

READ ME FIRST

All computer software is subject to change, correction, or improvement as the manu-
facturer receives customer comments and experiences. Radio Shack has estab-
lished a system to keep you immediately informed of any reported problems with
this software, and the solutions. We have a customer service network including rep-
resentatives in many Radio Shack Computer Centers, and a large group in Fort
Worth, Texas, to help with any specific errors you may find in your use of the pro-
grams. We will also furnish information on any improvements or changes that are
“cut in” on later production versions.

To take advantage of these services, you must do three things:

(1) Send in the postage-paid software registration card included in this manual
immediately. (Postage must be affixed in Canada.)

(2) If you change your address, you must send us a change of address card
(enclosed), listing your old address exactly as it is currently on file with us.

(38) As we furnish updates or “patches”, and you update your software, you must
keep an accurate record of the current version numbers on the logs below.
(The version number will be furnished with each update.)

Keep this card in your manual at all times, and refer to the current version numbers
when requesting information or help from us. Thank you.

APPLICATIONS SOFTWARE OP. SYSTEM
VERSION LOG VERSIONLOG

~ 01,05.00

Cat. No. 26-5257

RM/COBOL"

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADID SHACK AND TANDY
COMPUTER EQUIPMENT AND SOFTWARE PURCHASED FROK A RADID SHACK
COMPANY-OWNED COMPLTER CENTER RETAIL STORE OR FROM & RADID SHACK
FRANCHISEE OR DEALER AT I7S AUTHORIZED | 0ATION

i

5

3

CUSTOMER OBLIGATIONS

A CUSTOMER assumes 16 resgonsi. fy that t~is campuler hardware porchased (the Eouipment v ang any, copes 00 S'taaee
incluged wit the Equipment or licensed separately tthe Softadre « meets e spectcat o Capacty capabilties yersyt 1y ang
ot=er requrements o! CUSTOMER
CUSTOMER assumes tuli responsibility “or the cangition and eMectiveness ot the ORIRCANG evIPORITert 10 e the Fguipment ani
Software are 10 function and for is insta‘tation

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A For a perio¢ of minety (90} calendar days from the date of tre Radio Shack sales docurrent received Lpor purCtase of 1w £ guiprment
RADIO SHACK warrants 10 the orig mal CUSTOMER that the Equpment and 17 meg.ur upon wh ¢h the Softaare < stord < free bom
manufactuning defects This warranty is only applicable to purchases ol Radio Shack and Tandy Equi by the onginal
from Radio Shack company-owned computer centers. retail stores and lrom Aadio Shack Iranchisees and deaters af its authorized
location. Tre waranty 15«00 if the Equipment s case Or cabinel has bewn openeg ¢ 4 e £quipment or Software nas been sub ecten
1o -trpeoper or abnormal use M @ maculacturing gefect | dISCOvered tur ¢ he stated wareanty pency the detectve guipment st
Be reiuned 10 3 Racio Shack Computer Center '3 RaZ o Snack rela | store part ¢ it g Ragis SNacs “rarchisee o¢ Rat o Svac deser
‘or tepat 2l0ng with 3 COpy 0° I e sa'es Jocument 2t lsage agreement The segey CUSTOMER S §0' 300 facus vo rwmed, ~ the
evert o' 2 de'ect 1S mted 1o tre carrect o o* the detect By repar repacement or cplLed of e purchase prce A RATID SHACK §
glecten ana so'e expense RADID SHACK mas ~g oBIGalior 12 ‘eplace 0r epd * eapendabs tems
RADIQ SHACK manes no warranty as 1o tre gces §7 C3CaT My capacty v sutal fy ‘90 use of e Softaare awceqt e e "
s paragrag™ Softwace s licensed o= ar AS IS bas.s without wacant, Tes o 578 CUSTOMER S exciusien rermpdy, = e pypet
c* 2 Softaare macutacturing defect s 15 'ega- o* reg.acement aithin 1 "ty 1300 €3 en2at davs ot the gate of tne Rac Shace sales
gocument receved Lpon license 0 the So'twate The Zefective Sottaare shall te rotuimed to a Ragio Shack Computar Certer g Ragin
Shack retail stare partic pating Radie Shack “ranchisee or Radio Srack deales 4.0ng & 17 the saleg document
Excect as peovided nerein ng employee agent trancmsee dedler 2t ather persnn s author zed to QIvE APy A TATT RS 0F any ntyee on
behalt of RADIO SHACK
Excepl as provided herein. Radio Shack makes ao express warranlies. and any implied warranly ol merchantability or titness for a
particular purpose is limited in its duration to the duration of the written fimited warranties set forth herein

3 Same states do not allaw Immtations on how ong an implied wartamy tasts 52 he above hmtarars) may nol apply fo CUSTOMER

LIMITATION OF LIABILITY

A Except as provided heretn. Radio Shack shall have ng kiability or responsibility to customer or any other person or entity with
respect to any lizbility. loss or damage caused or alteged lo be caused directly or indirectly by “Equipment ” or “Soltware ' sold
leased. licensed or furmshed by Radio Shack. including. but nol limited to any interruplion of service. loss of business or

b ial d resulling trom the use or operation of the “Equipment” of “Sohtware In ao evenl

y protits ot
shzil Radio s’r-m be hable lor loss of profits. or any indirect. spectal. or conseguentiai damages arising oul ol 2ny breach ol this
usamnry Gr 1n 3Ry manner ansing oul of or connected with the sale. lease. hicense. use or anlicipated use ol the “Equipment or
“Software
Notwithstanding the above Iimilations and warranties, Radio Shack's habihity hereunder for damages incurred by customer or
for €, e

athers shall not exceed the amounl paid by e p. or “Sottware’ involved

RADID SHACK shall el be liable f0° ary amages causes By deldy © Cel verng a1 ‘i 3 g Eguipment 4 or 30

NG achen ar s rg cut of any Clameg Breacs 2* thig WA OF BAnSactons Lmder i Waranty (ay be brought o o
¥ea’s after e cause of acton a5 3CC7Les Of MmOre INan faur (31 years afer T Sate o! e RAdia SRtk salEs docireent fe (e
Equ pment o Software whichever fiest occurs

Some states g0 Ot allow e 11 141-90 01 BXCLSION 0' MCEMAl 0 COTSLALENTAl AAMAGes 59 Ire dbicve IMIEALI 15s 5 wae Lo &
may not ape’y to CUSTOMER

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grarts 10 CUSTOMER a non-exclus ve PAIC-Lp heense to use the RADID SHACK Software 0 ane comguter sutuegt 1o the
foligwing provisions
Except as otherwise providea in this Scltware License apphcadle copynight laws sral appy 1o 1he Seftware
Titie 10 the mecium cn which the Software 1S *eCorBeC 1casselle and 0 cisaellel o+ stared (ROMD 1o transferred to CUSTOMER but not
1lie 1o the Software
CUSTOMER may use £~ iware G 27 05T COMELer an0 3CCess 1040 Sataare thrpLgh 2ng or (e torming ¢ 4 oy ermitg
this functior
CUSTOMER 5na not use mase manufactue or *eEroCLCe COPIES B St sarept 2+ 07 ORE COMPLINT &% 18 1% o Sper Yry
Lrew cec 1 Ins Software Lcense Custormer s exDressly pros Hies o @sassemt =3 fhe $otaare
CUSTOMER s permitted 1o mane a2t 1072 SOpgs of e Sottaare oaly *or hacevy ov 2cnvd SUTDOSES O T ACINANS Lip oS are
‘20U TeC 1N e opeation o' one Compuler AN 172 Scitware Dul 0Ny to e petent Sotware A10WS & BateLp ogy 1
How for "RSDOS So'taare CUSTOMER s permttec 1o mame 3 (= teg numter of 3¢ ana copies ‘o CUSTOMER S gar Lon
CUSTOMER may resell or distrute unmoct ed copees of the SoMa e provded CLSTOMER =5 purenases ore copy o the Sa'tagrs
‘0t 2ach 07e S0ld Or Bistriduter Tre pravisions of s Softaare L Cense stalt s Le Spphoalie 10 hirg part es ecey 7g £op s of the
Softaare troin CUSTOMER
G Al copytight natices sra'l be rela ~eg o ali cogies of the Software

APPLICABILITY GF WARRANTY

A The terms and condibaos o1 1h 5 Warranty are applicadle as hetween RADIO SHACK ang CUSTOMER to either a sate of the Equipment
and or Software License to CUSTOMER of to 2 transaction & terely RADIO SHACK sel's or conveys such Equiptment by a th party lor
tease 1o CUSTOMER
The limitations of labilly ard War-anty provisions heremn shail imyre [the benetit of RADIO SHACK the author owner and o 'icensor
ot the Software and any manitacturer o* the Egquipment soid by RADIO SHACK

STATE LAW RIGHTS

The warranties grantea retein give the original CUSTOMER speciic legal rghts anss teg onginal CUSTOMER may have ot €1 7 gute ah et vary
o state 1o state

il
@mii*‘)

(W

Use

RM/COBOL USER'S GUIDEB

MS-DOS

PREFACE

This document contains the information required to compile, execute
and debug COBOL language programs under the Disk Operating System
(Ms-DOS).

It assumes the reader is familiar with the COBOL Language and the DOS

Operating System. The reader is specifically referred to the
following publications:

RM/COBOL* Language Manual
MS-DOS Guide to Operations
MS-DOS Disk Operating System

This guide is organized such that each chapter fully describes a
particular operational procedure. While the experienced user need
only refer to the appropriate chapter, it is recommended that the
first-time user read the complete guide prior to operation of the
RM/COBOL system.

Copyrights

RM/COBOL™ Software: Copyright 1983 Ryan-McFarland
Corporation. Licensed to Tandy Corporation. All Rights
Reserved.

MS™-DOS Software: Copyright 1983 Microsoft Corporation.
Licensed to Tandy Corporation. All Rights Reserved.

Model 28@¢ BIOS Software: Copyright 1983 Tandy Corporation.
All Rights Reserved.

RM/COBOL™ User's Guide: Copyright 1983 Ryan-McFarland
Corporation. Licensed to Tandy Corporation. All Rights
Reserved.

COBOL Language Manual: Copyright 1983 Tandy Corporation and
Ryan-McFarland Corporation. Licensed to Tandy Corporation.
All Rights Reserved.

Reproduction or use without express written permission from
Tandy Corporation, of any portion of this manual is
prohibited. While reasonable efforts have been taken in the
preparation of this manual to assure its accuracy, Tandy
Corporation and Ryan-McFarland assume no liability resulting
from any errors or omissions in this manual, or from the use
of the information contained herein.

TABLE OF CONTENTS

Section Page

CHAPTER 1
1.1
1.2
1.3

THE RM/COBOL COMPILER
Compiler Overview
Device Assignments e meecs e ettt etestesecttcenoeannna
Executing the Compiler
Compiler Options

Compiler MeSSAgeS .vueeeveerennrenennsansneonnnnnness
Compiler Return Codes
EXaMPleS & otieiittiiereenoaeeeeneenanceonnonnnnnanen
System Considerations
Compiler SOULCEe INPUL .« .iiiueennneeeoenoooeeeeennnnnns
Compiler Listing Output
Compiler Object Output

Program LisSting ..ceeiiiiieiininneneeeceneneanccannnns
Listing Diagnostics
Diagnostic Messages

D T

M R R R O I R T T

L R T

L R R R R R R I I T e,

. .

R T T T I

[
[}

S I A T N N A

e s s s eecces s e v 0o sssssere

L N R R RS

[
.
(84
T e

R I I I R R R O I PR S T T SR

OE MDA WWWW
.
N WNHEHBWN
=
HOOWWOWOUWOUODALWNK

[y
.

R I T

CHAPTER 2
2.1
2.2
2.3

THE RM/COBOL RUNTIME T T T
RUnNtime OVerviewiiieieeiienoeeoennenannooaeononancennns
Device Assignments D T T T S
Executing the Compiled Program

2.3.1 Runtime Options

2.3.2 RUNLIME MESSAGES tevrveeeennnennennoeeasnoenonnnennnas

2.3.3 Runtime Return Codes

2.3.4 EXaMPleS tiuuruieenrenocaneeenneseasaceanocacencannens

2.4 RuUntime DiagnoStics tuiueuieecenneeneonooeenonoenenennnennn.

2.5 File System Considerations

2.5.1 COBOL Sequential Files
2.5.2 COBOL Relative Files
2.5.3 COBOL INdexed FilesS tuveeuecnennenneoeneoencnennnnnnn.
2.5.4 COBOL Label Processing
2.6 Runtime Memory Usage

L I TR T T T

R 2R T

R T I T

L A A I I I S A
R I I I

L N R T I U U PSP R

R R I I R I I T S AP,

R R T T Y S

CHAPTER 3
3.1
3.2
3.3

INTERACTIVE DEBUG
DEbUG OVeIVIOW tveitiritnuieeoeennenenneenaonoeencanneannns
User Interaction and Display
Debug Commands

R T T T P,

R R I T T T P

A A I T T

CHAPTER 4 SYSTEM CONSIDERATIONS

R 2 I I I T I I S PSPy

4.1

The
The
The
The
The

CHAPTER 5

5.1

ACCEPT and DISPLAY Statements

CALL Statement
COPY Statement

WRITE...ADVANCING ZERO...Statement
STOP RUN numeric Statement
Printer Considerations

INSTALLATION PROCEDURES

Installing RM/COBOL

5.2 Configuration Tables

5.2.1 Configuring the Default Drive Search Sequence

R I I I I R T N S Sy
L R I I N S S S PG
M R R T R T
D R A I T N N
D I I P A A I N S

D I I B T

D I I R N A IR I T T R,
LA A R Y
R IR I T I T OO,

csev e

~ iii -

TABLE OF CONTENTS

Section Page
5.2.2 Configuring the Line Printercccccccecccsccssssss 39

5.2.3 Configuring the Tab Tablec.cececcccccccececssess 39

5.3 Linking In Assembly Language Programs ..cccececsccssscocss 40
5.3.1 RM/COBOL-Supplied Assembler Routines with Link Table 42

5.3.2 Example Calling Sequence - RM/COBOL-Supplied Routines 43

5.3.3 Configuring the CRT ..c.cieeeeccccacccccncnccsssssnses 44
5.3.3.1 Configuring the Screen Size and Default Control 44

5.3.3.2 cConfiguring for Line-Column Positioning 45

5.3.3.3 configuring the Control Optiosn ceccecccecccecees 47

APPENDIX A SAMPLE PROGRAMS ..iceveecccccccccccncccacssossscacasnss 48
APPENDIX B TECHNOTES scieecccsacceccesonvccsosnsossssasssnssccssces 49

APPENDIX C DOCUMENT CHANGE NOTICES ...cceececnscccocssesscscscsoss 50

CHAPTER 1

THE RM/COBOL COMPILER

1.1 Compiler Overview

The RM/COBOL Compiler operates under the MS-DOS Operating System.

Once executed, the Compiler makes a single pass on the source program,
generating object and listing files concurrently. Upon completion it
reports compilation results on the console and returns control to the
Operating System.

Compilation always proceeds to the end of the program, regardless of
the number of source errors found.

A listing of the program is generated showing the original COBOL
source statements, error information, data allocation, Interactive
Debug information and, optionally, a Cross Reference of all program
labels and data items. This listing can be directed to the Console,
the Printer and/or a disk file.

The generated object file 1is in a form ready for immediate execution
by the RM/COBOL Runtime. Object code is produced such that an attempt
to execute an erroneous statement will terminate execution with an
appropriate error message.

RM/COBOL MS-DOS User's Guide -1 -

1.2 Device Assignments

All communication
system console.

During operation,
following devices:

Console
Disk
Disk
Disk
Disk
Console

Printer

between the Compiler and the User is through the

the Compiler will require one or more of the

compiler command input and compiler messages
source input file

listing file (optional)

object file (optional)

COPY input file (optiocnal)

listing display (optional)

listing print (optional)

RM/COBOL MS-DOS User's Guide -2 -

1.3 Executing the Compiler

To compile a COBOL source program, issue the following command:

where:

filespec

options

RMCOBOL filespec (options) comment

is the file specification of the COBOL source file to be
compiled; of the form:

d:filename.ext

'd:' is an optional drive specification. When omitted, the
configured default search sequence of the drives is used to
locate the file. (See INSTALLATION PROCEDURES, Configuring
the Default Search Sequence).

'filename' is required.

'.ext' is an optional name-extension. When omitted, the
default '.CBL' is used.

allows the wuser to specify compiler and/or file options.
Bach option must be specified as shown below, separated by
spaces. The left and right parenthesis are required if any
comments are present.

When no options are specified, the compiler will
automatically generate an object file but no listing output.

RM/COBOL MS-DOS User's Guide -3 -

1.3.1 Compiler Options

'D' instructs the compiler to compile all COBOL "Debug"
source lines, identified by a "D" in column 7. This allows
the user selective compilation of COBOL source statements.

This option has no relationship to the RM/COBOL Runtime
Interactive Debug facility and need not be specified to
allow such debugging.

The default is to treat such lines as comments.

'E' instructs the compiler to generate an ‘'Error Only'
listing instead of a full listing. This option is effective
only when a 1listing has been specified (L, P and/or T
options).

The listing generated will contain the page heading
information, all source lines 1in error with their
appropriate undermarks and messages, plus all summary
information.

The default is not to generate an error listing.

'L' indicates that the compiler listing is to be written to
a disk file with the name of the source file and a
filename-~extension of '.LST'.

Specifying a drive number (L=d or L=d:) indicates that the
listing file is to be written to disk 'd'. When omitted the
configured default search sequence of the drives is used to
locate the drive on which to output the file. (see
INSTALLATION PROCEDURES, Configuring the Default Search
Sequence).

The default is not to generate a listing file.

'O0=d' or '0O=d:' indicates that the Compiler object output is
to be written to a disk file with the name of the source
file and a filename-extension of '.COB', and indicates that
the object file is to be written to disk 'd'. When omitted
the configured default search sequence of the drives is used
to locate the drive on which to output the file. (See
INSTALLATION PROCEDURES, Configuring the Default Search
Sequence).

RM/COBOL MS-DOS User's Guide -4 -

The default is to generate an object file on disk.

N
'N' indicates that no object file is to be generated.

p
'P' indicates that the listing is to be printed on the
printer.
The default is not to print the listing.

T
'T' indicates the listing is to be displayed on the console.
The default is not to display the listing.

X

'X' indicates a cross-reference of COBOL Procedure and Data
Division names is to be produced. This option is effective
only when a listing has been specified (L, P or T options).

The default is not to generate a cross-reference.

RM/COBOL MS-DOS User's Guide -5 -

1.3.2 Compiler Messages

Messages which report the compiler's status, or its ability to
complete the compilation process are reported on the system consocle as
they are detected.

RM/COBOL Compiler (ver V.R) for MS-DOS
(c) Copyright 1983 By Ryan-McFarland Corp. All rights reserved.

Indicates that the compiler has been loaded and has begun to
compile the specified program. ‘'ver V.R' identifies the version
(V) and revision (R) level of the compiler.

Compilation Complete: eeee Errors, wwww Warnings
Indicates that the compilation has been completed. The values of
tecee' and 'wwww' indicate the number of errors and warnings,
respectively, identified in the source program. This message is
repeated on the listing.

Usage: RMCOBOL d:filename.ext [P] [E] [L|L=d] [N|o=d] [P] [T] [X]
Indicates that an unrecoverable error was detected on the command
to execute the compiler. The square brackets indicate that the
options are able to be omitted:; the brackets should not be typed
on the command line. The vertical bar indicates a choice between
two possibilities: one or the other should be chosen.

The user should reenter the command with the necessary
corrections.

Insufficient Memory Available
Indicates that an initial request for working storage memory was
denied.

Compilation Cancelled

Compiler cancelled by operator with CTRL-BREAK or CTRL-C key
sequence.

RM/COBOL MS-DOS User's Guide -6 -

Compiler Error, No: nnnn

An internal error has occurred which prevents continued
compilation. The value of 'nnnn' identifies the condition
which caused the error.

0001 Pointer overflow
The user program has exceeded internal compiler
pointers. Segment the program and recompile. If this
problem still exists, separate programs into main
program with multiple subroutines.

0002 Roll memory overflow
The program has exceeded available work space. The
program size must be reduced. This can be accomplished
by reducing the size of user defined words (characters
are packed 3 per 2 Dbytes), by segmentation, or by
breaking the program into a main program with multiple
subprograms.

0003 Program overflow

The program has exceeded an internal compiler limit.
One of the object sections has run out of space.
Segment the program or break it into a main program with
multiple subprograms.

0004 Compiler error
An internal compiler error has been encountered.

0005 Empty source file
An end of file error was encountered when trying to read
the first record of the COBOL source file.

0010 Unable to locate or load a compiler overlay.
Install the RMCBLnvr program overlays as described in
the chapter on 'INSTALLATION PROCEDURES.'

0021 Unable to open Source File.

0022 Unable to open Listing File.

0023 Unable to open Object File.

0024 Unable to close file.

0025 Unable to write to Listing File.

0026 Unable to write to Object File.

RM/COBOL MS-DOS User's Guide -7 -

1.3.3 Compiler Return Codes

When the Compiler exits to the Operating System, the AL register is
set to indicate the termination status of the Compiler. The Compiler
User Return Codes at exit are:

00 Normal termination

FA System Initialization error

FB Compiler command line usage error

FE Cancelled by user (CTRL-BREAK or CTRL-C)
FF Compiler fatal error

1.3.4 Examples

RMCOBOL PAYROLL P X

locates and compiles the source program PAYROLL.CBL, producing an
object file (PAYROLL.COB) on the current disk and a listing, with
cross-reference, on the printer.

RMCOBOL A:MORTGAGE.SRC (L=B N)

compiles the source program MORTGAGE.SRC located on disk A,

producing a listing file (MORTGAGE.LST) on disk B and no object
file.

RM/COBOL MS-~DOS User's Guide - 8 -

1.4 File System Considerations

1.4.1 cCompiler Source Input

The compiler input consists of 1lines (variable 1length records) of
ASCII text with a carriage-return and line-feed pair at the end of
each record. This format is compatible with both the DOS editor file
format, and the RM/COBOL Runtime sequential file format. Embedded tab
characters are expanded as 1 or more spaces according to default
column positions 8,12,16,20,24,...72 (every 4th column 8 through 72).

Note: the column positions referenced as tab stops are configurable by
the user (see INSTALLATION PROCEDURES, Configuring the Tab Table).

1.4.2 Compiler Listing Output

The COBOL listing file can be directed to disk, (e.g., by specifying L
or L=d in the compiler option line), to a device assigned to LST, (by
specifying P in the compiler option line), to the console (T option),

or to any combination of the above. 1In every case, the file consists

of lines (variable length records) of ASCII text, terminated with a

carriage-return and line-feed pair.

1.4.3 cCompiler Object Output

The COBOL object file is created on disk as a relative file, using the
source name with default extension 'COB', and with the drive specified
during compiler startup (see Compiler Options). If no drive is
specified, the configured default search sequence of the drives is
used to locate the drive on which to output the file. The COBOL
object file is immediately executable by the RM/COBOL Runtime Package
(See THE RM/COBOL RUNTIME).

RM/COBOL MS-DOS User's Guide -9 -

1.5 The Program Listing

The compiler outputs 'source', 'allocation', and 'summary' listings if
a listing device or file is specified (L, P or T options). When the
'X' option is specified, a 'cross-reference' listing is also produced.

The source listing includes a sequential 1line number, sentence
address, source image, and interspersed diagnostics.

The allocation 1listing includes the address, size, order, type, and
name of each identifier. The identifier names are indented to show
the record structure. (The order of an identifier is the number of
subscripts it requires).

The summary listing includes the number of errors, the number of
warnings, and the size of the program.

The cross-reference listing includes all identifier names in
alphabetical order, and the line number of each declaration, source,
and destination reference. The line number is surrounded by slashes
if the reference is a declaration; asterisks if the reference 1is a
possible modification. References to all paragraphs and sections are
included.

In all 1listings, numbers in decimal are represented as ddd...d,
numbers in hexadecimal are represented as >dd...d.

1.5.1 Listing Diagnostics

Source constructs are checked for syntax and semantic errors as they
are scanned. Errors may cause interruption in scanning. In this
case, text is ignored until a recovery point is found and a resume
message is printed. Recovery points are chosen to minimize the amount
of wunanalyzed text without producing irrelevant error messages. 1In
any case, the constructs at fault are undermarked and error messages
listed when the source 1line is printed. The error message includes
either E's or W's indicating error or warning. For example:

004030 02 STOCK PIC 9(16)PPP COMPUTATIONAL.

***%x%])PICTURE *E*E*E*E*E*E*EEE*E*E*E*E*E*E*E*E*E*E*E
Indicates a semantic number size error but

005040 02 PART PIC X(4BX(5) SYNC.

***%*]1)SYNTAX *E*E*E*E*E*EXE*E*E*E*E*E*E*EXE*E*E*E*E*E
*k*** 2)SCAN RESUME *WHXWHWAWAWHW AW XW XWX AW AW AW AW AW AW *W

indicates a syntax error at the first undermark and a recover at the
second undermark.

RM/COBOL MS-DOS User's Guide - 10 -

The number preceding the error message is the undermark number,

counting from left to right. More than one message may refer to the
same undermark.

Global errors such as undefined paragraph names and illegal control

transfers are listed with the program summary at the end of the source
listing.

1.5.2 Diagnostic Messages

ACCESS CLASH
Nonsequential access given for sequential file.

BLANK WHEN ZERO
BLANK WHEN ZERO clause given for nonnumeric or group item.

CLASS
The referenced identifier is not valid in a class condition.
COPY
COPY statement failed because of permanent error associated
with the undermarked file-name.
CORRESPONDING

The CORRESPONDING phrase cannot be used with the referenced
identifier.

DATA OVERFLOW

The data area (working-storage and literals) is larger than
65535 bytes in length.

DATA TYPE

Context does not allow data type of the referenced
identifier.

DEVICE CLASH
Random characteristics given to nonrandom device.

DEVICE TYPE
OPEN or CLOSE mode inconsistent with device type.

DOUBLE DECLARATION
Multiple declaration of a file or identifier attribute.

DOUBLE DEFINITION
Multiple definition of an identifier.

DUPLICATE

Warning only. Multiple USE procedure declared for same
function or file.

RM/COBOL MS-DOS User's Guide - 11 -

FILE DECL ERROR
The referenced file-name is SELECTed and has an invalid or
missing file description (FD).

FILE NAME ERROR
The referenced file-name has an invalid external file name
declaration.

FILE NAME REQUIRED
File name not given as referenced in I/0 verb.

FILE RECORD KEY ERROR
The referenced file-name has a RECORD KEY which is
incorrectly qualified or is not defined as a data item of
the category alphanumeric within a record description entry
associated with that file name.

FILE RECORD SIZE ERROR
The referenced file-name has a declared record size which
conflicts with the actual data record descriptions or is a
relative organization file with variable length records.

FILE RELATIVE KEY ERROR
The referenced file-name has a RELATIVE KEY which is
incorrectly qualified, is defined in a record description
associated with that file-name, or is not defined as an
unsigned integer.

FILE STATUS ERROR
The referenced file-name has 'a status item which is
incorrectly qualified, is not defined in the WORKING-STORAGE
SECTION, or is not a two-character alphanumeric item.

FILE TYPE

Access or organization of file conflicts with undermarked
statement.

FILLER LEVEL
A non-elementary FILLER item is declared.

GROUP CLASH

USAGE or VALUE clause of group member conflicts with same
clause for group.

GROUP VALUE CLASH

Warning Only. An item subordinate to a group with the VALUE
IS clause 1is described with the SYNCHRONIZED, JUSTIFIED, or
USAGE (other than USAGE IS DISPLAY) clause.

IDENTIFIER

Identifier reference 1is incorrectly constructed or the
identifier has an invalid or double definition.

ILLEGAL ALTER

An ALTER statement references an unalterable paragraph or
violates the rules of segmentation.

RM/COBOL MS-DOS User's Guide - 12 -

W

ILLEGAL PERFORM

A PERFORM statement reference undefined or incorrectly

qualified paragraph or the reference violates the rules of
segmentation.

INVALID ID
The referenced identifier was not successfully defined.

INVALID PARAGRAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in conflict with other attributes.

KEY REQUIRED
Relative key not declared for random access relative file or
record key not declared for indexed file.

LABEL
Presence or absence of label record conflicts with device
standards.

LEVEL
Level-number given is invalid either intrinsically or
because of position within a group.

LINKAGE

An identifier in the USING clause of the PROCEDURE title is
not a linkage item or a statement references a linkage item
not subordinate to an identifier in the USING clause of the
PROCEDURE title.

LITERAL VALUE
Literal value given is incorrect in context.

MOVE
Operands of MOVE verb specify an invalid move.

MUST BE INTEGER
Context requires decimal integer.

MUST BE PROCEDURE
Context requires procedure name either as reference or

definition, or the reference must be a nondeclarative
procedure—-name.

MUST BE SECTION
Context requires procedure-name to be section.

NESTING
Illegal nesting of condition that is not an IF condition.

NOT IN REDEFINE
VALUE IS clause given in REDEFINES item.

RM/COBOL MS-DOS User's Guide - 13 -

OCCURS

OCCURS clause given at invalid level or after three have
been given for the same item. :

OCCURS DEPENDING ERROR

The referenced object of a DEPENDING phrase has not been
defined correctly. i

OCCURS-VALUE CLASH
VALUE IS and OCCURS in effect for the same item.

PICTURE
Invalid PICTURE syntax.

PICTURE-BWZ CLASH

Zero suppression and BLANK WHEN ZERO cannot be in effect for
the same item.

PICTURE-USAGE CLASH

USAGE clause or implied usage conflicts with usage implied
by picture.

PROCEDURE INDEPENDENCE

PERFORM given for procedures in independent segments not in
the current segment.

PROGRAM OVERFLOW
The instruction area is larger than 32767 bytes in length.

RECORD KEY
Record key declared for other than an indexed organization
file or a START statement KEY phrase references a data item
not aligned on the declared key's leftmost byte.

RECORD REQUIRED
Context requires record name.

REDEFINES

REDEFINES given within an OCCURS or not redefining the last
allocated item.

REDEFINES ERROR
The referenced data-name redefines an item which does not

have the same number of character positions and is not level
ol.

REFERENCE INVALID
Reference given is not valid in context.

RELATION
Operands of relation test are incompatible.

RELATIVE KEY

Relative key declared for other than a relative organization
file or a START statement KEY phrase references a data item
other than the declared key.

RM/COBOL MS-DOS User's Guide - 14 -

RESERVED WORD CONFLICT
A COBOL reserved word or symbol is given where a user word
is required. In the summary this is only a warning about an
ANSI COBOL reserved word that is not an implemented COBOL
reserved word.

SCAN RESUME

Warning only. Scanning was terminated at previous error
message and resumes at undermarked character.

SECTION CLASH
A VALUE IS clause appears in the FILE or LINKAGE section.

SEGMENT
Warning only. Segment number given in an independent
segment is not the same as the current segment or the number
of a new independent segment. The current segment number is
used.
SEPARATOR
Warning only. Redundant punctuation or a separator is not
followed by the required space.
SIGN
SIGN clause given in conflict with usage and picture.
SIZE
Warning only. Size of data referenced not correct for
context.
SIZE ERROR
Declared size of record conflicts with present reference.
SUBSCRIPT
Incorrect number of subscripts or indices for a reference.
SYNC
Synchronized clause given for a group item
SYNTAX
Incorrect character or reserved word given for context.
UNDEFINED

File referenced in FD entry was not defined.

UNDEFINED DECLARATIVE PROCEDURE

A declarative statement references a procedure not defined
within the DECLARATIVES.

UNDEFINED PROCEDURE

A GO TO statement references an undefined or incorrectly
qualified paragraph.

USE REQUIRED
A DECLARATIVES section must begin with a USE statement.

RM/COBOL MS-DOS User's Guide - 15 -

USING COUNT

Warning only. The item count in the USING list of a CALL
statement is different from that of the first reference to
the same program name.

VALUE ERROR
value given in VALUE IS required truncation of nonzero
digits.

VALUE

VALUE IS clause given in conflict with other declared
attributes.

VARIABLE RECORD

Warning only. The INTO phrase is not allowed with variable
size records.

RM/COBOL MS-DOS User's Guide - 16 -

.wu”

CHAPTER 2

THE RM/COBOL RUNTIME

2.1 Runtime Overview

The RM/COBOL Runtime operates under the MS-DOS Operating System.

Once invoked, the Runtime loads and executes the compiled object
program, automatically loading any required segments. Concurrently,
it allocates memory for file buffers, and CALLed COBOL and Assembly
Language subprograms. Upon completion appropriate messages are
displayed and control is returned to the operating system.

2.2 Device Assignments
All communication between Runtime and the User is through the system
console.

During operation the Runtime will require one or more of the following
devices:

Console Runtime command input, Interactive Debug
command input, and Runtime messages.

Console ACCEPT and DISPLAY, and Interactive Debug
display.

Printer The external filename in the SELECT statement

specifies an actual print filename, except that
SELECT file name, ASSIGN TO PRINT, "PRINTER"
directs output to the device assigned to LST.

Any other external name specifies the actual
disk file to receive the print image.

RM/COBOL MS-DOS User's Guide - 17 -

2.3 Executing the Compiled Program

To execute a compiled RM/COBOL object program, issue the following
command to the Operating System:

RUNCOBOL filespec (options) comment

where:

filespec
is the specification of the compiled COBOL object file to be
executed of the form:

d:filename.ext

'd:' is an optional drive specification. When omitted the
configured default search sequence of the drives is used to
locate the file. (See INSTALLATION PROCEDURES, Configuring
the Default Search Sequence).
'filename' is required.
'.ext' is an optional name-extension. When omitted the
default '.COB' is used.

options

allows the user to specify Runtime options. Each option
must be specified as shown below, separated by spaces. The
left and right parenthesis are required if any comments are }
present. i

When no options are specified, the Runtime will execute the
User's program without Interactive Debug, with all switches
set to O, using all of available memory.

RM/COBOL MS-DOS User's Guide - 18 -

2.3.1 Runtime Options

D
'D' invokes the RM/COBOL Interactive Debug package. See
Interactive Debug Chapter for operating instructions.
The default is not to invoke Interactive Debug.

S=nn..n
'S' sets (or resets) the value of SWITCHES in the COBOL
program.
BEach 'n' is a switch value, O for off, 1 for on, numbered 1
to 8, left to right. Trailing zeroes need not be specified.
The default is to set all switches off (0).

T=hhhO

'T' sets the maximum working storage .allocation to a
paragraph length of 'hhh', in order to protect user assembly
language subroutines, all of which must be loaded within the
remaining memory available. See SYSTEM CONSIDERATIONS, The
CALL Statement.

The default is to assign to working storage all available
memory, up to a maximum of a 64K working storage segment.

2.3.2 Runtime Messages

Messages which report the Runtime's status, or its ability to execute
the COBOL program, are reported on the system console as they are
detected.

RM/COBOL Runtime (ver. V.R) for MS-DOS
(c) Copyright 1983 By Ryan-McFarland Corp. All rights reserved.
Indicates that the Runtime has been loaded and has begun to

execute the specified program. 'ver V.R' identifies the version
(V) and revision (R) level of the Runtime.

RM/COBOL MS-DOS User's Guide - 19 -

COBOL STOP RUN AT xxyyyy IN nnnnnn
This is the normal termination message of a program.
'xxyyyy' identifies the overlay (xx) and statement address (yyyy)

where the program terminated. 'nnnnnn' are the first six
characters of the PROGRAM~-ID.

If Debug was invoked on the command line, an 'S' Debug command
may be used to cause Debug to exit to the operating system.

COBOL STOP literal AT xxyyyy IN nnnnnn

This message indicates that a STOP 'literal' statement has been
encountered. 'xxyyyy' identifies the overlay (xx) and statement
address (yyyy) where the program terminated. ‘'nnnnnn' are the
first six characters of the PROGRAM~-ID.

Responding with a 'Y' will be the equivalent of a “pause"
statement, returning control to the next COBOL statement.

An 'N' response will cause all program files to be closed and
control will be returned to the operating system.

Usage: RUNCOBOL d:filename.ext [D] [S = switches] [T = hhhO]

Indicates that an unrecoverable error was detected on the command
to execute the compiler. The square brackets indicate that the
options are able to be omitted; the brackets should not be typed
on the command line.

The user should reenter the command with the necessary
corrections.

Insufficient Memory Available

Indicates that an initial reguest for working storage memory was
denied.

RM/COBOL MS-DOS User's Guide - 20 -

2.3.3 Runtime Return Codes

When the RM/COBOL Runtime exits to the Operating System, the AL
register is set to indicate the termination status of the user's
program. The Runtime User Return Codes at exit are:

00 Normal termination

01-7F User defined return code (see COBOL STOP RUN statement)
FA System initialization error

FB RM/COBOL Runtime command line usage error

FC Program load fail

FD RM/COBOL Runtime error

FE Cancelled by user (CTRL-BREAK or CTRL-C)

FF I/0 error

2.3.4 Examples

RUNCOBOL PAYROLL S=1011
locates, loads, and executes the compiled COBOL program
PAYROLL.COB; and sets the value of SWITCHES 1, 3, and 4 ‘on', all
others 'off'.

RUNCOBOL B:MORTGAGE.TST (D)
loads the compiled COBOL program MORTGAGE.TST from drive B along

with the Interactive Debug package. Control is passed directly
to Debug.

RM/COBOL MS-DOS User's Guide - 21 -

2.4 Runtime Diagnostics

Diagnostic messages are displayed on the console if an internal error
occurs, or if an I/O error occurs that was not, or could not, be
processed by an appropriate USE procedure.

If Debug was invoked, Debug will be entered to allow examination of
program data values; otherwise, control will return to the operating
system.

COBOL error AT xxyyyy IN nnnnnn

Indicates an internal error condition has occurred, where ‘error'
identifies the error condition. 'xxyyyy' identifies the overlay
(xx) and statement address (yyyy) where the program terminated.
‘nnnnnn' are the first six characters of the PROGRAM-ID.

COBOL filename IO ERROR = cc AT xxyyyy IN nnnnnn

Identifies that an abnormal I/O condition, 'cc' has caused the
program to be aborted. ‘'xxyyyy' identifies the overlay (xx) and
statement address (yyyy) where the program terminated. 'nnnnnn'
are the first 6 characters of the PROGRAM-ID.

The I/0 error 'cc' has a different meaning depending on whether
the file's organization is sequential, relative or indexed.

Sequential Files:

10 AT END.
The sequential READ statement was unsuccessfully executed as
a result of an attempt to read a record when no next logical
record exists in the file.

30 PERMANENT ERROR.
The input-output statement was unsuccessfully executed as the
result of an input-output error, such as data check parity
error, or transmission error. May also indicate attempted
execution of an instruction not implemented in the Runtime
(REWRITE to a variable length record (VLR) file; CLOSE REEL).

34 PERMANENT ERROR BOUNDARY VIOLATION.

The input-output statement was unsuccessfully executed as the
result of a boundary violation for a sequential file.

90 INVALID OPERATION.
An attempt has been made to execute a READ, WRITE, or REWRITE
statement that conflicts with the current open mode or a
REWRITE statement was not preceded by a successful READ
statement.

RM/COBOL MS-DOS User's Guide - 22 -

91

92

93

94

95

96

97

99

FILE NOT OPENED.

An attempt has been made to execute a DELETE, READ, START,
UNLOCK, WRITE, REWRITE or CLOSE statement on a file which is
not currently open.

FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on a
file which is currently open.

FILE NOT AVAILABLE.

An attempt has been made to execute an OPEN statement for a
file closed with LOCK.

INVALID OPEN.

An attempt has been made to execute an OPEN statement for a
file with no external correspondence or a file having
inconsistent parameters.

INVALID DEVICE.

An attempt has been made to execute a CLOSE REEL statement,
or to execute an OPEN statement for a file which is assigned
to a device in conflict with the externally assigned device.
Valid combinations are:

Program Assignment External Assignment
RANDOM Disk
INPUT Disk
ouTpPUT Disk
PRINT Disk, line printer
INPUT-OUTPUT Disk

UNDEFINED CURRENT RECORD POINTER STATUS.

An attempt has been made to execute a READ statement after
the occurrence of an unsuccessful READ statement without an
intervening successful CLOSE and OPEN.

INVALID RECORD LENGTH.

An attempt has been made to execute a REWRITE statement when
the new record length is different from that of the record to
be rewritten, or to OPEN a file that was defined with a
maximum record length different from the externally defined
maximum record length, or to execute a WRITE statement that
specifies a record with a length smaller than the minimum or
larger than the maximum record size.

INVALID DATA IN RECORD.
An attempt was made to READ or WRITE a sequential record
which has non-ASCII text in it.

RECORD LOCKED

An attempt has been made to READ a record which is locked.
This error 1is returned only if an applicable USE procedure
and a FILE STATUS data item are declared for the file.
Otherwise, the READ statement is retried until the record is
unlocked.

RM/COBOL MS-DOS User's Guide - 23 -

Relative and Indexed Files:

02 SUCCESSFUL OPERATING BUT KEY HAS DUPLICATE.
For a read operation, it indicates that the next record
associated with the current key of reference has the same key
value. For a write or rewrite operation, it indicates that
the record just written created a duplicate key value for at
least one alternate key for which duplicates are allowed.

10 AT END.
The Format 1 READ statement was unsuccessfully executed as a
result of an attempt to read a record when no next logical
record exists in the file.

21 SEQUENCE ERROR FOR A SEQUENTIALLY ACCESSED INDEXED FILE.
The ascending sequence requirement of successive record key
values has been violated or the record key value has been
changed by the COBOL program between the successful execution
of a READ statement and the execution of the next REWRITE
statement for that file.

22 DUPLICATE KEY VALUE.
An attempt has been made to WRITE a record that would create
a duplicate key on a file that does not allow duplicates.

23 NO RECORD FOUND.
An attempt has been made to access a record, identified by a
key, and that record does not exist in the file.

24 BOUNDARY VIOLATION.
An attempt has been made to WRITE beyond the
externally-defined boundaries of a file.

30 PERMANENT ERROR.
The input-output statement was unsuccessfully executed as the
result of an input-output error, such as data check, parity
error, or transmission error.

90 INVALID OPERATION.
An attempt has been made to execute a DELETE, READ, REWRITE,
START, or WRITE statement which conflicts with the current
open mode of the file or a sequential access DELETE or
REWRITE statement not preceded by a successful read
statement.

91 FILE NOT OPENED.

An attempt has been made to execute a CLOSE, DELETE, READ,
REWRITE, START, UNLOCK, or WRITE statement on a file which is
not in an open mode.

92 FILE NOT CLOSED.

An attempt has been made to execute an OPEN statement on a
file that is currently open. %

RM/COBOL MS-DOS User's Guide - 24 -

93

94

95

96

97

98

99

FILE NOT AVAILABLE.

An attempt has been made to execute an OPEN statement on a file
closed with LOCK, or to OPEN a file LOCKed by another user, or
to execute an OPEN WITH LOCK on a file already being accessed.

INVALID OPEN.

An attempt has been made to execute an OPEN statement for a
file with no external correspondence or a file having
inconsistent parameters.

INVALID DEVICE.

An attempt has been made to execute an OPEN statement on a file
whose device description conflicts with the externally assigned
device. The device must be RANDOM and the external
correspondence must be a disk.

UNDEFINED CURRENT RECORD POINTER.

An attempt has been made to execute a Format 1 READ statement
when the current record pointer has an undefined state. This
can occur only as the result of a preceding unsuccessful READ
or START statement.

INVALID RECORD LENGTH.

An attempt has been made to execute a REWRITE statement and the
new record length is different from that of the record to be
rewritten, or to OPEN a file that was defined with a maximum
record length different from the externally defined maximum
record length, or to execute a WRITE statement that specifies a
record with a length smaller than the minimum or larger than
the maximum record size.

INVALID INDEX.

An input-output statement on an indexed organization file was
unsuccessful as a result of invalid data in the index. This
can result if the externally assigned file is not an index
organization file or if an undetected input-output error has
occurred.

RECORD LOCKED

An attempt has been made to READ a record which is locked.
This error 1is returned only if an applicable USE procedure and
a FILE STATUS data item are declared for the file. Otherwise,
the READ statement is retried until the record is unlocked.

RM/COBOL MS-DOS User's Guide - 25 -

2.5 File System Considerations

Three types of files are supported by RM/COBOL: sequential,
relative (random), and indexed sequential. These files exist on
the disk as standard DOS disk files. While users will not
typically need information about DOS files to execute RM/COBOL
programs, they are referred to the DOS Manual if further
information is desired.

Files are specified in the program's SELECT statement in a manner
consistent with the DOS filespec, of the form:

d:filename.ext

where:
'd:' is an optional drive specification. When omitted
the configured default search sequence of the drives is
used to locate the file. (See INSTALLATION PROCEDURES,
Configuring the Default Search Sequence).

‘filename' is required.

'.ext' is an optional name-extension.

2.5.1 COBOL Sequential Files

COBOL sequential files «consist of a serially accessible set of
'logical' records:; each ‘'logical' record is terminated by a
carriage-return line-feed sequence. Sequential files are
equivalent to standard DOS 'source files', and as such must contain
only ASCII text. Any attempt to write a sequential record with
binary data in the record will result in an IO error '97'.

2.5.2 COBOL Relative Files

COBOL relative files are addressable randomly by 'logical' record
number. These files exist on the disk as fixed length records.

COBOL relative file 'logical' records are internally formatted, and
can be created and/or accessed only by COBOL programs. Each
'logical' record can have a maximum length of 2048 bytes.

COBOL relative files are dynamically allocated or extended as
required by DOS.

RM/COBOL MS-DOS User's Guide - 26 -

The number of 128 byte sectors required for a COBOL relative file is
calculated as follows:

(Actual record size + 2) * R
NUMBER OF SECTORS T eeecoemcecccccccccceeccec——————
where:

R = maximum number of records expected in file.
2.5.3 COBOL Indexed Files
COBOL indexed files are created and maintained by the RM/COBOL

Runtime; implemented on the disk using DOS fixed length records.

COBOL indexed files are internally formatted, and can be created
and/or accessed only by COBOL programs.

Indexed files contain an index structure for each Kkey specified
interspersed with the data records.

COBOL indexed files are dynamically allocated or extended as required
by DOS.

The number of 128 byte sectors required for a COBOL indexed file is
calculated as follows:

NUMBER OF SECTORS

Int ((S + 33)/32) * R / 4

+ (R * 4) / Int (252/(Kn+8)) for each key
+ (R *D)/ 4 if duplicates
where:
R = maximum number of records desired
S = size of record in bytes plus two

Kn = size of Kn (in bytes)

D = number of keys that allow duplicates

RM/COBOL MS-DOS User's Guide - 27 -

2.5.4 COBOL Label Processing

The COBOL language allows the specification of the existence, and
processing, of Label records on file type devices.

The Operating System provides automatic maintenance and validation of
file specifications by name and file type. No additional Label
processing is performed unique to COBOL programs or files.

References to Label processing in the file description entry (FD),
OPEN statement, and CLOSE statement, are checked for correct syntax by
the compiler. They are largely ignored by the Runtime except that
appropriate error codes will be returned, and any applicable USE
procedures will be executed.

2.6 Runtime Memory Usage

The RM/COBOL Runtime memory allocation consists of two parts, Runtime
resident code and data, and working storage for loading compiled COBOL
object programs and assigning file buffers and Runtime control blocks
to files opened by the loaded program. The resident portion is loaded
immediately behind the resident portion of the Command Processor. The
Runtime working storage is dynamically allocated, and takes up the
remaining available RAM memory on the microcomputer, up to about 96K
bytes.

The allocated working storage is used as follows:

The main COBOL object program is loaded immediately behind the
COBOL Runtime Data. Space for COBOL overlays (SECTIONS greater
than 50) is included in this area.

Additional COBOL programs are loaded behind this main program as
they are CALLed (See the CALL statement below).

File buffers are dynamically allocated in the working storage
from high memory downward, when OPENed, and deallocated (space
recovered for use by other files) when CLOSEAd.

Assembly Language programs are loaded in memory at the address the
Runtime assigns them at load time; they will be loaded immediately
following the Runtime working storage, if enough space is available;
otherwise they will be loaded within the working storage area.

Assembly Language programs can also be 'linked-in' in behind the COBOL
Runtime. In this case they will not be dynamically loaded but will be
brought in once, when RUNCOBOL is invoked and their data space will
occupy a portion of the Cobol Runtime data area, ahead of working
storage. (See INSTALLATION PROCEDURES for details).

RM/COBOL MS-DOS User's Guide - 28 -

CHAPTER 3

INTERACTIVE DEBUG

3.1 Debug Overview

The RM/COBOL Interactive Debug is linked into the RM/COBOL Runtime and
is invoked when the wuser specifies the 'D' option on the RUNCOBOL
statement. Debug is then given control and supervises the execution
of the user's program.

3.2 User Interaction and Display
All Debug commands, and all resultant displays, are through the system
console.
Debug will request command input by a prompt of the form

nnnnnn Xxyyyy
where 'nnnnnn' are the first 6 characters of PROGRAM-ID, ‘'xx' is the
overlay number, and 'yyyy' is the hexadecimal 1location within the

specified overlay that will be executed next.

The values of 'xx' and 'yyyy' are taken directly from the Debug column
in the source listing for program 'nnnnnn'.

3.3 Debug Commands

All commands are specified by a single character, optionally followed
by one or more arguments. Optional fields are shown surrounded by
brackets:; the brackets are never entered. All numeric arguments are
in hexadecimal unless otherwise noted.

Invalid commands will be rejected with 'ERROR' displayed: corrected
input will be requested with a reprompt.
Alxx]yyyy[,nnnnnn]) Address stop.
Executes object instructions until overlay number 'xx' and
location 'yyyy' in program nnnnnn is to be executed. Debug will

regain control immediately prior to the execution of the
specified COBOL sentence, and request further command input.

RM/COBOL MS-DOS User's Guide - 29 -

S[n]

If 'xx' 1is specified, 'yyyy' must be fully four hexadecimal
digits; if 'xx' is not specified, then leading zeros are not
required for 'yyyy'. If 'nnnnnn' is omitted, it is assumed to be
the first six characters of the program~id of the currently
executing program.

Single step sentence.

Execute 'n' COBOL sentences and return to the debug monitor.

The decimal argument 'n' specifies the number of COBOL sentences
to be executed before returning the Debug.

Dxxxx,yyyy[. ,tttt] Dump by type.

Display the COBOL data item starting at hexadecimal location
'xxxx' of decimal length 'yyyy' and type 'tttt'. The values for
'xxxx', 'yyyy', and 'tttt' are directly from the first three

columns of the allocation map. 'tttt' may be one of the
following:

NSU NPS

NSS ABS

NCU ANS

NCS GRP

NBS ANSE

NSE HEX (hexadecimal)

Dump Display has the format:
xxxx tttt dddd....
where dddd = data in the specified format
Note: Only items in the currently executing program can be
displayed. This does not include linkage items.
Quit Execution.
Terminate Debug and force an immediate STOP RUN. Enter 'S' to
return to DOS.
Exit

Exit the Debugger. Continue normal execution as if the debugger
had not been invoked on the command line.

RM/COBOL MS-DOS User's Guide - 30 -

CHAPTER 4

SYSTEM CONSIDERATIONS

4.1 The ACCEPT and DISPLAY Statements

The ACCEPT and DISPLAY statements support the transfer of data between
the console and the program's data area. These statements allow the
specification of general phrases which may not be supported on every
CRT.

Phrases which are not supported will compile correctly, but will be
ignored at runtime, causing no operation to take place.

The ON EXCEPTION phrase of the ACCEPT statement is executed when an
invalid character is entered. Invalid characters include the valid
control characters (CNTR/n) below 020H, and non-ASCII characters above
and including O80H.

When an invalid character is entered, its ASCII equivalent is placed
in the specified data-name and the ON EXCEPTION phrase is executed.
To determine which control character was entered, define the data-name
as USAGE COMPUTATIONAL-1l and compare for its ASCII value.

Certain keys affect the operation of the ACCEPT statement, including:

BACKSPACE Erases the current character and moves the
cursor back one position.

CNTL-X Backspace to the beginning of the field,
erasing all characters in the field.

These key values are configurable by the wuser (See INSTALLATION
PROCEDURES, Configuring the CRT).

RM/COBOL MS-DOS User's Guide - 31 -

4.2 The CALL Statement

The CALL statement is used to load and execute an RM/COBOL or
assembly language subprogram. Once a subprogram has been called,
it may call other subprograms.

4.2.1 Memory Allocation

After execution, a subprogram remains in memory until its parent
program calls a different subprogram or until its parent program
exits and is replaced by another program. Once a subprogram is
removed from memory, all of its associated subprograms are also
removed from memory.

When called the first time, a subprogram is loaded and executed in
its initial state. However, if a subprogram which remains in
memory is called, it is executed in the state that it was in when
it last exited, except that any open files have been closed. (The
RM/COBOL Runtime automatically closes any open files when a program
EXITs.)

4.2.2 RM/COBOL Subprograms

An RM/COBOL subprogram must be a compiled program with a filename
extension of .COB. If the program being called does not have an
extension of .COB, the user must specify the extension in the CALL
statement.

4.2.3 Assembly Language Subprograms

Assembly language subprograms must be in binary format as created
by the assembler. They cannot have a filename extension of .COB
and they cannot have a file extension of .EXE unless they are
specifically in .EXE file format (output of the LINK command). 1In
all cases, an overlaid code and data segment for the assembly
language subprogram is assumed (i.e., CS=DS). CS and DS are set to
the load address at entry to the subprogram.

Assembly language subprograms are loaded by the RM/COBOL Runtime.
The T=hhhO option may be specified in the runcobol command to
protect the memory required by the subprogram. If the T=hhhO
option 1is not specified, the Runtime allocates the total memory
available for RM/COBOL Subprogram working storage, up to a 64K
working storage segment. If not enough space is available outside
the allocated working storage, the assembly language subprogram is
loaded within the remaining unused portion of the RM/COBOL working
storage. If the assembly language subprogram size exceeds the
remaining memory available, a subprogram load fail error is
returned.

Assembly language subprograms are loaded and reused according to
the same schema as for RM/COBOL Subprograms (see Memory Allocation
above). If the <calling program is reloaded in memory, or calls
another Subprogram, the assembly language subprogram will again be
reloaded when called.

RM/COBOL MS-DOS User's Guide - 32 -

Upon entry to assembly language subprograms, the stack segment base
and pointer registers SS and SP preset to a stack area of about 128
bytes, and the segment registers CS and DS are initialized to the
code segment base of the subprogram. At entry to the subprogram,
IP is equal to zero unless a linked assembly language subprogram is
being called. (See below, "Linking In Assembly Language Programs.)

At entry time to an assembly language routine register ES (base)
and BX (offset) point to the parameter address list defined by the
USING clause of the CALL statement. The first word on the list
contains the number of bytes in the list. Subsequent words are
addresses (offsets to ES) of the USING arguments: e.g., if the
length word specifies 4 bytes, there are 2 addresses following the
length word. For example:

(BX) => DW Argument List Length (n * 2)
DW USING Argument 1 (address of Argument 1, base ES)
DW USING Argument 2 (address of Argument 2, base ES)

DW USING Argument n (address of Argument n, base ES)

The format of each argument depends on its dataname PICTURE
definition; see the COBOL Language Manual, 'the PICTURE Clause'.
For an example of calling assembly language routines with the USING
clause see INSTALLATION PROCEDURES, Example Calling Sequence for
RM/COBOL~supplied Routines).

At exit time from an assembler routine, register AX may be set
non-zero to request a STOP RUN. (See Runtime Return Codes).
Assembler routines should exit back to the RM/COBOL Runtime using
an 8086 far return or an 8086 interrupt 20H.

RM/COBOL MS-DOS User's Guide - 33 -

4.3 The COPY Statement

The COPY statement provides the facility to copy (include) COBOL
source text from a user-specified file into the source program. The
complete file is copied into the program, without change, at the
location of the COPY statement.

The file to be copied 1is identified in the COBOL program by the
statement

CoOPY filename
or

COPY “d:filename.ext"
where:

'd:' is an optional drive specification. When omitted the
configured default search sequence of the drives is used to
locate the file. (See Installation Procedures, Configuring
the Default Search Sequence).

'‘filename' is required.

'.ext' is an optional name-extension. When omitted the
default '.CBL' is used.

A filename consisting only of letters and numbers {(first character
must be letter) can be written without surrounding gquotes. All other
forms must be surrounded by quotes.

Examples:

IDENTIFICATION DIVISION.

COPY STDID.
ENVIRONMENT DIVISION.

COPY "STDENVIR.TST".
DATA DIVISION.

COPY "A:STDDATA.CBL".

RM/COBOL MS-DOS User's Guide - 34 -

4.4 The WRITE...ADVANCING ZERO...Statement

The sequential WRITE statement allows control of the vertical

positioning of each 1line on the printed page with the ADVANCING
phrase.

The ... ADVANCING ZERO LINE(s) ... phrase allows overprinting on
those print devices which support this feature. 1In all cases, the
phrase will compile correctly, but may operate as though ...ADVANCING
1 LINE... was specified.

Many Line Printers automatically advance after each line is printed.
Therefore, the ...ADVANCING ZERO LINES... phrase will execute as
++.ADVANCING 1 LINE. The Compiler and Runtime can be configured to
this Line Printer operation, known as AUTO LINE FEED (See Installation
Procedures; Configuring the Line Printer). For use with line printers
that allow overprinting, the AUTO LINE FEED option should remain as
the default (null) value.

4.5 The STOP RUN numeric Statement

The RM/COBOL STOP RUN statement has an optional numeric operand which
will be returned to the Operating System in the AL register as the
Runtime Return Code. This operand, if present, should be in the range
1-127. Return codes of 0 and 128-255 are reserved for Runtime usage.

When no value is specified, a value of O (normal termination) will be
returned to the Operating System.

4.6 Printer Considerations

RM/COBOL outputs to the physical device assigned to ‘'LST' and
internally will not differentiate between any local or main printer.
The printer selected is under Operating System Control.

Any file ASSIGNed to PRINT will be "closed" on exit from the RM/COBOL
Runtime, or when an explicit c¢lose is issued from within the COBOL
program. Note that when this close operation takes place, a form-feed
character (or, if configured for no hardware form-feed, multiple
line-feeds) is output to the file to reinstate top of form. This page
eject operation is not done when CLOSE NO REWIND is specified on an
explicit close.

RM/COBOL MS-DOS User's Guide - 35 -~

CHAPTER 5

INSTALLATION PROCEDURES

5.1 1Installing RM/COBOL

Installation of RM/COBOL requires only that the object modules be
copied from the Software Distribution Diskette to the appropriate
user diskette. NOTE: 'nn' indicates the current release level,
i.e., release 1.5 will be '15'.

The modules required to compile COBOL programs are:
RMCOBOL .COM
RMCBL2nn.OVL

RMCBL3nn.OVL
RMCBL4nn.OVL

NOTE: All compiler modules must reside on the same disk, and that
disk must remain logged in during the compilation process.

The modules required to execute compiled COBOL programs are:

RUNCOBOL .COM

The files included as an example for the lihking in of assembly
language subprograms with the COBOL Runtime are:

PROCTBL.A86
PROCTBL .COM

NOTE: See “Linking In Assembly Language Programs."

As with all Software Distribution Disks, the user should save it in
a secure location in case re-creation is required.

RM/COBOL MS-DOS User's Guide - 36 -

5.2 Configuration Tables

The RM/COBOL Compiler (RMCOBOL.COM) and Runtime (RUNCOBOL.COM) can be
configured to reflect several different environment variables. These
include the default drive search sequence and the line printer
characteristics.

The procedure for modifying the tables is:

1. Backup master. Never modify original master diskette.
2. Load RMCOBOL.COM using Debug:
Debug RMCOBOL.COM

3. Patch required locations using Debug's 'E' function with
default segment (code segment values):

E<loc> <ENTER>

4. Save patched version using write function:
W

5. Repeat for RUNCOBOL.COM file.

6. Test updated versions.

RM/COBOL MS-DOS User's Guide - 37 -

5.2.1 Configuring the Default Drive Search Sequence

The RM/COBOL Compiler and Runtime can be configured to reflect the
specific DOS disk drive codes actually on-line during the compilation
or runtime process. A 17 byte table is 1located in each module,
allowing the specification of up to 16 ASCII drive codes A-P (Binary
Zero terminates table).

Output files created by the compiler or runtime, and not assigned to a
specific disk drive will be created on a drive according to the
specified search sequence as follows: Search for the filename on the
last drive logged-in (current drive), and, if not found, search the
directory of each drive, in turn, according to the search sequence in
the configuration table. When found on a particular drive, the file
is deleted and the new output file is written in its place. If the

filename is not found on any drive, the output defaults to the current
drive.

Input files are searched for in the same sequence as output files; if
not found an error will occur.

The format of the table is given below:

FORMAT :
LOC DEFAULT DESCRIPTION
029FH ‘'B','A',0 up to 16 drives
(zero terminates table) ':)
EXAMPLES : e
LOC VALUE DESCRIPTION
029FH '‘B','C','D','A',0 Four drives are indicated as being
on-line to the COBOL compiler or
runtime. These drives correspond
to the DOS drive codes. (A-D).
For those filenames with unspeci-
fied drive code, the search
sequence will be as follows:
the last drive logged in (current
drive), then drive B, drive C,
drive D, and finally drive A.
LOC VALUE DESCRIPTION
029FH 0 For files with unspecified file

names, only the current drive will
be searched.

RM/COBOL MS-DOS User's Guide - 38 -

5.2.2 Configuring the Line Printer
The COBOL Compiler and Runtime can be configured to reflect the

requirements of various line printers. This is accomplished by
patching the appropriate table entries below:

Line Printer Definitions:

LOC DEFAULT DESCRIPTION

OlE2H 50H ;Page Width-default=80
OlE3H 42H ;Page Length-default=66
OlE4H 0 :Auto Line Feed

sl=Hardware provides auto-1f
;0=No hardware auto-1f
OlESH 1 sHardware form feed
:l=hardware supports FF control code
:10=no hardware FF

5.2.3 Configuring the Tab Table

The RM/COBOL Compiler is configured to reflect the tab stop
positions 8, 12, 16, ..., to to column 72, by default. Any other
tab positions may be configured by the user by patching the table
entries below (18 bytes are reserved for the table):

Loc DEFAULT(HEX) DESCRIPTION
0lE8H 8,0¢,10,14,18,1¢C,20,24,28,2C,30,34,38,3C,40,44,48,0

iTable of tab stops (zero terminates)
;Note - compiler affected only

‘Also - tab values are converted to
ihexadecimal before entering.
i(i.e.,8,12,16... is entered as 8,0C,
:10,... etc.)

RM/COBOL MS-DOS User's Guide - 39 -

5.3 Linking In Assembly Language Programs

Assembly programs can be 'linked' in with the RM/COBOL Runtime
(RUNCOBOL module) so that each time RUNCOBOL is invoked the linked
assembly programs are also brought into memory. These programs can be
subsequently referenced by name, using the COBOL CALL statement.

In order to provide for 1linking in assembly language modules, two
steps are vrequired: creating an assembly 'Link' table (to precede the
actual assembly language routines to be linked in), and creating a new
Runtime module (RUNCOBL.COM).

The procedure for creating an assembly language 'Link' table, which
enables the Runtime to identify resident assembly language routines,
is as follows:

Refer to the model below entitled “RM/COBOL-Supplied Assembler
Routines with Link Table". This model 1is also available as an
assembly language source program called 'PROCTBL.A86' on your system.
The routines “PUTCHAR" and "GETCHAR" are wuseful functions in
interfacing to DOS, and may be retained if desired. The table at the
top of the code segment of this module must be either replaced or
extended to include the new assembly language routine names and entry
points. Note that no origin is required. At entry to the routine,
the Code and Data Segments registers are initialized to the segment
address at which the combined table and routines are loaded, so that
the beginning of the table is offset zero on CS, during the execution
of the routine. The format of the link table is as follows:

The first table entry must be a DW statement specifying the next
available offset location, i.e., that following the code and data
areas of all linked-in routines (see example):

DW (End of all program data)

After this initial entry, every table entry should be as follows:

DB (Length of Program name)
DB (Program name, ASCII characters)
DW (Program entry point)

The first Define Byte (DB) must reflect the length of the Assembly
Language program name which follows. This name must be exactly the
same as in the CALL statement of the COBOL program which refers to
this assembly program (except that trailing blanks are allowed in the
COBOL CALL statement).

The next 'n' Define Bytes (DB) is the Assembly Language program name
itself.

The Define Word (DW) is the entry point of the assembly program which
is linked in.

RM/COBOL MS-DOS User's Guide - 40 -

Additional entries may follow. There is no limit to the number of
entries in the table. The end of all table entries is signaled by
a Define Byte (DB) with a zero program name length: DB O.

For more detailed information, see example in 5.3.1 of 'Link' table
with two assembly programs.

After completing the "Link" table the following steps are required
to create a new Runtime module:

1) Assemble the "Link" table and program or programs, i.e. ASM
PROCTBL.A86 PROCTBL.OBJ. When this is done, you need to note the
length in bytes of the module (it will be listed in both the
beginning and ending lines of the program next to "MODULE_ENDS').
This value is then rounded up to the next highest 16 byte boundary
to create a number referred to in later steps as aaa0, i.e., a
length of 0033 would round up giving aaa0=0040 and OABD would round
up giving aaa0=0ACO.

2) Next you must generate a binary file through the MS-DOS "LINK"
command or by cross-assembling, i.e. LINK PROCTBL.OBJ PROCTBL.EXE.
The binary file should then have its extension other than '.EXE' or
'.COM' because of the special way later versions of MS-DOS handle
them. The copy command may be used to change its extension to any
other extension, i.e. COPY PROCTBL.EXE PROCTBL.NEW <CR>.,

3) Now the 512 byte header must be stripped off the binary file.
This header may not be present when the binary file is linked with
the RM/COBOL Runtime. It may be stripped using either the EXE2BIN
utility or by using the following procedure with the DEBUG utility
(entering the underlined information):

A>DEBUG PROCTBL.NEW<CR> - Load file

-RCX <CR> - Dump CX register

CX value - Ignore this value

taaa0<CR> - Change register length
to aaa0 (see step 1)

-W CS:0300<CR> - Write to disk

Writing aaaO bytes - short 512 bytes

-Q<CR> - exit debug

4) Finally you need to create a new RUNCOBOL.COM with the new
module included:

A>DEBUG RUNCOBOL.COM<CR> — Load RUNCOBOL.COM

—-RCX<CR> - Dump CX register

CX OvVCX - Note coriginal value

:<CR> of CX (referred to as OVCX)

-M CS:5AD0 L 1000 XXXX<CR> - Where XXXX=5ACO+aaaO
(relocate Data Segment)

-N PROCTBL.NEW<CR> - Set up name

~L CS:5ACO<CR> - Load module

RM/COBOL MS-DOS User's Guide - 41 -

-RCX<CR> - Dump CX register

CX aaa0 - Should be length of module
: XXXX<CR> Where XXXX=0VCX+aaaO

-N RUNCOBOL.COM<CR> - Set up original name
-W<CR> - Write to disk

Writing XXXX bytes

-Q<CR> - Exit debug

5.3.1 RM/COBOL-Supplied Assembler Routines with Link Table

CODE SEGMENT
;Link Table begins
;Note: CS Origin=0

DW MODULE_ENDS ;Length to end of routines
DB 7

DB 'PUTCHAR'

DW PUTCHAR_ENTRY

DB 7 ;ascii name length

DB 'GETCHAR' ;ascii name

DW GETCHAR_ENTRY sentry point

DB 0 ;table ends

PUTCHAR - Put a character to the defined punch device
The character to output is found in the byte pointed to by the
first parameter address list entry after the count word. BX
points to the parameter address list on entry to this routine.

o ne Se ne wa ne

MSPUNCH EQU 4

MSDOS EQU 21H

PUTCHAR PROC FAR

PUTCHAR_ENTRY EQU $
MOV BX,ES:2[BX]) spoint to first reference
MOV DL,ES:[BX] scharacter to output
MOV CL,MSPUNCH ;punch function
INT MSDOS $sMS-DOS Call Interrupt
XOR AX,AX :no STOP RUN request
RET ;far return to RM/COBOL

PUTCHAR ENDP

RM/COBOL MS-DOS User's Guide - 4la -

;GETCHAR - Get a character using the RS232 input request

; The character is returned to the byte pointed to by the

; first parameter address list entry after the count word. BX

; points to the parameter address list on entry to this routine.

MSRS232 EQU 14H
MSRSSTAT EQU 3
MSRSIN EQU 2

GETCHAR PROC FAR
GETCHAR_ENTRY EQU §

XOR DX, DX

MOV AH,MRSSTAT sstatus function

INT MSRS232 ;MS-DOS RS232 Interrupt
AND AH,01lH scheck for character

Jz GETCHAR ENTRY

XOR DX,DX

MOV AH,MSRSIN ;RS232 input function
INT MSRS232

MOV BX,ES:2({BX] ;point to first reference
MOV ES:(BX],AL :save in parameter

XOR AX,AX :no STOP RUN request
RET ;far return to RM/COBOL

GETCHAR ENDP

USER Routine DATA

s wo ne

MODULE_ENDS EQU $
CODE ENDS
END

RM/COBOL MS-DOS User's Guide - 42 -

5.3.2 Example Calling Sequence - RM/COBOL-Supplied Routines

The following example is given te show how the using statement
interacts with called assembly language programs. The program
called is the PUTCHAR routine, given above.

/

01 OUTPUT-CHAR PIC X.

PROCEDURE DIVISION.

CALL "PUTCHAR" USING OUTPUT-CHAR.

The byte to be output is located at the address pointed to by the
second word of the parameter address list (first word following the
count).

NOTE: If you intend to call an assembly language program on disk,
the full name of the program, including extension, must be
supplied. For example:

CALL “PUTCHAR.COM" USING OUTPUT-CHAR

RM/COBOL MS-DOS User's Guide - 43 -

5.3.3 cConfiguring the CRT

The Runtime can be configured to reflect the physical
characteristics of different CRTs. To accomplish this, one must
patch the appropriate entries described below (see your CRT manual
for the required information). See the first part of this section,
Configuration Tables, for the proper patch procedure.

5.3.3.1 Configuring the Screen Size and Default Control Keys

The locations below establish the number of characters per line and
number of lines on the screen, and the default control keys:

LABEL LOC DEFAULT DESCRIPTION

CRT.WIDTH OlFA 50H ;characters per line
CRT.LNGTH Ol1lFC 18H ;lines on screen
CRT.CDEL 01FE 08H (BS) sbackspace character
CRT.LDEL OlFF 18H (CNTL-X) ;field-delete character

RM/COBOL MS-DOS User's Guide ~ 44 -

5.3.3.2 Configuring for Line-Column Positioning

The locations below establish the algorithm and offsets used for
direct cursor positioning to a specific line and column of the screen.
Defaults shown are for ADM31l or equivalent CRT.

The value below indicates the format of the line column positioning
string used by the CRT:

LABEL LOC DEFAULT DESCRIPTION

CRT.TYPE 0200 00 ;CRT line-column format coded
;00 = Binary string is used to
H position x-y coordinates
H (used by most CRT's).
;01 = ASCII string is used
; (vtl00 or equivalent).

The value below indicates the number of cursor positions a control
character takes up on the CRT screen, normally either O or 1, where a
control character is one specifying either blink or reverse video (the
half-intensity control character is assumed to take up zero cursor
positions):

LABEL LOC DEFAULT DESCRIPTION
CRT.OVHD 201 0l ;Bytes of control char overhead

The sequence below establishes the algorithm used by the CRT for
line-column positioning. The first byte contains a count of the bytes
required in the sequence, followed by the actual codes and line-column
place holders. A maximum of 16 bytes (15 + count byte) is allowed.

LABEL LOC DEFAULT DESCRIPTION
CRT.CM 0206 4,1BH, '=' ,line,col ;:;x-y positioning string

The locations below establish the offsets within the line-column
positioning algorithm for insertion of actual line and column values
during execution.

EXAMPLE: A line offset of 3 indicates that the 3rd byte of
the string (not including the count byte) is the
starting byte into which the actual line number
will be inserted during execution.

LABEL LOC DEFAULT DESCRIPTION
CRT.LOFFS 0202 03 ;line # offset in positioning
H string (See above)
CRT.COFFS 0203 04 ;column # offset in positioning
H string (See above)

RM/COBOL MS-DOS User's Guide - 45 -

The location below represents the bias values to be added to the
actual line and column number for representation within the
line~column positioning algorithm. The bias is the offset needed to
position your cursor to line 1, position 1. If your terminal uses
zero-origin positioning, an offset of O is needed; if your terminal
uses one-origin access, then an offset of 1 is required. The values
below represent the offset needed for the ADM3l:

LABEL LOC DEFAULT DESCRIPTION
CRT.LBIAS 0204 20H ;line # bias
CRT.CBIAS 0205 20H scolumn # bias

RM/COBOL MS-DOS User's Guide - 46 -

5.3.3.3 Configuring the Control Optiosn

Each CRT function described below is in a tabular form. The first
byte contains the count of valid control codes, followed by the actual
ASCII control codes up to a maximum of 8 bytes in all.

NOTE: A count of zero (0) is required for all functions that are not
supported by the particular CRT.

CRT Control Definitions:

LABEL LOC DEFAULT DESCRIPTION
CRT.CL 0216 2,1BH, 2AH ;clear screen

CRT.CN 023E 2,0DH, OAH ;cursor next line (CR,LF)
CRT.NM 0246 2,1BH,28H ;intensity normal

CRT.NB 0256 5,1BH,28H,1BH,47H,32H ;blink on, intensity normal
CRT.NR 0266 5,1BH,28H,1BH,47H,34H ;reverse video, intensity nm
CRT.NS 0276 5,1BH,28H,1BH,47H,36H ;blink reverse, intensity nm
CRT.AL 024E 2,1BH,29H ;intensity alternate

CRT.AB 025E 5,1BH,29H,1BH,47H,32H ;blink on, intensity alt
CRT.AR 026E 5,1BH,29H,1BH,47H,34H ;:reverse video, intensity alt
CRT.AS 027E 5,1BH,29H,1BH,47H,36H ;blink reverse, intensity alt
CRT.RS 0lF0 5,1BH,47H,30H,1BH,28H ;reset sequence for all

sattributes (used after blink
;or reverse specified)

CRT.CON 0286 (o} ;cursor on

CRT,COFF 028E [¢] ;cursor off

CRT.CLFT 022E 1,08H ;cursor left (backspace)
CRT.BEEP 0296 1,07H sbell

NOTE: A reset sequence terminating a field is output to the CRT after
a functions sequence (which begins the field), as follows: after
CRT.AL (alternate intensity sequence) the resetting sequence is CRT.NM
(normal intensity), after any function sequence involving blink and/or
reverse video, the resetting sequence is CRT.RS (reset).

RM/COBOL MS-DOS User's Guide - 47 -

APPENDIX A

SAMPLE PROGRAMS

RM/COBOL MS-DOS User's Guide - 48 -

12/27/83 17:05:21 PAGE 1
SOURCE FILE: CALCXMPL.COBOL OPTION LIST: (P X

LINE DEBUG PG/LN

S - S R R R Y

1 IDENTIFICATION DIVISION.

2 PROGRAM-1ID. &
3 CALCULATOR. i
4

5 ENVIRONMENT DIVISION.

6 CONFIGURATION SECTION.

7 SOURCE~COMPUTER. RMC.

8 OBJECT-COMPUTER. RMC.

9
10 DATA DIVISION.

11 WORKING-STORAGE SECTION.
12 77 RESULT PICTURE S9(9)V9(9) VALUE ZERO.
13 77 OPERAND-1 PICTURE S9(9)V9(9).
14 77 OPERAND-2 PICTURE S9(9)Vv9(9).

15 77 WAIT-CHAR PICTURE X.
16 0l GREETING.

17 02 FILLER PICTURE X(18)
18 VALUE "CALCULATOR PROGRAM".

19 01 OPERATION-MESSAGE.
20 02 FILLER PICTURE X{37)
21 VALUE "CHOOSE YOUR OPERATION (+,~,*,/) = ".
22 01 OPERATOR PICTURE X(2).

23 01 RESULT-MESSAGE.

24 02 FILLER PICTURE X(12)
25 VALUE "RESULT IS = “.
26 02 RESULT-EDITED PICTURE -(9)9.9(9).

27 02 FILLER PIC X(4) VALUE SPACES.
28 02 OVERFLOW-FIELD PIC X(8) VALUE SPACES.
29 01 WAIT-MESSAGE.
30 02 FILLER PICTURE X(36)
31 VALUE "HIT NEWLINE TO CONTINUE (Q TO QUIT) ".
32 01 OPERAND-1-MESSAGE.

33 02 FILLER PICTURE X(12)
34 VALUE "OPERAND-1 = ",
35 01 OPERAND-2-MESSAGE.
36 02 FILLER PICTURE X(12)

37 VALUE "OPERAND-2 = ".

12/27/83 17:05:21 PAGE 2

SOURCE FILE: CALCXMPL.COBOL OPTION LIST: (P X
LINE DEBUG PG/LN AiuuButeuocunneneeneruoceoncssanaaacconssseesonncasononsassnnes
38 / EJECT
39 PROCEDURE DIVISION.
40 >0000 RESIDENT SECTION 1.
41 >0000 NOT-START.
42 >0000 GO TO DISPLAY-GREETING.
43 >0004 RE-TRY.
44 >0004 DISPLAY OPERATION-MESSAGE, LINE 2, ERASE.
45 >000C ACCEPT OPERATOR, POSITION O, PROMPT, ECHO.
46 >0014 IF OPERATOR EQUAL "+ " GO TO ADDITION.
47 >001cC IF OPERATOR EQUAL "- " GO TO SUBTRACTION.
48 >0024 IF OPERATOR EQUAL "* " GO TO MULTIPLICATION.
49 »>002C IF OPERATOR EQUAL "/ " GO TO DIVI-SION.
50 >0034 IF OPERATOR EQUAL "Q " GO TO END-RUN.
51 >003C GO TO RE-TRY.
52 >003E DISPLAY-RESULT.
53 >003E MOVE RESULT TO RESULT-EDITED.
54 >0042 DISPLAY RESULT-MESSAGE.
55 >0046 MOVE ZERO TO RESULT.
56 >004A MOVE SPACES TO OVERFLOW-FIELD.
57 »>0050 WAIT-ENTRY.
58 >0050 DISPLAY WAIT-MESSAGE.
59 >0054 ACCEPT WAIT-CHAR, POSITION O, PROMPT, ECHO.
60 >005C IF WAIT-CHAR EQUAL "Q" GO TO END-RUN.
61 >0064 GO TO RE-TRY.
62 >0066 GET-OPERANDS.
63 >0066 DISPLAY OPERAND-1-MESSAGE, LINE 4.
64 >006C ACCEPT OPERAND-1, LINE 4, POSITION 13, SIZE 10,
65 PROMPT, CONVERT.
66 >0078 MOVE OPERAND~1 TO RESULT~EDITED.
67 >007C DISPLAY RESULT-EDITED, LINE 4, POSITION 13.
68 >0084 DISPLAY OPERAND-2-MESSAGE.
69 >0088 ACCEPT OPERAND-2 , LINE 5, POSITION 13, SIZE 10,
70 PROMPT, CONVERT.
71 >0094 MOVE OPERAND-2 TO RESULT-EDITED.
72 >0098 DISPLAY RESULT-EDITED, LINE 5, POSITION 13.
73 >00A2 END-~RUN.
74 >00A2 EXIT PROGRAM,.
75 >00A6 STOP-RUN.

76 >00A6 STOP RUN 22.

12/27/83 17:05:21 PAGE 3

SOURCE FILE: CALCXMPL.COBOL OPTION LIST: (P X
LINE DEBUG PG/LN AueoBiuueveerocsosossocssonscasnssssssancncsssencsssscsnssons
77 / EJECT
78>0100AA OVERLAY-ADDITION SECTION 51.
79>0100AA ADDITION.
80>0100AA PERFORM GET-OPERANDS.
81>0100AC ADD OPERAND-1 OPERAND-2 GIVING RESULT
82 ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
83>0100BA GO TO DISPLAY-RESULT.
85>0200AA OVERLAY-SUBTRACTION SECTION 52.
86>0200AA SUBTRACTION.
87>0200AA PERFORM GET-OPERANDS.
88>0200AC SUBTRACT OPERAND-2 FROM OPERAND-1 GIVING RESULT
89 ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
8?>0200BA GO TO DISPLAY-RESULT.
92>0300AA OVERLAY-MULTIPLICATION SECTION 53.
93>0300AA MULTIPLICATION.
94>0300AA PERFORM GET-OPERANDS.
95>0300AC MULTIPLY OPERAND-1 BY OPERAND-2 GIVING RESULT
ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
97>0300BA GO TO DISPLAY-RESULT.
99>0400AA OVERLAY-DIVISION SECTION 54.
100>0400AA DIVI-SION.
101>0400AA PERFORM GET-OPERANDS.
102>0400AC DIVIDE OPERAND-1 BY OPERAND-~2 GIVING RESULT ROUNDED
103 ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
104>0400BC GO TO DISPLAY-RESULT.)
105)
106>0500AA OVERLAY-DISPLAY~GREETING SECTION 98. i
107>0500AA DISPLAY~GREETING.
108>0500AA DISPLAY GREETING.
109>0500AE GO TO WAIT-ENTRY.
110

111 END PROGRAM.

SOURCE FILE: CALCXMPL.COBOL

ADDRESS SIZE DEBUG ORDER

>0004 19 NSs 0
>0018 19 NSS o]
>002¢C 19 NSS ¢}
>0040 1 ANS o]
>0042 18 GRP [¢]
>0054 37 GRP 0
>007A 2 ANS ¢]
>007¢C 44 GRP 0
>0088 20 NSE 0
>00A0 8 ANS [¢]
>00A8 36 GRP 0
>00CC 12 GRP 0
>00D8 12 GRP 0

READ ONLY BYTE SIZE =
READ/WRITE BYTE SIZE =
OVERLAY SEGMENT BYTE SIZE
TOTAL BYTE SIZE =

O ERRORS

O WARNINGS

TYPE

NUMERIC SIGNED
NUMERIC SIGNED
NUMERIC SIGNED
ALPHANUMERIC
GROUP

GROUP
ALPHANUMERIC
GROUP

NUMERIC EDITED
ALPHANUMERIC
GROUP

GROUP

GROUP

>01Cé
>00EC
>002E

>02E0

OPTION LIST:

12/27/83
(P X

17:05:21 PAGE

NAME

RESULT
OPERAND-1
OPERAND~2
WAIT-CHAR
GREETING
OPERATION-MESSAGE
OPERATOR
RESULT-MESSAGE
RESULT-EDITED
OVERFLOW-FIELD
WAIT-MESSAGE
OPERAND-1-MESSAGE

OPERAND-2-MESSAGE

SOURCE FILE: CALCXMPL.COBOL
CROSS REFERENCE

ADDITION
DISPLAY~GREETING
'DISPLAY-RESULT
DIVI-SION
END-RUN
GET-OPERANDS
GREETING
MULTIPLICATION
NOT-START
'OPERAND~1
OPERAND-1-MESSAGE
OPERAND-2
|OPERAND-2-MESSAGE
OPERATION-MESSAGE
'OPERATOR
OVERFLOW-FIELD
OVERLAY-ADDITION
OVERLAY-DISPLAY~GREETING
OVERLAY-DIVISION
OVERLAY-MULTIPLICATION
OVERLAY-SUBTRACTION
'RESIDENT
RESULT
RESULT-EDITED
RESULT-MESSAGE
RE-TRY
STOP-RUN
SUBTRACTION
WAIT-CHAR
WAIT-ENTRY
WAIT-MESSAGE

OPTION LIST:

/DECL/

0046
0042
/0052/
0049
0050
/00627
/0016/
0048
/0041/
/0013/
/0032/
/0014/
/0035/
/0019/
70022/
/0028/
/0078/
/0106/
/0099/
/0092/
/0085/
/0040/
/0012/
/0026/
/0023/
/0043/
/0075/
0047
/0015/
/0057/
/0029/

DEST

/0079/
/0107/
0083
/0100/
0060
0080
o108
/0093/

0064
0063
0069
0068
0044
0045%
0056

0053
0053
0054
0051

/0086/

0059
0109
0058

12/27/83 17:05:21 PAGE 5
(P X

0090 0097 0104

/0073/
0087 0094 0101

0066 0081 *0088* 0095 0102
0071 0081 0088 *0095* 0102

0046 0047 0048 0049 0050
0082 *0089* *0096* *0103*

0055 *008l* *0Q088* *0095* *0102*
0066 0067 *0071* 0072

0061

0060

12/27/83 17:08:05 PAGE 1
SOURCE FILE: ERRXMPL.COBOL OPTION LIST: (P X

LINE DEBUG PG/LN L R T S

1 000010 IDENTIFICATION DIVISION.

2 000020

3 000030 PROGRAM-1ID.

4 000040 ERROR-EXAMPLES.

5 000050

6 000060 ENVIRONMENT DIVISION.

7 000070 CONFIGURATION SECTION.

8 000080 SOURCE-COMPUTER. RMC-MINI.

9 000090 OBJECT-COMPUTER. RMC-MINI.

10 000100 INPUT-OUTPUT SECTION.

11 000110 FILE-CONTROL.

12 000120 SELECT INPUT-FILE

13 000130 ASSIGN TO INPUT, INPUT-NAME;
14 000140 FILE STATUS IS INPUT~-STATUS.
15 000150 SELECT OUTPUT-FILE
16 000160 ASSIGN TO OUTPUT, OUTPUT-NAME;
17 000170 FILE STATUS 1S OUTPUT-STATUS.
18 000180

19 000190 DATA DIVISION.

20 000200 FILE SECTION.
21 000210 FD INPUT-FILE

22 000220 RECORD CONTAINS 80 CHARACTERS
23 000230 LABEL RECORD IS OMITTED.

24 000240 01 INPUT-REC.

25 000250 05 FILLER PIC X(06).

26 000260 05 INPUT-FLD PIC X(66).
27 000270 05 AREA-FLDS REDEFINES INPUT~-FLD.
28 000280 10 AREA-C PIC X(O0l).

29 000290 10 AREA-A PIC X(04).

30 000300 10 AREA-B PIC Xx(61).

31 000310 05 FILLER PIC X(08).

32 000320 FD OUTPUT-FILE
33 000330 RECORD CONTAINS 80 CHARACTERS,

34 000340 LABEL RECORD IS OMITTED.
35 000350 01 OUTPUT-REC.
36 000360 05 SEQ-FLD PIC 9(06).

37 000370 05 OUTPUT-FLD PIC X(66).

38 000380 05 FILLER PIC X(08).
39 000390 WORKING~STORAGE SECTION.

40 000400 77 INPUT-NAME PIC X(28).

41 000410 77 OUTPUT-~-NAME PIC x(28).

42 000420 77 COUNT PIC 9(06) VALUE O.
43 000430 77 LARGE-VALUE PIC X(04) VALUE "ERROR".
44 000440 77 PIC-ERROR PIC *(05).*9.

$
fdulalodel 1) PICTURE *E*E*E*E*E*E*E*E*B*E*B*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E
dokwkon 1) SCAN RESUME oo el el el Bal lat Al 1A VA Ui TR R g L L L T PR R PR PR PP

45 000450 77 INPUT-STATUS PIC X(04).
46 000460 77 OUTPUT-STATUS PIC X(02}.
47 000470 01 SEQ-VALUE PIC 9(06).

48 000480

12/27/83 17:08:05 PAGE 2

SOURCE FILE: ERRXMPL.COBOL OPTION LIST: (P X
LINE DEBUG PG/LN AuvoBuuiuissoascseooosennnsassscasscssosssssssssessssannsnasen
49 /
50 000490 PROCEDURE DIVISION.
51 >0000 000500 0100.
52 >0000 000510 DISPLAY "COBOL PROGRAM SEQUENCER",
53 000520 LINE 1 POSITION 30 ERASE.
54 >000A 000530 DISPLAY SPACES LINE 2.
55 >0010 000540 DISPLAY "INPUT FILE: .
56 >0014 000550 MOVE 3.5 TO OUTPUT-STATUS.
$ $
#x%x%% 1) MOVE *E¥E*EXE*E*E*E*E*E*EXE*E*E*E*E*E*E*E*E*E*E*E*E*E*EYE*EXE*E*E*E
*x%%% 2) SCAN RESUME *W*WAWAHAWHW*WHWAWAWAWEWAHAWAWAW WA WA WA WA WA W W WA
57 >0016 000560 ACCEPT INPUT-NAME POSITION O PROMPT ECHO.
58 >001E 000570 DISPLAY "OUTPUT FILE: ".
59 0022 000580 ACCEPT OUTPUT-NAME POSITION O PROMPT ECHO.
60 >002A 000590 OPEN INPUT INPUT-FILE.
$ $
#x*x** 1) INVALID ID *EVE*E*E*E*E
#xaax 2) SCAN RESUME *WYWYWAWAWAH*WAWAWAWAWAWAWAWAWAWAW AW AW WA W W WA WA W WA
61 >002C 000600 OPEN OUTPUT OUTPUT-FILE.
62 >0032 000610 MOVE SPACES TO OUTPUT-REC.
63 >0036 000620 MOVE O TO SEQ-VALUE.
64 >003A 000630 DISPLAY "SEQUENCING BEGUN".
65 >0040 000640 0200.
66 >0040 000650 READ INPUT-FILE AT END
$
#x#%% 1) INVALID ID *E
67 000660 GO TO 0300.
$
wxxxm 1) SCAN RESUME *WWAWYWAH*WAW*WAWAWSWHWXWAW AW W W W WA WA WA WA WA W WA WA
68 >0046 000670 PERFORM INPUT-CHECK.
$
#x%xx% 1) MUST BE PROCEDURE *E
*xxxx 1) SCAN RESUME *W*W*WHWAW*WXH*WAWAWAWA WA WA W WA W AW AW AW W AW AW AW
69 >0048 000680 ADD 10 TO SEQ-VALUE.
70 >004E 000690 MOVE SEQ-VALUE TO SEQ-FLD.
71 >0052 000700 MOVE INPUT-FLD TO OUTPUT-FLD.
72 »0056 000710 WRITE OUTPUT-REC.
73 >0062 000720 ADD 1 TO COUNT.
74 »0068 000730 GO TO 0200.
75 >006A 000740 0300.
76 >006A 000750 DISPLAY COUNT,
77 000760 * RECORDS SEQUENCED AND COPIED" POSITION O.
78 »0074 000770 CLOSE INPUT-FILE, OUTPUT-FILE.
$ $
#x%%% 1) INVALID ID *E*E*E*E*E*E¥E*E
xxxxx 2) SCAN RESUME *WXW*W*W*WAWAWAWAWAWAWAWANAWAW AW AW WA WA W WA WA WAV W AW
79 >0076 000780 STOP RUN.

12/27/83 17:08:05 PAGE 3
SOURCE FILE: ERRXMPL.COBOL OPTION LIST: (P X

LINE DEBUG PG/LN A...B

---.-..-...o..-...-....-..-‘.-.'..--...-.-..--.--.o-.-o.

80 >007A 000790 GO 7O 0150.

$
ARKAN 1) MUST BE PROCEDURE *E*E*E*B*B*E*B*E*E*E*E*E*E*E*E*E*E*B*E*E*E*E*E*E*E
TRk XK 1) SCAN RESUME *W*W*W*W*W*W*W*W*H*W*W*W*H*W*W*W*W*W*W*H*W*W*W*W*W*W*W*H
81 000800 END PROGRAM.

SOURCE FILE: ERRXMPL.COBOL

OPTION LIST:

ADDRESS SIZE DEBUG ORDER TYPE

>0000
>0006
>0006
>0006
>0007
>000B

>0050
>0050
>0056
>00A4
>00C0
>00DC
>00E2
>00E6
>00EE
>00F2

>00F4

RESERVED WORD CONFLICT *W*W*W*W*W*W*WrW*WAW*W*W

80
66
66

61

80
66
28

28

6

GRP
ANS
GRP
ANS
ANS
ANS

GRP
NSU
ANS
ANS
ANS
NSU
ANS
ANS
ANS
ANS

NSU

o © o o o o o000 [eXeN-NoXNel

o

o

FILE

GROUP
ALPHANUMERIC
GROUP
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
FILE

GROUP

NUMERIC UNSIGNED
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
NUMERIC UNSIGNED
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC

NUMERIC UNSIGNED

12/27/83
(P X

NAME

INPUT-FILE
INPUT-REC
INPUT-FLD
AREA-FLDS
AREA-C
AREA-A
AREA-B
OUTPUT~FILE
OUTPUT-REC
SEQ~FLD
OUTPUT-FLD
INPUT-NAME
OUTPUT-NAME
COUNT
LARGE-VALUE
PIC~ERROR
INPUT-STATUS
OUTPUT-STATUS
SEQ-VALUE

COUNT

ILLEGAL PERFORM *E*E*E*E*E*E*E*EE*E*E*E*E*E*E*E INPUT-CHECK

UNDEFINED PROCEDURE *E*E*E*E*E*E*E*E*E*E*E*E*E*E 0150

VALUE ERROR *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E LARGE-VALUE

FILE STATUS ERROR *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E INPUT-FILE

17:08:05

PAGE

12/27/83 17:08:05 PAGE 5
SOURCE FILE: ERRXMPL.COBOL OPTION LIST: {(P X

ADDRESS SIZE DEBUG ORDER TYPE NAME

READ ONLY BYTE SIZE = >0182

READ/WRITE BYTE SI2E = >0138

OVERLAY SEGMENT BYTE SIZE = >0000

TOTAL BYTE SIZE = >02BA
11 ERRORS

8 WARNINGS

|

SOURCE FILE: ERRXMPL.COBOL
CROSS REFERENCE

AREA-A
AREA-B
AREA-C
AREA-FLDS
COUNT
INPUT-CHECK
INPUT-FILE
INPUT-FLD
INPUT-NAME
INPUT-REC
INPUT-STATUS
LARGE-VALUE
OUTPUT-FILE
QUTPUT-FLD
OUTPUT-NAME
OUTPUT-REC
QUTPUT-STATUS
PIC-ERROR
SEQ-FLD
SEQ-VALUE
0100

0150

0200

0300

OPTION LIST:

/DECL/

/0029/
/0030/
/0028/
/0027/
/0042/
0068
/0012/
/0026/
0013
/0024/
0014
/0043/
/0015/
/0037/
0016
/0035/
Q017
/0044/
/0036/
/0047/
/0051/
0080
/0065/
0067

DEST

0073

/0021/
70027/
/0040/

/0045/

/0032/
0Q71
/0041/
*0062%
/0046/

0070
0063

0074
/0075/

12/27/83

(P X

0076

0071
Q057

0061

0059
0072

0069

0070

17:08:05

PAGE

6

APPENDIX B

TECHNOTES

RM/COBOL MS-DOS User's Guide - 49 -

RM/COBOL TECH NOTE
cTglg September 28, 1983

Interaction of function keys, Fl-Fl2,
with RM/COBOL source programs
under the MS-DOS operating system

In certain hardware environments running MS-DOS, the function keys
F1-F12 do not interact well with Release 1 of RM/COBOL. This is
because the mechanism for detecting function key input, the "ON
EXCEPTION" phrase of the RM/COBOL "ACCEPT" verb, supports a one-byte
encoding of special keys, whereas the MS-DOS function key encoding
is two-byte (the first byte being a hexadecimal g8, the second byte
being a valid ASCII code such as hexadecimal 3B (';' = F1 encoding)
or 41 ('A' = F7 encoding). When the ON EXCEPTION phrase of the
RM/COBOL ACCEPT verb is triggered by the special character byte
(hexadecimal @4) the second byte remains as "queued-up" input to the
very next RM/COBOL ACCEPT statement. An additional problem is that
every function key returns the same special character, namely
hexadecimal #f, to the data-name associated with the ON EXCEPTION
phrase (see RM/COBOL Language Manual, the ACCEPT verb). (Note that
Release 2 of RM/COBOL will provide enhanced support for special keys
which are encoded as multiple bytes of keyboard input).

In order to interact successfully with the MS-DOS function keys, the
following patch to the RM/COBOL Runtime is recommended. This patch
to Release 1 version of RM/COBOL will mimic the effect of the
configurable function key encoding which will be available with
Release 2.

NOTE: An earlier version of this TechNote, CT@lg Revision 1,
contained a different patch. The effect of the revision 1 patch was
to implement function key 3 as a system cancel key (<Control-C>
Key) . This problem is fixed in the revision 2 patch included below.
If the earlier patch has been applied to the RM/COBOL Runtime on
your system, it should be backed off before applying the revision 2
patch given here.

Patch:
Enter underlined information

DEBUG RUNCOBOL.COM<CR>

old New
ESP1A<CR> F7 g6 34 E8 8B CA (enter <space> after new data)
#E 8¢ g8 98 90 98
<CR>
E1AA8<CR> g8 9g 3c_pp
75 95
E8 1D 38
2C 3a
F7 96 34
gE 8
C3 <CR>
W<CR>
Q<CR>

RM/COBOL CT@l# revision $2 1

The effect of this patch will be to place the decimal equivalent of
the function key number into the data name associated with the ON
EXCEPTION phrase of the RM/COBOL ACCEPT verb. Thus, pressing
function ey 1 will result in a “1" being placed into the associated
data name, pressing Key 2 will result in a "2" being placed into the
associated data name, etc. Note that pressing function Key 3 will
now have the effect of a "3" being placed into associated data name
(see previous note). Function Keys 1-12 are available as documented
in Table A. Note that the same value will be placed into associated
data name under Release 2, as long as the proper configuration for
the function keys is provided to the Release 2 RM/COBOL Runtime.

TABLE A
Value in
Function Key Code Generated ON EXCEPTION data name
1 ﬂﬂH, n;u 1
2 ﬂﬂH, n<n 2
3 ggﬂ' ll=ll 3
4 ﬂﬂH, u>n 4
5 ﬂﬂﬂ, u?u 5
6 ﬁgﬂ' n@u [
7 @ggH, "A" 7
8 gga, "BY 8
9 ﬂﬂﬂ, ncu 9
14 ggu, "Dp" 18
11 pga, "E" 11
12 #gu, "F" 12

NOTE: To back off the CT#lP Revision 1 patch either copy in a
backup copy of the RM/COBOL Runtime, or perform the following.

Patch:
Enter underline information

DEBUG_RUNCOBOL .COM<CR>

0old New
E4FAS5<CR> E8 g% CcB 94 74 5D 3C fa
<CR>
W<CR>
Q<CR>

RM/COBOL CT@lf revision #2 2

RM/COBOL TECH NOTE
cTgll August 12, 1983

ACCEPT verb with Non-Destructive Immediate Carriage Return

for MS-DOS

In the release 1 version of RM/COBOL for the Model 2#@9 under MS-DOS
2.9, the standard "ACCEPT" verb returns blanks or zeroces to the
specified field being entered if no characters are entered before
the carriage return, This characteristic has the quality of being
"destructive" to a field being updated. That 1is, if a wuser is
reviewing a record on his CRT with many fields but wishes to modify
only one or two of those fields there is no simple way within
RM/COBOL to "skip" over fields that remain unchanged. The only way
to keep the field unchanged is to re-enter the characters 1in the
field, or to add logic at the COBOL source level.

The following patch provides an optional feature that changes the
destructive nature of the immediate carriage return in an ACCEPT
statement to "non-destructive" (i.e., pressing an immediate carriage
return <CR>, or function key Fl-Fn, while "ACCEPTing" to a data-name
with characters already in the data-name, no longer has the effect
of overwriting the characters with blanks or zeroes).

Note: This feature of having a non-destructive immediate carriage
return is a subset of the ACCEPT WITH UPDATE option which will be
available with release 2 of RM/COBOL. Although the ACCEPT WITH
UPDATE will allow the user to selectively choose which method of
ACCEPT he wishes to use, the effect of this patch will be to
unilaterally select the non-destructive method. If the user wishes
to retain the functionality of the standard release 1 RM/COBOL
ACCEPT verb, he should copy his RUNCOBOL.COM file to a new name
before applying the patch.

Patch: (Enter underlined information)

A> DEBUG RUNCOBOL.COM<CR>
E3A60<CR> A3 C2 fC E8 4D _E4 (enter <space> after new data)
88 75 §2
Af C6 g#C 59 5B E9
F6 D@ 8E EA
<CR>

E1EBB<CR> g8 g9 98 A3 C2 gc

W<CR>
Q<CR>

RM/COBOL CT@ll revision #3 1

(i

Cobol

RM/COBOL_Lanquage TRS-80 ° RM/COBOL Language

RM/COBOL

COBOL LANGUAGE MANUAL

RM/COBOL Language TRS-80 ° RM/COBOL_Lanquage

PREFACE

This document contains the information required to develop
COBOL language programs using the Ryan-McFarland Corporation
RM/COBOL* Compiler. This document is reference in nature
and assumes the user is familiar with the COBOL language.

The reader is specifically referenced to the RM/COBOL User's
Guide applicable to the Operating System to be used.

- iii -

RM‘COBOL Lanquage TRS-80 ® RM‘COBOL Lanquage

ACKNOWLEDGEMENT

Much of the material in this manual is extracted from the
ANSIX3.23-1974 COBOL Standard. Accordingly, the following
acknowledgement is made as required in that document.

COBOL is an industry language and is not the property of any
company or group of companies, or of any organization or
group of organizations.

No warranty, expressed or implied, is made by any
contributor or by the CODASYL Programming Language Committee
as to the accuracy and functioning of the programming system
and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted
material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation),
Programing for the UNIVAC I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand
Corporation; 1IBM Commercial Translator Form No.
F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5268-2768, copyrighted 196§ by Minneapolis-Honeywell

have specifically authorized the use of this material in
whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar
publications.

RM‘COBOL Language TRS’BD ®

II.

TABLE OF CONTENTS

INTRODUCTION . veeeverecvcoaseaonnnna ceereseenes
INTRODUCTION TO COBOL. ccseseooseosososnsosnoses
What is COBOL? .t veeetsceccenssoncconnenes

The History of COBOL....cvccu.n ceseeancens
The Standardization of COBOL.:.eeeoeeoonn

WOrAS .. veeeeoeneeosononcanns seeerecennne

Brackets and Braces........ sessesesenenen
EllipSe@S.icetetseecnecesencesccnasansnnnas
Punctuation...v.ceverereneroenenacnoasnoes
Special Characters.....ceeieeveerancnones

System Dependent Information.............
THE STRUCTURE OF THE COBOL LANGUAGE.....c¢ec...

THE LANGUAGE STRUCTURE....... cecesrestasesnees

Character Set....cieveveessons crsecsssenn
SeparatorS...eeeesseccceasssvsesssssnnnsns
Character-Strings........ cesecsseseasenes

COBOL WOrdsS..eeeecececccanasa ceessssssennn
USeEr WOrdAS.ieeveeevesocssssansosnscncesnes
Reserved WOrds.cuoeeeeeeeeeveeoeccaennenns
LiteralsS.iieeceseseasssscessscssscsssssonne

Picture String....ceveeeee tedsettesanenne
Comment-Entry...ccceeeeeeeececnans ceense e
System NamesS...oeeoececeass ceesesersccass

THE PROGRAM STRUCTURE.......cccierececcencnass

Source Format......ccceeeencasa e esesenns
Statements......c.00 ceesesesssssssesanan
SeNtenCeS...iesesstecocssosossscssoessosas
Clauses and Entries.....ceveeeeenas ceeean
ParagraphS..ceececcececccenaas ceseacasens
SEeCtiONS.ieeersesssescraeasosscssnsoncanas
DiviSiOnNS.ceeeeccesenconans teesessessansea

THE COPY STATEMENT.....0tettereocenssccsosncncas

- vii -

Table of Contents

Page

NN NNV O U W

Table of Contents

III.

Iv.

IDENTIFICATION DIVISION...:cevoesconcncanans .

INTRODUCTION. .cocevevccnaccacns .

PROGRAM IDENTIFICATION..........

The
the

PROGRAM-ID Paragraph...

....... cee v e

AUTHOR, INSTALLATION, DATE-WRITTEN,

SECURITY Paragraphs...

ENVIRONMENT DIVISION...ceseosncossesccscsccosns

INTRODUCTION. . ¢ ceecessscessasosscocssccssscnass

CONFIGURATION SECTION..ccccceecosscccnccsssonse
The SOURCE-COMPUTER Paragraph.....cceeece.
The OBJECT-COMPUTER Paragraph............
The SPECIAL~NAMES Paragraph..c.cececeescss

INPUT-OUTPUT SECTION...ccocosescoscsscnsnsansa

The
The
The
The
The

FILE-CONTROL Paragraph.

ss s ecees e

Sequential File Control Entry........
Relative File Control Entry..........
Indexed File Control Entry.......cee.

I-O CONTROL Paragraph..

DATA DIVISION....vceavososaccnns

INTRODUCTION. ... cccevcessvsossnsacssnsossanocnas

FILE SECTION..ccceeceeccccccaccssosacssacssssncse

The
The
The
The
The
The

File Description Entry.
BLOCK CONTAINS Clause..
RECORD CONTAINS Clause.
LABEL RECORD Clause....
VALUE OF Clause........
DATA RECORDS Clause....

es s e s e s 000000

s e s s s s 0e 000000

sses s s 0s s 00

WORKING-STORAGE SECTION...cccceececcsccccssane

LINKAGE SECTION...cceceevscccnan

RECORD DESCRIPTION ENTRY....ccoccececvccossnscse
Level-NumbersS...cceseeeccenscccscccnsccse
Elementary ItemS...ccececsccccccccccsencas

- viii -

TRS-80° RM/COBOL_Langquage

33
35

35
36

36

37
39

39
40
49
42

44
44
45
47
49
52

53
55

57
58
59
60
61
61
62

63
63
64

64
64

RM‘ COBOL Language TRS'BO ®

VI.

Table of Contents

77 LEVEL DESCRIPTION ENTRY....'tceeeeesannnoeas

THE DATA DESCRIPTION ENTRY.

The Level-Number..

L N A N)

e 00 s s e e s e

The Data name or FILLER ClauSe@.......c...
The REDEFINES ClauUS€.ccceeeencecencnnn .
The PICTURE Clause..... ceeertssessenannan .
The USAGE Clause.......... cetrserrenanana
The SIGN Clause€.......... csececnssncsncnas
The OCCURS Clause......... cecececsesaneas
The SYNCHRONIZED ClausSe@....c.ceececeonees
The JUSTIFIED ClauUS€..cieeeeeeenecanns e
The BLANK WHEN ZERO Clause...... ceetnseae
The VALUE IS ClauS€...vceeveceacenes ceeen
The RENAMES Clause......... cestesseananen
DATA STRUCTURES ... itteeerecseceaancacnncnossns
Classes of Data...eeeeeses ceecevessanens e
Representation of Numeric ItemsS..........
Representation of Algebraic Signs........
Standard Alignment Rules.......cviuecn.. oo
QUALIFICATION. . .cvccveeess et esesesescenessanena
SUBSCRIPTING. . cevveeeoscnnan esesesessecnenana
INDEXING.::e0sun c et et et et et eeeneanennns esesesss
IDENTIFIER. ..t cestvececccccncsannsns tesccscens
CONDITION-NAME....cc0.c® escsesssecsvenneanas oo
TABLE HANDLING....vccverceanan ceccseesessancnaa

PROCEDURE DIVISION.:::cteteoeseosnessonoasna ceees
THE PROCEDURE DIVISION..:tesveecsoccsoonsances
Structure.....ccvveteincnann teeessevsevune

Declaratives....
Procedures......

Execution

- ix -

.......

1g2
193
105
146
197
1p8
149

113

115
116
117
117
117

118

SEGMENTATION. .ccseotevscnaana Pessesrcsscscenes
SegmentsS...ceecececcccccecccrsrsccnceanns oo
Segmentation Classification....ceeceecann
Segmentation Control....ceceeeeccacvessas
Restrictions of Program Flow...ceceeeeene

THE USE STATEMENT....c.ccteevscoccccaces cereeae

ARITHMETIC STATEMENT...ccccoesoocsccncococscaan
Arithmetic Expressions....... ceesecsessens
Arithmetic Operators.......... cevessenaes
Formation and Evaluation Rules...........

CONDITIONALS . cceessvoserecscssasssssossscssacs cee
Relation Condition....sieeeeecenneceacaces
Class ConditioN...ceeesoesocescnasence e
Condition-name (Conditional Variable)....
Switch-Status Condition.....ecececeee cees
Complex Conditions....... cteeesesessaenn .

Negated Simple ConditionS.....cccceeevees

Combined and Negated Combined
Conditions..cececese crecsssessssaans

Condition Evaluation Rules.....cceeveeeen

SEQUENTIAL ORGANIZATION INPUT-OUTPUT..........

FUNCLLiON. et eeveereoosssccosanncnnns ceeen
Organization........... cesetseresessoan ..
ACCeSS MOQE.ceeaconssacssocsossossnnonnas
Current Record Pointer....c.eeeeececeses .

I-0 StatuS..ceeceerecnccrcevsccncccnossans

RELATIVE ORGANIZATION INPUT-OUTPUT....eoccesee
FUNCEION. e e eeeravcoesasossesscnccocnansans

Organization.....ceeveeecnccncnnccnnces .o
AcCesSS MOAeS..cveseersrsocsonssccanes ceses
Current Record Pointer...ieeesceaceacenes
I-O0 Status.eeceecveen eevsesecrsssssaseenas
The INVALID KEY Condition.......... cesese
The AT END Condition........... cseerasans
INDEXED ORGANIZATION INPUT-OUTPUT......cc.c.. ..
FUNCLiON. . i eetevoovsoasascnncasns ceesereene
Organization....eeecececcens creceseransse
Access MOdeS...ceesersonsocreccannase ceeces

Current Record Pointer.....ceeeeceecccccss

Table of Contents T™TRS-80 ° RM/COBOL_Language

129
12¢
121
121
122

123

125
125
126
126

129
129
132
133
133
134
135

135
136

137
137
137
137
137
138

141
141
141
141
142
142
145
146

147
147
147
147
148

RM/COBOL Language TRS-80 ° Table of Contents

I-O0 Status........ teesescss et s st eencanses
The INVALID KEY Condition......eeeeeeee..
The AT END Condition....... Ceeetencennans

PROCEDURAL STATEMENTS........ seeseessssssesens
ACCEPT...FROM Statement.......ccveeeneeeon
ACCEPT Statement (Terminal I-0O)...vevev...
ADD Statement............. tesetecncssscsae
ALTER Statement......cicieeveeenn csesesas
CALL Statement.....cceeeeveeene seesosanasn
CLOSE Statement (Sequential I-O)....ec...
CLOSE Statement (Relative and Indexed I-0)
COMPUTE Statement........ceeeeeeenn ceeres
DELETE Statement (Relative and Indexed I-0)
DISPLAY Statement (Terminal I-O0).........
DIVIDE Statement....cccce.. cececsseenenas
EXIT Statement....cceeeeee cesteseenennane
GO TO Statement.......ccveenu. cesesssssens
IF Statement.....cecveeeeee sesssesreannas
INSPECT Statement....cceeeee cetecssnsnnas
MOVE Statement.......... cesssensansssssss
MULTIPLY Statement......... cseecsesennsena
OPEN Statement (Sequential I-0)...... PN
OPEN Statement (Relative and Indexed I-O.
PERFORM Statement....cceceveeeeasve cecsesssnas
READ Statement (Sequential I-0)....coc...
READ Statement (Relative and Indexed I1-0.
REWRITE Statement (Sequential I-0).......
REWRITE Statement (Relative and Indexed I-0)
SET Statement.........cc.... cesevssssenae
START Statement (Relative and Indexed I-0)
STOP Statement.......cccveeeann cesesssrene
SUBTRACT Statement........ cssesacnasscsss
UNLOCK Statement......... ceeseccescssssae
WRITE Statement (Sequential I-0)..cecce..

APPENDIX A:

APPENDIX B:

WRITE Statement (Relative and Indexed I-0)
ERROR MESSAGES......... cseeseenanes ceee
RESERVED WORDS......c00. tesscsess e
GLOSSARY .. vevteeercecaconnes cecsssesecn

APPENDIX C:

APPENDIX D:

COMPOSITE LANGUAGE SKELETON.....ceeee..

- xi -

148
151
152

153
153
154
161
165
166
168
17¢8
172
174
175
179
182
183
184
186
194
199
201
205
209
221
224
229
231
233
235
237
238
242
243
246

249
259
265
293

RM/COBOL Language TRS-80 ° Introduction to COBOL

INTRODUCTION

——RM/COBOL Lanquage __ TRg.gO ® —latroduction to COBOL

INTRODUCTION TO COBOL

What is COBOL?

COBOL (COmmon Business Oriented Language) is an English
oriented programming language designed primarily for
developing business applications on computers. It is
described as English oriented because its free form enables
a programmer to write in such a way that the final result
can be read easily and the general flow of the logic can be
understood by persons not necessarily as closely allied with
the details of the problem as the programmer himself.

Because COBOL is a programming language it can be translated
to serve as communication between the programmer and the
computer. The COBOL program (the source program) which has
been written by the programmer is input to the COBOL
compiler. The COBOL compiler then translates the COBOL
program into a machine readable form (the object program.)

Although each computer has its own unique COBOL compiler
program, an industry-wide COBOL effort has resulted in a
degree of compatibility so that a COBOL source program can
be exchanged among different computers of one manufacturer
or among computers of different manufacturers.

A COBOL program is both a readable document and an efficient
computer program. Throughout the study of the COBOL
language, it is important to keep these two basic
capabilities of COBOL in mind and to observe the close
relationship between them.

The readability factor of the COBOL language facilitates
communication not only between programmer and management,
but also among programmers, with a minimum of additional
documentation. The readability factor need not affect the
other equally important capability of constituting an
efficient computer program. It is precisely here that the
attention of a good COBOL programmer is centered. He can
produce a solution in the form of a well-integrated COBOL
program by combining the following: knowledge of the
problem, programming techniqgue, capability of the equipment,
and familiarity with the available elements of the COBOL
language.

Introduction to COBOL ™RS-80 ° RM/COBOL Language

The History of COBOL

Development of the COBOL programming language is a
continuing process performed by the Programming Language
Committee (PLC) of the COnference on DAta SYstems Languages
(CODASYL). This committee is made up of representatives of
computer manufacturers and computer users.

The first version of the COBOL programming language to be
published by CODASYL was called COBOL-6F. The second
version, called COBOL-61, contained changes in the
organization of the Procedure Division and thus was not
completely compatible with COBOL-64.

In 1963 the third version, called COBOL-61 Extended, was
released. It was basically COBOL-61 with the addition of
the sort feature, the addition of the report writer feature,
and the modification of the arithmetics to include multiple
receiving fields and the CORRESPONDING option.

The fourth version of the COBOL programming language,
COBOL-65, consists of COBOL-61 Extended with the inclusion
of a series of options to provide for the reading, writing,
and processing of mass storage files and the addition of
table handling features.

Beginning in 1968 the CODASYL COBOL Programming Language
Committee began to report its developmental work in a
Journal of Development. The first report to be published
was the CODASYL COBOL Journal of Development -- 1968. this
journal is the official report of the CODASYL COBOL
Programming Language Committee and it documents the
developmental activities of CODASYL through July 1968.
COBOL-68 is based on COBOL-65 with certain additions and
deletions.

Additional COBOL Journal of Development reports were
published in 1969, 197¢ and 1973. Each documented the
developmental activities of CODASYL from the previous
report, resulting in continually varying COBOL definitions.

RM/COBOL_Language TRS-80 ° Introduction to COBOIL

The Standardization of COBOL

In September 1962 the American National Standards Institute
(ANSI) set up a committee to work on the definition of a
standard COBOL programming language. This standardization
effort was based on the technical content of COBOL as
defined by CODASYL. In August 1968 an American National
Standard COBOL was approved which was based upon the
developmental work of CODASYL through January 1968. This
first version was called American National Standard COBOL
1968.

In May 1974 a revision of American National Standard COBOL
was approved. This revision, called American National
Standard COBOL 1974, is based upon the developmental work of
CODASYL through December 1971. The COBOL programming
language and the compiler described in this document is
based on the American National Standard COBOL 1974.

Introduction to COBOL _ TRS.80 ® —RM/COBOL Landuage

CONVENTIONS USED IN THIS MANUAL

This manual presents the language definition and { (»
capabilities of COBOL in a generally accepted syntax -
consistent with the 1974 American National Standard COBOL
document. As a result, COBOL Syntax is specified by formats
employing special notation.

Words

All underlined uppercase words are key words and are
required when the functions of which they are a part are
used. Uppercase words which are not underlined are optional
and may or may not be present in the source program.
Uppercase words, whether underlined or not, must be spelled
correctly. .

Lowercase words are generic terms used to represent COBOL

words, literals, PICTURE character-strings, comment-entries,

or a complete syntactical entry that must be supplied by the

user. When generic terms are repeated in a general format,

a number or letter appendage to the term serves to identify
that term for explanation or discussion.

Brackets and Braces

When a portion of a general format is enclosed in brackets,
[1, that portion may be included or omitted at the user's
choice. Braces, {}, enclosing a portion of a general format
means a selection of one of the options contained within the
braces must be made. In both cases, a choice is indicated
by vertically stacking the possibilities. When brackets or
braces enclose a portion of a format, but only one
possibility is shown, the function of the brackets or braces
is to delimit that portion of the format to which a
following ellipsis applies. 1If an option within braces
contains only reserved words that are not key words, then
the option is a default option (implicitly selected unless
one of the other options is explicitly indicated).

RM/COBOL Language TRS-80 ° Introduction to COBOL

Ellipsis
QA" The ellipsis (...) represents the position at which
Ui repetition may occur at the user's option.

Punctuation

The punctuation characters comma and semicolon are shown in
some formats. Where shown in the formats, they are
optional and may be included or omitted by the user. 1In the
source program these two punctuation characters are
interchangeable and either may be used anywhere one of them
is shown in the formats. Neither one may appear immediately
preceding the first clause of an entry or paragraph.

If desired, a semicolon or comma may be used between
statements in the Procedure Division.

Paragraphs within the Identification and Procedure
Divisions, and the entries within the Environment and Data
Divisions must be terminated by the separator period.

Special Characters

The characters '+', '-', '>', '<', '=', when appearing in
formats, although not underlined, are required when such
formats are used.

System Dependent Information

Selected features in ANSI COBOL are intended for definition
by the implementor, to accomodate the capabilities and
restrictions of the host system. These system dependent
items are summarized in the COBOL Users Guide.

RH‘ COBOL Language TRS'BD ® TRUCTURE

II

THE STRUCTURE OF THE COBOL LANGUAGE

RM/COB
/COBOL Language TRS-80 ° Character Set

THE LANGUAGE STRUCTURE

The smallest element in the COBOL language is the character.
A character is a digit, a letter of the alphabet, or a
symbol. A COBOL word is one possible result obtained when
one or more COBOL characters are joined in a sequence of
contiguous characters. Just as English words are determined
by rules of spelling, so COBOL words are formed by following
a specific set of rules.

Using the COBOL rules of grammer, the COBOL words and COBOL
punctuation characters are combined into statements,
sentences, paragraphs, and sections. When writing normal
English, a failure to follow the rules of grammar and
sentence structure may cause misunderstanding; the same is
true when writing COBOL. It must be emphasized that a
thorough knowledge of the rules of COBOL structure is a
prerequisite to writing a workable COBOL program.

Character Set

The COBOL character set consists of fifty one characters:

Digits g through 9
Letters A through 2

Punctuation Blank (or space)

Comma

Semicolon

Period

Quote

Left parenthesis

Right parenthesis

Se ~e s

-~ -~

Special Greater

Less than

Plus

Minus (or hyphen)
Asterisk

Slash (or Stroke)
Equal

Currency

VN %1+ AV

-11 -

Character Set TRS-80 ° RM/COBOL Language

These characters determine the structure of a COBOL program.
In some constructs, such as comments, other characters may
be used but they have no grammatical meaning.

Characters are combined to form either a separator or a
character-string.

-12 -

RM/COBOL L.
/ anguage TRS-80 °© Character Set

The COBOL character set is a proper subset of the ASCII
character code set native to the computer. The complete
character set may be used only within non numeric literals
and comments. The chart below gives the hexadecimal and
decimal codes for the complete character set.

Hexadecimal Decimal Hexadecimal Decimal
Character Value Value Character Value Value
Space 20 32 @ 49 64

! 21 33 A 41 65
" 22 34 B 42 66
23 35 C 43 67
$ 24 36 D 44 68
% 25 37 E 45 69
& 26 38 F 46 79
' 27 39 G 47 71
(28 49 H 48 72
) 29 41 I 49 73
* 2A 42 J 4A 74
+ 2B 43 K 4B 75
’ 2C 44 L 4c 76
- 2D 45 M 4D 77
. 2E 46 N 4E 78
/ 2F 47 o] 4F 79
g 30 48 P 59 8y
1 31 49 Q 51 8l
2 32 5@ R 52 82
3 33 51] 53 83
4 34 52 T 54 84
5 35 53 4] 55 85
6 36 54 v 56 86
7 37 55 W 57 87
8 38 56 X 58 88
9 39 57 Y 59 89
: 3a 58 2 SA og
; 3B 59 (SB 91
< 3c 62 / 5C 92
= 3D 6l] SD 93
> 3E 62 - SE 94
? 3F 63 - SF 95

- 13 -

Separators TRS-80 ® RM(COBOL Lanquage

Separators

A separator is a string of one or more punctuation
characters.

Punctuation characters belong to the following set:

Space

Comma

Equal Sign

Left parenthesis

Period

Quotation Mark (double)
Right parenthesis
Semicolon

2 ~ U~

~. o~

Separators are formed according to the following rules:

1. A space is a separator. Anywhere a space is used as a
separator, more than one space may be used.

2. Comma, semicolon, and period are separators when
immediately followed by a space. These separators may
appear only when explicitly permitted.

3. Parentheses are separators which may appear only in
balanced pairs of left and right parentheses delimiting
subscripts, indices, arithmetic expressions or
conditions.

Left parentheses must be preceded by a separator space
or left parenthesis.

Right parenthesis must be followed by one of the
separators:
space, period, semicolon, comma or right parenthesis.

4, Quotes are separators which may appear only in balanced
pairs delimiting the nonnumeric literals except when
the literal is continued.

An opening quotation mark must be immediately preceded
by a space or left parenthesis.

A closing quotation mark must be immediately followed

by one of the separators: space, comma, semicolon,
period or right parenthesis.

- 14 -

RM
/COBOL Language TRS-80 °© Separators

5. The separator space may optionally immediately precede
all separators except:

As specified by reference format rules.

As the separator closing quotation mark. 1In this case,
a preceding space is considered as part of the
nonnumeric literal and not as a separator.

The separator space may optionally immediately follow
any separator except the opening quotation mark. 1In

this case, a following space is considered as part of
the nonnumeric literal and not as a separator.

Any punctuation character which appears as part of the
specification of a PICTURE character-string or numeric
literal is not considered as a punctuation character, but
rather as a symbol used in the specification of that PICTURE
character-string or numeric literal. PICTURE
character-strings are delimited only by the separators
space, comma, semicolon, or period.

These rules do not apply to the characters within nonnumeric
literals, picture strings, or comments.

Character-Strings

A character-string is a sequence of one or more characters
that form a COBOL word, literal, picture string, or comment.
Q character-string is delimited by separators.

COBOL Words

A COBOL word is a character-string of not more than 3¢
characters which form either a user word or a reserved word.
All words are one or the other.

- 15 -

User Words TRS-80 °© RM/COBOL_Language

User Words

User words are composed of the alphabetic characters, the
numbers, and the hyphen character. A user word must not
begin or end with a hyphen. With the exception of
paragraph-name, section-name, level-number and
segment-number, all user-defined words must contain at least
one alphabetic character. There are twelve types of user
words:

program-name condition-name
file-name index-name
record-name alphabet-name
data-name text-name
paragraph-name level-number
section-name segment-number

Program-Name

The program-name identifies the COBOL source and object
program. The name must contain at least one alphabetic
character. Only the first 6 characters are associated with
the object program.

File-Name

File-names are the internal names for files accessed by the
source program. They are not necessarily the same as the
external names given to the files. File-names must contain
at least one alphabetic character and must be unique.

Record-Name

Record-names are used to name data records within a file.
They must contain at least one alphabetic character and, if
not unigue, must be made unique by qualification with the
file name.

Data—-Name

A group of contiguous characters or a word of binary data
treated as a unit of data is called a data item, named by a
data-name. A data-name must contain at least one alphabetic
character. References to data items must be made unique by
qualification or the appending of subscripts (or indices) or
both. Complete unique references to data items are called
identifiers.

- 16 -

RM/COBOL Language TRS-80 ° User Words

Paragraph-Name

A paragraph-name is a procedure name that identifies the
beginning of a set of COBOL procedural sentences. If not
unique, a paragraph-name must be made unique by
qualification with a section-name.

Section-Name
A section-name is a procedure name that identifies the

beginning of a set of paragraphs. Section-names must be
unique.

Condition-Name

A condition-name may be defined in the SPECIAL-NAMES
paragraph within the Environment Division or in a
level-number 88 description within the Data Division.

A SPECIAL-NAMES condition-name is assigned to ON STATUS or
OFF STATUS of one of eight system software switches.

A level-number 88 condition-name is assigned to a specific
value, set of values, or range of values within a complete
set of values that a data item may assume. The data item
itself is called a conditional variable.

A condition-name is used only in conditions as an
abbreviation for the relation condition which assumes that
the associated switch or conditional variable is equal to
one of the set of values to which that condition-name is
assigned.

Index-Name
An Index-name names an index associated with a specific

table. It must contain at least one alphabetic character and
must be unique.

Alphabet-Name

An alphabet-name is used to specify a character code set.
It must contain at least one alphabetic character and must
be unique.

-17 -

User Words TRS-80 °® RM/COBOL_Lanquage

Text-Name

A text-name is the name of a COBOL library text file. It
must correspond exactly to a valid file access-name as
described in the operating system documentation.

Level-Number

A level-number is used to specify the position of a data
item within a data hierarchy. A level-number is a one- or
two-digit number in the range g1-49, 66, 77 or 88.
Level-numbers 66, 77 and 88 identify special properties of a
data description entry.

Segment-Number

A segment-number specifies the segmentation classification
of a section. It is a one- to two-digit number in the range
g1-99.

- 18 -

RM/COBOL Language TRS-80 ° Reserved Words

Reserved Words

The structure of COBOL governs the use of certain COBOL
words called reserved words. Reserved words, recognized by
the COBOL compiler, aid the compiler in determining how to
generate a program. A programmer cannot devise a reserved
word for a COBOL program; he must use the word designated
by the format of the language. A reserved word must not
appear as a user-defined word within a program. A list of
all reserved words recognized by the compiler is shown in
Appendix B.

Five kinds of reserved words are recognized by the compiler:

Key words

Optional words
Connectives
Figurative constants
Special-characters

Key Words

Key words are required elements of COBOL formats. Their
presence indicates specific compiler action.

Optional Words

Optional words are optional elements of COBOL formats.
Their presence has no effect on the object program.

Connectives
The connectives OF and IN are used interchangeably to
connect qualifiers to a user word. The words AND and OR are

logical connectives and are used in the formation of
conditions.

Figurative Constants

Figurative constants identify commonly used constant values.

- 19 -

Reserved Words TRS-80 ® RM(COBOL Lanquage

These constant values are generated by the compiler
according to the context in which the references occur.
Note that figuratives represent values, not literal
occurrences. Thus QUOTE cannot be used to delimit a
nonnumeric literal, SPACE is not a separator, and so forth.
Singular and plural forms of figuratives are equivalent and
may be used interchangeably.

ZERO
ZEROS
ZEROES

Represents the value §# or one or more zero (f)
characters, depending on context.

SPACE

SPACES

Represents one or more space () characters.

HIGH-VALUE
HIGH-VALUES

Represents one or more of the highest characters in the {
collating sequence (hexadecimal FF).

LOW-VALUE

LOW-VALUES

Represents one or more of the lowest characters in the
collating sequence (hexadecimal @g).

QUOTE

QUOTES

Represents one or more quote (") characters.

- 28 -

RM/COBOL Language TRS-80 °© Reserved Words

ALL literal

Represents one or more of the characters comprising the
literal. The literal must be either a nonnumeric literal or
a figurative constant. When a figurative constant is used,
the word ALL is redundant.

When a figurative constant represents a string of one or
more characters, the length of the string is determined by
the compiler from context according to the following rules:

1. When a figurative constant is associated with
another data item, as when the figurative constant
is moved to or compared with another data item,
the string of characters specified by the
figurative constant is repeated character-by
character on the right until the size of the
resultant string is equal to the size in
characters of the associated data item. This is
done prior to and independent of the application
of any JUSTIFIED clause that may be associated
with the data item.

2. When a figurative constant is not associated with
another data item, as when the figurative constant
appears in a DISPLAY or STOP statement, the length
of the string is one character.

A figurative constant may be used wherever a literal appears
in a format, except that whenever the literal is restricted

to having only numeric characters in it, the only figurative
constant permitted is ZERO (ZEROS, ZEROES).

Each reserved word which is used to reference a figurative
constant value is a distinct character-string with the
exception of the construction 'ALL literal' which is
composed of two distinct character-strings.

Special Characters

The special character words are the arithmetic operators and
relation characters:

Plus sign (indexing)
Minus Sign (indexing)
Greater than

Less than

Egual to

nAv i +

- 21 -

Literals TRS-80 ° RM/COBOL Language

Literals

A literal is a character-string whose form determines its
value. Literals are either nonnumeric or numeric.

Nonnumeric Literals

A nonnumeric literal is
quotes. Any characters
used. Quote characters
two contiguous quotes.

string itself excluding
each contiguous pair of

a character-string enclosed in

in the COBOL character set may be
within the string are represented by
The value of the literal is the

the delimiting quotes and one of
embedded quotes. The value of the

literal may contain from 1 to 2847 characters.

Examples:
Literal

" AGE? n
LR TWENTY" " ? "

mnmran

Numeric Literals

Value

AGE?
"TWENTY"?
illegal (odd number of quotes)

A numeric literal represents a numeric value, not a
character-string. Numeric literals are composed according

to the following rules:

1. The literal must contain from 1 to 18 digits.

2, The literal may contain a single plus or minus sign if
it is the first character.

3. The literal may contain a single decimal point if it is
not the last character. The decimal point must be

represented with a

comma if the DECIMAL-POINT IS COMMA

phrase is specified in the SPECIAL-NAMES paragraph.

Examples:

1234
+1234
-1.234

.1234
+.1234

- 22 -

RM/COBOL Language Picture Strin
323 TRS-80° =

Picture String

A picture string consists of certain combinations of
characters from the COBOL character set used as symbols.
Any punctuation character appearing as part of a picture
string is considered to be a symbol, not a punctuation
character.

Comment-Entry

A comment-entry is an entry in the Identification Division
that may contain any characters from the computer's
character set.

System names

System names identify certain hardware or software system
components. System names consist of device-names and
switch-names.

Device-Names Component

PRINT printer or print file
INPUT input only device
OUTPUT output only device
INPUT-OUTPUT input-output device
RANDOM disc

Switch-Names Component

SWITCH-1

. software switches

SWITCH-8

- 23 -

Source Format RM/COBOL Language

TRS-80°

THE PROGRAM STRUCTURE

Source Format

COBOL programs are accepted as a sequence of formatted lines
(or records) of 8§ characters or less. Each line is divided
into five areas:

Columns Area

1-6 sequence number
7 indicator

8-11 A

12-72 B

73-8¢ identification

The sequence number and identification areas are used for
clerical and documentation purposes. They are ignored by
the compiler.

The indicator area is used for denoting line continuation,
comments, and debugging.

Areas A and B contain the actual program according to the /
following rules: Q'g

1. Division headers, section headers, paragraph headers,
section-names, and paragraph-names must begin in area
A.

2, The Data Division level indicator FD and level-numbers
#l and 77 must begin in area A. Other level-numbers
may begin in area A or area B, although B is
preferable.

3. The key word DECLARATIVES and the key words END
DECLARATIVES, precede and follow, respectively, the
declaratives portion of the Procedure Division. Each
must appear on a line by itself and each must begin in
area A and be followed by a period and a space.

4. Any other language element must begin in area B unless
it immediately follows, on the same line, an element in
area A.

- 24 -

RM/COBOL Language Source Format

TRS-80°

Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more
than one line, it may be continued by starting subsequent
line(s) in area B. These subsequent lines are called the
continuation lines(s). The line being continued is called
the continued line. Any word or literal may be broken in
such a way that part of it appears on a continuation line,
according to the following rules:

1. A hyphen in the indicator area of a line indicates that
the first nonblank character in area B of the current
line is the successor of the last nonblank character of
the preceding line without any intervening space.
However, if the continued line contains a nonnumeric
literal without closing quotation mark, the first
nonblank character in area B on the continuation line
must be a quotation mark, and the continuation starts
with the character immediately after that quotation
mark. All spaces at the end of the continued line are
considered part of the literal. Area A of continuation
line must be blank.

2, If there is no hyphen in the indicator area of a line,
it is assumed that the last character in the preceding
line is followed by a space.

Blank Lines

A blank line is one that is blank in the indicator, A and B
areas. A blank line can appear anywhere in the source
program, except immediately preceding a continuation line
with a hyphen in the indicator area.

Comment Lines

A comment line is any line with an asterisk (*) in the
indicator area of the line. A comment line can appear as
any line in a source program after the Identification
Division header. Any combination of characters from the
computer's character set may be included in area A and area
B of that line. The asterisk and the characters in area A
and area B will be produced on the listing but serve as
documentation only.

- 25 -

Statements TRS-80 ° RM/COBOL Language

Debugging Lines

A debugging line is any line with a D in the indicator area
of the line. Any debugging line that consists solely of
spaces from area A to the identifier area is considered to
be a blank line.

A program that contains debugging lines must be
syntactically correct with or without the debugging lines.

A debugging line will be considered to have all the
characteristics of a comment line if the debug option is not
specified at compiler invocation.

Successive debugging lines are allowed. Continuation of
debugging lines is permitted, except that each continuation

line must contain a D in the indicator area, and character
strings may not be broken across two lines.

Statements

COBOL statements always begin with a key word called a verb.
There are three kinds of statements: directive,
conditional, and imperative.

A directive statement specifies action to be taken by the
compiler during compilation. The directive statements are:

The COPY and USE statements.
A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action
of the object program is dependent on this truth value. The
conditional statements are:

An IF statement.

A READ statement with the AT END or INVALID KEY phrase.

- 26 -

RM(COBOL Language TRS-80 ® Statements

A DELETE, REWRITE or START statement with the INVALID KEY
phrase.

A WRITE statement with the INVALID KEY phrase.

An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT) with the SIZE ERROR phrase.

An imperative statement specifies an unconditional action to
be taken by the object program. The imperative statements
are:

A READ statement without the AT END or INVALID KEY
phrase.

A DELETE, REWRITE or START statement without the
INVALID KEY phrase.

A WRITE statement without the INVALID KEY phrase.

An arithmetic statement (ADD, COMPUTE, DIVIDE,
MULTIPLY, SUBTRACT) without the ON SIZE ERROR phrase.

An ACCEPT, ALTER, CLOSE, DISPLAY, EXIT, GO, INSPECT,
MOVE, OPEN, PERFORM, SET or STOP statement.

Whenever the term imperative-statement appears in the format
of a COBOL verb, it refers to one or more consecutive
imperative statements. The sequence ends with a period
separator or an ELSE associated with an IF verb.

Sentences

A sentence is a sequence of one or more statements
terminated by the period separator. There are three kinds
of sentences: directive, conditional, and imperative.

A directive sentence may contain only a single directive
statement.

- 27 -

Statements TRS-80 ° RM/COBOL_Lanquage

A conditional sentence is a conditional statement,
optionally preceded by a sequence of imperative statements,
terminated by a period followed by a space.

An imperative sentence is one or more imperative statements
terminated by a period separator.

Clauses and Entries

An entry is an item of descriptive or declaratory nature
composed of consecutive clauses. Each clause specifies an
attribute of the entry. Clauses are separated by space,
comma, or semicolon separators. The entry is terminated by
a period separator.

Paragraphs

A paragraph is a sequence of an arbitrary number, which may

be zero, of sentences or entries. 1In the Identification and
Environment Divisions, each paragraph begins with a reserved
word called a paragraph header. In the Procedure Division,

each paragraph begins with a user-defined paragraph-name.

Sections

A section is a sequence of an arbitrary number, which may be
zero, of paragraphs in the Environment and Procedure
Divisions and a sequence of an arbitrary number, which may
be zero, of entries in the Data Division. 1In the
Environment and Data Divisions, each section begins with
reserved words called a section header. In the Procedure
Division, each section begins with a user-defined
section-name.

- 28 -

RM/COBOL Language TRS-80° COPY Statement

Divisions

Each COBOL program consists of four divisions; each is
composed of paragraphs or sections. These are the
Identification, Environment, Data and Procedure divisions,
in that order. All divisions are required. Each division
begins with a group of reserved words called a division
header.

THE COPY STATEMENT

The COPY statement provides the facility for copying text
from user-specified files into the source program. Text is
copied from the file without change. The effect of the
interpretation of the COPY statement is to insert text into
the source program, where it will be treated by the compiler
as part of the source program.

COBOL library text is placed on the COBOL library as a
function independent of the COBOL program and according to
operating system techniques.

FORMAT
COPY Text-name.

The COPY statement must be preceded by a space and
terminated by the separator period. There must not be any
additional text in area B following the separator period.

Text-name is the external identification of the file
containing the text to be copied. 1Its format conforms to
the rules for filename (or pathname) construction of the
host operating system. If the external identification

- 29 -

COPY Statement TRS-80 ® RM/COBOL_Language

contains any characters that are not letters or digits, or
if the first character is not a letter, then the text-name
must be written as a nonnumeric literal and enclosed in
quotation marks.

A COPY statement may occur in the source program anywhere a
character string or separator may occur except that a COPY
statement must not occur within a COPY statement.

The compilation of a source program containing COPY
statements is logically equivalent to processing all COPY
statements prior to the processing of the resulting source
program.

The effect of processing a COPY statement is that the
library text associated with taxt-name is copied into the
source program, logically replacing the entire COPY
statement, beginning with the reserved word COPY and ending
with the punctuation character period, inclusive.

The library text is copied unchanged.

Debugging lines are permitted within library text. If a
COPY statement is specified on a debugging line, then the
COPY statement will be processed only if the debug option
has been specified in the compiler invocation options.

The text produced as a result of processing a COPY statement
may not contain a COPY statement.

The syntactic correctness of the library text cannot be
independently determined. The syntactic correctness of the
entire COBOL source cannot be determined until all COPY
statements have been completely processed.

- 3¢ -

RM/COBOL Language TRS-80 ¢ COPY Statement

Library text must conform to the rules for COBOL source
format.

COPY Examples:

FILE-CONTROL.
COPY FLCTRL.

PROCEDURE DIVISION.
COPY "INPUTP.COBOL".

- 31 -

RM/COBOL Language IDENTIFICATION DIVISION

TRS-80°

III

IDENTIFICATION DIVISION

- 33 -

RM/COBOL Language IDENTIFICATION DIVISION

TRS-80°

INTRODUCTION

The Identification Division must be included in every COBOL
source program. This division identifies both the source
program and the resultant object program. In addition, the
user may include other commentary information.

FORMAT

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.
[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry) ...}

(DATE-WRITTEN. [comment-entryl] ...l

[SECURITY. [comment-entry] ...}

PROGRAM IDENTIFICATION

The Identification Division must begin with the reserved
words IDENTIFICATION DIVISION followed by a period and a
space.

Paragraph headers identify the type of information contained
in the paragraph. The name of the program must be given in
the first paragraph, which is the PROGRAM-ID paragraph. The
other paragraphs are optional and may be included at the
user's choice, in the order of presentation shown.

- 35 -

PROGRAM-ID Paragraph RM/COBOL Language

TRS-80 °

The PROGRAM-ID Paragraph

The PROGRAM-ID paragraph, containing the program-name,
identifies the source program, the object program and all
listings pertaining to a particular program. A program-name
is a user-defined word made up of only those characters from
the word set.

A program-name cannot exceed 8 characters in length, and
must contain at least one alphabetic character located in
any position within the program-name. Each program-name
must be unique.

The AUTHOR, INSTALLATION, DATE-WRITTEN, SECURITY
Paragraphs

The AUTHOR, INSTALLATION, DATE-WRITTEN, and SECURITY
paragraphs are optional. The programmer may use these
paragraphs to document information pertaining to the
paragraph header.

The comment-entry may be any combination of characters from
the computer's characters set. The continuation of the
comment-entry by the use of the hyphen in the indicator area
is not permitted; however, the comment-entry may be
contained on one or more lines.

- 36 -

RM/COBOL Language TRS-80 ° ENVIRONMENT DIVISION

Iv

ENVIRONMENT DIVISION

- 37 -

RM/COBOL Language SOURCE-COMPUTER Paragraph

TRS-80 °

INTRODUCTION

The Environment Division describes the hardware
configuration of the compiling computer (source computer)
and the computer on which the object program is run (object
computer). It also describes the relationship between the
files and the input/output media.

The Environment Division must be included in every COBOL
source program.

There are two sections in the Environment Division: the
Configuration Section and the Input-Output Section.

FORMAT

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer—name.

OBJECT-COMPUTER. computer-name.

[SPECIAL-NAMES. special-names-entryl.

[INPUT-QUTPUT_ SECTION.

FILE-CONTROL. {file-control-entry} ...

[I-O-CONTROL. input-output-control-entryll].

CONFIGURATION SECTION

The Configuration Section deals with the characteristics of
the source computer and the object computer. This section
is divided into three paragraphs:

- 39 -

SOURCE-COMPUTER Paragraph RM/COBOL Language

TRS-80°

the SOURCE-COMPUTER paragraph, which describes the
computer configuration on which the source program is
compiled

the OBJECT-COMPUTER paragraph, which describes the Q;Q
computer configuration on which the object program
produced by the compiler is to be run

the SPECIAL-NAMES paragraph, which relates names used
by the compiler to user-names in the source program.

The SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph identifies the computer upon
which the program is to be compiled.

FORMAT

SOURCE-COMPUTER. computer-name.

Computer-name is a user-defined word and is only commentary.

The OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph identifies the computer on ’Q;)
which the program is to be executed.
FORMAT
OBJECT-COMPUTER. computer-name
[,MEMORY SIZE integer {WORDS }]
{CHARACTERS }
{MODULES)
[,PROGRAM COLLATING SEQUENCE IS alphabet-namel].

Computer-name is a user-defined word and is only commentary.

The MEMORY SIZE definition is treated as commentary.

- 48 -

RM/COBOL Language SOURCE-COMPUTER Paragraph
z TRS-80 ° =

The PROGRAM COLLATING SEQUENCE clause specifies the program
collating sequence to be used in determining the truth value
of any nonnumeric comparisons. The Program Collating

Sequence clause is treated as commentary; the collating
sequence is always ASCII.

- 41 -

SPECIAL-NAMES Paragraph RM/COBOL Language

TRS-80°

The SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph relates names used by the
compiler to user-names in the source program.

FORMAT

[SPECIAL-NAMES. [, switch-name
{ON STATUS IS cond-name-1 [,OFF STATUS IS cond-name-2]}]...
{OFF STATUS IS cond-name-2 [,ON STATUS IS cond-name-l]}

[, alphabet-name IS {STANDARD-1}]...
{NATIVE }

[,CURRENCY SIGN IS literal-1]

[,DECIMAL-POINT IS COMMA] .]

Switch-name may be SWITCH-1, ..., SWITCH-8.

At least one condition-name must be associated with each
switch-name given. The status of the switch is specified by
condition-names and interrogated by testing the
condition-names.

- 42 -

RM/COBOL Language SPECIAL-NAMES Paragraph

TRS-80°

The alphabet-name clause provides a means for relating a
name to a specified character code set and/or collating
sequence. The alphabet-name definition is treated as
commentary; the collating sequence is always ASCII.

The literal which appears in the CURRENCY SIGN IS literal
clause is used in the PICTURE clause to represent the
currency symbol. The literal is limited to a single
character and must not be one of the following characters:

digits # through 9;

alphabetic characters A, B, ¢, D, L, P, R, S, V, X, 2,
or the space;

special characters '*', '+', "-' v v v v v
l)l, ln" l/l’ r=1

If this clause is not present, only the currency sign ($) is
used in the PICTURE clause.

The clause DECIMAL-POINT IS COMMA means that the function of

comma and period are exchanged in the character-string of
the PICTURE clause and in numeric literals.

- 43 -

INPUT-OUTPUT SECTION RM/COBOL Language

TRS-80 °

INPUT-OUTPUT SECTION

The INPUT-OUTPUT section names the files and external media (;9
required by an object program and provides information i
required for transmission and handling of data during

execution of the object program. This section is divided

into two paragraphs:

the FILE-CONTROL paragraph which names and associates
the files with external media.

the I-O-CONTROL paragraph which defines special control
techniques to be used in the object program.

FORMAT

[INPUT-OUTPUT SECTION.

FILE-CONTROL.

{file-control-entry!} ...

[I-O-CONTROL. :
I-O-control-entry]] (;;2

The FILE-CONTROL Paragraph

The FILE-CONTROL paragraph names each file and allows
specification of other file-related information.

FORMAT

FILE-CONTROL. {file-control-entry} ...

The content of the file-control-entry is dependent upon the
organization of the file named.

- 44 -

RM/COBOL Language Sequential File Control

TRS-80 °

The Sequential File Control Entry

FORMAT
SELECT file-name

ASSIGN TO device-type, {"external-file-name®}
{data-name-1 }

[;ORGANIZATION IS_SEQUENTIAL]

[;ACCESS MODE IS SEQUENTIAL]

[;FILE STATUS IS data-name-2].

The SELECT clause must be specified first in the file
control entry. The clauses which follow the SELECT clause
may appear in any order.

Each file described in the Data Division must be named once
and only once as file-name in the FILE-CONTROL paragraph.
Each file specified in the file control entry must have a
file description entry in the Data Division.

The ASSIGN clause specifies the association of the file
referenced by file-name to a storage medium.

Device-type must be one of the device names INPUT,
INPUT-OUTPUT, OUTPUT, PRINT, or RANDOM according to the
operations to be performed.

External-file-name specifies the file access name. It can
be from one to thirty characters in length and must be
enclosed in quotation marks. A name longer than thirty
characters will be diagnosed as an error. The name may
contain any sequence of characters supported by the
operating system for file access names.

Data-name-1 must be defined in the Data Division as a data
item of category alphanumeric and must not be defined in the
Linkage Section. 1Its value at the time of an OPEN statement
execution will be used as the file access name. Data-name-1l
may be qualified.

- 45 -

Sequential File Control RM/COBOL Language

TRS-80 °

The ORGANIZATION clause specifies the logical structure of a
file. The file organization is established at the time a
file is created and cannot subsequently be changed.

Records in the file are accessed in the sequence dictated by
the file organization. This sequence is specified by
predecessor-successor record relationships established by
the execution of WRITE statements when the file is created
or extended.

When the ORGANIZATION clause is not specified, ORGANIZATION
IS SEQUENTIAL is implied.

The ACCESS MODE clause specifies the order in which records
are read or written.

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

When the FILE STATUS clause is specified, a value will be
moved by the operating system into the data item specified
by data-name-2 after the execution of every statement that
references that file either explicitly or implicitly. This
value indicates the status of execution of the statement.

Data-name-2 must be defined in the Data Division as a
two-character data item of the category alphanumeric and
must not be defined in the File Section. Data-name-2 may be
qualified.

- 46 -

RM/COBOL Language Relative File Control

TRS-80 °

The Relative File Control Entry

FORMAT
SELECT file-name

ASSIGN TO RANDOM, {"external-file-name"}
{data-name-1 }

sORGANIZATION IS RELATIVE

[:ACCESS MODE IS { SEQUENTIAL [,RELATIVE KEY IS data-name-2]}}]
{ {RANDOM} ,RELATIVE KEY IS data-name-2 }
{{DYNAMIC} }

[;FILE STATUS IS data-name-3].

The SELECT clause must be specified first in the file
control entry. The clauses which follow the SELECT clause
may appear in any order.

Each file described in the Data Division must be named once
and only once as file-name in the FILE-CONTROL paragraph.
Each file specified in the file control entry must have a
file description entry in the Data Division.

The ASSIGN TO RANDOM clause specifies the association of the
file referenced by file-name to a storage medium.

External-file-name specifies the file access name and must
be enclosed in quotation marks. It can be from one to
thirty characters in length. A name longer than thirty
characters will be diagnosed as an error. The name may
contain any characters supported by the operating system for
file access names.

Data-name-1 must be defined in the Data Division as a data
item of category alphanumeric and must not be defined in the
Linkage Section. 1Its value at the time of an OPEN statement
execution will be used as the file access name.

Data-name-1 may be qualified.

- 47 -

—=Relative File Control TRS-80 ® ————BM/COBQL Language ...

The ORGANIZATION IS RELATIVE clause specifies the logical
structure of a file. The file organization is established
at the time a file is created and cannot subsequently be
changed.

All records stored in a relative file are uniquely
identified by relative record numbers. The relative record
number of a given record specifies the record's logical
ordinal position in the file. The first logical record has
a relative record number of one (1), and subsequent logical
records have relative record number of 2, 3, 4, ...n.

The ACCESS MODE clause specifies the order in which records
are to be accessed.

When the ACCESS MODE IS SEQUENTIAL, records in the file are
accessed in the sequence dictated by the file organization.
This sequence is the order of ascending relative record
numbers of existing records in the file.

If the ACCESS MODE IS RANDOM, the value of the RELATIVE KEY
data item indicates the record to be accessed.

If a relative file is to be referenced by a START statement,
the RELATIVE KEY phrase must be specified for that file.

When the ACCESS MODE 1S DYNAMIC, records in the file may be
accessed sequentially and/or randomly.

Data-name-2 must not be defined in a record description
entry associated with that file-name. The data item
referenced by data-name-2 must be defined as an unsigned
integer. Data-name-2 may be gqualified.

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

When the FILE STATUS clause is specified, a value will be
moved by the operating system into the data item specified
by data-name-~3 after the execution of every statement that
references that file either explicitly or implicitly. This
value indicates that status of execution of the statement.

Data-name-3 must be defined in the Data Division as a
two-character data item of the category alphanumeric and
must not be defined in the File Section.

- 48 -

—RM/CORBOL Lanauade _ TRS.gO ® —Indexed File Control

The Indexed File Control Entry

FORMAT

SELECT file-name

ASSIGN TO RANDOM, ({"external-file-name"}
{data-name-1 }

[;ORGANIZATION IS INDEXED

[;ACCESS MODE IS {SEQUENTIAL}]
{ RANDOM }
{DYNAMIC }

sRECORD KEY IS data-name-2

[;ALTERNATE RECORD KEY IS data-name-3 [WITH DUPLICATES]]...

[;FILE STATUS IS data-name-4].

The SELECT clause must be specified first in the file
control entry. The clauses which follow the SELECT clause
may appear in any order.

Each file described in the Data Division must be named once
and only once as file-name in the FILE-CONTROL paragraph.

Each file specified in the file control entry must have a
file description entry in the Data Division.

The ASSIGN TO RANDOM clause specifies the association of the
file referenced by file-name to a storage medium.

External-file~name specifies the file access name and must
be enclosed in quotation marks. It can be from one to
thirty characters in length. A name longer than thirty
characters will be diagnosed as an error. The name may
contain any characters supported by the operating system for
file access names.

Data-name-1 must be defined in the Data Division as a data
item of category alphanumeric and must not be defined in the

- 49 -

—Indexed File Coptrol TRS-80 ® —BM/COBOL Language

Linkage Section. 1Its value at the time of an OPEN statement
execution will be used as the file access name. Data-name-1
may be qualified.

The ORGANIZATION IS INDEXED clause specifies the logical
structure of a file. The file organization is established
at the time a file is created and cannot subsequently be
changed.

The ACCESS MODE clause specifies the order in which records
are to be accessed.

When the ACCESS MODE IS SEQUENTIAL, records in the file are
accessed in the sequence dictated by the file organization.
For indexed files this sequence is the order of ascending
record key values within a given key of reference.

If the ACCESS MODE IS RANDOM, the value of the RECORD KEY
data item indicates the record to be accessed.

When the ACCESS MODE IS DYNAMIC, records in the file may be
accessed sequentially and/or randomly.

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

The RECORD KEY clause specifies the record key that is the
prime record key for the file. This prime record key
provides an access path to records in an indexed file.

An ALTERNATE RECORD KEY clause specifies a record key that
is an alternate record key for the file. This alternate
record key provides an alternate access path to records in
an indexed file.

The data description of data-name-2 and data-name-3 as well
as their relative locations within a record must be the same
as that used when the file was created. The number of
alternate keys for the file must also be the same as that
used when the file was created.

The data items referenced by data-name-2 and data-name-3
must each be defined as a data item of the category
alphanumeric within a record description entry associated
with that file-name.

- 56 -

——RM/COBOL Languade TRS.80 © —Indexed File coptrol

Neither data-name-2 nor data-name-3 can describe an item
whose size is variable.

Data-name-3 cannot reference an item whose leftmost
character position corresponds to the leftmost character
position of an item referenced by data-name-2 or by any
other data-name-3 associated with this file.

Data-name-2 and data-name-3 may be qualified.

The WITH DUPLICATES phrase specifies that the value of the
associated alternate record key may be duplicated within any
of the records in the file. If the WITH DUPLICATES phrase
is not specified, the value of the associated alternate
record key must not be duplicated among any of the records
in the file.

When the FILE STATUS clause is specified, a value will be
moved by the operating system into the data item specified
by data-name-4 after the execution of every statement that
references that file either explicitly or implicitly. This
value indicates the status of execution of the statement.

Data-name-4 must be defined in the Data Division as a
two-character data item of the category alphanumeric and
must not be defined in the File Section.

- 51 -

——1-0 CONTROL Paraarach TRSs-80 ° ——RM/COBOL Language

The I-O CONTROL Paragraph

The I-O CONTROL paragraph specifies the memory area which is | b
to be shared by different files. i

FORMAT
I-O-CONTROL.

[; SAME AREA FOR file-name-l [, file-name-2] ...] ...
The I-O-CONTROL paragraph is optional.
The SAME AREA clause specifies that two or more files are to
use the same memory area during processing. The area being
shared includes all storage area assigned to the files
specified; therefore, it is not valid to have more than one
of the files open at the same time.
More than one SAME clause may be included in a program;
however, a file-name must not appear in more than one SAME

AREA clause.

The files referenced in the SAME AREA clause need not all { ﬂ)
have the same organization or access. &

- 52 -

RH‘ COBOL Lang uage TRS‘BD ® DATA DIVISION

v

DATA DIVISION

- 53 =

RM/COBOL_Language TRS-80 © Introduction

INTRODUCTION

The Data Division describes the data that the object program
is to accept as input, to manipulate, to create, or to
produce as output. Data to be processed falls into three
categories:

That which is contained in files and enters or leaves
the internal memory of the computer from a specified
area or areas.

That which is developed internally and placed into
intermediate or working storage, or placed into
specific format for output reporting purposes.

Constants which are defined by the use.

The Data Division, which is one of the required divisions in
a program, is subdivided into three sections:

The FILE SECTION defines the structure of data files.
Each file is defined by a file description entry and
one or more record descriptions. Record descriptions
are written immediately following the file description
entry.

The WORKING-STORAGE SECTION describes records and
noncontiguous data items which are not part of external
data files but are developed and processed internally.
It also describes data items whose values are assigned
in the source program and do not change during the
execution of the object program.

The LINKAGE SECTION in a program is meaningful if and
only if the object program is to function under the
control of a CALL statement, and the CALL statement in
the calling program contains a USING phrase.

The Linkage Section is used for describing data that is
available through the calling program but is to be
referred to in both the calling and the called program.
No space is allocated in the program for data items
referenced by data-names in the Linkage Section of that
program. Procedure Division references to these data

- §5 -

Introduction TRS-80 © RM/COBQI._Language

items are resolved at object time by equating the
reference in the called program to the location used in
the calling program. In the case of index-names, no
such correspondence is established. Index-names in the
called and calling program always refer to separate
indices.

Data items defined in the Linkage Section of the called
program may be referenced within the Procedure Division
of the called program only if they are specified as
operands of the USING phrase of the Procedure Division
header or are subordinate to such operands, and the
object program is under the control of a CALL statement
that specifies a USING phrase.

FORMAT

DATA DIVISION.

[FILE SECTION.

[file-description-entry
[record-description-entry] ...} ...])

[WORKING-STORAGE SECTION.

[77-level-description-entry] ...]
[record-description-entry]

[LINKAGE SECTION.

[77-level-description-entry] ...]]
[record-description-entry]

- 56 -

RM/COBOL_Language TRS-80 ° FILE SECTION

FILE SECTION

The File Section header is followed by a file description
entry consisting of a level indicator (FD), a file-name and
a series of independent clauses. The FD clauses specify the
size of the logical and physical records, the presence or
absence of label records, the value of label items, and the
names of the data records which comprise the file. The
entry itself is terminated by a period.

In a COBOL program the file description entry (FD)
represents the highest level or organization in the File
Section.

FORMAT

FILE SECTION.

[file-description-entry
[record-description-entry] ...] ...

- 57 -

File Descrigtion g'!!;EYTRS'BO ® Bu‘s;“g“!l llanglaggg

The File Description Entry

The File Description furnishes information concerning the
physical structure, identification, and record name
pertaining to a given file.

FORMAT
D file-name

[;BLOCK CONTAINS [integer-1 TO] integer-2 {RECORDS }]
{CHARACTERS }

{ ;RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

sLABEL, {RECORD IS } {STANDARD}
{RECORDS ARE } {(CMITTED)

(;VALUE OF LABEL IS [literal-1]]

[;DATA {RBCORD IS } data-name-l [,data-name-2]...].
{RBCORDS ARE }

The level indicator FD identifies the beginning of a file
description and must precede the file-name.

The clauses which follow the name of the file are optional
in many cases, and their order of appearance is not
significant.

One or more record description entries must followed the
file description entry.

A file description entry must end with a period separator.

- 58 -

RM/COBOL Langquage TRS-80 ® BLOCK CONTAINS Clause

The BLOCK CONTAINS Clause

Q@V The BLOCK CONTAINS clause specifies the size of a physical
record.

FORMAT

BLOCK CONTAINS [integer-1 TO) integer-2 {RECORDS }
{CHARACTERS}

This clause is required except when:

A physical record contains only one complete logical
record.

The device assigned to the file has only one physical
record size.

The device assigned to the file has a standard record
size, although the device may have more than one
physical record size. 1In this case, the absence of
this clause denotes the standard physical record size.

The size of the physical record may be stated in terms of
RECORDS, unless one of the following situations exist, in
which case the RECORDS phrase must not be used:

In mass storage files where logical records may extend
across physical records.

The physical record contains padding.

Logical records are grouped in such a manner that an
inaccurate physical record size would be implied.

When the word CHARACTERS is specified, the physical record
size is specified in terms of the number of character
positions required to store the physical record, regardless
of the types of characters used to represent the items
within the physical record.

If only integer-2 is shown, it represents the exact size of
the physical record. If integer-1 and integer-2 are shown,
they refer to the minimum and maximum size of the physical

record, respectively.

- 59 -

_____RECORD CONTAINS ClauseTRS-80 ©® ——EM/COBOL Languade

The RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of the data 7)
records. il
FORMAT

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

The size of each data record is completely defined with the
record description entry, therefore this clause is never
required. When present, however, the following notes apply:

Integer-2 may not be used by itself unless all the data
records in the file have the same size. 1In this case
integer-2 represents the exact number of characters in
the data record.

If integer-1 and integer-2 are both shown, they refer
to the minimum number of characters in the smallest
size data record and the maximum number of characters
in the largest size data record, respectively.

The size is specified in terms of the number of
character positions required to store the logical
record, regardless of the types of characters used to
represent the items within the logical record. The
size of a record is determined by the sum of the number
of characters in all fixed length elementary items plus
any filler characters generated between elementary
items because of the SYNCHRONIZED clause.

- 68 -

RM/COBOL Langquage TRS-80 ° LABREIL _RECORD Clause

The LABEL RECORD Clause

The LABEL RECORD clause specifies whether labels are
present.

FORMAT

LABEL {RECORD IS } {STANDARD}
{RECORDS ARE } {OMITTED }

This clause is required in every file description entry.

STANDARD specifies that labels exist for the file or the
device to which the file is assigned and the labels conform
to the operating system specification. STANDARD must be
specified for files assigned to a RANDOM device.

OMITTED specifies that no explicit labels exist for the file
or the device to which the file is assigned.

The VALUE OF Clause

The VALUE OF clause particularizes the description of an
item in the label records associated with a file.

FORMAT

VALUE OF LABEL IS literal-l

This clause is treated as commentary.

This clause must not be specified if OMITTED is specified in
the LABEL RECORDS clause.

- 61 -

DATA RECORDS Clause TRS-80 ° RM/COBOL Language

The DATA RECORDS Clause

-
The DATA RECORDS clause serves only as documentation for the k;}
names of data records with their associated file.

FORMAT

DATA {RECORD IS } data-name-1 [,data-name-2]...
{RECORDS ARE }

Data-name-1 and data-name-2 are the names of data records
and must have @l level-number record descriptions, with the
same name, associated with them.

The presence of more than one data-name indicates that the
file contains more than one type of data record. These
records may be of differing sizes, different formats, etc.
The order in which they are listed is not significant.

Conceptually, all data records within a file share the same
area. This is in no way altered by the presence of more than
one type of data record within the file.

- 62 -

RM/COBOL_ Language TRS-80 ° WORKING-STORAGE SECTION

WORKING-STORAGE SECTION

The Working-Storage Section is composed of the section
header, followed by data description entries for 77 level
description entries and/or record description entries.

The data-name of a @l-level data description entry in the
Working-Storage Section must be unique since it cannot be
qualified. Subordinate data-names need not be unique if
they can be made unique by qualification.

FORMAT

WORKING-STORAGE SECTION.

[77-1level-description-entryl] ...
[record-description-entry]

LINKAGE SECTION

The structure of the Linkage Section is the same as for the
Working-Storage Section, beginning with a section header,
followed by data description entries for noncontiguous data
items and/or record description entries.

Each Linkage Section record-name and noncontiguous item name
must be unique within the called program since it cannot be
qualified.

FORMAT

LINKAGE SECTION.

[77-1level-description-entry] ...
[record-description-entry]

- 63 -

Record Description Entry Tre.g0 © RM/COBOL_lLanquage

RECORD DESCRIPTION ENTRY

A record description entry consists of a set of data
description entries which describe the characteristics of a
particular record. Each data description entry consists of
a level-number followed by a data-name and a series of
independent clauses, as required.

FORMAT

{data-description-entry} ...

Level-Numbers

The first data description of a record must have a
level-number of g1 or 1, and must start in area A of a
source line.

Each data description entry can be subdivided into multiple

data description entries, each having the same level-number; 4 9

i

which must be greater than the level-number of the
subdivided entry, but less than 5¢. Level-numbers do not
necessarily have to be successive. Thus, a record is a
hierarch of data description entries.

Elementary Items

Any data description entry which is not further subdivided
is called an elementary item A record itself may be an
elementary item, consisting of a single level @l data
description entry. A subdivided data description entry with
its subdivisions is called a group and is non-elementary.
Therefore, a group includes all group and elementary items
following it until a level-number less than or equal to the
level-number of that group is encountered.

Note that certain clauses of the data description entry may
occur only in elementary items. They may not occur in
gl-level entry as they may affect the subdivisions of that
entry. An elementary item must have either a PICTURE clause
or INDEX usage; it may not have both.

- 64 -

RM/COBOL Language TRS-80 © [Level Description Entry

77 _LEVEL DESCRIPTION ENTRY

In the Working-Storage and Linkage Sections, a special
level-number of 77 can be used in data description entries
which are not subdivisions of other items, and are not
themselves subdivided. These data description entries
specify noncontiguous data items. Such a data description
entry is elementary.

A 77 level description entry must contain a data name and
either the PICTURE clause or the USAGE IS INDEX clause, but
cannot contain an OCCURS clause. Other clauses are optional

and can be used to complete the description of the item if
necessary.

FORMAT

data-description-entry

- 65 -

__Data Description Entry TRS.80 ® ——EM/COBOL Language

THE DATA DESCRIPTION ENTRY

A data description entry specifies the characteristics of a
particular item of data.

FORMAT 1

level-number {data-name-1}
{FILLER }

[;REDEFINES data-name-2]

[; {PICTURE} IS character-string]
{PIC }

[; [USAGE IS] {COMPUTATIONAL
{coMp
{COMPUTATIONAL-1
{COMP-1
{COMPUTATIONAL-3
{COMP-3
{DISPLAY
{ INDEX

L L R

]

[;[SIGN IS} {TRAILING} [SEPARATE CHARACTER]]

{:{OCCURS {integer-1 TIMES
{integer-1 TO integer-2 TIMES DEPENDING ON data-name-3}

[INDEXED BY index-name-1 [,index-name-2] ...]]

[; {SYNCHRONIZED} [LEFT]
{SYNC } [(RIGHTI]

[: {SYNCHRONIZED} [LEFT]
{S¥YNC } [RIGHT]]

(; {JUSTIFIED} RIGHT]
{JusT }

[;BLANK WHEN ZERO])

[;VALUE IS literall

- 66 -

RM/COBOL ILanguage TRS-80 ° Data Description Entry

FORMAT 2

66 data-name-1; RENAMES data-name-2 [{THROUGH} data-name-3].
{THRU }

FORMAT 3

88 condition-name; {VALUE IS)} literal-l [{THROUGH} literal-2]
{VALUES ARE } {THRU }

[,literal-3 [(THROUGH) literal-41]
{THRU }

The clauses may be written in any order with two exceptions:

the data-name-1 or FILLER clause must immediately
follow the level-number;

the REDEFINES clause, when used, must immediately
follow the data-name-1 clause.

The PICTURE clause must be specified for every elementary
item except an index data item, in which case use of this
clause is prohibited.

The words THRU and THROUGH are equivalent.

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN

ZERO, must not be specified except for an elementary data
item.

- 67 -

Data Description Entry TRS-80 ® RM/COBOL Language

Format 3 is used for each condition-name. Each
condition-name requires a separate entry with level-number
88. Format 3 contains the name of the condition and the
value, values, or range of values associated with the
condition-name. The condition-name entries for a
particular conditional variable must follow the entry
describing the item with which the condition-name is
associated. A condition-name can be associated with any
data description entry which contains a level-number except
the following:

Another condition-name.

A group containing items with descriptions including
JUSTIFIED, SYNCHRONIZED or USAGE (other than USAGE 1S
DISPLAY).

An index data item.

A level 66 item.

Each data description entry must end with a period
separator.

- 68 -

RM/COBOL Language TRS-80 ° Level-Number

The Level-Number

The level-number shows the hierarchy of data within a
logical record. 1In addition, it is used to identify entries
for working storage items, linkage items, condition-names
and the RENAMES clause.

FORMAT

level-number

A level-number is required as the first element in each data
description entry.

Data description entries subordinate to an FD entry must
have level-numbers with the values @1 through 49, 66 or B88.

Data description entries in the Working-Storage Section and
Linkage Section must have level-numbers with the values #1
through 49, 66, 77 or 88.

The level-number @1 identifies the first entry in each
record description.

Level-number 66 is assigned to identify RENAMES entries.
Level-number 77 is assigned to identify noncontiguous
working storage data items and noncontiguous linkage data

items.

Level-number 88 is assigned to identify condition-names
associated with a conditional variable.

Multiple level Pl entries subordinate to any given level

indicator FD, represent implicit redefinitions of the same
area.

- 69 -

Data-name/FILLER Clause TRS-80 ° RM/COBOL Language

The Data-name or FILLER Clause

A data-name specifies the name of the data being described.
The word FILLER specifies an elementary item of the logical
record that cannot be referred to explicity.

FORMAT

{data—-name}
{FILLER }

A data-name or the key word FILLER must be the first word
following the level-number in each data description entry.

The key word FILLER may be used to name an elementary item
in a record. Under no circumstances can a FILLER item be
referred to explicitly. However, the key word FILLER may be
used as a conditional variable because such use does not
require explicit reference to the FILLER item, but to its
value.

The key word FILLER may not be used in data description
entries with a 1, g1, 77, or 88 level-number.

- 79 -

RM/COBOL Language TRS-80 ° REDEFINES Clause

The REDEFINES Clause

The REDEFINES clause allows the same computer storge area to
be described by different data description entries.

FORMAT
level-number data-name-1l; REDEFINES data-name-2

NOTE: Level-number, data-name-1 and the semicolon are
shown in the above format to improve clarity.
Level-number and data-name-l1 are not part of the
REDEFINES clause.

The REDEFINES clause, when specified, must immediately
follow data-name-1.

The level-numbers of data-name-1 and data-name-2 must be
identical but must not be 66 or 88.

This clause must not be used in level @1 entries in the File
Section.

The data description entry for data-name-2 cannot contain a
REDEFINES clause. Data-name-2 may be subordinate to an
entry which contains a REDEFINES clause. The data
description entry for data-name-2 cannot contain an OCCURS
clause. However, data-name-2 may be subordiate to an item
whose data description entry contains an OCCURS clause. 1In
this case, the reference to data-name-2 in the REDEFINES
clause may not be subscripted or indexed. Neither the
original definition nor the redefinition can include an item
whose size is variable as defined in the OCCURS clause.

No entry having a level-pumber numerically lower than the
level-number of data-name-2 and data-name-1 may occur
between the data description entries of data-name-2 and
data-name-1l.

Redefinition starts at data-name-2 and ends when a

level-number less than or equal to that of data-name-2 is
encountered.

- 71 -

REDEFINES Clause TRS-80 ° RM/COBOL Language

When the level-number of data-name-1 is other than @1, it
must specify the same number of character positions that the
data item referenced by data-name-2 contains. It is
important to observe that the REDEFINES clause specifies the
redefinition of a storage area, not of the data items
occupying the area.

Multiple redefinitions of the same character positions are
permitted. The entries giving the new descriptions of the
character positions must follow the entries defining the
area being redefined without intervening entries that define
new character positions. Multiple redefinitions of the same
character positions must all use the data-name of the entry
that originally defined the area.

The entries giving the new description of the character
positions must not contain any VALUE clauses except in
condition-name entries.

Multiple level @l entries subordiante to any given level
indicator represent implicit redefinitions of the same area.

- 72 -

RM/COBOL Language TRS-80 ° PICTURE Clause

The PICTURE Clause

The PICTURE clause describes the general characteristics and
editing requirements of an elementary item.

FORMAT

{PICTURE} IS character-string
{PIC }

A PICTURE clause can be specified only at the elementary
item level.

A character-string consists of certain allowable
combinations of characters in the COBOL character set used
as symbols. The allowable combinations determine the
category of the elementary item.

The maximum number of characters allowed in the
character-string is 3.

The PICTURE clause must be specified for every elementary
item except an index data item, in which case use of this
clause is prohibited.

PIC is an abbreviation for PICTURE.

There are five categories of data that can be described with
a PICTURE clause:

alphabetic

numeric
alphanumeric
alphanumeric edited
numeric edited

To define an item as alphabetic:

Its PICTURE character-string can only contain the
symbols 'A', and/or 'B'.

Its contents when represented in standard data format
must be any combination of the twenty-six (26) letters
of the Roman alphabet and the space from the COBOL
character set.

- 73 -

PICTURE Clause TRS-80 °® RM/COBOL Language

To define an item as numeric:

symbols '9', 'P', 'S', and 'V'. The number of digit
positions that can be described by the PICTURE
character-string must range from 1 to 18 inclusive; and

Its PICTURE character-string can only contain the (;)
)

If unsigned, its contents when represented in standard
data format must be a combination of the Arabic
numerals lgl' lll' '2l' ’3|,’4l' ’5l, l6|' l7l' vsv'
'9'; if signed, the item may also contain a '+', '-',
or other representation of an operational sign.

To define an item as alphanumeric:

Its PICTURE character-string is restricted to certain
combinations of the symbol 'A', 'X', '9', and the item
is treated as if the character-string contained all
X's. A PICTURE character-string which contains all A's
or all 9's does not define an alphanumeric item; and

Its contents, when represented in standard data format,
are allowable characters in the computer's character
set.

To define an item as alphanumeric edited: Lﬂﬁ

Its PICTURE character-string is restricted to certain
combinations of the following symbols: 'a', 'X', '9‘',
‘B', '§f', and '/' (stroke);

The character-string must contain at least one 'B' and
at least one 'X' or at least one '@' (zero) and at
least one 'X' or at least one '/' (stroke) and at least
one 'X'; or

The character-string must contain at least one '@’
(zero) and at least one 'A' or at least one '/'
(stroke) and at least one 'A'; and

The contents when represented in standard data format
are allowable characters in the computer's character
set.

To define an item as numeric edited:

- 74 -

RM/COBOL Language TRS-80 ° PICTURE Clause

Its PICTURE character-string is restricted to certain
combinations of the following symbols: 'B', '/!
(stroke), 'P', IVI’ vzr’ vgl' lgl' l’l, l.I' |*|, I_I’
'+', 'CR', 'DB', and the currency symbol. The
allowable combinations are determined from the order of
precedence of symbols and the editing rules; and

The number of digit positions that can be represented
in the PICTURE character-string must range from 1 to 18
inclusive; and

The character-string must contain at least one '§',
IBI, l/| (Stroke), 'Z" l*l, l+l' |’I' l.l' |_l' ’CRI'
'DB', or currency symbol.

The contents of the character positions of these
symbols that are allowed to represent a digit in
standard data format, must be one of the numerals.

The size of an elementary item, where size means the number
of character positions occupied by the elementary item in
standard data format, is determined by the number of
allowable symbols that represent character positions. An
integer which is enclosed in parentheses following the
symbols 'A', 1'1’ 'X', 191, IPI’ 'Z', l*l' IBI' l/l
(stroke), or '@§', '+', '-', or the currency symbol indicates
the number of consecutive occurrences of the symbol. Note
that the following symbols may appear only once in a given
PICTURE: 'S', 'v', '.', 'CR', and 'DB'.

The functions of the symbols used to describe an elementary
item are explained as follows:

Each 'A' in the character-string represents a character
position which can contain only a letter of the
alphabet or a space.

Each 'B' in the character-string represents a character
position into which the space character will be
inserted.

Each 'P' indicates an assumed decimal scaling position
and is used to specify the location of an assumed
decimal point when the point is not within the number
that appears in the data item. The scaling position
character 'P' is not counted in the size of the data
item. Scaling position characters are counted in

- 75 -

PICTURE Clause TRS-80 ° RM/COBOL Language

determining the maximum number of digit positions (18)
in numeric edited items or numeric items. The scaling
position character 'P' can appear only to the left or
right as a continuous string of 'P's within a PICTURE
description; since the scaling position character 'P'
implies an assumed decimal point (to the left of 'P's
if 'P's are leftmost PICTURE characters and to the
right if 'P's are rightmost PICTURE characters), the
assumed decimal point symbol 'V' is redundant as either
the leftmost or rightmost character within such a
PICTURE description. The character 'P' and the
insertion character '.' (period) cannot both occur in
the same PICTURE character-string. If, in any
operation involving conversion of data from one form of
internal representation to another, the data item being
converted is described with the PICTURE character 'P',
each digit position described by a 'P' is considered to
contain the value zero, and the size of the data item
is considered to include the digit positions so
described.

The letter 'S' is used in a character-string to

indicate the presence, but neither the representation

nor, necessarily, the position of an operational sign;

it must be written as the leftmost character in the .
PICTURE. The 'S' is counted in determining the size <;)
(in terms of standard data format characters) of

elementary items having DISPLAY or COMPUTATIONAL usage.

The 'V' is used in a character-string to indicate the
location of the assumed decimal point and may only
appear once in a character-sting. The 'V' does not
represent a character position and therefore is not
counted in the size of the elementary item. When the
assumed decimal point is to the right of the rightmost
symbol in the string the 'V' is redundant.

Each 'X' in the character-string is used to represent a
character position which contains any allowable
character from the computer's character set.

Each 'Z' in a character-string may only be used to
represent the leftmost leading numeric character
positions which will be replaced by a space character
when the contents of that character position is zero.
Bach 'Z' is counted in the size of the item.

- 76 -

RM/COBOL Language TRS-80 ° PICTURE Clause

Each '9' in the character-string represents a character
position which contains a numeral and is counted in the
size of the item.

Each '@' (zero) in the character-string represents a
character position into which the numeral zero will be
inserted. The '@' is counted in the size of the item.

Each '/' (stroke) in the character-string represents a
character position into which the stroke character will
be inserted. The '/' (stroke) is counted in the size
of the item.

Each ',' (comma) in the character-string represents a
character position into which the character ',' will be
inserted. This character position is counted in the
size of the item. The insertion character ',' must not
be the last character in the PICTURE character-string.

When the character '.' (period) appears in the
character-string it is an editing symbol which
represents the decimal point for alignment purposes and
in addition, represents a character position into which
the character '.' will be inserted. The character '.'
is counted in the size of the item. For a given
program the functions of the period and comma are
exchanged if the clause DECIMAL-POINT IS COMMA is
stated in the SPECIAL-NAMES paragraph. In this
exchange the rules for the period apply to the comma
and the rules for the comma apply to the period
wherever they appear in a PICTURE clause. The
insertion character '.' must not be the last character
in the PICTURE character-string.

+, -, CR, DB. These symbols are used as editing sign
control symbols. When used, they represent the
character position into which the editing sign control
symbol will be placed. The symbols are mutually
exclusive in any one character-string and each
character used in the symbol is counted in determining
the size of the data item.

Each '*' (asterisk) in the character-string represents
a leading numeric character position into which an
asterisk will be placed when the contents of that
position is zero. Each '*' is counted in the size of
the item.

- 77 -

PICTURE Clause TRS-80 ® RM‘COBOL Language

The asterisk when used as the zero suppression symbol

and the clause BLANK WHEN ZERO may appear in the same
entry. %

The currency symbol in the character-string represents
a character position into which a currency symbol is to
be placed. The currency symbol in a character-string
is represented by either the currency sign or by the
single character specified in the CURRENCY SIGN IS
clause in the SPECIAL-NAMES paragraph. The currency
symbol is counted in the size of the item.

There are two general methods of performing editing in the
PICTURE clause, either by insertion or by suppression and
replacement. There are four types of insertion editing
available:

Simple insertion
Special insertion
Fixed insertion
Floating insertion

There are two types of suppression and replacement editing:

Zero suppression and replacement with spaces
Zero suppression and replacement with asterisks

The type of editing which may be performed upon an item is
dependent upon the category to which the item belongs. The
following table specifies which type of editing may be
performed upon a given category:

- 78 -

RM/COBOL_Language TRS-80° Arithmetic Statements

ARITHMETIC STATEMENTS

The arithmetic statements ADD, COMPUTE, DIVIDE, MULTIPLY,
and SUBTRACT have several common features:

The data descriptions of the operands need not be the
same; any necessary conversion and decimal point
alignment is supplied throughout the calculation.

Arithmetic operations are calculated in either binary,
decimal,packed decimal, or mixed depending on the USAGE
of the operands and receiving item according to the
following rules:

If the receiving data item of a divide operation
is DISPLAY or COMPUTATIONAL, the operation is
always calculated in decimal with any necessary
conversions.

Intermediate and final results are calculated in
binary if all preceding intermediate results are
binary and the next operand has COMPUTATIONAL-1l
usage (except as noted in previous paragraph).
Otherwise, the remaining intermediate and final
results are calculated in decimal with any
necessary conversions.

The maximum size of each operand is eighteen (18)
decimal digits. The composite of operands, which is a
hypothetical data item resulting from the super-
imposition of specified operands in a statement aligned
on their decimal points, must not contain more than
eighteen decimal digits.

Arithmetic Expressions

An arithmetic expression can be an identifier of a numeric
elementary item, a numeric literal, such identifiers and
literals separated by arithmetic operators, two arithmetic
expressions separated by an arithmetic operator, or an
arithmetic expression enclosed in parentheses. Any
arithmetic expression may be preceded by a unary operator.
The permissible combinations of variables, numeric literals,
arithmetic operator and parentheses are given in Combination
of Symbols in Arithmetic Expressions Table.

- 125 -

Arithmetic Statements TRS-80 ° RM/COBOL Language

Those identifiers and literals appearing in an arithmetic
expression must represent either numeric elementary items or \
numeric literals on which arithmetic may be performed. (;)

Arithmetic Operators

There are four binary arithmetic operators and two unary
arithmetic operators that may be used in arithmetic

expressions. They are represented by specific characters
that must be preceded by a space and followed by a space.

Binary Arithmetic
Operators Meaning

Addition
Subtraction
Multiplication
Division

N o*)+

Unary Arithmetic

Operators Meaning
+ The effect of multiplication‘

by numeric literal +1

- The effect of multiplication
by numeric literal -1.

Formation and Evaluation Rules

Parentheses may be used in arithmetic expressions to specify
the order in which elements are to be evaluated.

Expressions within parentheses are evaluated first, and
within nested parentheses, evaluation proceeds from the
least inclusive set to the most inclusive set. When
parentheses are not used, or parenthesized expressions are
at the same level of inclusiveness, the following
hierarchical order of execution is implied:

- 126 -

RM/COBOL_Lanquage TRS-80 ¢ Arithmetic Statements

lst - Unary plus and minus
2nd - Multiplication and division
3rd - Addition and subtraction

Parentheses are used either to eliminate ambiguities in
logic where consecutive operations of the same hierarchical
level appear or to modify the normal hierarchical sequence
of execution in expressions where it is necessary to have
some deviation from the normal precedence. When the
sequence of execution is not specified by parentheses, the
order of execution of consecutive operations of the same
hierarchical level is from left to right.

The ways in which operators, variables, and parentheses may
be combined in an arithmetic expression are summarized in
the following table, where:

The letter 'P' indicates a permissible pair of symbols.

The character '-' indicates an invalid pair.

'Variable' indicates an identifier or literal.

FIRST SECOND SYMBOL
SYMBOL
Variable */—+ | Unary + ar - | ()

Variable - P - - P
* /4 - P - P P -
Unary +ar- P - - P -
(P - P P -
) - P - - P

- 127 -

Arithmetic Statements TRS-80 ® RM/COBOL Lanquage

An arithmetic expression may only begin with the symbol '(°',
'+', '-', or a variable and may only end with a ')' or a
variable. There must be a one-to-one correspondence between
left and right parentheses of an arithmetic expression such
that each left parenthesis is to the left of its
corresponding right parenthesis.

Arithmetic expressions allow the user to combine arithmetic
operations without the restrictions on composite of operands
and/or receiving data items.

- 128 -

RM/COBOL_ Language TRS-80 ° Conditionals

CONDITIONALS

The conditions are relation, class, condition-name, and
switch-status. A condition has a truth value of 'true' or
'false'.

Relation Condition

A relation condition causes a comparison of two operands,
each of which may be the data item referenced by an
identifier or a literal. A relation condition has the truth
value of 'true' if the relation exists between the operands.

Comparison of two numeric operands is permitted regardless
of the formats specified in their respective USAGE clauses.
However, for all other comparisons the operands must have
the same usage. If either of the operands is a group item,
the nonnumeric comparison rules apply.

The general format of a relation condition is as follows:

{identifier-1} {IS [NOT] GREATER THAN}{identifier-2}
{literal-1)} (IS [NOT] LESS THAN }{literal-2 }
{index-name-1} {IS [NOT] EQUAL TO } {index-name-2}

{Is [NOT] >

{Is [NOT] <

{Is [NOT] =

B e adoned

The first operand (identifier-1, literal-l or index-name-1)
is called the subject of the condition; the second operand
(identifier-2, literal-2 or index-name-2) is called the
object of the condition. The relation condition must
contain at least one reference to a variable.

The relational operator specifies the type of comparison to
be made in a relation condition. A space must precede and
follow each reserved word comprising the relational

- 129 -

Conditionals TRS-80 ° RM/COBOL_Langu:age

operator. When used, 'NOT' and the next key word or
relation character are one relational operator that defines
the comparison to be executed for truth value; e.g., 'NOT
EQUAL' is a truth test for an 'unequal' comparison; 'NOT
GREATER' is a truth test for an 'equal' or 'less'
comparison. The meaning of the relational operators is as
follows:

Meaning Relational Operator
Greater than or not greater than IS [NOT] GREATER THAN
Is [NOT] >
Less than or not less than IS [NOT] LESS THAN
IS [NOT] <
Equal to or not equal to IS [NOT] EQUAL TO
IS [NOT] =

Note: The required relational character '>', '<', and
'=' are not underlined to avoid confusion with
other symbols such as '>' (greater than or equal
to).

Comparison of Numeric Operands

For operands whose class is numeric a comparison is made
with respect to the algebraic value of the operands. The
length of the literals or operands, in terms of number of
digits represented, is not significant. Zero is considered
a unique value regardless of the sign.

Comparison of these operands is permitted regardless of the

manner in which their usage is described. Unsigned numeric
operands are considered positive for purposes of comparison.

Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric and one nonnumeric
operand, a comparison is made with respect to a specified
collating sequence of characters. If one of the operands is
specified as numeric, it must be an integer data item or an
integer literal and:

- 138 -

RM/COBOL Language TRS-80 ° Copnditionals

If the nonnumeric operand is an elementary data item or
a nonumeric literal, the numeric operand is treated as
though it were moved to an elementary alphanumeric data
item of the same size as the numeric data item (in
terms of standard data format characters), and the
contents of this alphanumeric data item were than
compared to the nonnumeric operand.

If the nonnumeric operand is a group item, the numeric
operand is treated as though it were moved to a group
item of the same size as the numeric data item (in
terms of standard data format characters), and the
contents of this group item were then compared to the
nonnumeric operand.

A noninteger numeric operand cannot be compared to a
nonnumeric operand.

The size of an operand is the total number of standard data
format characters in the operand. Numeric and nonnumeric
operands may be compared only when their usage is the same.
There are two cases to consider: operands of equal size and
operands of unequal size.

Operands of equal size: If the operands are of equal size,
comparison effectively proceeds by comparing characters in
corresponding character positions starting from the high
order end and continuing until either a pair of unequal
characters is encountered or the low order end of the
operand is reached, whichever comes first. The operands are
determined to be equal if all pairs of characters compare
equally through the last pair, when the low order end is
reached.

The first encountered pair of unequal characters is compared
to determine their relative position in the collating
sequence. The operand that contains the character that is
positioned higher in the collating sequence is considered to
be the greater operand.

Operands of unequal size: If the operands are of unequal
size, comparison proceeds as though the shorter operand were
extended on the right by sufficient spaces to make the
operands of equal size.

- 131 -

Conditionals TRS-80 ° RM/COBOL Langquage

Comparisons of Index-Names and/or Index Data Items

If two index-names are compared the result is the same as if
the corresponding occurrence numbers were compared. &

For an index-name and a data item (other than an index data
item) or literal, the comparison is made between the
occurrence number that corresponds to the value of the
index-name and the data item or 1literal.

When a comparison is made between an index data item and an

index-name or another index data item, the actual values are
compared without conversion.

The result of the comparison of an index data item with any

data item or literal not specified above is undefined.

Class Condition

The class condition determines whether the operand is
numeric, that is, consists entirely of the characters 'g’,
1, '2', '3', ..., '9', with or without the operational
sign; or alphabetic, that is, consists entirely of the
characters 'a', 'B', 'C', ..., '2', space. The general
format for the class condition is as follows:

identifier IS [NOT] {NUMERIC }
{ALPHABETIC}

The usage of the operand being tested must be described as
display. When used, 'NOT' and the next key word specify one
class condition that defines the class test to be executed
for truth value, e.g., 'NOT NUMERIC' is a truth test for
determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data
description describes the item as alphabetic or as a group
item composed of elementary items whose data description
indicates the presence of operational sign(s). If the data
description of the item being tested does not indicate the
presence of an operational sign, the item being tested is
determined to be numeric only if the contents are numeric
and an operational sign is not present. If the data
description of the item does indicate the presence of an
operational sign, the item being tested is determined to be

- 132 -

RM/COBOL Langquage TRS-80 ° Conditionals

numeric only if the contents are numeric and a valid
operational sign is present. Valid operational signs for
data items are the standard data format characters, '+' and

) 1]
.

The ALPHABETIC test cannot be used with an item whose data
description describes the item as numeric. The item being
tested is determined to be alphabetic only if the contents
consist of any combination of the alphabetic characters 'A’
through 'Z' and the space.

Condition-name (Conditional Variable)

In a condition-name condition, a conditional variable is
tested to determine whether or not its value is equal to one
of the values associated with a condition-name. The
general-format for the condition-name condition is as
follows:

condition-name

If the condition-name is associated with a range of values,
then the conditional variable is tested to determine whether
or not its value falls in this range, including the end
values.

The rules for comparing a conditional variable with a
condition-name value are the same as those specified for
relation conditions.

the result of the test is true if one of the values

corresponding to the condition-name equals the value of its
associated conditional variable.

Switch-Status Condition

A switch-status condition determines the ‘'on' or 'off'
status of a software switch. The switch-name and the ‘on’
or 'off' value associated with the condition must be named
in the SPECIAL-NAMES paragraph of the Environment Division.
The general format for the switch-status condition is as
follows:

- 133 -

Conditionals TRS-80 ° RM/COBOL_Language

condition-name

The result of the test is true if the switch is set to the
specified position corresponding to the condition-name.

Complex Conditions

A complex condition is formed by combining simple
conditions, combined conditions and/or complex conditions
with logical connectors {(logical operators 'AND' and 'OR')
or negating these conditions with logical negation (the
logical operator 'NOT').

The truth value of a complex condition, whether
parenthesized or not, is that truth value which results from
the interaction of all the stated logical operators on the
individual truth values of simple conditions, or the
intermediate truth values of conditions logically connected
or logically negated. The logical operators and their
meanings are:

Logical Operator Meaning
AND Logical conjunction; the truth

value is 'true' if both of the
conjoined conditions are true;
'false' if one or both of the

conjoined conditions is false.

OR Logical inclusive OR; the truth
value is 'true' if one or both of
the included conditions is true;
'false' if both included
conditions are false.

NOT Logical negation or reversal of
truth value; the truth value is
'true' if the condition is false;
'false' if the condition is true.

The logical operators must be preceded by a space and
followed by a space.

- 134 -

Negated Simple Conditions

A simple condition is negated through the use of the logical
operator 'NOT'. The negated simple condition effects the
opposite truth value for a simple condition. Thus the truth
value of a negated simple condition is 'true' if and only if
the truth value of the simple condition is ‘'false'; the
truth value of a negated simple condition is 'false' if and
only if the truth value of the simple condition is 'true'.
The inclusion in parentheses of a negated simple condition
does not change the truth value.

The general format for a negated simple condition is:

NOT simple-condition

Combined and Negated Combined Conditions

A combined condition results from connecting conditions with
one of the logical operators 'AND' or 'OR'. The general
format of a combined condition is:

condition { {AND} condition} ...
{OR }
Where 'condition' may be:
simple condition, or
negated simple condition, or

combined condition, or

-

negated combined condition; i.e., the 'NOT' logical
operator followed by a combined condition enclosed
within parentheses, or

Combinations of the above.

- 135 -

Conditionals TRS-80° RM/COBOL Language

Although parentheses need never be used when either 'AND' or
'OR' (but not both) is used exclusively in a combined
condition, parentheses may be used to affect the final truth
value when a mixture of 'AND', 'OR' and 'NOT' is used.

Condition Evaluation Rules

Condition Evaluation Rules indicate the ways in which
conditions and logical operators may be combined and
parenthesized. There must be a one-to-one correspondence
between left and right parentheses such that each left
parenthesis is to the left of its corresponding right
parenthesis.

Parentheses may be used to specify the order in which
individual conditions of complex conditions are to be
evaluated when it is necessary to depart from the implied
evaluation precedence. Conditions within parentheses are
evaluated first, and, within nested parentheses, evaluation
proceeds from the least inclusive condition to the most
inclusive condition. When parentheses are not used, or
parenthesized conditions are at the same level of
inclusiveness, the following hierarchical order of logical
evaluation is implied until the final truth value is
determined.

Truth values for simple conditions are established.

Truth values for negated simple conditions are
established.

Truth values for combined conditions are established:

'AND' logical operators, followed by
'OR' logical operators.

Truth values for negated combined conditions are
established.

When the sequence of evaluation is not completely specified
by parentheses, the order of evaluation of consecutive
operations of the same hierarchical level is from left to
right.

- 136 -

RM/COBOL_Language TRS-80 © Sequential I

SEQUENTIAL ORGANIZATION INPUT-OUTPUT

The sequential organization input-output statements in the
Procedure Division are the CLOSE, OPEN, READ, REWRITE,
UNLOCK, USE, and WRITE statements.

Function

Sequential organization input-output provides a capability
to access records of a file in established sequence. The

sequence is established as a result of writing the records
to the file.

Organization

Sequential files are organized such that each record in the
file except the first has a unique predecessor record, and
each record except the last has a unique successor record.
These predecessor-successor relationships are established by
the order of WRITE statements when the file is created.

Once established, the predecessor-successor relationships do
not change except in the case where records are added to the
end of the file.

Access Mode

In the sequential access mode, the sequence in which records
are accessed is the order in which the records were
originally written.

Current Record Pointer

The current record pointer is a conceptual entity used in
this document to facilitate specification of the next record

- 137 -

Sequential I/0 TRS-80 ° RM/COBOL Lanquage

to be accessed within a given file. The concept of the
current record pointer has no meaning for a file opened in
the output mode. The setting of the current record pointer
is affected only by the OPEN and READ statements.

I-0 Status

If the FILE STATUS clause is specified in a file control
entry, a value is placed into the specified two-character
data item during the execution of an OPEN, CLOSE, READ,
WRITE, or REWRITE statement and before any applicable USE
procedure is executed, to indicate to the COBOL program the
status of that input-output operation.

Status Key 1

The leftmost character position of the FILE STATUS data item
is known as status key 1 and is set to indicate one of the
following conditions upon completion of the input-output
operation:

'g' - successful Completion. The input-output
statement was successfully executed.

'1' - At End. The Sequential READ statement was
unsuccessfully executed as a result of an attempt to
read a record when no next logical record exists in the
file.

'3' - permanent Error. The input-output statement was
unsuccessfully executed as the result of a boundary
violation for a sequential file or as the result of an
input-output error, such as data check parity error, or
transmission error.

'9' - General Error. The input-output statement was

unsuccessfully executed as a result of a condition that
is specified by the value of status key 2.

Status Key 2
The rightmost character position of the FILE STATUS data

- 138 -

RM/COBOL Language TRS-80 © Sequential I1/0

item is known as status key 2 and is used to further
describe the results of the input-output operation. This
character will contain a value as follows:

If no further information is available concerning the
input-output operation, then status key 2 contains a
value of '@'.

When status key 1 contains a value of '3' indicating a
permanent error condition, status key 2 may contain a
value of '4' indicating a boundary violation. This
condition indicates that an attempt has been made to
write beyond the externally defined boundaries of a
sequential file.

When status key 1 contains a value a '9' indicating an
operating system error condition, the value of status key 2
may contain a:

'#' indicating an invalid operation. This condition
indicates that an attempt has been made to execute a
READ, WRITE, or REWRITE statement that conflicts with
the current open mode or a REWRITE statement not
preceded by a successful READ statement.

'l' indicating file not opened. This condition
indicates that an attempt has been made to execute a
DELETE, START, UNLOCK, READ, WRITE, REWRITE or CLOSE
statement on a file which is not currently open.

'2' indicating file not closed. This condition
indicates that an attempt has been made to execute an
OPEN statement on a file which is currently open.

'3' indicating file not available. This condition
indicates that an attempt has ben made to execute an
OPEN statement for a file closed WITH LOCK or to OPEN a
file LOCKed by another user.

'4' indicating an invalid open. this condition
indicates that an attempt has been made to execute an
OPEN statement for a file with no external
correspondence or a file having inconsistent
parameters.

- 139 -

Sequential I/0 TRS-80 °© RM/COBOL_Langquage

'5' jndicating invalid device or not next reel. This
condition indicates that an attempt has been made to

open a file having parameters (e.g., open mode or
organization) which conflict with the device assignment (;2
(RANDOM, INPUT, PRINT, ...) or that an attempt has been i
made to execute a CLOSE REEL statement for the last
reel/unit of a multi-reel file. 1In the case of a CLOSE
REEL, the file has been closed.

'6' indicating an undefined current record pointer
status. This condition indicates that an attempt has
been made to execute a READ statement after occurrence
of an unsuccessful READ statement without an
intervening successful CLOSE and OPEN.

'7' indicating an invalid record length. This
condition indicates an attempt has been made to open a
file that was defined with a maximum record length
different from the externally defined maximum record
length, or to execute a WRITE statement that specifies
a record with a length smaller than the minimum or
larger than the maximum record size, or a REWRITE
statement when the new record length is different from
that of the record to be rewritten.

'9' indicating an attempt has been made to READ a
record which is locked. this error is returned only if
an applicable USE procedure and a FILE STATUS data item
are declared for the file. Otherwise the read
statement is retried until the record is unlocked.

..14”...

RM/COBOL_Language T™TRS-80 ¢ Relative Input-Qutput

RELATIVE ORGANIZATION INPUT-OUTPUT

The Relative input-output statement in the Procedure
Division are the CLOSE, DELETE, OPEN, READ, REWRITE, START,
UNLOCK and WRITE statements.

Function

Relative input-output provides a capability to access
records of a mass storge file in either a random or
sequential manner. Each record in a relative file is
uniquely identified by an integer value greater than zero
which specifies the record's logical position in the file.

Organization

Relative file organization is permitted only on mass storage
devices (RANDOM device).

A relative file consists of records which are identified by
relative record numbers. The file may be thought of as
composed of a serial string of areas, each capable of
holding a logical record. Each of these areas is
denominated by a relative record number, an integer value
greater than zero. Records are stored and retrieved based
on this number. For example, the tenth record is the one
addressed by relative record number 1f and is the tenth
record area, whether or not records have been written in the
first through the ninth record areas.

Access Modes

In the sequential access mode, the sequence in which records
are accessed is the ascending order of the relative record
numbers of all records which currently exist within the
file.

- 141 -

Relative Input-Output TRS-80 ® RM/COBOL_Language

In the random access mode, the sequence in which records are
accessed is controlled by the programmer. The desired
record is accessed by placing its relative record number in
a relative key data item.

In the dynamic access mode, the programmer may change at
will from sequential access to random access using
appropriate forms of input-output statements.

Current Record Pointer

The current record pointer is a conceptual entity used in
this document to facilitate specification of the next record
to be accessed within a given file. The concept of the
current record pointer has no meaning for a file opened in
the output mode. The setting of the current record pointer
is affected only by the OPEN, READ, and START statements.

I-0 Status

If the FILE STATUS clause is specified in a file control
entry, a value is placed into the specified two-character
data item during the execution of an OPEN, CLOSE, READ,
WRITE, REWRITE, DELETE, or START statement and before any
applicable USE procedure is executed, to indicate to the
COBOL program the status of that input-output operation:

Status Key 1

The leftmost character position of the FILE STATUS data item
is know as status key 1 and is set to indicate one of the
following conditions upon completion of the input-output
operation:

'g' - Successful Completion. The input-output was
successfully executed.

'1' - At End. The statement was unsuccessfully
executed as a result of an attempt to read a record
when no next logical record exists in the file.

- 142 -

RM/COBOL _Language TRS-80 ° Relative Input-Output

'2' - Invalid Key. The input-output statement was
unsuccessfully executed as a result of one of the
following:

Duplicate Key
No Record Found
Boundary Violation

'3' - Permanent Error. The input-output statement was
unsuccessfully executed as the result of an
input-output error, such as data check, parity error,
or transmission error.

'9' - General Error. The input-output statement was
unsuccessfully executed as a result of a condition that
is specified by the value of status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data
item is know as status key 2 and is used to further describe
the results of the input-output operation. This character
will contain a value as follows:

If no further information is available concerning the
input-output operation, then status key 2 contains a
value of '@g°'.

When status key 1 contains a value of '2' indicating an
INVALID KEY condition, status key 2 is:

'2' indicating a duplicate key value. An attempt has
been made to write a record that would create a
duplicate key.

'3' indicating no record found. An attempt has been
made to access a record, identified by a key, and that
record does not exist in the file.

'4' indicating a boundary violation. An attempt has

been made to write beyond the externally-defined
boundaries of a file.

- 143 -

Relative Input-Output TRS-80 ® RM/COBOL Language

When status key 1 contains a value of '9' indicating an
operating system error condition, the value of status

key 2 is:

'g' indicating invalid operation. An attempt has been
made to execute a DELETE, READ, REWRITE, START, or
WRITE statement which conflicts with the current open
mode of the file or a sequential access DELETE or
REWRITE statement not preceded by a successful READ
statement.

'1' indicating file not opened. This condition
indicates that an attempt has been made to execute a
DELETE, START, UNLOCK, READ, WRITE, REWRITE, or CLOSE
statement on a file which is not currently open.

'2' indicating file not closed. An attempt has been
made to execute an OPEN statement on a file that is
currently open.

'3' indicating file not available. An attempt has
been made to execute an OPEN statement for a file
closed WITH LOCK or to OPEN a file LOCKed by another
user.

'4' indicating invalid OPEN. An attempt has been made
to execute an OPEN statement for a file with no
external correspondence or a file having inconsistent
parameters.

'5' indicating invalid device. This condition
indicates that an attempt has been made to open a file
having parameters (e.g., open mode or organization)
which conflict with the device assignment (RANDOM,
INPUT, PRINT,...).

'6' indicating an undefined current record pointer
status. This condition indicates that an attempt has
been made to execute a sequential READ statement after
the occurrence of an unsuccessful READ or START
statement without an intervening successful CLOSE and
OPEN.

- 144 -

RM/COBOL Language TRS-80 ® PICTURE Clause

| CATEGORY TYPE OF EDITING |
|Alphabetic Simple insertion 'B' anly |
|Numeric Nane |
| Alphanumeric None |
Alphanumeric Simple insertion '@§', 'B',
Edited and '/' (stroke)

Numeric All, subject to rules below
Edited

Floating insertion editing and editing by zero suppression
and replacement are mutually exclusive in a PICTURE clause.
Only one type of replacement may be used with zero
suppression in a PICTURE clause.

- 79 -

PICTURE Clause{Ed:.tmg TRS-80 ® RM/COBOL Language

Simple Insertion Editing

The ',' (comma), 'B" (space), '#', (zero), and '/' (stroke)
are used as the insertion characters. The insertion
characters are counted in the size of the item and represent
the position in the item into which the character will be
inserted.

Special Insertion Editing

The '.' (period) is used as the insertion character. 1In
addition to being an insertion character it also represents
the decimal point for alignment purposes. The insertion
character used for the actual decimal point is counted in
the size of the item. The use of the assumed decimal point,
represented by the symbol 'V' and the actual decimal point,
represented by the insertion character, in the same PICTURE
character-string is disallowed. The result of special
insertion editing is the appearance of the insertion
character in the item in the same position as shown in the
character-string.

Fixed Insertion Editing

The currency symbol and the editing sign control symbols,
'+', '-', 'CR,, 'DB', are the insertion characters. Only
one currency symbol and only one of the editing sign control
symbols can be used in a given PICTURE character-string.
When the symbols 'CR' or 'DB' are used they represent two
character positions in determining the size of the item and
they must represent the rightmost character positions that
are counted in the size of the item.

The symbol '+' or '-', when used, must be either the
leftmost or rightmost character position to be counted in
the size of the item.

The currency symbol must be the leftmost character position
to be counted in the size of the item except that it can be
preceded by either a '+' or a '-' symbol.

- 8§ -

RM/COBOL_Language TRS-80 © PICTURE Clause/Editing

Fixed insertion editing results in the insertion character
occupying the same character position in the edited item as
it occupied in the PICTURE character-string.

Editing sign control symbols produce the following results
depending upon the value of the data item:

EDITING SYMBOL IN RESULT
PICTURE | ======mm oo
CHARACTER-STRING DATA ITEM DATA ITEM
POSITIVE OR ZERO NEGATIVE
+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB

Floating Insertion Editing

The currency symbol and editing sign control symbols, '+' or
'-!', are the floating insertion characters and as such are
mutually exclusive in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE
character-string by using a string of at least two of the
floating insertion characters. This string of floating
insertion characters may contain any of the fixed insertion
symbols or have fixed insertion characters immediately to
the right of this string. These simple insertion characters
are part of the floating string.

The leftmost character of the floating insertion string
represents the leftmost limit of the floating symbol in the
data item. The rightmost character of the floating string
represents the rightmost limit of the floating symbols in
the data items.

The second floating character from the left represents the
leftmost limit of the numeric data that can be stored in the
data item. Nonzero numeric data may replace all the
characters at or to the right of this limit.

- 81 -~

PICTURE Clause/Editing TRS-80 © RM/COBOL Language

In a PICTURE character-string, there are only two ways of
representing floating insertion editing. One way is to
represent any or all of the leading numeric character
positions on the left of the decimal point by the insertion
character. The other way is to represent all of the numeric
character positions in the PICTURE character-string by the
insertion character.

If the insertion characters are only to the left of the
decimal point in the PICTURE character-string, the result is
that a single floating insertion character will be placed
into the character position immediately preceding either the
decimal point or the first nonzero digit in the data
represented by the insertion symbol string, whichever is
farther to the left in the PICTURE character-string. The
character positions preceding the insertion character are
replaced with spaces.

If all numeric character positions in the PICTURE
character-string are represented by the insertion character,
the result depends upon the value of the data. If the value
is zero the entire data item will contain spaces. 1If the
value is not zero, the result is the same as when the
insertion character is only to the left of the decimal
point.

To avoid truncation, the minimum size of the PICTURE
character-string for the receiving data item must be the
number of characters in the sending data item, plus the
number of non-floating insertion characters being edited
into the receiving data item, plus one for the floating
insertion character.

Zero Suppression Editing

The suppression of leading zeroes in numeric character
positions is indicated by the use of the alphabetic
character 'Z' or the character '*' (asterisk) as suppression
symbols in a PICTURE character-string. These symbols are
mutually exclusive in a given PICTURE character-string. Each
suppression symbol is counted in determining the size of the
item. If 'Z' is used the replacement character will be the
space and if the asterisk is used, the replacement character
will be '*',

- 82 -

RM/COBOL Language TRS-80 © PICTURE Clause/Editing

In a PICTURE character-string, there are only two ways of
representing zero suppression. One way is to represent any
or all of the leading numeric character positions to the
left of the decimal point by suppression symbols. The other
way is to represent all of the numeric character positions
in the PICTURE character-string by suppression symbols.

If the suppression symbols appear only to the left of the
decimal point, any leading zero in the data which
corresponds to a symbol in the string is replaced by the
replacement character. Suppression terminates at the first
nonzero digit in the data represented by the suppression
symbol string or at the decimal point, whichever is
encountered first.

If all numeric character positions in the PICTURE
character-string are represented by suppression symbols and
the value of the data is not zero the result is the same as
if the suppression characters were only to the left of the
decimal point., If the value is zero and the suppression
symbol is '2', the entire data item will be spaces. If the
value is zero and the suppression symbol is '*', the data
item will be all '*' except for the actual decimal point.

The symbols '+', '-', '*', 'Z2', and the currency symbol,
when used as floating replacement characters, are mutually
exclusive within a given character-string.

The picture precedence chart show the order of precedence
when using characters as symbols in a character-string. An
'X' at an intersection indicates that the symbol(s) at the
top of the column may precede, in a given character-string,
the symbol(s) at the left of the row. Arguments appearing
in braces indicate that the symbols are mutually exclusive.
the currency symbol is indicated by the symbol 'cs'.

At least one of the symbols 'aA', 'Xx', 'z', '9', or '*' or at
least two of the symbols '+', '-', or 'cs' must be present
in a PICTURE string.

- 83 -

PICTURE Clause/Editing TRS-80 ® RM/COBOL Langquage

Nonfloating insertion symbol '+' and '-', floating insertion
symbols 'z', '*', '+', '-', and 'cs', and other symbol 'P'
appear twice in the PICTURE character precedence chart. The
leftmost column and uppermost row for each symbol represent
its use to the left of the decimal point position. The
second appearance of the symbol in the chart represents its
use to the right of the decimal point position.

- 84 -

RM/COBOL Language TRS-80 ® PICTURE Clauge/Editing

\lst Non-Floating Floating Other
\Sym- Insertion Symbols Insertion Symbols Symbols
2nd\ bol
Sym-\ BI“""\'[“:”‘?“@”@‘ {2} {Z)“t)“f}lcscs 9|als|v|p|p
bol \ | |] [t=y|¢=}|{DB}| (=) [(=3 x| |||
B (xIxIx[xIx] x| | x| x[|x]|x|x]|x]xxx|l[x||x
o [x|xIx|x|x] x| | x| x| x| x| x| x| x| xx] x|l |x
g /0 xIxIxxixl x|] x| x| x x| x| x| x|xx|[x| |x
g o (XIXIXIXIXE XD x| x| x| x|x|x]x|xl]Ix]Ix
g x| P x b Ix|ox | Ix] Lxl P
ﬂI."+- 0 T O [T B I LT
2 +- xixIxxixl 1 x| xIx| |] xIx|x| | [x]x]x
DB (X[XIx[xIx] | | x| x[|x| | [|x|x|x | [x][x|x
s (111 1xl I | [N I LT
z * xxIxxp x| 1 x|l x| 11 1| P
EZ*XIXIXIXIXIXI boolx| xIx| |]| [Ix]Ix
g+-XIXIXIXIl [I ¢ x| 110
¥+ - xixlxixxl 11 I x [IxIx] | FLoIx] Ix
gm X[l t x| | | [T N P
oos xxlxixlxl x|]| b b xbxp LIl Ix
o |Ixixlxlxlx| x| | x| x| [x]| |x] |xxx[x|[x
0AXXIXIXIIIII | P xx
E s I T Y O N N I I T
g v oxixIxixl x| x| oxt o Ix] x| x| Ix| (x|
Pooxixpxixl fx |1 Ix{ox] Ix L x] o xl x| x|
P (S A [T I I | IxIx] |x

PICTURE Character Precedence Chart

- 85 -

USAGE Clause TRS-80 © RM/COBOL Language

The USAGE Clause

The USAGE clause specifies the format of a data item in the
computer storage.

FORMAT

[USAGE IS 1 {COMPUTATIONAL }
{comp }
{COMPUTATIONAL-1 }

{COMP-1 }

}
}
}
}

{COMPUTATIONAL-3
{COMP-3

{DISPLAY

{ INDEX

This clause specifies the manner in which a data item is
represented in the storage of a computer. It does not
affect the use of the data item, although the specifications
for some statements in the Procedure Division may restrict
the USAGE clause of the operands referenced.

The USAGE clause can be written at any level. If the USAGE
clause is written at a group level, it applies to each
elementary item in the group. The USAGE clause of an
elementary item cannot contradict the USAGE clause of a
group to which the item belongs.

If the USAGE clause is not specified for an elementary item,
or for any group to which the item belongs, the usage is
implicitly DISPLAY.

A COMPUTATIONAL (COMPUTATIONAL-l, COMPUTATIONAL-3) item
represents a value to be used in computations and must be
numeric. If a group is described as COMPUTATIONAL, then the
elementary items in the group are COMPUTATIONAL. The group
itself is not COMPUTATIONAL (cannot be used in
computations.)

The format of a COMPUTATIONAL item is one decimal digit per
character position (hexadecimal @g@-§9). If an 'S' appears
in the PICTURE character-string, a trailing byte contains
the sign with > 2B being generated for positive and > 2D
being generated for negative. COMPUTATIONAL items will be
treated as negative if the sign character is > 2D; otherwise
they will be considered positive.

- 86 -

RM/COBOL Language ® USAGE Clause
= TRS-80

The format of a COMPUTATIONAL-1l item (abbreviated COMP-1) is
16 bit two's complement signed binary, independent of the
number of nines or appearance of 'S' in the PICTURE
character-string. The number of nines is significant when
the value is converted to decimal during data manipulation.
The value of a COMPUTATIONAL-1l item ranges between -32768
and 32767.

The format of a COMPUTATIONAL-3 item is two decimal digits
per character position.

The PICTURE character-string of a COMPUTATIONAL,
COMPUTATIONAL-1 or COMPUTATIONAL-3 item can contain only
'9's, the operational sign character 'S', the implied
decimal point character 'V', one or more 'P's. Since a
COMPUTATIONAL-1 item must have zero scale it cannot contain
any 'P's in its PICTURE character string and if it has a 'V’
in its PICTURE character-string the 'V' must be the
rightmost character.

The USAGE IS DISPLAY clause indicates that the format of the
data is ASCII.

An elementary item described with the USAGE IS INDEX clause
is called an index data item and contains a value which must
correspond to an occurence number of a table element. If a
group item is described with the USAGE IS INDEX clause the
elementary items in the group are all index data but the
group item name cannot be used in the SET statement or in a
relation condition.

An index data item can be referenced explicitly only in a
SET statement or a relation condition.

The initial value of an index item is undefined.

The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN
ZERO clauses cannot be used to describe group or elementary
items described with the USAGE IS INDEX clause.

An index data item can be part of a group which is referred
to in a MOVE or input-output statement, in which case no
conversion will take place.

The external and internal format of an index data item is
the same as a COMPUTATIONAL-1 item.

- 87 -

SIGN Clause TRS-80 ° RM/COBOL Language

The SIGN Clause

The SIGN clause specifies the position and the mode of (»
representation of the operational sign when it is necessary il
to describe these properties explicitly.

FORMAT

[SIGN IS] {TRAILING} [SEPARATE CHARACTERI]

The optional SIGN clause, if present, specifies the position
and the mode of representation of the operational sign for
the numeric data description entry to which it applies, or
for each numeric data description entry subordinate to the
group to which it applies. The SIGN clause applies only to
numeric data description entries whose PICTURE contains the
character 'S’'.

The operational sign will be presumed to be the trailing
character position of the elementary numeric data item; this
character position is not a digit position.

The letter 'S' in a PICTURE character-string is counted in
determining the size of the item (in terms of standard data
format characters).

The operational signs for positive and negative are the
standard data format characters '+' and '-', respectively.

The numeric data description entries to which the SIGN
clause applies must be described as usage is DISPLAY.

At most one SIGN clause may apply to any given numeric data
description entry.

- 88 -

RM/COBOL Language TRS-80 © OCCURS Clause

The OCCURS Clause

The OCCURS clause eliminates the need for separate entries
for repeated data items and supplies information required
for the application of subscripts or indices.

FORMAT 1

OCCURS integer-1 TIMES
[INDEXED BY index-name-l [,index-name-2] ...]

FORMAT 2

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1
[INDEXED BY index-name-l [, index-name-2] ...)

The OCCURS clause is used in defining tables and other
homogeneous sets of repeated data items. Whenever the
OCCURS clause is used, the data-name which is the subject of
this entry must be either subscripted or indexed whenever it
is referred to in a statement. Further, if the subject of
this entry is the name of a group item, then all data-names
belong to the group must be subscripted or indexed whenever
they are used as operands, except as the object of a
REDEFINES clause.

The OCCURS clause cannot be specified in a data description
entry that:

Has an @1, 66, 77, or an 88 level~-number.

Describes an item whose size is variable. The size of
an item is variable if the data description of any
subordinate item contains Format 2 or the OCCURS
clause.

Except for the OCCURS clause itself, all data description
clauses associated with an item whose description includes
an OCCURS clause apply to each occurrence of the item
described.

The number of occurrences of the subject entry is defined as
follows:

- 89 -

OCCURS Clause TRS-80 ® RM[COBOL Language

In Format 1, the value of integer-1 represents the
exact number of occurrences.

in Format 2, the current value of the data item
referenced by data-name-l represents the number of
occurrences.

This format specifies that the subject of this
entry has a variable number of occurrences. The
value of integer-2 represents the maximum number
of occurrences and the value of integer-1
represents the minimum number of occurences. This
does not imply that the length of the subject of
the entry is variable, but that the number of
occurrences is variable.

The value of the data item referenced by
data-name-1 must fall within the range integer-1
through integer-2. Reducing the value of the data
item referenced by data-name-1 makes the contents
of data items, whose occurrence numbers now exceed
the value of the data item referenced by
data-name-~1l, unpredictable.

Where both integer-1 and integer-2 are used, the
value of integer-1 must be less than the value of
integer-2.

The data description of data-name-1 must describe
a positive integer. Data-name-1 may be qualified.

A data description entry that contains Format 2 of
the OCCURS clause may only be followed, within
that record description, by data description
entries which are subordinate to it.

When a group item, having subordinate to it an entry that
specifies Format 2 of the OCCURS clause, is referenced, only
that part of the table area that is specified by the value
of data-name-l will be used in the operation.

An INDEXED BY phrase is required if the subject of this
entry, or an entry subordinate to this entry, is to be
referred to by indexing. The index-name identified by this
clause is not defined elsewhere since its allocation and
format are dependent on the hardware, and not being data,
cannot be associated with any data hierarchy.

gg

RM/COBOL Language TRS-80 ® SYNCHRONIZED Clause

The SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an
elementary item on an even byte boundary.
FORMAT

{SYNCHRONIZED} [LEFT]
{S¥YNC } [RIGHT]

This clause specifies that the subject data item is to be
aligned in the computer such that no other data item
occupies any of the character positions between the leftmost
and rightmost natural boundaries delimiting this data item,
If the number of character positions required to store this
data item is less than the number of character positions
between those natural boundaries, the unused character
positions (or portions thereof) must not be used for any
other data item. Such unused character positions, however,
are include in:

The size of any group item(s) to which the elementary
item belongs; and

The character positions redefined when this data item
is the object of a REDEFINES clause.

SYNCHRONIZED LEFT specifies that the elementary item is to
be positioned such that it will begin at the left character
position of the next available even byte. If the data item
contains an odd number of bytes, one trailing byte of FILLER
is implied.

SYNCHRONIZED not followed by either RIGHT or LEFT is
equivalent to the clause SYNCHRONIZED LEFT.

SYNC is an abbreviation for SYNCHRONIZED.
This clause may only appear with an elementary item.

SYNCHRONIZED RIGHT specifies that the elementary item is to
be positioned such that it will terminate on the right
character position of an integral even byte boundary. If
the data item contains an odd number of bytes, a leading
byte of FILLER is implied.

- 91 -

SYNCHRONIZED Clause TRS-80 ® RM/COBOL Language

Whenever a SYNCHRONIZED item is referenced in the source
program, the original size of the item, as shown in the
PICTURE clause, is used in determining any action that
depends on size, such as justification, truncation or
overflow.

If the data description of an item contains the SYNCHRONIZED
clause and an operational sign, the sign of the item appears
in the normal operation sign position, regardless of whether
the item is SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT.

When the SYNCHRONIZED clause is specified in a data
description entry of a data item that also contains an
OCCURS clause, or in a data description entry that contains
an OCCURS clause, then:

Each occurrence of the data item is SYNCHRONIZED.

Any implicit FILLER generated for other data items
within that same table are generated for each
occurrence of those data items.

Records of a file and index data items are automatically
synchronized left. Records and noncontiguous data-items in
working-storage begin on the next available byte unless the
first elementary item is synchronized.

The format on external media of records or groups containing
elementary items described with the SYNCHRONIZED clause
includes any implied FILLER bytes.

When the data item preceding a data item described with the
SYNCHRONIZED clause does not terminate on a byte whose
address is even, then one implied FILLER byte is generated.
Such automatically generated FILLER positions are included
in:

The size of any group to which the FILLER item belongs;
and

The number of character positions allocated when the
group item of which the FILLER item is a part appears
as the object of a REDEFINES clause.

- 92 -

RM/COBOL_Langquage TRS-80 ¢ JUSTIFIED Clause

The JUSTIFIED Clause

The JUSTIFIED clause specifies nonstandard positioning of
data within a receiving data item.

FORMAT

{JUSTIFIED} RIGHT
{JusTt }

When a receiving data item is described with the JUSTIFIED
clause and the sending data item is larger than the
receiving data item, the leftmost characters are truncated.
When the receiving data item is described with the JUSTIFIED
clause and it is larger than the sending data item, the data
is aligned at the rightmost character position in the data
item with space-fill for the leftmost character positions.

When the JUSTIFIED clause is omitted, the standard rules for
aligning data within an elementary item apply.

The JUSTIFIED clause cannot be specified for any data item
described as numeric or for which editing is specified.

The JUSTIFIED clause can be specified only at the elementary
item level.

JUST is an abbreviation for JUSTIFIED.

- 93 -

BLANK WHEN ZERO Clause TRS-80 ® RM/COBOL Language

The BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause permits the blanking of an item
when its value is zero.

FORMAT

BLANK WHEN ZERO

The BLANK WHEN ZERO clause can be used only for an
elementary item whose PICTURE is specified as numeric or
numeric edited.

The BLANK WHEN ZERO clause cannot appear in the same entry
with a PICTURE clause having an asterisk as the zero
suppression symbol.

When the BLANK WHEN ZERO clause is used, the item will
contain nothing but spaces if the value of the item is zero.
When the BLANK WHEN ZERO clause is used for an item whose

PICTURE is numeric, the category of the item is considered
to be numeric edited.

- 94 -

RM/COBOL Language TRS-80° VALUE IS Clause

The VALUE IS Clause

@lx‘ The VALUE IS clause defines the initial value of working
7 storage items, and the values associated with a
condition-name.

FORMAT 1

VALUE IS literal

FORMAT 2

{VALUE IS } literal-l [{THROUGH} literal-2]
{VALUES ARE} {THRU }

[,literal-3 [{THROUGH} literal-41] ...
{THRU)
The VALUE clause cannot be stated for any items whose size

is variable.

A signed numeric literal must have associated with it a
signed numeric PICTURE character-string.

All numeric literals in a VALUE clause of an item must have
a value which is within the range of values indicated by the
PICTURE clause, and must not have a value which would
require truncation of nonzero digits. Nonnumeric literals
in a VALUE clause of an item must not exceed the size
indicated by the PICTURE clause.

The words THRU and THROUGH are equivalent.

The VALUE clause must not conflict with other clauses in the
data description of the item or in the data description
within the hierarchy of the item. The following rules

apply:

1. If the category of the item is numeric, all literals in
the VALUE clause must be numeric. If the literal
defines the value of a working storage item, the
literal is aligned in the data item according to the
standard alignment rules.

- 95 -

ALUE 1
VALU S Clause TRS-80° RM/COBOL Language

2. If the category of the item is alphabetic,
alphanumeric, alphanumeric edited or numeric edited,
all literals in the VALUE clause must be nonnumeric
literals. The literal is aligned in the data item as
if the data item had been described as alphanumeric.
Editing characters in the PICTURE clause are included
in determining the size of the data item but have no
effect on initialization of the data item. Therefore,
the VALUE of an edited item is presented in an edited
form.

Initialization takes place independent of any BLANK WHEN
ZERO or JUSTIFIED clause that may be specified.

A figurative constant may be substituted in both Format 1
and Format 2 wherever a literal is specified.

Condition-Name Rules

In a condition-name entry, the VALUE clause is required.
The VALUE clause and the condition-name itself are the only
two clauses permitted in the entry. The characteristics of
a condition-name are implicitly those of its conditional

variable.

Format 2 can be used only in connection with
condition-names. Wherever the THROUGH (THRU) phrase is
used, literal-l must be less than literal-2, literal-3 less
than literal-4, etc.

Data Description Entries Other Than Condition-Names

Rules governing the use of the VALUE clause differ with the
respective sections of the Data Division:

In the File Section, the VALUE clause may be used only
in condition-name entries.

In the Working-Storage Section, the VALUE clause must
be used in condition-name entries. The VALUE clause
may also be used to specify the initial value of any
other data item; in which case the clause causes the
item to assume the specified value at the start of the
object program. If the VALUE clause is not used in an
item's description, the initial value is undefined.

- 96 -

RM/COBOL_Language TRS-80 © VALUE IS Clause

In the Linkage Section, the VALUE clause may be used
only in condition-name entries.

The VALUE clause must not be stated in a data description
entry that contains an OCCURS clause, or in an entry that is
subordinate to any entry containing a REDEFINES clause.

This rule does not apply to condition-name entries.

If the VALUE clause is used in an entry at the group level,
the literal must be a figurative constant or a nonnumeric
literal, and the group area is initialized without
consideration for the individual elementary or group items
contained within this group. The VALUE clause cannot be
stated at the subordinate levels within this group.

The VALUE clause must not be written for a group containing
items with descriptions including JUSTIFIED, SYNCHRONIZED,
or USAGE (other than USAGE IS DISPLAY).

- 97 -

RENAMES Clause TRS-80 ° RM/COBOL Language

The RENAMES Clause

The RENAMES clause permits alternative, possibly
overlapping, groupings of elementary items.

FORMAT
66 data-name-1;

RENAMES data-name-2 [{THROUGH)} data-name-3].
{THRU }

NOTE: Level-number 66, data-name-1 and the semicolon
are shown in the above format to improve
clarity. Level-number and data-name-1 are not
part of the RENAMES clause.

All RENAMES entries referring to data items within a given
logical record must immediately follow the last data
description entry of the associated record description
entry.

Data-name-2 and data-name-3 must be names of elementary
items or groups of elementary items in the same logical
record, and cannot be the same data-name. A 66 level entry
cannot rename another 66 level entry nor can it rename a 77,
88, or gl level entry.

Data-name-1 cannot be used as a qualifier, and can only be
qualified by the names of the associated level @1 or FD
entries. Neither data-name-2 nor data-name-3 may have an
OCCURS clause in its data description entry nor be
subordinate to an item that has an OCCURS clause in its data
description entry.

The beginning of the area described by data-name-3 must not
be to the left of the beginning of the area described by
data-name~2. The end of the area described by data-name-3
must be to the right of the end of the area described by
data-name-2. Data-name-3, therefore, cannot be subordinate
to data-name-2.

Data-name-2 and data-name-3 may be qualified.

- 98 -

RM/COBOL Language TRS-80 ° RENAMES Clause

None of the items within the range, including data-name-2
and data-name-3, if specified, can be an item whose size is
variable as defined in the OCCURS clause.

One or more RENAMES entries can be written for a logical
record.

When data-name-3 is specified, data-name-l is a group item
which includes all elementary items starting with
data-name-2 (if data-name-2 is an elementary item) or the
first elementary item in data-name-2 (if data-name-2 is a
group item), and concluding with data-name-3 (if data-name-3
is an elementary item) or the last elementary item in
data-name-3 (if data-name-3 is a group item).

When data-name-3 is not specified, data-name-2 can be either
a group or an elementary item; when data-name-2 is a group
item, data-name-l1l is treated as a group item, and when
data-name-2 is an elementary item, data-name-l is treated as
an elementary item.

The words THRU and THROUGH are equivalent.

- 99 -

—Data Structures __ TRS.80 ® —RM/COBOL Languade

DATA STRUCTURES

Classes of Data)

The five categories of data items (see the PICTURE clause)
are grouped into three classes:

alphabetic
numeric
alphanumeric

For alphabetic and numeric, the classes and categories are
synonymous .

The alphanumeric class includes the categories of
alphanumeric edited, numeric edited and alphanumeric
(without editing).

Every elementary item except for an index data item belongs
to one of the classes and further to one of the categories.
The class of a group item is treated at object time as
alphanumeric regardless of the class of elementary items
subordinate to that group item.

The following chart depicts the relationship of the class
and categories of data items:

LEVEL OF ITEM | CLASS | CATEGORY
Alphabetic Alphabetic
Numeric Numeric
Elementary
Alphanumeric Numreric Edited
Alphanumeric Edited
Alphanumeric
Nonelementary Alphanumeric Alphabetic
(Group) Numeric
Numeric Edited
Alphanumeric Edited
Alphanumeric

-lgg-

RM/COBOL Language TRS-80° Data Structures

Representation of Numeric Items

The value of a numeric item may be represented in either
binary, decimal or packed decimal form depending on the
USAGE clause associated with the item. There are two ways
of expressing decimal: DISPLAY and COMPUTATIONAL. Binary is
COMPUTATIONAL-1. Packed decimal is COMPUTATIONAL-3.

The selection of the proper representation is dependent upon
the usage of the numeric item. 1Items which must be used for
input and output should be of DISPLAY usage to eliminate
conversions to external forms. For efficiency of arithmetic
operations, COMPUTATIONAL, COMPUTATIONAL-1l, or
COMPUTATIONAL-3 should be used. To reduce conversions and
increase efficiency, types should not be mixed in operations
except where required by program needs.

Representation of Algebraic Signs

Algebraic signs fall into two categories:

operational signs which are associated with signed
numeric data items, and signed numeric literals to
indicate their algebraic properties; and

editing signs which appear to identify the sign of the
item.

For DISPLAY, COMPUTATIONAL, and COMPUTATIONAL-3, an unsigned
numeric item is assumed to have an operational sign which is
positive and will receive the absolute value of signed
items. A signed numeric item maintains the operational sign
as a separate trailing character.

For COMPUTATIONAL-1 (which is always signed), the
operational sign is maintained as part of the item in two's
complement signed binary form.

Editing signs are inserted into a data item through the use
of the sign control symbols of the PICTURE clause.

- 101 -

Data Structures TRS-80 © RM/COBOL_Language

Standard Alignment Rules

The standard rules of positioning data within an elementary
item depend on the category of the receiving item:

If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved
to the receiving character positions with zero fill
or truncation on either end as required.

b. When an assumed decimal point is not explicitly
specified the data item is treated as if it had an
assumed decimal point immediately following its
righmost character and is aligned as in a. above.

If the receiving data item is a numeric edited data
item, the data moved to the edited data item is aligned
by decimal point with zero-fill or truncation at either
end as required within the receiving character
positions of the data item, except where editing
requirements cause replacement of the leading zeros.

If the receiving data item is alphanumeric (other than
a numeric edited data item), alphanumeric edited or
alphabetic, the sending data is moved to the receiving
character positions and aligned at the leftmost
character position in the data item with space-fill or
truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item,
these standard rules are modified as descried in the
JUSTIFIED clause.

- 142 -

RM/COBOL Language TRS-80 ° ualification

QUALIFICATION

Every user-specified name that defines an element in COBOL
source program must be unique, either because no other name
has the identical spelling and hyphenation, or because the
name exists within a hierarchy of names such that references
to the name can be made unique by mentioning one or more of
the higher levels of the hierarchy. The higher levels are
called qualifiers and this process that specifies uniqueness
is called qualification. Enough qualification must be
mentioned to make the name unique; however, it may not be
necessary to mention all levels of the hierarchy. Within
the Data Division, all data-names used for qualification
must be associated with a level indicator or a level-number.
Therefore, two identical data-names must not appear as
entries subordinate to a group item unless they are capable
of being made unigue through qualification.

In the hierarchy of qualification, names associated with a

level indicator are the most significant, then those names

associated with level-number @1, then names associated with
level-number F2, ..., 49. The most significant name in the
hierarchy must be unique and cannot be qualified.

Qualification is performed by following a data-name, by one
or more phrases composed of a qualifier preceded by IN or
OF. 1IN and OF are logically equivalent.

FORMAT 1

{data-name-1} [{OF} data-name-2] ...
{condition-name} {IN}

FORMAT 2

paragraph-name [{OF} section-name]

{IN}
The rules for qualification are as follows:

1. Each gualifier must be of a successively higher level
and within the same hierarchy as the name it qualifies.

1¢3

Qualif ication TRS-80 ® RM/COBOL_Language

The same name must not appear at two levels in a
hierarchy.

If a data name is assigned to more than one data item
in a source program, the data_name must be qualified
each time it is referred to in the Procedure,
Environment, and Data Divisions (except in the
REDEFINES clause where qualification is unnecessary and
must not be used.)

A paragraph-name must not be duplicated within a
section. When a paragraph-name is qualified by a
section-name, the word SECTION must not appear. A
paragraph-name need not be qualified when referred to
from within the same section.

A data-name cannot be subscripted when it is being used
as a qualifier.

A name can be qualified even though it does not need
qualification: if there is more than one combination
of qualifiers that ensures uniqueness, then any such
set can be used. The complete set of qualifiers for a
data-name must not be the same as any partial set of
qualifiers for another data-name. Qualified data-names
may have any number of qualifiers up to a limit of 49.

..1”4-

RM/COBOL_Lanquage TRS-80 ¢ Subscripting

SUBSCRIPTING

Subscripts can be used only when reference is made to an
individual element within a list of a table of like elements
that have not been assigned individual data-names (see The
OCCURS Clause).

The subscript can be represented either by a numeric literal
that is an integer or by a data-name. The data name must be
a numeric elementary item that represents an integer. When
the subscript is represented by a data-name, the data-name
may be qualified but not subscripted.

The subscript may be signed and, if signed, it must be
positive. The lowest possible subscript value is 1. This
value points to the first element of the table. The next
sequential elements of the table are pointed to by
subscripts whose values are 2, 3, ...n. The highest
permissible subscript value, in any particular case, is the
maximum number of occurrences of the item as specified in
the OCCURS clause.

The subscript, or set of subscripts, that identifies the
table element id delimited by the balanced pair of
separators, left parenthesis and right parenthesis,
following the table element data-name. The table element
data-name appended with a subscript is called a subscripted
data-name or an identifier. When more than one subscript is
required, they are written in the order of successively less
inclusive dimensions of the data organization.

FORMAT

{data-name } (subscript-1l [subscript-2 [,subscript-311)
{condition-name}

lgs

Indexing TRS-80 ® RM/COBOL Lanquaqe

INDEXING

References can be made to individual elements within a table
of like elements by specifying indexing for that reference.
An index is assigned to that level of the table by using the
INDEXED BY phrase in the definition of a table. A name
given in the INDEXED BY phrase is know as an index-name and
is used to refer to the assigned index. The value of an
index corresponds to the occurrence number of an element in
the associated table. An index-name must be initialized
before it is used as a table reference. An index-name can
be given an initial value by a SET statement, or a FORMAT 4
PERFORM statement.

Direct indexing is specified by using an index-name in the
form of a subscript. Relative indexing is specified when
the index-name is followed by the operator + or -, followed
by an unsigned integer numeric literal all delimited by the
balanced pair of separators, left parenthesis and right
parenthesis, following the table element data-name. The
occurrence number resulting from relative indexing is
determined by incrementing (where the operator + is used) or
decrementing (when the operator - is used), by the value of
the literal, the occurrence number represented by the value
of the index. When more than one index-name is required,
they are written in the order of successively less inclusive
dimensions of the data organization.

At the time of execution of a statement which refers to an
indexed table element, the value contained in the index
referenced by the index-name associated with the table
element must neither correspond to a value less than one (1)
nor to a value greater than the highest permissible
occurrence number of an element of the associated table.
This restriction also applies to the value resultant from
relative indexing.

FORMAT
{data~name} ({index-name-1 [{+} literal-21}
{condition-name} {literal-1l {-} }
[, {index-name-2 ({+} literal-41}
{literal-3 {-} }
[, {index-name-3 [{+} literal-61}11)
{literal-5 {-} }

- 186 -

RM/COBOL Language TRS-80 ® Identifier

IDENTIFIER

An identifier is a term used to reflect that a data-name, if
not unique in a program, must be followed by a syntactically
correct combination of qualifiers, subscripts or indices
necessary to ensure uniqueness. The general formats for
identifiers are:

FORMAT 1

data-name-l ({OF} data-name-2] ... [(subscript-l
{m})

(,subscript-2 [,subscript-311)1
FORMAT 2
data-name-1 [{OF} data-name-2] ... [({index-name-l [{+} literal-2]}
{literal-1 {-} }
{m}

[, {index-name-2 [{+} literal-4]}
{literal-3 ({-} }

[, {index-name-3 [{+} literal-61}11)}
{literal-5 {-} }

Restrictions on qualification, subscripting and indexing
are:

A data-name must not itself be subscripted nor indexed
when that data-name is being used as an index,
subscript or qualifier.

Indexing is not permitted where subscripting is not
permitted.

An index may be modified only by the SET and PERFORM
statements. Data items described by the USAGE IS INDEX
clause permit storage of the values associated with
index-names as data in a form specified by the
compiler. Such data items are called index data items.

Literal-1l, literal-3, literal-5 in the above format
must be positive numeric integers. Literal-2,
literal-4, literal-6, must be unsigned numeric
integers.

- 187 -

Condition-Name TRS-80 ® RM‘COBOL Language

CONDITION-NAME

Each condition-name must be unique, or be made unique
through qualification and/or indexing, or subscripting.

If qualification is used to make a condition-name unique,
the associated conditional variable may be used as the first
qualifier. 1If gualification is used, the hierarchy of names
associated with the conditional variable or the conditional
variable itself must be used to make the condition-name
unique.

If references to a conditional variable require indexing or
subscripting, then references to any of its condition-names
also require the same combination of indexing or
subscripting.

The format and restrictions on the combined use of
qualification, subscripting, and indexing of condition-names
is exactly that of 'identifier' except that data-name-1 is
replaced by condition-name-l.

In the general formats, 'condition-name' refers to a

condition-name qualified, indexes or subscripted, as
necessary.

- 198 -

——RBM/COBOL Language TRS-80 ® —Iable Handling

TABLE HANDLING

Tables of data are common components of business data
processing problems. Although items of data that make up a
table could be described as contiguous data items, there are
two reasons why this approach is not satisfactory. First,
from a documentation stanpoint, the underlying homogeneity
of the items would not be readily apparent; and second, the
problem of making available an individual element of such a
table would be severe when there is a decision as to which
element is to be made available at object time.

Tables composed of contiguous data items redefined in COBOL
by including the OCCURS clause in their data description
entries.

This clause specifies that the item is to be repeated as
many times as stated. The item is considered to be a table
element and its name and description apply to each
repetition or occurrence. Since each occurrence of a table
element does not have asigned to it a unique data-name,
reference to a desired occurrence may be made only by
specifying the data-name of the table element together with
the occurrence number of the desired table element.
Subscripting and indexing are the two methods that are used
to specify the occurrence number of a desired table element.

Table Definition

To define a one-dimensional table, the programmer uses an
OCCURS clause as part of the data description of the table
element, but the OCCURS clause must not appear in the
description of group items which contain the table element.

Example 1:

g1 TABLE-1
#2 TABLE-ELEMENT OCCURS 20 TIMES.
@3 NAME
g3 SSAN

1¢9

Table Handling TRS-80 ® RM/COBOL Language

Defining a one-dimensional table within each occurrence of
an element of another one-dimensional table gives rise to a
two-dimensional table. To define a two-dimensional table,
then, an OCCURS clause must appear in the data description
of the element of the table, and in the description of only
one group item which contains that table. 1In the
description of a three-dimensional table, the OCCURS clause
should appear in the data description of 2 nested group
items which contain the element. 1In COBOL, tables of up to
3 dimensions are permitted.

Example 2 shows a table which has one dimension for
CONTINENT-NAME, two dimensions for COUNTRY-NAME, and three
dimensions for CITY-NAME and CITY-POPULATION. The table
includes 10@,510 data items--1¢ for CONTINENT-NAME, 5¢¢ for
COUNTRY-NAME, S5@,@8@8 for CITY-NAME, and 58,0088 for
CITY-POPULATION. Within the table there are ten occurrences
of CONTINENT-NAME. Within each CONTINENT-NAME there are 5§
occurrences of COUNTRY-NAME and within each COUNTRY-NAME
there are one hundred occurrences of CITY-NAME and
CITY-POPULATION.

Example 2:

#1 CENSUS-TABLE.
@5 CONTINENT-TABLE OCCURS 1§ TIMES.
14 CONTINENT-NAME PIC XXXXXX.
14 COUNTRY-TABLE OCCURS 5@ TIMES.
15 COUNTRY-NAME PIC XXXXXXXX.
15 CITY-TABLE OCCURS 1#@ TIMES.
2f CITY-NAME PIC XXXXXXXXXX.
2§ CITY-POPULATION PIC 999999999999,

References to Table Items

Wherever the user refers to a table element, the reference
must indicate which occurrence of the element is intended.
For access to a one-dimensional table, the occurrence number
of the desired element provides complete information. For
access to tables of more than one dimension, an occurrence
number must be supplied for each dimension of the table
accessed. In Example 2 then, a reference to the 4th
CONTINENT-NAME would be complete, whereas a reference to
the 4th COUNTRY-NAME would not. To refer to a COUNTRY-NAME,
which is an element of a two-dimensional table, the user
must refer to, for example, the 4th COUNTRY-NAME within the
6th CONTINENT-TABLE.

- 119 -

RM/COBOL Language TRS-80° Table Handling

One method by which occurrence numbers may be specified is
to append one or more subscripts to the data-name. A
subscript is an integer whose value specifies the occurrence
number of an element. The subscript can be represented
either by a literal which is an integer or by a data-name
which is defined elsewhere as a numeric elementary item with
no character positions to the right of the assumed decimal
point. 1In either case, the subscript, enclosed in
parenthesis, 1is written immediately following the name of
the table element. A table reference must include as many
subscripts as there are dimensions in the table whose
element is being referenced. That is, there must be a
subscript for each OCCURS clause in the hierarchy containing
the data-name, including the data-name itself. In Example
2, references to CONTINENT-NAME require only one subscript,
reference to COUNTRY-NAME requires two, and references to
CITY-NAME and CITY-POPULATION require three.

When more than one subscript is required, they are -written
in order of successively less inclusive dimensions of the
data organization. When a data-name is used as a subscript,
it may be used to refer to items in many different tables.
These tables need not have elements of the same size. The
data-name may also appear as the only subscript with one
item and as one of two or three subscripts with another
item. Also, it is permissible to mix literal and data-name
subscripts, for example: CITY-POPULATION (1g, NEWKEY, 42).

Another method of referring to items in a table is indexing.
To use this technique, the programmer assigns one or more
index-names (defined with the INDEXED-BY phrase of the
OCCURS clause) to an item whose data description contains an
OCCURS clause. There is no separate entry to describe the
index-name since its definition is completely
hardware-oriented and it is not considered data per se. At
object time the contents of the index-name will correspond
to an occurrence number for that specific dimension of the
table to which the index-name was assigned. The initial
value of an index-name at object time is not determinable
and the index-name must be initialized by the SET statement
before use.

When a reference is made to a table element, or to an item
within a table element, and the name of the item is followed
by its related index-name or names in parentheses, then each
occurrence number required to complete the reference will be
obtained from the respective index-name. The index-name
thus acts as a subscript whose value is used in any table
reference that specifies indexing.

- 111 -

RM/COBOL Language TRS-80 ® PROCEDURE DIVISION

VI

PROCEDURE DIVISION

- 113 -

RM/COBOL_Lanquage TRS-80° PROCEDURE DIVISION

THE PROCEDURE DIVISION

The Procedure Division must be included in every COBOL
source program. This division may contain declaratives and
nondeclarative procedures.

The Procedure Division is identified by and must begin with
the following header:

PROCEDURE DIVISION [USING data-name-l [,data-name-2] ...] .

The USING phrase is present if and only if the object
program is to function under the control of a CALL
statement, and the CALL statement in the calling program
contains a USING phrase.

Each of the operands in the USING phrase of the Procedure
Division header must be defined as a data item in the
Linkage Section of the program in which this header occurs,
and it must have a @1 or 77 level-number.

Within a called program, Linkage Section data items are
processed according to their descriptions given in the
called program. Of those items defined in the Linkage
Section only data-name-1l, data-name-2, items subordinate to
these data-names, and condition-names and/or index-name
associated with such data-names and/or subordinate data
items, may be referenced in the Procedure Division.

When the USING phrase is present, the object program
operates as if data-name-1 of the Procedure Division header
in the called program and data-name-l1l in the USING phrase of
the CALL statement in the calling program refer to a single
set of data that is equally available to both the called and
calling programs. Their definitions must contain the same
data descriptions; however, they need not be the same name.
In like manner, there is an equivalent relationship between
data-name-2, ..., in the USING phrase of the called program
and data-name-2, ..., in the USING phrase of the CALL
statement in the calling program. A data-name must not
appear more than once in the USING phrase in the Procedure
Division header of the called program; however, a given
data-name may appear more than once in the same USING phrase
C;y of a CALL statement.

- 115 -

PROCEDURE
OCEDURE DIVISION TRS-80 ® RM(COBOL Language

Structure

The body of the Procedure Division must conform to one of
the following formats:

FORMAT 1

PROCEDURE DIVISION [USING data-pame-l [,data-name-2]...].

[DECLARATIVES,
{section-name SECTION [segment-number]. declarative-sentence
(paragraph-name. [sentence] ..] ...} ...
END DBECLARATIVES.

{section-name SECTION [segment-number].
[paragraph-name. [sentence] ...] ...} ...
(END PROGRAM].

FORMAT 2

PROCEDURE DIVISION [USING data-name-l [,data-name-2]...].

{paragraph-name. [sentence] ...} ...

[END PROGRAM].
The segment-number must be an integer ranging in value from
through 127.

If the segment-number is omitted from the section header,
the segment-number is assumed to be f#.

Sections in the declaratives must contain segment-numbers
less than 5f.

All sections which have the same segment-number constitute a

program segment. Sections with the same segment-number must
be physically contiguous in the source program.

- 116 -~

RM/COBOL Language TRS-80 ® PROCEDURE DIVISION

Segments with segment-numbers @ through 49 belong to the
fixed portion of the object program. Segments with
segment-numbers 5@ through 127 are independent segments.
Independent segments must follow fixed segments.

Declaratives

Declarative sections must be grouped at the beginning of the
Procedure Division preceded by the key word DECLARATIVES and
followed by the key words END DECLARATIVES.

Procedures

A procedure is composed of a paragraph, or group of
successive paragraphs, or a section, or a group of
successive sections within the Procedure Division. If one
paragraph is in a section, then all paragraphs must be in
sections. A procedure-name is a word used to refer to a
paragraph or section. It consists of a paragraph-name
(which may be qualified), or a section-name.

A section consists of a section header followed by zero, or
more successive paragraphs. A section ends immediately
before the next section or at the end of the Procedure
Division or, in the declaratives portion of the Procedure
Division, at the key words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a
period and a space and by zero, or more successive
sentences. A paragraph ends immediately before the next
paragraph-name or section-name or at the end of the
Procedure Division or, in the declaratives portion of the
Procedure Division, at the key words END DECLARATIVES. A
paragraph-name must not be duplicated within a section.

Execution

Execution begins with the first statement of the Procedure
Division, excluding declaratives. Statements are then
executed in the order in which they are presented for
compilation, except where the rules indicate some other
order.

- 117 -

Procedure References TRS-80 ® RM/COBOL Language

PROCEDURE REFERENCES

A procedure is referred to by its paragraph-name or
section-name. Paragraph-names may be qualified by the
section-name of the section containing the paragraph,
whether or not it needs qualification. When referring to a
section-name or when using a section-name as a qualifier,
the word SECTION must not appear. Qualification is performed
by following a paragraph-name with a section-name preceded
by IN or OF. 1IN and OF are logically equivalent. The
general format for paragraph qualification is:

paragraph-name [({OF} section-name]
{IN}

A paragraph-name need not be qualified when referred to from

within the same section or when the paragraph-name is
unigue.

Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control
from statement to statement in the sequence in which they
were written in the source program unless an explicit
transfer of control overrides this sequence or there is no
next executable statement to which control can be passed.
The transfer of control from statement to statement occurs
without the writing of an explicit Procedure Division
statement, and therefore, is an implicit transfer of
control.

COBOL provides both explicit and implicit means of altering
the implicit control transfer mechanism.

In addition to the implicit transfer of control between
consecutive statements, implicit transfer of control also
occurs when the normal flow is altered without the execution
of a procedure branching statement. COBOL provides the
following types of implicit control flow alterations which
override the statement-to-statement transfers of control:

If a paragraph is being executed under control of

another COBOL statement (for example, PERFORM and USE)
and the paragraph is the last paragraph in the range of

- 118 -

RM(COBO];. Langquage TRS-80 ® Procedure References

the controlling statement, then an implied transfer of
control occurs from the last statement in the paragraph
to the control mechanism of the last executed
controlling statement.

Further, if a paragraph is being executed under the
control of a PERFCRM statement which causes iterative
execution and that paragraph is the first paragraph in
the range of that PERFORM statement, an implicit
transfer of control occurs between the control
mechanism associated with that PERFORM statement and
the first statement in that paragraph for each
iterative execution of the paragraph.

When any COBOL statement is executed which results in
the execution of a declarative section, an implicit
transfer of control to the declarative section occurs.
Note that another implicit transfer of control occurs
after execution of the declarative.

An explicit transfer of control consists of an alteration of
the implicit control transfer mechanism by the execution of
a procedure branching or conditional statement. An explicit
transfer of control can be caused only by the execution of a
procedure branching or conditional statement. The execution
of the procedure branching statement ALTER does not in
itself constitute an explicit transfer of control, but
affects the explicit transfer of control that occurs when
the associated GO TO statement is executed.

In this document, the term 'next executable statement' is
used to refer to the next COBOL statement to which control
is transferred according to the rules above and the rules
associated with each language element in the Procedure
Division.

There is no next executable statement following:

The last statement in a declarative section when the
paragraph in which it appears is not being executed
under the control of some other COBOL statement. 1In
COBOL, the result would be an implicit transfer of
control to the first nondeclarative statement.

The last statement in a program when the paragraph in
which it appears is not being executed under the
control of some other COBOL statement. The result
would be as if an implicit STOP RUN statement were
executed.

- 119 -

Segmentation TRS-80 ® RM/COBOL_Language

SEGMENTATION

COBOL segmentation is a facility that provides a means by
which the user may communicate with the compiler to specify
object program overlay requirements. COBOL segmentation
deals only with segmentation of procedures.

Segments

When segmentation is used, the entire Procedure Division
must be in sections. In addition, each section must be
classified as belonging either to the fixed portion or to
one of the independent segments of the object program as
determined by the assignment of segment numbers. All source
paragraphs which contain the same segment-numbers can range
from gg through 127, it is possible to subdivide any object
program into a maximum of 128 segments. Segmentation in no
way affects the need for qualification of procedure-names to
insure uniqueness.

Fixed Portion

The fixed portion is defined as that part of the object
program which is always in memory. This portion of the
program is composed of segments with segment-numbers @
through 49.

Independent Segments

An independent segment is defined as part of the object
program which can overlay, and can be overlaid by, another
independent segment. An independent segment has a
segment-number 5@ through 127.

An independent segment is in its initial state whenever
control is transferred (either implicitly or explicitly) to
that segment for the first time during the execution of a
program,

On subsequent transfers of control to the segment, an
independent segment is also in its initial state when:

- 128 -

RM/COBOL_Lanquage TRS-80 ° Segmentation

Control is transferred to that segment as a result of
the implicit transfer of control between consecutive
statements from a segment with a different
segment-number.

Control is transferred explicitly to that segment from
a segment with a different segment-number.

On subsequent transfer of control to the segment, an
independent segment is in its last-used state when control
is transferred implicitly to that segment from a segment
with a different segment-number.

Segmentation Classification

Sections which are to be segmented are classified using a
system of segment-numbers and the following criteria:

Logic Requirements--Sections which must be available
for reference at all times, or which are referred to
very frequently, are normally classified as belonging
to one of the permanent segments; sections which are
used less frequently are normally classified as
belonging to one of the independent segments, depending
on logic requirements.

Frequency of Use--Generally, the more frequently a
section is referred to, the lower its segment-number;
the less frequently it is referred to, the higher its
segment-number.

Relationship to Other Sections -- Sections which

frequently communicate with one another should be given
the same segment-numbers.

Segmentation Control

The logical sequence of the program is the same as the
physical sequence except for specific transfers of control.
Control may be transferred within a source program to any

- 121 -

Segmentation TRS-80 ° RM/COBOL _Language

paragraph in a section; that is, it is not mandatory to
transfer control to the beginning of a section.

Restrictions on Program Flow

When segmentation is used, the following restrictions are
placed on the ALTER and PERFORM statements.

The ALTER STATEMENT

A GO TO statement in a section whose segment-number is
greater than or equal to 5@ must not be referred to by an
ALTER statement in a section with a different
segment-number.

The PERFORM STATEMENT

A PERFORM statement that appears in a section that is not in
an independent segment can have within its range, in
addition to any declarative sections whose execution is
caused within that range, only one of the following:

Sections and/or paragraphs wholly contained on one or
more fixed segments, or

Sections and/or paragraphs wholly contained in a single
independent segment.

A PERFORM statement that appears in an independent segment
can have within its range, in addition to any declarative
sections whose execution is caused within that range, only
one of the following:

Sections and/or paragraphs wholly contained in one or
more fixed segments, or

Sections and/or paragraphs wholly contained in the same
independent segment as that PERFORM statement.

- 122 -

RM/COBOL_Langquage TRS-80 ¢ USE Statement

THE _USE_STATEMENT

The USE statement specifies procedures for input-output
error handling that are in addition to the standard
procedures provided by the input-output control system. It
is a compiler directing statement required in each
declarative section.

FORMAT

USE AFTER STANDARD {EXCEPTION}
{ERROR }

PROCEDURE ON {file-name-1l [,file-name-2] ...
{INPUT
{OUTPUT
{1-0
{EXTEND

A USE statement, when present, must immediately follow a
section header in the declaratives section and must be
followed by a period followed by a space. The remainder of
the section must consist of zero, one or more procedural
paragraphs that define the procedures to be used.

The USE statement itself is never executed; it merely
defines the conditions calling for the execution of the USE
procedure.

The same file-name can appear in only one USE statement.

The words ERROR and EXCEPTION are synonymous and may be used
interchangeably.

The designated procedures can be executed by the
input-output system after completing the standard
input-output error routine, or upon recognition of the
INVALID KEY or AT END conditions, when the INVALID KEY
phrase or AT END phrase, respectively, has not been
specified in the input-output statement.

After execution of a USE procedure, control is returned to
the invoking routine.

Within a USE procedure, there must not be any reference to

- 123 -

USE Statement TRS-80 ® RM(COBOL Language

any nondeclarative procedures. Conversely, in the
nondeclarative portion there must be no reference to
procedure-names that appear in the declarative portion,
except that PERFORM statements may refer to a USE statement
or to the procedures associated with such a USE statement.

Within a USE procedure, there must not be the execution of
any statement that would cause the execution of a USE
procedure that had previously been invoked and had not yet
returned control to the invoking routine.

USE Example:

PROCEDURE DIVISION.
DECLARATIVES.
IO-ERROR SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON I-O.
IO-ERROR-ROUTINE.
DISPLAY "INPUT-OUTPUT ERROR OCCURRED".
ACCEPT CONTINUE-FLAG POSITION ZERO.
IF CONTINUE-FLAG = "NO" STOP RUN.
END DECLARATIVES.

- 124 -

RM/COBOL Language TRS-80° Relative Input-Output

'7' indicating an invalid record length. This
condition indicates that an attempt has been made to
OPEN a file that was defined with a maximum record
length different from the externally defined maximum
record length different form the externally defined
maximum record length, or to execute a WRITE statement
that specifies a record with a length smaller than the
minimum or larger than the maximum record size, or a
REWRITE statement when the new record length is
different from that of the record to be rewritten.

'9' indicating an attempt has been made to READ a
record which is locked. This error is returned only
if an applicable USE procedure and a FILE STATUS data
item are declared for the file. Otherwise the read
statement is retried until the record is unlocked.

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the
execution of a START, READ, WRITE, REWRITE, or DELETE
statement.

When the INVALID KEY condition is recognized, the System
takes these actions in the following order:

A value is placed into the FILE STATUS data item, if
specified for this file, to indicate a INVALID KEY
condition.

If the INVALID KEY phrase is specified in the statement
causing the condition, control is transferred to the
INVALID KEY imperative statement. Any USE procedure
specified for this file is not executed.

If the INVALID KEY phrase is not specified, but a USE
procedure is specified, either explicitly or implicitly
for this file, that procedure is executed.

When the INVALID KEY condition occurs, execution of the

input-output statement which recognized the condition
is unsuccessful and the file is not affected.

- 145 -

Relative Input-Output ® RM/COBOL Language
TRS-80

The AT END Condition

of a READ statement. When the AT END condition occurs,
execution of the READ statement is unsuccessful.

- 146 -

RM/COBOL_Langquage T™TRS-80 ° Indexed Input-Output

INDEXED ORGANIZATION INPUT-OUTPUT

Indexed input-output statements in the Procedure Division
are the CLOSE, DELETE, OPEN, READ, REWRITE, START, UNLOCK
and WRITE statements.

Function

Indexed input-output provides a capability to access records
of a mass storage file in either a random or sequential
manner. Each record in a nonsequential organization file is
uniquely identified by a key.

Organization

A file whose organization is indexed is a mass storage file
in which data records may be accessed by the value of a key.
A record desc¢ription may include one or more key data

items, each of which is associated with an index. Each
index provides a logical path to the data records according
to the contents of a data item within each record which is
the recorded key for that index.

The data item named in the RECORD KEY clause of the file
control entry for a file is the prime record key for that
file. For purposes of inserting, updating and deleting
records in a file, each record is identified solely by the
value of its prime record key. This value must, therefore,
be unique and must not be changed when updating the record.

Access Modes

In the sequential access mode, the sequence in which records
are accessed is the ascending order of the keys of all
records which currently exist within the file.

In the random access mode, the sequence in which records are
accessed is controlled by the programmer. For indexed
files, the desired record is accessed by placing the value
of its record key in a record key data item.

In the dynamic access mode, the programmer may change at
will from sequential access to random access using
appropriate forms of input-output statements.

- 147 -

Indexed Input-Output TRS-80 ® RM/COBOL Lanquage

Current Record Pointer

The current record pointer is a conceptual entity used in
this document to facilitate specification of the next record
to be accessed within a given file. The concept of the
current record pointer has no meaning for a file opened in
the output mode. The setting of the current record pointer
is affected only by the OPEN, READ, and START statements.

I-0 Status

If the FILE STATUS clause is specified in a file control
entry, a value is placed into the specified two-character
data item during the execution of an OPEN, CLOSE, READ,
WRITE, REWRITE, DELETE, or START statement and before any
applicable USE procedure is executed, to indicate to the
COBOL program the status of that input-output operation:

Status Key 1

The leftmost character position of the FILE STATUS data item
is know as status key 1 and is set to indicate one of the
following conditions upon completion of the input-output
operation:

'g' - Successful Completion. The input-output was
successfully executed.

'‘l' - At End. The Format 1 READ statement was
unsuccessfully executed as a result of an attempt to
read a record when no next logical record exists in the

file.

'2' - Invalid Key. The input-output statement was
unsuccessfully executed as a result of one of the
following:

Sequence Error
Duplicate Key

No Record Found
Boundary Violation

- 148 -

———RM/COBOL Lanquage _ TRS.80 © —lodexed Input-Quiput

'3' - Permanent Error. The input-output statement was
unsuccessfully executed as the result of an
input-output error, such as data check, parity error,
or transmission error.

'9' - General Error. The input-output statement was
unsuccessfully executed as a result of a condition that
is specified by the value of status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data
item is known as status key 2 and is used to further
describe the results of the input-output operation. This
character will contain a value as follows:

If no further information is available concerning the
input-output operation, then status key 2 contains a
value of 'g°'.

When status key 1 contains a value of g, indicating a
successful completion, status key 2 may contain a value
of 2 indicating a duplicate key. This condition
indicates:

For a READ statement, the key value for the current key
of reference is equal to the value of that same key in
the next record within the current key of reference.

For a WRITE or REWRITE statement, the record just
written created a duplicate key value for at least one
alternate record key for which duplicates are allowed.

When status key 1 contains a value of '2' indicating an
INVALID KEY condition, status key 2 is:

'l' indicating a sequence error for a sequentially
accessed indexed file. The ascending sequence
requirement of successive record key values has
been violated or the record key value has been
changed by the COBOL program between the
successful execution of a READ statement and the
execution of the next REWRITE statement for that
file.

- 149 -

Indexed Input-Output TRS-80 ® RM/COBOL Language

'2' indicating a duplicate key value. An attempt
has been made to write a record that would create

a duplicate key. (;2

'3' indicating no record found. An attempt has
been made to access a record, identified by a key,
and that record does not exist in the file.

'4' indicating a boundary violation. An attempt
has been made to write beyond the
externally-defined boundaries of a file.

When status key 1 contains a value of '9' indicating an
operating system error condition, the value of status key 2
is:

'g' indicating invalid operation. An attempt has been
made to execute a DELETE, READ, REWRITE, START, OR
WRITE statement which conflicts with the current open
mode of the file or a sequential access DELETE or
REWRITE statement not preceded by a successful READ
statement.

'1' indicating file not opened. This condition
indicates an attempt has ben made to execute a delete,
start, unlock, read, write, rewrite, or close statement
or a file that is not currently open.

'2' indicating file not closed. An attempt has been
made to execute an OPEN statement on a file that is
currently open.

'3' jndicating file not available. An attempt has been
made to execute an OPEN statement for a file closed
with LOCK or to OPEN a file LOCKed by another user.

'4' indicating invalid open. An attempt has been made
to execute an OPEN statement for a file with no
external correspondence or a file having inconsistent
parameters.

'5' indicating invalid device. This condition

indicates that an attempt has been made to open a file

having parameters (e.g., open mode or organization

which conflict with the device assignment (RANDOM,)
INPUT, PRINT, ...)). ({ ﬁ

- 150 -

RM/COBOL Language TRS-80 ° Indexed Input-Output

'6' indicating an undefined current record pointer
status. This condition indicates that an attempt has
been made to execute a sequential READ statement after
the occurrence of an unsuccessful READ or START
statement without an intervening successful CLOSE and
OPEN.

'7' indicating an invalid record length. this
condition indicates that an attempt has been made to
open a file that was defined with a maximum record
length different from the externally defined maximum
record length, or to execute a write statement that
specifies a record with a length smaller than the
minimum or larger than the maximum record size, or a
REWRITE statement when the new record length is
different from that of the record to be rewritten.

'8' indicating an invalid indexed file. This condition
indicates that the indexed file contains inconsistent
data. This is a catastrophic error from which there is
no recovery at the present time.

'9' indicating an attempt has been made to READ a
record which is locked. This error is returned only if
an applicable USE procedure and a FILE STATUS data item
are declared for the file. Otherwise the read
statement is retried until the record is unlocked.

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the
execution of a START, READ, WRITE, REWRITE, or DELETE
statement.

When the INVALID KEY condition is recognized, the System
takes these actions in the following order:

A value is placed into the FILE STATUS data item, if

specified for this file, to indicate an INVALID KEY
condition.

- 151 -

Indexed Input-Output TRS-80 ® RM‘COBOL Language

If the INVALID KEY phrase is specified in the statement
causing the condition, control is transferred to the
INVALID KEY imperative statement. Any USE procedure
specified for this file is not executed.

If the INVALID KEY phrase is not specified, but a USE
procedure is specified, either explicitly or
implicitly, for this file, that procedure is executed.

When the INVALID KEY condition occurs, execution of the

input-output statement which recognized the condition
is unsuccessful and the file is not affected.

The AT END Condition

The AT END condition can occur as a result of the execution
of a READ statement. When the AT END condition occurs,
execution of the READ statement is unsuccessful.

- 152 -

RM/COBOL Language TRS-80 ° ACCEPT ... FROM

PROCEDURAL STATEMENTS

The ACCEPT ... FROM Statement

The ACCEPT statement causes the information requested to be
transferred to the data item specified by identifier-1
according to the rules of the MOVE statement. DATE, DAY,
and TIME are conceptual data items and, therefore, are not
described in the COBOL program.

FORMAT
ACCEPT identifier-1 FROM {DATE}
{DAY }
{TIME}

DATE is composed of the data elements year of century, month
of year, and day of month. The sequence of the data element
codes is from high order to low order (left to right), year
of century, month of year, and day of month. Therefore,
July 1, 1979 would be expressed as 79¢7¢l. DATE, when
accessed by COBOL program as an unsigned elementary numeric
integer data item six digits in length.

DAY is composed of the data elements year of century and day
of year. The sequence of the data element codes is from
high order to low order (left to right) year of century, day
of year. Therefore, July 1, 1979 would be expressed as
79181. DAY, when accessed by a COBOL program as an unsigned
elementary numeric integer data item five digits in length.

TIME is composed of the data elements hours, minutes,
seconds and hundredths of a second. TIME is based on
elapsed time after midnight on a 24-hour clock basis--thus,
2:41 p.m. would be expressed 1441¢@@g@. TIME, when accessed
by a COBOL program as an unsigned elementary numeric integer
data item eight digits in length. The minimum value of TIME
is QPgPgePPAI; the maximum value of time is 23595999.

ACCEPT ... FROM Examples

ACCEPT YEAR-DAY FROM DAY.
ACCEPT CLOCK FROM TIME.

- 153 -

ACCEPT (Terminal I1-0) Rs.80 ° RM/COBOL _Language

The ACCEPT Statement (Terminal I-O)

The ACCEPT statement causes low volume data to be accepted

from the CRT terminal and transferred to the specified data
item. ACCEPT statement phrases allow the specification of

position, form and format of the accepted data.

FORMAT
ACCEPT {identifier-l [,UNIT {identifier-2}]
{literal-1 }
[,LINE {identifier-3 }] [,POSITION {identifier-4}]
{literal-2 } {literal-3 }

[,SIZE {identifier-5 }] [,PROMPT [literal-5]]
{literal-4 }
[,BCHO [,CONVERT] [,TAB] [ERASE] [,NO BEEP]
[,OFF] [,{HIGH}] [,BLINK] [,REVERSE]} ...
{LOW }
[,ON EXCEPTION identifier-6 imperative-statement]

The ACCEPT statement causes the transfer of data from the
CRT device. This data replaces the contents of the data item
named by identifier-1. The receiving data time must have
usage DISPLAY if ECHO is specified; otherwise, it may have
any usage except INDEX.

The receiving field will ACCEPT data as though a group move
is being performed, thus an ACCEPT into an edited field will
result in the omission of editing.

The size of a field ACCEPTed is limited by the rightmost
column position of the CRT. At execution, a field that
would be split between two lines will be truncated at the
end of the first line.

When an ACCEPT statement contains more than one operand, the
values are transferred in the sequence in which the operands
are encountered. ACCEPT phrases apply to the previously
specified identifier-lonly. A subsequent identifier-1 in
the same ACCEPT statement will be treated as if no previous
phrases have been specified.

An ACCEPT statement may contain no more than one ON

EXCEPTION phrase, and if present it must be associated with
the last (or only) identifier-1l.

- 154 -

RM/COBOL Language TRS-80 © —ACCERT (Terminal I-0O)

NOTE: Features which require support of the host
operating system and/or terminal hardware may not be
supported on all systems. Any features which are not
supported will compile correctly, but will be ignored
at runtime. See the User's Guide for specific details.

The UNIT Phrase

The UNIT phrase must be the first phrase if used. The other
phrases may be written in any order.

The value of identifier-2 or literal-1l in the UNIT phrase
specifies the station identifier of the CRT from which the
data is to be accepted. If the UNIT phrase is omitted, the
CRT which executed the program will be accessed.

The LINE Phrase

The value of identifier-3 or literal-2 in the LINE phrase
specifies the line number from the data is to be accepted
from the screen of the CRT terminal, with 1 being the top
line. If the value is greater than the number of lines on
the CRT screen, it is adjusted to the bottom line after the
screen has been scrolled to the maximum line number +1.

If the value is zero or the LINE phrase is not present in an
ACCEPT statement, then data is to be accepted from the next
line below the current position of the cursor on the CRT
screen unless the value specified in the POSITION phrase is
also zero, in which case the data is to be accepted from the
line at the current position of the cursor on the CRT
screen.

The POSITION Phrase

The value of identifier-4 or literal-3 in the POSITION

phrase specifies the number of the character positions to
which the cursor is to be positioned within the specified
line prior to the accepting of data from the CRT terminal,

- 155 -

ACCEPT (Terminal I-O) TRS-80 ° RM/COBOL Language

with 1 being the leftmost character position within a line.
If the value is greater than the maximum number of
characters within a line on the CRT screen, it is adjusted
to the next row and decremented by the maximum number of
characters within a line.

If the POSITION phrase is not specified, a value of 1 is
assumed for the first accepted operand and # for each
additional operand accepted in the same statement. If a
value of f is specified, the data is to be accepted starting
at the next field on the CRT screen (starting character
position plus size of last ACCEPT or DISPLAY).

The SIZE Phrase

The value of identifier-5 or literal-4 in the SIZE phrase
specifies the maximum number of characters to be accepted
from the CRT terminal, overriding the Data Division
definition of the field. 1If the SIZE phrase is not present
or a value of g is specified, then the size of identifier-1
(identifier-5, ...) is used. A size greater than 8f is
treated as equal to 8f.

The size of the accepted field is determined by the SIZE
phrase. The number of characters transferred from the CRT
is less than or equal to the size of the accepted field.
Input is terminated by depression of the return key (which
is not considered part of the input). The number of
characters actually input is the size of the source in the
following:

If the receiving item is not numeric, the accepted
input is stored according to the rules of the MOVE
statement for an alphanumeric source and destination.
If the receiving item is described JUSTIFIED RIGHT, the
clause will apply to the MOVE rules.

If the receiving item is numeric, the accepted input is
stored according to the rules of the MOVE statement for
a numeric source and destination. If the CONVERT
phrase is not specified, the source has the same scale
as the receiving item. If the receiving item has a
trailing sign and the CONVERT phrase is not specified,
the input must contain digits followed by a sign

- 156 -

RM/COBOL_Lanquage TRS-80 ® —ACCERT (Terminal I-0)

character. 1If the CONVERT phrase is specified, then
the input is converted according to the rules of the
CONVERT phrase. The CONVERT phrase is recommended when
accepting numeric items.

The PROMPT Phrase

The presence of the key word PROMPT in an ACCEPT statement
causes the data to be accepted with prompting. The action
of prompting is to display fill characters on the CRT ‘screen
in the positions from which data is to be accepted.
Literal-5 must be a single character nonnumeric literal
which specifies the fill character to be used in prompting.
If literal-5 is omitted in the PROMPT phrase, then an
underscore will be used as the fill character.

When the PROMPT phrase is not specified, then the data is to

be accepted without prompting; the original contents of the
field on the CRT will be undisturbed before accepting input.

The ECHO Phrase

The presence of the key word ECHO within an ACCEPT statement
causes the contents of identifier-1 to be displayed on the
screen of the CRT terminal. Conversion (see CONVERT
Phrase), decimal alignment, and justification are performed
prior to display. If the specified size is greater than the
size of the receiving data-item, the data-item is displayed
right justified in the accept field with leading blanks. 1If
the specified size is less than the size of the receiving
data-item, the display is truncated on the right. When the
ECHO phrase is not specified, the original input data
remains in the accept field.

The CONVERT Phrase

If the receiving data-item is numeric, the presence of the
key word CONVERT within an ACCEPT statement causes the
conversion of an accepted field to a trailing-signed decimal

- 157 -

ACCEPT (Terminal I-0O) TRS-80 ® RM/COBOL Language

field. The trailing-sign decimal field is then stored in
identifier-1. The conversion is accomplished by a
left-to-right scan and the rules:

Set the sign according to the rightmost sign given in
the input or positive if no sign is present.

Set the scale according to the rightmost period given
in the input or to zero if no period is present. If
the DECIMAL POINT IS COMMA clause was specified in the
source program, a comma replaces the period in
determining the scale.

Delete all nonnumeric characters from the accepted
field.

When the CONVERT phrase is not specified, or the receiving

data-item is not numeric, then the data is to be stored
without the above conversion.

The TAB Phrase

The presence of the key word TAB is an ACCEPT statement
causes a wait for a return, backspace, or field delete key
(or other terminator in conjunction with an EXCEPTION) in
reaching the end of the input field. 1If the key word TAB is
omitted, input will automatically be terminated if the end
of the input field is encountered.

The ERASE Phrase

The presence of the key word ERASE within an ACCEPT
statement causes the screen of the CRT to be erased prior to
cursor positioning. When the ERASE phrase is not specified,
then the screen is not erased prior to cursor positioning.

- 158 -

RM/COBOL Langquage TRS-80 ® —ACCEPT (Terminal I-0)

The NO BEEP Phrase

The presence of the key words NO BEEP in an ACCEPT statement
causes suppression of the beep signal upon cursor
positioning. If the key words NO BEEP are omitted, a beep
signal will occur upon cursor positioning prior to data
input.

The OFF Phrase

The presence of the key word OFF within an ACCEPT statement
causes data to be input from the terminal keyboard but not

displayed to the screen. Blank characters are displayed to
the screen in lieu of data characters.

The HIGH/LOW Phrase

The presence of the key word HIGH or LOW causes the PROMPT
character and the accepted data (if CONVERT and/or ECHO was
specified) to be displayed at the specified intensity.

When HIGH or LOW is not specified, the default display is
HIGH.

The BLINK Phrase

The presence of the key word BLINK causes the PROMPT
character, and any displayed data, to be BLINKed. When
BLINK is not specified, no BLINK is provided.

The REVERSE Phrase

The presence of the key word REVERSE causes the PROMPT
character, and any displayed data, to be displayed in a
reverse image mode. When REVERSE is not specified, normal
display is provided.

- 159 -

ACCEPT (Terminal 1-0) +Rs.g80 ® RM/COBOL_Lanquage

The ON EXCEPTION Phrase

The presence of ON EXCEPTION causes the imperative-statement
to be executed if an invalid character is entered. The
invalid character (in ASCII format) will be placed in
identifier-6 prior to execution of the imperative-statement.
The invalid character may be determined by declaring
identifier-6 as USAGE COMP-1 and testing for its ASCII
value.

When ON EXCEPTION and CONVERT are both specified and a
conversion error occurs, an error code of "98" is returned
in identifier-6.

ACCEPT Examples

ACCEPT ANSWER-1, ANSWER-2.

ACCEPT START-VALUE LINE 1, POSITION K,
PROMPT, ECHO, CONVERT.

ACCEPT NEXT-N POSITION §,
PROMPT, ECHO.

ACCEPT YEAR, LINE YR-LN, POSITION YR-POS;
MONTH, LINE MN-LN, POSITION MN-POS.

- 168 -

RM/COBOL_Language TRS-80 ° ADD

The ADD Statement

The ADD statement causes two or more numeric operands to be
summed and the result to be stored.

FORMAT 1

ADD {identifier-1} [,identifier-2] ...
{literal-1l } [,literal-2]

TO identifier-m [ROQUNDED]

[; ON SIZE ERROR imperative-statement]

FORMAT 2

ADD {identifier-1}, {identifier-2} [,identifier-3] ...
{literal-1 } {literal-2 } [,literal-3]

GIVING identifier-m [ROUNDED]

[; ON SIZE ERROR imperative-statement]

FORMAT 3

ADD {OCRRESPONDING} identifier-1 TO identifier-2 [ROUNDED)
{CORR }

[; ON SIZE ERROR imperative-statement]

In Format 1, the values of the operands preceding the word
TO are added together, then the sum is added to the current
value of identifier-m storing the result immediately into
identifier-m.

In Format 2, the values of the operands preceding the word
GIVING are added together, then the sum is stored as the new
value of identifier-m.

- 161 -

ADD TRS-80° RM/COBOL Lanquage

In Formats 1 and 2, each identifier must refer to an
elementary numeric item, except that in Format 2
identifier-m following the word GIVING must refer to either
an elementary numeric item or an elementary numeric edited
item.

In Format 3, data items in identifier-1 are added to and
stored in the corresponding data items in identifier-2.

In Format 3, each identifier must refer to a group item.

Each literal must be a numeric literal.

The ROUNDED Phrase

The ADD statement may optionally include the ROUNDED phrase.

If, after decimal point alignment, the number of places in
the fraction of the result of the arithmetic operation is
greater than the number of places provided for the fraction
of the resultant-identifier, truncation is relative to the
size provided for the resultant-identifier. When rounding
is requested, the absolute value of the resultant-identifier
is increased by one (1) whenever the most significant digit
of the excess is greater than or equal to five (5).

When the low-order integer positions in a resultant
identifier are represented by the character 'P' in the
picture for that resultant-identifier, rounding or
truncation occurs relative to the rightmost integer position
for which storage is allocated.

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute
value of the result exceeds the largest value that can be
contained in the associated resultant-identifier, a size
error condition exists. If the ROUNDED phrase is specified,
rounding takes place before checking for size error.

If the CORRESPONDING phrase is specified, and any of the
individual additions produces a size error condition, the
imperative-statement is not executed until all of the
individual additions are completed.

- 162 -

RM/COBOL Lanquage TRS-80 ° ADD

If the resultant-identifier has COMPUTATIONAL-3 usage, size
error is correctly detected only for data items declared
with an odd length picture clause. Therefore all COMP-3
data items should be declared with an odd number of
character positions.

If the SIZE ERROR phrase is not specified and a size error
condition exists, the value of the resultant-identifier is
undefined.

If the SIZE ERROR phrase is specified and a size error
condition exists, the value of the resultant-identifier is
not altered and the imperative statement of the SIZE ERROR
phrase is executed.

The CORRESPONDING Phrase

If the CORRESPONDING phrase is used, selected items within
identifier-1 are ADDed to, and the result stored in, the
corresponding items in identifier-2.

Data items referenced by the CORRESPONDING phrase must
adhere to the following rules:

A data item in identifier-l and a data item in
identifier-2 must not be designated by the key word
FILLER and must not have the same data-name and the
same qualifiers up to, but not including, identifiers-1
and identifier-2.

Both of the data items must be elementary numeric data
items.

The description of identifier-l1 and identifier-2 must
not contain level-number 66, 77, or 88 or the USAGE IS
INDEX clause.

A data item that is subordinate to identifier-1 or
identifier-2 and contains a REDEFINES, RENAMES, OCCURS,
or USAGE IS INDEX clause is ignored, as well as those
data items subordinate to the data item that contains
the REDEFINES, OCCURS, or USAGE IS INDEX clause.
However, identifier-l1 and identifier-2 may have
REDEFINES or OCCURS clauses or be subordinate to data
items with REDEFINES or OCCURS clauses.

- 163 -

ADD TRS-80 ® RM/COBOL Lanquage

CORR is an abbreviation for CORRESPONDING.

ADD Examples

ADD SALARY TO SALARY.
(doubles the value of SALARY)

ADD JOHNS-PAY, PAULS-PAY, ALBERTS-PAY
GIVING COMPANY-PAY.

ADD ACCELERATION TO VELOCITY ROUNDED
ON SIZE ERROR GO TO SOUND-BARRIER.

ADD CORRESPONDING ELEMENT (X)
TO ELEMENT (Y).

ADD CORR SUB-TOTAL-RECORD TO TOTAL-RECORD ROUNDED
ON SIZE ERROR GO TO ERR.

- l64 -

RM/COBOL_Language TRS-80 °® ALTER

The ALTER Statement

The ALTER statement modifies a predetermined sequence of
operations.

FORMAT

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2
[,procedure-name-3 TO [PROCEED TO] procedure-name-4]...

Each procedure-name-1, procedure-name-3, ..., is the name of
a paragraph that contains a single sentence consisting of a
GO TO statement without the DEPENDING phrase.

Each procedure-name-2, procedure~name-4, ..., is the name of
a paragraph or section in the Procedure Division.

Execution of the ALTER statement modifies the GO TO
statement in the paragraph named procedure-name-1,
procedure-name-3, ..., so that subsequent executions of the
modified GO TO statements cause transfer of control to
procedure-name-2, procedure-name-4, ..., respectively.
Modified GO TO statements in independent segments may, under
some circumstances, be returned to their initial states.

A GO TO statement in a section whose segment-~number is
greater than or equal to 5§ must not be referred to by an
ALTER statement in a section with a different
segment-number.

- 165 -

CALL TRS'BO ® RM‘ COBOL Language

The CALL Statement

The CALL statement causes control to be transferred from one
object program to another, within the run unit.

FORMAT

CALL {identifier-1} [USING data-name-l [,data-name-2] ...]
{literal-1l }

The execution of a CALL statement causes control to pass to
the program whose name is specified by the value of
literal-1l or identifier-1, the 'called' program.

Literal-l must be a nonnumeric literal.

Identifier-1 must be defined as an alphanumeric data item
such that its value can be a program name.

The called program can be another COBOL program or an
assembly language program. Refer to the User's Guide for
specific details.

Called programs may contain CALL statements. However, a
called program must not contain a CALL statement that
directly or indirectly calls the calling program.

The CALL statement may appear anywhere within a segmented
program. When a CALL statement appears in a section with a
segment-number greater than or equal to 5@, the EXIT PROGRAM
statement returns control to the calling program.

The USING Phrase

The data-names specified by the USING phrase of the CALL
statement indicate those data items available to a calling
program that may be referred to in the called program. The
order of appearance of the data-names in the USING phrase of
the CALL statement and the USING phrase in the Procedure
Division header is critical. Corresponding data-names refer
to a single set of data which is available to the called and

- 166 -

RH‘ COBOL Language TRS'BO ® CALL

calling program. The correspondence is positional, not by
name. In the case of index-names, no such correspondence is
established. Index-names in the called and calling program
always refer to separate indices.

The USING phrase is included in the CALL statement only if
there is a USING phrase in the Procedure Division header of
the called program, and the number of operands in each using
phrase must be identical.

Each of the operands in the USING phrase must have been
defined as a data item in the File Section, Working-Storage
Section, or Linkage Section, and must have a level-number of
#1 or 77. Data-name-1, data-name-2, ..., may be qualified
when they reference data items defined in the File Section.

CALL Examples:

CALL “SUBPRG1".

CALL REORDER
USING TABLE, INDEX-1l, RESULT.

- 167 -

CLOSE (Sequential 1-0) +rma.g80 ° RM/COBOL Lanquage

The CLOSE Statement (Sequential I-O)

The CLOSE statement terminates the processing of files.

FORMAT
CLOSE file-name-1 [{REEL} [WITH NO REWIND]]
{UNIT)
[(WITH {NO REWIND}]

{LOCK }

[,file-pame-2 [{REEL} [WITH NO REWIND] 1] ...
{UNIT}

[WITH {NO REWIND}]
{LOCK }

The function of a CLOSE statement (with no options) is to
cause the operating system to close the file. For files
opened for OUTPUT, the operating system also writes an EOF
as it closes the file.

If a STOP RUN statement is executed prior to closing the
file, the operating system will close the file without an
EOF.

A CLOSE statement may only be executed for a file in an open
mode.

Once a CLOSE statement has been executed for a file, no
other statement can be executed that references that file,
either explicitly or implicitly unless an intervening OPEN
statement for that file is executed.

The execution of a CLOSE statement causes the value of the
FILE STATUS data-item, if any, associated with file-name-1
(file-name-2, ...) to be updated.

- 168 -

RM/COBOL_Lanquage TRS-80 ® __CLOSE (Seguential I-0)

The REEL and UNIT Phrases

only and may be included or omitted at the user's

; . The CLOSE REEL and CLOSE UNIT statements are documentary
' discretion.

The NO REWIND Phrase

CLOSE WITH NO REWIND prevents page advancing on files
assigned to the printer. It has no effect on other files.

The LOCK Phrase

The function of the CLOSE WITH LOCK statement is to perform
the CLOSE function and set a flag to prevent the file from
being OPENed again during execution of this program.

CLOSE Examples

CLOSE TRANSACTION-FILE.
CLOSE DATA-BASE WITH LOCK.
CLOSE PRINT-FILE WITH NO REWIND.

- 169 -

CLOSE (Rel. & Ind. I-0) TRS-BO® RM/COBOL Language

The CLOSE Statement (Relative and Indexed I-0)

The CLOSE Statement terminates the processing of files.

FORMAT
CLOSE file-name-1 [WITH LOCK]

[,file-name-2 [WITH LOCK]] ...

The function of a CLOSE statement (with no options) is to
cause the operating system to close the file. For files
opened for OUTPUT, the operating system also writes an EOF
prior to closing the file.

If a STOP RUN statement is executed prior to closing the
file, the operating system will close the file without an
EOF.

The files referenced in the CLOSE statement need not all
have the same organization or access.

A CLOSE statement may only be executed for a file in an open
mode.

If a CLOSE statement has been executed for a file, no other
statement can be executed that references that file, either
explicitly or implicitly, unless an intervening OPEN
statement for that file is executed.

The execution of the CLOSE statement causes the value of the

specified FILE STATUS data item, if any, associated with
file-name-1 (file-name-2, ...) to be updated.

The LOCK Phrase

The function of the CLOSE WITH LOCK statement is to perform
the CLOSE function and set a flag to prevent the file from
being OPENed during the execution of the program.

- 178 -

RM/COBOL Language TRS-80° CLOSE (Rel. & Ind, I-0)

CLOSE Examples:

CLOSE TRANSACTION-FILE.

CLOSE DATA-BASE WITH LOCK.

- 171 -

COMPUTE TRS-80 ® RM/COBOL_Lanquage

The COMPUTE Statement

The COMPUTE statement assigns the value of an arithmetic
expression to a data item.

FORMAT
COMPUTE identifier-1 [ROUNDED] = arithmetic=expression

[; ON SIZE ERROR imperative-statement]

Identifier-1 must refer to either an elementary numeric item
or an elementary numeric edited item.

An arithmetic expression consisting of a single identifier
or literal provides a method of setting the value of
identifier-1 equal to the value of the single identifier or
literal.

The COMPUTE statement allows the user to combine arithmetic
operations without the restrictions on composite operands
and/or receiving data items imposed by the arithmetic
statements ADD, SUBTRACT, MULTIPLY and DIVIDE.

Note: Exponentiation is not supported.

The ROUNDED Phrase

The COMPUTE statement may optionally include the ROUNDED
phrase. 1If, after decimal point alignment, the number of
places in the fraction of the result of an arithmetic
operation is greater than the number of places provided for
the fraction of the identifier-1, truncation is relative to
the size provided for the identifier-1. When rounding is
requested, the absolute value of the resultant-identifier is
increased by one (1) whenever the most significant digit of
the excess is greater than or equal to five (5).

When the low-order integer positions in an identifier-1 are
represented by the character 'P' in the picture for that
identifier, rounding or truncation occurs relative to the
rightmost integer position for which storage is allocated.

- 172 -

RM/COBOL Language TRS-80 ° COMPUTE

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute
value of the result exceeds the largest value that can be
contained in identifier-l, a size error condition exists.
If the ROUNDED phrase is specified, rounding takes place
before checking for size error.

If identifier-1 has COMPUTATIONAL-3 usage, size error is
detected only for data items declared with an odd length
picture clause. Therefore all COMP-3 data items should be
declared with an odd number of character positions.

Division by zero always causes a size error condition.

If the SIZE ERROR phrase is not specified and a size error
condition exists, the value of the identifier-1 is
undefined.

If the SIZE ERROR phrase is specified and a size error
condition exists, the value identifier-1 is not altered and
the imperative-statement in the SIZE ERROR phrase is
executed.

COMPUTE Examples

COMPUTE SALARY ROUNDED = WAGES * HOURS.
COMPUTE SECONDS = (((HRS * 6@) + MIN) * 6f) + SEC.

COMPUTE AVERAGE = TOTAL / COUNT
ON SIZE ERROR MOVE § TO AVERAGE.

COMPUTE PAY (DATE) ROUNDED
= RATE * 8.

- 173 -

DELETE (Rel. and Ind. I-0) +TRs.g80 ° RM/COBOL Language

The DELETE Statement (Relative and Indexed I-0)

The DELETE statement logically removes a record from a mass
storage file.

FORMAT
DELETE file-name RECORD [;INVALID KEY imperative-statement}

After the successful execution of a DELETE statement, the
identified record has been logically removed from the file
and can no longer be accessed.

The execution of a DELETE statement does not affect the
contents of the record area associated with file-name. The
associated file must be opened in the I-O mode at the time
of execution of this statement.

For files in the sequential access mode, the last input-
output statement executed for file-name prior to the
execution of the DELETE statement must have been a
successfully executed READ statement. The system logically
removes from the file the record that was accessed by that
READ statement.

For a file in random or dynamic access mode, the system
logically removes from the file that record identified by
the contents of the key data item associated with file-name.
If the file does not contain the record specified by the
key, and INVALID KEY condition exists.

The execution of the DELETE statement causes the value of
the specified FILE STATUS data item, if any, associated with
file-name to be updated.

The INVALID KEY PHRASE

The INVALID KEY phrase must not be specified for a DELETE
statement which references a file which is in sequential
access mode.

The INVALID KEY phrase must be specified for a DELETE
statement which references a file which is not in sequential
access mode and for which an applicable USE procedure is not
specified.

The current record pointer is not affected by the execution
of a DELETE statement.

- 174 -

RM‘ COBOL Language TRS‘BO ® DISPLAY

The DISPLAY Statement

The DISPLAY statement causes low volume data to be displayed
on the specified CRT terminal. DISPLAY statement phrases
allow the specification of position, form and format of the
displayed data.

FORMAT

DISPIAY {{identifier-1} [.UNIT {identifier-2}]
{literal-l } {literal~2 }

[,LINE {identifier-3}] (,POSITION {identifier-4}]
{literal-3 } {literal-4)}

[,SIZE {identifier-5}] [,BEEP] [,ERASE]}
{literal-5 }

[,{HIGH}] [,BLINK] [,REVERSE]} ...
(LW }

The DISPLAY statement causes the contents of each operand
(identifier-1 or literal-1l) to be transferred to the CRT
device in the order listed. The sending data item must have
DISPLAY usage.

When a DISPLAY statement contains more than one operand, the
values of the operand are transferred in the sequence in
which the operands are encountered.

Note: Features which require support of the host
operating system and/or terminal hardware may not be
supported on all systems. Any features which are not
supported will compile correctly, but will be ignored
at runtime. See the User's Guide for specific details.

The UNIT Phrase

The UNIT phrase, if specified, must be written first. The
other phrases may be written in any order.

- 175 -

DISPLAY TRS‘BO ® E‘QQBQL Languggg

The value of identifier-2 or literal-2 in the UNIT phrase
specifies the station identifier of the CRT upon which the
data is to be displayed. If the UNIT phrase is omitted, the
CRT which executed the program will be accessed.

The Line Phrase

The value of identifier-3 or literal-3 in the LINE phase
specifies the line number upon which the data is to be
displayed on the screen of the CRT terminal, with one being
the top line. If the value is greater than the number of
lines on the CRT screen, it is adjusted to the maximum line
number after the screen has been scrolled one line. If the
value is zero or the LINE phrase is not present in a DISPLAY
statement, then data is to be displayed on the next line
below the current position of the cursor on the CRT screen
unless the value specified in the POSITION phrase is also
zero, in which case the data is to be displayed on the line
at the current position of the cursor on the CRT screen. If
incrementing to the next line generates a line number
greater than the maximum number of lines on the CRT screen,
the new line is displayed at the bottom.

The POSITION Phrase

The value of identifier-4 or literal-4 in the POSITION
phrase specifies the number of the character to which the
cursor is to be positioned within the specified line prior
to the displaying of data on the screen on the CRT terminal,
with 1 being the leftmost character position within a line.
If the value is greater than the maximum number of
characters within a line on the CRT screen, it is adjusted
to the next row and decremented by the maximum number of
characters within a line.

If the POSITION phrase is not specified, a value of one is
assumed for the first displayed operand and zero for each
additional operand displayed in the same statement. If a
value of zero is specified, the data is to be displayed
starting at the next field on the CRT screen (starting
character position plus size of the last ACCEPT or DISPLAY).

- 176 -

RM/COBOL Language TRS-80 ® DISPLAY

The SIZE Phrase

The value of identifier-5 or literal-5 in the SIZE phrase
specifies the number of characters to be displayed on the
screen of the CRT terminal, overriding the Data Division
definition of the fields. If the SIZE phrase is not present
or a value of zero is specified, the size of identifier-1 or
literal-l is used. If literal-l is a figurative constant,
the literal has a size of one. A size greater than 84 is
treated as equal to 8f.

If the size of the display field is less than the size of
the sending data item, only the leftmost characters are
displayed. If the specified size is greater than the size
of the sending date item, the results are unpredictable. 1If
the sending item is a figurative constant, the constant
fills the display field. No conversions are made in the
transfer to the display field.

The BEEP Phrase

The presence of the Key word BEEP within a DISPLAY statement
causes a beep signal to occur on cursor positioning prior to
the display of the data. If the BEEP key word is omitted,
no signal is given on cursor positioning.

The ERASE Phrase

The presence of the key word ERASE within a DISPLAY
statement causes the screen of the CRT terminal to be erased
before the content of identifier-l1 or literal-l is displayed
on the screen. When the ERASE phrase is not specified, then
the screen is not erased prior to the display of the data.

The HIGH/LOW Phrase

The presence of HIGH or LOW causes the data to be displayed
at the specified intensity. Wwhen HIGH or LOW is not
specified, the default display is HIGH.

The BLINK Phrase

the presence of the key word BLINK causes the displayed data
to be BLINKed. The normal mode is no blink.

- 177 -

DISPLAY TRS-80 ® RM(COBOL Language

The REVERSE Phrase

The REVERSE key word causes the data to be displayed in
REVERSE video. The normal mode is no reverse.

DISPLAY Examples

DISPLAY "FLIGHT ARRIVING AT GATE", LINE FLT-LN,
POSITION 1, ERSE; GATE-NUMBER, HIGH, BLINK.

DISPLAY "ENTER JOB CODE: ".
DISPLAY CRT-HEADER LINE 1 ERASE.
DISPLAY ZEROES SIZE 5.

DISPLAY QUOTE.

- 178 -

RM‘ COBOL Language TRS'BO ® DIVIDE

The DIVIDE Statement

The DIVIDE statement divides one numeric data item into
another and stores the quotient.

FORMAT 1

DIVIDE {identifier-~1} INTO identifier-2 [ROUNDED]
{literal-1 }

[;ON SIZE ERROR imperative-statement]

FORMAT 2

DIVIDE {identifier-1} INTO {identifier-2}
{literal-1l } {literal-2 }

GIVING identifier-3 [ROUNDED]

[;ON SIZE ERROR imperative-statement]

FORMAT 3

DIVIDE {identifier-1} BY {identifier-2}
{literal-l } {literal-2 }

GIVING identifier-3 [ROUNDED]

[;ON SIZE ERROR imperative-statement])

In Format 1, the value of identifier-1 or literal-l is
divided into the value of identifier-2. The value of the
dividend (identifier-2) is replaced by this quotient.

In Format 2, the value of identifier-l1 or literal-l is
divided into the value of identifier-2 or literal-2 and the
result is stored in identifier-3.

In Format 3, the value of identifier-1 or literal-l is
divided by the value of identifier-2 or literal-2 and the
result is stored in identifier-3.

- 179 -

DIVIDE TRS-80 ® RH‘COBOL Lanquage

Each identifier must refer to an elementary numeric item,
except that any identifier associated with the GIVING phrase
must refer to either an elementary numeric item or an
elementary numeric edited item.

Each literal must be a numeric literal.

The ROUNDED Phrase

The DIVIDE statement may optionally include the ROUNDED
phrase.

If, after decimal point alignment, the number of places in
the fraction of the result of an arithmetic operation is
greater than the number of places provided for the fraction
of the resultant-identifier, truncation is relative to the
size provided for the resultant-identifier. When rounding
is requested, the absolute value of the resultant-identifier
is increased by one (1) whenever the most significant digit
of the excess is greater than or equal to five (5).

When the low-order integer positions in a resultant
identifier are represented by the character 'P' in the
picture for that resultant-identifier, rounding or
truncation occurs relative to the rightmost integer position
for which storage is allocated.

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute
value of the result exceeds the largest value that can be
contained in the associated resultant-identifier, a size
error condition exists. If the ROUNDED phrase is specified,
rounding takes place before checking for size error.

If the resultant-identifier has COMPUTATIONAL~3 usage, size
error is detected only for data items declared with an odd
length picture clause. Therefore all COMP-3 data items
should be declared with an odd number of character
positions.

Division by zero always causes a size error condition.

- 188 -

RM/COBOL Language TRS-80 ® DIVIDE

If the SIZE ERROR phrase is not specified and a size error
condition exists, the value of the resultant-identifier is

undefined.

If the SIZE ERROR phrase is specified and a size error
condition exists, the value of the resultant-identifier is
not altered and the imperative statement in the SIZE ERROR
phrase is executed.

DIVIDE Examples

DIVIDE 1§ INTO TOTAL-WORK-LOAD
GIVING MORRISS-WORK-LOAD

DIVIDE TOTAL-WORK-LOAD BY 2.5
GIVING ALFREDS-WORK-LOAD ROUNDED
ON SIZE ERROR GO TO ALFRED-QUIT.

DIVIDE 2.5 INTO TOTAL.

- 181 -

EXIT TRS-80 ° RM/COBOL Language

The EXIT Statement

The EXIT statement provides a common end point for a series
of procedures or the logical end of a called program.

FORMAT

EXIT [PROGRAM].

The EXIT statement must appear in a sentence by itself.

The EXIT sentence must be the only sentence in the
paragraph.

An EXIT statement without the word PROGRAM serves only to
enable the user to assign a procedure-name to a given point
in a program. Such an EXIT statement has no other effect on
the compilation or execution of the program.

An execution of an EXIT PROGRAM statement in a CALLED
program causes control to be passed to the calling program.
Execution of an EXIT PROGRAM statement in a program which is
not called behaves as if the statement were an EXIT
statement without the word PROGRAM.

- 182 -

—RM/COBOL Language _ TRS-80 © GQ_TO

The GO TO Statement

The GO TO statement causes control to be transferred from
one part of the Procedure Division to another.

FORMAT 1

GO TO procedure-name-l.

FORMAT 2
GO TO procedure-name-1 [,procedure-name-2] ...,
procedure-name-n DEPENDING ON identifier-1.

If a Format 1 GO TO statement appears in a consecutive
sequence of imperative statements within a sentence, it must
appear as the last statement in that sequence.

When a Format 1 GO TO statement is executed, control is
transferred to procedure-name-1 or to another procedure-name
if the GO TO statement has been modified by an ALTER
statement.

When a paragraph is referenced by an ALTER statement, that
paragraph can consist only of a paragraph header followed by
a Format-l GO TO statement.

The DEPENDING ON Phrase

When a Format 2 GO TO statement is executed, control is
transferred to procedure-name-1, procedure-name-2, etc.,
depending on the value of the identifier-1 being 1, 2, ...,
n. If the value of the identifier-1 is anything other than
the positive or unsigned integers 1, 2, ..., n, then no
transfer occurs and control passes to the next statement in
the normal sequence for execution.

Identifier-1 is the name of a numeric integer elementary
item.

- 183 -

!F TRS‘BO ® RM‘ COBOL Language

The IF Statement

The IF statement causes a specified condition to be -
evaluated. The subsequent action of the object program

depends on whether the value of the condition is true or

false.

o

FORMAT

IF condition; {statement-1 } {;ELSE statement-2 }
{NEXT SENTENCE } {;ELSE NEXT SENTENCE }

Statement~-1 and statement-2 represent either an imperative
statement or a conditional statement, and either may be
followed by a conditional statement.

When an IF statement is executed, the following transfers of
control occur:

If the condition is true, statement-l is executed if
specified. If statement-l contains a procedure

branching or conditional statement, control is

explicitly transferred in accordance with the rules of (;)
that statement. If statement-l does not contain a il
procedure branching or conditional statement, the ELSE
phrase, if specified, is ignored and control passes to

the next executable sentence.

If the condition is true and the NEXT SENTENCE phrase
is specified instead of statement-1l, the ELSE phrase,
if specified, is ignored and control passes to the next
executable sentence.

If the condition is false, statement-l or its surrogate
NEXT SENTENCE is ignored, and statement-2, if
specified, is executed. 1If statement-2 contains a
procedure branching or conditional statement, control
is explicitly transferred in accordance with the rules
of that statement. If statement-2 does not contain a
procedure branching or conditional statement, control
passes to the next executable sentence. If the ELSE
statement-2 phrase is not specified, statement-1 is
ignored and control passes to the next executable

sentence. @

- 184 -

RM‘ COBOL Language TRS'BO ® ;F

If the condition is false, and the ELSE NEXT SENTENCE
phrase is specified, statement-1 is ignored, if
specified, and control passes to the next executable
sentence.

Statement-1 and/or statement-2 may contain an IF statement.
In this case the IF statement is said to be nested.

IF statements within IF statements may be considered as
paired IF and ELSE combinations, proceeding from left to
right. Thus, any ELSE encountered is considered to apply to
the immediately preceding IF that has not been already
paired with an ELSE.

The ELSE NEXT SENTENCE phrase may be omitted if it
immediately precedes the terminal period of the sentence.

IF_Examples

IF CHAR-STR IS ALPHABETIC,
MOVE CHAR-STR TO ALPHA-STR;
ELSE IF CHR-STR IS NUMERIC
MOVE CHAR-STR TO NUM;
DISPLAY NUM;
ELSE NEXT SENTENCE.

IF NUM = OLD-NUM GO TO RE-SET.

IF ALPHA-STR NOT = "TEST"
ADD 1 TO ERROR-CNT.

IF NUM < LIMIT, ADD 1 TO NUM.

IF NUM IS LESS THAN LIMIT
ADD 1 TO NUM.

IF PRINT-SWITCH PERFORM PRINT-ROUTINE.

- 185 -

INSPECT TRS-80 ° RM/COBOL Language

The INSPECT Statement

The INSPECT statement provides the ability to tally (Format
1), replace (Format 2), or tally and replace (Format 3)
occurrences of single characters or groups of characters in
a data item.

FORMAT 1

INSPECT identifier-1
TALLYING identifier-2 FOR {{ALL } {identifier-3}}

{literal-l }
{{LEADING} }
{ CHARACTERS }

[{BEFORE} INITIAL {identifier-41}]
{literal-2 }
{AFTER}

FORMAT 2

INSPECT identifier-1
REPLACING {(ALL } {identifier-5}} BY {identifier-6}
{literal-3 } ({literal-4 }

{ {LEADING} }
{{FIRST } }
{ CHARACTERS }
[{BEFORE} INITIAL {identifier-7}]
{literal-5 }
{AFTER}

- 186 -

RM/COBOL Language TRS-80 ° INSPECT

FORMAT 3

INSPECT identifier-1

TALLYING identifier-2 FOR {{ALL } {identifier-3}}
{literal-1 }
{{LEADING} }
{ CHARACTERS }
[{BEFORE} INITIAL {identifier-4]}1]
{literal-2 }

{AFTER}
REPLACING {{ALL } {identifier-5}} BY {identifier-6}
{literal-3 } {literal-4 }
{ {LEADING} }
{{FIRST } }
{ CHARACTERS }

[{BEFCRE} INITIAL {identifier-7}]
{literal-5 }
{AFTER}

Identifier-1 must reference either a group item or any
category of elementary item, described (either implicitly or
explicitly as usage is DISPLAY.

Identifier-3 ... identifier-n must reference either an
elementary alphabetic, alphanumeric or numeric item
described (either implicitly or explicitly) as usage is
DISPLAY and a size of one character.

Each literal may be either a figurative constant (which is
treated as one-character data item) or a nonnumeric literal
one character in length.

The general rules that apply to the INSPECT statement are:

1. Inspection (which includes the comparison cycle, the
establishment of boundaries for the BEFORE or AFTER
phrase, and the mechanism for tallying and/or
replacing) begins at the leftmost character position of
the data item referenced by identifier-1, regardless of
its class, and proceeds from left to right to the
rightmost character position as described in general
rules 4 through 6.

- 187 -

INSPECT TRS-80 © ——RM/COBOL Language

For use in the INSPECT statement, the contents of the

data item referenced by identifier-1, identifier-3, B
identifier-4, identifier-5, identifier-6 or !;2
identifier-7 will be treated as follows:

a. If any of identifier-1, identifier-3, identifier-4
identifier-5, identifier-6, or identifier-7 are
described as alphanumeric, the INSPECT statement
treats the contents of each such identifier as a
character-string.

b. If any of identifier-1, identifier-3,
identifier-4, identifier-5, identifier-6 or
identifier-7 are described as alphanumeric edited,
numeric edited or unsigned numeric, the data item
is inspected as though it had been redefined as
alphanumeric (see general rule 2a) and the INSPECT
statement had been written to reference the
redefined data item.

c. If any of identifier-1, identifier-3,
identifier-4, identifier-5, identifier-6, or
identifier-7 are described as signed numeric, the
data item is inspected as though it had been moved
to an unsigned numeric data item of the same
length and then the rules in general rule 2b had
been applied. (See the MOVE statement.)

In general rules 4 through 1§, all references to
literal-1l, literal-2, literal-3, literal-4, and
literal-5 apply equally to the contents of the data
item referenced by identifier-3, identifier-4,
identifier~5, identifier-6, and identifier-7,
respectively.

During inspection of the contents of the data item
referenced by identifier-1, each properly matched
occurrence of literal-l is tallied (Formats 1 and 3)
and/or each properly matched occurrence of literal-3 is
replaced by literal-4 (Formats 2 and 3).

The comparison operation to determine the occurrences
of literal-l to be tallied and/or occurrences of
literal-3 to be replaced, occurs as follows:

- 188 -

RM/COBOL Language TRS-80 ° INSPECT

The character specified by literal-l, literal-3 is
compared to successive characters, starting with
the leftmost character position in the data item
referenced by identifier-1. Literal-1l, literal-3
and that portion of the contents of the data item
referenced by identifier-1 match if, and only if,
they are equal.

If no match occurs in the comparison of literal-l,
literal-3, the comparison is repeated starting
with the next character position of identifier-1.

Whenever a match occurs, tallying and/or replacing
takes place as described in general rules 8
through 1¢.° The character position in the data
item referenced by identifier-1 immediately to the
right of the character position that caused the
match is now considered to be the leftmost
character position of the data item referenced by
identifier-1, and the comparison cycle starts
again with literal-1l, literal-3.

The comparison operation continues until the
rightmost character position of the data item
referenced by identifier-1 has participated in a
match or has been considered as the leftmost
character position. When this occurs, inspection
is terminated.

If the CHARACTERS phrase is specified, an implied
one-character operand participates in the cycle
described in paragraphs 5a through 54 above,
except that no comparison to the contents of the
data item referenced by identifier-1 takes place.
This implied character is considered always to
match the leftmost character of the contents of
the data item referenced by identifier-1
participating in the current comparison cycle.

The comparison operation defined in general rule 5 is
affected by the BEFORE and AFTER phrases as follows:

a.

If the BEFORE and AFTER phrase is not specified,
literal-1l, literal-3 or the implied operand of the
CHARACTERS phrase participates in the comparison
operation as described in general rule 5.

- 189 -

INSPECT TRS-80 ° RM/COBOL Language

If the BEFORE phrase is specified, the associated
literal-l, literal-3 or the implied operand of the
CHARACTERS phrase participates only in those
comparison cycles which involve that portion of
the contents of the data item referenced by
identifier-1 from its leftmost character position
up to, but not including the first occurrence of
literal-2, literal-5 within the contents of the
data item referenced by identifier-1. The
position of this first occurrence is determined
before the first cycle of the comparison operation
described in general rule 5 is begun. If, on any
comparison cycle, literal-l, literal-3 or the
implied operand of the CHARACTERS phrase is not
eligible to participate, it is considered not to
match the contents of the data item referenced by
identifier-1. 1If there is no occurrence of
literal-2, literal-5 within the contents of the
data item referenced by identifier-1, its
associated literal-l, literal-3, or the implied
operand of the CHARACTERS phrase participates in
the comparison operation as though the BEFORE
phrase had not been specified.

If the AFTER phrase is specified, the associated
literal-l, literal-3 or the implied operand of the
CHARACTERS phrase may participate only in those
comparison cycles which involve that portion of
the contents of the data item referenced by
identifier-1 from the character position
immediately to the right of the rightmost
character position of the first occurrence of
literal-2, literal-5, within the contents of the
data item referenced by identifier-1 and the
rightmost character position of the data item
referenced by identifier-l. The position of this
first occurrence is determined before the first
cycle of the comparison operation described in
general rule 5 is begun. If, on any comparison
cycle, literal-l, literal-3, or the implied
operand of the CHARACTERS phrase is not eligible
to participate, it is considered not to match the
contents of the data item referenced by
idntifier-1. If there is no occurrence of
literal-2, literal-5 within the contents of the

- 198 -

RM/COBOL_Lanquage TRS-80 ° INSPECT

Format 1

data item referenced by identifier-1, its
associated literal-1l, literal-3, or the implied
operand of the CHARACTERS phrase is never eligible
to participate in the comparison operation.

7. The contents of the data item referenced by
identifier-2 is not initialized by the execution of the
INSPECT statement.

8. The rules for tallying are as follows:

a.

Format 2

If the ALL phrase is specified, the contents of
the data item referenced by identifier-2 is
incremented by one (1) for each occurrence of
literal-1l matched within the contents of the data
item referenced by identifier-1.

If the LEADING phrase is specified, the contents
of the data item referenced by identifier-2 is
incremented by one (1) for each contiguous
occurrence of literal-l matched within the
contents of the data item referenced by
identifier-1, provided that the leftmost such
occurrence is at the point where comparison began
in the first comparison cycle in which literal-l
was eligible to participate.

If the CHARACTERS phrase is specified, the
contents of the data item referenced by
identifier-2 is incremented by one (1) for each
character matched, in the sense of general rule
5e, within the contents of the data item
referenced by identifier-1.

9. The rules for replacement are as follows:

a.

When the CHARACTERS phrase is specified, each
character matched, in the sense of general rule
5e, in the contents of the data item referenced by
identifier-1 is replaced by literal-4.

- 191 -

INSPECT TRS-80 ® RM/COBOL Language

b. When ALL is specified, each occurrence of
literal-3 matched in the contents of the data item
referenced by identifier-1 is replaced by
literal-4.

c. When LEADING is specified, each contiguous
occurrence of literal-3 matched in the contents of
the data item referenced by identifier-1 is
replaced by literal-4, provided that the leftmost
occurrence is at the point where comparison began
in the first comparison cycle in which literal-3
was eligible to participate.

d. When FIRST is specified, the leftmost occurrence of
literal-3 matched within the contents of the data item
referenced by identifier-1 is replaced by literal-4.

Format 3

1¢. A Format 3 INSPECT statement is interpreted an executed
as though two successive INSPECT statements specifying
the same identifier-1 had been written with one
statement being a FORMAT 1 statement with TALLYING
phrases identical to those specified in the Format 3
statement, and the other statement being a Format 2
statement with REPLACING phrases identical to those
specified in the Format 3 statement. The general rules
given for matching and counting apply to the Format 1
statement and the general rules given for matching and
replacing apply to the Format 2 statement.

- 192 -

RM/COBOL_Language TRS-80 ® INSPECT

INSPECT Examples:

INSPECT word TALLYING count FOR LEADING 'L' BEFORE INITIAL "A",

Where word=LARGE, count=1l.
Where word=ANALYST, count=g.

INSPECT word TALLYING count FOR LEADING "A" BEFORE INITIAL "L".

Where word=LARGE, count=f.
Where word=ANALYST, count-1l.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY
“E" AFTER INITIAL "L".

Where word=CALLAR, count=2, word=CALLER.
Where word=SALAMI, count=1, word=SALEMI.
Where word=LATTER, count=1, word=LETTER.
INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word=ARXAX, word=GRXAX.
Where word=HANDAX, word=HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL “J"
REPLACING ALL “"A" BY "B".

Where word=ADJECTIVE, count=6, word=BDJECTIVE.
Where word=JACK, count=3, word=JBCK.
Where word=JUJMAB, count=5, word=JUJMBB.

INSPECT word REPLACING ALL "W" BY “Q" AFTER
INITIAL "R".

Where word=RXXBQWY, word=RXXBQQY.
Where word=YZACDWBR, word=YZACDWBER.
Where word=RAWRXEB, word=RAQRXEB.
INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL “A".

word before: 12 XZABCD
word after: BBBBBABCD

- 193 -

MOVE TRS-80 ® RM/COBOL Language

The MOVE Statement

The MOVE statement transfers data, in accordance with the
rules of editing, to one or more data areas.

FORMAT 1

MOVE {identifier-1} TO identifier-2 [,identifier-3]...
{literal }

FORMAT 2

MOVE {CORRESPONDING} identifier-1 TO identifier-2
{CORR }

Identifier-1 and literal-l represent the sending area;
identifier-2, identifier-3, ..., represent the receiving
area(s).

An index data item cannot appear as an operand of a MOVE
statement.

The data designated by literal-l or identifier-1 is moved
first to identifier-2, then to identifier-3, The
rules referring to identifier-2 also apply to the other
receiving areas. Any subscripting or indexing associated
with identifier-2, ..., is evaluated immediately before the
data is moved to the respective data item.

Any subscripting or indexing associated with identifier-1l is
evaluated only once, immediately before data is moved to the
first of the receiving operands. The result of the
statement

MOVE a (b) TO b, c (b)
is equivalent to:
MOVE a (b) TO temp

MOVE temp TO b
MOVE temp TO c (b).

i

- 1942 -

RM‘ COBOL Language TRS-80 ® MOVE

Any MOVE in which the sending and receiving items are both
elementary items is an elementary move. Every elementary item
belongs to one of the following categories: numeric, alphabetic,
alphanumeric, numeric edited, alphanumeric edited. These
categories are described in the PICTURE clause. Numeric literals
belong to the category numeric, and nonnumeric literals belong to
the category alphanumeric. The figurative constant ZERO belongs
to the category numeric. The figurative constant SPACE belongs
to the category alphabetic. All other figurative constants
belong to the category alphanumeric.

The following rules apply to an elementary move between
these categories:

1. The figurative constant SPACE, a numeric edited,
alphanumeric edited, or alphabetic data item must not
be moved to a numeric or numeric edited data item.

2. A numeric literal, the figurative constant ZERO, a
numeric data item or a numeric edited data item must
not be moved to an alphabetic data item.

3. A non integer numeric literal or a non integer numeric
data item must not be moved to an alphanumeric or
alphanumeric edited data item.

4. All other elementary moves are legal and are performed
according to the rules given below.

Any necessary conversion of data from one form of internal
representation to another takes place during legal
elementary moves, along with any editing specified for the
receiving data item:

1. When an alphanumeric edited or alphanumeric item is a
receiving item, alignment and any necessary
space-filling takes place as defined under Standard
Alignment Rules. 1If the size of the sending item is
greater than the size of the receiving item, the
excess characters are truncated on the right after the
receiving item is filled. If the sending item is
described as being signed numeric, the operational
sign will not be moved; if the operational sign
occupies a separate character position (see the SIGN
clause), that character will not be moved and the size

- 195 -

MOVE TRS-80 ® RM[COBOL Language

of the sending item will be considered to one less
than its actual size (in terms of standard data format
characters).

2. When a numeric or numeric edited item is the receiving
item, alignment by decimal point and any necessary
zero-filling takes place as defined under the Standard
Alignment Rules except where zeroes are replaced
because of editing requirements.

When a signed item is the receiving item, the sign of
the sending item is placed in the receiving item.
(See the SIGN clause). Conversion of the
representation of the sign takes place as necessary.
If the sending item is unsigned, a positive sign is
generated for the receiving item.

When an unsigned numeric item is the receiving item,
the absolute value of the sending item is moved and no
operational sign is generate for the receiving item.

When a data item described as alphanumeric is the
sending item, data is moved as if the sending item
were described as an unsigned numeric integer.

3. When a receiving field is described as alphabetic,
justification and any necessary space-filling takes
place as defined under the Standard Alignment Rules.
If the size of the sending item is greater than the
size of the receiving item, the excess characters are
truncated on the right after the receiving item is
filled.

Any move that is not an elementary move is treated exactly
as if it were an alphanumeric to alphanumeric elementary
move, except that there is no conversion of data from one
form of internal representation to another. In such a move,
the receiving area will be filled without consideration for
the individual elementary or group items contained within
either the sending or receiving area, except as noted in the
OCCURS clause.

When a sending and receiving item share a part of their
storage areas, the result of the execution of such a
statement is undefined.

- 196 -

RM/COBOL Language TRS-80 ° MOVE

The CORRESPONDING Phrase

When the CORRESPONDING phrase is specified, data items in
identifier-1 are moved to corresponding data items in
identifier-2 according to the following rules:

A data item in identifier-l1 and a data item in
identifier-2 are not designated by the key word FILLER
and have the same qualifiers up to, but not including,
identifier-1 and identifier-2.

At least on of the data items is an elementary data
item. The description of identifier-1 and identifier-2
must not contain level-number 66, 77, or 88 or the
USAGE IS INDEX clause.

A data item that is subordinate to identifier-1 or
identifier-2 contain a REDEFINES, RENAMES, OCCURS or
USAGE IS INDEX clause is ignored, as well as those data
items subordinate to the data item that contains the
REDEFINES, OCCURS, or USAGE IS INDEX clause. However,
identifier-1 and identifier-2 may have REDEFINES or
OCCURS clauses or be subordinate to data items with
REDEFINES or OCCURS clauses.

Data in the following chart summarizes the legality of the
various types of MOVE statements.

- 197 -

MOVE TRS-80 ® RH(COBOL Language

CATEGCRY OF RECEIVING DATA ITEM
CATEGORY OF ALPHANUMERIC |[NUMERIC INTEGER
SENDING EDITED NUMERIC NON-INTEGER
DATA ITEM ALPHARETIC | ALPHANUMERIC |NUMERIC EDITED
ALPHABETIC YES YES NO
ALPHANUMERIC YES YES YES
ALPHANUMERIC EDITED YES YES NO
INTEGER NO YES YES
NUMERIC
NON-INTEGER NO NO YES
NUMERIC EDITED NO YES NO

MOVE Examples

MOVE INCOME TO TOTAL-INCOME.

MOVE 1 TO PAGE-COUNT, LINE-NUM.

MOVE "MARMACK INDUSTRIES" TO TITLE-HEADER.

MOVE PERSON TO FILE-RECORD TO
PERSON OF ALABAMA (I-A OF ALABAMA),
PERSON OF CROSS-CENSUS.

MOVE NUM TO NUM-ED.

MOVE TABLE-ELT (N, 1, M) TO NEXT-ENTRY
PREVIOUS-ENTRY

MOVE -36.7 TO DEFICIT.

MOVE QUOTES TO SECTION-DIVIDER.

MOVE ZERO TO COUN-TER.

MOVE ZEROES TO COUN-TER.

- 198 -

RM/COBOL_Langquage TRS-80 ® MULTIPLY

The MULTIPLY Statement

The MULTIPLY statement causes numeric data items to be
multiplied and stores the result.

FORMAT 1

MULTIPLY {identifier-1}
{literal-l }

BY identifier-2 [ROUNDED]

[,ON SIZE ERROR imperative-statement]

FORMAT 2

MULTIPLY {identifier-1} BY {identifier-2}
{literal-l } {literal-2)}

GIVING identifier-3 [ROUNDED]

[;ON SIZE ERROR imperative-statement]

In Format 1, the value of identifier-1 or literal-l is
multiplied by the value of identifier-2. The value of the
multiplier (identifier-2) is replaced by this product.

In Format 2, the value of identifier-1 or literal-l is
multiplied by identifier-2 or literal-2 and the result is
stored in identifier-3.

Each identifier must refer to a numeric elementary item,
except that in Format 2 the identifier following the word
GIVING must refer to either an elementary numeric item or an
elementary numeric edited item.

Each literal must be a numeric literal.

The ROUNDED Phrase

The MULTIPLY statement may optionally include the ROUNDED
phrase.

- 199 -

MUL
ULTIPLY TRS-80 °® RM/COBOL Language

If, after decimal point alignment, the number of places in
the fraction of the result of an arithmetic operation is
greater than the number of places provided for the fraction
of the resultant-identifier, truncation is relative to the
size provided for the resultant-identifier. When rounding
is requested, the absolute value of the resultant-identifier
is increased by one (1) whenever the most significant digit
of the excess is greater than or equal to five (5).

When the low-order integer positions in a
resultant-identifier are represented by the character 'P' in
the picture for that resultant-identifier, rounding or
truncation occurs relative to the rightmost integer position
for which storage is allocated.

The SIZE ERRQOR Phrase

If, after appropriate decimal point alignment, the absolute
value of the result exceeds the largest value that can be
contained in the associated resultant-identifier, a size
error condition exists. If the ROUNDED phrase is specified,
rounding takes place before checking for size error.

If the resultant-identifier has COMPUTATIONAL-3 usage, size
error is detected only for data items declared with an odd
length picture clause. Therefore all COMP-3 data items
should be declared with an odd number of character
positions.

If the SIZE ERROR phrase is not specified and a size error
condition exists, the value of the resultant-identifier is
undefined.

If the SIZE ERROR phrase is specified and a size error
condition exists, the value of the resultant-identifier is
not altered and the imperative statement is the SIZE ERROR
phrase is executed.

MULTIPLY Examples

MULTIPLY 1¢ BY INCOME.

MULTIPLY PRINCIPAL BY INTEREST-RATE
GIVING INTEREST ROUNDED.

MULTIPLY INFLATION-RATE BY EXPENSES
ON SIZE ERROR MOVE § TO ECONOMY~RATING.

- 208 -

RM/COBOL Language TRS-80 ° OPEN (Sequential I-0)

The OPEN Statement (Sequential I-0)

The OPEN statement initiates the processing of sequential
files.

FORMAT

OPEN {{INPUT {file-name-l [WITH LOCK] [WITH NO REWIND] }...}...
{QUTPUT {file-name-2 [WITH NO RENIND] }...}...
{I-0 {file-name-2 [WITH LOCK] ... }ooo }oou

{EXTEND {file-name-4 }... | JU

The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an
open mode.

The successful execution of an OPEN statement makes the
associated record area available to the program.

The files referenced in the OPEN statement need not all have
the same organization or access.

Prior to the successful execution of an OPEN statement for a
given file, no statement can be executed that references
that file, either explicitly or implicitly.

An OPEN statement must be successfully executed prior to the
execution of any of the permissible input-output statements.
In the Permissible Statements Table below, 'X' at an
intersection indicates that the specified statement, used in
the sequential access mode, may be used with the sequential
file organization and open mode given at the top of the
column.

-2’1-

—OPEN (Sequential I-0) _ +TRs.g80 ® —BM/COBOL Landuade

Open Mode
Statement | Input | Output | Input-Output| Extend
READ | x || x |
weite | | x | | X
rewrie | | | x |

Permissible Statements Table

A file may be opened with the INPUT, OUTPUT, EXTEND, and I-O
phrases in the same program. Following the initial
execution of an OPEN statement for a file, each subsequent
OPEN statement execution for that same file must be preceded
by the execution of a CLOSE statement, without the LOCK
phrase, for that file.

Execution of the OPEN statement does not obtain or release
the first data record.

The file description entry for file-name-1l, file-name-3 or
file-name-4 must be equivalent to that used when this file
was created.

The execution of an OPEN statement causes the value of the
specified FILE STATUS data item, if any, associated with
file-name-1 ... to be updated.

The INPUT Phrase

For files being opened with the INPUT phrase, the OPEN
statement sets the current record pointer to the first
record currently existing within the file. If no records
exist in the file, the current record pointer is set such
that the next executed READ statement for the file will
result in an AT END condition.

-2”2-

RM/COBOL Language TRS-80 ° OPEN (Sequential I-0)

The OUTPUT Phrase

Upon successful execution of an OPEN statement with the
OUTPUT phrase specified, a file is created. At that time
the associated file contains no data records.

The EXTEND Phrase

When the EXTEND phrase is specified, the OPEN statement
positions the file immediately following the last logical
record of that file, Subsequent WRITE statements referencing
the file will add records to the file as though the file has
been opened with the OUTPUT phrase.

The EXTEND phrase and NO REWIND phrase can be used only for
sequential files. The EXTEND phrase must not be specified
for a file whose device-type is INPUT.

When the EXTEND phrase is specified and the LABEL RECORDS
clause indicates label records are present, the execution of
the OPEN statement includes the following:

The beginning file labels are processed only in the
case of a single reel/unit file.

Processing then proceeds as though the file has been
opened with the OUTPUT phrase.

The I-O Phrase

The I-0 phrase permits the opening of a mass storage file
for both input and output operations. Since this phrase
implies the existence of the file, it cannot be used if the
mass storage file is being initially created.

- 203 -

OPEN (Seguential I-0) TRS-80® RH(COBOL Lanquage

The I-O phrase can be used only for mass storage files
(files assigned to the RAMDOM device-type).

When the I-0 phrase is specified and the LABEL RECORDS
clause indicates that label records are present, the
execution of the OPEN includes the following:

The labels are checked.
New labels are written.

The OPEN statement sets the current record pointer to the
first record currently existing in the file. If no records
exist in the file, the current record pointer is set such
that the next executed READ statement for that file will
result in an AT END condition.

The NO REWIND Phrase

The NO REWIND phrases can only be used with sequential
single reel/unit files. Both phrases will be ignored if
they do not apply to the storage media on which the file
resides.

If the storage medium for the file permits rewinding, the 4 b
following rule applies: il

When neither the EXTEND nor the NO REWIND phrase is
specified, execution of the OPEN statement causes the
file to be positioned at its beginning.

When the NO REWIND phrase is specified, execution of
the OPEN statement does not cause the file to be
repositioned; the file must be already positioned at
its beginning prior to the execution of the OPEN
statement.

The LOCK Phrase

The LOCK phrase permits the opening of a mass storage file
for exclusive access of the file. This is the default mode
for files OPEN for OUTPUT.

- 204 -

RM/COBOL Language TRS-80 ° OPEN (Rel. & Ind, I-0)

The OPEN Statement (Relative and Indexed I-0)

The OPEN statement initiates the processing of mass storage
files.

FORMAT
OPEN ({INPUT (file-name-1 [WITH LOCK] }...}...
(QUTPUT {file-name-2 [WITH LOCK] }...}...
{I0 (filename-3 [WITH LOCK] }...}...}...

The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an
open mode.

The successful execution of the OPEN statement makes the
associated record area available to the program.

The files referenced in the OPEN statement need not all have
the same organization or access.

Prior to the successful execution of an OPEN statement for a
given file, no statement can be executed that references
that file, either explicitly or implicitly.

A file may be opened with the INPUT, OUTPUT, and I-O phrases
in the same program. Following the initial execution of an
OPEN statement for a file, each subsequent OPEN statement
execution for that same file must be preceded by the
execution of a CLOSE statement, without the LOCK phrase, for
that file.

Execution of the OPEN statement does not obtain or release
the first data record.

If label records are specified for the file, the beginning
labels are processed as follows:

When the INPUT phrase is specified, the execution of
the OPEN statement causes the labels to be checked in
accordance with the System conventions for input label
checking.

- 285 -

OPEN (Rel. & Ind. 1-0) +ma.g0 ® RM/COBOL Langquage

When the OUTPUT phrase is specified, the execution of
the OPEN statement causes the labels to be written in
accordance with the System conventions for output label

writing. f:)

The behavior of the OPEN statement when label records
are specified but not present, or when label records
are not specified but are present, is undefined.

The file description entry for file-name-1 or file-name-3
must be equivalent to that used when this file was created.

The execution of the OPEN statement causes the value of the
specified FILE status data item, if any, associated with
file-name-1l ... to be updated.

An OPEN statement must be successfully executed prior to the
execution of any of the permissible input-output statements.
In the Permissible Statements Table below, 'X' at an
intersection indicates that the specified statement, used in
the access mode given for the row, may be used with the open
mode given at the top of the column.

-2”6-

RM/COBOL. Language TRS-80 ° OPEN (Rel. & Ind. I-0)

Open Mode
File Access| | | [
Mode Statement Input [Output |Input-Output
Sequential |READ | x || x
weite | | x |
rewrITE | | | x
starT | x || x
pecere | | | x
Random READ | x || x
wrrte | | x | x
rewrize | | | x
starr || |
peLere | | | x
Dynamic |READ | x || x
werte | | x | x
rewrITE | | | x
start | x || x
pecere | | | x

Permissible Statements Table

- 287 -

OPEN (Rel. & Ind. I-0) TRS-80 ® RM(COBOL Language

The INPUT Phrase

For files being opened with the INPUT phrase, the OPEN
statement sets the current record pointer to the first
record currently existing within the file. If no records
exist in the file, the current record pointer is set such
that the next execute Format 1 READ statement for the file
will result in an AT END condition.

The QUTPUT Phrase

Upon successful execution of an OPEN statement with the
OUTPUT phrase specified, a file is created. At that time
the associated file contains no data records.

The I-O Phrase

For files being opened with the I-O phrase, the OPEN

statement sets the current record pointer to the first

record currently existing within the file. If no records

o ist in the file, the current record pointer is set such

- .at the next executed Format 1 READ statement for the file

will result in an AT END condition. <;>

The LOCK Phrase

The LOCK phrase permits the opening of a mass storage file
for exclusive access of the file. This is the default mode
for files OPEN for OUTPUT.

_2¢8..

RM/COBOL Language TRS-80 ° PERFORM

The PERFORM Statement

The PERFORM Statement is used to transfer control explicitly
to one or more procedures and to return control implicitly
whenever execution of the specified procedure is complete.

FORMAT 1

PERFORM procedure-name-1 [{THROUGH} procedure-name-2]
{THRU }

FORMAT 2

PERFORM procedure—name-1 [{THROUGH} procedure-name-2]
{THRU }

{identifier-1} TIMES
{integer }

FORMAT 3

PERFORM procedure-name-1 [{THROUGH} procedure-name-2]
{THRU }

UNTIL condition-1

- 209 -

PERFORM TRS-80 °© RM/COBOL Language

FORMAT 4

PERFORM procedure-name-1 [{THROUGH} procedure-name—2]
{THRU }

VARYING {identifier-2} FROM {identifier-3}
{index-name-1} {index-name-2}
{literal-1 }

BY {identifier-4} UNTIL condition-1
{literal-2 }

[AFTER {identifier-5} FROM {identifier-6}
{index-name-3} {index-name-4}
(literal-3 }

BY {identifier-7} UNTIL condition-2
{literal-4 }

[AFTER {identifier-8} FROM {identifier-9}
{index~name-5} {index~name—6}
{literal-5 }

BY {identifier-1¢} UNTIL condition-31]
{literal-6 }

Format 1 is the basic PERFORM statement. A procedure
referenced by this type of PERFORM statement is executed
once and then control passes to the next executable
statement following the PERFORM statement.

Format 2 is the PERFORM...TIMES. The procedures are
performed the number of times specified by integer or by the
initial value of the data item referenced by identifier-1
for the execution, If, at the time of execution of a
PERFORM statement, the value of the data time referenced by
identifier-l is equal to zero or is negative, control passes
to the next executable statement following the PERFORM
statement. Following the execution of the procedures the
specified number of times, control is transferred to the
next executable statement following the PERFORM statement.

During execution of the PERFORM statement, references to
identifier-1 cannot alter the number of times the procedures
are to be executed from that which was indicated by the
initial value of identifier-1.

- 214 -

RM/COBOL Language TRS-80 ° PERFORM

Format 3 is the PERFORM...UNTIL. The specified procedures
are performed until the condition specified by the UNTIL
phrase is true. When the condition is true, control is
transferred to the next executable statement after the
PERFORM statement. If the condition is true when the
PERFORM statement is entered, no transfer to
procedure-name-1 takes place, and control is passed to the
next executable statement following the PERFORM statement.

Format 4 is the PERFORM...VARYING. This variation of the
PERFORM statement is used to augment the values referenced
by one or more identifiers or index-names in an orderly
fashion during the execution of a PERFORM statement. In the
following discussion, every reference to identifier as the
object of the VARYING, AFTER and FROM (current value)
phrases also refers to index-names. When index-name appears
in a VARYING and/or AFTER phrase, it is initialized and
subsequently augmented (as described below) according to the
rules of the SET statement. When index~-name appears in the
FROM phrase, identifier, when it appears in an associated
VARYING or AFTER phrase, is initialized according to the
rules of the SET statement; subsequent augmentation is as
described below.

In Format 4, when one identifier is varied, identifier-2 is
set to the value of literal-l or the current value of
identifier-3 at the point of initial execution of the
PERFORM statement; then, if the condition of the UNTIL
phrase is false, the sequence of procedures,
procedure~name-1 through procedure-name-2, is executed once.
The value of identifier-2 is augmented by the specified
increment of decrement value (the value of identifier-4 or
literal-2) and condition-1 is evaluated again. The cycle
continues until this condition is true; at which point,
control is transferred to the next executable statement
following the PERFORM statement. If condition-1 is true at
the beginning of execution of the PERFORM statement, control
is transferred to the next executable statement following
the PERFORM statement.

Each identifier represents a numeric elementary item
described in the Data Division. 1In Format 2, identifier-1
must be described as a numeric integer.

Each literal represents a numeric literal.

- 211 -

PERFORM TRS-80 ® ——BM/COBOL Language

The words THRU and THROUGH are eguivalent.

If an index-name is specified in the VARYING or AFTER
phrase, then:

The identifier in the associated FROM and BY phrases
must be an integer data item.

The literal in the associated FROM phrase must be a
positive integer.

The literal in the associated BY phrase must be a non
zero integer.

If an index-name is specified in the FROM phrase, then:

The identifier in the associated VARYING or AFTER
phrase must be an integer data item.

The identifier in the associated BY phrase must be an
integer data item.

The literal in the associated BY phrase must be an
integer.

Literal in the BY phrase must not be zero.

Condition-1l, condition-2, condition-3 may be any conditional
expression.

When procedure-name-1 and procedure-name-2 are both
specified and either is the name of a procedure in the
declarative section of the program then both must be
procedure-names in the same declarative section.

the data items referenced by identifier-4, identifier-7, and
identifier-1f must not have a zero value.

If an index-name is specified in the VARYING or AFTER
phrase, and an identifier is specified in the associated
FROM phrase, then the data item referenced by the identifier
must have a positive value.

When the PERFORM statement is executed, control is
transferred to the first statement of the procedure named
procedure-name-1. This transfer of control occurs only once
for each execution of a PERFORM statement. For those cases

- 212 -

—BM/COROL Language ___ TRS-80 ° PERFORM

when a transfer of control to the named procedure does take
place, an implicit transfer of control to the next
executable statement following the PERFORM statement is
established as follows:

1f procedure-name-l is a paragraph-name and
procedure-name-2 is not specified, then the return is
after the last statement of procedure-name-1l.

If procedure-name-1 is a section-name and
procedure-name-2 is not specified, then the return is
after the last statement of the last paragraph in
procedure-name-1.

If procedure-name-2 is specified and it is a
paragraph-name, then the return is after the last
statement of the last paragraph.

If procedure-name-2 is specified and it is a
section-name, then the return is after the last
statement of the paragraph in the section.

There is no necessary relationship between procedure-name-1
and procedure-name-2 except that a consecutive sequence of
operations is to be executed beginning at the procedure
named procedure-name-1 and ending with the execution of the
procedure named procedure-name-2. In particular, GO TO and
PERFORM statements may occur between procedure-name-1 and
the end of procedure-name-2. 1If there are two or more
logical paths to the return point, then procedure-name-2 may
be the name of a paragraph consisting of the EXIT statement,
to which all of these paths must lead.

If control passes to these procedures by means other than a
PERFORM statement, control will pass through the last
statement of the procedure to the next executable statement
as if no PERFORM statement mentioned these procedures.

- 213 -

PERFORM TRS-80 ° RM/COBOL Language

ENTRANCE

Set identifier-2 equal to
current FROM value

v
----------- \ True
—————————————————————— > | Condition-1 |-=======---———----> Exit
|
V False

Execute procedure-name-1l
THRU procedure-name-2

------------------- IAugment identifier-2 with

current BY value

Flowchart for the VARYING Phrase of a PERFORM Statement
Having One Condition.

- 214 -

RM/COBOL Language TRS-80 ° PERFORM

In Format 4, when two identifiers are varied, identifier-2
and identifier-5 are set to the current value of
identifier-3 and identifier-6, respectively.

After the identifiers have been set, condition-1 is
evaluated; if true, control is transferred to the next
executable statement; if false, condition-2 is evaluated.
If condition-2 is false, procedure-name-l through
procedure-name-2 is executed once, then identifier-5 is
augmented by identifier-7 or literal-4 and condition-2 is
evaluated again. This cycle of evaluation and augmentation
continues until this condition is true. When condition-2 is
true, identifier-5 is set to the value of literal-3 or the
current value of identifier-6, identifier-2 is augmented by
identifier-4 and condition-1 is re-evaluated. The PERFORM
statement is completed if condition-1 is true; if not, the
cycles continue until condition-1l is true.

During the execution of the procedures associated with the
PERFORM statement, any change to the VARYING variable
(identifier~2 and index-name-l), the BY variable
(identifier~-4), the AFTER variable (identifier-5 and
index-name-3), or the FROM variable (identifier-3 and
index-name-2) will be taken into consideration and will
affect the operation of the PERFORM statement.

- 215 -

PERFORM TRS-80 °© RM/COBOL Language

ENTRANCE

\'

Set identifier-2 and identifier-5
to current FROM values

v
[———————\ True
——————————— > | Condition-1 | > Exit
__.___l _______ /
V False
[m———————\ True
—_— > | Condition-2 |—————————-o
e/ |
V False \'4
Execute procedure—-name-1 |Set identifier-5 to itsl
THRU procedure-name-2 current FROM value
I I
v v

— (Rugment identifier-5 with Augment identifier-2 with
current BY value current BY value

Flowchart for the VARYING Phrase of a PERFORM Statement
Having Two conditions.

- 216 -

RM/COBOL Language PERFORM
2 a9 TRS-80°
ENT}.TAI‘CE
v
Set
identifier-2, identifier-5,
identifier-8
to current FROM values
I
\Y%
[——————————e -\ True
—_——— > | Condition-1 | > Exit
R /
| False
v
[\ True
————— > | Condition-2 |
| False
v
— e True
———————> | Condition-3 |—-————-—-—-
| False
v v v
Execute Set Set
procedure—-name-1 identifier-8 identifier-5
THRU procedure- to its current to its current
name-2 FROM value FROM value
l I I
v A"
Augment Augment
—-—|identifier-8 with 1dent1f1er—5 with identifier-2 with
current BY value current BY value current BY value

Flowchart for the VARYING Phrase of a PERFORM Statement
Having Three Conditions.

- 217 -

PERFORM TRS-80 °© RM/COBOL Language

At the termination of the PERFORM statement identifier-5
contains the current value of identifier-6. Identifier-2
has a value that exceeds the last setting by an increment or
decrement value, unless condition-l1 was true when the
PERFORM statement was entered, in which case identifier-2
contains the current value of identifier-3.

When two identifiers are varied, identifier-5 goes through a
complete cycle (FROM, BY, UNTIL) each time identifier-2 is
varied.

For three identifiers the mechanism is the same as for two
identifiers except that identifier-8 goes through a complete
cycle each time that identifier-5 is augmented by
identifier-7 or literal-4, which in turn goes through a
complete cycle each time identifier-2 is varied.

After the completion of a Format 4 PERFORM statement,
identifier-5 and identifier-8 contain the current value of
identifier-6 and identifier-9 respectively. Identifier-2
has a value that exceeds its last used setting by one
increment or decrement value, unless condition-1 is true
when the PERFORM statement is entered, in which case
identifier-2 contains the current value of identifier-3.

If a sequence of statements referred to by a PERFORM
statement includes another PERFORM statement, the sequence
of procedures associated with the included PERFORM must
itself either be totally included in, or totally excluded
from, the logical sequence referred to by the first PERFORM.
Thus an active PERFORM statement, whose execution point
begins within the range of another active PERFORM statement,
must not allow control to pass to the exit of the other
active PERFORM statement; furthermore, two or more such
active PERFORM statements may not have a common exit. See
the valid illustrations below.

- 218 -

RM/COBOL Language TRS-80 ° PERFORM

x PERFORM a THRU m

d PERFORM f THRU j

A PERFORM statement that appears in a section that is not in
an independent segment can have within its range, in
addition to any declarative sections whose executions is
caused within that range, only one of the following:

- 219 -

PERFORM TRS'BO ® RM‘ COBOL Language

Sections and/or paragraphs wholly contained in one or
more non-independent segments.

Sections and/or paragraphs wholly contained in a single
independent segment.

A PERFORM statement that appears in an independent segment
can have within its range, in addition to any declarative

sections whose execution is caused within that range, only
one of the following:

Sections and/or paragraphs wholly contained in one or
more non-independent segments.

Sections and/or paragraphs wholly contained in the same
independent segment as the PERFORM statement.

- 229 -

RM/COBOL Language TRS-80 ° READ (Sequential I-0)

The READ Statement (Sequential I-0)

The READ statement makes available the next logical record
from a file.

FORMAT
READ file-name RECORD [INTO identifier]

[,AT END imperative-statement]

The associated file must be open in the INPUT or I-O mode at
time this statement is executed.

The record to be made available by the READ statement is
determined as follows:

If the current record pointer was positioned by the
execution of the OPEN statement, the record pointed to
by the current record pointer is made available.

If the current record pointer was positioned by the
execution of a previous READ statement, the current
record pointer is updated to point to the next existing
record in the file and then that record is made
available.

The execution of the READ statement causes the value of the
FILE STATUS data item, if any, associated with file-name to
be updated.

When the logical records of a file are described with more
than one record description the contents of any data items
which lie beyond the range of the current data record are
undefined at the completion of the execution of the READ
statement.

If, at the time of execution of a READ statement, the
position of the current record pointer for that file is
undefined, the execution of that READ statement is
unsuccessful.

Following the unsuccessful execution of any READ statement,

the contents of the associated record area and the position
of the current record pointer are undefined.

- 221 -

READ (Sequential I-0) TRS-80 ° RM/COBOL Language

The INTO Phrase

If the INTO phrase is specified, the record being read is
moved from the record area to the area specified by
identifier according to the rules specified for the MOVE
statement. The implied MOVE does not occur if the execution
of the READ statement was unsuccessful. Any subscripting or
indexing associated with identifier is evaluated after the
record has been read and immediately before it is moved to
the data item.

When the INTO phrase is used, the record being read is
available in both the input record area and the data area
associated with identifier.

The INTO phrase must not be used when the input file
contains logical records of various sizes as indicated by
their record descriptions. The storage area associated with
identifier and the record area associated with file-name
must not be the same storage area.

The AT END Phrase

If, at the time of the execution of a READ statement, no
next logical record exists in the file, the AT END condition
occurs, and the execution of the READ statement is
considered unsuccessful.

When the AT END condition is recognized the following
actions are taken in the specified order.

A value is placed into the FILE STATUS data item, if
specified for this file, to indicate an AT END
condition.

If the AT END phrase is specified in the statement
causing the condition, control is transferred to the AT
END imperative-statement. Any USE procedure specified
for this file is not executed.

- 222 -

RM/COBOL Language TRS-80 ® READ (Sequential I-0O

If the AT END phrase is not specified, then a USE
procedure must be specified, either explicitly or
implicitly, for this file and that procedure is
executed.

When the AT END condition has been recognized, a READ
statement for that file must not be executed without first
executing a successful CLOSE statement followed by the
execution of a successful OPEN statement for that file.

The AT END phrase must be specified if no applicable USE
procedure is specified for file-name.

- 223 -

READ (Rel. & Ind. I-0) TRS-80 ° RM/COBOL Language

The READ Statement (Relative and Indexed I-0)

The READ Statement makes available a specified record from a
mass storage file.

FORMAT 1
READ file-name [NEXT] RECORD [WITH NO LOCK] [INTO identifier]

[;AT END imperative-statement]

FORMAT 2
READ file-name RBCORD [WITH NO LOCK] [INTO identifier]
[:KEY is data-name]
[;INVALID REY imperative-statement)

Format 1 must be used for all files is sequential access
mode.

The NEXT phrase must be specified for files in dynamic
access mode, when records are to be retrieved sequentially.

Format 2 is used for files in random access mode or for
files in dynamic access mode when records are to be
retrieved randomly.

The INVALID KEY phrases or the AT END phrase must be
specified if no applicable USE procedure is specified for
file-name.

The associated files must be open in the INPUT or I-O mode
at the time this statement is executed.

The KEY phrase may be specified only when the organization
of file-name is index. When the KEY clause is present,
data-name must be the name of one of the record keys
associated with file-name. Data-name may be qualified.

The record to be made available by a Format 1 READ statement
is determined as follows:

- 224 -~

RM/COBOL Lanquage TRS-80 © READ (Rel. & Ind. I-0)

The record, pointed to by the current record pointer,
is made available provided that the current record
pointer was positioned by the START or OPEN statement
and the record is still accessible through the path
indicated by the current record pointer. If the record
is no longer accessible, which may have been caused by
the deletion of the record, the current record pointer
is updated to point to the next existing record in the
file and that record is then made available.

If the current record pointer was positioned by the
execution of a previous READ statement, the current recor¢
pointer is updated to point to the next existing record ir
the file and then that record is made available,

The execution of the READ statement causes the value of the
FILE STATUS data item, if any, associated with file-name to
be updated.

When the logical records of a file are described with more
than one record description, these records automatically
share the same storage area; this is eguivalent to an
implicit redefinition of the area. The contents of any data
item which lie beyond the range of the current data record
are undefined at the completion of the execution of the READ
statement.

If, at the time of execution of a Format 1 READ statement,
the position of current record pointer for that file is
undefined, the execution of that READ statement is
unsuccessful.

The INTO Phrase

If the INTO phrase is specified, the record being read is
moved from the record area to the area specified by
identifier according to the rules specified for the MOVE
statement. The implied MOVE does not occur if the execution
of the READ statement was unsuccessful. Any subscripting or
indexing associated with identifier is evaluated after the
record has been read and immediately before is is moved to
the data item.

- 225 -

READ (Rel. & Ind. I-0) TRS-80 ° RM/COBOL Language

When the INTO phrase is used, the record being read is
available in both the input record area and the data area
associated with identifier.

The INTO phrase must not be used when the input file
contains logical records of various sizes as indicated by
their record descriptions. The storage area associated with
identifier and the record area associated with file-name
must not be the same storage area.

Following the unsuccessful execution of any READ statement,
the contents of the associated record area and the position
of the current record pointer are undefined.

For relative files if the RELATIVE KEY phrase is specified,
the execution of a Format 1 READ statement updates the
contents of the RELATIVE KEY data item such that it contains
the relative record number of the record made available.

For relative files the execution of a Format 2 READ
statement sets the current record pointer to, and makes
available, the record whose relative record number is
contained in the data item named in the RELATIVE KEY phrase
for the file. 1If the file does not contain such a record,
the INVALID KEY condition exists and execution of the READ
statement is unsuccessful.

For an indexed file being sequentially accessed, records
having the same duplicate value in an alternate record key
which is the key of reference are made available in the same
order in which they are released by execution of WRITE
statements, or by execution of REWRITE statements which
create such duplicate values.

For an indexed file if the KEY phrase is specified in a
Format 2 READ statement, data-name is established as the key
of reference for this retrieval. If the dynamic access mode
is specified, this key of reference is also used for
retrievals by any subsequent executions of Format 1 READ
statements for the file until a different key of reference
is established for the file.

If the Key phrase is not specified in a Format 2 READ

statement, the prime record key is established as the key of
reference for this retrieval.

- 226 -

RM/COBOL_Language TRS-80 ° READ (Rel, & Ind, I-0)

If the dynamic access mode is specified, this key of
reference is also used for retrievals by any subsequent
executions of Format 1 READ statements for the file until a
different key of reference is established for the file.

For indexed files the execution of a Format 2 READ statement
causes the value of the key of reference to be compared with
the value contained in the corresponding data item of the
stored records in the file, until the first record having an
equal value is found. The current record pointer is
positioned to this record which is then made available. If
no record can be so identified, the INVALID KEY condition
exist and execution of the READ statement is unsuccessful.

The AT END Phrase

If, at the time of the execution of a Format 1 READ
statement, no next logical record exists in the file, the AT
END condition occurs, and the execution of the READ
statement is considered unsuccessful.

When the AT END condition is recognized, the following
actions are taken in the specified order:

A value is placed into the FILE STATUS data item, if
specified for this file, to indicate an AT END
condition.

If the AT END phrase is specified in the statement
causing the condition, control is transferred to the AT
END imperative-statement. Any USE procedure specified
for this file is not executed.

If the AT END phrase is not specified, then a USE
procedure must be specified, either explicitly or
implicitly, for this file, and that procedure is

executed.

When the AT END condition occurs, execution of the
input-output statement which caused the condition is
unsuccessful.

- 227 -

READ (Rel. & Ind. I-0) TRS-80® RM‘COBOL Language

When the AT END condition has been recognized, a Format 1
READ statement for that file must not be executed without
first executing one of the following:

A successful CLOSE statement followed by the execution
of a successful OPEN statement for that file.

A successful START statement for that file.

A successful Format 2 READ statement for that file.
For a file for which dynamic access mode is specified, a
Format 1 READ statement with the NEXT phrase specified

causes the next logical record to be retrieved from the
file.

- 228 -

RM/COBOL Language TRS-80 © —REWRITE (Sequential 1-0)

The REWRITE Statement (Sequential I-0)

The REWRITE statement logically replaces a record existing
in a mass storage file.

FORMAT

REWRITE record-name [FROM identifier]

Record-name and identifier must not refer to the same
storage area.

Record-name is the name of a logical record in the File
Section of the Data Division and may be qualified.

The file associated with record-name must be a mass storage
file and must be open in the I-0 mode at the time of
execution of this statement.

The last input-output statement executed for the associated
file prior to the execution of the REWRITE statement must
have been a successfully executed READ statement.

The number of character positions in the record referenced
by record-name must be equal to the number of character
positions in the record being replaced.

The logical record released by successful execution of the
REWRITE statement is no longer available in the record area.

The current record pointer is not affected by the execution
of a REWRITE statement.

The execution of the REWRITE statement causes the value of

the FILE STATUS data item, if any, associated with the file
to be updated.

The FROM Phrase

The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of:

MOVE identifier TO record-name

- 229 -

REWRITE (Sequential I-@) TRS-80 ° RM/COBOL Language

followed by the execution of the same REWRITE statement
without the FROM phrase. The contents of the record area
prior to the execution of the implicit MOVE statement have
no effect on the execution of the REWRITE statement.

- 238 -

RM/COBOL Language TRS-80® REWRITE (Rel. & Ind. I-§)

The REWRITE Statement (Relative and Indexed I-0)

The REWRITE statement logically replaces a record existing
in a mass storage file.

FORMAT
REWRITE record-name [FROM identifier]

[;INVALID KEY imperative-statement]

Record-name and identifier must not refer to the same
storage area.

Record-name is the name of a logical record in the File
Section of the Data Division and may be qualified.

For relative files the INVALID KEY phrase must not be
specified for a REWRITE statement which references a file in
sequential access mode.

The INVALID KEY phrase must be specified in the REWRITE
statement for files in the random or dynamic access mode for
which an appropriate USE procedure is not specified.

For indexed files the INVALID KEY phrase must be specified
in the REWRITE statement for files for which an appropriate
USE procedure is not specified.

The file associated with record-name must be open in the I-O
mode at the time of execution of this statement.

For files in the sequential access mode, the last
input-output statement executed for the associated file
prior to the execution of the REWRITE statement must have
been a successfully executed READ statement without the WITH
NO LOCK phrase.

The number of character positions in the record referenced
by record-name must be equal to the number of character
positions in the record being replaced.

The logical record released by a successful execution of the
REWRITE statement is no longer available in the record area.

- 231 -

REWRITE (Rel. & Ind. I-g)TRS-BO ® RH(COBOL Language

The current record pointer is not affected by the execution
of a REWRITE statement.

The execution of the REWRITE statement causes the value of
the FILE STATUS data item, if any, associated with the file
to be updated.

The INVALID KEY Phrase

For a relative file accessed in either random or dynamic
access mode, the System logically replaces the record
specified by the contents of the key data item associated
with the file. 1If the file does not contain the record
specified by the key, the INVALID KEY condition exists.

For indexed files the INVALID KEY condition exists when:

The access mode is sequential and the value contained
in the prime record key data item of the record to be
replaced is not equal to the value of the prime record
read from the field, or

The value contained in the prime record key item does
not equal that of any record stored in the file.

When the INVALID KEY condition exists the updating operation
does not take place and the data in the record area is
unaffected.

The FROM Phrase

The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement
without the FROM phrase. The contents of the record area
prior to the execution of the implicit MOVE statement have
no effect on the execution of the REWRITE statement.

- 232 -

RM/COBOL Language TRS-80 ° SET

The SET Statement

The SET statement establishes references points for table
h handling operations by setting index-names associated with
< table elements.

FORMAT 1
SET {identifier-1} (,identifier-2] ...} TO {identifier-3}
{index-name-3¥
{index-name-1} [,index-name-2] {integer-1 }
FORMAT 2
SET index-name—4 [,index-name-5] ... {UP BY } {identifier-4}
{DOWN BY} {integer-2 }

All references to index-name-1, identifier-1 and
index-name-4 apply equally to index-name-2, identifier-2,
and index-name-5, respectively.

Identifier-l and identifier-3 must name either index data
items, or elementary items described as an integer.

Identifier-4 must be declared as an elementary numeric
integer.

Integer-1 and integer-2 may be signed. Integer-1 must be
positive.

Index-names are considered related to a given table and are
defined by being specified in the INDEXED BY clause.

If index-name-3 is specified, the value of the index before
the execution of the SET statement must correspond to an
occurrence number of an element in the associated table.

If index-name-4, index-name-5 is specified, the value of the
index both before and after the execution of the SET
statement must correspond to an occurrence number of an
element in the associated table. If index-name-1,
index-name-2 is specified, the value of the index after the
execution of the SET statement must correspond to an

- 233 -

SET TRS-80 ® RM(COBOL Language

occurrence number of an element in the associated table.
The value of the index associated with an index-name after
the execution of a PERFORM statement may be undefined.

In Format 1, the following action occurs:

Index-name-1l is set to a value causing it to refer to
the table element that corresponds in occurrence number
to the table element referenced by index-name-3,
identifier-3, or integer-1. If identifier-3 is an
index data item, or if index-name-3 is related to the
same table as index-name-l, no conversion takes place.

If identifier-1 is not an index data item, it may be
set only to an occurrence number that corresponds to
the value of index-name-3. Neither identifier-3 nor
integer-1 can be used in this case.

The process is repeated for index-name-2, identifier-2,

etc., if specified. Each time the value of index-name-3 or

identifier-3 is used as it was at the beginning of the
execution of the statement. Any subscripting or indexing

associated with identifier-1, etc., is evaluated immediately

before the value of the respective data item is changed.

In Format 2, the contents of index-name-4 are incremented

(UP BY) or decremented (DOWN BY) by a value that corresponds ,
to the number of occurrences represented by the value of {
integer-2 or identifier-4; thereafter, the process is
repeated for index-name-5, etc. Each time the value of
identifier-4 is used as it was at the beginning of the
execution of the statement.

Data in the following chart represents the validity of
various operand combinations in the SET statement.

Receiving Item
Sending Item Integer Data Index Index Data
Item Name Item
Integer Literal No valid No
Integer Data Item No valid No
Index-Name valid valid valid*
Index Data Item No | valid* | wvalid*

* No conversion takes place

- 234 -

RM/COBOL _Language TRS-80 ° START

The START Statement (Relative and Indexed I-0)

The START statement provides a basis for logical positioning
within a file, for subsequent sequential retrieval of

records.
FORMAT
START file-name [KEY {IS EQUAL TO } data-name]

{Is = }
{IS GREATER THAN }
{18 > }
{IS NOT LESS THAN }
{IS NOT< }

[;INVALID KEY imperative-statement]

Note: The required relational characters '>', '<' and
'=' are not underlined to avoid confusion with other
symbols.

File-name must be the name of a file with sequential or
dynamic access.

Data-name may be qualified.

The INVALID KEY phrase must be specified if no applicable
USE procedure is specified for file-name.

If file-name is the name of a relative file then data-name,
if specified, must be the data item specified in the
RELATIVE KEY phrase of the associated file control entry.

If file-name is the name of an indexed file then data-name,
if specified, may reference the data items specified as the
record keys associated with file-name or it may reference
any data item of category alphanumeric whose leftmost
character position corresponds to the leftmost character
position of a record key data item.

File-name must be open in the INPUT or I-O mode at the time
that the START statement is executed.

If the KEY phrase is not specified the relational operator
'IS EQUAL TO' is implied.

- 235 -

START TRS-80 ® ——RM/COROL Language

The type of comparison specified by the relational operator
in the KEY phrase occurs between a key associated with a
record in the file referenced by file-name and a data item.

If file-name references a relative file, the data item
used in the comparison is the relative key associated
with file-name.

If file-name references an indexed file, the data item
used in the comparison is either the prime record key
associated with file-name or, if the KEY phrase is

specified, the data item referenced in the KEY phrase.

If the operands of the comparison are of unequal size,
comparison proceeds as though the longer one were
truncated on the right such that its length is equal to
that of the shorter. All other nonnumeric comparison
rules apply except that the presence of the PROGRAM
COLLATING SEQUENCE clause will have no effect on the
comparison.

The current record pointer is positioned to the first
logical record currently existing in the file whose key
satisfies the comparison.

If the comparison is not satisfied by any record in the
file, an INVALID KEY condition exists, the execution of
the START statement is unsuccessful, and the position
of the current record pointer is undefined.

the execution of the START statement causes the value of the
FILE STATUS data item, if any, associated with file-name to
be updated.

- 236 -

RM/COBOL Langua ®
/ guage TRS_BO @ STOP

The STOP Statement

The STOP statement causes a permanent or temporary
suspension of the execution of the object program.

FORMAT
STOP {(RUN [,identifier-1}]
literal-1l
{literal-2 }

The value of identifier-1 or literal-l in the RUN phrase
specifies a numeric value to be returned to the operating
system upon execution of the STOP RUN statement. 1If
identifier-1 or literal 1 is not specified in the RUN
phrase, a value of § is assumed.

Literal-2 may be numeric or nonnumeric or may be any
figurative constant.

If a STOP RUN statement appears in a consecutive sequence of
imperative statements within a sentence, it must appear as
the last statement in that sequence.

If the RUN phrase is used, then a STOP RUN message is logged
and the execution is terminated with the specified return
code.

If STOP literal is specified, the literal is logged in a
STOP "literal-value" message and the execution is suspended.

STOP Examples

STOP RUN.
STOP RUN 1.
STOP "END OF PROCEDURE".

- 237 -

SUBTRACT TRS-80 ° RM/COBOL Language

The SUBTRACT Statement

The SUBTRACT statement is used to subtract one, or the sum
of two or more, numeric data items from a numeric data item (b
and store the result. i)

FORMAT 1

SUBTRACT {identifier-1} [,identifier-2] ...
{literal-l } [,literal-2]

FROM identifier-m [ROUNDED]
[;ON SIZE ERROR imperative-statement])
FORMAT 2

SUBTRACT {identifier-1} [,identifier-2] ...
{literal-1l } [,literal-2]

FROM {identifier-m} GIVING identifier-n [ROUNDED]
{literal-m }

[;ON SIZE ERROR imperative-statement]

FORMAT 3

SUBTRACT {CORRESPONDING} identifier-1
{CORR }

FROM identifier-m [ROUNDED]
[;ON SIZE ERROR imperative-statement]

In Format 1, all literals or identifiers preceding the word
FROM are added together and this total is subtracted from
the current value of identifier-m storing the result
immediately into identifier-m.

In Format 2, all literals or identifiers preceding the word
FROM are added together, the sum is subtracted from
literal-m or identifier-m and the result of the subtraction
is stored as the new value of identifier-n.

- 238 -

RM/COBOL Language TRS-80 © SUBTRACT

CORR is an abbreviation for CORRESPONDING.

SUBTRACT EXAMPLES

SUBTRACT TAXES FROM INCOME.
SUBTRACT 1 FROM TALLY GIVING TALLY-1.
SUBTRACT 2.68, INTEREST, PENALTY

FROM PRINCIPAL ROUNDED
ON SIZE ERROR GO TO ERROR-HANDLER.

- 241 -

The UNLOCK Statement

The UNLOCK statement makes available to other programs the
most recently accessed record in a file that was read and
locked.

FORMAT
UNLOCK file~-name RECORD.

Note: The UNLOCK statement is nonstandard, but provides for
compatibility with existing programs written for
environments that allow multiple programs to
concurrently update a data file. For systems that do
not provide this capability, the UNLOCK statement will
not affect execution except as described below.

The file associated with the file-name must be open in the
I-0 mode.

If no record in the file is locked, execution of an UNLOCK
statement causes no action to be taken. If a record in the
file is locked (unavailable to other programs), the last
record to be locked is then made available to any other
program upon execution of the UNLOCK statement.

The current record pointer is not affected by the execution
of the UNLOCK statement. The FILE STATUS data item
associated with the file, if one exists, is updated.

The UNLOCK statement may not be used to unlock records
locked by other programs.

Note: Records that are read and locked are automatically
unlocked by any subsequent operation on that file from
the same program.

- 242 -

RM/COBOL Language TRS-80 ° WRITE (Sequential I-0)

The WRITE Statement (Sequential I-O

The WRITE statement releases a logical record for an output
file. It can also be used for vertical positioning of lines
within a logical page.

FORMAT
WRITE record-name [FROM identifier-1]
[{BEFORE} ADVANCING {{identifier-2} [LINE]}]

{AFTER } {{integer } [LINES]}
{ PAGE }

Record-name and identifier-l must not reference the same
storage area.

The record-name is the name of a logical record in the File
Section of the Data Division and may be qualified.

When identifier-2 is used in the ADVANCING phrase, it must
be the name of an elementary integer data item.

Integer or the value of the data item referenced by
identifier-2 may be zero.

The associated file must be open in the OQUTPUT or EXTEND
mode at the time of the execution of this statement.

The logical record released by the execution of the WRITE
statement is no longer available in the record area.

Upon completion of a WRITE statement, the information in the
area referenced by identifier-l is available even though the
information in the area referenced by record-name may not be
available.

The current record pointer is unaffected by the execution of
a WRITE statement.

The execution of the WRITE statement causes the value of the
FILE STATUS data item, if any, associated with the file to
be updated.

- 243 -

WRITE (Sequential I-0) TRS-80 ° RM/COBOL Language

The maximum record size for a file is established at the
time the file is created and must not subsequently be
changed.

The number of character positions on a mass storage device
required to store a logical record in a file may or may not
be equal to the number of character positions defined by the
logical description of that record in the program.

The execution of the WRITE statement releases a logical
record to the operating system. The contents of the record
area are not changed.

When an attempt is made to write beyond the externally
defined boundaries of a sequential file, an exception
condition exists. The following action takes place:

The value of the FILE STATUS data item, if any, of the
associated file is set to a value indicating a boundary
violation.

If a USE AFTER STANDARD EXCEPTION declarative is
explicitly or implicitly specified for the file, that
declarative procedure will then be executed.

If a USE AFTER STANDARD EXCEPTION declarative is not
explicitly or implicitly specified for the file, the
result is undefined.

The FROM Phrase

The results of the execution of the WRITE statement with the
FROM phrase is equivalent to the execution of the statement

MOVE identifier-1 TO record-name

according to the rules specified for the MOVE statement,
followed by the same WRITE statement without the FROM
phrase.

The contents of the record area prior to the execution of
the implicit MOVE statement have no effect on the execution
of this WRITE statement.

- 244 -

RM/COBOL Langquage TRS-80 ® SUBTRACT

If Format 3 is used, data items in identifier-1 are
subtracted from and stored into corresponding data items in
identifier-2.

Each identifier must refer to a numeric elementary item
except that:

In Format 2, the identifier following the word GIVING
must refer to either an elementary numeric item or an
elementary numeric edited item.

In Format 3, the identifiers must refer to group items.

Each literal must be a numeric literal.

The ROUNDED Phrase

The SUBTRACT statement may optionally include the ROUNDED
phrase.

If, after decimal point alignment, the number of places in
the fraction of the result of an arithmetic operation is
greater than the number of places provided for the fraction
of the resultant-identifier, truncation is relative to the
size provided for the resultant-identifier. When rounding
is requested, the absolute value of the resultant-identifier
is increased by one (1) whenever the most significant digit
of the excess is greater than or equal to five (5).

When the low-order integer positions in a
resultant-identifier are represented by the character 'P' in
the picture for that resultant-identifier, rounding or
truncation occurs relative to the rightmost integer position
for which storage is allocated.

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute
value of the result exceeds the largest value that can be
contained in the associated resultant-identifier, a size
error condition exists. If the ROUNDED phrase is specified,
rounding takes place before checking for size error.

If the resultant-identifier has COMPUTATIONAL-3 usage, size

- 239 -

SUBTRACT TRS-80 ° ——BM/COBOL Language ___

error is detected only for data items declared with an odd
length picture clause. Therefore, all COMP-3 data items
should be declared with an odd number of character
positions.

If the SIZE ERROR phrase is not specified and a size error
condition exists, the value of the resultant-identifier is
undefined.

If the SIZE ERROR phrase is specified and a size error
condition exists, the value of the resultant-identifier(s)
affected by the size error is not altered.

If the CORRESPONDING phrase is specified, and any of the
individual subtractions produce a size error condition, the
imperative-statement is not executed until all of the
individual subtractions are completed.

The CORRESPONDING Phrase

If the CORRESPONDING phrase is used, selected items within
identifier-1 are SUBTRACTed from, and the result stored in,
the corresponding items in identifier-2. Data items
referenced by the CORRESPONDING phrase must adhere to the
following rules:

A data item in identifier-1 and a data item in
identifier-2 must not be designated by the key word
FILLER and must not have the same data-name and the
same qualifiers up to, but not including, identifier-1
and identifier-2.

Both of the data items must be elementary numeric data
items.

The description of identifier-1 and identifier-2 must
not contain level-numbers 66, 77, or 88 or the USAGE IS
INDEX clause.

A data item that is subordinate to identifier-1 or
identifier-2 and contains a REDEFINES, RENAMES, OCCURS
or USAGE IS INDEX clause is ignored, as well as those
data items subordinate to the data item that contains
the REDEFINES, OCCURS, or USAGE IS INDEX clause.
However, identifier-1 and identifier-2 may have
REDEFINES or OCCURS clauses or be subordinate to data
items with REDEFINES or OCCURS clauses.

- 2490 -

RM/COBOL Language TRS-80 ° WRITE (Sequential I-0)

The ADVANCING Phrase

The ADVANCING phrase allows control of the vertical
positioning of each line on a representation of a printed
page. If the ADVANCING phrase is not used, automatic
advancing will be provided by the compiler to act as if the
user had specified AFTER ADVANCING 1 LINE. If the ADVANCING
phrase is used, advancing is provided as follows:

If identifier-2 is specified, the representation of the
printed page is advanced the number of lines equal to
the current value associated with identifier-2.

If integer is specified, the representation of the
printed page is advanced the number of lines equal to
the value of integer.

If the BEFORE phrase is used, the line is presented
before the representation of the printed page is
advanced.

If the AFTER phrase is used, the line is presented
after the representation of the printed page is
advanced.

If PAGE is specified, the record is presented on the

logical page before or after (depending on the phrase
used)

the device is repositioned to the next logical page.

The ADVANCING phrase is valid only if the device-type
assigned to the file is PRINT.

- 245 -

WRITE (Rel. & Ind. I1-0) rmas.g0 ° RM/COBOL_Language

THE WRITE STATEMENT (Relative and Indexed I-§)

The WRITE statement releases a logical record for an output
or input-output file.

FORMAT
WRITE record-name [FROM identifier]
[; INVALID KEY imperative-statement]
Record-name and identifier must not reference the same
storage area.

The record-name is the name of a logical record in the File
Section of the Data Division and may be qualified.

The INVALID KEY phrase must be specified if an applicable
USE procedure is not specified for the associated file.

The associated file must be open in the OUTPUT or I-O mode
at the time of the execution of this statement.

The logical record released by the execution of the WRITE
statement is no longer available in the record area.

The current record pointer is unaffected by the execution of
a WRITE statement.

The execution of the WRITE statement causes the value of the
FILE STATUS data item, if any, associated with the file to
be updated.

The maximum record size for a file is established at the
time the file is created and must not subsequently be
changed.

The number of character positions on a mass storage device
required to store a logical record in a file may or may not
be equal to the number of character positions defined by the
logical description of that record in the program.

The execution of the WRITE statement releases a logical
record to the operating system.

When a relative file is opened in the output mode, records
may be placed into the file by one of the following:

- 246 -

RM‘ COBOL Language TRS'BD ® HBITE ngl; & lﬂg. l-gz

If the access mode is sequential, the WRITE statement
will cause a record to be released to the System. The
first record will have a relative record number of one
(1) and subsequent records released will have relative
record numbers of 2, 3, 4, If the RELATIVE KEY
data item has been specified in the file control entry
for the associated file, the relative record number of
the record just released will be placed into the
RELATIVE KEY data item by the System during execution
of the WRITE statement.

If the access mode is random or dynamic, prior to the
execution of the WRITE statement the value of the
RELATIVE KEY data item must be initialized in the
program with the relative record number to be
associated with the record in the record area. That
record is then released to the System by execution of
the WRITE statement.

When a relative file is opened in the I-O0 mode and the
access mode is random or dynamic, records are to be inserted
in the associated file. The value of the RELATIVE KEY data
item must be initialized by the program with the relative
record number to be associated with the record in the record
area. Execution of a WRITE statement then causes the
contents of the record area to be released to the System.

For an indexed file, the data item specified as the prime
record key must be set by the program to the desired value
prior to the execution of the WRITE statement. Records may
be placed into the file by one of the following:

If the access mode is sequential, records must be
released to the System in ascending order of prime
record key values.

If the access mode is random or dynamic, records may be
released to the System in any program-specified order.

The FROM Phrase

The results of the execution of the WRITE statement with the
FROM phrase is equivalent to the execution of the statement:

- 247 -

WRITE (Rel. & Ind. I-0) TRS-80 ° RM/COBOL_Language

MOVE identifier-1 TO record-name

according to the rules specified for the MOVE statement,
followed by the same WRITE statement without the FROM
phrase.

The contents of the record area prior to the execution of
the implicit MOVE statement have no effect on the execution
of this WRITE statement.

The INVALID KEY Phrase

The INVALID KEY condition exists under the following
circumstances:

When the access mode is sequential for an indexed file
opened in the output mode, and the value of the prime
record key is not greater than the value of the prime
record key of the previous record, or

When an indexed file is opened in the output or I-0

mode, and the value of the prime record key is equal to
the value of a prime record key of a record already Ve
existing in the file, or i

When a relative file has random or dynamic access mode
and the RELATIVE KEY data item specifies a record which
already exists in the file, or

When an attempt is made to write beyond the externally
defined boundaries of the file.

When the INVALID KEY condition is recognized the execution
of the WRITE statement is unsuccessful, the contents of the
record area are unaffected and the FILE STATUS data item, if
any, associated with file-name of the associated file is set
to a value indicating the cause of the condition.

- 248 -

RM/COBOL Language TRS-80 ° APPENDIX A

APPENDIX A

ERROR MESSAGES

- 249 -

(N

RM/COBOL Language APPENDIX A

TRS-80 °

ERROR MESSAGES (Compile Time)

The text of the source program is checked for syntax and
semantic errors as it is scanned. Errors may cause
interruption in scanning. In this case, text is ignored
until a recovery point is found and a resume message is
printed. Recovery points are chosen to minimize the amount
of unanalyzed text without producing irrelevant error
messages. In any case the constructs at fault are
undermarked and error messages listed when the source line
is printed. The error message includes either E's or W's
indicating error or warning. For example:

gg4938 @2 STOCK PIC 9(16) PPP COMPUTATIONAL.

***%%x]1)PICTURE *E*E*E*E*E*E*E*%*E*E*E*E*E*E*E*E*E*E*E
indicates a semantic number size error but

ggs@4ag @2 PART PIC X(4BX(5) SYNC.

k%%%])SYNTAX *E*E*XE*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E
**kx* 2)SCAN RESUME FWAWAWAWAWAWAWAWAWAWAWAW AW AW AW AW W

indicates a syntax error at the first undermark and a
recovery to the second undermark.

The number preceding the error message is the undermark
number, counting from left to right. More than one message
may refer to the same undermark.

Global errors such as undefined paragraph names and illegal
control transfers are listed with the program summary at the
end of the source listing.

Compilation always proceeds to the end of the program,
regardless of the number of errors found. Object code is
produced such that an attempt to execute an erroneous
statement will terminate execution with an appropriate error
message.

- 251 -

e———ARPENDIX A _______ TRS-80 ® ——BM/COBOL Langnage

COMPILER ERROR MESSAGES

ACCESS CLASH Q
Nonsequential access given for sequential file. &

BLANK WHEN ZERO
BLANK WHEN ZERO clause given for nonnumeric or group
item.

CLASS
The referenced identifier is not valid in a class
condition.

COPY
COPY statement failed because of permanent error
associated with the undermarked file-name.
CORRESPONDING

The CORRESPONDING phrase cannot be used with the
referenced identifier.

DATA OVERFLOW
The data area (working-storage and literals) is larger
than 65535 bytes in length.

DATA TYPE
Context does not allow data type of the referenced
identifier.

DEVICE CLASH
Random characteristics given to nonrandom device.

DEVICE TYPE
OPEN or CLOSE mode inconsistent with device type.

DOUBLE DECLARATION
Multiple declaration of a file or identifier attribute.

DOUBLE DEFINITION
Multiple definition of an identifier.

DUPLICATE
Warning only. Multiple USE procedure declared for same
function or file.

- 252 -

RM/COBOL Language

TRS-80 ® APPENDIX A

FILE DECL ERROR
The referenced file-name is SELECTed and has an invalid
or missing file description (FD).

FILE NAME ERROR
The referenced file-name has an invalid external file
name declaration.

FILE NAME REQUIRED
File name not given as reference in 1/0 verb.

FILE RECORD KEY ERROR
The referenced file-name has a RECORD KEY which is
incorrectly qualified or is not defined as a data item
of the category alphanumeric within a record
description entry associated with that file name.

FILE RECORD SIZE ERROR
The referenced file-name has a declared record size
which conflicts with the actual data record
descriptions or is a relative organization file with
variable length records.

FILE RELATIVE KEY ERROR
The referenced file-name has a RELATIVE KEY which is
incorrectly qualified, is defined in a record
description associated with that file-name, or is not
defined as an unsigned integer.

FILE STATUS ERROR
The referenced file-name has a status item which is
incorrectly qualified, is not defined in the
WORKING-STORAGE SECTION, or is not a two character
alphanumeric item.

FILE TYPE
Access or organization of file conflicts with
undermarked statement.

FILLER LEVEL
A nonelementary FILLER item is declared.

GROUP CLASH
USAGE or VALUE clause of group member conflicts with
same clause for group.

- 253 -

APPENDIX A TRS-80 ® RM/COBOL_Language

GROUP VALUE CLASH
Warning only. An item subordinate to a group with the

VALUE IS clause is described with the SYNCHRONIZED, {)
JUSTIFIED, or USAGE (other than USAGE IS DISPLAY) i
clause.

IDENTIFIER

Identifier reference is incorrectly constructed or the
identifier has an invalid or double definition.

ILLEGAL ALTER
An ALTER statement references an unalterable paragraph
or violates the rules of segmentation.

ILLEGAL PERFORM
A PERFORM statement references undefined or incorrectly
qualified paragraph or the reference violates the rules

of segmentation.

INVALID ID
The referenced identifier was not successfully defined.

INVALID PARAGRAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in conflict with other attributes.

KEY REQUIRED
Relative key not declared for random access relative
file or record key not declared for indexed file.

LABEL
Presence or absence of label record conflicts with
device standards.

LEVEL
Level-number given is invalid either- intrinsically or
because of position within a group.

LINKAGE
An identifier in the USING clause of the PROCEDURE
title is not a linkage item or a statement references a
linkage item not subordinate to an identifier in the
USING clause of the PROCEDURE title.

LITERAL VALUE
Literal value given is incorrect in context.

- 254 -

RM/COBOL Language TRS-80 ° APPENDIX A

MOVE
Operands of MOVE verb specify an invalid move.

MUST BE INTEGER
Context requires decimal integer.

MUST BE PROCEDURE
Context requires procedure name either as reference of
definition, or the reference must be a nondeclarative
procedure-name.

MUST BE SECTION
Context requires procedure-name to be section.

NESTING
Illegal nesting of condition that is not an IF
condition.

NOT IN REDEFINE
VALUE 1S clause given in REDEFINES item.

OCCURS
Occurs clause given at invalid level or after three
have been given for the same item.

OCCURS DEPENDING ERROR
The referenced object of a DEPENDING phrase has not
been defined correctly.

OCCURS-VALUE CLASH
VALUE IS and OCCURS in effect for the same item.

PICTURE
Invalid picture syntax.

PICTURE-BWZ CLASH
Zero suppression and BLANK WHEN ZERO cannot be in
effect for the same item.

PICTURE-USAGE CLASH
USAGE clause of implied usage conflicts with usage
implied by picture.

PROCEDURE INDEPENDENCE
PERFORM given for procedures in independent segments
not in the current segment.

- 255 -

N
APPENDIX A TRS-80 ° RM/COBOL Language

PRCGRAM OVERFLOW
The instruction area is larger than 32767 bytes in

length. (.ﬁ

RECORD KEY
Record key declared for other than an indexed
organization file or a START statement KEY phrase
references a data item not aligned on the declared
key's leftmost byte.

RECORD REQUIRED
Context requires record name.

REDEFINES
REDEFINES given within an OCCURS or not redefining the
last allocated item.

REDEFINES ERROR
The referenced data-name redefines an item which does
not have the same number of character positions and is
not level #1.

REFERENCE INVALID
Reference given is not valid in context.

RELATION
Operands of relation test are incompatible.

RELATIVE KEY
Relative key declared for other than a relative
organization file or a START statement KEY phrase
references a data item other than the declared key.

RESERVED WORD CONFLICT
A COBOL reserved word or symbol is given where a user
word is required. 1In the summary this is only a
warning about an ANSI COBOL reserved word that is not
an implemented COBOL reserved word.

SCAN RESUME
Warning only. Scanning was terminated at previous
error message and resumes at undermarked character.

SECTION CLASH

A VALUE IS clause appears in the FILE or LINKAGE
section. !

- 256 -

RM/COBOL Language APPENDIX A

TRS-80°

SEGMENT
Warning only. Segment number given in an independent
segment is not the same as the current segment or the
number of a new independent segment.

SEPARATOR
Warning only. Redundant punctuation or a separator is
not followed by the required space.

SIGN
SIGN clause given in conflict with usage and picture.
SIZE
Warning only. Size of data referenced not correct for
context.
SIZE ERROR
Declared size of record conflicts with present
reference.
SUBSCRIPT
Incorrect number of subscripts or indices for a
reference.
SYNC
Synchronized clause given for a group item.
SYNTAX
Incorrect character or reserved word given for context.
UNDEFINED

File referenced in FD entry was not defined.

UNDEFINED DECLARATIVE PROCEDURE
A declarative statement references a procedure not
defined within the DECLARATIVES.

UNDEFINED PROCEDURE

A GO TO statement references an undefined or
incorrectly qualified paragraph.

- 257 -

APPENDIX A TRS-80 ° RM/COBOL Language

USE REQUIRED
A DECLARATIVES section must begin with a USE statement.

USING COUNT
Warning only. The item count is the USING list of a
CALL statement is different from that of the first
reference to the same program name.

VALUE ERROR
Value given in VALUE IS required truncation of nonzero

digits.

VALUE
VALUE IS clause given in conflict with other declared

attributes.

VARIABLE RECORD
Warning only. The INTO phrase is not allowed with

variable size records.

- 258 -

RM/COBOL Language TRS-80 ° APPENDIX B

APPENDIX B

RESERVED WORDS

- 259 -

RM/COBOL Language APPENDIX B

TRS-80°

RESERVED WORD LIST

The following is a list of RM/COBOL reserved words where:

* denotes reserved words not reserved in ANSI standard

COBOL

+ denotes ANSI COBOL reserved words not reserved by the
compiler. Their appearance will generate a warning at the
end of the compilation listing.

** denotes system-name.

ACCEPT
ACCESS
ADD
ADVANCING
AFTER

ALL

*BEEP
BEFORE
BLANK

CALL
+CANCEL
+CD
+CF
+CH
CHARACTER
CHARACTERS
+CLOCK-UNITS
CLOSE
+COBOL
+CODE

DATA

DATE
+DATE-COMPILED

DATE-WRITTEN

DAY
+DE
+DEBUG-CONTENTS
+DEBUG-ITEM
+DEBUG-LINE
+DEBUG~-NAME

ALPHABETIC
+ALSO

ALTER

ALTERNATE

AND

ARE

*BLINK
BLOCK
+BOTTOM

+CODE-SET
COLLATING
+COLUMN
COMMA
+COMMUNICATION
CcoMP
*COMP-1
*COMP-3
COMPUTATIONAL
*COMPUTATIONAL-1
*COMPUTATIONAL-3

+DEBUG-SUB-1
+DEBUG-SUB-2
+DEBUG-SUB-3
+DEBUGGING
DECIMAL-POINT
DECLARATIVES
DELETE
+DELIMITED
+DELIMITER
DEPENDING

- 261 -

AREA
+AREAS
+ASCENDING

ASSIGN

AT

AUTHOR

BY

COMPUTE

CONFIGURATION

CONTAINS
+CONTROL
+CONTROLS
*CONVERT

COPY

CORR

CORRESPONDING
+COUNT

CURRENCY

+DESCENDING
+DESTINATION
+DETAIL
+DISABLE
DISPLAY
DIVIDE
DIVISION
DOWN
DULICATES
DYNAMIC

APPENDIX B

*ECHO
+EGI
ELSE
+EMI
+ENABLE
END

FD
FILE
FILE-CONTROL

+GENERATE
GIVING

+HEADING
*HIGH

I-0
I-0-CONTROL
IDENTIFICATION

KEY

LABEL
+LAST
LEADING
LEFT
+LENGTH
LESS

MEMORY
+MERGE
+MESSAGE

NATIVE
+NEGATIVE
NEXT

TRS-80°

RM/COBOL Language

+END-OF -PAGE
+ENTER
ENVIRONMENT
+EOP

EQUAL
*ERASE

FILLER
+FINAL
FIRST

GO
GREATER

HIGH-VALUE
HIGH-VALUES

INDEXED
+INDICATE
INITIAL
+INITIATE
INPUT
INPUT-OUTPUT

JUSTIFIED

+LIMIT

+LIMITS

+LINAGE

+LINAGE-COUNTER
LINE

+LINE-COUNTER

MODE
MODULES
MOVE

NO

NOT
+NUMBER

- 262 -

ERROR
+ESI
+EVERY

EXCEPTION

EXIT

EXTEND

+FOOTING
FOR
FROM

+GROUP

INSPECT
INSTALLATION
INTO

INVALID

IS

LINES
LINKAGE
LOCK

LOW
LOW-VALUE
LOW-VALUES

+MULTIPLE
MULTIPLY

NUMERIC

RM/COBOL Language

OBJECT-COMPUTER

PAGE
+PAGE-COUNTER
PERFORM
+PF
+PH
PIC
PICTURE

+QUEUE

RANDOM
+RD
READ
+RECEIVE
RECORD
RECORDS
REDEFINES
REEL
+REFERENCES
RELATIVE
+RELEASE

SAME
+8SD
+SEARCH
SECTION
SECURITY
+SEGMENT
+SEGMENT-LIMIT
SELECT
+SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET
SIGN

TRS-80 ® APPENDIX B

OMITTED OR

ON ORGANIZATION
OPEN OUTPUT
+OPTIONAL +OVERFLOW
+PLUS +PROCEDURES
+POINTER PROCEED
POSITION PROGRAM
+POSITIVE PROGRAM~ID
*PRINT *PROMPT
+PRINTING

PROCEDURE

QUOTE QUOTES
+REMAINDER *REVERSE
+REMOVAL +REVERSED
RENAMES REWIND
REPLACING REWRITE
+REPORT +RF
+REPORTING +RH
+REPORTS RIGHT
+RERUN ROUNDED
+RESERVE RUN
+RESET

+RETURN

SIZE +SUB-QUEUE-2
+SORT +SUB-QUEUE-3
+SORT-MERGE SUBTRACT
+SOURCE +SUM
SOURCE-COMPUTER +SUPPRESS
SPACE **SWITCH-1
SPACES **SWITCH-2
SPECIAL-NAMES '
STANDARD '
STANDARD-1 '

START **SWITCH-8
STATUS +SYMBOLIC
STOP SYNC
+STRING SYNCHRONIZED

+SUB-QUEUE-1

- 263 -

APPENDIX B

*TAB
+TABLE
TALLYING
+TAPE
+TERMINAL
+TERMINATE

UNIT
*UNLOCK
+UNSTRING

VALUE

WHEN
WITH

ZERO

na+

RM/COBOL Language

TRS-80°

+TEXT
THAN
THROUGH
THRU
TIME
TIMES

UNTIL
up
+UPON

VALUES

WORDS
WORKING-STORAGE

ZEROES

- 264 -

TO
+TOP
TRAILING
+TYPE

USAGE
USE
USING

VARYING

WRITE

ZEROS

*
*
R

e,
-

RM/COBOL Language T™TRAS-80 ° APPENDIX C

APPENDIX C

GLOSSARY

- 265 -

RM/COBOL Language TRS-80 ° APPENDIX C

GLOSSARY

The terms in this appendix are defined in accordance with
their meaning as used in this document describing COBOL and
may not have the same meaning for other languages.

These definitions are also intended to be either reference
material or introductory material to be reviewed prior to
reading the detailed language specifications. For this
reason, these definitions are, in most instances, brief and
do not include detailed syntactical rules.

Access Mode:
The manner in which records are to be operated upon within a
file.

Actual Decimal Point:

The physical representation, using either of the decimal
point characters period (.) or comma (,), of the decimal
point position in a data item.

Alphabet-Name:

A user-defined word, in the SPECIAL-NAMES paragraph of the
Environment Division, that assigns a name to a specific
character set and/or collating sequence.

Alphabetic Character:

A character that belongs to the following set of letters: a,
B, C, D, E, F' G: H, II JI Kr LI MI Nr OI PI QI Rr Sl TI U'
vV, W, X, Y, Z, and the space.

Alphanumeric Character:
Any character in the computer's character set.

Alternate Record Key:
A key, other than the prime record key, whose contents
identify a record within an indexed file.

- 267 -

APPENDIX C TRS-80 ® RM/COBOL Language

Arithmetic Expression:

An arithmetic expression can be an identifier or a numeric
elementary item, a numeric literal, such identifiers and
literals separated by arithmetic operators, two arithmetic
expressions separated by an arithmetic operator, or an
arithmetic expression enclosed in parentheses.

Arithmetic Operator:
A single character that belongs to the following set:

Character Meaning
+ addition
- subtraction
* multiplication
/ division

Ascending Key:

A key upon the values of which data is ordered starting with
the lowest value of key up to the highest value of key in
accordance with the rules for comparing data items.

Assumed Decimal Point:

A decimal point position which does not involve the
existence of an actual character in a data item. The
assumed decimal point has logical meaning but no physical
representation.

At End Condition:
A condition caused during the execution of a READ statement
for a sequentially accessed file.

Block:

A physical unit of data that is normally composed of one or
more logical records. For mass storage files, a block may
contain a portion of a logical record. The size of a block
has no direct relationship to the size of the file within
which the block is contained or to the size of the logical
record(s) that are either continued within the block or that
overlap the block. The term is synonymous with physical
record.

- 268 -

RM/COBOL Language TRS-80 ° APPENDIX C

Called Program:

A program which is the object of a CALL statement combined
at object time with the calling program to produce a run
unit.

Calling Program:
A program which executes a CALL in another program.

Character:
The basic indivisible unit of the language.

Character Position:

A character position is the amount of physical storage
required to store a single standard data format character
described as USAGE is DISPLAY (one byte).

Character-String:
A sequence of contiguous characters which form a COBOL word,
a literal, a PICTURE character-string, or a comment-entry.

Class Condition:

The proposition, for which a truth value can be determined,
that the content of an item is wholly alphabetic or is
wholly numeric.

Clause:

A clause is an ordered set of consecutive COBOL
character-strings whose purpose is to specify an attribute
of an entry.

COBOL Character Set:
The complete COBOL character set consists of the 51
characters listed below.

Character Meaning
glll"'lg digit
A,B,...,2 letter
space (blank)
+ plus sign

- minus sign (hyphen)

- 269 -

APPENDIX C TRS-80 ® RM(COBOL Lanquage

asterisk
stroke (virgule, slash)
equal sign

currency sign : b
comma (decimal point) i

semicolon

period

quotation mark

left parenthesis
right parenthesis
greater than symbol
less than symbol

e se s W N ¥

AV~~~

COBOL WORD. (See Word)

Collating Sequence:
The sequence in which the characters that are acceptable in
a computer are ordered for purposes of comparing.

Column:

A character position within a print line. The columns are
numbered from 1, by 1, starting at the leftmost character
position of the print line and extending to the rightmost
position of the print line.

Combined Condition:
A condition that is the result of connecting two or more
conditions with the 'AND' or the 'OR' logical operator.

Comment-Entry:
An entry in the Identification Division that may be any
combination of characters from the computer character set.

Comment Line:

A source program line represented by an asterisk in the

indicator area of the line and any characters from the

computer's character set in area A and area B of that line.

The comment line serves only for documentation in a program.

A special form of comment line represented by a stroke (/)

in the indicator area of the line and any character from the
computer's character set in area A and area B of that 1line /
causes page ejection prior to printing the comment. Q;)

- 279 -

RM/COBOL Language TRS-80 ° APPENDIX C

Compile-Time:
The time at which a COBOL source program is translated, by a
COBOL compiler, to a COBOL object program.

Compiler Directing Statement:

A statement, beginning with a compiler directing verb, that
causes the compiler to take a specific action during
compilation.

Complex Condition:
A condition in which one or more logical operators act upon
one or more conditions.

Computer-Name:
A system-name that identifies the computer upon which the
program is to be compiled or run (commentary only).

Condition:

A status of a program at execution time for which a truth
value can be determined. Where the term 'condition'
(condition-1, condition-2, ...) appears in these language
specifications in or in reference to 'condition'
(condition-1, condition-2, ...) of a general format, it is a
conditional expression consisting of a simple condition,
optionally parenthesized, consisting of the syntactically
correct combination of simple conditions, logical operators,
and parentheses, for which a truth value can be determined.

Condition-Name:

A user-defined word assigned to a specific value, set of
values, or range of values, within the complete set of
values that a conditional variable may possess; or the
user-defined word assigned to a status of a system software
switch.

Condition-Name Condition:

The proposition, for which a truth value can be determined,

that the value of a conditional variable is a member of the

set of values attributed to a condition-name associated with
the conditional variable.

- 271 -

APPENDIX C TRS-80 ° RM/COBOL Language

Conditional Expression:
A simple condition or a complex condition specified in an IF
or PERFORM statement.

Conditional Statement:

A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action
of the object program is dependent on this truth value.

Conditional Variable:
A data item one or more values of which has a condition name
assigned to it.

Configuration Section:
A section of the Environment Division that describes overall
specifications of source and object computers.

Connective:
A reserved word that is used to:

Associate a data-name, paragraph-name or condition-name
with its qualifier.

Link two or more operands written in a series.

Form conditions (logical connectives).

Contiguous Items:

Items that are described by consecutive entries in the Data
Division, and that bear a definite hierarchic relationship
to each other.

Counter:

A data item used for storing numbers of number
representations in a manner that permits these numbers to be
increased or decreased by the value of another number, or to
be changed or reset to zero or to an arbitrary positive or
negative value.

Currency Sign:
The character '$' of the COBOL character set.

- 272 -

RM/COBOL Language APPENDIX C

TRS-80 °

Currency Symbol:

The character defined by the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is
present in a COBOL source program, the currency symbol is
identical to the currency sign.

Current Record:
The record which is available in the record area associated
with the file.

Current Record Pointer:
A conceptual entity that is used in the selection of the
next record.

Data Clause:

A clause that appears in a data description entry in the
Data Division and provides information describing a
particular attribute of a data item.

Data Description Entry:

An entry in the Data Description that is composed of a
level-number followed by a data-name, if required, and then
followed by a set of data clauses, as required.

Data Item:

A character or a set of contiguous characters (excluding in
either case literals) defined as a unit of data by the COBOL
program.

Data-Name:

A user-defined word that names a data item described in a
data description entry in the Data Division. When used in
the general formats, 'data-name' represents a word which can
neither be subscripted, indexed, nor qualified unless
specifically permitted by the rules for that format.

Debugging Line:
A debugging line is any line with 'D' in the indicator area
of the line.

- 273 -

APPENDIX C TRS-80 ° RM/COBOL Language

Declaratives:

A set of one or more special purpose sections, written at
the beginning of the Procedure Division, the first of which
is preceded by the key word DECLARATIVES and the last of
which is followed by the key words END DECLARATIVES. A
declarative is composed of a section header, followed by a
USE compiler directing sentence, followed by a set of zero,
one or more associated paragraphs.

Declarative-Sentence:
A compiler-directing sentence consisting of a single USE
statement terminated by the separator period.

Delimiter:

A character or a sequence of contiguous characters that
identify the end of a string of characters and separates
that string of characters from the following string of
characters. A delimiter is not part of the string of
characters that it delimits.

Digit Position:

A digit position is the amount of physical storage required
to store a single digit. This amount may vary depending on
the usage of the data item describing the digit position.

Division:

A set of zero, one or more sections of paragraphs, called
the division body, that are formed and combined in
accordance with a specific set of rules. There are four (4)
divisions in a COBOL program: Identification, Environment,
Data, and Procedure.

Division Header:

A combination of words followed by a period and a space that
indicates the beginning of a division. The division headers
are:

IDENTIFICATION DIVISION

ENVIRONMENT DIVISION

DATA DIVISION

PROCEDURE DIVISION [USING data-name-1 [data-name-2]...]

- 274 -

RM (CQBQI Language TRS-80 & APPENDIX C

Dynamic Access:

An access mode in which specific logical records can be
obtained from or placed into a mass storage file in a non-
sequential manner (see Random Access) and obtained from a
file in a sequential manner (See Sequential Access), during
the scope of the same OPEN statement.

Editing Character:
A single character of fixed two character combination belonging
to the following set:

Character Meaning

space
zero

plus

minus

credit

debit

Zero suppress

check protect

currency sign

comma (decimal point)
period (decimal point)
stroke (virgule, slash)

N s M ANOO ! +twW
w o

Elementary Item:
A data item that is described as not being further logically
subdivided.

End of Procedure Division:
The physical position in a COBOL source program after which no
further procedures appear.

Entry:

Any descriptive set of consecutive clauses terminated by a period
and written in the Identification Division, Environment Division,
or Data Division of a COBOL source program.

Environment Clause:
A clause that appears as part of an Environment Division entry.

- 275 -

APPENDIX C TRS-80 ® RM‘COBOL Language

Execution Time. (See Object Time)

Extend Mode:

The state of a file after execution of an OPEN statement, with
the EXTEND phrase specified, for that file and before the
execution of a CLOSE statement for that file.

Figurative Constant:
A compiler generated value referenced through the use of certain
reserved words.

File:
A collection of records.

File Clause:
A clause that appears as part of the file description (FD)
entries in the Data Division.

FILE-CONTROL:
The name of an Environment Division paragraph in which the data
files for a given source program are declared. /

File Description Entry:

An entry in the File Section of the Data Division that is
composed of the level indicator FD, followed by a file-name, and
then followed by a set of file clauses as required.

File-Name:
A user-defined word that names a file described in a file
description entry within the File Section of the Data Division.

File Organization:
The permanent logical file structure established at the time that
a file is created.

File Section:
The section of the Data Division that contains file description
entries together with their associated record descriptions.

- 276 -

RM/COBOL Language TRS-80 °© APPENDIX C

Format:
A specific arrangement of a set of data.

Group Item:
A named contiguous set of elementary or group items.

I-0-CONTROL:
The name of an Environment Division paragraph in which
sharing of same areas by several data files is specified.

I-O-MODE:

The state of a file after execution of an OPEN statement,
with the I-O phrase specified, for that file and before the
execution of a CLOSE statement for that file.

Identifier:

A data-name, followed as required, by the syntactically
correct combination of qualifiers, subscripts, and indices
necessary to make unique reference to a data item.

Imperative Statement:

A statement that begins with an imperative verb and
specifies an unconditional action to be taken. An
imperative statement may consist of a sequence of imperative
statements.

Index:
A data item, the contents of which represent the
identification of a particular element in a table.

Index Data Item:
A data item in which the value associated with an index-name
can be stored.

Index-Name:
A user-defined word that names an index associated with a
specific table.

Indexed Data-Name:
An identifier that is composed of a data-name, followed by
one or more index-names enclosed in parentheses.

- 277 -

APPENDIX C ™TRS-80 ° RM/COBOL Language

Indexed File:
A file with indexed organization.

Indexed Organization:

The permanent logical file structure in which each record is
identified by the value of one fixed length key within that
record.

Input File:
A file that is opened in the input mode.

Input Mode:

The state of a file after execution of an OPEN statement,
with the INPUT phrase specified, for that file and before
the execution of a CLOSE statement for that file.

Input-Output File:
A file that is opened in the I-O mode.

Input-Output Section:

The section of the Environment Division that names the files
and the external media required by an object program and
which provides information required for transmission and
handling of data during execution of the object program.

Integer:

A numeric literal or a numeric data item that does not
include any character positions to the right of the assumed
decimal point. Where the term 'integer' appears in general
formats, integer must not be a numeric data item, and must
not be signed, nor zero, unless explicitly allowed by the
rules of that format.

Invalid Key Condition:

A condition, at object time, caused when a specific value of
the key associated with an indexed or relative file is
determined to be invalid.

- 278 -

RM/COBOL Language APPENDIX C

TRS-80°

Key:
A data item which identifies the location of a record.

Key Word:
A reserved word whose presence is required when the format
in which the word appears is used in a source program.

Level Indicator:
Two alphabetic characters that identify a specific type of
file or a position in hierarchy.

Level-Number:

A user-defined word which indicates the position of a data
item in the hierarchical structure of a logical record or
which indicates special properties of a data description
entry. A level-number is expressed as a one- or two-digit
number. Level-numbers in the range 1 through 49 indicate
the position of a data item in the hierarchical structure of
a logical record. Level-numbers in the range 1 through 9
may be written either as a single digit or as a zero
followed by a significant digit. Level-numbers 77 and 88
identify special properties of a data description entry.

Library-Name:
A user-defined word that names a COBOL library that is to be
used by the compiler for a given source program compilation.

Linkage Section:

The section in the Data Division of the called program that
describes the data items available from the calling program.
These data items may be referred to by both the calling and
called program.

Literal:
A character-string whose value is implied by the ordered set
of characters comprising the string.

- 279 -

APPENDIX C TRS-80 @® RM/COBOL Language

Logical Operator:

One of the reserved words AND, OR, or NOT. In the formation
of a condition, both or neither of AND and OR can be used as |
logical connectives. NOT can be used for logical negation.

Mass Storage:
A storage medium on which data may be organized and
maintained in both a sequential and nonsequential manner.

Mass Storage File:
A collection of records that is assigned to a mass storage
medium.

Mnemonic-Name:
A user-defined word that is associated in the Environment
Division with a specified system-name.

Native Character Set:
The character set associated with the COBOL Compiler
(ASCII).

Native Collating Sequence:
The collating sequence associated with the native character
set,

Negated Combined Condition:
The 'NOT' logical operator immediately followed by a
parenthesized combined condition.

Negated Simple Condition:
The 'NOT' logical operator immediately followed by a simple
condition.

Next Executable Sentence:
The next sentence to which control will be transferred after
execution of the current statement is complete.

- 28f -

RM/COBOL Language APPENDIX C

TRS-80 °

Next Record:
The record which logically follows the current record of a
file.

Noncontiguous Items:

Elementary data items, in the Working-Storage and Linkage
Sections, which bear no hierarchic relationship to other
data items.

Nonnumeric Item:

A data item whose description permits its contents to be
composed of any combination of characters taken from the
computer's character set. Certain categories of nonnumeric
items may be formed from more restricted character sets.

Nonnumeric Literal:

A character-string bounded by quotation marks. The string
of characters may include any character in the computer's
character set. To represent a single quotation mark
character within a nonnumeric literal, two contiguous
guotation marks must be used.

Numeric Character:
A character that belongs to the following set of digits: 4,
1, 2, 3, 4, 5, 6, 7, 8, 9.

Numeric Item:

A data item whose description restricts its contents to a
value represented by characters chosen from the digits '@’
through '9'; if signed, the item may also contain a '+',
'-', or other representation of an operational sign.

Numeric Literal:

A literal composed of one or more numeric characters that
also may contain either a decimal point, or an algebriac
sign, or both. The decimal point must not be the rightmost
character. The algebraic sign, if present, must be the
leftmost character.

- 281 -

APPENDIX C TRS-80 ° RM/COBOL Language

OBJECT-COMPUTER:

The name of an Environment Division paragraph in which the
computer environment, within which the object program is
executed, is described.

Object of Entry:
A set of operands and reserved words, within a Data Division
entry, that immediately follows the subject of the entry.

Object Program:

A set or group of executable instructions and other material
designed to interact with data to provide problem solutions.
In this context, an object program is generally the result
of the operation of a COBOL compiler on a source program.
Where there is no danger of ambiguity, the word 'program'
alone may be used in place of the phrase 'object program'.

Object Time:
The time at which an object program is executed.

Open Mode:

The state of a file after execution of an OPEN statement for
that file and before the execution of a CLOSE statement for
that file. The particular open mode is specified in the
OPEN statement as either INPUT, OUTPUT, I-O, or EXTEND.

Occurrence Number:
The relative data item number in a table.

Operand:

Whereas the general definition of operand is 'that component
which is operated upon', for the purposes of this
publication, any lowercase word (or words) that appears in a
statement or entry format may be considered to be an operand
and, as such, is an implied reference to the data indicated
by the operand.

Operational Sign:

An algebraic sign, associated with a numeric data item or a
numeric literal, to indicate whether its value is positive

or negative. /

e

- 282 -

RM/COBOL Language TRS-80 ° APPENDIX C

Optional Word:

A reserved word that is included in a specific format only
to improve the readability of the language and whose
presence is optional to the user when the format in which
the word appears is used in a source program.

Output File:
A file that is opened in either the output mode or extend
mode.

Output Mode:

The state of a file after execution of an OPEN statement,
with the OUTPUT or EXTEND phrase specified, for that file
and before the execution of a CLOSE statement for that file.

Paragraph:

In the Procedure Division, a paragraph-name followed by a
period and a space and by zero, one, or more sentences. 1In
the Identification and Environment Divisions, a paragraph
header followed by zero, one, or more entries.

Paragraph Header:

A reserved word, followed by a period and a space that
indicates the beginning of a paragraph in the Identification
and Environment Divisions. The permissible paragraph
headers are:

In the Identification Division:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
SECURITY.

In the Environment Division:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-O-CONTROL.

- 283 -

APPENDIX C TRS-80 ° RM/COBOL Language

Paragraph-Name:
A user-defined word that identifies and begins a paragraph
in the Procedure Division.

Phrase:

A phrase is an ordered set of one or more consecutive COBOL
character-strings that form a portion of a COBOL procedural
statement or of a COBOL clause.

Physical Record. (See Block)

Prime Record Key:
A key whose contents uniquely identify a record within an
indexed file.

Procedure:

A paragraph or group of logically successive paragraphs, or
a section or group of logically successive sections, within
the Procedure Division,

Procedure-Name:

A user-defined word which is used to name a paragraph or
section in the Procedure Division. It consists of a
paragraph-name (which may be qualified), or a section-name.

Program-Name:
A user-defined word that identifies a COBOL source program.

Punctuation Character:
A character that belongs to the following set:

Character Meaning

comma
semicolon
period

quotation mark
left parenthesis

~ 2 s~

- 284 -

RM/COBOL Language TRS-80 ° APPENDIX C
) right parenthesis
space

= equal sign

Qualified Data-Name:

An identifier that is composed of a data-name followed by
one or more sets of either of the connectives OF and IN
followed by a data-name qualifier.

Qualifier:

A data-name which is used in a reference together with
another data name at a lower level in the same hierarchy. A
section-name which is used in a reference together with a
paragraph-name specified in that section.

Random Access:

An access mode in which the program-specified value of a key
data item identifies the logical record that is obtained
from, deleted from, or placed into a relative or indexed
file.

Record Area:

A storage area allocated for the purpose of processing the
record described in a record description entry in the File
Section.

Record Description. (See Record Description Entry)

Record Description Entry:
The total set of data description entries associated with a
particular record.

Record Key:
The prime record key whose contents uniquely identify a
record within an indexed file.

Record-Name:
A user—-defined word that names a record described in a
record description entry in the Data Division.

- 285 -

Reference Format:
A format that provides a standard method for describing
COBOL source programs.

Relation. (See Relational Operator)

Relation Character:
A character that belongs to the following set:

Character Meaning
> greater than
< less than
= equal to

Relation Condition:

The proposition, for which a truth value can be determined,
that the value of a data item has a specific relationship to
the value of another data item. (See Relational Operator)

Relational Operator: C;)
A reserved word, a relation character, a group of

consecutive reserved words, or a group of consecutive

reserved words and relation characters used in the

construction of a relation condition. The permissible

operators and their meanings are:

Relational Operator Meaning

IS [NOT] GREATER THAN Greater than or not
IS [NOT] > greater than
IS [NOT] LESS THAN Less than or not

IS [NOT] < less than

IS [NOT] EQUAL TO Equal to or not

IS [NOT] = equal to

- 286 -

RM/COBOL Language TRS-80 ° APPENDIX C

Relative File:
A file with relative organization.

Relative Key:
A key whose contents identifies a logical record in a
relative file.

Relative Organization:

The permanent logical file structure in which each record is
uniquely identified by an integer value greater than zero,
which specifies the record's logical ordinal position in the
file.

Reserved Word:

A COBOL word specified in the list of words which may be
used in COBOL source programs, but which must not appear in
the programs as user-defined words or system-names.

Run Unit:
A set of one or more object programs which function at
object time, as a unit to provide problem solutions.

Section:

A set of zero, one, or more paragraphs or entries, called a
section body, the first of which is preceded by a section
header. Each section consists of the section header and the
related section body.

Section Header:

A combination of words followed by a period and a ‘space that
indicates the beginning of a section in the Environment,
Data and Procedure Division.

In the Environment and Data Divisions, a section header is
composed of reserved words followed by a period and a space.
The permissible section headers are:

In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

- 287 -

APPENDIX C TRS-80 ° RM/COBOL Language

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION
LINKAGE SECTION.

In the Procedure Division, a section header is composed of a
section-name, followed by the reserved word SECTION,
followed by a segment-number (optional), followed by a
period and a space.

Section—-Name:
A user-defined word which names a section in the Procedure
Division.

Segment-Number:

A user-defined word which classifies sections in the
Procedure Division for purposes of segmentation.
Segment-numbers may contain only the characters '§',
'1',..., '9'. A segment-number may be expressed either as a
one- or two-digit number.

Sentence:
A sequence of one or more statements, the last of which is
terminated by a period followed by a space.

Separator:
A punctuation character used to delimit character-strings.

Sequential Access:

An access mode in which logical records are obtained from or
placed into a file in a consecutive predecessor-to-successor
logical record sequence determined by the order of records
in the file.

Sequential File:
A file with sequential organization.

Sequential Organization:

The permanent logical file structure in which a record is
identified by a predecessor-successor relationship
established when the record is placed into the file.

- 288 -

RM/COBOL Language TRS-80 ° APPENDIX C

Simple Condition:
Any single condition chosen from the set:

relation condition

class condition
condition-name condition
switch-status condition
(simple-condition)

SOURCE-COMPUTER:

The name of an Environment Division paragraph in which the
computer environment, within which the source program is
compiled, is described.

Source Program:

A syntactically correct set of COBOL statements beginning
with an Identification Division and ending with the end of
the Procedure Division. 1In contexts where there is no
danger of ambiguity, the word 'program' alone may be used in
place of the phrase 'source program.'

Special Character:
A character that belongs to the following set:

Character Meaning

plus

minus sign

asterisk

stroke (virgule, slash)
equal sign

currency sign

comma (decimal point)
semicolon

period (decimal point)
quotation mark

left parenthesis

right parenthesis
greater than symbol
less than symbol

Te o ses W INC*)+

AV~ o~

Special-Character Word:
A reserved word which is an arithmetic operator or a
relation character.

- 289 -

APPENDIX C TRS-80 ® RM/COBOL_Language

SPECIAL-NAMES:
The name of an Environment Division paragraph in which
switch-names are related to user-defined words.

Standard Data Format:

The concept used in describing the characteristics of data
in a COBOL Data Division under the characteristics or
properties of the data are expressed in a form oriented to
the appearance of the data on a printed page of infinite
length and breadth, rather than a form oriented to the
manner in which the data is stored internally in the
computer, or on a particular external medium.

Statement:
A syntactically valid combination of words and symbols
written in the Procedure Division beginning with a verb.

Subject of Entry:
An operand or reserved word that appears immediately
following the level indicator or the level-number in a Data

Division entry. C)

Subprogram. (See Called Program)

Subscript:
An integer whose value identifies a particular element in a
table.

Subscripted Data-Name:
An identifier that is composed of a data-name followed by
one or more subscripts enclosed in parentheses.

Switch-Status Condition:

The proposition, for which a truth value can be determined
that a switch, capable of being set to an 'on' or 'off’
status, has been set to a specific status.

System-Name:
A COBOL word which is used to communicate with the operating il
environment.

-29“—

RM/COBOL Language TRS-80 ° APPENDIX C

Table:
A set of logically consecutive items of data that are
defined in the Data Division by means of the OCCURS clause.

Table Element:
A data item that belongs to the set of repeated items
comprising a table.

Text-Name:
A file access name that identifies library text.

Truth Value:
The representation of the result of the evaluation of a
condition in terms of one of two values:

true
false

Unary Operator:

A plus (+) or a minus (-) sign, which precedes a variable or
a left parenthesis in an arithmetic expression and which has
the effect of multiplying the expression by +1 or -1
respectively.

User-Defined Word:
A COBOL word that must be supplied by the user to satisfy
the format of a clause or statement.

Variable:

A data item whose value may be changed by execution of the
object program. A variable used in an arithmetic expression
must be a numeric elementary item.

Verb:
A word that expresses an action to be taken by a COBOL
compiler or object program.

- 291 -

APPENDIX C TRS-80 ° RM/COBOL Language

Word:
A character-string of not more than 3¢ characters which

forms a user-defined word, a system-name, or a reserved
word.,

Working-Storage Section:

The section of the Data Division that describes working
storage data items, composed either of noncontiguous items
or of working storage records or of both.

77-Level-Description-Entry:
A data description entry that describes a noncontiguous data
item with the level-number 77.

- 292 -

RM/COBOL Language TRS-80 ° Appendix D

APPENDIX D

COMPOSITE LANGUAGE SKELETON

- 293 -

RM/COBOL Language TRS-80 °® Appendix D

COMPOSITE LANGUAGE SKELETON

This section contains the composite language skeleton of the
American National Standard COBOL. It is intended to display
complete and syntactically correct formats.

For the general formats of the four divisions the leftmost
margin is equivalent to margin A in a COBOL source program.
The first indentation after the leftmost margin is
equivalent to margin B in a COBOL source program.

For the general formats of the verbs and conditions the
leftmost margin indicates the beginning of the format for a
new COBOL verb. The first indentation after the leftmost
margin indicates continuation of the format of the COBOL
verb.

The following is a summary of the formats shown on the
following pages:

- Identification Division general format

- Environment Division general format

- The three formats of the file control entry

- Data Division general format

- The three formats for a data description entry

- The format for a field definition entry

- Procedure Division general format

- General format of verbs listed in alphabetical
order

- General format for conditions

- Formats for qualification, subscripting, indexing,
and an identifier

- General format for a COPY statement

- 295 -

Appendix D TRS-80 ® RM/COBOL Language

RM/COBOL LANGUAGE SYNTAX : 9

The RM/COBOL language is based upon the ANSI X3.23-1974
COBOL standard. Minor departures from that document are
reflected in the syntax description which follows but are
not separately noted. Semantic rules are not changed.

The description is in a condensed form of the standard COBOL
syntax notation. In some cases separate formats are
combined and general terms are employed for user names.

System-names and implementation restrictions are:

computer-name: User-defined word
program-name: 8-character name
switch-names: SWITCH-1,..., SWITCH-8
device-types: PRINT

INPUT

OUTPUT

INPUT-OUTPUT

RANDOM

external-file-name: One- to thirty-character name

- 296 -

RM/COBOL Language TRS-80 ®

Appendix D

IDENTIFICATION DIVISION GENERAL FORMAT

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.
[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry] ...]

[DATE-WRITTEN. [comment-entry)] ...]

[SECURITY. [comment-entry] ...]

- 297 -

Appendix D TRS-80 ° RM/COBOL Language

ENVIRONMENT DIVISION GENERAL FORMAT ’ }

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. camputer-name,

OBJECT-COMPUTER. camputer-name.

[, MEMORY SIZE integer {WORDS }
{CHARACTERS }
{MODULES }

[, PROGRAM COLLATING SEQUENCE IS alphabet-name].

[SPECIAL-NAMES. [, switch-name
{ON STATUS IS condition-name-1 [,OFF STATUS IS condition-name-2]}]

{OFF STATUS IS condition-name-2 [,ON STATUS IS condition—name-1]}]

[, alphabet-name IS {STANDARD-1}] ...
{NATIVE }

[, CURRENCY SIGN IS literal-1]
[, DECIMAL-POINT IS COMMA].]

[INPUT-OUTPUT SECTION.

FILE-CONTROL.
{file-control-entry} ...
[I-O-CONTROL.
[; SAME AREA FOR file-name-1 [, file-name-2] ...]... .1}

- 298 -

RM/COBOL Language TRS-80 ° Appendix D

FILE CONTROL ENTRY GENERAL FORMAT

FORMAT 1

SELECT file=-name

ASSIGN TO device-type {"external~-file-name"}
{data-name-1 }

[; ORGANIZATION IS SEQUENTIAL]
[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name-2}.

FORMAT 2

SELECT file-name

ASSIGN TO RANDOM, ({"external-file-name" }
{data-name-1 }

; ORGANIZATION IS RELATIVE

[; ACCESS MODE IS {SEQUENTIAL [,RELATIVE KEY IS data-name-2]}]
{ { RANDQOM} ,RELATIVE KEY IS data-name-2 }
{ {DYNAMIC} }

[; FILE STATUS IS data-name-3].

- 299 -

Appendix D TRS-80 °® RM/COBOL Language

FORMAT 3 ~)

SELECT file-name

ASSIGN TO RANDOM, {"exernal-file-name"}
{data-name-1 }

; ORGANIZATION IS INDEXED

[; ACCESS MODE IS {SBEQUENTIAL}]
{RANDOM }
{DYNAMIC }
; RECCRD KEY IS data-name-2

[; ALTERNATE RECORD KEY IS data-name-3 [WITH DUPLICATES]]...

[; FILE STATUS IS data-name-4].

- 399 -

RM/COBOL Language TRS-80 ° Appendix D

DATA DIVISION GENERAL FORMAT

DATA DIVISION.
[FILE SECTION.
[FD file-name

[; BLOCK CONTAINS [integer-1 TO] integer-2 {RECORDS H
{CHARACTERS }

[; RECORD CONTAINS [integer-3 TO] integer—-4 CHARACTERS]

; LABEL {RBECORD IS } {STANDARD}
{RECORDS ARE } {QMITTED }

[; VALUE OF LABEL IS nonnumeric-literal-l]

[; DATA {RECORD IS } data-name-l [, data-name-2] ...]
{RECORDS ARE}

[record-description-entry] ... 1 ...

[WORKING-STORAGE SECTION.

[77-1leveldescription-entryl] ...]
[record-description-entry 1

[LINKAGE SECTION.

[77-level description-entry] ...]
[record—-description-entry]

- 341 -

Appendix D TRS-80 ° RM/COBOL Language

DATA DESCRIPTION ENTRY GENERAL FORMAT

FORMAT 1
level -number {data-name-1}
{FILLER }
[; REDEFINES data-name-2]

[, {PICTURE} IS character-string]

{PIC }

[; [USAGE IS] {COMPUTATIONAL }]
{CaMP }
{COMPUTATIONAL~1 }
{coMp-1 }
{COMPUTATIONAL~3 }
{coMp-3 }
{DISPLAY }
{ INDEX }

[; [SIGN IS] TRAILING [SEPARATE CHARACTER]]

[; OCCURS {integer-1 TIMES }
{integer-1 TO integer-2 TIMES DEPENDING (N data-name-3}

[INDEXED BY index-name-l [, index-name-2] ...]]

[; {SYNCHRONIZED} [LEFT]]
{SYNC } [RIGHT]

[; (JUSTIFIED} RIGHT]
{JusT }

[; BLANK WHEN ZERO]

[; VALUE IS literall

- 362 -

RM/COBOL Language TRS-80 ° Appendix D

@ys) FORMAT 2

66 data-name-1; RENAMES data-name-2 [{THROUGH} data-name-3].
{THRU }

FORMAT 3

88 condition-name: (VALUE IS }
{VALUES ARE }

literal-l [{THROUGH} literal-2]
{THRU }

[, literal-3 [{THROUGH} literal-4]]
{THRU }

- 383 -

Appendix D TRS-80 °© RM/COBOL Language

PROCEDURE DIVISION GENERAL FORMAT

FORMAT 1

PROCEDURE DIVISION [USING data-name-l [,data-name-2] ...] .

[DECLARATIVES.

{section-name SECTION [segment-number]. declarative-sentence
[paragraph-name. [sentencel...] ... } ...

END DECLARATIVES.]

{section—name SECTION [segment-mumber].

[paragraph-name. [sentence] ...] ... } ...

[END PROGRAM).

FORMAT 2

PROCEDURE DIVISION [USING data-name-l [,data-name-2] ...] .

{paragraph-name. [sentence] ... } ...

(END PROGRAM].

- 3¢4 -

RM/COBOL Language TRS-80 ° Appendix D

GENERAL FORMAT FOR VERBS

ACCEPT {identifier-l [,UNIT {identifier-2}]
{literal-1 }

[,LINE {identifier-3 }] [,POSITION {identifier-4}]
{literal-2 } {literal-3 }

[,SIZE {identifier-5 }]) [,PROMPT [literal-5]]
{literal-4 }

[,ECHO] [,CONVERT] [,TAB] [ERASE] [,NO_BEEP)

[,OFF] [,ON EXCEPTION identifier-6 imperative-statement]}...
ACCEPT identifier FROM {DATE}
{DAY }
{TIME}

ADD {identifier-1} [,identifier-2] ... TO identifier-m [ROUNDED]
{literal-1 } [,literal-2]

[; ON SIZE ERRCR imperative-statement]

ADD {identifier-1}, {identifier-2} [,identifier-3] ...
{literal-1 } {literal-2 } [,literal-3]

GIVING identifier-m [ROUNDED]
[; ON SIZE ERROR imperative-statement]

ADD {CORRESPONDING} identifier-1 T0 identifier-2
{OORR }

[ROUNDED] [; ON SIZE ERROR imperative-statement]
ALTER procedure-name-1 TO [PROCEED TO) procedure—name-—2
[,procedure-name-3 TO [PROCEED TO] procedure-name-4] ...

CALL {identifier-1)} [USING data—name-l [,data-name-2] ...]
{literal-l }

- 385 -

Appendix D TRS-80 ° RM/COBOL Language

CLOSE file-name-1 [{REEL} [WITH NO REWIND]]
{UNIT}

[WITH {NO REWIND}
{LOCK }

[,file-name-2 [{REEL} [WITH NO REWIND] 1 1] ...
{ONIT}

[WITH {NO REWIND}
{LOCK }
COMPUTE identifier-1 [ROUNDED] = arithmetic-expression

[; ON SIZE ERROR imperative-statement]
DELETE file-name RECORD [;INVALID KEY imperative-statement]

DISPLAY {{identifier-1} [,UNIT {identifier-2}]
{literal-1 } {literal-2 }

{,LINE (identifier-3}] [,POSITION {identifier-4})
{literal-3 } {literal-4 }

[,SIZE {identifier-5}]1 [,BEEP] [,ERASE]
{literal-5 }

[,{HIGH}] [,BLINK] [,REVERSE]l} ...
{LOW }

DIVIDE {identifier-1} INTO identifier-2 [ROUNDED]
{literal-1 }

[;ON SIZE ERROR imperative-statement]

DIVIDE {identifier-1} INTO {identifier-2} GIVING identifier-3
{literal-1 } {literal-2 }

[ROUNDED] [;ON SIZE ERRQOR imperative-statement]

DIVIDE {identifier-1} BY {identifier-2} GIVING identifier-3 [ROUNDED]
{literal-1 } {literal-2 }

[;ON SIZE ERROR imperative-statement]

- 306 -

RM/COBOL Language TRS-80 ° Appendix D

EXIT [PROGRAM].

GO TO procedure-name-1

GO TO procedure-name-1 [,procedure-name-2] ... , procedure-name-n
DEPENDING ON identifier

IF condition; ({statement-1 } {ELSE statement-2 }
{NEXT SENTENCE } {; ELSE NEXT SENTENCE}

INSPECT identifier-1

TALLYING identifier-2 FOR {{ALL } {identifier-3}}

{literal-1 }
{{ LEADING} }
{ CHARACTERS }

[(BEFCRE} INITIAL {identifier—4]}1]
{literal-2 }

{AFTER}
REPLACING {{ALL } {identifier-5}} BY {identifier-6}
{literal-3 } {literal-4 }
{{ LEADING} }
{{FIRST } }
{ CHARACTERS }

[{BEFORE} INITIAL {identifier-7}])
(literal-5 }
{AFTER}

NOTE: The TALLYING option, the REPLACING option, or both
options must be selected.

3¢7

A
ppendix D TRS-80 ° RM/COBOL Language

MOVE {identifier-1} TO identifier-2 [,identifier-3]...
{literal }

MOVE {CORRESPONDING} identifier-1 TO identifier-2
{CORR }

MULTIPLY {identifier-1} BY identifier-2 [ROUNDED]
{literal-1 }

[,ON SIZE ERROR imperative-statement]

MULTIPLY {identifier-1} BY {identifier-2} GIVING identifier-3
{literal-l } {literal-2 }

[ROUNDED] [; ON SIZE ERROR imperative-statement]

OPEN {{INPUT {file-name-1 [WITH NO REWIND] }
{, file-name-2 [WITH NO REWIND]...

{OUTPUT {file-name-3 {WITH NO REWIND] }
{, file-name-2 [WITH NO REWIND]...

{I-0 {file-name-5}[, file-name-6]...

{EXTEND file-name-7}], file-name-8]...}...

- 3¢8 -

RM/COBOL Language

Appendix D

TRS-80 °

PERFORM procedure-name-1 [{THROUGH} procedure-name-2]
{THRU }

PERFORM procedure-name-1 [{THROUGH} procedure-name-21]
{THRU }

{identifier-1} TIMES
{literal }

PERFORM procedure-name-1 [{THROUGH} procedure-name-2]
{THRU }

UNTIL condition-1

PERFORM procedure-name-1 [{THROUGH} procedure—name—2]
{ THRU }

VARYING {identifier-2} FROM {identifier-3}
{index-name-1} { index-name-~2}
{literal-l }

BY {identifier-4} UNTIL condition-1
{literal-3 }

[AFTER {identifier-5} FROM {identifier-6}
{index-name-3} { index-name-4}
{literal-3 }

BY {identifier-7} UNTIL condition-2
{literal-4 }
[AFTER {identifier-8} FROM {identifier-9}
{index-name-5} {index~name-6}
{literal-5 }

BY {identifier-1¢} UNTIL condition-3] 1
{literal-6 }

- 349 -

Appendix D TRS-80 °® RM/COBOL Language

READ file-name RECORD [INTO identifier]
[;AT END imperative-statement]

READ file—name [NEXT] RECORD [WITH NO LOCK] [INTO identifier]
(:AT END imperative-statement]

READ file-name RECORD [WITH NO LOCK] [INTO identifier]
[;KEY is data-name]
[;INVALID KEY imperative-statement]

RBARITE record-name [FROM identifier]
[; INVALID KEY imperative-statement]

SET {identifier-1 [,identifier-2] ...} TO {identifier-3}
{index-name-1 [, index-name-2] ...] {index-name-3}
{integer-1 }

SET index-name-4 [,index-name-5] ... {UP BY } {identifier-4}
{integer-2 }

{DOWN BY}
START file—pame [KEY {IS EQUAL TO } data-namel
{1s = }
{IS GREATER THAN }
{Is > }
{IS NOT LESS THAN }
{IS NOT< }

[; INVALID KEY imperative-statement]

STOP {RUN }
{literal }

- 319 -

RM/COBOL Language Appendix D

TRS-80 °

SUBTRACT {identifier-1} [,identifier-2] ... FROM identifier-m
{literal-l } [,literal-2]

[ROUNDED] [; ON SIZE ERROR imperative-statement)

SUBTRACT {identifier-1)} [,identifier-2] ... FROM {identifier-m
{literal-1 } [,literal-2] {literal-m }

GIVING identifier-n [ROUNDED]
[;ON SIZE ERROR imperative-statement]

SUBTRACT {CORRESPONDING} identifier-1 FROM identifier-2 [ROUNDED]
{CORR }

[;ON SIZE ERROR imperative-statement]
UNLOCK file-name—-1 RECORD

USE AFTER STANDARD {EXCEPTION}
{ERROR }
PROCEDURE QN {file—name-1 [,file-name-2] ...} .
{INPUT
{OUTPUT
{10
{ EXTEND

L e e ol

WRITE record-name [FROM identifier-1)
{BEFORE)} ADVANCING {{identifier-2} {LINE }}
{{integer } {LINES }}
{AFTER} { PAGE }

WRITE record-name [FROM identifier])
[; INVALID KEY imperative-statement]

- 311 -

Appendix D TRS-80 °© RM/COBOL Language

GENERAL FORMAT FOR CONDITIONS

RELATION CONDITION:

{identifier-1 } {IS INOT] GREATER THAN} {identifier-2 }
{literal-l } {literal-2 }
{index-pame-1 } {IS [NOT] LESS THAN {index-name-2 }
{IS [NOT] BQUAL TO
{Is [NOT]
{Is [NOT]
{IS INOT]

AV

}
}
}
}
}

CLASS CONDITION:

identifier IS [NOT] {NUMERIC}
{ALPHABETIC}

CONDITION-NAME CONDITION:

condition-name : />

SWITCH-STATUS CONDITION:

condition—-name

NEGATED SIMPLE CONDITION:

NOT simple-condition

COMBINED CONDITION:

condition {{AND} condition} ...
{OR }

- 312 -

RM/COBOL Language TRS-80 °© Appendix D

MISCELLANEOUS FORMATS

QUALIFICATION:

{data-name-1 } [{OF} data-name-2] ...
{ocondition—-name }

(m)

paragraph—name [{OF} section-name]
{IN}

SUBSCRIPTING:

{data-name } (subscript-l [,subscript-2 {,subscript-3]])
{condition-name}

INDEXING:
{data-name } ({index-name-1 [{+} literal-2]}
{oondition-name } {literal-l {-} }

[, {index-name-2 [{+} literal-4}}
{literal-3 (-} }

[, {index-name-3 [{+} literal-6] }] 1)
{literal-5 {-} }

- 313 -

Appendix D TTRS-80 ° RM/COBOL Language

IDENTIFIER:

FORMAT 1

data-name-1l [{OF} data-name-2] ...
{IN}

[(subscript-1 [, subscript-2 [, subscript-3 11) 1

FORMAT 2

data-name-1 [{OF} data-name-2 ... [({index-name-1 [{+} literal-2]}
{literal-1l {-} }
{IN}

[, {index-name-2 [{+} literal-4]}
{literal-3 {-} }

[, {index-name-3 [{+} literal-6]} 11)] ,
{literal-5 {-} } o)

- 314 -

RM/COBOL Language TRS-80 ° Appendix D

GENERAL FORMAT FOR COPY STATEMENT

COPY text-name

- 315 -

Appendix D TRS-80 ® RM‘COBOL Lanquage

COBOL LEVEL OF IMPLEMENTATION

Function Module Implementation

Nucleus Level 2.

Table Handling Level 1+.

Sequential I/0 Level 2.

Relative 1/0 Level 2.

Indexed 1/0 Level 2.

Sart-Merge Null.

Report Writer Null.

Segmentation Level 1.

Library Level 1,

Debug N/S. Conditional compile and
execution time interactive debugger.

Inter-program Cammunication Level 1.

Canmunication Modified ACCEPT and DISPLAY for

terminal communication.

ANSI COBOL X3.23 1974

FEDERAL INFORMATION
PROCESSING STANDARD (FIPS)
MODULE
HIGH LOW RM
HIGH | INTERMEDIATE | INTERMEDIATE | LOW |OOBOL
NUCLEUS 2 2 1 1 2
TABLE HANDLING 2 2 1 1 1+
SEQUENTIAL I/0 2 2 1 1 2
RELATIVE I/0 2 2 1 - 2
INDEXED 1/0 2 - - - 2
SORT-MERGE 2 1 - -
REPORT WRITER - - - - -
SEGMENTATION 2 1 1 - |1
LIBRARY 2 1 1 - |1
DEBUG 2 2 1 - | w/s
INTER-PROGRAM
COMMUNICATION 2 2 1 - | 1+
COMMUNICATION 2 2 - - | w/s

N/S = Nenstandard

- 316 -

RM/COBOL Language TRS-80 ° Appendix D

EXTENSIONS BEYOND STATED LEVELS

Level 2 Nucleus (2 NUC):

- Data description includes a USAGE type of
COMPUTATIONAL-1 or COMP-1 for describing single word
two's complement signed binary data (nonstandard).

- Data description includes a USAGE type of
COMPUTATIONAL-3 or COMP-3 for describing packed
decimal data (nonstandard).

~ The ACCEPT statement allows multiple operands
(nonstandard).

- The ACCEPT statement includes syntax for specifying
CRT control information (nonstandard).

- The DISPLAY statement includes syntax for specifying
CRT control information (nonstandard).

Level 1 Table Handling (1 TBL):
- Variable group size (OCCURS DEPENDING).
Level 2 Sequential I-O0 (2 SEQ):
- The file control SELECT clause allows specification of
the external file name as a literal or data item

(nonstandard).

- The READ statement includes the WITH NO LOCK option
(nonstandard) .

- The UNLOCK statement is included (nonstandard).
Level 2 Relative I-0 (2 REL):
- The file control SELECT clause allows specification
of the external file name as a literal or data item

(nonstandard).

- The READ statement includes the WITH NO LOCK option
(nonstandard}.

- The UNLOCK statement is included (nonstandard).

- 317 -

Appendix D TRS-80 ° RM/COBOL Language

Level 2 Indexed I-0 (2 INX):

- The file control SELECT clause allows specification
of the external file name as a literal or data item =
(nonstandard).

- The READ statement includes the WITH NO LOCK option
(nonstandard).

- The UNLOCK statement is included (nonstandard).

Level 1 Debug (1 DEB):

- An interactive execution time debug facility is
provided (nonstandard).

Level 1 Inter-Program Communication (1 IPC).

- The CALL statement allows literals in USING phrase
(nonstandard).

- The CALL statement allows identifiers in the USING
phrase to be described with level number @1 through
49 and level number 77 (nonstandard).

- The CALL statement supports specification of a
variable program name as identifier-1 (level 2 IPC).

Level 1 Communication (1 COM):
- ACCEPT and DISPLAY allow specification of complete

screen format in the Procedure Division
{nonstandard).

- 318 -

RM/COBOL Language TRS-80 °® Appendix D

EXCEPTIONS TO STATED LEVELS

Level 2 Nucleus (2 NUC):

DATE-COMPILED is not supported in the Identification
Division.

In data description the SIGN clause cannot specify
LEADING for the operational sign; omission of the
SEPARATE phrase has no effect; all operational signs
are separate trailing characters.

Alphabet—-name IS literal or implementor-name may not
be specified in SPECIAL-NAMES paragraph.

Multiple results are not supported in arithmetic
statements.

REMAINDER is not supported in DIVIDE statement.
A procedure-name is required in GO TO statements.

INSPECT data items are restricted to single
character.

Compound TALLYING and REPLACING clauses in the
INSPECT statement are not supported.

When used in the Procedure Division, the numeric
literal in the ALL form of a figurative constant may
not contain more than one character.

Arithmetic expressions may be used only in COMPUTE
statements.

Exponentiation to a noninteger power is not
supported.

Sign conditions are not supported.

Abbreviated combined relation conditions are not
supported.

The STRING and UNSTRING statements are not
supported.

- 319 -

Appendix D TRS-80 ® RM(COBOL Language

Level 2

Level 2

Level 2

Level 1

Sequential I-O (2 SEQ):

OPTIONAL and RESERVE may not be specified in the
SELECT clause.

RERUN, SAME AREA or MULTIPLE FILE clauses are not
supported in I-O0 CONTROL.

CODE-SET and LINAGE clauses may not be specified in
a file description entry.

The mnemonic-name and EOP options of the WRITE
statement are not supported.

The REVERSED option of the OPEN statement is not
supported.

The FOR REMOVAL option of the CLOSE statement is not
supported.

Relative I-0 (2 REL):

The RESERVE clause of the SELECT entry is not
supported.

RERUN, SAME AREA or MULTIPLE FILE clauses are not
supported in I-0-CONTROL.

The VALUE OF clause in an FD entry must not specify
a data name.

Indexed I-0 (2 INX):

The RESERVE clause of the SELECT entry is not
supported.

RERUN, SAME AREA or MULTIPLE FILE clauses are not
supported in I-O0-CONTROL.

Segmentation (1 SEQ):

All independent segments must physically follow the
fixed permanent segments in the source program.

- 328 -

RM/COBOL Language TRS-80 ® Appendix D

Level 1 Library (1 LIB):

- A copy sentence must be the last entry in area B of
a source record.

Level 1 Inter-Program Communication (1 IPC):

- A CALLed program is automatically cancelled upon
execution of the EXIT PROGRAM statement.

- 321 -

RM/COBOL Language TRS-80 °® INDEX

77 Level Description Entry......... ..65
-— A JR—
ACCEPT...FROM Statment......coccc0ceee 153
ACCEPT Statment (Terminal I/0)......154
Access Modes....... cecesesensacenas .147
ADD Statement............ cessaceenes 161
Algebraic Signs........... ceeersesadlfl
ALL Literal..... cetrecenes P §
Alphabet-Name..ceooeveee cseessetancans 17
ALTER Statement......ccc.. eeese122, 165
Arithmetic Expressions....ceeceeeee .125
Arithmetic Operators......ceceevees .126
Arithmetic Statéments............ ...125
Expressions..... Ceeeecaccaenns «..125
Formation.......... P 1
Operators..cceeeecceceacss I 1]
RUlES.cceerseeososscccasnns ereeeel26
At End Condition....... cesssessl46, 152
-— B PR

BLANK WHEN ZERO Clause......ceeee....94

-—C --

CALL Statement.............. R 1
Character Set............. F T I § 2
Character Strings........... I 1)
Class Condition........ cesesecnnnans 132
Classes of Data...... S I £
Clauses
BLANK WHEN ZERO...... ceetesessnsenn 94
Data-Name..sseeeecsee B)
DATA RECORDiceeeceeeeerens I 4
FILLER.::.eosvee s ececssecssecessacse 74
JUSTIFIED. ceeceoesccacsconss ceeeesadl
LABEL RECORD.:.cececoosssccsccccecs 61
OCCURS...... cecesseccssescesseneane 89
REDEFINES....... ceeesrssescsscsann 71
RENAMES...... cesressseessececnenes 98
SIGN...cceccse S s esesasasnaanarsanns 88
SYNCHRONIZED .+ ceeoececeess eeeseeosa9l
USAGE. ceeceeceses P -1
VALUE IS.scccsscse cesescesecesanne 95
Clauses and Entries....cecieeececeacs 28

CLOSE Statement.....coeeceesessessesl68
CLOSE Statement

(Relative and Indexed I/0)...1l79
CLOSE Statement (Sequential I/0)...l68

-- 322 --

~—RM/COBOL Language —_ TRS-80 © INDEX

COBOL.:.vvseessteenncocanaas ceesresanns 9
ALL Literal..ciseeeveceeeccenns ees2l
Clauses and Entries...veeeeeeeeen. 28
Comment-Entry....ceceeeecvencnnans 23
Configuration Section.....eeevee.. 39

Special-Names Paragraph....... .. 42

The Object-Computer Paragraph...4§
The Object-Computer Paragraph...4§

Character Set........ P B |
Character Strings....ceceeeeesncas 15
COBOL Words..... teeteertteceneenen 15
Compile TimME€..c.vouesoenenvoanans 251
Condition-Name....eeeveesens ceeesal?
ConNNectiveS.veereeeeessocansnn ve..19
Data DivisSion..seeeeeveevscooesana 53
Data-Name...ceveseesssssasoncans ..16
DIViSIONS..ietereeeseerocennsonnnne 29
Environment Division....vceceeevee.37
Introduction.......... B 1
Error MessageS..seseeeess0s..249, 251
Figurative ConstantsS......cceeeeue 19
File-Name....... D 16
HiStOry.ecoeeeeeoeoeonceoanenanns veod
Identification Division........... 33
Input-Output Section.....cceeveeunn 44
The File-Control Paragraph...... 44
Key Words..... Ceesettresenenaannnn 19
Language Structure.......... P
Level-Number......ceveeeeus. P -
LiteralsS....ciceesveennaese ceneesed
COBOL Words........ csetecenecne 15
Nonnumeric Literals.......eu.. eees22
Numeric Literals....... cererensean 22
Optional Words........ ceereeetnann 19
Paragraph-Name......... cessecnnnaa 17
ParagraphS....ceeeveeecass veeesees28
Picture String.......ceeee. ceeeessa23
Program Identification............ 35
Author ParagraphS.......eeceeese 36
Date-Written Paragraphs......... 36
Installation Paragraphs......... 36
Security Paragraphs..... cesseses3b
Program-Name....ccceeeeosascans +salb
Program Structure........cecc0....24
Clauses and Entries........ ceas.28
Divisions.....eeceucas ceresesnnse 29
ParagraphS..cceeevecsscscosssosans 28
SectionsS...ecovecsescsaas ceeses..28

-- 323 —-

RM/COBOL Language TRS-80 ° INDEX

SentencCesS..veeescscscescccccas ceee2?
Source Format.ceeeeesocssocseesesld
StatementsS..cceeecccccccscesessealb C;}
The Copy Statement........ccce.. 29 i
Record-Name.......... U X
Reserved Words....ceeeesee0s.+19, 259
Section-Name....oeececessensenaasal?

SeCtiONS.eteeteerssacosaanseansceanas 28
Segment-Number...... seesesssessssslB
SeNteNCeS.iceaccacctcccacsscaancnne 27

Source Format...vesoeeeaececccceasss24
Blank LineS..ceecersvoscsceessesls

Comment Lines....... cessecsssaseld
Continuation of Lines...... eeees25
Debugging Lines.....ceeeeeseeen. 26

Special Characters......eeeeeeeee.2l
Standardization.....ccceeeeasseacsasad
StatementS..cveeeesctsersscssonseeslb

System Names....... seessnsesssesssll
Text-Name...oeeesoceas P -
The Copy Statement.............. ..29
USer WOordS.:eeeeeccssecccssaccnans 16
Alphabet-Name.....ccceeereneacns 17
Condition-Name.....eeeeosovvseeasl?
Data-Name............ ceessessesslb
File-Name€...coeeeeeenncosancnans 16
IndeXx—-Name..esssesesecccascccasna 17
Level-Number.....cceeeeceenacses 18
Paragraph-Name...sseseeceeesccees 17
Program-Name€....cecceeeeecoccccecs 16
Record-Name........ P X
Section—-Name....veceeececanccacns 17
Segment-Number.......... P -
Text-Name..... tesecsscsssnsssssslB
COBOL Introduction.....ccceeeeeevsecss3
COBOL LiteralS..cciececececccascscaannas 22

Numeric LiteralS.ceeeeeeecococoses
Combined Conditions...cccveeeseeeesal3S
cComment—Entry...oeeecoecessosssosoesell
Comment LineS...ceceececesssccsnsascesld
Comparison,Index NameS......ece000...132

Comparison,Numeric Operands...... 13¢

Comparison,Nonnumeric Operands...l3f

Relation..cceeccecacssns cerssccons 129
Comparison,Nonnumeric Operands...... 139
Comparison,Numeric OperandS......... 13¢
Comparisons,Index Data Items........132
Comparisons,Index-NameS...c.ceeee. ..132

-- 324 --

RM/COBOL Lanquage TRS-80 ° INDEX

Complex ConditionS....veeeeesenennas 134
Conditionals....eceveunenn cereeeseaal29
Class Condition.......... ceeseadsl32
Combined...... P 1 1.3
Comparisons,Index Data Items.....132
Complex Condition....... B R 1|
Evaluation Rules....... sereeesnsal36
Negated Combined............ eee..135
Switch Status....eiieceineeennnnnn 133
Variable.....ocu.. ceereenan ceeese133
Condition Evaluation Rules....... «s.136
Conditional Relations...ce.eeeeeeeans 129
Conditional Variables..... ceeesenann 133
Condition-Name......ccec... T i |
Configuration Section........... eees+39
Special-Names Paragraph...........42
The Object-Computer Paragraph..... 49
The Source-Computer Paragraph.....4§
Current Record Pointer.........c... .148
Connectives.v.ovvenon.. creceann ceessel9
Continuation of Lines P11

__D__

Data......... ceeesnes creersanan ceee 108
ClassSeS.vseeceecann cesaae cevesnae 199
Condition-Name......oeveeeeeena..108
Identifier....... cesec ittt eecaaa .. 107
IndexXing....eeeeeunn. O - [
Qualification......ceu... ceeesses1@3
Structures......... Cereseseaenann 109
Subscripting................ eee..105
Table Handling........ P - £

Data Alignment.......ceeveenne ceeeso1f2
Standard Allignment..... Ceseenaes 192

Data Description Entry............ +s.66

Data Division.....veeeeenn.. feesseans .53
File Section...veecvenn.. - X/

The Block Contains Clause....... 59

The File Descripion Entry.......58
The Record Contains Clause......68

Introduction........ Ceesensaaan Y
Data Name€......eoa. cevecsrresevnnas ..16
Data-Name Claus€......... ceereaan oo 1
DATA RECORD ClauS€..ceeeeeeesn teeeseab2
Data Records....... cessesesnaas PN Y4
Data Structures.......... e teereeaan 1049
Date-Written..... teceasssseversnans .. 36
DeclarativeS...iiveeececnsneenanas ..117

-- 325 --

RM(COBOL Language TRS-80 ® INDEX

Delete Statement....cceveevecceecaas 174
DISPLAY Statement....ceeeeoeveeseeesal?5
DIVIDE Statement....ceeeceeessseassal?9

DIVISION PROCEDURE....ccccceeesccces 115
DiviSiOnS..secececassesecsosseassncnansa 29
- E -
Elementary ItemS..ceceesorscaceoceassabd
Entries
77 Level Description.....ceesees..65
Data Description..cececececscncesse 66
Record Description....c..ceceece.. ...64
Environment Division.....cceeeeesnese 37
Introduction.....cceeeeevencennes .39
Error MessageS...ccceeecesscncccs ...249
Compile Time..vcceeveeovesvceessa25]l
EXeCULiON.:eoeeseosessnosoconnascnesns 117
EXIT Statement....scceereccecancecs .182
EXpPresSSionS..ceeeeeeeeenececsnacanas 125
Arithmetic Expressions........... 125
- F [
Figurative ConstantS.ciceveceseveeesal?
File-Name.:.ccesessoesorssosscsssoseeselb
File Section..seeiveseccncscccnsns Y <;>
The Block Contains Clause......... 59 &
The File Discription Entry........58
The Record Contains Clause........ 6d
Filler ClauSe@..vceeecececnccosscnsnan 79
Fixed Insertion Editing.............. 8¢
Fixed Portion...c..eeeceecececccenns 129
Floating Insertion Editing........... 81
FUnNCtion..eeiseeensssescassnaaonsessld?
- G -
GO TO Statement....c.ieeeeeneecennens 183
——— I -
Identification Division.........c.... 33
Introduction.c.cevececeecsacsacnas 35
Identifier.iiceeieeeacasescenconaeasesl@?
IF Statement...cececececccccas eesessl84
Independent SegmentsS.....csoceeoes00.12f
Indexed Organization I/O........ ees.147
AccessS MOAeS.eeeeeessscesescnanaa 147
Current Record Pointer...........148
FUNCtion.sseeescrovevecsooensonnan 147
I/0 status......... cecsssesessesnsesaldB 4

-- 326 --

RM‘ COBOL Lang uage TRS'BO ® INDEX

Status Key l...cvverennnne seesesald8
Status Key 2......0... Gevesnssaa .149
Organization..ceeeeeeesenenacnas .147
Indexing..... chteeceeanen ceeeeaen ...106
Index-Name......... P
Input-Output Section.......... - V-
Indexed File Control Entry........49
I/0 Control Paragraph..... . ¥4

Relative File Control Entry.......47
Sequential File Control Entry.....45

INPUT PRrase@..ccceeeeeescnceencas ...208
INSPECT Statement........ceeeeunn ...186
INVALID KEY Condition..........145, 151
Installation....c.ceeceeenn. secerenanan 36
I/0ceeenreenenannnnns tereeenenase veeel4d5

At End Condition...... seeeso.146, 152

Indexed Organization.............147
Invalid Key Condition.......l145, 151

I/O StatuUS.veceneennencnns cesessseeald8
__J__
Justified Claus@.cveeeeeeenns PR k]
__K--
Key WordsS.coeeeeeoeenoensnas cteacensas 19
_-L__
LABEL RECORD. s eecetsorennennns seseesbl
Language Structure.......... PP § §
Level-Numbers.....cceeve0e....18, 64, 69
Linkage SectioN..ceeeeeereenenecnnnna 63
Literals.ceveeeeeeceaeas tesecnesesneal2
NumeriC.seveeeeaaas .
Logical Records
Level-Number.......... cesesessssssb?
——.M__
MOVE Statement......... csesservennne 194
MULTIPLY Statement.....cceeeeeeess «+.199
_._N__
Negated Combined Conditions.........135
Nonnumeric LiteralsS....ciceeeaces eeea22
Numeric ItemS...veecececseenes cereesalfl
Numeric Literals......... chereersaeea22
__O__
Occurs ClauS€.ceeeecacnaanas sreeesesaB9

-- 327 —-

RM/COBOL Language TRS-80 ° INDEX

OPEN Statement....... csesencaca 261, 285
Optional Words........ B
OUTPUT Phrase........cea. B K
Organization......... cereeseeas ceesl147
- P -
Paragraph-Name........ccveeeeneneeeesl?
Paragraphs.....ceeeeeeceenecennss 28, 36
PERFORM Statement......ovceven. 122, 299
PICTURE ClauS€..eeesecsesccasvsceeseaal3
Picture Editing.ceceveeeeennanans .8@-85
Floating Insertione.8l
Fixed InsertioN.ceeceveeecss ceeee. 80
Simple Insertion...c.ececcrececceas 8g
Special InsertionN....ceveveceecsss 8g
Zero SuppressSion....c.cececesvenes.B82
Picture String..ceeeeececsosss ceevess23
Procedural Statment............... ..153
PROCEDURE DIVISION. ..veceescsccccsns 115
Declaratives........ cesesesesnan .117
Execution...... cececsassecnnnns ..117
Procedure References....... N N ¥
ProcedureS...cceeeeescsoccss P & I
Program-ID Paragraph..... F e 1
Author........ sressesses [T 1
Date-Written.....o.cven. sececvocns 36
Installation......... T 1
SeCUritY.eeererisneencncennaaas cess36
Program Identification........... ..0es35
Author ParagraphsS.......ccceeeses .36

Date-Written PaaragraphS..........36
Installation Paragraphs...........36
Program-ID Paragraph......ceeee.s.36

Security ParagraphsS.....cece.e. ess.36
Program NamMe...eeeveeevresocesanoas ..16
Program Structure.....eeceeeeececceses 24

Divisions......... sescessscencacesl

Paragraphs...cceeeeeeeeceanas cee..28

Source Format......c.cc0n ceeveeeesld

Blank Lines........ ceeessssseasald
Clauses and Entries..... ceessesa28
Comment Lines......... cesesnsead2d
Continuation of Lines....c.cv.v.. 25
SectionNsS.icieiieieceeccessvenasna28
Sentences...ciiieeccnnanas seeeaasld
Statements......cieveveeccee cesesslb

The Copy Statement.......cceeeeee.29

-- 328 --

RM‘ COBOL Language TRS’BO ® INDEX

- Q -—

Qualification............. N ¥ k|

- R —-—

READ Statement............ eee..221, 224

Record Description........... P Y

Record Description Entry.......... ...64

Record-Name.cveenieeensanas P ¥)

REDEFINES Clause...civeencecennn [

Relation Condition..... creenennos ...129

Relative Organization I/0......... ..141
Access MOA@S....vivtivenrnnennne ..141
At End Condition........... ceve..146
Current Record Pointer........... 142
Function.......... ceeteenn I 3 §
Invalid Key Condition............l45
I/0 Status......... Ceeeenrenans ..e142
Organization.......... Ceeesesenan 141
Status Key l....cvcvnnnn cecane ..142
Status Key 2...iiiverineeeccens ...143

RENAMES ClauSe€...cecvevecencann ceee...98

Reserved Words......covveeevoeas 19, 259

REWRITE Statement........... ...229, 231

- s pp—

Sections.......... cessesane ceereessss28
Linkage....cu0eu. Cesesense ceevseessb3
Working-Storage............ cereess63

Section-Words...... ceesetscerennne I

Security Paragraphs............... ... 36

Segmentation.....ceveea.n ceeeaeeess12f
Alter...... cesens cevseenan ..122, 165
Classification.......c..... ceeesal2l
Perform.......... envens cesesenas .122
Control.....oovveennenn I 3
Fixed Portion........ ceseenn cee..12f
Independent Segments.............120
SegmentS..c.eeeereennananns ceteens 12¢
Use Statement.......... [B X

Segment-Number......... cererenaas18

SegmentsS..civieerivennaaans P 3)

Sentences........ te et een e R

Separators......... cevesasa I

Sequential I/0..... Ceeeseeaaas ceeeeal37
Relative Organization I/0..... ... 141

Sequential Organization 1/0.........137
Access Mode....vverinaanan P i ¥

-- 329 --

RM/COBOL Language TRS-80 ® INDEX

Current Record Pointer...........l37
FUNCELiON.veeeaoeceasosscesssanseslld?
I-0 StaAtUS..eeececossonsscsansesal3B
Organization......ceceeeeeesseesal3d?
Status KeY leceeeececcceoanssssssl38
Status Key 2.ceeceveesccncssessssl3B
SET Statement...ceoeeeceeosssvoossessa233
Simple Insertion Editing.............8f
SIGN ClaUSE..oeceecocacssssncnssossssB8
SOUrCe FOrMAt..eeeecesosccscccsssoossald
Blank LineS...eeececcecaccesscsess25
Comment LineS...ieeeeesacnccsseeesdd
Continuation of Lines...ceeeeeeee+25
Debugging Lines.....ccvveeenenns .26
Program Structure..........oe-....24
Clauses and Entries.............28
Paragraphs...ceeeeeeeecancsess.o28
SEeCLiONS.eeeeeseceooccsscasaness2B
Special Characters.......eeeeecseesss2l
Special Insertion Editing............8§
START Statement...cceceoecesseoacsses23d
StatementS .o eeeeeeeecsssscenessa2b, 122
ACCEPT FROM.eeveoveosesnoscoassosesl53
ACCEPT (Terminal I/O)....cees...154
ADD. vcvecscncasonassossssanssnsssslbl
ALTER:. c s coeceacsascsssesassonsseal22
CALL . v eeesoonsacesasansssasssocesslbB
CLOSE (Sequential I/O)...........168
CLOSE (Relative and Indexed I1/0).178
COMPUTE. teseccosccscen cesessssesal2
DELETE. oo oevcecscssaccsssonsseesl?d
DISPLAY. . ceeeecescssacnscssesesssl?D
DIVIDE. .eooeoscss ceeecessensasssal?9
BXIT:eeerooosannes ceesescesseness182

GO TOveseoceonnsnneasssnssssssseaslB83

IF e eecsooanaasossenssssssnssnocesslB4
INSPECT . o occesoscassscsccssssssessl86
MOVE. e:eeesoceeesssessssseseaseseslfd
MULTIPLY e cveeeceoenososaansasseessl99
OPEN.vvoeceeaoeannoansssssss20l, 205
OUTPUT Phras@.....ceeessooceesess2f3
PERFORM.:voeevecsnnannssesesl22, 269
READ .. eoeeesonnassasnsssessa22l, 224
REWRITE . . eeceososeososaneasss229, 231
SET . veeeeeescsoscncsssnssncsosssseel3d
START. . ovoeececscsscassssnsssanseesel3d
STOP.eveeeocennccsessssnascasessealld?

- 33g -

M‘ QOBOL Langgage TRS'BO ® INDEX

SUBTRACT...... teeesesecs ceesens ..238
UNLOCK.vsoeeeaeen cstesessns cevesea242
USE..cteeeeevenannas ceoeresssena v e.123
WRITE(Relative and Indexed I/0)..246
Status Key l.cieierencennnn cesesesas 148
Status K€¥..oveuuan ceerseanae ceeenna 149
STOP Statement.......... ceseneeans .e237
Subscripting........ ceesesaas PR ¥ 11
SUBTRACT Statement.......ccc... cess0.238
Switch-Status Condition....... eeeeeal33
SYNCHONIZED ClauS€.cecevcecenee eeeeeee9l
System NameS...ceveeeensecasans P
[— T -
Table Handling...eoeeeoeoa. B, 149
Terminal I/0..... tecenenn cieseenssa154
ACCEPT Statment.....cccee.. eese..154
BLINK Phrase.....veceveeeeas vree.159
CONVERT Phrase.......... sesseeseslB?
ECHO Phrase....c.ceeeceacas R X
ERASE Phrase.......... cessecnnsan 158
HIGH/LOW Phrase........... ceesss.159
LINE Phrase....ceeeeees ceee e .155
NO BEEP Phrase........... cessseaalb9
OFF Phrase€....civoeeeeeean ceesasssl59
ON EXCEPTION Phrase..... Cerenna ..160
POSITION Phras@..cceeeceecseesa..155
PROMPT Phrase......... ceseseens ..157
REVERSE PHRASE........ cessssassssl59
SIZE Phrase.....veeveeieeeereesesal56
TAB Phrase€.....ceeeee. ceeeseceaaselB8
UNIT Phrase.....c..c... ceesenan ees.155
Text-Name..... st teeserenscenann ceves.18
THE Copy Statement............ R —t]
The Object-Computer Paragraph........ 49
The Source-Computer Paragraph....... .49
-— U —
UNLOCK Statement........... cesesan ..242
Usage Clause..c.veerons B -1
User Words....eeoveeeeenan cererenne ce.16
Alphabet-Name.......o0o000ee. veeesel?
Condition-Name....... ceersesans eeal?
Data-Name€....vevuenen Cecerrssaean .16
File-Name........ ceesrennsan P N)
Index-Name....... ctserecncens veesal?
Level-Number.....vc.o.... O ¥ -

-- 331 --

RM/COBOL Language TRS-80 ° INDEX

Paragraph-Name.....cceeeoeseoesesal?
Program— NaME..cesceoessccaccnscse 16
Record-Name.ceesesoosse cesserseasslb
Section-Name..seeeseseecenns ceeesel?
Segment-Number........ ceseseseseasslB
Text-Name........ B -

_—v--
VALUE IS ClauS@...cceeoseesseccssecessd5
__W--
Working-Storage Section........ IR X
WRITE Statement (Sequential I/0..... 243
WRITE Statement

(RELATIVE and Indexed I/0.....246

-—— Z —
Zero Suppression Editing....... ceeessB2

-- 332 --

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM u. K
91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE WEST MIDLANDS WS10 7JN

1/84-TM Printed in U.S.A.

	Disk
	Readme
	Intro
	Tab1
	Section1
	Tab2
	Section2

