPHONE NUMBER™:
GET TELE:EXTSN PICTURE "XXXXX'
@ 6.40 SAY "ENTER MAIL STOP";
GET MAIL.STOP PICTURE *XXXXXXXXXX’
READ

ENDDO

GOTO BOTTOM
DELETE

PACK

LIST

RETURN

The following commands affect the operation of the “@”" command:

SETINTENSITY ON/OFF (default 1s ON) affects the screen intensity of GETs, and SAYs.
SET BELL ON/OFF {default 1s ON) affects the bell alarm when invald characters are en-
tered or a data boundary i1s crossed.

SET COLON ON/OFF (default is ON) affects whether GET vanables are bounded by
colons.

SET DEBUG ON/OFF (default 1s OFF) allows easier debugging of "@" commands by shift-
ing ECHO and STEP messages to the printer.

SET SCREEN ON/OFF (defauit 1s ON) allows use of full screen operations.

SET FORMAT TO SCREEN/PRINT/< format file> determines device destination of
output {SCREEN or PRINTer). SET FORMAT TO < format file> establishes a format file
as the source of "@" commands for the READ command. SCREEN 1s the default value.
READ enters the editing mode so that GET vaniables can be altered.

* 1982 Ashton-Tate
Reproduction By Any Method 1s Strictly Prohibited

ACCEPT...40

ACCEPT

ACCEPT [*< string> "] TO < memvar>

This construct permits the entry of character strings into memory variables just as the ' y

P

INPUT command, but without the necessity of enclosing them in the quote marks required
by the INPUT command. ACCEPT makes a memory variable of the type ‘character’ out of

whatever is entered; INPUT determines the data type from the syntax of the entry and

makes a memory variable of that type.

The <memvar>is created, if necessary, and the input character string is stored into<memvars.
If “<string>" is present, it is displayed on the screen, followed by a colon, as a prompt message
before the input is accepted. If a carriage return is entered in response to an ACCEPT request,
<memvar > will receive a single space character. Either single quotes, double quotes, or square
brackets may be used to delimit the prompt string, however, both the beginning and ending
marks must correspond.

Examples:

. ACCEPT “ENTER PERSONS NAME" TO NAM
ENTER PERSON’'S NAME:John Jones

. ACCEPT “ENTER PERSON'S NAME" TO NAM2
ENTER PERSON'S NAME: Dave Smith

. DISP MEMO
NAM (C) John Jones
NAM?2 (C) Dave Smith
** TOTAL ** 02 VARIABLES USED 00020 BYTES USED
. ACCEPT TO ANY
:ANY CHARACTERS
. DISP MEMO
NAM John Jones
NAM2 Dave Smith
ANY ANY CHARACTERS
** TOTAL ** 03 VARIABLES USED 00034 BYTES USED

1942 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

APPEND... 41

APPEND

a. APPEND FROM < file> [FOR < exp>| [SDF] {DELIMITED]|
'WHILE <exp>i

b. APPEND BLANK

c. APPEND

In all three forms, records are appended onto the database in USE. APPEND, CREATE, and
INSERT are the only commands that allow the addition of records to a database. APPEND
and CREATE allow multiple additions at one time, INSERT allows only one.

In the first form, the records to be appended are taken from another file, i.e. <file>. If the
SDF clause is present, the records are assumed to be in System Data Format (see section
6.0). If the new records are smaller than the old records in the USE file, then the new record
is padded on the right side with blanks; if the new records are longer than the USE file
records, then the newly appended records are truncated. Records are added to the USE file
until end-of-file is detected upon the FROM file.

If the DELIMITED keyword is in the APPEND command, then the records taken from the
FROM file are assumed to be delimited and appended accordingly. Many computer
languages generate files where character strings are enclosed in single or double quotes and
fields are separated by commas. In the delimited mode, dBASE removes the quotes and
commas from delimited files and stores the data into a dBASE-structured database,
according to the database’s structure.

If the SDF and DELIMITED clauses are not present, then the FROM file is assumed to be a
dBASE-structured database file. The structures of the USE and FROM file are compared.
Fields which occur in the records of both files are taken from the FROM file and appended
onto the USE file. Padding and truncation are performed as appropriate to force the FROM
data items into the USE file’s structure.

If the FOR phrase is used, then dBASE appends the records in the FROM < file> one by
one, each time checking to see if the condition in the FOR is true. That is, the first record is
appended. If the expression is true then the record is kept and dBASE will skip on to the
next record. If the expression is false, then the record is discarded and dBASE will again
skip on to the next record. This procedure will continue until the end-of-file is reached for
the FROM <file>. The implication of this is that the fields used in the expression must
reside in the file receiving the new records.

If the BLANK clause (form b.) is specified, a single, space filled record is appended to the USE
file. This record can then be filled by the EDIT or REPLACE statements.

If no clauses follow the APPEND command (form c.), the user is prompted with the field
names from the USE file’s structure. Any number of new records may be created from the
keyboard. The append mode is terminated when a carriage return is entered as the first
character of the first field.

If the database in USE is an indexed database, then the index files specified in the USE
command are automatically updated when the new records are appended (except for
APPEND BLANKS). Any other index file associated with that database must be re-indexed.

1982 Ashton-Tate
Reproduction By Any Method Is Stnictly Prohibited

APPEND...42

When APPENDing in the full-screen mode, the SET CARRY ON command will cause all of
the data from the previous record to be carried over to the next record. Changes can then be
made. This is especially useful if successive records have a lot of common data.

If a SET FORMAT TO <file> is in effect, then APPEND will use the @-commands from
the format file to form the full-screen and allow complete control of the screen and the data
that will be appended. Otherwise, APPEND displays all fields in tabular form.

The APPEND command is especially useful when it is necessary to expand/contract fields
or add/delete fields from an existing database. Using the CREATE command, set up a new
database containing the desired structure and then APPEND the old database to the new.
Fields which appear only in the new database will be blank filled.

Examples:
. USE EXAMPLE

. DISPLAY STRUCTURE

STRUCTURE FOR FILE: EXAMPLE
NUMBER OF RECORDS: 00005

DATE OF LAST UPDATE: 12/31/82
PRIMARY USE DATABASE

FLD NAME T
001 NAME

002 TELE:EXTSN 005
003 MAIL:STOP 0l0
** TOTAL ** 00036

E WIDTH DEC
020

0003

. DISPLAY ALL

00001 NEUMAN, ALFRED E. 1357 123/456
00002 RODGERS, ROY 2468 180/103
00003 CASSIDY,BUTCH 3344 264/401
00004 CHANG, LEE 6743 190/901
00005 POST, WILEY 1011 84/13B

. APPEND

RECORD 00006

NAME: LANCASTER, WILLIAM J
TELE:EXTSN: 6623

MAIL:STOP: 170/430

RECORD 00007

NAME: NORRIS, R. “BOB”

TELE:EXTSN: 8093
MAIL:STOP: 427/396

1952 Ashton-Tate
Reproduction By Any Method Is Strictly Frohibited

APPEND...43

RECORD 00008

NAME: (cr)

DISPLAY ALL OFF NAME, TELE:EXTSN

NEUMAN, ALFRED E. 1357
RODGERS, ROY 2468
CASSIDY, BUTCH 3344
CHANG, LEE 6743
POST, WILEY 1011
LANCASTER, WILLIAM J. 6623
NORRIS, R. “BOB" 8093

. APPEND FROM DUPE3
00007 RECORDS ADDED

. DISPLAY ALL

00001 NEUMAN, ALFREDE. 1357 123/456
00002 RODGERS, ROY 2468 180/103
00003 CASSIDY, BUTCH 3344 264/401
00004 CHANG, LEE 6743 150/901
00005 POST, WILEY 1011 84/13B
00006 LANCASTER, WILLIAM J 6623 170/430
00007 NORRIS, R."BOB" 8093 427/396
00008 NEUMAN, ALFRED E. 1357

00009 RODGERS, ROY 2468

00010 CASSIDY, BUTCH 3344

00011 CHANG, LEE 6743

00012 POST, WILEY 1011

00013 LANCASTER, WILLIAM J. 6623

00014 NORRIS, R.“BOB" 8093

. APPEND BLANK

. REPLACE NAME WITH ‘RINEHART, RALPH’
00001 REPLACEMENT(S)

. DISPLAY
00015 RINEHART, RALPH

1982 Ashiton Tate
Reproduction By Any Method Is Strictls Prohhited

APPEND...44

. DISPLAY ALL NAME, " ex =", TELE:EXTSN

00001 NEUMAN, ALFRED E. ex = 1357
00002 RODGERS, ROY ex = 2468
00003 CASSIDY, BUTCH ex = 3344
00004 CHANG, LEE ex = 6743
00005 POST, WILEY ex = 1011
00006 LANCASTER, WILLIAM J. ex = 6623
00007 NORRIS,R.“BOB" ex = 8093
00008 NEUMAN, ALFRED E. ex = 1357
00009 RODGERS, ROY ex = 2468
00010 CASSIDY, BUTCH ex = 3344
00011 CHANG, LEE ex=6743
00012 POST, WILEY ex = 1011
00013 LANCASTER, WILLIAM J. ex = 6623
00014 NORRIS,R. “BOB” ex = 8093
00015 RINEHART, RALPH ex =

. USE B:SHOPLIST

. DISP STRU

STRUCTURE FOR FILE: B:SHOPLIST.DBF
NUMBER OF RECORDS: 00009

DATE OF LAST UPDATE: 06/22/82

PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC
001 ITEM C 020
002 NO N 005
003 COST N 010 002
** TOTAL ** 00036
. CREATE
FILENAME: NEWSHOP
ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME,TYPE,WIDTH, DECIMAL PLACES
001 ITEM, C, 25
002 NO,N,5
003 COST,N,10,2
004 NEED:DATE,C,8
005 (cr)
INPUT NOW? N
. USE NEWSHOP

. APPEND FROM B:SHOPLIST
00009 RECORDS ADDED

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

APPEND...45

.LIST

00001 BEANS 5 0.75

00002 BREAD LOAVES 2 097

00003 T-BONE 4 394

00004 PAPERPLATES 1 0.86

00005 PLASTIC FORKS 5 042

00006 LETTUCE 2 0.53

00007 BLEU CHEESE 1 196

00008 MILK 2 1.30

00009 CHARCOAL 2 075

. REPLACE ALL NEED:DATE WITH ' 7/4/82"

00009 REPLACEMENT(S)

. LIST

00001 BEANS 5 0.75 7/ 4/82
00002 BREAD LOAVES 2 097 7/ 4/82
00003 T-BONE 4 394 7/ 4/82
00004 PAPER PLATES 1 0.86 7/ 4/82
00005 PLASTIC FORKS 5 042 7/ 4/82
00006 LETTUCE 2 0.53 7/ 4/82
00007 BLEU CHEESE 1 196 7/ 4/82
00008 MILK 2 1.30 7/ 4/82
00009 CHARCOAL 2 0.75 7/ 4/82

(The following example demonstrates the DELIMITED file append. This file could have
been created by a number of different versions of BASIC)

‘BARNETT, WALT',31415,6

‘NICHOLS, BILL',76767.17

‘MURRAY, CAROL',89793,4

‘WARD, CHARLES A.,92653,15

‘ANDERSON, JAMES REGINALD III'’11528', 16

(Append the file into a dBASE-structured database)
. USE ORDERS

. DISP STRU

STRUCTURE FORFILE: ORDERS.DBF
NUMBER OF RECORDS: 00008

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 CUSTOMER C 020
002 PART:NO Cc 005
003 AMOUNT N 005

«x TOTAL ** 00031

1982 Ashton-Tate
Repraduction By Any Method 1a Strictly Prohibited

APPEND...46

. LIST

00001 SWARTZ, JOE 31415 13
00002 SWARTZ, JOE 76767 13
00003 HARRIS, ARNOLD 11528 44
00004 ADAMS, JEAN 89793 12
00005 MACK, JAY 31415 3
00006 TERRY, HANS 76767 5
00007 JUAN, DON 21828 5
00008 SALT,CLARA 70296 9

. APPEND FROM DELIM.DAT DELIMITED
00005 RECORDS ADDED

.usT

00001 SWARTZ, JOE 31415 13
00002 SWARTZ, JOE 76767 13
00003 HARRIS, ARNOLD 11528 44
00004 ADAMS, JEAN 89793 12
00005 MACK, JAY 31415 3
00006 TERRY, HANS 76767 5
00007 JUAN, DON 21828 5
00008 SALT,CLARA 70296 9
00009 BARNETT, WALT 31415 6
00010 NICHOLS, BILL 76767 17
00011 MURRAY, CAROL 89793 4
00012 WARD, CHARLES A. 92653 15
00013 ANDERSON, JAMES REG! 11528 16

(The following examples demonstrate an APPEND FROM < file> FOR <exp>. Note that
the fields in the FOR are in the USE file also.)

. USE CHECKS

. DISP STRU

STRUCTURE FOR FILE: CHECKS.DBF
NUMBER OF RECORDS: 00013

DATE OF LAST UPDATE: 10/18/82
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 NUMBER N 005

002 RECIPIENT C 020

003 AMOUNT N 010 002
004 HOME L 001

005 OUTGOING L 001

** TOTAL ** 00038

®

1982 Ashton-Tate
Reproduction By Any Methad I Strictly Prohibited

APPEND...47

. LIST
00001 1 Phone Company 10489 F. .T.
00002 2 Gas Company 414 F. T
00003 3 Electricity 25031 .F. .T.
00004 4 Grocery Store 103445 F. T.
00005 34 Me 561.77.T. F.
00006 6 Bank, service charge 400.T. T
00007 7 Doctor Doolittle 100.00.T. .T.
00008 8 Pirates 10101 F. T.
00009 9 Car Repair Man 500.01.T. .T.
00010 10 Me 56101 .T. F.
00011 11 Tupperware 50.02 F. .T.
00012 12 Me 561.77.T. F.
00013 13 Me 750.03.T. .F.
. USE MONTH
. DISP STRU
STRUCTURE FORFILE: MONTH.DBF
NUMBER OF RECORDS: 00003
DATE OF LAST UPDATE: 10/18/82
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC
001 NUMBER N 005
002 AMOUNT N 010 002
003 HOME L 001
** TOTAL ** 00017

("\; W)
. LIST
00001 29 1489.T.
00002 16 764.09 .T.
00003 78 9796 .T.

. APPEND FROM CHECKS FOR HOME
00006 RECORDS ADDED

. APPEND FROM CHECKS FOR OUTGOING
*** SYNTAX ERROR ***

?
APPEND FROM CHECKS FOR OUTGOING
CORRECT AND RETRY (Y/N)? N

That last append was to show what would happen if the FOR field was not in the USE file.

1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

BROWSE... 48

BROWSE

BROWSE [FIELDS < field list>)

The BROWSE command is one of the most powerful dBASE commands for data editing and
viewing. The data from up to 19 records is displayed onto the screen (fewer if fields are
greater than 80 characters). As many fields as will fit are put on each line. The screen
should be considered as a window into a database. You can scroll backwards and forwards
through the records and you can pan left and right through the fields of the database. Any
data can be edited with the standard full-screen editing method (see section 8 for additional
information).

If no <field list> is supplied, then BROWSE will show all fields in the same order as the
structure.

This is a summary of the full-screen control keys that will work in BROWSE:

left arrow, or ctl-E, backs up to the previous data field;
right arrow, or ctl-X, advances to the next data field;

ctl-0 advances to the next character;
ctl-S backs up to the last character;

<DELETE> or ctl-G deletes the character under the cursor;
<BACKSPACE > deletes the charcter before the cursor;

ctl-Q exits without saving the changes;
ctl-W exits and saves the changes;

ctl-B pans the window right one field;
cti-Z pans the window left one field;

ctl-C writes the current record and advances one record;
ctl-R writes the current record and backs up one record;

cll-U switches (toggles) the current record between being marked for deletion and not being
marked.

Example:
. BROWSE

. BROWSE FIELDS NAME, ADDRESS, ZIP, COMPANY

1982 Anhton Tate
Reproductian By Any Method b Strictly Protututed

CANCEL...49

CANCEL
CANCEL
Cancel a command file execution and return to the normal keyboard interpretive mode.
Example:

INPUT 'S JOB DONE (Y/N)' TO X

IF X

CANCEL

ENDIF

This is a fragment from a command file. The INPUT command asks for a yes/no answer. If

the answer is yes (‘Y’, ‘'y’, “T", or ‘t’) then the IF X line of the command file will be satisfied
(since X will be logically .TRUE.) and the CANCEL command will be executed.

1952 Ashton Tate
Reproduction By Any Methad [« Steactly Prohihited

CHANGE... 50

CHANGE
CHANGE [<scope>] FIELD <list> [FOR <exp>]

CHANGE is a command that allows the user to make a number of alterations to a database
with minimum effort. All database fields that are referenced in the list are presented to the
user in the order given by <list>>. The user has the opportunity of entering new data,
modifying the data or skipping to the next field. When the <list> has been exhausted,
CHANGE will proceed to the next record as specified in the <scope>>. The default scope is
the current record.

A field can be deleted in its entirety by typing a control-Y (followed by <enter> in response
to the CHANGE? message. The CHANGE command can be aborted by typing an ESCAPE
character.

Example:

. USE CARDS
. CHANGE FIELD DATE

RECORD: 00001
DATE: 08/19/81
CHANGE? 81

T0 ' 82

DATE: 08/19/82
CHANGE? (cr)

© 1082 Ashton-Tate
Reproduction By Any Method s Strictly Prohibited

CLEAR...51

CLEAR

CLEAR [GETS]

If the GETS (or GET) keyword is used, then all of the GETs that are pending (i.e. a GET set
up by the @ command) are cleared and the screen is left intact. This is opposed to the

ERASE command which clears pending GETs and also erases the screen.

If there is no GETS keyword, then this command resets dBASE II. All databases in USE are
closed and un-used, all memory variables are released, and the PRIMARY work area is
re-selected.

This command gives dBASE II a “clean slate.” For instance: if a command file finished
executing and left dBASE in the SECONDARY state, then executing a new command file
that assumes that the PRIMARY state was selected will cause unknown things to happen.

CLEAR should be used at the beginning of a command file to give the command file a
known state.

Example:

.CLEAR

1982 Axhtan Tate
Reproduction 15y Any Methed [Stractls Pratituted

CONTINUE... 52

CONTINUE

This command is used with the LOCATE command. LOCATE and CONTINUE may be
separated by other commands, however there are limitations. See the LOCATE command
for more information.

* 1982 Ashlon-Tate
Reproduction By Any Method ls Strictly Prohibited

COPY...53

corPY

COPY TO < file> [< scope>] [FIELD < fieldlist>] [FOR< exp> | [SDF]
[WHILE < exp>] [DELIMITED [WITH < delimiter>]

COPY TO < file> STRUCTURE [EXTENDED]
[FIELD< fieldlist>}

This command copies the database in USE to another file. The <file> may be in dBASE
format or in the System Data Format (if the SDF option is specified).

If the STRUCTURE clause is specified, then only the structure of a dBASE file in USE is
copied to the “TO” file.

If a list of fields is supplied following a FIELD clause, then only those data fields are copied
TO the file. For the COPY STRUCTURE FIELD <list>, only the structure of the listed
fields is copied TO the file. In either case, the new structure will be made up of only those
fields specified by the FIELD clause. No FIELD clause specifies that all fields will be copied.

If the SDF clause is specified, then the file in USE is copied to another file without the
structure. This new file will be in ASCII standard format. This allows the generation of files
which can be input to processors other than dBASE. The STRUCTURE and SDF clauses are
mutually exclusive.

If the DELIMITED keyword is also in the command, then the output file will have all of its
character string type fields enclosed in quotes and the fields will be separated by commas.
This is the converse of a delimited APPEND. By default, the DELIMITED type of COPY
uses single quotes as delimiters to mark character string fields. The WITH sub-phrase of the
DELIMITED phrase allows any character to be the delimiter. If a “” is used as the
delimiter, then the character fields will have trailing blanks trimmed, the numeric fields
will have the leading blanks trimmed, and the character strings will not be enclosed in
quotes. The APPEND command will only respond to single and double quotes.

If either the DELIMITED or SDF option is used; then the output < file> name will default
to a .TXT extension, otherwise the output file will default to a .DBF extension.

The “TO” file is created if it does not exist, and will destroy any existing file of the same
name.

COPY TO < file> STRUCTURE [EXTENDED] [FIELD] < fieldlist>]

Inclusion of the EXTENDED clause in this command copies the structure of the database file
in USE to the specified database as records. The structure may then be examined during
program execution.

Example:

. USE VTESTDB
.DISP STRU

€ 1982 Ashton-Tate
Reproduction By Any Method ls Strictly Prohibited

COPY...54

STRUCTURE FOR FILE: C:VTESTDB.DBF
NUMBER OF RECORDS: 00008

DATE OF LAST UPDATE: 12/20/82
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC

001 CHAR C 010

002 LOG L 001

003 NUMDEC N 010 002

004 NUMINT N 010

** TOTAL ** 00032

. COPY STRUCTURE EXTENDED TO TEST

00004 RECORDS COPIED

.USE TEST

. DISP STRU

STRUCTURE FORFILE: C:TEST.DBF

NUMBER OF RECORDS: 00004

DATE OF LAST UPDATE: 12/20/82

PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC

001 FIELD:NAME C 010

002 FIELD:TYPE C 001

003 FIELD:LEN N 003
004 FIELD:DEC N 003 @
** TOTAL ** 00018
.uST

00001 CHAR C 10 0

00002 LOG L 1 0

00003 NUMDEC N 10 2

00004 NUMINT N 10 0

(Modifications could be made here to the data [which is a structure]).
Examples:

. DISPLAY ALL OFF NAME, TELE:EXTSN

NEUMAN, ALFRED E. 1357
RODGERS, ROY t 2468
CASSIDY, BUTCH 3344
CHANG, LEE 6743
POST, WILEY 1011
LANCASTER, WILLIAM J. 6623
NORRIS, R. “BOB” 8093

€ 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

. DISPLAY STRUCTURE
STRUCTURE FORFILE: EXAMPLE
NUMBER OF RECORDS: 00007
DATE OF LAST UPDATE: 12/14/82
PRIMARY USE DATABASE

FLD NAME TYPE
001 NAME c
002 TELE:EXTSN C
003 MAIL:STOP C
** TOTAL **

.COPY TO DUPE

00007 RECORDS COPIED

.COPY TO DUPE2 FOR TELE:EXTSN < ‘8000
00006 RECORDS COPIED

. USE DUPE2

. DISPLAY ALL

00001 NEUMAN, ALFRED E.
00002 RODGERS, ROY

00003 CASSIDY, BUTCH
00004 CHANG, LEE

00005 POST, WILEY

00006 LANCASTER, WILLIAM J.

. USE EXAMPLE

.COPY FIELD NAME, TELE:EXTSN TO DUPE3
00007 RECORDS COPIED

.USE DUPE3

STRUCTURE FOR FILE: DUPE3
NUMBER OF RECORDS: 00007
DATE OF LAST UPDATE: 12/20/82
PRIMARY USE DATABASE

FLD NAME TYPE
001 NAME c
002 TELE:EXTSN c
** TOTAL **

© 1982 Ashton.-Tate

1357
2468
3344
6743
1011
6623

Heproduction By Any Method Is Strictly Prohtbited

WIDTH
020
005
010

00036

WIDTH
020

00026

COPY...55

DEC

123/456
180/103
264/401
190/901
84/13B

1707430

DEC

COPY...56

. DISPLAY ALL

00001 NEUMAN, ALFRED E. 1357

00002 RODGERS, ROY 2468

00003 CASSIDY, BUTCH 3344

00004 CHANG, LEE 6743

00005 POST, WILEY ‘1011

00006 LANCASTER, WILLIAM J. 6623

00007 NORRIS, R. “BOB" 8093

. USE EXAMPLE

. COPY NEXT 4 TO DUPE5

00004 RECORDS COPIED

. USE DUPES

. DISPLAY ALL

00001 NEUMAN, ALFRED E. 1357 123/456

00002 RODGERS, ROY 2468 180/103

00003 CASSIDY, BUTCH 3344 , 264/401

00004 CHANG, LEE 6743 1907901
(The delimited COPY)

. USE ORDERS

. DISP STRUCTURE 4

STRUCTURE FORFILE: ORDERSDBF L 4

NUMBER OF RECORDS: 00012
DATE OF LAST UPDATE: 07/01/82
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 CUSTOMER C 020

002 PART:NO Cc 005

003 AMOUNT N 005

**TOTAL ** 00031

.LIST

00001 SWARTZ, JOE 31415 13
00002 SWARTZ, JOE 76767 13
00003 HARRIS, ARNOLD 11528 44
00004 ADAMS, JEAN 89793 12
00005 MACK, JAY 31415 3
00006 TERRY, HANS 76767 5
00007 JUAN, DON 21821 5
00008 SALT, CLARA 70296 9
00009 BARNETT, WALT 31415 6
00010 NICHOLS, BILL 76767 17
00011 MURRAY, CAROL 89793 4
00012 WARD, CHARLES A. 92653 15

© 1982 Ashton - Tate
Reproduction By Any Method Is Strictly Prohibited

. COPY TO DELIM.DAT DELIMITED
00012 RECORDS COPIED

‘SWARTZ, JOE
‘SWARTZ, JOE
‘HARRIS, ARNOLD
‘ADAMS, JEAN
‘MACK, JAY
‘TERRY, HANS
‘JUAN, DON
‘SALT, CLARA
‘BARNETT, WALT
‘NICHOLS, BILL
‘MURRAY, CAROL

‘WARD, CHARLES A.

1982 Ashion.
Method

', ‘31415,
't ‘76767
', 11528,
‘89793
', ‘31415,
‘76767 ,
', 21828
', ‘70296
', '3141%
', 76767,
', 89793,
', '92653 ,

Tate
Is Strictly Prohibited

§7

13

12

eNOOOVO W

—

COUNT...58

COUNT

COUNT [< scope>] [FOR< exp>] [TO< memvar>]
[WHILE< exp>)

Count the number of records in the USE file. If the FOR clause is invoked, then only the
number of records which satisfy the expression are counted. If the TO clause is included, the
integer count is placed into a memory variable. The memory variable will be created if it did
not exist prior to this command. Count will count deleted records if DELETED is set OFF,
and ignore them if DELETED is set ON.

dBASE responds with the message:
COUNT = xxxxx

Examples:
. USE INVNTRY
. DISPLAY STRUCTURE
STRUCTURE FOR FILE: INVNTRY

NUMBER OF RECORDS: 00010
DATE OF LAST UPDATE: 10/23/82

PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 ITEM:NO N 006

002 CLASS:NO N 003

003 VENDOR:NO N 005

004 DESCR C 013

005 UNIT:COST N 007 002
006 LOCATION C 005

007 ON:HAND N 004

008 SOLD N 004

009 PRICE N 007 002
** TOTAL ** 00055

. DISPLAY ALL

00001 136928 13 1673 ADJ. WRENCH 713 189 9 0 998
00002 221679 9 1673 SM. HAND SAW 517 173 4 1 798
00003 234561 0 96 PLASTICROD 2.18 27 112 53 475
00004 556178 2 873 ADJ. PULLEY 2219 117 3 0 2850
00005 723756 73 27 ELEC. BOX 1956 354 6 1 2966
00006 745336 13 27 FUSE BLOCK 1265 63 7 2 1595
00007 812763 2 1673 GLOBE 588 112 5 2 749
00008 876512 2 873 WIRE MESH 318 45 7 3 425
00009 915332 2 1673 FILE 132 97 7 3 198
00010 973328 0 27 CANCOVER 073 21 17 5 099

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

COUNT...59

. COUNT
COUNT = 00010

. COUNT FOR ITEM:NO> 500000
COUNT = 00007

.COUNT FOR ‘ADJ'$DESCR
COUNT = 00002

.GOTO TOP

. COUNT FOR PRICE< 10 NEXT 6
COUNT = 00003

.GOTO TOP

. COUNT NEXT 6 FOR PRICE< 10
COUNT = 00003

. USE B:SHOPLIST

. LIST

00001 BEANS 5 0.75
00002 BREAD LOAVES 2 097
00003 T-BONE 4 3.94
00004 PAPER PLATES 1 086
00005 PLASTIC FORKS 5 042
00006 LETTUCE 2 053
00007 BLEU CHEESE 1 1.96
00008 MILK 2 1.30
00009 CHARCOAL 2 075

. DISPLAY STRUCTURE

STRUCTURE FOR FILE: B:SHOPLIST. DBF

NUMBER OF RECORDS: 00009

DATE OF LAST UPDATE: 12/10/82

PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 ITEM C 020
002 NO N 005
003 COsT N 010 002
** TOTAL ** 00036
.COUNT TO XX FORCOST>1

COUNT = 0003

L2 XX

3

* 1982 Ashton Tate
Reproduction By Any Method 1a Strictly Prohibited

CREATE... 60

CREATE

CREATE [< filename > |
[< filename> FROM < FILENAME >]

A new dBASE structured file is CREATEd. The user provides the structure, field names,
and file name for the database file.

If not supplied in the command, the user is first prompted for the <filename> to be used by
the message:

FILENAME:

The user enters a valid filename with the following added restriction: the filename may
contain no special characters other than those normally used by MS DOS for special
purposes (such as B: to denote disk drive “B”).

dBASE is now ready to accept the structure of the data base from the user. The following
message is displayed:

ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME,TYPE WIDTH,DECIMAL PLACES
(000}

The user now enters field names and associated structure information. A field name is a
character string up to 10 characters long which consists of alphabetic letters, numeric
digits, and colons. Field names must begin with an alphabetic character. CREATE will
check for and prevent duplicate field names. Fields may be any of three types: character
string, numeric, or logical. The type field is specified by one character, as:

C — character string
N — numeric
L — logical

The width refers to the length of the field; for instance, a character string may be 20
characters long (i.e. its width is 20). Numeric data may be either integer or decimal. The
width of integers is the maximum number of digits that they may be expected to contain.
For decimal numbers, two widths are required; the first is the maximum number of digits
that the decimal number is expected to contain (including the decimal point), the second
width is the number of digits which are to be allowed on the right side of the decimal point.
Logical data may only be of length 1.

The CREATE <filename> FROM <filename> command creates a new file by reading the
structure from the records of the FROM file. The contents of the FROM file may be input by
the COPY STRUCTURE EXTENDED command, or by the usual data entry methods.

* 1942 Ashton-Tate
Heproduction By Any Method 1s Strictly Prokibited

i

Example:

CREATE..
. USE TEST
. DISP STRU
STRUCTURE FORFILE: C:TEST.DBF
NUMBER OF RECORDS: 00004
DATE OF LAST UPDATE: 12/14/82
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC
001 FIELD:NAME C 010
002 FIELD:TYPE C 001
003 FIELD:LEN N 003
004 FIELD:DEC N 003
** TOTAL ** 00018
. LIST
00001 CHAR C 10 0
00002 LOG L 1 0
00003 NUMDEC N 10 2
00004 NUMINT N 10 0]
{Modifications could be made here to the data [which is a structure])
.CREATE TEST2 FROM TEST
.USE TEST2
. DISP STRU
STRUCTURE FORFILE: C:TEST2.DBF
NUMBER OF RECORDS: 00000
DATE OF LAST UPDATE: 12/14/82
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC
001 CHAR C 010
002 LOG L 001
003 NUMDEC N 010 002
004 NUMINT N 010
** TOTAL ** 00032
.CREATE

FILENAME: EXAMPLE
ENTER RECORD STRUCTURE AS FOLLOWS:

FIELD NAME, TYPE WIDTH, DECIMAL PLACES
001 NAME,C,20

002 TELE:EXTSN,C5

003 MAIL:STOP,C,10

004 {cr)

INPUT DATA NOW? Y

1982 Ashton: Tate
Reproduction By Any Method Is Stiictly Prohibited

. 61

CREATE...62

RECORD 00001

NAME NEUMAN, ALFRED E.
TELE:EXTSN: 1357 .
MAIL:STOP: 123/456 {
RECORD 00002

NAME: RODGERS, ROY
TELE:EXTSN: 2468

MAIL:STOP: 180/103

RECORD 00003

NAME: CASSIDY, BUTCH
TELE:EXTSN: 3344

MAIL:STOP: 264/401

RECORD 00004

NAME CHANG, LEE
TELE:EXTSN 6743

MAIL:STOP 190/901

REF:ORD 00005

NAME POST, WILEY
TELE:EXTSN: 1011

MAIL:STOP: 84/13B

RECORD 00006

NAME: {cr)

. DISPLAY STRUCTURE

NO DATABASE FILE IN USE, ENTER FILENAME: EXAMPLE
STRUCTURE FOR FILE: EXAMPLE

NUMBER OF RECORDS: 00005

DATE OF LAST UPDATE: 12/14/82

PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 NAME C 020

002 TELE:EXTSN C 005

003 MAIL:STOP C 010

** TOTAL ** 00036

* 1982 Ashton Tate
Reproduction By Any Method 1a Strictly Prohibited

CREATE...63

. DISPLAY ALL

00001 NEUMAN, ALFREDE. 1357 123/456
00002 RODGERS, ROY 2468 180/103
00003 CASSIDY, BUTCH 3344 264/401
00004 CHANG, LEE 6743 190/901
00005 POST, WILEY 1011 84/13B

¢ 1982 Ashton-Tate
Reproduction By Any Method 1s Strictly Prohibited

DELETE...64

DELETE

DELETE [< scope>] [FOR < exp>}
[WHILE <exp>])
DELETE FILE < filename>

All records which are within <scope> (and which satisfy the FOR expression if present)
are marked for deletion. The default scope is the current record only. Records are not
physically deleted until a PACK operation; however records marked for deletion will not be
copied, appended, or sorted. The RECALL operation may be used to revive records marked
as deleted. Records which are marked for deletion can be displayed. The mark of deletion
appears as an asterisk between the record number and the first field. See also the SET
DELETED ON/OFF command.

In the second form, the file named < filename > will be removed from the disk drive where
it resides (if possible), and the space it was occupying will be released to the operating
system for reassignment. If, however, the <filename> is currently in use, the file will not
be deleted.

Examples:

. LIST

00001 136928 13 1673 ADJ. WRENCH 7.13 189 9 0 9.98
00002 221679 9 1673 SM. HAND SAwW 5.17 173 4 1 7.98
00003 234561 0 96 PLASTIC ROD 218 27 112 53 475
00004 556178 2 873 ADJ. PULLEY 22.19 117 3 0 2850
00005 723756 73 27 ELECT. BOX 1956 354 6 1 2966
00006 745336 13 27 FUSE BLOCK 12.65 63 7 2 1595
00007 812763 2 1673 GLOBE 588 112 7 3 7.49
00008 876512 2 873 WIRE MESH 3.18 45 7 3 425
00009 915332 2 1673 FILE 1.32 97 7 3 1.98

.DELETE RECORD 2
00001 DELETION(S)

.5

.DELETE NEXT 3
00003 DELETION(S)

* 1982 Ashton Tate
Reproduction By Any Method Is Strictly Prohibited

DELETE...65

. LIST

00001 136928 13 1673 ADJ. WRENCH 713 189 9 0 998
00002 *221679 9 1673 SM. HAND SAW 517 173 4 1 7.98
00003 234561 0 96 PLASTIC ROD 218 27 112 53 475
00004 556178 2 873 ADJ. PULLEY 2219 117 3 0 2850
00005 *723756 73 27 ELECT. BOX 1956 354 6 1 2966
00006 *745336 13 27 FUSE BLOCK 12.65 63 7 2 1595
00007 *812763 2 1673 GLOBE 588 112 5 2 749
00008 876512 2 873 WIRE MESH 3.18 45 7 3 425
00009 915332 2 1673 FILE 1.32 97 7 3 198
.RECALLALL

00004 RECALL(S)

. LIST

00001 136928 13 1673 ADJ. WRENCH 7.13 189 9 0 998
00002 221679 9 1673 SM. HAND SAW 517 173 4 1 798
00003 234561 0 96 PLASTICROD 218 27 112 53 475
00004 556178 2 873 ADJ. PULLEY 2219 117 3 0 2850
00005 723756 73 27 ELECT. BOX 1956 354 6 1 2966
00006 745336 13 27 FUSE BLOCK 1265 63 7 2 1595
00007 812763 2 1673 GLOBE 588 112 5 2 749
00008 876512 2 873 WIRE MESH 318 45 7 3 425
00009 915332 2 1673 FILE 132 97 7 3 1.98
.DISPFILESONB

DATABASE FILES # RCDS LAST UPDATE
SHOPLIST .DBF 00007 06/06/82
SHOPSAVE .DBF 00007 06/05/82

. DELETE FILE B: SHOPSAVE

FILE HAS BEEN DELETED

. DISPLAY FILESON B

DATABASE FILES # RCDS LAST UPDATE
SHOPLIST .DBF 00007 06/06/82

© 1942 Ashion Tate
Heproaduction By Any Method Ls Stewctly Prambited

DISPLAY...66

DISPLAY
a. DISPLAY [<scope>] [FOR <exp>]| [<exp list>] [OFF] [FIELDS <list>]
[WHILE <exp>)
b. DISPLAY STRUCTURE
c. DISPLAY MEMORY
d. DISPLAY FILES [ON < disk drive>] [LIKE <skeleton>]
e. DISPLAY STATUS

Display is the foundation of dBASE. The end goal of all database operation is to display the
data in the database (or cross sections and abstractions of the data) upon demand.
DISPLAY satisfies that goal by allowing a wide variety of forms that select the wanted data.

In case a., all or part of the database in USE is displayed. If <scope > is not specified and the
FOR <exp> is not in the command, only the current record can contribute information for
display. If <scope> is not specified and there is a FOR <exp>, then all records in the
database may contribute to the display. All fields are displayed unless the <exp list>
clause is specified. Valid expressions may consist of data fields, memory variables, or any
valid literal number, character or logical. The current record number is prefixed to each line
displayed unless the OFF option is selected. If the FOR clause is specified, then only those
records that satisfy the FOR’s conditional expression can contribute information for
display. DISPLAY FIELDS <list> allows you to use (and DISPLAY) field names that are
otherwise ambiguous i.e., STATUS, FILE, STRUCTURE.

After groups of 15 records have been displayed, DISPLAY waits for any keystroke to
continue. This allows the user to “page” through a long display. The LIST command is
identical to the DISPLAY command except that LIST does not wait after record groups and
its default scope is ALL records. An ESCape character terminates the DISPLAY or LIST
commands.

In case b., only the structure of the database in USE is displayed.

In case c., all currently defined memory variables are displayed as memory variable name
and associated value.

Case d. is a way to display .DBF files that are residing on the default unit (or on <disk
drive>) along with some of the database's statistics. The LIKE phrase allows other types of
files to be displayed. The <skeleton> is usually of the form *.type, where type is .TXT,
.FRM, .MEM, or any other three letter string. These files are displayed just as in the MS
DOS DIR command.

Case e. displays any files that are in USE along with the index files and any key expressions
that have been USEd or SET on. DISPLAY STATUS also shows the setting of all SET
commands. DISPLAY can print semicolons after SET RAW ON,

* 1982 Ashton. Tate
Reproduction By Any Method Is Strictly Prohibited

DISPLAY...67

Examples:
. USE B:INVENTRY

. DISPLAY STRUCTURE

STRUCTURE FORFILE: B:INVENTRY.DBF
NUMBER OF RECORDS: 00008

DATE OF LAST UPDATE: 12/18/82
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 ITEM C 020

002 COST N olo0 002
003 PART:NO Cc 005

004 ON:HAND N 005

** TOTAL ** 00041 BYTES

{note: total includes 1 overhead byte)

. DISPLAY ALL ITEM, PART:NO, COST*ON:HAND ,$(PART:NO,1,2) FOR ;
COST > 100 AND.ON:HAND > 2 OFF

TANK, SHERMAN 89793 404997.00 89
TROMBONES 76767 15076.12 76
RINGS. GOLOEN 70296 1000.00 70

. DISPLAY MEMORY

CLIENT:NAM (C) DANGLEMEYER, PRENTICE

BUDGET (N) 123456.70

EF:STATUS L T.

**TOTAL ** 03 VARIABLES USED 00027 BYTES USED

. DISPLAY FILES ON B: LIKE *.FRM
TEST FRM ADMIN FRM ORDERS .FRM

. DISPLAY FILES

DATABASE FILES # RCDS LAST UPDATE
TEST .DBF 00077 0000 00
ADRECS .DBF 00073 09 23 81
HISTSTR .DBF 00000 06 29 81

TMPADMIN DBF
NOT A dBASE Il DATABASE

The last .DBF file in the list above is the file that is not a dBASE database.

Only representative examples of DISPLAY are given here; refer to other commands for
other examples.

1982 Axhtan: Tate
Reproduction Hy Any Method I Strictls Prohbited

DO...68

DO

a. DO <file>

b. DO WHILE <exp>
< statements>
ENDDO

c. DOCASE

In case a. <file> is opened and read. The file in this case is known as a COMMAND FILE.
It consists entirely of dBASE commands. The input is interpreted and executed as keyboard
commands are. DO’s can be stacked up to 16 deep (i.e. command files can contain DO
commands which invoke other command files). Control is released by a command file with
an end-of-file or by the RETURN command. If the current command file was called by a
command file, control will be given back to the higher level command file. If, during the
execution of a command file, a CANCEL command is encountered, all command files are
closed and the keyboard is made the source for future commands.

In case b. if the <exp> evaluates as a logical TRUE, the statements following the DO are
executed until an ENDDO statement is encountered. If the <exp> evaluates to a logical
FALSE, control is transferred to the statement following the ENDDO statement.

Note: <statements> refers to entire statements. The DO WHILE statement ends with an
ENDDO. Statements must nest properly; if there is an IF “inside” a DO WHILE, then an
ENDDO may not occur before the ENDIF. See section 9.2 Rule 8 for more information.

Examples:
DO ACCNTPAY

DO WHILE NOT.EOF
DISPLAY NAME

SKIP
ENDDO

CASE is an extension of the DO command and takes the form shown above. There is no limit
to the number of CASE phrases that a DO CASE may contain. The OTHERWISE phrase is
optional.

DO CASE is a structured procedure. The individual CASEs in the construct could be viewed
as the exceptions to the rule that defines the OTHERWISE. If some condition needs some
special processing, then the condition would be a CASE and all other conditions would be
the OTHERWISE. OTHERWISE may also be viewed as the default condition. See the first
example below.

* 1982 Ashton Tate
Reproduction By Any Method Ia Strictly Prohibited

DO...69

How dBASE handles the DO CASE construct may best be explained as a series of IFs. That
is, dBASE will execute the DO CASE as if it were a list of IF-ENDIFs.

DO CASE IF ITEM="ORANGES’
CASE ITEM="ORANGES’ any statements
any statements ELSE
CASE ITEM="APPLES’ IF ITEM="APPLES’
any statements any statements
OTHERWISE ELSE
any statements any statements
ENDCASE ENDIF
ENDIF

Thus, dBASE will examine the <exp>s in the individual CASEs and the first one that is
true will have the statements after it executed. When dBASE reaches the next phrase
beginning with a “CASE,” it will exit to the ENDCASE. This means that if more than one
CASE is true, only the first one will be executed.

If the OTHERWISE clause is present and none of the CASEs are true, then the
< statements> in the OTHERWISE clause will be executed. If there is no JTHERWISE
clause and none of the CASEs are true, then the DO CASE will be exited with none of the
< statements> executed at all.

Any statements that are placed between the “DO CASE” and the first “CASE” will not be
executed.

Examples:

DO CASE
CASE ITEM = “BROWN"
< statements> that process BROWN
CASE ITEM = “JONES”
< statements> that process JONES
CASE ITEM = “SMITH"
< statements> that process SMITH
OTHERWISE
< statements> that process all the other names
ENDCASE

In the case above, all the expressions were for the same field name. This is not necessary. An
< exp> may contain anything and the series of CASEs need not have a tight relationship.

< 1982 Ashton Tate
Reproduction By Any Method Is Strictly Prohibited

DO...70

DO CASE
CASE TODAY = “MONDAY"
< statements> for MONDAY
CASE WEATHER = “RAIN"
< statements> for RAIN
CASE CITY = "LOS ANGELES”
< statements> for LOS ANGELES
ENDCASE

Of course, if it is a rainy Monday in Los Angeles only the CASE for MONDAY will be
executed.

CASEs need not be all character strings as in these two examples. Any expression will work.

DO CASE
CASE3=2+1
< statements> for addition
CASE .NOT. A
< statements> for boolean logic
CASE "A"$“ABCDEF”
< statements> for string logic
OTHERWISE
< statements>
ENDCASE

* 1982 Ashton.Tate
Reproduction By Any Method Ls Strictly Prohibited

EDIT... 71

EDIT

EDIT [n]

The EDIT command allows the user to selectively change the contents of the data fieldsin a
database.

Editing can be done by either "EDIT” or “EDIT n” {n represents the record to be edited). If
nis not present, then dBASE will ask for the record number to be edited. When EDIT is used,
dBASE responds with:

ENTER RECORD # :
See section 8, full-screen operations, for a description of control keys and cursor movement.
If a SET FORMAT TO < file> is in effect, then EDIT will use the @- commands from the

format file to form the full-screen and allow complete control of the screen and the data that
will be appended. Otherwise, EDIT displays all fields in tabular form.

The editing of a data field can be aborted by entering a ctl-Q character. This discards any
editing done and restores the data field to its original contents.

If an INDEXed file is being EDITed and the index clause was USEd, the dBASE will adjust
the index if the key field is altered. If more than one index fileis associated with the database,
then the un-USEd files will be unaffected by the edit.

1982 Ashton Tate
Reproduction By Any Methad 1s Strictly Prohibited

EDIT...72

(This page is intentionally left blank)

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

EDIT...73

(This page is intentionally left blank)

€ 1982 Ashton-Tate
Reproduction By Any Method [s Strictly Prohibited

EJECT...74

EJECT

EJECT

This command causes the printer to do a form feed (eject the page) if either PRINT is SET
ON or FORMAT is SET TO PRINT. When using the. @ command to do direct page
formatting, the EJECT command also zeros the line and column registers. See also the SET
EJECT ON/OFF command.

Example:

.EJECT

* 1982 Ashton Tate
Reproduction By Any Method I Strictly Prahitated

ERASE...75

ERASE

ERASE

This command clears the screen and places the cursor in the upper left corner of the screen.
When using the @ command with the SET SCREEN ON in effect, ERASE clears memory of

prior @ command GETS and PICTURES.

Example:

.ERASE

* 1982 Ashton Tale
Heproduction By Any Method Is Stractly Protubited

FIND...76

FIND
FIND < char string> or ‘< char string>"

This command causes dBASE to FIND the first record in an indexed database (in USE)
whose key is the same as <char string>. FIND allows very rapid location of records within
an indexed database. A typical FIND time is two seconds on a floppy diskette system.

FIND operates only on databases that have previously been indexed (see the INDEX
command description). If the INDEX command used a character string expression as the
key, then FIND will operate when it is given only the first few characters of the key. The
found record will be the first one whose key has the same order and number of characters as
the <char string> . For example: a record whose key is ‘SMITH, JOHN’ could be found by
the statement ‘FIND SMI' provided that there are no other keys starting with ‘SMI’
proceeding SMITH, JOHN in the index. FIND will always find only the first record whose
key is the same as < char string>. Even if the record pointer is moved down further in the
file, a subsequent FIND on the same key will find the FIRST record.

If the index was created with a numeric key, then the found record will be the first record
whose key is arithmetically equal to the object of the FIND.

Note: For indexes keyed on both characters and numbers, the FIND object is a character
string with or without quote delimiters. Quote marks only become necessary for character
strings if the original key had leading blanks. In that case, the exact number of leading
blanks should be inside the quotes.

If a memory variable is desired as a FIND object, it must be placed after the FIND
command by means of an &-macro replacement, e.g. FIND &NAME where NAME is a
character string memory variable. Numeric memory variables must first be converted to a
string by means of the STR function before they can be “macro-ized.” See Section 5 for a
discussion on macros.

Once a record in a database has been located by means of the FIND command, it can be
processed just as any other database record. That is, it can be interrogated, altered, used in
calculations, etc. dBASE commands that cause movement of the database (e.g. LIST,
REPORT, COPY, etc.) will process the found record first and proceed to the next record in
sequence, based upon the key.

If no record exists whose key is identical to the <char string > then the message: “NO
FIND” will be displayed on the screen and the record number function “#” will give the
value of zero.

If a second record with the same key is wanted, then a SKIP or a LOCATE FOR <exp>
should be used. The SKIP will not know when there is no longer a match, the LOCATE (as
long as the key was used in the expression) will be able to find additional matches.

SET EXACT ON will cause FIND to get a ‘hit’ only if there is a character for character
match for the ENTIRE key (except for trailing blanks).

1982 Ashton Tate
Reproduction By Any Method Is Strictly Prohibited

FIND...77

SET DELETE ON will cause FIND to NOT find any records that have been marked for
deletion by the DELETE command.

Examples:

. USE SHOPLIST INDEX SHOPINDX

. LIST

00001 Beans 5 0.75
00007 Bleucheese 1 1.96
00002 Bread loaves 2 1.06
00009 Charcoal 2 0.75
00006 Lettuce 2 0.53
00008 Milk 2 1.30
00004 Paper plates 1 0.94
00005 Plastic forks 5 0.42
00003 T-Bone steak 4 4.33
. FIND Bread

. DISPLAY

00002 Bread loaves 2 1.06
. DISPLAY NEXT 3

00002 Bread loaves 2 1.06
00009 Charcoal 2 0.75
00006 Lettuce 2 0.53
.FIND P

. DISPLAY

00004 Paper plates 1 0.94
.FIND Plas

. DISPLAY

00005 Plastic forks 9 0.42
.FINDP

. DISPLAY

00004 Paper plates 1 0.94

FIND will work in the file indexed with a multiple key, if the key includes all the spaces
between the parts of the key.

1942 Ashton Tate
Heproduction By Any Method [s Strictly Prohibited

FIND...78

. LIST

00001 Flying High Bird, I. M. IMBOO1 02/29/04
00005 Nesting Procedures Bird, . M. IMBO0O2 09/25/06
00002 Diving Fish, U.R. URFO01 12/30/23
00008 Nursing Knight and Gale KG0OO1 08/04/44
00010 Vacationing in Europe Knight and Gale KG002 06/24/42
00004 101 Ways to Tie a Knot Lynch, I. 1LOO1 04/01/00
00003 How to Survive a Crash Lynch, M. MLOO1 01/01/30
00007 Even Primes Sladek, L LS001 12/01/73
00009 Even More Primes Sladek, L LS002 04/24/73
00006 Thinking Big Tim, Tiny TTOO1 05/07/42
. FIND “Bird, I.M. IMB00O2"

. DISP

00005 Nesting Procedures Bird, I. M. IMB00O2 09/25/06

. FIND “Lynch, M.”

. DISP

00003 How to Survive a Crash Lynch, M. MLOO1 01/01/30

. FIND “Sladek,L LS002"

.DISP

00009 Even More Primes Sladek, L LS002 04/24/73 s

i

* 1982 Ashion-Tate
Repruduction By Any Method 1s Strictly Prohibited

GOTO...79

GOor
GOTO

GOTO RECORD <n>
GOTO TOP

GOTO BOTTOM
<n>

GOTO < memvar>

paooe

This command is used to reposition the record pointer of the database.

In either case a or d, the current-record pointer is set to record number <n>. Case d is a
shorthand method for case a.

In cases b and c, the file in USE is rewound/unwound (TOP/BOTTOM) and the first/last
record in the file is pointed to by the current-record pointer. When the file in USE has been
INDEXed, then first/last record is not necessarily the first/last physical record in the
database but rather is first/last according to the key used to index the database.
Case e can be used to position to a record number contained in a memory variable.
Examples:

. USE SHOPLIST

.GOTO RECORD 6
6

. DISPLAY
00006 LETTUCE 2 053

.GOTOTOP

. DISPLAY
00001 BEANS 5 0.75

. GOTO BOTTOM

. DISPLAY
00009 CHARCOAL 2 0.75

1982 Ashion-Tate
Reproduction By Any Method 1s Strictly Prohibited

GOTO...8

.LIST

00001
00002
00003
00004
00005
00006
00007
00008
00009

0

BEANS

BREAD LOAVES
T-BONE

PAPER PLATES
PLASTIC FORKS
LETTUCE

BLEU CHEESE
MILK
CHARCOAL

. STORE 4 TO RECORDNO

4

. GOTO RECORDNO

.DISP
00004

PAPER PLATES

-
Reproduction By

M= NDO = BN O

1982 Ashton-Tate
Any Method 1s Strictly Prohibited

0.75
097
394
0.86
042
053
1.96
1.30
0.75

0.86

HELP...81

HELP
HELP <command verb>

The HELP command displays a brief synopsis of the dBASE commands and their syntax.

This command looks for the file DBASEMSG.TXT on the disk. DBASEMSG.TXT is a MS
DOS type file that may be modified by a text editor to pass any information to the user.

Example:

- HELP CREATE

* 1982 Ashton Tote
Keproductian By Any Method 1 Strictly Prohihited

IF <exp>

< commands>
[ELSE

< commands> |
ENDIF

The IF command allows conditional execution of other commands usually in command files.
When the <exp> evaluates to TRUE, the commands following the IF are executed. When
the expression evaluates to FALSE, the commands following the ELSE are executed. If no
ELSE is specified, all commands are skipped until an ENDIF is encountered. IF commands
may be nested to any level.

Note: <commands> refers to whole command statements. The IF command begins with
IF and ends with ENDIF. Statements must nest properly, an IF with a DO WHILE in the
true (or false) path must not end before the ENDDO. See section 9.8 Rule 8 for more information.

Examples:
IF STATUS="MARRIED’
DO MCOST
ELSE
DO SCOST
ENDIF
IF X=1
STORE CITY+STATE TO LOCATION
ENDIF

°' 1982 Ashton.Tate
Reproduction By Any Method 1s Strictly Prohibited

INDEX... 83

INDEX

INDEX ON < expression> TO < index file name>
INDEX

The INDEX command causes the current file in USE to be indexed on the < expression>.
The <expression> is known as the “key.” This means that a file will be constructed by
dBASE (the <index file>) that contains pointers to the records in the USE file. The index
file is made in such a way that the USE database appears to be sorted on the key for
subsequent operations. The file in use is not physically changed. Sorting will be in an
ascending order. A descending sort may be done on an expression that is a numeric. See
below for an example.

Indexing allows very rapid location of database records by specifing all or part of the key by
means of the FIND command. (See FIND). A database need not be indexed unless the
application being worked would be enhanced by it. An indexed database can be used later
with or without the indexing feature.

Usually, the INDEX command need only be done once for any given file. For instance, the
APPEND command will automatically adjust the index file when new records are added.

If an indexed database is reUSEd (in a later dBASE run or later in the same run that did the
original INDEX operation), then a special form of the USE command must be used (i.e. USE
< database filename> INDEX <index filename>).

Any number of index files may be constructed for any database, however, only the USEd
index files will be automatically updated by the APPEND, EDIT, REPLACE, READ or
BROWSE commands.

An indexed file can be packed with the PACK command and the database, as well as the
index file, will be properly adjusted. However if more than one index file is associated with
the PACKed database, then that database must be reINDEXed on those keys.

Warning: The TRIM function must NOT be used as part of an index key. Also, if the $ or
STR functions are used as part or all of a key, they must have literal numbers (not variables
or expressions) as their length parameters (e.g. INDEX ON
$(NAME,N,5) +STR(AMOUNT,5) TO NDXFILE instead of INDEX ON $(NAME,
N,N +5) + STR(AMOUNT, SIZEVAR) TO NDXFILE).

The command INDEX alone (with no parameters) will index the current record to the index
files in use. This allows an index to be built which does not include all the records in a
database. See also the REINDEX command.

© 1982 Ashton-Tate
Reproduction By Any Method 1» Strictly Prohibited

INDEX...84

Examples:
. USE SHOPUIST
LLIST
00001 Beans 5 0.75
00002 Bread loaves 2 1.06
00003 T-Bone steak 4 4.33
00004 Paper plates 1 094
00005 Plastic forks 5 042
00006 Lettuce 2 0.53
00007 Bleu cheese 1 1.6
00008 Milk 2 1.30
00009 Charcoal 2 0.75
. DISPLAY STRUCTURE
STRUCTURE FOR FILE: SHOPLIST.DBF
NUMBER OF RECORDS: 00009
DATE OF LAST UPDATE: 07/03/83
PRIMARY USE DATABASE
FLD NAME TYPE WIDTH DEC
001 ITEM C 020
002 NO N 005
003 COST N 010 002
** TOTAL ** 00036
.NOTE CREATE INDEX FILE SHOPINDX
. INDEX ON ITEM TO SHOPINDX
. NOTE NOW LIST IN INDEX ORDER
.LIST
00001 Beans 5 0.75
00007 Bleu cheese 1 196
00002 Bread loaves 2 1.06
00009 Charcoal 2 0.75
00006 Lettuce 2 0.53
00008 Milk 2 1.30
00004 Paper plates 1 0.94
00005 Plastic forks 5 042
00003 T-Bone steak 4 4.33

. NOTE INDEXING ALLOWS FIND COMMAND

* 1982 Ashton-Tate
Reproduction By Any Method [s Strictly Prohibited

INDEX...85

. FIND Milk

. DISPLAY
00008 Milk 2 1.30

.FIND Be

. DISPLAY

00001 Beans 5 0.75
. SKIP

RECORD: 00007

. DISPLAY
00007 Bleu cheese 1 1.96

. SKIP -1
RECORD: 00001

. DISPLAY
00001 Beans 5 075

. NOTE REGULAR USE COMMAND DOES NOT INCLUDE INDEX FILE

. USE SHOPLIST

.LIsT

00001 Beans 5 0.75
00002 Bread loaves 2 1.06
00003 T-Bone steak 4 433
00004 Paper plates 1 0.94
00005 Plastic forks 5 042
00006 Lettuce 2 053
00007 Bleu cheese 1 1.96
00008 Milk 2 1.30
00009 Charcoal 2 0.75

. NOTE ALTERNATE FORM OF USE COMMAND RECALLS INDEX FILE

.- USE SHOPLIST INDEX SHOPINDX

* 1982 Ashton.Tate
Keproduction By Any Method le Strictly Prohibited

INDEX...86

. LIST

00001 Beans 5 0.75

00007 Bleu cheese 1 1.96

00002 Bread loaves 2 1.06

00009 Charcoal 2 0.75

00006 Lettuce 2 053

00008 Milk 2 1.30

00004 Paper plates 1 094

00005 Plastic forks 5 042

00003 T-Bone steak 4 433

. USE BOOKS

. DISP STRU

STRUCTURE FOR FILE: BOOKS.DBF

NUMBER OF RECORDS: 00010

DATE OF LAST UPDATE: 10/18/82

PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC

001 TITLE C 025

002 AUTHOR C 015

003 CAT:NUM [006

004 ARR:DTE C 008

** TOTAL ** 00055

., INDEX ON AUTHOR + CAT:NUM TO BOOKS

00010 RECORDS INDEXED

.uST

00001 Flying High Bird, I. M. IMBOO1 02/29/04

00005 Nesting Procedures Bird, |. M. IMB002 09/25/06

00002 Diving Fish, U.R. URFOO1 12/30/23

00008 Nursing Knight and Gale KGO001 08/04/44

00010 Vacationing in Europe Knight and Gale KG002 06/24/42

00004 101 Ways to Tie a Knot Lynch, I 1LO01 04/01/00

00003 How to Survive a Crash Lynch, M. MLOO1 01/01/30

00007 Even Primes Sladek, L LS001 12/01/73

00009 Even More Primes Sladek, L LS002 04/24/73

00006 Thinking Big Tim, Tiny TTO01 05/07/42
example of descending sort

. LIST

00001 MOW LAWN 5

00002 WALK DOG 9

00003 WALK CAT 1

00004 WATER GRASS 7

00005 PAINT TRIM 4

00006 INSTALL SPRINKLERS 6

* 1982 Ashton-Tate
Reproduction By Any Method Is Strictly Prohibited

INDEX... 87

. INDEXON — PRIORITY TO SCHEDULE
00006 RECORDS INDEXED

LLIST

00002 WALK DOG

00004 WATER GRASS
00006 INSTALL SPRINKLERS
00001 MOW LAWN

00005 PAINT TRIM

00003 WALK CAT

[olE SR (R e B N Vo)

* 1982 Ashion-Tate
Reproduction By Any Method le Strictly Prohibited

INPUT...88

INPUT
INPUT ["< cstring> "] TO < memvar>

This construct permits the entry of expression values into memory variables, and can be
used within command files as a means for the user to enter data at the command file's
bidding. < memvar>> is created, if necessary, and the expression is stored into <memvar>.
If <ecstring> is present, it is displayed on the screen as a prompt message before the input
is accepted.

The type of the <memvar> is determined from the type of data that is entered. If a
delimited character string is entered, the <memvar> will be of character type. If a
numeric expression is entered, < memvar> will be of numeric type. If a T or Y (for True or
Yes) is entered, < memvar> will be a logical variable with the value TRUE; if an F or N
(for False or No) is entered, <memvar> will be a logical variable with the value FALSE.
The function TYPE may be used to explicitly determine the type of the entry.

Either single or double quote marks may be used to delimit the prompt string, however, both
the beginning and ending marks must be the same.

INPUT should be used to enter numeric and logical data only. The ACCEPT command is a
more convenient way to enter character strings.

Examples:

.INPUT TO X
3
3

INPUTTOZ
:23/17.000+X
4.352

. INPUT ‘PROMPT USER FOR INPUT' TO Q
PROMPT USER FOR INPUT: 12345
12345

. INPUT ‘ENTER T {F EVERTHING IS OKAY' TO LOG
ENTER T IF EVERYTHING IS OKAY: T
T

. INPUT “ENTER A CHAR STRING" TO CHAR
ENTER A CHAR STRING: 'CHAR STRING MUST BE QUOTE DELIMITED’
CHAR STRING MUST BE QUOTE DELIMITED

* 1982 Ashton-Tate
Reproduction By Any Method s Strrctly Prohibited

INPUT... B89

. DISP MEMO

X {N) 3

z {N) 4.352

Q {N) 12345

LOG (L} T

CHAR (0} CHAR STRING MUST BE QUOTE DELIMITED

** TOTAL ** 05 VARIABLES USED 00054 BYTES USED

. INPUT ‘ENTER ANY LOGICAL' TO LOG2
ENTER ANY LOGICAL :y
T.

* 1932 Ashton-Tute
Reproduction By Any Method ta Strictty Prohibited

INSERT... 90

INSERT
INSERT [BEFORE] [BLANK]

This command allows records to be INSERTed into the middle of a database. Only one
record at a time may be inserted into the database with the INSERT command.

The BEFORE phrase is used to cause insertion before the record currently pointed at,
otherwise the new re