I

.

o

e

'I:_ ..
A

e ol

A g

gt A
E

A

¥]
¥
& =
J = i
1
[
L J--

Fape e

i

el

=,

L

.‘_..H.H.. -:L"I'a--.h .._|--.:|;:“-|': r_l| s ‘_\.__I.,‘_:.‘.-...._-.-_i- BT . A'f b e d alf-"f-'-_-"""- 4 _:..; . AR 1.1:... I.-.-.:‘..-q:-l. T A q:p-ﬂ-f‘._"“ m'i_ﬂi'_:l"-“l-..- g

e,

"

READ ME FIRST

All computer software is subject to change, correction, or improvement as the manu-
facturer receives customer comments and experiences. Radio Shack has estab-
lished a system to keep you immediately informed of any reported problems with
this software, and the solutions. We have a customer service network including rep-
resentatives in many Radio Shack Computer Centers, and a large group in Fort
Worth, Texas, to help with any specific errors you may find in your use of the pro-
grams. We will also furnish information on any improvements or changes that are
“cut in” on later production versions.

To take advantage of these services, you must do three things:

(1) Send in the postage-paid software registration card included in this manual
immediately. (Postage must be affixed in Canada.)

(@) If you change your address, you must send us a change of address card
(enclosed), listing your old address exactly as it is currently on file with us.

(3) As we furnish updates or “patches”, and you update your software, you must
keep an accurate record of the current version numbers on the logs below.
(The version number will be furnished with each update.)

Keep this card in your manual at all times, and refer to the current version numbers
when requesting information or help from us. Thank you.

APPLICATIONS SOFTWARE OP. SYSTEM
VERSION LOG VERSIONLOG

03.13.00

Cat. No. 26-5255

MS*FORTRAN

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK AND TANDY
COMPUTER EQUIPMENT AND SOFTWARE PURCHASED FROM A RADIO SHACK
COMPANY-OWNED COMPUTER CENTER. RETAIL STORE DR FROM A RADIO SHACK
FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY

ity 1hal this computer hardware pu
ed separately (the Software |

CUSTOMER OBLIGATIONS

other requirements of CUSTON
] CUSTOMER assumes full respo
Soltware are to function. and for its

RADID SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A For a period of minety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Eauipment
RADIO SHACK warrants 1o the anginal CUSTOMER that the Equipment and the megium o which the Soltware 15 st ree from
manutactuning defects This warranty is only applicable to purchases of Ragio Shack and Tandy Equipment by the original customer
Irom Radio Shack company-owned computer centers. retail slores and from Radio Shack franchisees al its authorized
localion. The warranty 1s void if the Equipment s case o cabinel has been opened. of f the Equipmen b d
to improper brormal use If a manufactuning defect is discovered during the stated war
be rei a Radia Shack Computer Center. 3 Radia Shack retal slore. partic pating F
for repan. a with a copy of the sales document or lzase agreement. The original
evenl of 3 ect 15 imited 10 the correction of the defect by repain replacement. or re
election and sole expense RADIO SHACK has no obligation to replace or repair expe:

B RADIO SHACK makes no warranty as to the design. capabilty. capacity or suitab
this paragraph Software 15 hicensed on an AS IS basis. without warrar
of a Software cement within 1
dacument re fective Software sh

i 0 Shack cealer
= e rem n the

und of the purchase price al RADIO SHACK S

ble items

use of the Software

nigingl CUSTOMER S exclu:

Shack retail store. participating Ra s

Cc Except as provided herein no em, agent franc
behalf of RADIO SHACK

D Except as provided herein. Radio Shack makes no express warranlies. and any implied warranty ol merchantability or fitness for a
particular purpose is limiled in its duration to the duralion of the written limited warranties sel forth herein.

3 Some states do not allow imitations on haw lang an implied warranty lasts so the above limitationis) may not apply to CUSTOMER

LIMITATION OF LIABILITY

A Excepl as provided herein. Radio Shack shall have no liability ot respoasibility 1o cuslomer or any other person or entity with
respect 1o any liability. loss or damage caused or alleged lo be caused directly or indirectly by “Equipment” or “'Software”” sold
leased. licensed or furnished by Radio Shack. including. bul not limited to. any interruption of service. loss of business or

i Y profits or al d resulling Irom the use or operation of the “Equipment” or “Software” In no event
shall Radio gha:l be liable lor loss of profits. or any indirecl. special. or consequential damages arising out of any breach ol this
warranly or in any manner arising out of or connecled with the sale. lease. license. use or anlicipated use of the “Equipment” or

““Software”
Notw the above limi and i Radio Shack’s liability hereunder tor damages incurred by customer or
others shall not exceed the amount paid by for the i “Equi " or “Soltware’’ involved

B RADIO SHACK shall not be liable for any dan hing Equipment and or Software

c

No action ansing out of any
cause of action has accrued ot more
Equipment or Software. whichever first occurs
D Some states do not allgw the imitation or exclusion of incidental or consequ

may not apply to CUSTOMER

RADIO SHACK SOFTWARE LICENSE
RADIO SHACK grants to CUSTOMER 2 non-exclusive paid-up hicense to use the RADIO SHACK Soltware on one computer subject 16 the

following provisions
A Except as otherwise provided in this Sotw:

License applicable copyright faws shall apply 1o the Soft

Title to the medium on which the Saftware s recorded icasselle and ot diskette) ot stored (ROMI s fran ed 1o CUSTOMER . but not
t the Sottware

c CUSTOMER may use Software on one host computer and access that Sof Software permits
his tunction

D CUSTOMER shall not use. make. manufacture. or reproduce copres of Software excepl lor use on one computer and as is specifically
provided in this Software License Customer 15 expressly prohibited from disassembling the Software

E CUSTOMER 15 permitted 1o make additional copies of the Software only for backup or archival purposes ar if additonal coples are

reguired in the operation of ane compuler with the Software. but only 1o the extent the Software allows a backup cc

However tor TRSDOS Software. CUSTOMER 15 permitted to make a himited number of addilional copies for CUSTOME
F CUSTOMER may resell or distribute unmoditied copies of the Software provided CUSTOMER has purchased one

for each one sold or distributed The provisions of this Software License shall also be apphicable 1o third parties
ftware from CUSTOMER
copyright nohices shall be reta

y 10 be made
R
1t

G

on all copes of the Soltware

APPLICABILITY OF WARRANTY

A The terms and conditions of this Warranty ate applicable as between RADID SHACK ang CUSTOMER to either a sal

e of the Equipment

and or Software License to CUSTOMER o1 1o a transaction whereby RADIO SHACK sells o1 conveys such Equipment 1o a third party for
lease 1o CUSTOMER

8 The limitations of hability and Warranty provisions herein shall inure 1o the benefit of RADIO SHACK the author awner and ot heensor

of the Software and any manufacturer of the

STATE LAW RIGHTS

uipment sold by RADIO SHACK

The warranties granted herein give Ihe original (
from state to stale

TOMER specifi

legal nghts and the original CUSTOMER may have other rights which vary

OIID

MS™-FORTRAN Compiler

User’s Guide

MS™.FORTRAN Software: Copyright 1983 Microsoft
Corporation. Licensed to Tandy Corporation. All Rights
Reserved.

MS™.DOS Software: Copyright 1983 Microsoft
Corporation. Licensed to Tandy Corporation. All Rights
Reserved.

Model 2000 BIOS Software: Copyright 1983 'Tandy
Corporation. All Rights Reserved.

MS™-FORTRAN Manual: Copyright 1983 Microsoft
Corporation and Tandy Corporation. Licensed to Tandy
Corporation. All Rights Reserved.

Reproduction or use without express written permission
from Tandy Corporation, of any portion of this manual is
prohibited. While reasonable efforts have been taken in the
preparation of this manual to assure its accuracy, Tandy
Corporation assumes no liability resulting from any errors
or omissions in this manual, or from the use¢ of the
information contained herein.

Replacement Page
for the
MS-FORTRAN Reference Manual

The attached replacement page is provided to update vour MS-FORTRAN Ref-
- crence Manual. It contains the changes made to files on the MS-FORTRAN Compil-
c_ o cr diskette.

Plcasc remove and discard the original page and put this in its place.

Note to MS-FORTRAN users: If you get a disk full error during any pass of the
compiler, you should immediately use the MS-DOS CHKDSK utility to insure the
integrity of the file system.

Thank You!
Tandy Corporation

TN
o

Operating
Fortran

Contents

FIUICS ..o iii

TADIES.....oviieiiie iii

Introduction ... iv
System Requirements....................on, iv
Package Contents...........coooiiiiiiii iv
About This Manual.................... v
Syntax NOWON. ... vii

Learning More About FORTRAN....................... vii

1/ Getting Started........ccceuvueeeen. creereeeans eessaseseronsan T |
1.1 Preliminary Procedures........................... 2

1.2 Program Development...............................3

1.3 Vocabulary.............. 7
2/ A Sample SeSSiON...ccurernininieinnrnennannan. . creenenen 11
2.1 Preparing 2 FORTRAN Program........................ 12

2.2 Compiling The FORTRAN Source File.............. 13

2.3 Linking the Object File With the Runtime Library 17

2.4 Executing Your FORTRAN Program.................. 19

3 / More About Compiling.........cc.ccevuruiuinrninrncnnns R} |
3.1 Files Written by the Compiler.......................... 22

3.2 Filename Conventions................................... 25

33 Starting the Compiler.................... 29

4 / More About Linking............. RN 33
4.1 Files Read by the Linker.......................c... 34

4.2 Files Written by the Linker.............................38

4.3 Linker Switches.................. 40

5 / Using a Batch Command File.............. PR 3 |

6 / Compiling and Linking Large Programs..................43

6.1 Avoiding Limits on Code Size.......................... 44

6.2 Avoiding Limits on Data Size.........ccoo.oeoiveiennn. 45

6.3 Working With Limits on Compile Time Memory46

6.4 Working With Floating-Point Operations.......... 49

6.5 Working With Limits on Disk Memory............. 54

6.6 Minimizing Load Module Size.......................... 59

7 / Using Assembly Language Routines........................01
7.1 Calling Conventions..........c.cccocoveviiviieiniann.d 62

7.2 Internal Representations of Data Types............. 65

7.3 Interfacing to Assembly Language Routines....... 67

8 / Advanced TOPicCS....ceeeruerrnrecncncnenenes eererecnrerernierasanens 73
8.1 The Structure of the Compiler......................... 74

8.2 An Overview of the File System...................... 80

8.3 Runtime Architecture..................oo 83
Appendices......ceerernennnnnn. crererensens R I
A / FORTRAN File Control Block......... sessesrestensansensanaas 99
B / Real Number Conversion Utilities.........................103
C / Structure of External FORTRAN Files...................105
D / FORTRAN Scratch File Names.....cccceceeieieininnenennne. 107
E / Link Error MeSSaZEeS...cccucerenrururecncerececerecacerececnnenns 109
T QN 113

ii

Figures

Tables

Figure 1.1
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 8.1
Figure 8.2
Figure 8.3

Figure 8.4

Table 3.1
Table 3.2
Table 3.3
Table 4.1
Table 4.2
Table 8.1
Table 8.2
Table 8.3
Table 8.4

Program Development.....oooooo 4
Contents of the Frame.......................... 62
Two-Byte Return Value.......................... 67
Four-Byte Return Value......................... 67
Stack Before Transfer to IADD. ..o 68
Stack Before Transfer to RADD................ 70
The Structure of the Compiler................ 74
The Unit U Interface..........oooooon. 81
Memory Organization............................ 85
FORTRAN Program Structure.................. 89

Files Used by the MS-FORTRAN Compiler24

Conventional Filename Extensions........... 26
Decfault File Specifications....................... 26
Linker Defaults...........coooooiii. 30
LINK SWitches..ooooviiiiiiii, 40
Front End Compilation Procedures.......... 76
Unit Identifier Suffixes....................... 83
Error Code Classification........................ 93
Runtime Values in BRTEQQ.................... 94

i

Introduction

The FORTRAN Compiler, also referred to as the MS™-
FORTRAN Compiler, accepts programs written according to
the subset FORTRAN standard, described in the document
American National Standard Programming Language
FORTRAN, ANSI X3.1978. The MS-FORTRAN language is
described in the accompanying FORTRAN Reference
Manual. This User’s Guide explains how to use the MS-
FORTRAN Compiler v.3.10 implemented for the Microsoft
Disk Operating System, MS-DOS.

System Requirements

The MS-FORTRAN Compiler can be used with the Tandy
personal computer having one floppy disk drive and a
minimum of 256K random access memory available, (The
MS-DOS utility CHKDSK will tell you how much RAM is
available.)

Your machine must run MS-DOS 2.0 and have MS-LINK., MS-
LINK is a standard MS-DOS utility.

Package Contents

The MS-FORTRAN Compiler package includes one disk and
onc documentation binder, containing onc user’s guide and
one reference manual.

Software
The software for the MS-FORTRAN Compiler contains the
following files on disk:
File Contents
FOR1.EXE Pass one of the MS-FORTRAN Compiler
PAS2.EXE Pass two of the MS-FORTRAN Compiler
PAS3.EXE Pass three of the MS-FORTRAN Compiler

iv

P

N
<0

O

FORTRAN.LIB

FORTRAN.PEM

The MS-FORTRAN runtime library, for cmul.umg real
number arithmetic in software

A map of the MS-FORTRAN runtime
FORTRAN.LIB

library

LINK.EXE MS-LINK Linker

CONUXU.OB]J Provides MSDOS 2.0 file support to software

FORUXU.OBJ Provides MSDOS 2.0 file support to software

FILUXU.OB]J Provides MSDOS 2.0 file suppurt to software

NULF.OBJ The dummy file system

NULEG.OBJ The dummy errror system

ENTXGL.ASM The assembler source of the execution control
module that initializes and terminates every program

DEMO.FOR Bubble sort demonstration program

README.DOC If present, this file contains documentation that is
more up to date than the printed documentation
described in the following section.

Documentation

Documentation for the MS-FORTRAN Compiler is provided
in the following two manuals:

MS-FORTRAN Compiler User's Guide

This manual provides an introduction to compiling and
linking, a sample session, and a technical reference for
the MS-FORTRAN Compiler.

MS-FORTRAN Reference Manual

This manual describes the grammar and use of the MS-
FORTRAN language. With the exception of any recent
changes noted in a README.DOC file, this is the language
supported by the MS-FORTRAN Compiler.

About This Manual

The MS-FORTRAN Compiler User'’s Guide describes the
operation of the MS-FORTRAN Compiler, from the most
rudimentary procedures to more advanced topics that may
be of interest only to experienced programmers.

U

The document assumes that you have a working knowledge
of the MS-FORTRAN language and MS-DOS. For information
on programming in FORTRAN. see “Learning More About
FORTRAN" in this introduction.

Chapter 1. "Getting Started.” discusses several procedures
to do before compiling and linking your first program. It also
describes the process of program development, and provides
a short vocabulary for those who may be unfamiliar with
the terms used in this document. Those who are already
familiar with compiling and linking may wish to skip most
of this chapter. but should read Section 1.1, “Preliminary
Procedures.” before proceeding.

Chapter 2. “A Sample Session.” provides a step-by-step walk-
through of each of the steps that follow the writing of a
program: compiling. linking. and running.

Chapter 3. "More About Compiling.” and Chapter 4. "More
About Linking.” supplement the material in Chapter 2 on
compiling and linking. respectively.

Chapters 1 through + should be read in their entirety by the
first-time user of the MS-FORTRAN Compiler.

Chapter 5. “Using a Batch Command File.” and Chapter 6.
“Compiling and Linking Large Programs.” provide
information on these topics for the programmer who has
moved beyvond the basics.

Chapter 7. Using Assembly Language Routines.” provides
information for the experienced programmer who requires
supplementary routines written in assembly language.

Chapter 8. “Advanced Topics.” provides additional technical
information on compiler structure. the MS-FORTRAN filc¢
system. and runtime architecture.

Appendices A through D provide information specific to the
MS-DOS implementation of this version of the compiler.

Appendix E. "MS-LINK Error Messages.” lists the MS-LINK
€rror messages.

Syntax Notation

CAPS

<>

The following notation is used throughout this manual in
descriptions of command and statement syntax:

Capital letters indicate portions of statements or commands
that must be entered, exactly as shown.

Angle brackets indicate user-supplied data. When the angle
brackets enclose lowercase text, you must type in an entry
defined by the text (for example, <filename>). When the
angle brackets enclose uppercase text, you must press the
key named by the text (such as KRETURN>).

Square brackets indicate that the enclosed entry is optional.

Ellipses indicate that an entry may be repeated as many times
as nceded or desired.
All other punctuation, such as commas, colons, slash marks,

parentheses, and equal signs, must be entered exactly as
shown.

Pressing the RETURN (or ENTER) key is assumed at the end
of every line you enter in response to a prompt. Only if this
is the only response required is the <RETURN> shown.

Learning More About FORTRAN

The manuals in this package provide complete reference
information for your implementation of the MS-FORTRAN
Compiler. They do not, however, teach you how to write
programs in FORTRAN. If you are new to FORTRAN or need
help in learning to program, we suggest you read any of the
following books:

Agelhoff, R., and Mojena, Richard. Applied FORTRAN 77,
Featuring Structured Programming. Wadsworth, 1981.

Ashcroft, J., Eldridge, R. H., Paulson, R. W.; and Wilson, G.
A. Programming With FORTRAN 77.Granada, 1981.

Fricdman, F, and Koffman, E. Problem Solving and
Structured Programming in FORTRAN. Addision-
Wesley, 2nd cdition, 1981.

Wagener, J. L. FORTRAN 77: Principles of Programming.
Wiley, 1980

vii

Chapter 1

Getting Started

1.1 Preliminary Procedures.......ccccceivvuinininnnnnn.
1.1.1 Backing Up Your MS-FORTRAN Disk.....
1.1.2 Setting Up Your MS-FORTRAN Disk.......
1.2 Program Development.........cccevveiiniinnennanees

1.3 VOCabUlary...ouceveiiiiiiniiiiiiiiiiiiiineciiiieneeaeans

Chapter 1/ Getting Started

1.1 Preliminary Procedures

This section describes several preliminary procedures, some
of which are required and some of which are highly
recommended before you begin the sample session or
compile any programs of your own. If you are unfamiliar
with any of the MS-DOS procedures mentioned, consult your
MS-DOS manual for instructions.

1.1.1 Backing Up Your MS-FORTRAN Disk
This step is optional but highly recommended.

The first thing you should do when you have unwrapped
your MS-FORTRAN disk is to make copies to work with,
saving the original disk for backup. Make the copies using
the COPY or DISKCOPY utilities supplied with MS-DOS.

1.1.2 Setting Up Your MS-FORTRAN Disk
This step is required.

You must have the file COMMAND.COM on the backup of
your MS-FORTRAN disk in order to use the disk in any drive
after booting MS-DOS. Therefore, you must copy COM-
MAND.COM to the backup of your MS-FORTRAN disk from
your system disk (with the MS-DOS command COPY).

Chapter 1/ Getting Started

1.2 Program Development

This section provides a brief introduction to program
development, a multistep process which includes first
writing the program, and then compiling, linking, and
running it. For a brief explanation of terms that may be
unfamiliar, see Section 1.3, “Vocabulary.”

A microprocessor can execute only its own machine
instructions; it cannot execute source program statements
directly. Therefore, before you run a program, some type of
translation, from the statements in your program, to the
machine language of your microprocessor, must occur.

Compilers and interpreters are two types of programs that
perform this translation. Depending on the language you are
using, either or both types of translation may be available
to you. MS-FORTRAN is a compiled language.

A compiler translates a source program and creates a new
file called an object file. The object file contains relocatable
machine code that can be placed and run at different
absolute locations in memory.

Compilation also associates memory addresses with variables
and with the targets of GOTO statements, so that lists of
variables or of labels do not have to be searched during
execution of your program.

Many compilers, including the MS-FORTRAN Compiler, are
what are called ‘“‘optimizing” compilers. During
optimization, the compiler reorders expressions and
climinates common subexpressions, either to increase speed
of cxecution or to decrease program size. These factors
combine to measurably increase the execution speed of your
program.

The MS-FORTRAN Compiler has a three-part structure. The
first two parts, pass one and pass two, carry out the
optimization and create the object code. Pass three is an
optional step that creates an object code listing. Compiling
is described in greater detail in Section 2.2, “‘Compiling the
Source File,” and in Chapter 3, “More about Compiling.”

Before a successfully compiled program can be executed, it
must be linked. Linking is the process in which MS-LINK
computes absolute offset addresses for routines and variables

3

Chapter 1/ Getting Started

in relocatable object modules and then resolves all external
references by searching the runtime library. The linker saves
your program on disk as an executable file, ready to run.

You may, at link time, link more than one object module,
as well as routines written in assembly language or other
high-level languages, and routines in other libraries. Linking
is described in greater detail in Section 2.3, “‘Linking the
Object File With the Runtime Library,” and in Chapter 4,
*“More about Linking.”

Figure 1.1 illustrates the entire program development process.

/——y Text editor ‘ﬁ 1.

{ !

4+ MS-FORTRAN source MS-MACRO source

l

MS—-FORTRAN MS-MACRO 2
Compiler Assembler *
— yes «— errors? errors? —» yes)

lno nol

for .0BJ Runtime asm.OBJ
file(s) library file(s)

L

MS-LINK
Linker

!

for.EXE file

Run for.EBXE 4.

!

\ yes € errors? —» N0 —m— S.

Figure 1.1. Program Development

Chapter 1/ Getting Started

Create and edit the MS-FORTRAN (and MS-Macro)
source file.

Program development begins when you write an MS-
FORTRAN program; any general purpose text editor
will serve the purpose. Use a text editor also to write
any assembly language routines you may plan to
include.

Compile the program with SDEBUG. Assemble the
assembler source, if any.

Once you have written a program, compile it with the
MS-FORTRAN Compiler. The compiler flags all
grammatical errors as it reads your source file. Include
the $SDEBUG metacommand in your source file to
generate diagnostic calls for runtime errors. If
compilation is successful, the compiler creates a
relocatable object file.

If you have written your own assembly language
routines (for cxample, to increase the speed of
execution of a particular algorithm),assemble those
routines with the Microsoft Macro Assembler, MS-
Macro.

(You may have received MS-Macro as part of the utility
package that came with your computer system. If not,
it is available separately from your software dealer.)

Link the compiled (and assembled) OB]J files with the
runtime library.

A compiled (or assembled) object file is not executable
and must be linked with one of the runtime librarics,
using MS-LINK. Scparately compiled MS-Pascal
subroutines and functions can also be linked to your
program at this time.

Run the EXE file.

The linker links all modules needed by your program
and produces as output an executable run file with
.EXE as the extension. This file can be executed by
simply typing its filename.

Recompile, relink, and rerun with SNODEBUG.

Repeat these processes until your program has

5

6

Chapter 1/ Getting Started

successfully compiled, linked, and run without errors.
Then recompile, relink, and rerun with SNODEBUG
to reduce the amount of time and space required.
Chapter 6, “Compiling and Linking Large Programs,”
discusses how to work within the various physical
limits you may encounter in compiling, linking, and
executing a program.

Chapter 1/ Getting Started

1.3 Vocabulary

This section reviews some of the vocabulary that is
commonly used in discussing the steps in program
development. The definitions given are intended primarily
for use with this manual. Thus, ne¢ither the individual
definition nor the list of terms is comprehensive.

An MS-FORTRAN program is more commonly called a
“source program” or ‘‘source file." The source file is the input
file to the compiler and must be in ASCII format. The
compiler translates this source and creates, as output, a new
file called a “‘relocatable object file.”” The source and object
files generally have the default extensions .FOR and .OB]J,
respectively. After compiling, the object file must be linked
with the runtime library to produce an executable program
or run file. The run file has the extension .EXE.

Some other terms you should know are related to stages in
the development and execution of a compiled program.
These stages are:

1. Compile time

The time during which the compiler is executing and
during which it compiles an MS-FORTRAN source file
and creates a relocatable object file.

2. Link time

The time during which the linker is executing and
during which it links together relocatable object files
and library files.

3. Runtime

The time during which a compiled and linked
program is executing. By convention, runtime refers
to the execution time of your program and not to the
execution time of the compiler or the linker.

(y The following terms pertain to the linking process and the
= runtime library:

1. Module

A general term for a discrete unit of code. There are
several types of modules, including relocatable and
executable modules.

Chapter 1/ Getting Started

The ,object files created by the compiler are said to
be “‘relocatable’, that is, they do not contain absolute
addresses. Linking produces an “‘executable” module,
that is, one that contains the necessary addresses to
proceed with loading and running the program.

2. Routine

Code, residing in 2 module, that represents a particular
subroutine or function. More than one routine may
reside in a module.

3. External reference

A variable or routine in one given module that is
referred to by a routine in another module. The
variable or routine is often said to be “defined” in the
module in which it resides.

The linker tries to resolve external references by
searching for the déclaration of each such reference
in other modules. If such a declaration is found, the
module in which it resides is selected to be part of
the executable module (if it is not already selected)
and becomes part of your executable file. These other
modaules are usually library modules in the runtime
library.

If the variable or routine is found, the address
associated with it is substituted for the reference in
the first module, which is then said to be “bound.”
When a variable is not found, it is said to be
“undefined” or “unresolved.”

4. Relocatable module

One whose code can be loaded and run at different
locations in memory. Relocatable modules contain
routines and variables represented as offsets relative
to the start of the module. These routines and
variables are said to be at “relative’’ offset addresses.

When the module is processed by the linker, an
address is associated with the start of the module. The
linker then computes an absolute offset address that
is equal to the associated address plus the relative
offset for each routine or variable. These new
computed values become the absolute offset addresses

Chapter 1/ Getting Started

that are used in the executable file. Compiled object
files and library files are all relocatable modules.

These offset addresses are still relative to a “segment,”
which corresponds to an 8086 segment register.
Segment addresses are not defined by the linker;
rather, they are computed when your program is
actually loaded prior to execution.

Runtime library

Contains the runtime routines needed to implement
the MS-FORTRAN language. A library module usually
corresponds to a feature or subfeature of the MS-
FORTRAN language.

Chapter 2

A Sample Session

2.1
2.2
2.2.1
2.2.2
2.2.3
2.3

2.4

Preparing a MS-FORTRAN Program.............. 12

Compiling thie Sout'ce File...svmsssmosesasnnss 15
Pass QD€ ssssssianaavasiissymissasss 13
PASS TWOuviumuvsuimsvmmunsnssosisiinaipssasoass s 15
Pass THLCE. . cssvavassmesmmunsrisssinsisiis 16

Linking the Object File With the

Runtimae LIDTary.. oo smiomssassananns 17

Executing Your MS-FORTRAN Program......... 19

Chapter 2 / A Sample Session

You can easily see how to use your MS-FORTRAN package
if you run a program.

To do this, follow these steps:

Prepare a MS-FORTRAN program.

(2) Check the program for errors and then create a
relocatable object file (by compiling it).

(3) Link the compiled OB] files with the runtime
library.

(4) Execute the program.

We assume that you have completed the necessary
preliminary procedures described in section 1.1 and that you
have one disk drive (A).

2.1 Preparing a MS-FORTRAN Program

Start up your computer and enter the date and time, MS-DOS
prompts:

A>
Insert your backup of the MS-FORTRAN disk in Drive A.

You can create MS-FORTRAN programs with any available
text editor. Source files should have the .FOR extension. For
this introductory session, use the program DEMO.FOR as
your source file, which is included on your MS-FORTRAN
backup disk.

Remove the system disk from Drive A and insert the MS-
FORTRAN backup disk.

The source file DEMO.FOR is now on the current drive.

12

Chapter 2/ A Sample Session

2.2 Compiling the Source File

You must compile your source file so that it is translated into
an object file that contains relocatable machine code.
Compilation also associates memory addresses with variables
and with the argets of GOTO statements.

Also, each time you run a program, it’s good to check for
syntax errors, which are usually simple spelling and word
order errors in your statement lines. You can check by
compiling the program.

Compiling your source code takes two or three passes. In
this sample session we complete three passes.

2.2.1 Pass One

Pass one supplies the compiler with the filenames that you

specify for the Object file, Source listing file, and Object

listing file. It also writes the source listing to the specified

file and detects any errors that prevent your program from

running correctly.

To start Pass one type the following at the system prompt:
A:FOR1

FORI1 is the executable run file for Pass one of the MS-
FORTRAN Compiler. The computer loads the compiler,
displays the date and version number, and then prompts you
for the name of the program:

Source filename [.FOR]:
For this session, beside the prompt type:
DEMO

This indicates that the source file is A:DEMO.FOR. All the
following prompts provide the default filename in brackets.

Next the compiler prompts:
Object filename [DEMO.OBJJ:
Type <RETURN> to

indicate that the object filename is DEMO.OB]J.

Chapter 2 / A Sample Session

Next the compiler prompts:

ting [NUL.LST]:
Type:
DEMO
to indicate that you want the source listing written to a file

called DEMO.LST instead of the default of the NUL file (no
file is created).

Next the compiler displays the final prompt:
Object listing [NUL.CQOD]J:

When you answer this prompt, you must decide whether
or not you wish to run the optional Pass 3 of the compiler,
which creates the object code listing. If you wish to run Pass
3, specify a file other than the default (no file at all).

In this session we run the Pass 3, therefore type:
DEMO

This indicates that you want the object listing written to a
disk file called DEMO.COD.

Compilation begins as soon as you respond to all four
prompts. If your program is error free, the screen displays
the following message when Pass one is complete:

Pass One No Errors Detected.

In this case all the files (Object file, Source listing file, and
Obiject listing file) are created and written to the file's whose
names you previously requested by answering the prompts.

If the compiler detects errors during compilation, the screen
shows a message similar to the following on your screen:

Pass One 3 Errors Detected.

Pass one creates two intermediate files, PASIBESYM and
PASIBEBIN. The compiler saves both these files on the
current drive for use during Pass two. If the program contains
errors, the compiler deletes these two files and does not let
you run Pass two.

Refer to the source listing file, DEMO.LST, for the error
messages that apply to your program. Next, check to see that
you have correctly carried out all the required procedures

Chapter 2 / A Sample Session

2.2.2 Pass

described in Section 1.1, “Preliminary Procedures,” and
carefully redo each step of this sample session up to this
point. See Appendix C, “Error Messages,” in the MS-
FORTRAN Reference Manual for a complete listing of the
error messages you may encounter in MS-FORTRAN.

When your program is error free, of all errors vou can run
Pass two.

Two

Pass two performs the following:

1. It reads the intermediate files PASIBESYM and
PASIBEBIN created in Pass one.

|5}

It writes the object file,

3. It deletes the intermediate files created in Pass one.
4. It writes two new intermediate files, PASIBETMP and
PASIBEOID, for use in Pass three if you requested an
object listing in Pass one. Otherwise the compiler
writes and later deletes just one new intermediate file,
PASIBETMP. It writes these files to the current drive,

To start Pass two type:
A:PAS2

When Pass two is complete, your screen displays a message
similar to the following:

The Lines 1-3 indicate, first in hexadecimal and then in
decimal notation, the amount of space used by executable
code (Code), constants (Cons), and variables (Data). The
message concerning the number of errors refers to Pass two
only, not to the entire compilation.

The object file is now on your diskette in the current drive.
This object file contains relocatable machine code that can
be placed and run at different absolute locations in memory.

15

Chapter 2 / A Sample Session

2.2.3 Pass Three

16

Pass three runs successfully only if you requested an object
listing by answering the last prompt in Pass one with any
name other than the default NUL.COD.

This Pass rcads PASIBETMP and PASIBEOID, the intermediate
files created during Pass two, and, because of your earlier
response to the object listing prompt, writes the object code
listing to the file DEMO.COD.

To start Pass three, at the system prompt type:
A:PAS3

When Pass three is complete, your screen displays the system
prompt.

Pass three deletes the two temporary files. If, after requesting
an object listing, you choose not to run Pass three, delete
the temporary files (to save space).

Sce Chapter 3, “More About Compiling,” for detailed
information about filename conventions and how to respond
to the compiler prompts.

Chapter 2 /A Sample Session

2.3 Linking the Object File With the
Runtime Library

Now you are ready to link your program. Linking converts
the relocatable object file into an executable program by
assigning absolute addresses and setting up calls to the
runtime library.

To start the linker type:
A:LINK

Your computer loads the linker, displays a heading, and then
prompts for the name of your relocatable object file (or files):

Object Modules [OBJ]
For this session beside the prompt type:

DEMO
This indicates that the file DEMO.OBJ, created during
compilation, will link with FORTRAN.LIB during the linking
process.
Next the linker prompts:

s PR

Type <RETURN> to

[DEMO.EXE

indicate that you want the executable file to be named
DEMO.EXE.

Next the linker prompts:

For this session, beside the prompt type:
<RETURN>

indicates that you wish to accept the default, which is the
NUL file, that is, no file at all.

If, when linking your programs, you wish to display the list
filc on your screen, but not write it to a diskette file, type

Chapter 2 / A Sample Session

18

CON beside this prompt. If you want the linker map written
to a diskette file, respond to this prompt with a name for
the file.

Next the linker displays the final prompt, which is for the
location of the libraries:
Libraries [.LIB]
Type:
<RETURN>
To indicate that FORTRAN.LIB is on Drive A.

Now the linker links your compiled program, DEMO.OB],
with the necessary modules in the MS-FORTRAN runtime
library, A:FORTRAN.LIB. This linking process creates an
executable file, named DEMO.EXE, on the diskette in the
current drive. When linking is complete, the operating system
prompt appears.

See Chapter 4, “More About Linking,” for more information
on the Linker.

Chapter 2/ A Sample Session

2.4 Executing Your FORTRAN
Program

Now you are ready to run vour program. To run the sample
program, just type:

DEMO

This command directs MS-DOS to load the executable file
DEMO.EXE, fix scgment addresses to their absolute value
(bascd on the address at which the file is loaded), and start
execution.

Assuming the program runs correctly, it prompts you to enter
ten numbers. The program sorts these numbers and displays
them on your screen in sorted order, from lowest to highest.

19

Chapter 3

More About Compiling

3.1 Files Written by the Compiler...................... 22
3.1.1 The Object File......coivvenininininiinivennnnnnene. 22
3.1.2 The Source Listing File.......................... 22
3.1.3 The Object Listing File......cccccceveuuennenn.... 23
3.1.4 The Intermediate Files......c.cccuvauennnnnnn... 23
3.2 Filename Conventions........c.cccceeuvuennvnnnnennen. 25
3.3 Starting the Compiler.....cccccivvveinininiuninincnnnn, 29
3.3.1 Giving No Parameters on the
Command Line€......cccoouveiiiieinieiinininnnnnnnn. 29
3.3.2 Giving All Parameters on the
Command Line......c.c.cocuieniiniiieninrnennnnnn.. 30
3.3.3 Giving Some Parameters on the
Command Line.....ccccvuveveieieinininnniannrnenenn. 31
21

Chapter 3 / More About Compiling

This chapter provides additional procedural information on
the compiler, supplementing the discussion in Section 2.2,
“Compiling the Source File” For a more technical discussion
of the compiler. sce Section 8.1, “The Structure of the
Compiler”

3.1 Files Written by the Compiler

In addition to creating several intermediate files, which it
later reads and deletes, the compiler writes one required file
and two optional files that represent your program in various
ways. The object file is the one permanent file that must be
created. The source listing and object listing files are
optional; you may request that either or both of these be
displaved or printed instead of being written to a disk file.

3.1.1 The Object File

The object file is written to disk after the completion of pass
two of the compiler. It is a relocatable module, which
contains relative rather than absolute addresses. Normally
created with the .OBJ extension, the object module must be
linked with the MS-FORTRAN runtime library to create an
executable module containing absolute addresses.

3.1.2 The Source Listing File

&%)
8]

The source listing file is a line-by-line account of the source
file(s), with page headings and messages. Each line is
preceded by a number that is referred to by any error
messages that pertain to that source line.

Compiler error messages, shown in the source listing, are
also displayed on your terminal screen. See Appendix C,
“Error Messages,” in the MS-FORTRAN Reference Manual
for a complete list of MS-FORTRAN error messages.

If you include files in the compilation with the SINCLUDE
metacommand, these files are also shown in the source
listing. (For information on the SINCLUDE metacommand,
sce the entry for SINCLUDE in Section 6.2, *Metacommand
Directory,” in the M5-FORTRAN Reference Manual.)

Chapter 3/ More About Compiling

The various flags. level numbers, error message indicators,
and symbol tables in the source listing make it uscful for
error checking and debugging. Many programmers prefer a
printout of the source listing file rather than of the source
file itself as a working copy of the program.

3.1.3 The Object Listing File

The object listing file, a symbolic, assembler-like listing of
the object code, lists addresses relative to the start of the
program or module. Absolute addresses are not determined
until the object file itself is linked with the runtime library.
The object listing file is used less often than the source listing
file. but may be a useful wol during program development:
1. You can look at it simply to sce what code the
compiler generates and to familiarize vourself with it.
2. You can check to see whether a different construct
or assembly language would improve program
efficiency.

3. You use it as a guide when debugging your program
with the MS-DOS DEBUG utility.

3.1.4 The Intermediate Files

Pass onc creates two intermediate files, PASIBESYM and
PASIBEBIN. which incorporate information from vour
source file for use in creating the object file during Pass two.
These two intermediate files are always written to the default
drive.

Pass two reads and then deletes PASIBESYM and PASIBEBIN.

Pass two itself creates one or two new intermediate files,

depending on whether or not vou've requested an object

‘ listing. If, as for the sample session. you plan to run Pass

QM‘ three o produce the object listing, Pass two writes the two
intermediate files, PASIBETMP and PASIBFOID.

If in Pass one you do not request an object listing, Pass two

writes and later deletes just one new intermediate file,
PASIBETMP.

Chapter 3 / More About Compiling

PAS2.EXE assumes that the intermediate files created in Pass
one are on the default drive. If you have switched disks so
that they are on another drive, you must indicate their)
location on the command that starts Pass two. For example: \I)

A:PAS2 AIPAUSE

The “A” immediately following the command tells the
compiler that PASIBEBIN and PASIBESYM are on Drive A,
instead of the default Drive B:. The “/PAUSE” tells the
compiler to pause before continuing so that you can insert
the disk that contains them into Drive A:.

After pausing, Pass two prompts as follows:

Press enter key to begin Pass two.
When you have inserted the new disk in Drive A:, press the
RETURN key and the compiler proceeds with Pass two.

PASIBETMP and PASIBEOID are deleted from the default

drive during Pass three. If you change your mind after

requesting an object listing file and decide not to run Pass

three, be sure to delete these files to recover the space on J
your disk.

Table 3.1 is a summary of the files read and written by each
of the three passes of the compiler.

Table 3.1. Files Used by the MS-FORTRAN Compiler

Pass Reads Writes Deletes
1 DEMO.FOR DEMO.LST
PASIBESYM
PASIBE BIN
2 PASIBESYM DEMO.OBJ PASIBESYM
PASIBEBIN PASIBEOID* PASIBE BIN
PASIBETMP
3 PASIBEOID* DEMO.COD PASIBEOID*
PASIBETMP PASIBETMP

* Refers to the action of the file as optional.

[§Y]
'=N

Chapter 3 / More About Compiling

3.2 Filename Conventions

When you start up the compiler, it prompts yvou for the
names of four files: your source file, the object file, the source
listing file, and the object listing file. The only one of these
names vou must supply is the source filename.

This section describes how the compiler constructs the
remaining filenames from the source filename and how you
can override these defaults.

A complete filename specification under MS-DOS has three

parts:

1.

(89

Device name

The name of the disk drive where the file is or will
be. On a single-drive machine, all device names
default to A:. On multidrive machines, if you do not
specify a device, the compiler assumes the currently
logged drive.

Filename

The name you give to a file. Consult your operating
system manual for any limitations on assigning
filenames.

Filename extension

Added to the filename for further identification of the
file. The extension consists of up to three
alphanumeric characters and must be preceded by a
period. Although you may give any extension to a
filename, the MS-FORTRAN Compiler and MS-LINK
recognize and assign certain extensions by default, as
shown in Table 3.1.

8%]
J

Chapter 3 / More About Compiling

Table 3.2. Conventional Filename Extensions

Extension Function of File

.FOR MS-FORTRAN source file
.PAS MS-Pascal source file
.OB]J Relocatable object file
LST Source listing filc

COD Object listing file

ASM Assembler source file
MAP Linker map file

.LIB Library file

EXE Exccutable run file

If you give unique extensions to vour filenames, you must
include the extension as part of the filename in response to
a prompt. If you do not specify an extension, the MS-
FORTRAN Compiler supplies one of those shown in Table
3.2.

Table 3.3. Default File Specifications

File Device Extension Full File Spec
Source file dev: _FOR dev:filename. FOR
Object file dev: .OBJ dev:filename. OBJ
Source listing dev: LST dev:NUL.LST
Object listing dev: .COD dev:NUL.COD

Table 3.2 also shows the default file specifications supplied
by the compiler if you give a name for the source file and
then press the RETURN key in response to cach of the
remaining compiler prompts.

The device “dev:" is the currently logged drive. Even if you
specify a device with the source filename, the remaining file
specifications will default to the currently logged drive. You
must explicitly specify the name of another drive if that is
where you want a particular file to go.

The NUL file is equivalent to creating no file at all; thus, by
default, the compiler creates neither a source listing file nor
an object listing file. If, in response to cither of the last two

Chapter 3/ More About Compiling

prompts, vou enter any part of a file specification, the
remaining parts default as follows:

Source listing dev:filename. LST
Object listing dev:filename.COD

Neither listing file is created unless vou explicitly request
it. If you specify any non-null file for the object listing, Pass
two leaves PASIBETMP and PASIBEOID, the input files for
Pass three, on vour work disk until you delete them, either
explicitly or by running Pass three,

The general rules for filenames may be summarized as
follows:
1. All lowercase letters in filenames are changed into
uppercase letters. For example, the following three
names are all considered equivalent to ABCDE.FGH:

abede.fgh AbCdE.FgH ABCDE.fgh

3%

To enter a filename that has no extension in response
to a prompt, type the name followed by a period.

For example, typing “ABC™ in response to the source
filename prompt gives a filename of ABC.FOR; typing
“ABC. instructs the compiler to accept ABC with no
extension as the name.

Y

Leading and trailing spaces are permitted, so the
following is an acceptable response to the source file
prompt:

ABC
The filename itself must not contain spaces.

4. You may override any defaults by typing all or part
of the name instead of pressing the RETURN key. For
example, if the currently logged drive is B: and vou
want the object file to be written to the disk in Drive
A: type “A: in response to the following prompt:

Object Filename [ABC.OBJJ:
This results in a full filename of A:ABC.OB] for the
object file.
5. Listing files default to null, However, if vou specity
any part of a legal filename, the default changes so

Chapter 3 / More About Compiling

28

6.

that the compiler creates a filename with the same
default rules that apply to the source and obiject files.
Specifically, if you give a drive or extension, then the
basc name is the base name of the source file. For
example, typing “B:" in response to the object listing
prompt gives a filename of B:ABC.COD.

Typing a semicolon after the source filename or in
responsce to any of the later prompts tells the compiler
to assign the default filenames to all the remaining
files. This is the quickest way to start the compiler
if you don’t need cither of the listing files. For
example, typing “ABC;” in response to the source file
prompt eliminates the remaining prompts and results
in the following filenames:

Source file B:ABC.FOR
Object file B:ABC.OBJ
Source listing B:NUL.LST
Object listing B:NUL.COD

You may not enter a semicolon to specify a source
file, since the source file has no default filename.

To send either listing file to your screen (console), use
one of the special filenames USER or CON. USER is
recognized only by MS-FORTRAN (and MS-Pascal) and
writes to the screen immediately as the listing is
created. CON is recognized by all MS-DOS programs,
but saves the console output and writes it in blocks
of 512 bytes.

Chapter 3 / More About Compiling

3.3 Starting the Compiler

You can start the MS-FORTRAN Compiler in one of three
WYs:

1. You can let the compiler prompt you for each of the
four filenames (as in the sample session).

2. You can give all four filenames on the command line.

3. You can give some of the filenames on the command
line and let the compiler prompt you for the rest.

Each of these methods is discussed in the following sections.
The second method, giving all four filenames on the
command line, is particularly useful when you plan to use
a batch command file. See Chapter 5, “Using a Batch
Command File,” for information.

3.3.1 Giving No Parameters on the Command Line

To start the compiler without giving any of the necessary
parameters (filenames) on the command line, simply type
the following:

A:FOR1

As in the sample session, the compiler prompts you for each
of the four filenames it needs. A typical session might look
like this (your responses are shown underlined):

Source filename [.FOR]: MYFILE

Object filename [MYFILE.OBJ]: <RETURN>
Source listing [NUL.LST): MYFILE

Object listing [NUL.COD]: <RETURN>

This sequence of responses would give you an object file
called B:MYFILE.OBJ, a source listing file called
B:MYFILE.LST, and no object listing file.

Note: Pressing the RETURN key means that you
accept the default shown in brackets; giving
any part of a file specification creates a file with
the same default rules that apply to other files.

Chapter 3 / More About Compiling

3.3.2 Giving All Parameters on the Command Line

30

Instead of letting the compiler prompt you for each of the
four filenames in turn. you may implicitly or explicitly give
all four names on the same command line with which you
start the compiler. This eliminates prompting for the
filecnames and is particularly useful when you are using the
MS-DOS batch file facility. See Chapter 5, “‘Using a Batch
Command File]" for information on creating a batch
command file for use with the compiler.

The general form of the command line that includes all of
the compiler parameters is as follows:

A:FORI1 <source>,<object>,<sourcelist>, <objectlist>;

The same default naming conventions apply here as when
you are prompted for the filenames.

You must separate cach filename with 2 comma; spaces are
optional. Put a semicolon at the end of the line to indicate
that you do not want additional prompting,.

If you omit a filename after a comma, the file by default is
given the same filename as the source, the default device

designation, and the default extension. Thus, these two
command lines ar¢ equivalent:

A:FOR1 DATABASE,DATABASE,DATABASE,DATABASE;
A:FOR1 DATABASE,, ;

Both result in the following four filenames being assigned:

Source file B:DATABASE.FOR
Object file B:DATABASE.OBJ
Source listing B:DATABASE.LST
Object listing B:DATABASE.COD

If you want the normal defaults, with NUL listing files, use
the semicolon ;) following the source filename. Thus, these
command lines arce equivalent:

A:FOR1 YOYO,YOYO,NUL,NUL;
A:FORI1 YOYO;

You may include spaces before or after filenames, but not
within them.

Chapter 3/ More About Compiling

3.3.3 Giving Some Parameters on the Command

(Line
You may also start the compiler by giving one or more of
the required filenames on the command line and letting the

compiler prompt vou for the rest. This feature of the
compiler makes it relatively failsafe to use.

For example, if vou give only the names of the source file
and the object file on the command line, the compiler will

prompt you for the names of the source listing and the object
listing (vour responses are shown underlined):

Source listing [NUL.COD]:
Object listing [NUL.COD]:

This sequence of responses results in the following

filenames:
Source file B TEST.FOR
Object file BTEST.OB]
(\.« Source listing BTEST.LST
Object listing B:NUL.COD

31

Chapter 4

More About Linking

4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.2
4.2.3
4.3

Files Read by the Linkef.......ccccouvuuenenenennnnen. 34
Object Modules.........cccevvvivnreneninnvnnnnnnnn. 34
Libraries...ccciiiviiiieiiiniiiiiiiiienenennenn, 37

Files Written by the Linker.......................... 38
The Run File.....ccccvviiuiinieirnienieninieninnennans 38
The Linker Listing File..........c.c.cuu........... 38
VMIMP.....crcrc ettt eeee 39

Linker Switches....c..cccccceuiiniinirnirniininnrennnne.. 40

33

Chapter 4 / More About Linking

4.1 Files Read by the Linker

A successful MS-FORTRAN compilation produces a
relocatable object file. Linking, the next step in program
development, is the process of converting one or more
relocatable object files into an executable program.

4.1.1 Object Modules

Object files can come from any of the following sources:

1. MS-FORTRAN compilands (programs, subroutines. or
functions)

[%)

MS-Pascal compilands (programs, modules, or units)

3. user code in other high-level languages

—-—-

assembly language routines
5. routines in standard runtime modules that support
facilitics such as error handling, heap variable
allocation, or input/output

Interfacing to MS-Pascal or other high-level language routines
is quite straight forward. All procedures that are referenced
in an MS-FORTRAN routine and that are not defined in the
same program unit are automatically considered to be
external. No additional EXTERNAL declarations are reqaired.
For information on how to specify in another language that
a routine is public, see the appropriate reference and user
manuals for that language.

Calling conventions and function returns between MS-
FORTRAN and other languages may differ. (See Chapter 7,
“Using Asscmbly Language Routines,” for MS-FORTRAN
calling conventions and interface requirements.) You may
need to write assembly language interface routines to
interface between MS-FORTRAN and other languages.
Whatever the language, it must be able to produce linkable
object modules.

For further information on MS-LINK, sce the appropriate
chapter in your MS-DOS manual.

The ability to link together programs and subroutines of MS-

W
SN

Chapter 4/ More About Linking

FORTRAN source code, as well as assembly language and
library routines, allows you to develop a program
incrementally. Separate compilation and later linking of
separate parts of a program not only reduces the need for
continual recompilation. it also allows vou to create
programs that contain more than 64K bytes of code. (See
Chapter 6, “Compiling and Linking Large Programs.’”)
Separate compilation may increase the size of your object
module and run file, but will have no effect on the size of
your executable program.

For now, assume that you have created a program that uscs
one MS-FORTRAN main program and once subroutine and
also contains two assembly language external procedures.
Assumc further that these files have already been compiled
or. in the case of the assembly language routines. already
assembled and that the files thus created are the following:

PROG.OBJ

SUBR.OBJ

ASMI1.OBJ

ASM2.0B]
To link these all together. invoke the linker by typing the
following:

A:LINK

Like the compiler, the linker gives a sequence of four
prompts. Before linking can proceed. you must explicitly or
implicitly supply the following picces of information:

1. the name(s) of the object modules 1o be linked

2. the name to be given to the executable run file
3. the linker listing file
4. the names of any librarices to be searched (other than

FORTRAN.LIB)

As with the compiler, responses to all except the first prompt
may be supplied by defaults.

In responsce to the first linker prompt, enter the names of
the object files, separated by plus signs as shown:

PROG + SUBR + ASM1 + ASM2

35

Chapter 4 / More About Linking

The first object file listed must be an MS-FORTRAN object
file, although it need not be the main program. Do not put
any assembly language module first; doing so may result in
segments being ordered incorrectly. After the initial MS-
FORTRAN object file, you may list the other subroutines or
assembly language routines in any order.

Typing a semicolon after the name of the last object file you
wish to link tells the linker to omit the remaining prompts
and to supply defaults, as shown in Table 4.1, for all
remaining parameters.

Table 4.1. Linker Defaults

Prompt Default Response
Object modules None

Run file prog.EXE

List map NUL.MAP
Libraries FORTRAN.LIB

Chapter < / More About Linking

4.1.2 Libraries

A runtime library contains runtime modules that are required
during linking to resolve references made during
compilation. The MS-FORTRAN Compiler generates space
for instructions for most floating-point operations. It also
issues fixup information in the object file. During linking,
these instructions are resolved using information in the
runtime library. The instructions are transformed into
cmulator interrupts, which are serviced by code auto-
matically linked in with your program. (This code is also
in FORTRAN.LIB.)

If you press the RETURN kev in responsce to the final linker
prompt, the linker will automatically scarch for a library
called FORTRAN.LIB on the default drive, If FORTRAN.LIB
is not on the default drive, the following message will appear
on your screen:

Cannot find library FORTRAN.LIB
Enter new drive letter:

Switch disks if necessary, and then type the name of the drive
that does contain FORTRAN.LIB.

If instcad you respond by just pressing the RETURN key,
linking will procced without a library search. You can
achieve the same effect by using the linker option switch,
/NO (short for /NODEFAULTLIBRARYSEARCH), to override
the automatic search for FORTRAN.LIB. This will produce
unresolved reference error messages unless you replace every
required runtime routine with a routine of vour own. (Most
MS-FORTRAN programmers never require this capability,)

To instruct the linker to scarch other libraries (for example,
PASCAL.LIB) as well as FORTRAN.LIB, give the library names,
separated by plus signs, in response to the “Libraries”
prompt. Sce your MS-DOS manual for complete information
on using different libraries with MS-LINK.

Chapter 4 / More About Linking

4.2 Files Written by the Linker

The primary output of the linking process is an exccutable
run file. You may also request a linker map or listing file,
which serves much the same purpose as the compiler listing
files. The linker, if need be, also writes and later deletes one
temporary file.

4.2.1 The Run File

The run file produced by the linker is your exccutable
program.

The default filename, given in brackets as part of the prompt,
is taken from the name of the first module listed in response
to the first prompt. To accept this prompt, press the RETURN
key. To specify another run filename, type in the name you
want. All run files receive the extension .EXE, even if you
specify something else.

The linker ordinarily saves the run file, with the extension
-EXE, on the disk in the default drive. ‘To specify another
drive, which may be necessary if your program is large, type
a drive name in response to the run file prompt.

4.2.2 The Linker Listing File

38

The linker map, also called the linker listing file, shows the
addresses, relative to the start of the run module, for every
code or data segment in your program. If you request it, with
the /MAP switch, the linker map can also include all EXTERN
and PUBLIC variables. (See Section 4.3, “Linker Switches,”
for information on the /MAP switch).

The linker map defaults to the NUL file, unless you
specifically request that it be printed, displayed on the
screen, or saved on disk. In the early stages of program
development, you may find it useful to inspect the linker
map in these two instances:

1. when using the debugger to set breakpoints and locate
routines and variables

2. o find out why a load module is so large (for example,

Chapter 4 / More About Linking

what routines are loaded, how big they are, and
what’s in them)

As the prompt indicates, the default for the linker map is
the NUL file, that is, no file at all. Press the RETURN key
to accept this default. If you wish to see the linker map but
not have it written to a disk file, type "CON" in response
to the list file prompt. If vou want the file written to disk,
give a device or filename.

4.2.3 VM.ITMP

Linking begins after you have responded to all of the linker
prompts. If the linker needs more memory space to link your
program than is available, it will create a file called VMTMP
on the disk in the default drive and will display a message
like the following:

IAA

/MTMP has been created
Do not change disk in drive B:.

If the additional space is used up or if you remove the disk
that contains VM TMP before linking is complete, the linker
will abort.

When the linker has finished, VM IMP will be erased from
the disk, and any errors that occurred during linking will
be displayed. (For a list of MS-LINK crror messages, sce
Appendix E “MS-LINK Error Messages.”)

If the linker aborts, use the MS-DOS command DIR to check
the contents of vour disk to make sure that VMTMP has been
deleted. Then, to make sure the space has been released, use
the CHKDSK program (supplied with MS-DOS). CHKDSK
will reclaim any available space from unclosed files and tell
you the total amount of available space on the disk.

Chapter 4 / More About Linking

4.3 Linker Switches

After any of the linker prompts, you may give one or more
linker switches. Table 4.2 summarizes the linker switches you
may use with MS-FORTRAN. See your MS-DOS manual for
more information on linker switches and when and how to

40

use them.

Table 4.2. LINK Switches

Switch

Action

/DSALLOCATE

/LINENUMBERS

/MAP

INO

/PAUSE

Loads data at the high end of the data
scgment. For MS-FORTRAN and MS-
Pascal programs, this switch is required
and supplied automatically by the
compiler.

Includes source listing line numbers and
associated addresses in the linker listing,
which allows you to correlate machine
addresses with source lines when
debugging. This correlation is also
available on the object listing.

Includes all EXTERN and PUBLIC
variables in the linker list file.

Tells the linker to not automatically
scarch FORTRAN.LIB. (/NO is short for
NODEFAULTLIBRARYSEARCH.)

Tells MS-LINK to display the following
message:

About to generate .EXE file

Change disks <press RETURN>

You may then change disks before the
linker continues.

The /PAUSE switch is particularly useful for linking large
programs, since it allows you to switch disks before writing
the run file. However, if a VM TMP file is created, you must
not switch the disk in the default drive,

Note: For MS-FORTRAN and MS-Pascal programs, do
not usc cither of the additional linker switches
/HIGH or /STACK.

4

Chapter 5

Using A Batch Command File

The MS-DOS batch file facility lets you create a batch file for
executing a series of commands. This facility is described
fully in your MS-DOS manual. This chapter provides a brief
description of command files in the context of compiling,
linking, and running an MS-FORTRAN program.

A batch command file is a text file of lines that are MS-DOS
commands. If a batch file is open when MS-DOS is ready
to process a command, the next line in the file becomes the
commuand line. After processing all batch command lines (or
if batch processing is otherwisc terminated), MS-DOS goes
back to reading command lines from the screen.

Batch file lines cannot be read by the compiler. the linker,
or a user program. Thus, you cannot put responscs to
filename or other prompts in a batch file. All compiler
parameters must be given on the command line, as described
in Section 3.3.2, "Giving All Parameters on the Command
Line”

The batch file may contain dummy paramecters that you
replace with actual parameters when vou invoke it. The
symbol %1 refers to the first parameter on the line, %2 to
the second parameter, and so on. The limit is %9. A batch
command file must have the extension .BAT and should be
kept on cither the program disk or the utility disk.

The PAUSE command, followed by the text of the prompt,
tells the operating system to pause, display a prompt (which
you have defined), and wait for some further input before
continuing.

If your program is alrcady debugged and you are making only
minor changes to it, you can speed up the compilation
process by creating a batch file that issues the compile, link,
and run commands.

41

Chapter 5 / Using a Batch Command File

42

For example, use the line editor in MS-DOS to create the
following batch file, COLIGO.BAT:

A:FOR1 %1,,;

PAUSE ...If no errors, insert PAS2 disk in drive A:.
A:PAS2

PAUSE ...Insert runtime libraries disk in drive A:.
A:LINK %f;

%1

To execute this file, type:
COLIGO DEMO

DEMO is the name of the source program you want to
compile, link, and run.

1. The first line of the bawch file runs Pass one of the
compiler.

2. The second line generates a pause and prompts you
to insert the Pass two disk.

3. The third line runs Pass two.

E2N

The fourth line generates a pause and prompts you
to insert the runtime library.

5. The fifth linc links the object file.
6. The sixth line runs the executable file.

A BAT file is only executed if there is neither a COM file or
EXE file with the same name. Thus, if you keep your source
file and BAT file on the same disk, give them different
filenames.

For more information about batch command files, sce your
MS-DOS manual.

Chapter 6

Compiling And Linking Large Programs

6.1
6.2
6.3

6.3.1
6.3.2
6.4

6.4.1
6.4.2
6.4.3

6.4.4

6.5

6.5.1
6.5.2
6.5.3
6.5.4
6.6

6.6.1
6.6.2
6.6.3
6.6.4

Avoiding Limits on Code Size.................... 47
Avoiding Limits on Data Size.......c.ccceuueee.. 45
Working With Limits on
Compile Time MemMOTrY...cccceceueeenrncnnennnnnnns 46
Identifiers.....c.ccevieiinieninnincnninieninnenanne 46
Complex EXpressionsS.........c.ccceeeeeennen.. 47
Working With Floating Point Operations...49
Floating-Point Overflows..................... 49
“Short” Arithmetic.........ccceevuiuinnnnnnn. 49
$FLOATCALLS and $NOFLOATCALLS
Metacommands.......ccoeeveenrenienienceneennnn. 50
Environment Control And Exception
Handling For Real Math...................... 51
Working With Limits on Disk Memory...... 54
Pass One.......oneeiiiiiieiiinieiiinininianncnaen. 54
i TR0 o 55
Linking ..ccoovuiuieimimieiiiiiiiiicicirnecnanns 56
A Complex Example....ccccoevieiiaieinnnnn., 57
Minimizing Load Module Size.................... 59
| L6 N 59
Runtime Error Handling.......c.............. 69
Real Number Operations.......ccccceveeee.. 60
Debuggingcceeeveieiiiiieiecnrncneacecnrecnes 60

43

Chapter 6 / Compiling and Linking Large Programs

Occasionally, you may find that a large program exceeds one
or more physical limits on the size of program the compiler,
the linker, or your machine can handle. This chapter
describes some ways to avoid or work within such limits.

6.1 Avoiding Limits on Code Size

The upper limit on the size of object code that can be
generated at once by the MS-FORTRAN Compiler is 64K
bytes. This limit applies only to generated code; data size
limits are discussed in the following section.

Since you can compile any number of compilands separately
and link them together later, the real limit on program size
is not 64K but the amount of main memory available. For
example, you can separately compile six different
compilands of 50K bytes each. Linking them together
produces a program with a total of 300K bytes of code.

In practice, a source file large enough to generate 64K bytes
of code would be thousands of lines long and unwieldy both
to edit and to maintain. A better practice is to break a large
program into subroutines and functions and compile logical
groups of them separately. Separate compilation will have
no cffect on final program size, but may increase the total
size of object files.

Chapter 6 / Compiling and Linking Large Programs

6.2 Avoiding Limits on Data Size

Overall program limits for data are as follows:

1.

(3

0K for all “local” variables, constants, blank
COMMON blocks, the stack, and the heap. The heap
is used for dynamically allocated files (634 bytes per
file) and for some entry and exit information if the
SDEBUG metacommand is on.

The stack contains arguments, return addresses, and
certain temporary variables. This data will reside in
one segment, the default data segment (DS register).

64K bytes for cach named COMMON block. Each
named COMMON block will be allocated a separate
scgment. There are no additional limits for data for
separate compilations. References to data in named
COMMON blocks are usually less cfficient than
references to other data.

Chapter 6 / Compiling and Linking Large Programs

6.3 Working With Limits on Compile

6.3.1

46

Time Memory

During compilation, large programs are most often limited
in the number of identifiers in any one source file. They are
occasionally limited by the complexity of the program itself.
If one of these limits is reached, you will see the following
€rror message:

Compiler Qut Of Memory

There is no particular limit on number of bytes in a source
file. The number of lines is limited to 32767, but in practice,
any source file this big will run into other limits first.

Identifiers

Pass one of the compiler can handle a maximum of around
1000 identifiers, assuming your memory is big enough to
provide a full data segment of 64K. In MS-FORTRAN,
identifer entries are created for the following objects:

I. the program

2. subroutines and functions declared in the program
unit

3. subroutines and functions referenced in the program
unit

4. COMMON blocks
5. common variables
6. statement functions
7. formal parameters
8. “local” variables

Identifiers of objects 5 through 8 are required only while
the subroutine or function that contains them is being
compiled. These identifiers are discarded at the end of the
subroutine and the space they used is made available for
other identifiers.

Hence, you can create much bigger programs by splitting up
your code into more subroutines and functions. Such a

Chapter 6 / Compiling and Linking Large Programs

practice allows the “local™ identifier space to be shared.

You can go even further by placing the subroutines and
functions in files of their own and compiling them separately,
since this usually reduces the number of identifiers in groups
being used per compiland.

Remember that you may have to create data items in common
to communicate between the new procedures, or preferably,
from the point of view of good program structure, write
communication subroutines. However, either of these may
tend to defeat the purpose of breaking up the program in
the first place.

6.3.2 Complex Expressions
It is also possible o run out of memory in Pass onc with
any of the following cases:

1. avery complex statement or expression (i.e., one that
is very deeply nested)

2. a large number of error messages

3. a very large block of specification statements
(EQUIVALENCE statements in particular)

Usually, if a program gets through Pass one without running
out of memory, it will get through Pass two. The major
exception occurs with complex basic blocks, as in either of
the following:

1. sequences of statements with no labels or other breaks

2. scquences of statements containing very long
expressions or parameter lists (especially with 1O
statements)

Also, Pass two uses symbol table entries for objects 1 through
4 in Section 6.3.1. Unlike Pass one, Pass two also creates
entries for many of the transcendental functions that are
called by a program. However, these are limited in number.
In any case, Pass two makes a smaller number of symbol table
entrics than Pass onc.

Chapter 6 / Compiling and Linking Large Programs

If Pass two runs out of memory, it displays the message:
Compiler Out Of Memory

The error message will give a line number reference. If there
is a particularly long expression or parameter list near this
line, break it up by assigning parts of the expression to local
variables (or using multiple WRITE calls). If this does not
work, add labels to statements to break the basic block.

Chapter 6 / Compiling and Linking Large Programs

6.4 Working With Floating-Point
Operations

MS-FORTRAN version 3.1 by default, generates in-line,
floating-point instructions to perform floating-point
operations. In-line code provides the most cfficient use of
memory. You must have these instructions emulated by
interrupt-driven software.

Interrupt handling and address translation with the emulator
library significantly contributes (up to 25 percent) to the
execution time of basic floating-point operations. The REAL
arithmetic support routines provided by FORTRAN.LEM
contribute approximately 8K bytes to your program. Note
that if your program does not use floating point operations
you can use NULR7.0OB]J to regain this space (sce section 6.6.3
of this manual).

6.4.1 Floating-Point Overflows

A floating point overflow, in either direct or emulated mode,
generates a ‘‘not-a-number” (NAN) error. The message
appears in the output ficld as asterisks (*) or the letters
“NAN", depending on the choice of formats.

6.4.2 ‘“Short” Arithmetic

By default, the emulator library does all its arithmetic with
64 bits of precision (corresponding to an 80-bit
representation) as specified by the IEEE standard. However,
64-bit arithmetic is relatively slow and may be more precise
than you requirc. MS-FORTRAN version 3.1 supports an
alternative 23-bit precision arithmetic. You can select the
precision you want by using one of the following subroutines
which are provided in the emulator library:

SUBROUTINE MPSRQQ

Chapter 6 / Compiling and Linking Large Programs

The MPSRQQ subroutine causes all subsequent floating-point
operations to be carried out to 23 bits of precision, even if
either or both of their arguments is double precision.

SUBROUTINE MPBRQQ

The MPBRQQ subroutine causes the precision of subsequent
operations to be 23 bits if, and only if, both arguments are
single precision or the result of a previous 23-bit operation.

SUBROUTINE MPDRQQ

The MPDRQQ subroutine restores the default state where all
operations are performed to 64-bit precision.

INTEGER*2 FUNCTION MPIRQQ

The MPIRQQ function returns a value indicating the current
precision status as follows:

®: default 64-bit
1: the precision depends on the operands
2: unconditional 23-bit arithmetic

You may call these subroutines anywhere in your program.
“Short” arithmetic is about 25 percent faster for addition
and subtraction, 50 percent faster for multiplication, and 75
percent faster for division. The code for “short™ arithmetic
is only included in your program if you call one of the
previously listed subroutines.

6.4.3 $FLOATCALLS and $NOFLOATCALLS
Metacommands

You can compile your program with either the SFLOATCALLS
metacommand or the SNOFLOATCALLS metacommand (the
default). When you use the SFLOATCALLS metacommand the
compiler generates subroutine calls to do floating-point
operations. This is faster than using in-line interrupt
instructions, but requires more code space. To increase
precision, but decrease execution speed, call the MPSRQQ,
MPBRQQ or MPDRQQ emulator library subroutines.

When you use the SNOFLOATCALLS metacommand the
compiler generates interrupt instructions to do floating-point
operations. This results in compact, executable programs,
but may be slow in execution speed.

50

Chapter 6 / Compiling and Linking Large Programs

You can increase exccution speed at the cost of some
precision by calling the MPSRQQ or MPBRQQ cmulator
library subroutines. Likewise you can restore precision at the
cost of execution speed by calling the MPDRQQ emulator
library subroutine.

For more information on the SFLOATCALLS and
SNOFLOATCALLS metacommuands refer to section 6.2.3 of
vour MS-FORTRAN Reference Manual.

6.4.4 Environmental Control And Exception
Handling For Real Math

The five exceptions required by the IEEE Real Math Standard
are supported by the Real Math support routines. By default
they are disabled. Contrary to the description in the MS-
FORTRAN Reference Manual (section 6.2.1) the SDEBUG
metacommand does not control the handling of these
exceptions: however. you should continue to use it to control
the Integer arithmetic errors. Instead, there are two memory
locations that control both processors. These are called the
CONTROL and STATUS words. The effect of these words is
discussed below. You can read or set their values using the
subroutines in the following program:

SUBROUTINE SCRWQQ (CW)
INTEGER*2 CW
C Sets the control word to the value in CW

SUBROUTINE LCWRQQ (CW)
INTEGER'2 CW
C CW: is set to the value of the control word

SUBROUTINE SSWRQQ (SW)
INTEGER'2 SW
C Sets the status word to the value in SW

SUBROUTINE LSWRQQ (SW)
INTEGER™2 SW
C SW is set to the value of the status word

The five TEEE Real Math Standard exceptions are:

1. Invalid Opceration - Any operation with a NAN (not
a number), square root (-1), @ * INF cte. Generally
rcturns a NAN.

51

Chapter 6 / Compiling and Linking Large Programs

52

2. Divide by zero - Returns properly signed INE

3. Overflow - Occurs when any number is greater than
the maximum representable number. Returns INFE

BN

Underflow - Occurs when any number is smaller than
the smallest valid representable number. Returns a
Denormal or a zero.

5. Precision - Occurs whenever a result is subjected to
rounding crror. Informs that the result is not exact.
Returns properly rounded result.

When one of these exceptional conditions occurs the
appropriate bit in the status word is set. This flag remains
set to indicate that the exception occured until cleared by
the user. If the bit in the control word relating to a given
exception is set then that exception is masked and the
operation proceeds with a supplied default. If the bit is unset
any exception of that type generates an error message, halts
the operation and your program will stop. In either case the
exception is ORed into the STATUS word.

The CONTROL word is also used to set modes for the
internal arithmetic required by the IEEE standard. Thesce are:

Rounding Control - round to nearest (or even), Up, Down,
or Chop

Precision Control - Determines at which bit of the mantissa
rounding should take place. (24, 53, or 64). Note all
results are done to 64 bits regardless of the precision
control. It only affects the rounding in the internal
form. On storage any result is again rounded to the
storage precision.

Infinity Control - Affine mode is the familiar + and - INF
style of arithmetic. Projective mode is a mode where
+ and - INF are considered to be the same number.
The principal effect is to change the nature of
comparisons (Projective INF does not compare with
anything but itself).

Chapter 6 / Compiling and Linking Large Programs

Format for STATUS BYTE and CONTROL WORD

15 8 7 65 43 2 10
STATUS | hibytcunused | | IpEluslodzel [1El
Precision EXCeption-----------------eeeo-] J

Underflow EXception--------------ooceeeee-
Overflow Exception--------------seemmmmmemeeeneens
Zcro Divide Exception |
Invalid Exception
(All other bits unusced, may be cither 1 or 0)

15 14 15 12 11-10 98 7 6 5 4 3 2 1 0

controL! | | licl re Tecl | lemumlomzvl vl
Infinity Control--------- i J
Round Control------------------

Precision Control------cceeomcecacaeaee
Precision Mask {
Underflow Mask {
Overflow MasK---m-mmmmmmee e
Zero Divide MasK---ccommmemmm e |
Invalid Mask---- -

(All other bits unused, may be either 1 or 00)

Infinity Control
® = Projective
1 = Affine
Round Control
O® = Round ncarest or even
®1 = Round down (toward -INF)
10 = Round up(toward + INF)
11 = Chop (lruncate toward)
Precision Control
00 = 24 bits of mantissa
a1 (reserved)
10 53 bits of mantissa
11 = 64 bits of mantissa

53

Chapter 6 / Compiling and Linking Large Programs

6.5 Working With Limits on Disk
Memory

Another type of limit you may encounter is in the number
of disk drives on your computer or the maximum file size
on one disk. As with other limits, there are several possible
solutions discussed in the following scctions.

The simplest method of avoiding these limits is to first load
a compiler pass, then switch disks and run the Pass.

6.5.1 Pass One

For FORL.EXE, just type "FOR1” (or “‘dev:FORI" if
necessary) to load Pass one. When the “Source File” prompt
appears, you can remove the disk containing FOR1.EXE. If
you have a single-drive system, replace the system disk with
the disk containing your source file. FORL.EXE will write
its intermediate files on the same disk.

If you have a two-drive system, insert your source file in the
nondcfault drive. Since the intermediate files are always
written to the default drive, you will need to give an explicit
device (i.e., drive) letter for your source file. Typically a
source listing file would go on the same drive as the source.

If your source file will not fit on one disk, you can break
it into pieces and use the SINCLUDE metacommand to
compile the picces as a group.

These SINCLUDE files can be typed at your screen (or
console). Just give *“'USER” as the name of your source file,
and type your SINCLUDE metacommands directly, one per
line. You will need to type <CONTROL-Z> (end-of-file) to
end the compilation.

If your source file doesn't fit on one disk, your source listing
file will not fit cither, so you will need to send it directly
to the printer.

Another way to control a large listing file is by including the
SNOLIST metacommand at the beginning of your source file,
and then using the SLIST and SNOLIST metacommands to
bracket only those portions of the source for which a source
listing is required. In particular, you may want to exclude
SINCLUDEd files when compiling subprograms.

Chapter 6/ Compiling and Linking Large Programs

6.5.2 Pass Two

Two command line parameters available with Pass two can
help you with disk limitations.

1. You can indicate a drive letter on which your
intermediate files, PASIBESYM and PASIBEBIN, can
be found.

2. The /PAUSE switch tells Pass two to pause while you
remove the disk containing PAS2.EXE and insert some
other disk.

For example, if you have a single-drive system, insert your
PAS2.EXE disk and type “PAS2 /PAUSE”. After PAS2.EXE is
loaded, you will sce the message:

Press ENTER key to begin Pass two

Take out the PAS2.EXE disk and insert the disk with the
intermediate file from Pass one. Now press the ENTER (i.c.,
RETURN) key, and Pass two will run.

If you have two drives, but you run out of disk memory
when executing Pass two you need to have the files
PASIBESYM and PASIBEBIN on one drive and the
intermediate file PASIBETMP (and PASIBEOID if you are
making an object listing file) on the other drive.

The PASIBETMP file (and the PASIBROID file used in Pass
three) are always written to the default drive.

Give Pass two a drive letter to specify the drive containing
the PASIBESYM and PASIBEBIN files; for example, “PAS2 B".
Normally, vou would also nced the pause command; for
example, “PAS2 B/PAUSE™. Pass two will respond with a
message such as the following:

PASIBF.SYM and PASIBF.BIN are on B:
This message is followed by the pause prompt:

Press enter key to begin Pass two

When you run Pass two with the PASIBF files on two disks,
the object file should usually go on the same disk as
PASIBETMP (and PASIBEOID); that is, in the default drive.
If it doesn't quite fit, and you are making an object listing
file, you could compile your program twice, once without

N
N

Chapter 6 / Compiling and Linking Large Programs

the object listing but with the object file itself, and once with
an object listing but with NUL used for the object file.

6.5.3 Linking

56

If you are making a large program with small disks (or only
one disk drive), you may run into similar problems when
you link your program. Since you can split your program
into pieces and compile them separately, but you must link
the entire program at one time, you may run into disk
limitations in the linker but not the compiler.

The linker will prompt you for any object files and/or
libraries it cannot find, so you can swap in the correct disk
and continue linking. Also, the /PAUSE switch makes the
linker wait after linking but before writing the run (EXE) file,
$0 you can create a run file that fills an entire disk. However,
creation of the virtual file, VM. TMP, and the link map limit
the amount of disk swapping you can do.

On a single-drive system:
L. Load the linker by typing “LINK".

2. Remove the disk containing LINK.EXE and insert the
disk containing your object file(s) and, if there is
room, any libraries.

3. Respond normally to the linker prompts, except to
include the /PAUSE switch with the run file if you
want the run file on another disk.

Unless all object files, libraries, and the run file will fit on
one disk, you must not write the linker listing to a disk file.
Instead, send the linker map to NUL, CON, or directly to
your printer. Since the map is written at various points in
the linking process, you cannot swap the disk on which the
map is written.

The linker will prompt you when it needs an object file, a
library file, or is about to write the run file; exchange disks
as necessary when this happens. If the linker gives a message
that it is creating VM. TMP, its virtual memory file, you cannot
switch disks anymore, 50 you may not be able to link without
more memory or a second disk drive.

Chapter 6/ Compiling and Linking Large Programs

With two disk drives, you can devote one drive (the default)
to the VMTMP file (and to the link map, if you want onc).
Use the other drive for your object files, libraries, and run
file (using the /PAUSE switch). With this mcthod, you can
link very large programs.

The linker makes two passes through the object files and
libraries: one to build a symbol table and allocate memory,
and onc to actually build the run file. This means you will
insert a disk containing object files or libraries twice, and
finally insert the disk that will receive your run file.

6.5.4 A Complex Example

The foliowing example illustrates compiling and linking a
very large program. The example assumes that the machine
has two drives and that the programmer doesn’t want any
of the listing files.

Pass onc¢

1. Log onto Drive B: and insert an cmpty disk in B:.
2. Insert the disk containing FORLEXE in Drive A:, type
“A:FOR1", and wait for the “*Source File™ prompt.

3. Remove the disk containing FORLEXE from A: and
insert the disk containing the source file LARGE.PAS.

4. Respond to the *“‘Source File” prompt with
“A:LARGE,A:LARGE", and wait for Pass onc to run.
Pass two

1. lLog onto Drive A:. Remove source disk from A:.

2. Insert the disk containing PAS2.EXE in A:, typce “PAS2
B/PAUSE™ and wait for the Pass two prompt.

3. Remove the disk containing PAS2.EXE from A:, inscrt
an cmpty disk (to which the object file will be
written).

4. Respond to the pass two prompt by pressing the
RETURN key, and wait for Pass two to run.

5. Remove the disk containing the object file from A:.

57

Chapter 6 / Compiling and Linking Large Programs

58

Linking

1.

2.

6.

-

Log onto Drive B: (which contains a now-empty disk).
Insert LINK.EXE in A:. Type “A:LINK” and wait for the
“Object Modules™ prompt.

Remove the disk containing LINK.EXE from A: and
insert the disk containing the object file(s).
Respond to the “Object Modules™ prompt by typing
"A:LARGE" (plus any other object files).

Respond to the “Run File" prompt by typing
“LARGE/PAUSE".

Respond to the “‘List File” prompt by pressing the
RETURN key, or type “B:LARGE” to get a linker map.
Respond to the ““Libraries” prompt by pressing the
RETURN key or with a library name (the library must
bc on A:).

Wait for the linker to run, swapping the A: disk after
prompts as necessary.

Chapter 6/ Compiling and Linking Large Programs

6.6 Minimizing Load Module Size

Some MS-FORTRAN load modules can be reduced in size by
c¢liminating runtime modules your program doesn’t use.
Reductions can be made in several areas:

1. 1O
2. runtime Crror messages

3. real number operations

-

debugging

6.6.1 1/0

Because most MS-FORTRAN programs perform /0. they
require linking to the MS-FORTRAN file system in the
runtime library. However, some programs do not perform
1/O and others perform 1/0 by directly calling MS-FORTRAN
“Unit U file routines or calling operating system 1/0O
routines. (For more information on Unit U, sce Section 8.2,
“An Overview of the File System.”)

Nonctheless. all programs include calls 1o INIVQQ and
ENDYQQ. the procedures that initialize and terminate the
file system. These calls increase the size of the load module
by linking and loading routines that may never be used.

If a program doesn’t need the file system routines, you can

eliminate unnecessary file support by declaring dummy
INIVQQ and ENDYQQ subroutines in your program, as
follows:

SUBROUTINE INIVQQ
END

SUBROUTINE ENDYQQ
END

The linker will still load the Unit U procedures necessary
to access the terminal (INTUQQ, ENDUQQ., PTYUQQ.
PLYUQQ. and GTYUQQ), so that it can write any runtime
CITOr Messages.

However, if you do include the dummy subroutines
described, and the linker produces any cerror messages for
global names that ¢nd with the “VQQ™ or “UQQ" suffix,

59

Chapter 6 / Compiling and Linking Large Programs

your program requires the file system and the process
described above will not work.

6.6.2 Runtime Error Handling

If runtime error messages are not required, the load module
can be further reduced in size by eliminating the crror
message module and the Unit U procedures. Two null object
modules are provided as replacements: NULEOBJ and
NULEG.OBJ. NULFOBJ contains the dummy subroutines for
INIVQQ and ENDYQQ, as well as dummies for INIUQQ and
ENDUQQ. NULEG.OBJ replaces EMSEQQ and provides
simple termination of a program if an crror occurs.

6.6.3 Real Number Operations

If an MS-FORTRAN program does no real number operations,
it doesn’t require INIX87 and ENDX87 modules that initialize
and terminate the real number support system. The dummy
object module NULR7.OB] provides dummy routines for
these two modules.

6.6.4 Debugging

60

Compiling and linking a program with the $DEBUG
metacommand may generate up to 40 percent more code
than with SNODEBUG. Therefore, after a program has been
successfully compiled, linked, and run, remove the SDEBUG
from your source file and repeat the entire process to create
a program that will run considerably faster.

Chapter 7

Using Assembly Language Routines

7.1
7.2
7- 3

Calling ConventionsS.......c.ccceeeveveevnrncncenennn. 62
Internal Representations of Data Types..... 65

Interfacing to Assembly Language
ROULINES ..ccvvinirininiiiniiiiiiiiieciiecicanensaaens 67

61

Chapter 7 / Using Assembly Language Routines

This chapter first describes the MS-FORTRAN calling
conventions and internal representations of data types, and
then shows how to interface 8086 assembly language
routines to MS-FORTRAN programs. The information in this
chapter is not required for most MS-FORTRAN programs and
is intended primarily for the experienced programmer who
is familiar with the following material:

1. the EXTERNAL statement (see Section 3.2.17, “The
EXTERNAL Statement,” in the MS-FORTRAN
Reference Manual for a description of the statement)

o

subroutine and function arguments (see Section 3.2.4,
“The CALL Statement,” in the MS-FORTRAN
Reference Manual for a description of the statement)

3. MS-Macro Assembler (see your MS-DOS manual)

7.1 Calling Conventions

At runtime, each active subroutine or function has a “frame”
allocated on the stack. The frame contains the data shown
in Figure 7.1

Arguments.
Four bytes
each. Long
addresses .

Two-byte address of return value
(as implicit argument, if REAL*4
or REAL*8 function)

Upper framepointer.| Four-byte
Two-byte return return address 't
address*

Framepointer —» | Saved caller framepointer

Function return value, if any

Temporaries

' For statement functions.
" For all other procedures.

Figure 7.1. Contents of the Frame

62

Chapter ~ / Using Assembly Language Routines

The framepointer points at the saved caller framepointer,
below the return address, and is used to access frame data.
A statement function nested within another subroutine or
function has an upper framepointer. so that it can access
variables in the enclosing frame.

The following takes place during a procedure or function
call:
1. The caller saves any registers it needs (except the
framepointer).

[88)

The caller pushes parameters in the same order as they
are declared in the source and then performs the call.

3. The called routine pushes the old framepointer, scts
up its new framepointer, and allocates any other stack
locations needed.

To return to the calling routine, the called routine restores
the caller’s framepointer, releases the entire frame, and
returns. Not all of these steps need necessarily be taken in
an assembly language routine. You must only ensure that the
framepointer is not modified and that the entire frame,
including all parameters, is popped off the stack before
returning. For further information on the assembly language
interface, sce Section 7.3, “Interfacing to Assembly Language
Routines.”

A function always returns its value in registers. For REAL* 4
and REAL* 8. the caller allocates a frame temporary for the
result and passes the address to the function like a parameter.
When the called routine returns, it places the address back
in the normal return register.

In MS-FORTRAN, all such subroutines and functions are
PUBLIC or EXTERN. All calls to subroutines or functions are
long calls (i.c.. have four-byte addresses). All calls to statement
functions arc short calls (i.c., have two-byte addresses).

The called routine must save the BP register, which contains
the MS-FORTRAN framepointer as well as the DS segment
register. The §S register is used by interrupt routines, both
user-declared and 8087 support, to locate the default data
segment. and so must not be changed (at least, if interrupts
are enabled). Other registers (AX, BX, CX, DX, SI, DI, and
ES) need not be saved.

63

Chapter 7 / Using Assembly Language Routines

Functions return a one-byte value in AL, a two-byte value
in AX, and a four-byte value in DX:AX (high part:low part,
or segment:offset).

64

Chapter 7/ Using Assembly Language Routines

7.2 Internal Representations of
Data Types

This scection describes the internal representation of MS-
FORTRAN data types. Programmers who use both MS-
FORTRAN and MS-Pascal should pay particular attention to
the data type and parameter passing differences when
passing data between the two languages. For internal
representations of MS-Pascal data types, sce the MS-Pascal
Compiler User's Guide.

Integer (INTEGER*2 and INTEGER*4)

INTEGER*2 values are 16-bit two's complement
numbers; INTEGER®4 values are 32-bit two's
complement numbers.

Real (REAL*-4) and double precision (REAL®8)

Reals are IEEE 4-byte real numbers. They have a sign
bit, an 8-bit excess 127 binary exponent, and a 2<-bit
mantissa. The mantissa represents a number between
1.0 and 2.9. Since the high-order bit of the mantissa
is always 1, it is not stored in the number. This
representation gives an exponent range of 10738 and
7 digits of precision. The maximum real number is
normally 1.70141E37. The most significant byte
contains the sign bit and the most significant bits of
the exponent. The least significant byte contains the
least significant bits of the mantissa.

Double precision real numbers are IEEE 8-byte real
numbers. They have a format similar to 4-byte REAL
numbers. The exponent is 11-bits (excess 1023), and
the mantissa has 52 bits (plus the implied high-order
1 bit).

Logical (LOGICAL*2 and LOGICAL*4)

LOGICAL*2 values occupy two bytes. The least
significant (first) byte cither is ¢ ((FALSE.) or 1
(TRUE.); the most significant byte is undefined.
LOGICAL*i variables occupy two words. the least
significant (first) of which contains a LOGICAL*2
value. The most significant word is undefined.

65

Chapter 7 / Using Assembly Language Routines

66

6.

Character

Character values occupy 8 bits and correspond to the
ASCII collating sequence.

Files

MS-FORTRAN files use file control blocks (of type
FCBFQQ), allocated dynamically on the heap. File
control blocks for MS-FORTRAN are not identical to
file control blocks for MS-Pascal. See Appendix A,
“The MS-FORTRAN File Control Block,” for a
complcete listing.

Procedural paramcters (subroutine and function
parameters)

Procedural parameters contain a reference to the
location of the subroutine or function. The parameter
always contains two words: the first word is zero, and
the second word contains a data segment offset
address. This is an offsct to two words in the constant
area that contain the segmented address of the actual
routine.

Chapter 7 / Using Assembly Langucage Routines

7.3 Interfacing to Assembly Language
Routines

All subroutines and functions in MS-FORTRAN arc external.
They need not be declared as external with the EXTERNAL
statement. When a subroutine or function is called. the
addresses of the actual parameters are first pushed on the
stack in the order that they are declared. MS-FORTRAN
always usces calls by reference, even if the actual parameters
are expressions or constants.

If the procedure called is a function and if the function return
type is real or double precision, an additional implicit
parameter for the function is pushed on the stack. This
parameter is the two-byte address of a temporary variable
created by the calling program.

After all parameters have been pushed, the return address
is pushed. If the procedure called is a function, the return
value is expected as follows:

1. If the return value is a two-byte integer or logical
value, that value is expected in the AX register, as
shown in Figure 7.2:

AH High byte Single word

return value

AL Low byte

Figure 7.2 Two-Byte Return Value

2. If the return value is a four-byte integer or logical
value, that value is expected in the DX, AX pair, as
shown in Figure 7.3:

. : Most
DX DH| High word, high byte (_significant byte

DL| High word, low byte

AH | Low word, high byte
AX

Least

,| Low word, low byte s e
Al v ' Y significant byte

Figure 7.3. Four-Byte Return Value

67

Chapter 7 / Using Assembly Language Routines

3. If the return value is a four-byte or eight-byte REAL
value, that value is expected in the temporary variable
created by the calling program. The two-byte address
of this temporary variable is the last parameter pushed
on the stack. It is always at BP + 6 (see Example 2).

Example 1. INTEGER*4 Add Routine

Assume the following MS-FORTRAN program has been
compiled:

PROGRAM EXAMPL1
INTEGER |, TOTAL, IADD

=19

TOTAL = IADD (1,15)
WRITE (%1X,F16)") TOTAL
END

At runtime, just prior to the transfer to IADD, the stack would
be as shown in Figure 7.4:

Segment high

Segment low Argument 1.

Offset high Address of INTEGER I
Of fset low

THigher
addresses

Segment high

Argument 2.

Address of temporary
Offset high variable containing
the constant 15.0

Segment low

Offset low

A

Segment high

Segment low

> Return address
Offset high

sp —> Offset low

Stack
grows
downward

Figure 7.4. Stack Before Transfer to IADD

68

Chapter 7 / Using Assembly Language Routines

An example of an assembly language routine that implements
the integer ADD function, IADD, is illustrated in the
following routine. Note that the function return value is

AX.DX.

DATA SEGMENT PUBLIC 'DATA’
;See Note at end of section

DATA ENDS

DGROUP GROUP PUBLIC DATA ;See Note
CODE SEGMENT "CODE’
ASSUME CS:CODE,DS:DGROUPSS:DGROUP ;See Note

PUBLIC IADD

IADD PROC
PUSH
Mov
LES
Mov
MoV
LES
ADD
ADC
MOV
POP
RET

IADD
CODE
END

FAR

BP ;Save framepointer on stack
BPSP

BX,[BP+10] ;ES,BX := addrof 1stparam
AX,ES:[BX] ;AX,DX: = addr of 1st param
DX,ES:(BX] +2

BX,[BP + 6] ;ES,BX: = addr of 2nd param
AX,ES:[BX] JAX,DX: = 1st parameter plus
DX,ES:[BX] +2 ;2nd parameter

SPBP

BP ;Restore the framepointer
AH ;Return, pop 8 bytes
ENDP

ENDS

Example 2. REAL*4 Add Routine

Assume the following FORTRAN program has been

compiled:

PROGRAM EXAMPL2
REAL R, TOTAL, RADD

R =100

TOTAL = RADD (15.0,R)
WRITE (*/1X,F10.3)'} TOTAL

END

09

Chapter 7 / Using Assembly Language Routines

At runtime, just prior to the transfer to RADD, the stack
would be as shown in Figure 7.5:

I Higher
addresses -
Segment high
Segment low L Argument 1.
Address of
Offset high constant 15.0
Offset low _<

Segment high

Segment low > Argument 2.

Address of REAL R

Offset high

Offset low
Offset high Argument 3.
Address of
Offset low function return value

Segment high

Segment low

> Return address

Offset high

Sp ——> | Offset low

Stack
grows
downward

Figure 7.5. Stack Before Transfer to RADD

70

Chapter 7/ Using Assembly Language Routines

An example of an assembly language routine that implements
the real add function, RADD. is illustrated in the following
routine. Note that the function return value is in the location
specified by BP + 6.

DATA SEGMENT PUBLIC 'DATA’
;See Note at end of section
DATA ENDS

DGROUP GROUP PUBLIC DATA ;See Note
CODE SEGMENT'CODE’
ASSUME CS:CODE,DS:DGROUPSS:DGROUP ;See Note
PUBLIC RADD
RADD PROC FAR

PUSH BP :Save framepointer on stack
MOV BPSP

LES BX,[BP +12] ;ES,BX := addr of ist param
FLD ES:[BX] ;Push value of 1st param

;on 8087 stack
LES BX,[BP + 8] ;ES,BX : = addr of 2nd param
FLD ES:[BX] ;Push value of 2nd param

:on 8087 stack
- FADDP ST(1).ST :Add first two items

;on 8087 stack
MoV DI,[BP +6) ;D1 : = addr of funct return
FSTP [DI] ;Store result on 8087 stack
;at funct return location

FWAIT

MOVS PBP ;Restore the framepointer
POP BP

RET 0AH ;Return, pop 10 bytes
RADD ENDP

CODE ENDS

END
Note: Data uscd by assembly language routines must
be placed in a segment whose name is DATA,
whose classname is "DATA', and which is
grouped in DGROUP. The ASSUME statement
is required.

71

Chapter 8

Advanced Topics

8.1
8.1.1
8.1.2
8.1.2.1
8.1.2.2
8.2

8.3
8.3.1
8.3.2
8.3.3
8.3.3.1
8.3.3.2
8.3.3.3
8.3.4
8.3.4.1
8.3.4.2

The Structure of the Compiler................... 74
The Front Endcc.coiviiinininiiiierenennns 76
The Back End.......ccccoviiviniiniiniineiiniannannes 77

| 3 L1 o T 77
Pass Three€...cccceririeiieiiiiiiiiiiiicinccnenns 79
An Overview of the File System................ 80
Runtime Architecture.......cccceeeiviiininncnnnnnn. 83
Runtime Routines.......ccoccvvveeininninnnnannnnnn. 83
Memory Organization......c..ccccceeeveanennn. 84
Initialization and Termination................ 87
Machine Level Initialization................. 920
Program Level Initialization................ 91
Program Termination..........cccccveeveaeen.. 91
Error Handling.......cccveveieiiinininininnninnannn. 92
Machine Error Context..........ccceeuunn..... 93
Source Error ConteXt......ccoeevvavennennnnnnn 95

73

Chapter 8 / Advanced Topics

8.1 The

This chapter contains advanced technical information that
will be of interest primarily to experienced programmers.
Since MS-FORTRAN and MS-Pascal (but not FORTRAN-80)
have the same compiler back ¢nd, and share a common file
and runtime system, much of the information that follows
refers to both languages. Differences, where they exist, are
noted.

Structure of the Compiler

The compiler is divided into three phases, or passes, each
of which performs a specific part of the compilation process.
Figurc 8.1, which follows, illustrates the basic structure of
the compiler and its relationship to the files that it reads and
writes.

The Compiler Files
(
Pass One
Scanner and parser «———— Source
Ff°“t4 Icode generation utilities —1—» Sourcelist
end —t+—> Icode —
L ——+1+—» Symtab
Pass Two <—-——J
Optimizer
Code generator ——+—» Bincod ——
Link text emitter —
Back < ——> Object
end —+t—» Symtab
Pass Three ‘———l
Object code lister
—1— Objectlist
Y

Figure 8.1. The Structure of the Compiler

Chapter 8 / Advanced Topics

Pass one. which normally corresponds o a file named
FORLEXE, constitutes the front end of the compiler and
performs the following actions:

1. reads the source program

2. compiles the source into an intermediate form
3. writes the source listing file

4. writes the symbol table file

5. writes the intermediate code file

Passes two and three (the files PAS2.EXE and PAS3.EXE)
together make up the back end. which does the following:

1. optimizes the intermediate code
2. generates target code from intermediate code

3. writes and reads the intermediate binary file

3

i, writes the object (link text) file
5. writes the object listing file

Both the front and back ¢nd of the compiler are written in
MS-Pascal. in a source format that can be transformed into
cither relatively standard Pascal or into system level MS-
Pascal. (See the MS-Pascal Reference Manual for a discussion
of implementation levels in MS-Pascal.)

All intermediate files contain MS-Pascal records. The front
and back ends include a common constant and type
definition file called PASCOM, which defines the
intermediate code and symbol table types. The back ends
use a similar file for the intermediate binary file definition.
Formatted dump programs for all intermediate files and
object files are available for special purpose debugging.

The symbol table record is relatively complex, with a variant
for every kind of identifier (variables, procedures, intrinsic
functions, and common blocks). The intermediate code (or
Icode) record contains an Icode number, opcode, and up to
four arguments; an argument can be the Icode number of
another Icode to represent expressions in tree form, or
something else (such as a symbol table reference, constant,
or length). The intermediate binary code record contains
scveral variants for absolute code or data bytes, public or
external references, label references and definitions, etc.

75

Chapter 8 / Advanced Topics

8.1.1 The Front End

76

The MS-FORTRAN front end can be divided into several
parts:

1. the scanner

2. various utilities

3. EXECSTMTS, which processes executable statements
4. DECLSTMTS, which processes declarative statements

The front end is driven by recursive descent syntax analysis,
using a set of procedures such as EXPRESSION (for
expressions) and VARIABLE (for variables). Parsing is
performed on a strict statement basis. The scanner procedure
GETSTMT gets the next MS-FORTRAN statement into the
statement buffer.

Overall compilation control depends on a series of states,
handled as shown in Table 8.1.

Table 8.1. Front End Compilation Procedures

Name Function

INITSTATE Initialize procedure
HEADSTATE Process subroutine header
IMPSTATE Process IMPLICIT statements
SPECSTATE Process specification statements
DATASTATE Process DATA statements
STMTFUNSTATE Process statement functions
EXECSTATE Process executable statements
ENDSTATE End procedure

After initialization in INITSTATE, the current state cycles from
HEADSTATE through EXECSTATE for the program and for
all subroutines and functions. The final procedure, which
carries out program termination, is ENDSTATE.

MS-FORTRAN intermediate files are written in the same
manner as for the MS-Pascal front end. A few of the
intermediate code operations are specific to MS-FORTRAN,
particularly those concerned with assigned GOTO and DO
statements. The symbol table contains special flags for
COMMON and EQUIVALENCE variables, since these affect
common subexpression optimization.

Chapter 8 / Advanced Topics

8.1.2 The Back End

Of the separate passes that make up the back end of the
compiler, pass two is required while Pass three is optional.

8.1.2.1 Pass Two

The optimizer reads the interpass files in the following order:
first the symbol table for a block, then the intermediate code
for the block. Optimization is performed on each “basic
block,” i.e.. each block of intermediate code up to the first
internal or user label or up to a fixed maximum number of
Icodes, whichever comes first.

Within a block, the optimizer can reorder and condense
expressions as long as the intent of the program(mer) is
preserved. For instance, in the following program fragment,
the array address A (J, K) need be calculated only once:

A(K) = AQ.K)+ 1
c J =)
IF (A(J.K) .EQ. MAX) CALL PUNT

However, if the above preceding is rewritten to include the
assignment to J, shown in the fragment as a comment, the
array address in the IF statement must be partially
recalculated.

This optimization is called common subexpression
elimination. The optimizer also reorders expressions so that
the most complicated parts are done first, when more
registers for temporary values are available. It also does
several other optimizations, such as:

1. constant folding not done by the front end

2. strength reduction (changing multiplications and
divisions into shifts when possible)

3. peephole optimization (removing additions of zero,
multiplications by one, and changing A : = A + 1 to
an internal increment memory Icode)

The optimizer works by building a tree out of the
intermediate codes for each statement and then transforming
the list of statement trees.

77

Chapter 8 / Advanced Topics

There are seven internal passes per basic block:

1. statement tree construction from the Icode stream

2. preliminary transformations to set address/value flags
3. length checks and type coercions
4. constant and address folding, and expression

rcordering
5. peephole optimization and strength reduction
6. machine-dependent transformations
7. common subexpression climination

Finally, the optimizer calls the code generator to translate
the basic block from tree form to target machine code.

The code generator must translate these trees into actual
machine code. It uses a series of templates to generate more
efficient code for special cases. For example, there is a serics
of wemplates for the addition operator. The first template
checks for an addition of the constant one. If this addition
is found, the template generates an increment instruction.
If the template does not find an addition of one, the next
template gets control and checks for an addition of any
constant. If this is found, the second template generates an
add immediate instruction.

The final template in the series handles the general case. It
moves the operands into registers (by recursively calling the
code generator itself), then generates an add register
instruction. There is a series of templates for every operation.
The code generator also keeps track of register contents and
several memory segment addresses (code, static variables,
constant data, c¢tc.), and allocates any needed temporary
variables.

The code generator writes a file of binary intermediate code
(BINCOD), which contains machine instruction opcodes
with sympolic references to external routines and variables.
A final internal pass reads the BINCOD file and writes the
object code file.

Chapter 8 / Advanced Topics

8.1.2.2 Pass Three

This short pass rcads both the BINCOD file (described in
the previous section) and a version of the symbol table file
as updated by the optimizer and code generator. Using the
data in these files, Pass three writes a listing of the generated
code in an assembler-like format.

For more information about the compiler (especially the
back end), see the article “Native-code Compilers are
Portable and Fast,” (James G. Letwin and Andrea L. Lewis,
Electronic Design, May 14, 1981).

79

Chapter 8 / Advanced Topics

8.2 An Overview of the File System

80

MS-FORTRAN and MS-Pascal are designed to be casily
interfaced to existing operating systems. The standard
interface has two parts:

1. a file control block (FCB) declaration

2. aset of procedures and functions, called Unit U, that
are called from MS-FORTRAN or MS-Pascal at runtime
to perform input and output

This interface supports three access methods:
TERMINAL, SEQUENTIAL, and DIRECT.

Each file has an associated FCB (file control block). The FCB
record type begins with a number of standard fields, whose
details are independent of the operating system. These are
followed by fields, such as channel numbers, buffers, and
other operating system data, that are dependent on the
operating system.

The advanced MS-Pascal user can access FCB fields directly,
as explained in Chapter 7, “Files,” of the MS-Pascal Reference
Manual. There is no standard way to access FCB fields
within MS-FORTRAN.

Both MS-FORTRAN and MS-Pascal have two special file
control blocks that correspond to the keyboard and the
screen of your terminal. These two file control blocks are
always available. In MS-Pascal, they are the predeclared files
INPUT and OUTPUT; in MS-FORTRAN, they are unit number
0 (or *) and are accessed through a variable TRMVQQ, which
is declared as follows:

VAR TRMVQQ: ARRAY [BOOLEAN] OF ADR OF
FCBFQQ;

The false element references the output file; the true element
references the input file.

Unit U refers to the target operating system interface routines.
The file routines specific to MS-Pascal are called Unit F; the
file routines specific to MS-FORTRAN are called Unit V. Code
generated by the compiler of either language contains calls
to the appropriate unit (F or V), which in turn call Unit U
routines.

Chapter 8 / Advanced Topics

Figure 8.2 shows this relationship schematically.

MS-Pascal MS-FORTRAN
Compiler —» Code Code «— Compiler

Unit F Unit V

Unit U
Figure 8.2. The Unit U Interface

The file system uses the following naming convention for
public linker names:

1. All linker globals are six alphabetic characters, ending
with QQ. (This helps to avoid conflicts with your
program global names.)

2. The fourth letter indicates a general class, where:
a. xxxFQQ is part of the generic MS-Pascal file unit

b. xxxVQQ is part of the generic MS-FORTRAN file
unit

¢ xxxUQQ is part of the operating system interface
unit

File system crror conditions may be:
1. detected at the lower Unit U level
2. detected at the higher Unit F or V level
3. undetected

When a Unit U routine detects an error, it sets an appropriate
flag in the FCB and returns to the calling Unit F or V routine.
When Unit F or V detects an error or discovers Unit U has
detected one, it takes one of two possible actions:

1. An immediate runtime error message is generated, and
the program aborts.

2. Unit F or V returns to the calling program if error
trapping has been set (in MS-Pascal with the TRAP
flag, in MS-FORTRAN with the ERR = nnn clause).

81

Chapter 8 / Advanced Topics

Units F and V will not pass a file with an error condition
to a Unit U routine. For some access methods, certain file
operations may lead to an undetected error, such as reading
past the end of a record (this condition has undefined
results). Runtime errors that cause a program abort use the
standard c¢rror-handling system, which gives the context of
the error and provides entry to the target debugging system.

Chapter 8 / Advanced Topics

8.3 Runtime Architecture

The remainder of this chapter describes several topics related
to the runtime structure of MS-FORTRAN and MS-Pascal.,
with mention of differences where they exist.

8.3.1 Runtime Routines

MS-FORTRAN and MS-Pascal runtime entry points and
variables conform to the same naming convention: all names
are six characters, and the last three are a unit identification
letter followed by the letters “QQ”. Table 8.2 shows the
current unit identifier suffixes.

Table 8.2. Unit Identifier Suffixes

Suffix Unit Function
AQQ Complex real
BQQ Compile time utilities

CQQ Encode, decode

DQQ Double precision real
EQQ Error handling

FQQ MS-Pascal file system
GQQ Generated code helpers
HQQ Heap allocator

1QQ Generated code helpers
JQQ Generated code helpers
KQQ FCB definition

LQQ STRING, LSTRING
MQQ Reserved

NQQ Long integer

0QQ Other miscellaneous routines
PQQ Pcode interpreter

QQ QReserved

RQQ Real (single precision)

SQQ Set operations

TQQ Reserved

UQQ Operating system file system
vVQQ MS-FORTRAN file system
wWQQ Reserved

XQQ Initialize/Terminate

YQQ Special utilitics

7QQ Reserved

Chapter 8 / Advanced Topics

8.3.2 Memory Organization

Memory on the 8086 is divided into segments, each
containing up to 64K bytes. The relocatable object format
and MS-LINK also put segments into classes and groups. All
segments with the same class name are loaded next to each
other. All segments with the same group name must reside
in one area up to 64K long; that is, all segments in a group
can be accessed with one 8086 segment register.

MS-FORTRAN and MS-Pascal both define a single group,
named DGROUP, which is addressed using the DS or SS
segment register. Normally, DS and SS contain the same value,
although DS may be changed temporarily to some other
segment and changed back again. SS is never changed; its
segment registers always contain abstract “‘segment values”
and the contents are never examined or operated on. This
provides compatibility with the Intel® 80286 processor.
Long addresses, such as MS-Pascal ADS variables or MS-
FORTRAN named common blocks, use the ES segment
register for addressing.

Memory is allocated within DGROUP for all static variables,
constants which reside in memory, the stack, the heap, MS-
FORTRAN blank common, and segmented addresses of MS$-
FORTRAN named common blocks. The named common
blocks themselves reside in their own segments, not in
DGROUP.

Memory in DGROUP is allocated from the top down; that
is, the highest addressed byte has DGROUP offset 65535,
and the lowest allocated byte has some positive offset. This
allocation means offset zero in DGROUP may address a byte
in the code portion of memory, in the operating system
below the code, or even below absolute memory address
zero (in the latter case the values in DS and SS are “negative”).

DGROUP has two parts:

1. a variable length lower portion containing the heap
and the stack

2. a fixed length upper portion containing static
variables, constants, blank common, and named
common addresses

After your program is loaded, during initialization (in

Chapter 8 / Advanced Topics

ENTXGL), the fixed upper portion is moved upward as much
as possible to make room for the lower portion. If there is
enough memory, DGROUP is expanded to the full 64K bytes;
if there is not enough for this, it is expanded as much as
possible.

Figure 8.3 illustrates this memory organization.

Top (highest address)
MS-DOS code for COMMAND (may be overlapped)

(Unused memory)

HIMEM segment Class HIMEM
<name> segment(s) Class COMMOM
DS offset 65536
COMMQQ segment Class COMMON
CONST segment Class CONST
COMADS segment Class COMADS
DATA segment Class DATA
STACK segment Class STACK
MEMORY segment Class MEMORY
HEAP segment Class MEMORY

DS offset > = 66

CODE segments (user and library routines)
MS-DOS code and data (fixed)
Bottom (address 0:00)

Figure 8.3. Memory Organization

The following paragraphs describe memory contents,
starting at the bottom (address zero), when an MS-FORTRAN
or MS-Pascal program is running. Addresses are shown in
“segment:offset’”’ form.

1. 0000:0000

The beginning of memory on an 8086 system contains
interrupt vectors, which are segmented addresses.
Usually the first 32 to 64 are reserved for the operating
system. Following these vectors is the resident portion
of the operating system (MS-DOS in this case).

85

Chapter 8 / Advanced Topics

86

MS-DOS provides for loading additional code above
it, which remains resident and is considered part of
the operating system as well. Examples of resident
additional code are special device drivers for
peripherals, a print spooler, or the debugger.

BASE: 0060

Here BASE means the starting location for loaded
programs, sometimes called the transient program
area. When you invoke an MS-FORTRAN or MS-Pascal
program, loading begins here. The beginning of your
program contains the code portion, with one or more
code segments. These code segments are in the same
order as the object modules given to the linker,
followed by object modules loaded from librarics.

DGROUP:LO
The DGROUP data area contains the following:
Segment Class Description

HEAP MEMORY Pointer variables, some files
MEMORY MEMORY (not used, Intel compatible)
STACK STACK Frame variables and data
DATA DATA Static variables

COMADS COMADS Addresses of named commons
CONST CONST Constant data

COMMQQ COMMON FORTRAN blank common

The stack and the heap grow toward each other,
the stack downward and the heap upward.

DGROUP:TOP

TOP means 64K bytes (4K paragraphs) above
DGROUP:0000 (i.c., just past the end of DGROUP).
MS-FORTRAN named common blocks start here. Each
common block has a segment name as declared in the
MS-FORTRAN program as the common block name,
and the class name COMMON. Each named common
has one segmented (ADS) address in the COMADS
segment in DGROUP. All references to common block
component variables use offsets from this address.

HIMEM.: 6000
The segment named HIMEM (class HIMEM) gives the

Chapter 8 / Advanced Topics

highest used location in the program. The segment

- itself contains no data, but its address is used during

vi initialization. Available memory starts here and can
be accessed with MS-Pascal ADS variables.

6. COMMAND

MS-DOS keeps its command processor (the part of
itself which does COPY, DIR, and other resident
commands) in the highest location in memory
possible. Your MS-FORTRAN or MS-Pascal program
may need this memory area in order to run. If so, the
command processor is overwritten with program
data. When your program finishes, the command
processor is reloaded from the file COMMAND.COM
on the default drive.

In some circumstances, the check may result in a
message appearing on your screen telling you to insert
a disk that contains the appropriate file,
COMMAND.COM. You can avoid this delay by making
sure that COMMAND.COM is on the disk in the default
drive when the program ends.

8.3.3 Initialization and Termination

Every executable file contains one, and only one, starting
address. As a rule, when MS-FORTRAN or MS-Pascal object
modules are involved, this starting address is at the entry
point BEGXQQ in the module ENTX. For some versions, the
name ENTX may be appended with other letters. However,
the name of the module always begins with the four letters
“ENTX”. An MS-FORTRAN or MS-Pascal program (as
opposed to a module or implementation) has a starting
address at the entry point ENTGQQ. BEGXQQ calls
ENTGQQ.

The following discussion assumes that an MS-FORTRAN or
MS-Pascal main program along with other object modules
is loaded and executed. However, you can also link a main
program in assembly or some other language with other
object modules in either MS-FORTRAN or MS-Pascal. In this
case, some of the initialization and termination done by the
ENTX module may need to be done elsewhere.

87

Chapter 8 / Advanced Topics

88

When a program is linked with the runtime library and
execution begins, several levels of initialization are required.
The levels, in the order in which they occur, are the
following:

1. machine-oriented initialization
2. runtime initialization

3. program and unit initialization

Chapter 8 / Advanced Topics

The general scheme is shown in Figure 8.4.

ENTX module

BEGXQQ: Set stackpointer, framepointer
Initialize PUBLIC variables
Set machine-dependent flags, registers, and other values
Call INIX87
Call INIUQQ
Call BEGOQQ
Call ENTGQQ {Execute program}
ENDXQQ: {Aborts come here}
Call ENDOQQ
Call ENDYQQ
Call ENDUQQ
Call ENDX87
Exit to operating system
INTR Module
INIX87: Real processor initialization
ENDX87: Real processor termination
Unit U
INIUQQ: Operating system specific file unit initialization
ENDUQQ: Operating system specific file unit termination
MISO Module
BEGOQQ: (Other user initialization)
ENDOQQ: (Other user termination)

Program Module

ENTGQQ:

Call INIFQQ

If SENTRY on, CALL ENTEQQ

Initialize static data

Initialize units

FOR program parameters DO Call PPMFQQ
Execute program

If SENTRY on, CALL EXTEQQ

Figure 8.4. FORTRAN Program Structure

89

Chapter 8 / Advanced Topics

8.3.3.1 Machine Level Initialization

The entry point of an MS-FORTRAN load module is the
routine BEGXQQ), in the module ENTX (the module may also
be called ENTX8, ENTXG6M, etc.).

BEGXQQ does the following:

90

1.

6.

It moves constant and static variables upward (as
described in Section 8.3.2, “Memory Organization™),
creating a gap for the stack and the heap.

It scets the framepointer to zero.

It initializes 2 number of public variables to zero or
NIL. These include:

RESEQQ, machine error context CSXEQQ, source
error context list header PNUXQQ, initialized unit
list hcader HDRFQQ, MS-Pascal open file list header
HDRVQQ, MS-FORTRAN open file list header

It sets machine-dependent registers, flags, and other
values.

It sets the heap control variables. BEGHQQ and
CURHQQ are sct to the lowest address for the heap:
the word at this address is set to a heap block header
for a free block the length of the initial heap.
ENDHQQ is set to the address of the first word after
the heap. The stack and the heap grow together, and
the public variable STKHQQ is set to the lowest legal
stack address (ENDHQQ, plus a safety gap).

It calls INIX87, the real processor initializer. This
routine sets 8087 emulator interrupt vectors, as
appropriate.

It calls INIUQQ, the file unit initializer specific to the
operating system. If the file unit is not used and you
don’t want it loaded, a dummy INIUQQ routine that
just returns must be loaded instead.

It calls BEGOQQ, the escape initializer. In a2 normal
load module, an empty BEGOQQ that only returns
is included. However, this call provides an escape
mechanism for any other initialization. For example,
it could initialize tables for an interrupt-driven profiler
or a runtime debugger.

Chapter 8 / Advanced Topics

9. It calls ENTGQQ, the entry point of your MS-
FORTRAN program.

8.3.3.2 Program Level Initialization

Your main program continues the initialization process. First,
the language specific file system is called (INIVQQ for MS-
FORTRAN, or INIFQQ for MS-Pascal). Both are parameterless
procedures.

If the main program is in MS-FORTRAN, and MS-Pascal file
routines will be used, INIFQQ must be called to initialize
the MS-Pascal file system. If the main program is in MS-Pascal,
and MS-FORTRAN file routines will be used, INIVQQ must
be called to initialize the MS-FORTRAN file system.

MS-FORTRAN main programs automatically call INIVQQ;
MS-Pascal main programs automatically call INIFQQ. To
avoid loading the file system, you must provide an empty
procedure to satisfy onc or both of these calls. If SDEBUG
has been set, ENTEQQ is then called to set the source error
context.

8.3.3.3 Program Termination

Program termination occurs in one of three ways:

1. The program may terminate normally, in which case
the main program returns to BEGXQQ, at the location
named ENDYQQ.

2. The program may abort due to an error condition,
either with a user call or a runtime call to an error
handling routine. In cither case, an ¢rror message,
error code, and error status are passced to EMSEQQ,
which does whatever error handling it can and calls
ENDXQQ.

3. ENDXQQ may be called directly.

ENDXQQ first calls ENDOQQ), the escape terminator, which
normally just returns to ENDXQQ. Then ENDXQQ calls
ENDYQQ, the generic file system terminator. ENDYQQ closes
all open MS-Pascal and MS-FORTRAN files, using the file list
headers HDRFQQ and HDRVQQ.

91

Chapter 8 / Advanced Topics

ENDXQQ calls ENDUQQ, the operating system specific file
unit terminator. Finally, ENDXQQ calls ENDX87 to terminate
the real number processor (8087 emulator). As with INIUQQ,
INIFQQ, and INIVQQ, if your program requires no file
handling, you will need to declare empty paramecterless
procedures for ENDYQQ and ENDUQQ.

As mentioned, the main initialization and termination
routines are in module ENTX. Procedures for BEGOQQ and
ENDOQQ are in module MISO. ENDYQQ is in module MISY.

8.3.4 Error Handling

92

Runtime errors are detected in one of four ways:
1. The user program calls EMSEQQ.
2. A runtime routine calls EMSEQQ.

3. An error checking routine in the error module calls
EMSEQQ.

4. An internal helper routine calls an error message
routine in the error unit that, in turn, calls EMSEQQ.

Handling an error detected at runtime usually involves
identifying the type and location of the error and then
terminating the program, or, with ERR = in an 1/O statement,
returning to the calling MS-FORTRAN procedure.

The error type has three components:
1. a message
2. an error number
3. an error status

The message describes the error, and the number can be used
to look up more information (see Appendix C, “Error
Messages,” in the MS-FORTRAN Reference Manual). In MS-
FORTRAN, the error status value is used for special purposes
and has no significance for the user. In MS-Pascal, the error
status value is undefined.

Table 8.3 shows the general scheme for error code
numbering.

Chapter 8 / Advanced Topics

Table 8.3. Error Code Classification

Range Classification

1- 999 Front end errors
1000-1099 Unit U file system errors
11¢0-1199 Unit F file system errors

1200-1299 Unit V file system errors

13¢0-1999 Reserved

2000-2049 Heap, stack, memory

2050-2099 Ordinal and long integer arithmetic
2100-2149 REAL*4 and REAL*8 arithmetic
2150-2199 Structures, sets, and strings
2200-2399 Reserved

2400-2449 Pcode interpreter

2450-2499 Other internal errors

2500-2999 Reserved

An error location has two parts:
1. the machine error context
2. the source program context

The machine error context is the program counter,
stackpointer, and framepointer at the point of the error. The
program counter is always the address following a call to a
runtime routine (e.g., a return address). The source program
context is optional; it is controlled by the $DEBUG
metacommand. If SDEBUG is in effect, the program context
consists of:

1. the source filename of the compiland containing
the error

2. the name of the routine in which the error
occurred

3. the listing line number of the first line of the
statement

8.3.4.1 Machine Error Context

Runtime routines are compiled by default with the
SRUNTIME metacommand set. This causes special calls to
be generated at the entry and exit points of cach runtime

93

Chapter 8 / Advanced Topics

94

routine. The entry call saves the context at the point where
a runtime routine is called in the user program. This context
consists of the framepointer, stackpointer, and program
counter. As a consequence of this saving of context, if an
error occurs in a runtime routine, the error location is always
in the user program. This is true even if runtime routines
call other runtime routines. The exit call that is generated
restores the context.

The runtime entry helper, BRTEQQ, uses the runtime values
shown in Table 8.4.

Table 8.4. Runtime Values in BRTEQQ

Value Description

RESEQQ Stackpointer

REFEQQ Framepointer

REPEQQ Program counter offsct
RECEQQ Program counter scgment

The first thing that BRTEQQ does is examine RESEQQ. If
this value is not zero, the current runtime routine was called
from another runtime routine and the error context has
already been set, so it just returns. If RESEQQ is zero,
however, the error context must be saved. The caller’s
stackpointer is determined from the current framepointer
and stored in RESEQQ. The address of the caller’s saved
framepointer and return address (program counter) in the
frame is determined. Then the caller’s framepointer is saved
in REFEQQ. The caller’s program counter (i.e., BRTEQQ's
caller’s return address) is saved: the offset in REPEQQ and
the segment (if any) in RECEQQ.

The runtime exit helper, ERTEQQ, has no parameters. It
dctermines the caller’s stackpointer (again, from the
framepointer) and compares it against RESEQQ. If these
values are equal, the original runtime routine called by your
program is returning, so RESEQQ is set back to zero.

EMSEQQ uses RESEQQ, REFEQQ, REPEQQ, and RECEQQ
to display the machine error context.

Chapter 8 / Advanced Topics

8.3.4.2 Source Error Context

Giving the source error context involves extra overhead,
since source location data must be included in the object
code in some form. Currently, this is done with calls which
set the current source context as it occurs. These calls can
also be used to break program execution as part of the debug
process. The overhead of source location data, especially line
number calls, can be significant. Routine entry and exit calls,
while requiring more overhead, are much less frequent, so
the overhead is less.

The procedure entry call to ENTEQQ passes two VAR
parameters: the first is an LSTRING containing the source
filename; the second is a record that contains the following:

1. the line number of the procedure
2. the subroutine or function identifier

The filename is that of the compiland source (e.g., the main
source filename, not the names of any SINCLUDE files). The
procedure identifier is the full identifier used in the source,
not the linker name. The line number is the first executable
statement in the procedure.

Entry and exit calls are also generated for the main program,
in which case the identifier is the program name.

The procedure exit call to EXTEQQ does not pass any
parameters. It pops the current source routine context off
a stack maintained in the heap.

The line number call to LNTEQQ passes a line number as
a value parameter. The current line number is kept in the
public variable CLNEQQ. Since the current routine is always
available, the compiland source filename and routine
containing the line are available along with the line number.
Line number calls are generated just before the code in the
first statement on a source line. The statement can, of course,
be part of a larger statement,

Most of the error handling routines are in modules ERRE and
FORE. The source error context entry points ENTEQQ,
EXTEQQ, and LNTEQQ are in the debug module, DEBE.

95

Appendices

A MS-FORTRAN File Control Block............... 929
B Real Number Conversion Utilities............ 103
C Structure of External FORTRAN Files...... 105
D FORTRAN Scratch File Names.................. 107
E LINK Efrotr MeSSagesS....c.cevveievinenrenennnnnnns 109

97

nj'. f _.-l
.1_|Ih 3 5 1__:
e

'1' h

Appendix A

MS-Fortran File Control Block

This appendix lists the complete file control block
specification for this version of the MS-FORTRAN runtime
system. The underlying data type is an MS-Pascal record.
Numbers in square brackets give the byte offset for each field
of the file control block.

{MS-FORTRAN File Control Block for MS-DOS}

INTERFACE; UNIT
FILKQQ (FCBFQQ, FILEMODES, SEQUENTIAL, TERMIN-
AL, DIRECT, DEVICETYPE, CONSOLE, LDEVICE, DISK,
DOSEXT, DOSFCB, FNLUQQ, SCTRLNTH);

CONST

FNLUQQ = 2t; {length of an MS-DOS filename}
SCTRLNTH = 512 ;{length of a disk sector}

TYPE

DOSEXT = RECORD {DOS file control bick extension}
PS[0): BYTE ;{boundary byte, not in extension}
FG[1]): BYTE ;{flag; must be 255 in extension}
XZ[2): ARRAY [0..4] OF BYTE {pad, internal use}
AB(7): BYTE; {internal use for attribute bits}

END;

DOSFCB = RECORD {DOS file control block (normal)}
DR[Q]: BYTE; {drive numb, @=default, 1=A etc}

FN[1): STRING (8); {file name - eight characters}
FT[9]: STRING (3); {file extn - three characters }

EX[12]: BYTE; {current extent; lo-order byte}
E2[13]: BYTE; {current extent; hi-order byte}
S2[14): BYTE; {size of sector; lo-order byte}
RC[15]: BYTE; {size of sector; hi-order byte}
Z1[16): WORD; {file size; lo-word; readonly}
Z2[18]: WORD; {file size; hi-word; readonly}

DA[20): WORD; {date; bits: DDDDDMMMMYYYYYYY}
DN [22]: ARRAY [0.9] OF BYTE; {reserved for DOS}

CR([32]: BYTE; {current sector (within extent)}

RN[33]: WORD; {direct sector number (lo word)}

R2[35]: BYTE; {direct sector number (hi byte}

R3[36]: BYTE; {DSN hi byte if sect size < 64}

PD[37): BYTE; {pad to wrd boundary; not MS-DOS}
END;

DEVICETYPE=(CONSOLE, LDEVICE, DISK); {physical device}

99

100

FILEMODES =(SEQUENTIAL, TERMINAL, DIRECT); {access mode}
TYPE
FCBFQQ=RECORD {byte offsets start every field comment}

{fields accessible as <file variable> <field>}

TRAP: BOOLEAN; {@0 Pascal user trap errs if true}
ERRS: WRD(®)..15; {01 err stat, set only by all units}
MODE: FILEMODES; {02 usr file mode; not used in unitU}

MISC: BYTE; {@3 pad to wrd bound, special use}
{flds shard by units F, V, U; ERRC/ESTS are write-only}
ERRC: WORD; {04 err code, err exists if nonzero}

{1600..1899: set for unit U errors}

{1100..1199: set for unit F errors}

{1200..1299: set for unit V errors}
ESTS: WORD; {@6 error data, usually set by OS}
CMOD: FILEMODES; {08 sys file mode; copied from MODE}

{flds set/used by units F and V, read-only in unitU}

TXTF: BOOLEAN; {@9 true: formatted /ASCII /TEXT file}
{ false: not formatted / binary file}
SIZE: WORD; {10 record size set when file is opened}

{DIRECT: always fixed record length}

{others: max length (UPPER (BUFFA))}
MISB: WORD; {12 unused, exists for historic reasons}
OLDF: BOOLEAN; {14 true: must exist before open; RESET}

{ false: can create on open; REWRITE}

INPT: BOOLEAN; {15 true: user is now reading from file}

{ false: user is now writing to file}
RECL: WORD; {16 DIRECT record number, lo order word}
RECH: WORD; {18 DIRECT record number, hi order word}
USED: WORD; {20 number bytes used in current record}

{fld usd intrnally by units F and V not used by unitU}
LINK: ADR OF FCBFQQ; {22 DS offset addr of next opn fil}
{flds usd intrnally by unitF not used by units V or U}

BADR: ADRMEM,; {24 ADR of buffer variable (end of FCB)}
TMPF: BOOLEAN; {26 true if temp file; delete on CLOSE}
FULL: BOOLEAN; {27 buffer lazy evaluation status, TEXT}
UNFM: BYTE; {28 for unformatted binary mode}

OPEN: BOOLEAN; {29 file opened; RESET / REWRITE called}
{fids usd intrnally by unitV not used by units F or U}

FUNT: INTEGER; {3@ Unit V's unit number always above @}
ENDF: BOOLEAN,; {32 last operation was the ENDFILE stmt}
{flds set/usd by unitV, and read-only in units F and V}

REDY: BOOLEAN; {33 buffer ready if true; set by F / U}

BCNT. WORD; {34 number of data bytes actually moved}
EORF: BOOLEAN; {36 true if end of record read, written}
EOFF: BOOLEAN; {37 end of file flag set after EOF read}

{unit U (operating system) information starts here}

NAME: LSTRING(FNLUQQ);
{38 DOS filenam(D:NNNNNNNN.XXX)}
DEVT. DEVICETYPE; {60 dvice type, accessd by file}

RDFC: BYTE; {61 funct code, for device GET}
WRFC: BYTE; {62 funct code, for device PUT}
CHNG: BOOLEAN; {63 true if sbuf data was chgd}
SPTR: WORD; {64 indx to currnt byte in sbuf}
LNSB: WORD; {66 num of valid bytes in sbuf}
DOSX: DOSEXT; {68 extend DOS file contri bick}
DOSF: DOSFCB; {76 normal DOS file contrl bick}
IEOF: BOOLEAN; {114 true if eoff will be true}
{on next get}

FNER: BOOLEAN; {115 true if pfnugq filenam err}
SBFL: BYTE; {116 max txtfil line len in sbuf}
SBFC: BYTE; {117 num of chars, read to sbuf}

SBUF: ARRAY[WRD(@)..SCTRLNTH-1) OF BYTE; {118 sect buf}
PMET: ARRAY [0..3) OF BYTE; {118+ sctrinth reserved pad}

BUFF: CHAR; {122 + sctrinth (buffer var)}
{end of section for unit U specific OS information}

END;

END;

101

Appendix B

Real Number Conversion Utilities

Releases of MS-FORTRAN starting with version 3.0 and later
use the IEEE real number format. Releases of MS-FORTRAN
earlier than 3.0 used the real number format.

The two formats are not compatible. However, if you need
to convert real numbers from one format to the other, you
can use the following library routines:

1. Microsoft to IEEE format
SUBROUTINE M2ISQQ (RMS , RIEEE)

2. 1EEE to Microsoft format
SUBROUTINE I2MSQQ (RIEEE , RMS)

RMS and RIEEE are real numbers in Microsoft format and
in IEEE format, respectively.

103

Appendix C

Structure Of External MS-Fortran Files

The structure of an external MS-FORTRAN file is determined
by its properties. The structures used in MS-FORTRAN are
as follows:

1. Formatted scquential files

Records are separated by carriage return and linefeed
(ASCII hex codes @D and @A, respectively).

Record N D A Record N + 1

2. Unformatted sequential files

A logical record is represented as a series of physical
records, each of which has the following structure:

L Data <= 128 bytes L

V
Physical record

Each L shown above is a length byte that indicates the
length of the data portion of the physical record. The
data portion of the last physical record contains MOD
(length of logical record, 128) bytes, and the length
bytes will contain the exact size of the data portion.

Each of the preceding physical records will contain
128 bytes in the data portion, while the length byte
will contain 129. For example, if the size of the logical
record is 138:

128 bytes
of data

10 bytes

129 of data

129 | 10 10

v

One logical record

105

The first byte of the file is reserved and contains the
value 75, which has no other significance.

3. Formatted direct files, unformatted direct files, and
binary files

No record boundaries or any other special characters
are used.

106

Appendix D

MS-Fortran Scratch File Names

Scratch files are created by the MS-FORTRAN system when
no filename is specified in an OPEN statement. Scratch file
names look like this:

T<u>TMP

<u> is the unit number specified in the OPEN statement.

107

P
gl
‘I' £

l

Ly

ot = B
o

P
= = N

v Sa i

A 5 gt i 3 '3"?;-%:’;"‘::""‘:‘1%'! L.
M ! e ey A]

|
o

L

Appendix E

Link Error Messages

Any link error will cause the link session to abort. After you
have found and corrected the problem, you must rerun MS-
LINK. Link errors have no code number. See your MS-DOS

manual for further information on MS-LINK

data ouls

Attempt to ac

module

There is probably a bad object file.

Numeric value is not in digits.

MS-LINK is unable to create the file VM. TMP because
the disk directory is full. Insert a new disk. Do not
remove the disk that will receive the list map file.

too complex

DUP recored in assembly language module is too
complex. Simplify DUP record in assembly language
program.

Error: fixup offset exceeds field width

In assembly language instruction refers to an address
with a short instruction instead of a long instruction.
Edit assembly language source and reassemble.

Input file re ro

There is probably a bad object file.

Invalid o t module

An object module(s) is incorrectly formed or
incomplete (as when assembly is stopped in the
middle).

jefined more than once

MS-LINK found two or more modules that define a
single symbol name,

109

110

Program size or number of segments exceeds capacity of linker

The total size may not exceed 384K bytes and the
number of segments may not exceed 255.

Requested stack size exceeds 64K

Specify a size greater than or equal to 64K bytes with
the /STACK switch.

Segment size exceeds 64K
64K bytes is the addressing system limit.
Symbol table capacity exceeded

Very many and/or very long names were typed,
exceeding the limit of approximately 25K bytes.

Too many external symbols in one module

The limit is 256 external symbols per module.
Too many groups

The limit is 10 groups.
Too many libraries specified

The limit is 8 libraries.
Too many public symbols

The limit is 1024 public symbols.
Too many segments or classes

The limit is 256 (segments and classes taken together).
Unresolved externals: <list>

The external symbols listed have no defining module
among the modules or library files specified.

VM read error
This is a disk error; it is not caused by MS-LINK.
Warning: no stack segment

None of the object modules specified contains a
statement allocating stack space, but you used the
ISTACK switch.

Warning: segment of absolute or unknow
There is a bad object module or an attempt has been
made to link modules that MS-LINK cannot handle

(e.g., an absolute object module).
Write error in TMP file

No more disk space remains to expand VM.TMP file.
Write error an run file

Usually, there is not enough disk space for the run file.

Index

$DEBUG, 5, 60
$INCLUDE, 54
SLIST, 54
$NODEBUG, 5, 60
$NOLIST, 54

{DSALLOCATE, 40

/HIGH, 40

/LINENUMBERS, 40

IMAP, 38, 40

/NO, 37, 40
/NODEFAULTLIBRARY-SEARCH, 37
/PAUSE, 40

ISTACK, 40

8086 assembly language, 62
Add routine, 68, 69
Addresses, offset, 8
Angle brackets, syntax notation, vii
Assembler, 5
Assembly language
data placement, 71
interface, 34, 61, 67

Back end, 75, 77

BAT file See Batch file
Batch file, 41, 42
BEGXQQ, 87
Bibliography, reference, vii

Calling conventions, 34, 62
Calls
by reference, 67
long, 63
short, 63
Capital letters,
syntax notation, vii
Character values, 66
CHKDSK program, 39
Code
relative, 8
size, limits, 44
Command syntax, vii
COMMON block, 46, 86
Compile time
definition, 7
memory limits, 46
Compiler
flags, calls, 5
general discussion, 3
optimization, 3
passes, 13
See also Pass one
Pass two
Pass three
starting, 29
structure, 3, 74

Compiling large programs, 44, 57
COPY, 2

Data
size limits, 45
types, 65
Definitions, 7
Device
drivers, 86
name, 25
DGROUP, 84
DIR, 39
DISKCOPY, 2
Disks
backup copies, 2
exchanging, 56
limits, 54-55
memory, 44
provided, iv
Documentation, v
Dummy subroutines, 60

Ellipses, syntax
notation, vii
ENDYQQ, 59
ENTER key, vii
ENTGQQ, 87
Error
code classification, 93
machine context, 93
source context, 95
trapping, 81
Examples
large program, 57
program session, 12
EXE file, 5, 38
Expressions, complex, 47
EXTERNAL declarations, 34
External
files, 105
reference, 8

File control block, 66, 80, 99

Filenames
conventions, 25
default, 26
defaults, 25
extensions, 25
general rules, 27
spaces within, 30

Files
backup copies, 2
batch facilities, 41
compiler-written, 22
control blocks See

File control block

external, 105

Index

intermediate, 23

linker-read, 34

linker-written, 38

naming

See Filenames

NUL or null, 14, 26

object, 22, 34

object listing, 23

run, 38

scratch, names, 107

source listing, 22
FORTRAN

learning resources, vii

standard, subset, iv
FORTRAN.LEM, 37
FORTRAN.LIB, 37
Frame contents, 62
Framepointer, 62, 90
Front end, 76
Function return values, 67

Heap, 45, 86

110, 59
Identifier limits, 46
INIVQQ, 59
INPUT file, 80
INTEGER*2, 65
INTEGER*4, 65
Intel

80286 processor, 84
Interface, standard, 80
Intermediate files, 23
Internal representations, 65
Interpreter, 3
Interrupts

vectors, 85

Libraries, runtime, 9, 37
Limits
compile time memory, 46
complex expressions, 46
identifiers, 46
physical, 44
Link time, 7
Linker
defaults, 36
globals, 86
listing file, 38
map, 38
prompts, 35
public names, 81
switches, 40
Linking
general discussion, 3, 33
large programs, 44, 57
no library search, 37

object files, 5
Load module, 59
LOGICAL*2, 65
LOGICAL"4, 65
Long calls, 63

Machine level
initialization, S0
Memory
8086, organization, 84
contents, 85
linking, 39
organization, 85
Microsoft MACRO
Assembler, 5
Microsoft Pascal, 75
Module
definition, 7
load, 59
object, 34
relocatable, 8
size, 59
MS-DOS procedures, 2

Naming conventions, 81
Notation conventions, vii
NUL or null file, 14, 26
Object

code, 44

file, 5, 22, 34

listing file, 23

modules, 34
Offset addresses, 8
Optimization, 3, 77
OUTPUT file, 80

Parameters
batch file, 41
procedural, 66
PASCOM, 75
Pass one, 13, 54, 75
Pass three, 16, 75, 79
Pass two, 15, 55, 75, 77
Preliminary procedures, 2
Program
development steps, 3-6
example, 57
execution, example, 19
initialization, 91
large, 57
source, 7
termination, 91
Pubtic routines, 34

QQ naming convention, 81

Index

Real number Unresolved variable, 8
format, 103
operations, 60 VM.TMP, 39, 40
REAL"4, 65 Vocabulary, 7
REAL*8, 65
Reference books, vii
Register
saved, 63
segment, 84
Relocatable
module, 8
object file, 5
RETURN key, vii
Routine, 8
Run file, 5, 38
Runtime
architecture, 83
definition, 7
error handling, 92
initialization, 87
libraries, 9, 37
routines, 83
structure, 34
termination, 87

Sample session, 11
Scratch file names, 107
Short calls, 63
Software provided, iv
Source

file, 5, 7, 12

listing file, 22

program, 7
Square brackets,

syntax notation, vii
Stack, 45, 86
Stackpointer, 89
Statement

syntax, vii

trees, 77
Subexpression elimination, 77
Subroutines, 44
Switches, linker, 40
Symbol table, 47, 75
Syntax notation, vii
System requirements, iv

Technical information, 74
Templates, 78
TRAP flag, 81
TRMVQQ, 80

Undefined variable, 8
Unit F, 81

Unit identifiers, 83
Unit U, 80-82

Unit V, 80-82

R
F i ijﬂ:[.':.'*':q‘ﬁ'ar "

Fortrah
Language

MS™-FORTRAN

Reference Manual

Contents

b1 0 v
INtrOAUCTION .cuvvuiiiiiiiiiiiiereereerecrecrosssesssssssssossssssssssssss vi
About This Manual.....c.ciieeieiiiireeeieeeeeneesencnnssssossssse vii
Syntax NOtAtiON...ccccveeiricnrieriercrerscrtontcoscossasasssens viii
Learning More About FORTRAN.....ccccoteiiinrncnncncass ix
1/Language OVervieW....cccceeieieieeeriecnnencnnranennns .1
1.1 MS-FORTRAN Metacommands......ccceeeveeeeeceeensoccones 3
1.2 Programs and Compilable Parts of Programs....... 4
1.3 INPUut/OUtPUL....c.cuceiiiininieieieireititreticricesessssesesasses 6
1.4 StAtCIMEIES cuueeenneieineerenreenseeeeseenssennscnscssasssssssonsssons 8
1.5 EXPreSSiONS...c.cccrecerenroriocrossserossroscscsasasasasasnnns 19
1.6 NAMES cueueinrieriereereeseeessssescsessencsscncessesssssssessosanss 11
1.7 TYPES caeneinriiiiiiiitietitcrcetietissessascssesssssscssonsanssees 12
| T 15§ ¢ (<1 S 13
1.9 CharacterS....cccciueecrienrucnciieniecnieeecncerassssesassssossses 14
2/Terms and CONCEPLS..cucerieinierrracneannanas SR &
P T [0 7 15 (o) 1 W 16
2.2 Lines and StatementS....ceeeeeeereereereasecscesascescescssass 18
2.3 Data TyPEeS.cieeiureiteieeeerinrentiercsscossessossonssossosssons 22
2.4 NAINES.evieeierrneeireieereeessssnsosssssssssassssesassssssansesssones 29
2.5 EXPIreSSIONS...ccieiiiiiitieiiieiiiiiiitieieeeieseeetasesacasacees 32
B/ S tALCINEIIES cuuuuereeeereereeereeeeencccccsceasacenannnns .ee39
3.1 Categories of Statements.........ccceeurninrerincecercncens 41
3.2 Statement DifreCtOry..ccccciiiieaieineerecaicreacacecacnnrnns 46
4/The 1/O SysStemM......cceieieenenrncaranenas creereeeeeees93
4.1 RECOPAS..ueiueeieeienieeieeieeresresesseerssssesssesesssssssssanns 95
T A 1 X T 96
4.3 /O StAtCIMENLS...uueeeennrerreereeeraeecesaenssesssnssssonnnes 105

iii

4.5 List-Directed I/O....cucueeuenreienrneeienreeeenenresenencacens 129
5/Programs, Subroutines, and Functions........ 125
5.1 Main Programu......cccccieeieieiniiieinenrerresecoseseecenaness 127
5.2 SUDIOUINES..c.ciuiieiiiniieieieiieeereetreecseenecncsecnennens 128
5.3 FUNCHOMS c..ciiiiiniieiieiiiiieiiirateareereasesecssscssensenns 129
5.4 ACGUMENTS..icuiiurrurenienieaneneeeceerranrencesesnsssesnnanns 137
6/The MS-FORTRAN Metacommands.............. 139
0.1 OVEIVIEW cecuieiininieiinieieieneteenreerenenceeenresencnsenenses 140
6.2 Metacommand DireCtOry...c.ccceeieuirenieennraneennennn. 142
APPENAICES.curiniiniieriiiiiiiieiirenteancenecaceanaancnns 149
A/MS-FORTRAN and ANSI
Subset FORTRAN....ccciiiiiiiieiieeeneereerseracensens 151
B/ASCII Character COAeS....ccueueereieirninrnrnrereeececneesnseene 155
C/Error MeESSaAES..cuurueinieuimuinniniieieeiacincrecescnecnnensansonees 157
| £ 10 Lo S P 169

iv

Tables

Table 1.1.
Table 1.2.
Table 2.1.

Table 2.2.
Table 2.3.
Table 2.4.

Table 3.1.

Table 3.2.
Table 3.3.
Table 3.4.
Table 3.5.
Table 3.6.

Table 4.1.

Table 4.2.
Table 4.3.

Table 5.1.
Table 6.1.

I/O StatementsS......cccevereiuienerncenonrararoceaennans 6
Categories of Statements in FORTRAN......... 9
Memory Requirements......ccceceeuvenvrennennnnes 22
Arithmetic Operators.......cccoevevverinvnrennnnnn. 33
Relational OperatorsS.......cceeeececncerecncncncenes 35
Logical OPerators.....cccccevveiernrcnrcnrenseccnncnes 37
Specification Statements........ccceevveeinennnnnn. 42
Control StatementsS.....cccceeveivivivienenennanannn. 44
I/O Statements.......ccccceuieiiereerenseresessocnnannns 45
Conversion of Integer Values in V = E...... 48
Type Conversion of Real Values in V = E..49
Edit DeScriptors....ccceucerereeinerereacanneanencnnnnnn 69
Carriage Control Characters........c...c........ 108
Scale Factors for E and D Editing............. 116
Data Conversion Equivalents.................... 117
Intrinsic Functions........ceceveveeieeneinniennnnan. 131
The MS-FORTRAN Metacommands............ 140

v

Introduction

vi

This is 2 language reference manual for the Microsoft®

FORTRAN language system. MS™-FORTRAN conforms to
Subset FORTRAN, as described in ANSI X3.9-1978. MS-
FORTRAN includes extensions to the subset language and
some of the features of the full ANSI standard, commonly
known as FORTRAN 77. See Appendix A, “MS-FORTRAN
and ANSI Subset FORTRAN,” for details.

The syntactical rules for using FORTRAN are rigorous and
require the programmer to fully define the characteristics
of the solution to a problem in a series of precise statements.
Therefore, we recommend that you have a general
understanding of some dialect of FORTRAN before using this
product. This manual is not a tutorial; for a list of suggested
FORTRAN texts, see “‘Learning More About FORTRAN"' in
this introduction.

About This Manual

This manual is organized as follows:

Chapter 1, ‘“Language Overview,” is general in scope,
providing a broad picture of the MS-FORTRAN language.
Later chapters discuss the elements of the language in more
detail.

Chapter 2, “Terms and Concepts,” describes the smaller
elements of the language, from notation to data types to
expressions, and explains program structure.

Chapter 3, “Statements,” defines MS-FORTRAN statements,
both executable and nonexecutable.

Chapter 4, "“The 1/O System,” provides additional
information about input and output and the MS-FORTRAN
file system.

Chapter 5, ‘‘Programs, Subroutines, and Functions,”
describes the subroutine structure, including argument
passing and intrinsic (system-provided) functions.

Chapter 6,“The MS-FORTRAN Metacommands,” describes
the syntax and use of the metacommands.

Appendix A,'MS-FORTRAN and ANSI Subset FORTRAN,”
describes the differences between MS-FORTRAN and ANSI
Subset FORTRAN.

Appendix B, “ASCII Character Codes,” is a table of the entire
ASCII character set.

Appendix C, “Error Messages,” lists the compilation and
runtime error messages you may see when you compile and
run your program.

For information on how to use the MS-FORTRAN Compiler
and the details of your specific version of MS-FORTRAN, see
the MS-FORTRAN Compiler User’s Guide.

vii

Syntax Notation

The following notation is used throughout this manual in
descriptions of statement syntax:

CAPS Capital letters indicate portions of statements that
must be entered exactly as shown.

<> Angle brackets indicate user-supplied elements.
When the angle brackets enclose lowercase text, you
replace the entry with an item defined by the text
(¢.g., the name of a specific file for <filename<).

[1] Square brackets indicate that the enclosed entry is
optional (e.g., A[<w<], where <w< represents a field
width, indicates that either A or A12, for example,
is valid).

Ellipses indicate that an entry may be repeated as
many times as needed or desired. For example, the
EXTERNAL statement is described as follows:

EXTERNAL <name< [, <name<].. .

The syntactic items denoted by <name< may be
repeated any number of times, separated by commas.

All other punctuation, such as commas, colons, slash marks,
parentheses, and equal signs, must be entered exactly as
shown.

Blanks normally have no significance in the description of
MS-FORTRAN statements. The general rules for blanks,
covered in Section 2.1.2, “‘Blanks,” govern the interpretation
of blanks in all contexts.

viii

Learning More About FORTRAN

The manuals in this package provide complete reference
information for your implementation of the MS-FORTRAN
Compiler. They do not, however, teach you how to write
programs in FORTRAN. If you are new to FORTRAN or need
help in learning to program, we suggest you read any of the
following books:

Agcelhoff, R., and Mojena, Richard. Applied FORTRAN 77,
Featuring Structured Programming. Wadsworth, 1981.

Ashcroft, J., Eldridge, R. H., Paulson, R. W., and Wilson, G.
A. Programming With FORTRAN 77. Granada, 1981.

Friecdman, F., and Koffman, E. Problem Solving and
Structured Programming in FORTRAN. Addision-
Wesley, 2nd edition, 1981.

Wagener, J. L. FORTRAN 77: Principles of Programming.
Wiley, 1980.

ix

Chapter 1

Language Overview

1.1
1.2

1.3
1.4
L5
1.6
1.7
1.8
L9

MS-FORTRAN Metacommands...................... 3
Programs and Compilable Parts

Of PrOgrams.....cuceeeueuieieineerereeenencenerecncenenss 4
INPpUut/OULPUL..cccennieiniiiiiiiiiiiinienenrneeneaneneen. 6
StALEMENTS. eutunenrinrinienietieerecennennesecncencnssosons 8
| 35790) ¢ 11 (o) 1 TR 10
NAMES . ceiiiiiiniiiiiiiiiiietiteneeteerereesenescnssoscns 11
TYPES centnteneeiiciiiiticeicerreteceenceerseannns 12
LiNES «eurnriiiiiiiiiieiiiiiiiinenreeieceessscesescscncnsens 13
1011 T 1 v Tul 15 o TN 14

Chapter 1/ Language Overview

This chapter provides a summary description of the elements
of the MS-FORTRAN language. The remaining chapters of
the manual provide detailed information on these clements,
from the character sct to the metacommands.

Chapter 1/ Language Overview

1.1 MS-FORTRAN Metacommands

The metalanguage is the control language for the MS-
FORTRAN Compiler. Metacommands let you specify options
that affect the overall operation of a compilation. For
example, with metacommands you can enable or disable
generation of a listing file, runtime error checking code, or
use of MS-FORTRAN features that are not a part of the subset
or full language standard.

The metalanguage consists of commands that appear in your
source code, each on a line of its own and each with a dollar
sign (8) in column onec.

The metalanguage is a level of language designed to enhance
your use of the MS-FORTRAN Compiler. Although most
implementations of FORTRAN have some type of compiler
control, the MS- FORTRAN metacommands are not part of
standard FORTRAN (and hence, not portable).

These are the metacommands currently available:

Qm’, S|NOJDEBUG SPAGESIZE
$DO66 SSTORAGE
SINOJFLOATCALLS S[NOT|STRICT
SINCLUDE SSUBTITLE
SLINESIZE STITLE
[NOJLIST
SMESSAGE
SPAGE

See Chapter 6, “The MS-FORTRAN Metacommands,” for a
complete discussion of metacommands.

Chapter 1/ Language Overview

1.2 Programs and Compilable Parts of
Programs

The MS-FORTRAN Compiler processes program units. A
program unit may be a main program, a subroutine, or a
function. You can compile any of these units separately and
later link them together without having to recompile them
as a whole.

1.

Program

Any program unit that does not have a FUNCTION
or SUBROUTINE statement as its first statement. The
first statement may be a PROGRAM statement, but
such a statement is not required. The execution of a
program always begins with the first executable
statement in the main program. Consequently, there
must be one and only one main program in every
executable program.

Subroutine

A program unit that can be called from other program
units by a CALL statement. When called, a subroutine
performs the set of actions defined by its executable
statements and then returns control to the statement
immediately following the statement that called it. A
subroutine does not directly return a value, although
values can be passed back to the calling program unit
via arguments or common variables.

Function

A program unit referred to in an expression. A
function directly returns a value that is used in the
computation of that expression and in addition may
pass back values via arguments. There are three kinds
of functions: external, intrinsic, and statement.
(Statement functions cannot be compiled separately.)

Chapter 1/ Language Overview

Subroutines and functions let you develop large structured
programs that can be broken into parts. This is advantageous
in the following situations:

1. If a program is large, breaking it into parts makes it
easier to develop, test, and maintain.

2. Ifaprogram is large and recompiling the entire source
file is time consuming, breaking the program into
parts saves compilation time.

3. If youintend to include certain routines in a number
of different programs, you can create a single object
file that contains these routines and then link it to
each of the programs in which the routines are used.

RN

If a routine could be implemented in any of several
ways, you might place it in a file and compile it
scparately. Then, to improve performance, you can
alter the implementation, or even rewrite the routine
in assembly language or in MS-Pascal, and the rest of
your program will not need to change.

See Chapter 5, “‘Programs, Subroutines, and Functions,” for
a complete discussion of compilable program units.

Chapter 1/ Language Overview

1.3 Input/Output

Input is the transfer of data from an external medium or an
internal file to internal storage. The transfer process is called
reading. Output is the transfer of data from internal storage
to an external medium or to an internal file. This process
is called writing.

A number of statements in FORTRAN are provided
specifically for the purpose of such data transfer; some 1/O
statements also specify that some editing of the data be
performed.

In addition to the statements that transfer data, there are
several auxiliary I/O statements to manipulate the external
medium or to determine or describe the properties of the
connection to the external medium.

Table 1.1 lists the 1/O statements that perform each of these
three functions.

Table 1.1. 1/0 Statements

I/O Function 1/0 Statements

Data transfer READ
WRITE

Auxiliary 1/0 OPEN
CLOSE
BACKSPACE
ENDFILE
REWIND

File positioning BACKSPACE
ENDFILE
REWIND

The following concepts are also important for under-
standing the 1/O system:

1. Records

The building blocks of the FORTRAN file system. A
record is a sequence of characters or values. There are
three kinds of records: formatted, unformatted, and
endfile.

Chapter 1/ Language Overview

2. Files

Sequences of records. Files are either external or
internal.

An external file is a file on a device or a device itself.
An internal file is a character variable that serves as
the source or destination of some formatted /O
action.

All files have the following properties:

a. a filename (optional)

b. a file position

c. structure (formatted, unformatted, or binary)
d. access method (sequential or direct)

Although a wide variety of file types are possible,
most applications will need just two: implicitly
opened and explicitly opened external, sequential,
formatted files.

See Section 3.2, “Statement Directory,” for descriptions of
individual I/O statements. Sce Chapter 4, *“The I/O System,”
for a complete discussion of records, files, and formatted data
editing.

Chapter 1/ Language Overview

1.4 Statements

Statements perform a number of functions, such as
computing, storing the results of computations, altering the
flow of control, reading and writing files, and providing
information for the compiler. Statements in FORTRAN fall
into two broad classes: executable and nonexecutable.

An executable statement causes an action to be performed.
Nonexecutable statements do not in themselves cause
operations to be performed. Instead, they specify, describe,
or classify clements of the program, such as entry points,
data, or program units. Table 1.2 describes the functional
categories of statements.

Chapter 1/ Language Overview

Table 1.2. Categories of Statements in FORTRAN

Category Description

Assignment Executable. Assigns a value to a variable or
an array element.

Comment Nonexccutable. Allows comments within
program code.

Control Executable. Controls the order of execution
of statements.

DATA Nonexecutable. Assigns initial values to
variables.

FORMAT Nonexecutable. Provides data editing
information.

I/0 Executable. Specifies sources and
destinations of data transfer, and other facets
of 1/O operation.

Specification Nonecxccutable. Defines the attributes of
variables, arrays, and programmer function
names.

Statement Nonexecutable. Defines a simple,

Function locally used function.

Program Nonexecutable. Defines the start of a

Unit program unit and specifies its formal

Heading arguments.

See Chapter 3, “Statements,” for a complete discussion and
a directory of MS-FORTRAN statements.

Chapter 1/ Language Overview

1.5 Expressions

10

An expression is a formula for computing a value. It consists
of a sequence of operands and operators. The operands may
contain function invocations, variables, constants, or even
other expressions. The operators specify the actions to be
performed on the operands.

In the following expression, plus (+) is an operator and A
and B are operands:

A+ B
There are four basic kinds of expressions in FORTRAN:
1. arithmetic expressions
2. character expressions
3. relational expressions
4. logical expressions

Each type of expression takes certain types of operands and
uses a specific set of operators. Evaluation of every
expression produces a value of a specific type.

Expressions are not statements, but may be components of
statements. In the following example, the entire line is a
statement; only the portion after the equal sign is an
expression:

X=20/30+A"B

See Section 2.5, “Expressions,”’ for a discussion of
expressions in MS-FORTRAN.

Chapter 1/ Language Overview

1.6 Names

Names denote the variables, arrays, functions, or subroutines
in your program, whether defined by you or by the MS-
FORTRAN system. A FORTRAN name consists of a sequence
of alphanumeric characters. The following restrictions apply:

1. The maximum number of characters in a name is 660
characters (66 characters per line multiplicd by ten
lines).

2. The initial character must be alphabetic; subsequent
characters must be alphanumeric.

3. Blanks are skipped.

N

Only the first six alphanumeric characters are
significant; the rest are ignored.

With these restrictions regarding the make-up of the name,
any valid sequence of characters can be used for any
FORTRAN name. There are no reserved names as in other
languages.

Sequences of alphabetic characters used as keywords by the
MS-FORTRAN Compiler are not confused with user-defined
names. The compiler recognizes keywords by their context
and in no way restricts the use of user-defined names. Thus,
for example, a program can have an array named IF, READ,
or GOTO, with no error (as long as it otherwise conforms
to the rules that all arrays must obey). However, use of
keywords for user-defined names often interferes with the
readability of a program, so the practice should be avoided.

See Section 2.4, “Names,” for more information on the scope
and use of names in MS-FORTRAN.

11

Chapter 1/ Language Overview

1.7 Types

Data in MS-FORTRAN belongs to one of five basic types:

12

1.
2.
3.

4.
5.

integer (INTEGER*2 and INTEGER*4).
single precision real (REAL*4 or REAL).

double precision real (REAL*8 or DOUBLE
PRECISION).

logical (LOGICAL*2 and LOGICAL*4).
character (CHARACTER).

The full language described by the FORTRAN 77 standard
also has a complex data type, which is not part of the subset,
nor a part of MS-FORTRAN.

Data types can be declared. If not declared, the type is
determined by the first letter of its name (either by default
or by an IMPLICIT statement). A type statement can also
include dimension information.

See Section 2.3, “Data Types,” for a more complete
discussion of MS-FORTRAN data types. Sce Section 3.2,
“Statement Directory,” for a detailed description of the type
statement.

Chapter 1/ Language Overview

1.8 Lines

Lines are composed of a sequence of characters. Characters
beyond the 72nd on a line are ignored; lines shorter than
72 characters are assumed to be padded with blanks.

The position of characters within a line in FORTRAN is
significant. Characters in columns 1 through 5 are recognized
as statement labels, a character in column 6 as a continuation
indicator, and characters in columns 7 through 72 as the
FORTRAN statements themselves. Comments are recognized
by either the letter “C” or an asterisk (*) in column 1,
metacommands by a dollar sign (8) in column 1.

With some exceptions, blanks are not significant in
FORTRAN. Tab characters have significance in a few
circumstances, described in Section 2.1, “‘Notation.”.

Lines in MS-FORTRAN may serve as any of the following:
1. a metacommand line

2. a comment line

3. an initial line (of a statement)
4. a continuation line (of a statcment)

A metacommand line has a dollar sign in column 1 and
controls the operation of the MS-FORTRAN Compiler.

A comment line has either a “C”, a ‘“’¢”, or an asterisk in
column 1, or the line is entirely blank, and is ignored during
processing.

An initial line of a statement has either a blank or a zero in
column 6 and has either all blanks or a statement label in
columns 1 through 5.

A continuation line is any line that is not a metacommand
line, a comment line, or an initial line, and which has blanks
in columns 1 through 5, and in column 6 has a character
that is not a blank or zero.

See Section 2.2, “Lines and Statements,” for details on the
specific uses and limitations on the several kinds of lines in
MS-FORTRAN and how statements are combined to form
programs and compilable parts of programs.

1.9 Characters

In the most basic sense, a FORTRAN program is a sequence
of characters. When these characters are submitted to the
compiler, they are interpreted in various contexts as
characters, names, labels, constants, lines, and statements.

The characters used in an MS-FORTRAN source program
belong to the ASCII character set, a complete listing of which
is given in Appendix B, “ASCII Character Codes.” Briefly,
however, the character set may be divided into three groups:

1. the 52 upper and lowercase alphabetic characters (A
through Z and a through z)

2. the 10 digits (@ through 9)

3. special characters (all other printable characters in the
ASCII character set)

See Section 2.1, “Notation,” for more information about the
use of characters in MS-FORTRAN.

14

C

Chapter 2

Terms And Concepts

2.1 L8] 2 13 0T s DN 16
2.1.1 Alphanumeric Characters........cccceevvuvanae 16
2.1.2 BlankKs....cceeeeieiiiirereiiiiiericicerenccncaserens 16
2.1.3 TADS ceetiiiiiiiiiiiiiiiiriretetctiseeeiarnennenes 17
2.1.4 L070) L1111 1 o T 17
2.2 Lines and Statements......ccceeveeeieecnrenenennnnnns 18
2.2.1 Initial LinesS....cccceieiriiirieniiiniiiiiiniincncncens 18
2.2.2 Continuation Lines......cccoceivieeineicniincnnens 18
2.2.3 Comment LineS.....ccceeveiieineincininnieniacnnens 18
2.2.4 Statement Definition and Order.............. 19
2.3 Data TYPEeS..ccucueeneinrinrerieiietietectieisenrenrencenes 22
2.3.1 Integer Data Types.....ccoveviriiniiniinnnnnnnn.. 23
2.3.2 The Single Precision Real Data Type...... 24
2.3.3 The Double Precision Real Data Type.....25
2.3.4 Logical Data TypeS.....ccceeeurnrrnreeranincnncnnes 26
2.3.5 The Character Data Type.....ccceeeeivvinnnenne. 27
2.4 NAMES..cciiiiiiiiiiiiriricetiretcscttecncasarerecesanes 29
2.4.1 Scope of FORTRAN Names.......cccceuveeeen.. 29
2.4.2 Undeclared FORTRAN Names................. 30
2.5 EXPreSSiONS....ccvvveieiieriieiecieiensirecscnecnnnns 32
2.5.1 Arithmetic ExXpressions.......cccceceveeennnene. 32
2.5.2 Integer DivisSion......ccccoviiieiniriiieincennanens 34
2.5.3 Type Conversions of

Arithmetic Operands.......cccceveiuinrnininnnes 34
2.5.4 Character EXpressions........coceeeeucecenennnns 35
2.5.5 Relational EXpressions......ccecceeevivcennenens 35
2.5.6 Logical EXPressions.....ccccevuveiuinnenianncences 36
2.5.7 Precedence of Operators....c.cceeveeeevannnnns 38
2.5.8 Rules for Evaluating Expressions............ 38
2.5.9 Array Element References.........cc.ccueueeen. 38

15

Chapter 2 / Terms and Concepts

2.1 Notation

A FORTRAN source program is a sequence of ASCII
characters. The ASCII character codes include:

1. 52 upper and lowercase letters (A through Z and a
through z)

2. 10 digits (9, 1, 2, 3, 4,5, 6, 7, 8, and 9)

3. special characters (the remaining printable characters
of the ASCII character code)

2.1.1 Alphanumeric Characters

The letters and digits, treated as a single group, are called
the alphanumeric characters. MS-FORTRAN interprets
lowercase letters as uppercase letters in all contexts except
in character constants and Hollerith fields. Thus, the
following user-defined names are all equivalent in MS-
FORTRAN:

ABCDE abcde AbCdE aBcDe

The collating sequence for the MS-FORTRAN character sct
is the ASCII sequence (see Appendix B, “ASCII Character
Codes,” for a complete table of the ASCII characters).

2.1.2 Blanks

16

With the exceptions noted in the following list, the blank
character has no significance in an MS-FORTRAN source
program and may therefore be used for improving
readability. The exceptions are the following:

1. Blanks within string constants are significant.
2. Blanks within Hollerith ficlds are significant.

3. Ablank or zero in column 6 distinguishes initial lines
from continuation lines.

C

Chapter 2 / Terms and Concepts

2.1.3 Tabs

The TAB character has the following significance in an MS-
FORTRAN source program:

1. If the TAB appears in columns 1 through 5, the next
character on the source line is considered to be in
column 7.

2. A TAB appearing in columns 7 through 72 is
considered to be a blank (except as noted in point 3.).

3. A TAB appearing in a character constant or Hollerith
field is not interpreted as a blank, but rather as a single
ASCII TAB character. This treatment allows programs
to output tabs.

2.1.4 Columns

The characters in a given line are positioned by columns,
with the first character in column 1, the second in column
2, and so forth.

The column in which a character resides is significant in
FORTRAN. Column 1 is used for comment indicators and
metacommand indicators. Columns 1 through 5 are reserved
for statement labels and column 6 for continuation
indicators.

17

Chapter 2 / Terms and Concepts

2.2 Lines and Statements

You can also think of a FORTRAN source program as a
sequence of lines. Only the first 72 characters in a line are
treated as significant by the compiler, with any trailing
characters in a line ignored. Lines with fewer than 72
characters are assumed to be padded with blanks to 72
characters (for an illustration of this, see Section 2.3.5, “The
Character Data Type,” which describes character constants).

2.2.1 Initial Lines

An initial line is any line that is not a comment line or a
metacommand line and that contains a blank or a zero
character in column 6. The first five columns of the line must
either be all blank or contain a label. With the exception of
the statement following a logical IF, FORTRAN statements
begin with an initial line.

A statement label is a sequence of one to five digits, at least
one of which must be nonzero. A label may be placed
anywhere in columns 1 through 5 of an initial line. Blanks
and leading zeros are not significant.

2.2.2 Continuation Lines

A continuation line is any line that is not a comment line
or a metacommand line and that contains any character in
column 6 other than a blank or a zero. The first five columns
of a continuation line must be blanks. A continuation line
increases the amount of room to write a statement. If it will
not fit on a single initial line, it may be extended to include
up to 19 continuation lines.

2.2.3 Comment Lines

18

A line is treated as a comment line if any one of the following
conditions is met:

1. A “C” (or “c”’) appears in column 1.

2. An asterisk (*) appears in column 1.

Chapter 2 / Terms and Concepts

3. The line contains all blanks.

Comment lines do not affect the execution of the FORTRAN
program in any way. Comment lines must be followed
immediately by an initial line or another comment line. They
must not be followed by a continuation line.

2.2.4 Statement Definition and Order

A FORTRAN statement consists of an initial line, followed
by zero to nine continuation lines. A statement may contain
as many as 660 characters in columns 7 through 72 of the
initial line and columns 7 through 72 of the continuation
lines. The END statement must be written within columns
7 through 72 of an initial line, and no other statement may
have an initial line that appears to be an END statement. (In
the following discussion, individual statements are simply
referred to by name; sce Chapter 3, ““Statements,” for
definitions of specific statements and their propertices.)

The FORTRAN language enforces a certain ordering of the
statements and lines that make up a FORTRAN program unit.
In addition, MS-FORTRAN enforces additional requirements
in the ordering of lines and statements in an MS-FORTRAN
compilation.

In general, a compilation consists of one or more program
units (see Chapter 5, “‘Programs, Subroutines, and
Functions,” for more information on compilation units and
subroutines). The various rules for ordering statements are
illustrated in Figure 2.1 and described in the paragraphs
following.

19

Chapter 2 / Terms and Conceplis

20

$0066, $STORAGE metacommands
PROGRAM, FUNCTION, or SUBROUTINE
statement

IMPLICIT statements

Other specification FORMAT | Other Comment
statements statements | meta- lines
commands

DATA statements

Statement function
statements

Executable statements

END statement

Figure 2.1. Order of Statements within Program Units
and Compilations

Within Figure 2.1, the following conventions apply:

1. Classes of lines or statements above or below other
classes must appear in the designated order.

2. Classes of lines or statements may be interspersed with
other classes that appear across from one another.

A subprogram bcegins with either a SUBROUTINE or a
FUNCTION statement and ends with an END statement. A
main program begins with a PROGRAM statement or any
statement other than a SUBROUTINE or FUNCTION
statement and ends with an END statement. A subprogram
or the main program is referred to as a program unit.

Within a program unit, statements must appear in an order
consistent with the following rules:

1. A PROGRAM statement, if present, or a SUBROUTINE
or FUNCTION statement, must be the first statement
of the program unit.

2. FORMAT statements may appear anywhere after the
SUBROUTINE or FUNCTION statement, or
PROGRAM statement, if present.

Chapter 2 / Terms and Concepls

IS

All specification statements must precede all DATA
statements, statement function statements, and
exccutable statements.

All DATA statements must appear after the
specification statements and precede all statement
function statements and executable statements.

All statement function statements must precede all
executable statements.

Within the specification statements, the IMPLICIT
statcment must precede all other specification
statements.

The DOG66 and STORAGE metacommands, if present,
must appear before all other statements; other
metacommands may appear anywhere in the program
unit.

21

Chapter 2 / Terms and Concepts

2.3 Data Types
There are five basic data types in MS-FORTRAN:
1. integer (INTEGER*2 and INTEGER*4)
2. real (REAL*4 or REAL)
3. double precision (REAL*8 or DOUBLE PRECISION)
4. logical (LOGICAL*2 and LOGICAL*4)
5. character

The properties of, the range of values for, and the form of
constants for each type are described in the following pages;
memory requirements are shown in Table 2.1,

Table 2.1. Memory Requirements

Type Bytes Note
LOGICAL 2or4 1,3
LOGICAL*2 2

LOGICAL*4 4

INTEGER 2or4 1,3
INTEGER*2 2

INTEGER*4 4

CHARACTER 1 2
CHARACTER*n n 4
REAL 4 3,5
REAL*4 4

REAL*8 8 3,6
DOUBLE PRECISION 8

22

Chapter 2 / Terms and Concepts

Notes for Table 2.1:

1. Either 2 or 4 bytes are used. The defaule is 4, but may
be set explicitly to either 2 or 4 with the SSTORAGE
metacommand.

2. CHARACTER and CHARACTER*1 are synonymous.

3. Insome implementations, all numeric and logical data
types always start on an even byte boundary.

4. Maximum n is 127.
5. REAL and REAL*4 arc synonymous.
REAL*8 and DOUBLE PRECISION are synonymous.

Important

On many microprocessors, the code required to perform
16-bit arithmetic is considerably faster and smaller than the
corresponding code to perform 32-bit arithmetic. Therefore,
unless you set the MS-FORTRAN $STORAGE metacommand
to a value of 2, programs will default to 32-bit arithmetic
and may run more slowly than expected (see Section 6.2.8,
“The 8STORAGE Metacommand”). Setting the SSTORAGE
metacommand to 2 allows programs to run faster and use
less code.

2.3.1 Integer Data Types

The integer data type consists of a subset of the integers. An
integer value is an exact representation of the corresponding
integer. An integer variable occupies two or four bytes of
memory, depending on the setting of the $STORAGE
metacommand. A 2-byte integer, INTEGER*2, can contain
any value in the range -32767 to 32767. A 4-byte integer,
INTEGER*4, can contain any value in the range
gu -2,147,483,647 to 2,147,483,647.

Integer constants consist of a sequence of one or more
decimal digits or a radix specifier, followed by a string of
digits in the range @.. (radix - 1), where values between 10
and 35 arc represented by the letters “A” through ‘77,
respectively.

23

Chapter 2 / Terms and Concepts

A radix specifier consists of the character *‘#”, optionally
preceded by a string of decimal characters that represent the
integer value of the radix. If the string is omitted, the radix
is assumed to be 16. If the radix specifier is omitted, the radix
is assumed to be 10.

Either format may be preceded by an optional arithmetic
sign, plus (+) or minus(-). Integer constants must also be

in range. A decimal point is not allowed in an integer
constant.

The following arc examples of integer constants:

123 +123 @
00000123 32767 -32767
-#ABG5 24010111 -36#ABZ07

An integer can be specified in MS-FORTRAN as INTEGER* 2,
INTEGER*4, or INTEGER. The first two specify 2-byte and
4-byte integers, respectively. INTEGER specifies either 2-byte
or 4-byte integers, according to the setting of the $STORAGE
metacommand (the default is four bytes).

2.3.2 The Single Precision Real Data Type

3V
E-N

The real data type (REAL or REAL*4) consists of a subsct of
the real numbers, the single precision real numbers. A single
precision real value is normally an approximation of the real
number desired and occupies four bytes of memory.

The range of single precision real values is approximately
as follows:

8.43E-37 to 3.37E+ 38 (positive range)
-3.37E + 38 to -8.43E-37 (negative rangce)
(1] (zero)

The precision is greater than six decimal digits.
A basic real constant consists of:
1. an optional sign
an integer part
a decimal point

a fraction part

A

an optional ecxponent part

Chapter 2 / Terms and Concepts

The integer and fraction parts consist of one or more decimal
digits, and the decimal point is a period (.). Either the integer
part or the fraction part may be omitted, but not both. Some
sample real constants are:

-123.4506 + 123456 1234506
123, +123 123.
-456 + 456 4056

The exponent part consists of the letter “E” followed by an
optionally signed integer constant of one or two digits. An
exponent indicates that the value preceding it is to be
multiplied by ten to the value of the exponent part’s integer.

Some sample exponent parts are:
E12 E-12 E+ 12 LEO

A real constant is cither a basic real constant, a basic real
constant followed by an exponent part, or an integer
constant followed by an exponent part. For example:

+ 1LOGQE-2 1.E-2 1E-2
+0.01 100 . OE-+4 QOOIE + 2

All represent the same real number, one one-hundredth.

2.3.3 The Double Precision Real Data Type

The double precision real data type (REAL*8 or DOUBLE
PRECISION) consists of a subsct of the real numbers, the
double precision real numbers. This subset is larger than the
subset for the REAL (REAL®-i) data type.

A double precision real value is normally an approximation
of the real number desired. A double precision real value can
be a positive, negative, or zero value and occupices cight bytes
of memory. The range of double precision real values is

approximately:
4.19D-307 to 1.67D + 308 (positive range)
-1.67D + 308 to -4.19D-307 (negative range)
0 (zero)

The precision is greater than 15 decimal digits.

25

Chapter 2 / Terms and Concepts

A double precision constant consists of:
1. an optional sign

an integer part

N

a decimal point
4. a fraction part
5. a required exponent part

The exponent uses D™ rather than “E” to distinguish it from
single precision. The integer and fraction parts consist of
one or more decimal digits, and the decimal point is a
period. Either the integer part or the fraction part, but not
both, may be omitted.

A double precision constant is cither a basic real constant
followed by an exponent part, or an integer constant
followed by an exponent part. For example:

+1.123456789D-2 1.D-2 1D-2

+0.000000001D0 100.00006005D-4 .00012345D + 2
The exponent part consists of the letter D™ followed by
an integer constant. The integer constant may have a sign
as an option. An exponent indicates that the value preceding
it is to be multiplied by ten to the value of the exponent part’s
integer. If the exponent is zero, it must be specified as a zero.

Some sample exponent parts are:

D12 D-12 D+ 12 DO

2.3.4 Logical Data Types

26

The logical data type consists of the two logical values
TRUE. and .FALSE.. A logical variable occupies two or four
bytes of memory, depending on the setting of the 8STORAGE
metacommand. The default is four bytes. The significance
of a logical variable is unaffected by the 3STORAGE
metacommand, which is present primarily to allow
compatibility with the ANSI requircment that logical, single
precision real, and integer variables are all the same size.

LOGICAL* 2 values occupy two bytes. The least significant
(first) byte is cither @ ((FALSE.) or 1 (TRUE.); the most
significant byte is undefined.

Chapter 2 / Terms and Concepts

LOGICAL*4 variables occupy two words, the least significant
(first) of which contains LOGICAL*2 value. The most
significant word is undefined.

2.3.5 The Character Data Type

The character data type consists of a sequence of ASCII
characters. The length of a character value is ¢qual to the
number of characters in the sequence. The length of a
particular constant or variable is fixed, and must be between
1 and 127 characters. A character variable occupices one byte
of memory for each character in the sequence.

Character variables are assigned to contiguous bytes without
regard for word boundaries. However, the compiler assumes
that noncharacter variables that follow character variables
always start on word boundarics.

A character constant consists of a sequence of one or more
characters enclosed by a pair of single quotation marks. Blank
characters are permitted in character constants and are
significant. The case of alphabetic characters is significant.
A single quotation mark within a character constant is
represented by two conscecutive single quotation marks with
no blanks in between.

The length of a character constant is equal to the number
of characters between the single quotation marks. A pair of
single quotation marks counts as a single character. Some
sample character constants are:

"

‘Help!
‘A very long CHARACTER constant’
'O "Brien’

saen

" The last example (77) is a character constant that contains
once apostrophe (single quotation mark).

FORTRAN permits source lines of up to 72 columns. Shorter
lines are padded with blanks to 72 columns. When a
character constant extends across a line boundary, its value
is as if the portion of the continuation line beginning with
column 7 is appended to column 72 of the initial linc,

Chapter 2 / Terms and Concepts

Thus, the following FORTRAN source,

200 CH ‘ABC
X DEF

is equivalent to:

200 CH

'ABC (58 blank spaces) ... DEF’

with 58 blank spaces between the € and D being equivalent
to the space from C in column 15 to column 72 plus one
blank in column 7 of the continuation line. Very long
character constants can be represented in this manner.

Chapter 2 / Terms and Concepls

2.4 Names

An MS-FORTRAN name. or identifier. consists of a sequence
of alphanumeric characters (the maximum is 66 characters
per line multiplied by ten lines). The initial character must
be alphabetic; subsequent characters must be alphanumeric.
Blanks are skipped. Only the first six alphanumeric
characters are significant; the rest are ignored.

A name denotes a user-defined or system-defined variable,
array, or program unit. Any valid sequence of characters can
be used for any FORTRAN name.

There are no reserved names as in other languages.
Sequences of alphabetic characters used as keywords by the
MS-FORTRAN Compiler are not confused with user-defined
names. The compiler recognizes keywords by their context
and in no way restricts the use of user-defined names.

Thus, a program can have, for example, an array named IF,
READ, or GOTO, with no crror (as long as it conforms to
the rules that all arrays must obey). However. use of keywords
for user-defined names often interferes with the readability
of the program, so the practice should be avoided.

2.4.1 Scope of FORTRAN Names

The scope of a name is the range of statements in which that
name is known, or can be referenced, within a FORTRAN
program. In general. the scope of a name is either global or
local. although there are several exceptions. A name can only
be used in accordance with a single definition within its
scope. The same name, however, can have different
definitions in distinct scopces.

A name with global scope can be used in more than one
program unit (a subroutine, function, or the main program)
and still refer to the same entity. In fact, names with global
scope can only be used in a single, consistent manner within
the same program. All subroutine, function subprogram. and
common block names, as well as the program name. have
global scope. Therefore, there cannot be a function
subprogram that has the same name as a subroutine
subprogram or a common data area. Similarly, no two
function subprograms in the same program can have the
same name.

Chapter 2 / Terms and Concepts

A name with local scope is only visible (known) within a
single program unit. A name with a local scope can be used
in another program unit with a different meaning or with
a similar meaning, but is in no way required to have a similar
meaning in a different scope. The names of variables, arrays,
arguments, and statement functions all have local scope.

Once exception to the scoping rules is the name given to a
common data block. It is possible to refer to a globally
scoped common block name in the same program unit in
which an identical locally scoped name appears. This is
permitted because common block names are always enclosed
in slashes, such as /FROG/, and are thercfore always
distinguishable from ordinary names.

Another exception to the scoping rules is made for statement
function arguments to statement functions. The scope of
statement function arguments is limited to the single
statement forming that statement function. Any other use
of those names within that statement function is not
permitted, while any other use outside that statement
function is acceptable.

2.4.2 Undeclared FORTRAN Names

The compiler can infer from context how to classify a user
name in an executable statement, if that name has not been
previously encountered.

If the name is used as a variable, the compiler creates an entry
in the symbol table for a variable of that name. The type of
the variable is inferred from the first letter of its name.
Variables beginning with the letters I, J, K, L, M, or N are
normally considered integers, while all others are considered
real numbers. However, you can override these defaults with
an IMPLICIT statement. For more information, see Section
3.2.26,'The IMPLICIT Statement’™).

If an undeclared name is used as a function call, the compiler
creates a symbol table entry for a function of that name. Its
type is inferred in the same manner as the type of a variable.

Similarly, a subroutine entry is created for a newly
encountered name that is the target of a CALL statement. If
an entry for such a subroutine or function name exists in

30

Chapter 2 / Terms and Concepts

the global symbol table, its attributes are coordinated with
those of the newly created symbol table entry. If any
inconsistencies are detected, such as a previously defined
subroutine name being used as a function name, an crror
message is issued.

Chapter 2 / Terms and Concepts

2.5 Expressions

An expression is a formula for computing a value. It consists
of a sequence of operands and operators. The operands may
contain function invocations, variables, constants, or ¢ven
other expressions. The operators specify the actions to be
performed on the operands.

FORTRAN has four classes of expressions:

1. arithmetic

~

character

3. relational

2N

logical

2.5.1 Arithmetic Expressions

N

(8]

An arithmetic expression produces a value that is of type
integer, or real, or double precision. The simplest forms of
arithmetic expressions are:

1. integer, real. or double precision constants

2. integer, real, or double precision variable references

3. integer, real, or double precision array element

references

4. integer, real, or double precision function references
The value of a variable reference or array clement reference
must be defined before it can appear in an arithmetic
expression. Moreover, the value of an integer variable must
be defined with an arithmetic value, rather than a statement
label value previously set in an ASSIGN statement.

Other arithmetic expressions are built up from the simple
forms in the preceding list using parentheses and the
arithmetic operators shown in ‘Table 2.2.

Chapter 2 / Terms and Concepls

Table 2.2. Arithmetic Operators

Operator Operation Precedence

** Exponentiation Highest

/ Division Intermediate

* Multiplication Intermediate

- Subtraction or Lowest
Negation

+ Addition or Identity Lowest

All of the operators may be used as binary operators, which
appear between their arithmetic expression operands. The
plus (+) and minus (-) may aiso be unary, and precedc their
operand.

Operations of equal precedence, except exponentiation, are
left-associative. Exponentiation is right- associative. Thus,
each of the following expressions on the left is the same as
the corresponding expression on the right:

A/B*C (A/B)*C
A‘*Bt#c A‘*(Bt*(:)

Arithmetic expressions can be formed in the usual
mathematical sense, as in most programming languagces.
However, FORTRAN prohibits two operators from appearing
consecutively. For example, this is prohibited,

A**B
while this is allowed:
A* t('B)

Unary minus is also of lowest precedence. Thus, the
expression -A**B is interpreted as -(A**B)

You may use parentheses in an expression to control
associativity and the order in which operators are evaluated.

w»
‘W

Chapter 2 / Terms and Concepis

2.5.2 Integer Division

The division of two integers results in a value that is the
mathcmatical quotient of the two values, truncated
downward (i.c., toward zero). Thus, 7/3 evaluates to 2, and
(-7)/3 evaluates to -2. Both 9/10 and 9/(-10) evaluate to zero.

2.5.3 Type Conversions of Arithmetic Operands

When all operands of an arithmetic expression are of the
same data type, the value returned by the expression is also
of that type. When the operands arce of different data types,
the data type of the value returned by the expression is the
type of the highest-ranked operand.

The rank of an operand depends on its data type, as shown
in the following list:

1. INTEGER*2 (lowest)
2. INTEGER*4

3. REAL*4

4. REAL*8 (highest)

For example, an operation on an INTEGER* 2 and a REAL*4
element produces a value of data type REAL*4.

The data type of an expression is the data type of the result
of the last operation performed in evaluating the expression.

The data types of operations are classified as either
INTEGER*2, INTEGER*4, REAL*4, or REAL*8.

Integer operations are performed on integer operands only.
A fraction resulting from division is truncated in integer
arithmetic, not rounded. Thus, the following evaluates to
zero, not one:

1/4 + 1/4 + 1/4 + 1/

Memory allocation for the type INTEGER, without the *2
or *4 length specification, is dependent on the use of the
SSTORAGE metacommand. (See the note at the beginning
of Section 2.3/'Data Types,” and Section 6.2.8,The
$STORAGE Metacommand,” for details.)

Real operations are performed on real operands or

Chapter 2 / Terms and Concepts

combinations of real and integer operands only. Integer
operands are first converted to real data type by giving each
a fractional part equal to zero. Real arithmetic is then used
to evaluate the expression. But in the following statement,
integer division is performed on I and J, and a real
multiplication on the result and X:

Y = (1))°X

2.5.4 Character Expressions

A character expression produces a value that is of type
CHARACTER. The forms of character expressions are:

1. character constants

[\%}

character variable references
3. character array element references
4. any character expression enclosed in parentheses

There are no operators that result in character expressions.

2.5.5 Relational Expressions

Relational expressions compare the values of two arithmetic
or two character expressions. An arithmetic value may not
be compared with a character value, unless the SNOTSTRICT
metacommand has been specified. In this case, the arithmetic
expression is considered to be a character expression. The
result of a relational expression is of type LOGICAL.
Relational expressions can use any of the operators shown
in Table 2.3 to compare values.

Table 2.3. Relational Operators

Operator Operation

LT. Less than

.LE. Less than or equal to
.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

Chapter 2 / Terms and Concepts

All of the relational operators are binary operators and appear
between their operands. There is no relative precedence or
associativity among the relational operands since an
expression of the following form violates the type rules for
operands:

A .LT. B .NE. C

Relational expressions may only appear within logical
eXpressions.

Relational expressions with arithmetic operands may have
onc operand of type INTEGER and onc of type REAL. In
this case, the integer operand is converted to type REAL
before the relational expression is evaluated.

Relational expressions with character operands compare the
position of their operands in the ASCII collating sequence.
An operand is less than another if it appears earlier in the
collating scquence. If operands of unequal length are
compared, the shorter operand is considered as if it were
extended to the length of the longer operand by the addition
of spaces on the right.

2.5.6 Logical Expressions

36

A logical expression produces a value that is of type
LOGICAL. The simplest forms of logical expressions arc:

1. logical constants

[N

logical variable references

3. logical array element references

SN

logical function references
5. relational expressions

Other logical expressions are built up from the simple forms
in the preceding list by using parentheses and the logical
operators of Table 2.4.

Chapter 2 / Terms and Conceplts

Table 2.4. Logical Operators

Operator Operation Precedence
.NOT. Negation Highest
AND. Conjunction Intermediate
.OR. Inclusive disjunction Lowest

The .AND. and .OR. operators are binary operators and
appear between their logical expression operands. The .NOT.
operator is unary and precedes its operand.

Operations of equal precedence are left-associative; thus, for
example,

A .AND. B .AND. C
is ecquivalent to:
(A .AND. B) .AND. C
As an example of the precedence rules,
.NOT. A .OR. B .AND. C
is interpreted the same as:
(.NOT. A) .OR. (B .AND. ()

Two .NOT. operators cannot be adjacent to cach other,
although.

A AND. .NOT. B

is an example of an allowable expression with two adjacent
operators.

Logical operators have the same meaning as in standard
mathematical semantics, with .OR. being nonexclusive. For
example,

TRUE. .OR. T'RUE.
evaluates to the value:

TRUE.

Chapter 2 / Terms and Concepts

2.5.7 Precedence of Operators

When arithmetic, relational, and logical operators appear in
the same expression, they abide by the following precedence
guidelines:

I. Logical (lowest)
2. Relational (intermediate)

3. Arithmetic (highest)

2.5.8 Rules for Evaluating Expressions

Any variable, array element, or function that is referred to
in an expression must be defined at the time the reference
is made. Integer variables must be defined with an arithmetic
value, rather than a statement label value as set by an ASSIGN
statement.

Certain arithmetic operations, such as dividing by zero, are
not mathematically meaningful and are prohibited. Other
prohibited operations include raising a zero-value operand
to a zero or negative power and raising a negative-value
operand to a power of type REAL.

2.5.9 Array Element References

An array clement reference identifies one element of an array.
Its syntax is as follows:

<array> (<sub> [, <sub>]...)
<array> is the name of an array

<sub> is a subscript expression, that is, an integer
expression used in selecting a specific element of an array.
The number of subscript expressions must match the number
of dimensions in the array declarator. The value of a subscript
expression must be between one and the upper limit for the
dimension it represents, inclusive.

C EXAMPLE OF DIMENSION STATEMENT
DIMENSION A(3,2),B(3,4),C(4,5),D(5,6)V(3,9)
EQUIVALENCE (XV(1)), (YV(2))

D(1J) = D(,J)PIVOT
CL)) = C1)) + A(LK) * B(K))
READ(*,*) (V(N),N = 1,10)

38

Chapter 3

Statements

3.1 Categories of StatementsS.......cc.ccecveeeneneannn. 41
3.1.1 PROGRAM, SUBROUTINE, and

FUNCTION StatementsS......ccceeeeeeneeneenennnns 42
3.1.2 Specification Statements......c.ccceevveinennnnnn 42
3.1.3 The DATA Statement.......cceeeeeeeeennnnnennenns 43
3.1.4 The FORMAT Statement.......ccceeveeieeuenenen. 43
3.1.5 Assignment Statements.........cceceeeeenrannn. 43
3.1.6 Control Statements.......ccecvveveveerrernennennnns 43
3.1.7 I/O Statements.....cc.ccceeveenvnvencecnencnnnecnrens 44
3.2 Statement DireCtory......cceveuinreieinracnrarecaans 46
3.2.1 The ASSIGN Statement

(Label Assignment).......cccccoceveveveeenennnnnnn. 46
3.2.2 The Assignment Statement

(Computational)....ccceeveeereieininreereenennenn. 46
3.2.3 The BACKSPACE Statement........c..eeeeeee... 50
3.2.4 The CALL Statement.......c..cceeveeneenreernnnnenns 50
3.2.5 The CLOSE Statement.....c.eceeveeneereeenreeenns 53
3.2.6 The COMMON Statement......ccceveeeeenreenens 53
3.2.7 The CONTINUE Statement.........c.euueen..... 55
3.2.8 The DATA Stat€mMent....cccceeenveeereeneennnnnnnns 55
3.2.9 The DIMENSION Statement..................... 57
3.2.10 The DO Statement.....cccceeieeieennenereennennnnn. 58
3.2.11 The ELSE Statement.......cccceeeeeneenenneneenen. 61

C@/ 3.2.12 The ELSEIF Statement........ccccveueeeeeenenene. 62
3.2.13 The END Statement..........c.oeveereerueenenn... 63

3.2.14 The ENDFILE Statement......cccceueeeneennnnnn.. 63
3.2.15 The ENDIF Statement......cccecveveenenenenennn.. 64
3.2.16 The EQUIVALENCE Statement................. 64

Chapter 3 / Statements

3.2.17
3.2.18
3.2.19
3.2.20
3.2.21
3.2.22

3.2.23
3.2.24
3.2.25
3.2.26
3.2.27
3.2.28
3.2.29
3.2.30
3.2.31
3.2.32
3.2.33
3.2.34
3.2.35
3.2.36
3.2.37
3.2.38
3.2.39

40

The EXTERNAL Statement........ceeeeennen.... 68
The FORMAT Statement....cccevereeenneannennens 68
The FUNCTION Statement (External)....... 70

The GOTO Statement (Assigned GOTO)...72
The GOTO Statement (Computed GOTO).72
The GOTO Statement

(Unconditional GOTO).......ccceerveereeinennenne. 73
The IF Statement (Arithmetic IF)............. 74
The IF Statement (Logical IF).................. 74
The IF THEN ELSE Statement (Block IF)..75
The IMPLICIT Statement........c.ceeuvenenene.. 77
The INTRINSIC Statement..............ev.e..... 78
The OPEN Statement......cccceceeenenrnenrecnenns 79
The PAUSE Statement.....ccceveeeeenneneennnnnens 80
The PROGRAM Statement..........cueu......... 81
The READ Statement.........cceeveeenenenenenen.. 81
The RETURN Statement.......ceceeerennnnnnnn... 83
The REWIND Statement.......ceeeueeeeennenn... 84
The SAVE Statement.......cceeevveeernenrnnnnnen. 84
The Statement Function Statement.......... 85
The STOP Statement......ccceeeeveenenennnennn.. 86
The SUBROUTINE Statement.................. 86
The Type Statement......cceeeeeveceeenenrnnnnnnnn. 87
The WRITE Statement......ccceeveveenenennnnnn.. 90

Chapter 3 / Statements

3.1 Categories of Statements

Staitements perform a number of functions, such as
computing,. storing the results of computations, altering the
flow of control. reading and writing files, and providing
information for the compiler.

FORTRAN statements fall into two broad classes: executable
and nonexecutable. An executable statement causes an action
to be performed. Nonexecutable statements do not in
themselves cause operations to be performed. Instead. they
specify, describe. or classify elements of the program. such
as entry points, data, or program units.

Nonexccutable statements include the following:

1. PROGRAM, SUBROUTINE, and FUNCTION state-
ments

2. specification statements

3. the DATA statement

4. the FORMAT statement

The executable statements form a much larger group and may
be divided into the following categories:

I, assignment statements
2. control statements
3. /O statements

Sections 3.1.1 through 3.1.7 describe each of these types of
statements, in general terms, in the order in which they are
mentioned in the preceding lists.

Section 3.2."Statement Directory,” is an alphabetical listing
of all statements. For cach statement, the entry gives syntax
and purpose, with remarks and examples as appropriate.
Chapter 4, “The /O System,” provides additional
information on input and output in MS-FORTRAN.

Chapter 3 / Statements

3.1.1 PROGRAM, SUBROUTINE, and FUNCTION
Statements

These statements identify the start of a program unit; all are
nonexecutable. For more specific information, see the
following sections: Section 3.2.19, “The FUNCTION
Statement’’; Scection 3.2.30,“The PROGRAM Statement™;
Section 3.2.35, “The Statement Function Statement’; and
Section 3.2.37, ““The SUBROUTINE Statement.”

See also Chapter 5, “‘Programs, Subroutines, and Functions,”
for general information on program units.

3.1.2 Specification Statement

Specification statements in MS-FORTRAN are nonexecutable.
They define the attributes of user-defined variable, array, and
function names. Table 3.1 lists the eight specification
statements, which are described in detail in Section 3.2,
“Statement Directory.”

Table 3.1. Specification Statements

Statement Purpose

COMMON Provides for sharing memory between two
Or more program units.

DIMENSION Specifies that a4 user name is an array and
defines the number of its elements.

EQUIVALENCE S$pecifies that two or more variables or
arrays share the same memory.

EXTERNAL Identifies a user-defined name as an external
subroutine or function.

IMPLICIT Defines the default type for user-defined
names.

INTRINSIC Declares that a name is an intrinsic function.

SAVE Causes variables to retain their values across

invocations of the procedure in which they
arc defined.

Type Specifies the type of user-defined names.

Chapter 3 / Statements

3.1.3

3.1.4

3.1.5

3.1.6

Specification statements must precede all exccutable
statements in a program unit, but may appear in any order
within their own group. The exception to this rule is the
IMPLICIT statement, which must precede all other
specification statements in a program unit.

The DATA Statement

The DATA statement assigns initial values to variables. A DATA
statement is an optional, nonexecutable statement. If present.,
it must appear after all specification statements and before
any statement function statements or executable statements.
(See Section 3.2.8, “The DATA Statement.” for more
information.)

The FORMAT Statement

Format specifications provide explicit editing information
for the data processed by a program. Format specifications
may be given in a FORMAT statement or as character
constants. (See Section 3.2.18, “The FORMAT Statement.”
for a description of the FORMAT statement and Section 4 .4,
“Formatted I/0,” for additional information on formauted
data.)

Assignment Statements

Assignment statements are executable statements that assign
a value to a variable or an array ¢lement. There are two basic
kinds of assignment statements: computational and label.
(Sce Section 3.2.1, “The ASSIGN Statement.” and Scction
3.2.2, “The Assignment Statement,” respectively, for further
information.)

Control Statements

Control statements affect the order of execution of
statements in FORTRAN. The control statements in MS-
FORTRAN are shown in Table 3.2, along with a bricef
description of the function of each. See the appropriate
entries in Section 3.2, “Statement Directory,” for further

information on each.

43

Chapter 3 / Statements

Table 3.2. Control Statements

Statement Purpose

CALL Calls and executes a subroutine from
another program unit.

CONTINUE Used primarily as a convenient way to place
statement labels, particularly as the terminal
statement in a DO loop.

DO Causes repetitive evaluation of the
statements following the DO, through and
including the ending statement.

ELSE Introduces an ELSE block.

ELSEIF Introduces an ELSEIF block.

END Ends execution of a program unit.

ENDIF Marks the end of a series of statements

following a block IF statement.

GOTO Transfers control elsewhere in the program,
according to the kind of GOTO statement
used (assigned, computed, or uncondi-
tional).

IF Causes conditional execution of some other
statement(s), depending on the evaluation of
an expression and the kind of IF statement
used (arithmetic, logical, or block).

PAUSE Suspends program cxecution until the
RETURN key is pressed.

RETURN Returns control to the program unit that
called a subroutine or function.

STOP Terminates a program.

3.1.7 I/O Statements

/O statements transfer data, perform auxiliary 1O
operations, and position files. Table 3.3 lists the MS-
FORTRAN [/O statements (each of which is described in
detail in Section 3.2, “Statement Directory™).

Chapter 3 / Statements

Table 3.3. 1/0O Statements

Statement Purpose

BACKSPACE Positions the file connected to the specified
unit to the beginning of the previous record.

CLOSE Disconnects the unit specified and prevents
subscquent I/0 from being directed to that
unit.

ENDFILE Writes an end-of-file record on the file

connected to the specified unit.

OPEN Associates a unit number with an external
device or with a file on an external device.

READ Transfers data from a file to the items in an
<iolist>.

REWIND Repositions a specified unit to the first
record in the associated file.

WRITE Transfers data from the items in an <iolist>
to a file.

In addition to these 1/O statements, there is an 1/O intrinsic
function EOF (<unit-spec>). EOF function returns a logical
value that indicates whether any data remains beyond the
current position in the file associated with the given unit
specifier. See Section 5.3.2, “Intrinsic Functions,” for
information about this function.

Chapter 3 / Statements

3.2 Statement Directory

The rest of this chapter is an alphabetical listing of all MS-
FORTRAN statements, giving syntax and function, with notes
and examples as necessary.

3.2.1 The ASSIGN Statement (Label Assignment)

Syntax

Purpose

Remarks

ASSIGN <label> TO <variable>

Assigns the value of a format or statement label to an integer
variable.

<label> is a format label or statement label.
<variable> is an integer variable.

Execution of an ASSIGN statement sets the integer variable
to the value of the label. The label can be either a format
or a statement label and must appear in the same program
unit as the ASSIGN statement.

When used in an assigned GOTO statement, a variable must
currently have the value of a statement label. When used as
a format spccifier in an input/output statement, a variable
must have the value of a format statement label. The ASSIGN
statement is the only way to assign the value of a label to
a variable.

The value of a label is not necessarily the same as the label
number. For example, the value of IVBL in the following is
not necessarily 400:

ASSIGN 400 TO IVBL.

Hence, the variable is undefined as an integer; it cannot be
used in an arithmetic expression until it has been redefined
as such (by computational assignment or a READ statement).

3.2.2 The Assignment Statement (Computational)

Syntax

Purpose

46

<variable> = <expression>

Evaluates the expression and assigns the resulting value to
the variable or array element specified.

Chapter 3 / Statements

Remarks

<variable> is a variable or array element reference.
<expression> is any expression.

The type of the variable or array element and the type of
expression must be compatible.

1. If the type of the right-hand side is numeric, the type
of the left-hand side must be numeric, and the
statement is called an arithmetic assignment
statemnent.

2. If the type of the right-hand side is logical, the type
of the left-hand side must be logical, and the statement
is called a logical assignment statement.

3. If the type of the right-hand side is character, the type
of the left-hand side must also be character, and the
statement is called a character assignment statement.
However, if you have specified the $NOTSTRICT
metacommand, the type of left-hand side may be
numeric, logical, or character; the statement is still
called a character assignment statement.

If the types of the elements of an arithmetic assignment
statcment are not identical, the value of the expression is
automatically converted to the type of the variable. The
conversion rules are given in Table 3.4 (for conversion to
integer values) and Table 3.5 (for conversion to real values).

In both tables, the most significant portion is the high order,
and the least significant is the low order. Also in both tables,
the value converted (E) is shown in the second and third
columns, while the type of the variable (V) is listed in column
one.

Chapter 3 / Statements

Table 3.4. Conversion of Integer Values in V = E
V\E INTEGER*2 INTEGER*4
INTEGER*2 Assign E to V. Assign least
significant
portion of E to V,
most significant
portion is lost.
INTEGER*4 Assign E to least Assign E to V.
significant
portion of V;
most significant
portion is sign
extended.
REAL*4 Append fraction Append fraction
(®)+ toEand (.0) to E and
assign to V.t assign to V.1
REAL*8 Append fraction Append fraction

(.9) to E and
assign to V.1

(.0) to E and
assign to V. ¥

T “Fraction (.0)” means a zero fractional part.

Chapter 3 / Statements

Table 3.5.

Type Conversion of Real Values inV = E

V\E

REAL*4

REAL*8

INTEGER* 2

INTEGER™+

REAL*4

REAL*8

Truncate E to
INTEGER*2 and
assign to V.
Truncate E to
INTEGER*4 and
assign to V.

Assign E to V.

Convert E to
equivalent

REAL*8 form and

assign to V.

Truncate E to
INTEGER*2 and
assign to V.

Truncate E to
INTEGER*4 and
assign to V.

Assign most signi-
ficant portion of
E to V; least
significant
portion is,
rounded.

Assign E to V.

For character assignments, if the length of the expression
does not match the size of the variable, the expression is
adjusted, in the following manner, so that it does match:

1. If the expression is shorter than the variable, the
expression is padded with enough blanks on the right
before the assignment takes place to make the sizes

cqual.

(8]

If the expression is longer than the variable, characters

on the right are truncated to make the sizes the same.

Logical expressions of any size can be assigned to logical
variables of any size without affecting the value of the
expression. However, integer and real expressions may not
be assigned to logical variables, nor may logical expressions
be assigned to integer or real variables.

Chapter 3 / Statements

3.2.3 The BACKSPACE Statement

Syntax BACKSPACE <unit-spec>

Purpose Positions the file connected to the specified unit at the
beginning of the preceding record.

Remarks <unit-spec> is a required unit specifier; it must not be an
internal unit specificer. Sce Section 4.3.1, “Elements of 1/0
Statements,” for more information about unit specifiers and
other elements of 1/O statements.

1. If there is no preceding record, the file position is not
changed.

[}

If the preceding record is the endfile record, the file

is positioned before the endfile record.

3. If the file position is in the middle of the record,
BACKSPACE repositions to the start of that record.

4. If the file is a binary file, the BACKSPACE repositions

to the preceding byte.

Examples BACKSPACE 5
BACKSPACE LUNIT

3.2.4 The CALL Statement

Syntax CALL <sname> [([<arg> [, <arg>]...])]
Purpose Calls and excecutes a subroutine from another program unit.
Remarks <sname> is the name of the subroutine to be called.

<arg> is an actual argument, which can be any of the
following:

1. an expression

N

a constant (or constant expression)

3. a variable
4. an array clement
5. an array

6. a subroutine

50

Chapter 3 / Statements

7. an external function

8. an intrinsic function permitted to be passed as an
argument

The actual arguments in the CALL statement must agree with
the corresponding formal arguments in the SUBROUTINE
statement, in order, in number, and in type or kind.

The compiler will check for correspondence if the formal
arguments are known. To be known, the SUBROUTINE
statement that defines the formal arguments must precede
the CALL statement in the current compilation.

In addition, if the arguments are integer or logical values,
agreement in size is required, according to the following
rules:

1. If the formal argument is unknown, its sizc is
determined by the SSTORAGE metacommand (except
as noted in rule 5 of this list). If SSTORAGE is not
specified, the default is SSTORAGE: 4.

(3%

If the actual argument is a constant (or constant
expression), and the size of the actual argument is
smaller than the size of the formal argument, a
temporary variable the size of the constant will be
created for the actual argument. If the actual argument
is larger, an error is generated:

95 argument type conflict.

3. If the actual argument is an expression and the size
of the actual argument is smaller than the size of the
formal argument, then a temporary variable the size
of the formal argument is created for the actual
argument. If the actual argument is larger, the same
error is generated as in rule 2.

4. If the actual argument is an array or a function, or
if the actual argument is an array element and the
formal argument an array, the compiler will not check
for agreement in size.

5. If the actual argument is a variable or an array element
and the formal argument is unknown, the size of the
formal argument is assumed to be the same size as the
size of the actual argument.

51

Chapter 3 / Statements

Example

Thus, you can call separately compiled subroutines
whose formal arguments differ from the size
determined by the $STORAGE metacommand in effect
when the CALL is compiled. However, agreement in
size is still required, and it is your responsibility to
ensure this agreement.

If the formal argument is known, then an actual
argument that is a variable or an array element is
treated as an expression; that is, a temporary variable
for the actual argument is created if the actual
argument is smaller than the formal argument.
Otherwise, the same error occurs as in rule 2.

If the SUBROUTINE statement has no formal arguments, then
a4 CALL statement referencing that subroutine must not have
any actual arguments. However, a pair of parentheses may
follow the subroutine name.

Execution of a CALL statement proceeds as follows:

L
2.

All arguments that are expressions are evaluated.

All actual arguments are associated with their
corresponding formal arguments, and the body of the
specified subroutine is executed.

Control is returned to the statement following the
CALL statement upon exiting the subroutine, by
exccuting either a RETURN statement or an END
statement in that subroutine.

A subroutine can be called from any program unit. However,
FORTRAN does not permit recursive subroutine calls. That
is, a subroutine cannot call itself directly, nor can it call
another subroutine that results in that subroutine being
called again before it returns control to its caller.

L&

EXAMPLE OF CALL STATEMENT

IF (IERR .NE.) CALL ERROR(IERR)
END

SUBROUTINE ERROR(IERRNO)

WRITE (*, 200) IERRNO

FORMAT(1X, "ERROR’, 15, 'DETECTED")
END

Chapter 3/ Statements

3.2.5 The CLOSE Statement

Syntax

Purpose

Remarks

Example

CLOSE (<unit-spec> [STATUS = "<status>'))

Disconnects the unit specified and prevents subsequent 1/O
from being directed to that unit (unless the same unit number
is rcopened, possibly associated with a different file or
device). The file is discarded if the statement includes
STATUS = 'DELETE"

<unit-spec> is a required unit specifier. It must appear as
the first argument: it must not be an internal unit specifier.
See Section 4.3.1. “Elements of /O Statements.” for more
information about unit specifiers and other clements of /O
statements.

<status> is an optional argument and may be cither KEEP
or DELETE. This option is a character constant and must be
enclosed in single quotation marks.

If <status> is not specified. the default is KEEP. except for
files opened as scratch files, which have DELETE as the
default. Scratch files are always deleted upon normal program
termination. and specifying STATUS = 'KEEP™ for scratch or
temporary files has no ceffect.

CLOSE for unit zero has no effect, since the CLOSE operation
is not meaningful for the keyboard and screen. Openced files
do not have to be explicitly closed. Normal termination of
an MS-FORTRAN program will close each file with its default
status.

This deletes an existing file:

C CLOSE THE FILE OPENED IN OPEN EXAMPLE,
C DISCARDING THE FILE.
CLOSE(7,STATUS = 'DELETE’)

3.2.6 The COMMON Statement

Syntax

Purpose

COMMON [/[<cname>}/] <nlist>
[I.] /|[<cname>)/ <nlist>]...
Provides for sharing memory between two or more program

units. Such program units can manipulate the same datum
without passing it as an argument.

Chapter 3 / Statements

Remarks

<cname> is a common block name. If a <cname> is omitted,
then the blank common block is assumed.

<nlist> is a list of variable names, array names, and array
declarators, separated by commas. Formal argument names
and function names cannot appear in a COMMON statement.

In cach COMMON statement, all variables and arrays
appearing in cach <nlist> following a common block name
are declared to be in that common block. Omitting the first
<cname> specifies that all elements in the first <nlist> are
in the blank common block.

Any common block name can appear more than once in
COMMON statements in the same program unit. All elements
in all <nlist>s for the same common block are allocated in
that common memory area, in the order they appear in the
COMMON statement(s).

The current implementation of MS-FORTRAN restricts the
occurrence of noncharacter variables to even byte addresses,
which may affect the association of character and
noncharacter variables within a COMMON. Because of the
order requirement, the compiler cannot adjust the position
of variables within a COMMON to comply with the even
address restriction. The compiler will generate an error
message for those associations which result in a conflict.

The length of a common block is equal to the number of
bytes of memory required to hold all elements in that
common block. If several distinct program units refer to the
same named common block, the common block must be the
same length in each program unit. Blank common blocks,
however, can have different lengths in different program

_units. The length of the blank common block is the

maximum length.

Chapter 3 / Statements

Example

C EXAMPLE OF BLANK AND NAMED COMMON BLOCKS
PROGRAM MYPROG
COMMON 1, J, X, K(10)
COMMON /MYCOM/ A(3)

END

SUBROUTINE MYSUB
COMMON 1, J, X, K(10)
COMMON /MYCOM/ A(3)

END

3.2.7 The CONTINUE Statement

Syntax
Purpose

Remarks

Example

CONTINUE
Exccution has no effect on the program

The CONTINUE statement is used primarily as a convenient
point for placing a statement label, particularly as the
terminal statement in a DO loop.

C EXAMPLE OF CONTINUE STATEMENT
DO 10,1 = 1, 10
IARRAY(I) = 0
10 CONTINUE

3.2.8 The DATA Statement

Syntax
Purpose

Remarks

DATA <nlist> /<clist>/ [[,] <nlist> /<clist>/]...
Assigns initial values to variables.

A DATA statement is an optional, nonexecutable statement.
If present, it must appear after all specification statements
and prior to any statement function statements or executable
statements.

<nlist> is a list of variables, array elements, or array names.

55

Chapter 3 / Statements

Examples

<clist> is a list of constants, or a constant preceded by an
integer constant repeat factor and an asterisk, such as:

5*3.14159
3*'Help’
160*0

A repeat factor followed by a constant is the equivalent of
a list of all constants having the specified value and repeated
as often as specified by the repeat constant.

There must be the same number of values in each <clist>
as there are variables or array elements in the corresponding
<nlist>. The appearance of an array in an <nlist> is
equivalent to a list of all elements in that array in memory
sequence order. Array clements must be indexed only by
constant subscripts.

The type of each noncharacter element in a <clist> must be
the same as the type of the corresponding variable or array
clement in the accompanying <nlist>. However, with the
SNOTSTRICT metacommand in effect, a character element
in a <clist> can correspond to a variable of any type.
The character ¢lement must have a length that is less than
or equal to the length of that variable or array clement. If
the length of the constant is shorter, it is extended to the
length of the variable by adding blank characters to the right.
A single character constant cannot be used to define more
than one variable or even more than one array element.

Only local variables and array elements can appear in a DATA
statement. Formal arguments, variables in common, and
function names cannot be assigned initial values with a DATA
statement.

INTEGER N, ORDER, ALPHA

REAL COEF(4), EPS(2)

DATA N /0/, ORDER /3/

DATA ALPHA /A7

DATA COEF /1.0,2*3.0,1.0/, EPS(1) /.00001/

Chapter 3 / Statements

3.2.9 The DIMENSION Statement

Syntax

Purpose

Remarks

DIMENSION <array> (<dim>} [, <array> (<dim>)]...

Specifies that a user name is an array and defines the numbcer
of its ¢lements.

<array> is the name of an array.

<dim> specifies the dimensions of the array and is a list of
one to seven dimension declarators separated by commas.

The number of dimensions in the array is the number of
dimension declarators in the array declarator. The maximum
number of dimensions is three. The maximum size of an
array is 65,3606 bytes. The maximum size of an dimension
is 32,767 bytes.

A dimension declarator can be:
I. an unsigned integer constant

2. auser name corresponding to a nonarray integer formal
argument

3. an asterisk

A dimension declarator specifies the upper bound of the
dimension. The lower bound is always one.

If a dimension declarator is an integer constant, then the
array has the corresponding number of elements in that
dimension. An array has a constant size if all of its
dimensions are specified by integer constants.

If a dimension declarator is an integer formal argument, then
that dimension is defined to be of a size equal to the initial
value of the integer argument upon entry to the subprogram
unit at execution time. In such a case, the array is called an
adjustable-size array.

If the dimension declarator is an asterisk, the array is an
assumed-size array and the upper bound of that dimension
is not specified.

All adjustable and assumed-size arrays must also be formal
arguments to the program unit in which they appear.
Furthermore, an assumed-size dimension declarator may
only appear as the last dimension in an array declarator.

57

Chapter 3 / Statements

Example

Array elements are stored in column-major order; the
leftmost subscript changes most rapidly as the array is
mapped into contiguous memory addresses.

For example, the following statements

INTEGER*2 A (2, 3)
DATA A /1, 2, 3, 4, 5, 6/

would result in the following mapping (assuming A is placed
at location 1069 in memory):

Array Element Address Value
A 1060 1
AR, 1 1602 2
A(l, 2) 1004 3
A2, 2) 1006 4
A1, 3) 1008 5
A, 3) 100A 6

DIMENSION A (2,3), V (10)
CALL SUBR (A,2)V)

SUBROUTINE SUBR (MATRIX, ROWS, VECTOR)
REAL MATRIX, VECTOR

INTEGER ROWS

DIMENSION MATRIX (ROWS,*), VECTOR (1),
+LOCAL (2,4,8)

MATRIX (1,1) = VECTOR (5)

END

3.2.10 The DO Statement

Syntax
Purpose

Remarks

58

DO <slabel> [,] <variable> = <exprl>, <expr2> [, <expr3>|
Repeatedly evaluates the statements following the DO,
through and including the statement with the label <slabel>.

<slabel> is the statement label of an executable statement.
<variable> is an integer variable.

<exprl>, <expr2>, <expr3> are integer expressions.

Chapter 3 / Statements

The label referred to must appear after the DO statement and
be contained in the same program unit. The specified
statement is called the terminal statement of the DO loop
and must not be an unconditional GOTO, assigned GOTO,
arithmetic IF, block IF, ELSEIF, ELSE, ENDIE, RETURN, STOP,
END, or DO statement. If the terminal statement is a logical
IF, it may contain any executable statement except those not
permitted inside a logical IF statement.

The range of a DO loop begins with the statement that
follows the DO statement and includes the terminal
statement of the DO loop.

The following restrictions affect the execution of a DO
statement:

I Ifa DO statement appears in the range of another DO
loop, its range must be entirely contained within the
range of the enclosing DO loop, although the loops
may share a terminal statement.

2. If a DO statement appears within an IF, ELSEIE, or
ELSE block, the range of the associated DO loop must
be entirely contained in the particular block.

3. If a block IF statement appears within the range of

a DO loop, its associated ENDIF statement must also
appear within the range of that DO loop.

The DO variable may not be modified in any way by the
statements within the range of the DO loop associated with
it. Jumping into the range of a DO loop from outside its range
is not permitted. (However, a special feature, added for
compatibility with carlier versions of FORTRAN, does permit

Mctacommand,” for more information.)

The execution of a DO statement sets the following process
in motion:

In some circumstances, the value of a DO variable may
overflow as a result of an increment that is performed prior
to testing it against the upper bound. If this happens, vour
program is technically in error, but the error is not detected
as such by either the compiler or the runtime library.
However, if the DO variable is cither explicitly or implicitly
defined as INTEGER® 2, the arithmetic for the statement will

59

Chapter 3 / Statements

60

be carried out in 32-bit mode with the necessary
conversions. If the DO variable is INTEGER*4, and an
overflow occurs, the value will wrap around, and the loop
will not terminate.

For example:
INTEGER*2 1
DO 160 1=32760,32767

100 CONTINUE

1. The expressions <exprl>, <expr2>, and <expr3> are
evaluated. If <expr3> is not present, it is assumed that
<expr3> evaluated to one.

2. The DO variable is set to the value of the expression,
<exprl>.

3. The iteration count for the loop is:
MAX®(((expr2-exprl + expr3)iexpr3). @)
The iteration count may be zero if either of the
following is true:

a. <exprl> s greater than <expr2> and <expr3> is
greater than zero

b. <exprl> is less than <expr2> and <expr3> is less
than zero

However, if the SDOG6 metacommand is in effect, the
iteration count is at least one. See Section 6.2.2, “The
SDOG6G6 Metacommand,” for more information about
this feature,

4. The iteration count is tested, and, if it exceeds zero,
the statements in the range of the DO loop are
executed.

Following the execution of the terminal statement of a DO
loop, these steps take place:

1. The value of the DO variable is incremented by the
value of <expr3> that was computed when the DO
statement was executed.

2. The iteration count is decremented by one.

Chapter 3 / Statements

Example

3. The iteration count is tested, and if it exceeds zero,
the statements in the range of the DO loop are
exccuted again.

The value of the DO variable is well-defined, regardless of
whether the DO loop exits because the iteration count
becomes zero, or because of a transfer of control out of the
DO loop.

The following shows the final value of a DO variable:
C EXAMPLE OF DO STATEMENTS

C DISPLAY THE NUMBERS 1 TO 11 ON THE SCREEN
DO 200 1=1,10

200 WRITE(*,(I5))1
WRITE(*(15)")]

~

. INITIALIZE A 20-ELEMENT REAL ARRAY
DIMENSION ARRAY(20)
DO11 = 1,20

1 ARRAY(l) = 0.0

C PERFORM A FUNCTION 11 TIMES
DO 2,1 = -30, -60, -3
J =13
J=-9-J
ARRAY(J) = MYFUNC()
2 CONTINUE

3.2.11 The ELSE Statement

Syntax

Purpose

Remarks

ELSE
Marks the beginning of an ELSE block. Execution of the
statement itself has no effect on the program.

The associated ELSE block consists of all of the executable
statements (possibly none) that follow the ELSE statement,
up to but not including the next ENDIF statement at the same
IF-level as this ELSE statement. The matching ENDIF
statement must appear before any intervening ELSE or ELSEIF
statcments of the same IF-level. (See Section 3.2.25, “*The
IF THEN ELSE Statement,” for a discussion of IF-levels.)

Transfer of control into an ELSE block from outside that
block is not permitted.

61

Chapter 3 / Statements

Example

CHARACTER C

READ (*)(A)) C
IF (C .EQ. A’) THEN
CALL ASUB
ELSE
CALL OTHER
ENDIF

3.2.12 The ELSEIF Statement

62

Syntax
Purpose

Remarks

ELSEIF (<cxpression>) THEN
Causes evaluation of the expression.

<expression> is a logical expression. If its value is true and
there is at least one statement in the ELSEIF block, the next
statement executed is the first statement of the ELSEIF block.

The associated ELSEIF block consists of all the executable
statements (possibly none) that follow, up to the next ELSEIF,
ELSE, or ENDIF statement that has the same IF-level as this
ELSEIF statement.

Following the execution of the last statement in the ELSEIF
block, the next statement to be executed is the next ENDIF
statement at the same IF-level as this ELSEIF statement.

If the expression in this ELSEIF statement evaluates to true
and the ELSEIF block has no executable statements, the next
statement executed is the next ENDIF statement at the same
IF-level as the ELSEIF statement. If the expression cvaluates
to false, the next statement executed is the next ELSEIF, ELSE,
or ENDIF statement that has the same IF-level as the ELSEIF
statement. (See Section 3.2.25, “The IF THEN ELSE
Statement,” for a discussion of IF-levels.)

Transfer of control into an ELSEIF block from outside that
block is not permitted.

Chapter 3 / Statements

Example

CHARACTER C

READ (*.(A)) C

IF (C .EQ. A’) THEN
CALL ASUB

ELSEIF (C .EQ. 'X’) THEN
CALL XSUB

ELSE
CALL OTHER

ENDIF

3.2.13 The END Statement

Syntax
Purpose

Remarks

Example

END
In a subprogram, has the same effect as a RETURN statement;
in the main program, terminates execution of the program.

The END statement must appear as the last statement in every
program unit. Unlike other statements, an END statement
must appear alone on an initial line, with no label. No
continuation lines may follow the END statement. No other
FORTRAN statement, such as the ENDIF statement, may have
an initial line that appears to be an END statement.
C EXAMPLE OF END STATEMENT
C END STATEMENT MUST BE LAST STATEMENT
C IN A PROGRAM

PROGRAM MYPROG

WRITE(*, '(16H HI WORLD!)")

END

3.2.14 The ENDFILE Statement

Syntax

Purpose

Remarks

ENDFILE <unit-spec>

Writes an end-of-file record as the next record of the file
connected to the specified unit.

<unit-spec> is a required external unit specifier. See Section
4.3.1, “Elements of [/O Statements,” for more information
about unit specifiers and other elements of /O statements.

63

Chapter 3 / Statements

After writing the end-of-file record, ENDFILE positions the
file after the end-of-file record. This prohibits further
sequential data transfer until after execution of either a
BACKSPACE or REWIND statement.

An ENDFILE on a direct access file makes all records written
beyond the position of the new end-of-file disappear.

Example
WRITE (6,*) X
ENDFILE 6

REWIND 6
READ (6,") Y

3.2.15 The ENDIF Statement

Syntax ENDIF

Purpose Terminates a block IF statement. Execution of an ENDIF
statement itself has no effect on the program.

Remarks There must be a matching ENDIF statement for every block
IF statement in a program unit, to identify which statements
belong to a particular block IF statement. See Section 3.2.25,
“The IF THEN ELSE Statement,” for discussion and examples
of block IFs.

Example IF (I .L'T. &) THEN
X = -1
Y = -l
ENDIF

3.2.16 The EQUIVALENCE Statement

Syntax EQUIVALENCE (<nlist>) [, (<nlist>)]...

Purpose Specifies that two or more variables or arrays are to share
the same mcemory.

Remarks <nlist> is a list of at least two elements, separated by
commas. An <nlist> may include variable names, array

64

Chapter 3 / Statements

names, or array clement names; argument names are not
allowed. Subscripts must be integer constants and must be
within the bounds of the array they index. No automatic type
conversion occurs if the shared elements are of different
types.

An EQUIVALENCE statement specifies that the memory
sequences of the elements that appear in the list <nlist> must
have the same first memory location. Two or more variables
are said to be associated if they refer to the same actual
memory. Thus, an EQUIVALENCE statement causces its list
of variables to become associated. An array name, if present
in an EQUIVALENCE statement, refers to the first element
of the array.

You cannot associate character and noncharacter entitics
when the SSTRICT metacommand is in effect (SNOTSTRICT
is the default). Sce the odd-byte boundary restriction
described in number 3 in the following list.

Associated character entitics may overlap, as in the following
example:

CHARACTER A*4, B*4, C(2)*3

EQUIVALENCE (A.C(1)), (B,C(2))

The preceding example can be graphically illustrated as
follows:

01 02 03 04 05 06 07

| |
U A 1

| B |

|
|_ C(1) + C(2) —|

65

Chapter 3 / Statements

Restrictions:

66

o

You cannot force a variable to occupy more than one
distinct memory location; nor can you force two or
more clements of the same array to occupy the same
memory location. For example, the following
statement would force R to occupy two distinct
memory locations or $(1) and S$(2) to occupy the same
memory location:

C THIS IS AN ERROR
REAL R,5(10)
EQUIVALENCE (R,S(1)),(R,S(5))

An EQUIVALENCE statement cannot specify that
consecutive array elements not be stored in sequential
order. The following, for example, is not permitted:

C THIS IS ANOTHER ERROR
REAL R(10),5(10)
EQUIVALENCE (R(1),8(1)), + (R(5),5(6))

You cannot equivalence character and noncharacter
cntities so that the noncharacter entities can start on
an odd-byte boundary.

For entities not in a common block, the compiler will
attempt to align the noncharacter entities on word
boundaries. An error message will be issued if such
an alignment is not possible because of multiple
cquivalencing. For example, the following would
result in an error, since it is not possible for both
variables A and B to be word aligned:

CHARACTER*1 CI(10)
REAL A,B
EQUIVALENCE (A,CI(1))
EQUIVALENCE (B,C1(2))

For entities in 2 common block, since positions are
fixed, it is your responsibility to assure word
alignment for the noncharacter entitics. An error
message will be issued for any that are not word
aligned.

An EQUIVALENCE statement cannot associate an
clement of type CHARACTER with a noncharacter

Chapter 3 / Statements

clement in a way that causes the noncharacter element
to be allocated on an odd byte boundary. However,
there are no boundary restrictions for equivalencing
of character variables.

5. When EQUIVALENCE statcments and COMMON
statements are uscd together, several additional
restrictions apply:

4. An EQUIVALENCE statement cannot cause
memory in two different common blocks to be
shared.

b. An EQUIVALENCE statement can extend a
common block by adding memory elements
following the common block, but not preceding
the common block.

¢. Extending a named common block with an
EQUIVALENCE statement must not make its
length different from the length of the named
common block in other program units.

For example, the following is not permitted because it
extends the common block by adding memory preceding
the start of the block:

C THIS IS A MORE SUBTLE ERROR
COMMON /ABCDE/ R(10)
REAL $(10)
EQUIVALENCE (R(1),5(10))

Example C CORRECT USE OF EQUIVALENCE STATEMENT
CHARACTER NAME, FIRST, MIDDLE, LAST
DIMENSION NAME(60), FIRST(20),

1 MIDDLE(20), LAST(20)

EQUIVALENCE (NAME(1), FIRST(1)).
1 (NAME(21),MIDDLE(1),
2

(NAME(41), LAST(1))

67

Chapter 3 / Statements

3.2.17 The EXTERNAL Statement

Syntax

Purpose

Remarks

Examples

EXTERNAL <namc> [, <namc>j.. .

Identifies a user-defined name as an external subroutine or
function.

<name> is the name of an external subroutine or function.

Giving a name in an EXTERNAL statement declares it as an
external procedure. Statement function names cannot appear
in an EXTERNAL statement. If an intrinsic function name
appears in an EXTERNAL statement, that name becomes the
name of an external procedure, and the corresponding
intrinsic function can no longer be called from that program
unit. A user name can only appear once in an EXTERNAL
statement in any given program unit.

In assembly language and MS-Pascal, EXTERN means that
an object is defined outside the current compilation or
assembly unit. This is unnecessary in MS-FORTRAN since
standard FORTRAN practice assumes that any object referred
to but not defined in a compilation unit is defined externally.

In FORTRAN, therefore, EXTERNAL is used primarily to
specify that a particular user-defined name is a subroutine
or function to be used as a procedural parameter. EXTERNAL
may also indicate that a user-defined function is to replace
an intrinsic function of the same name.

C EXAMPLE OF EXTERNAL STATEMENT
EXTERNAL MYFUNC, MYSUB

C MYFUNC AND MYSUB ARE PARAMETERS TO CALC
CALL CALC (MYFUNC, MYSUB)

C EXAMPLE OF A USER-DEFINED FUNCTION
C REPLACING AN INTRINSIC EXTERNAL SIN
X = SIN (A+.2,37)

3.2.18 THE FORMAT Statement

Syntax

Purpose

068

FORMAT <format-spec>.

Used in conjunction with formatted IO statements, provides
information that dircects the editing of data.

Chapter 3 / Statements

Remarks

<format-spec> is a format specification, which provides
explicit editing information. The format specification must
be enclosed in parentheses and may take one of the following
forms:

|<r>] <repeatable cdit descriptor>
<nonrepeatable edit descriptor>
[<r>] <format specification>

The <r>_ if present, is a nonzero, unsigned. integer constant
called a repeat specification.

Up to three levels of nested parentheses are permitted within
the outermost level of parentheses.

Edit descriptors, both repeatable and nonrepeatable, are listed
in Table 3.6 and described in more detail in Section 4.4.2,
“Edit Descriptors.”

You may omit the comma between two list items if the
resulting format specification is not ambiguous; for example,
after a P edit descriptor or before or after the slash (/) edit
descriptor.

FORMAT statements must be labeled and, like all
nonexecutable statements, cannot be the wrget of a
branching operation.

Table 3.6. Edit Descriptors

Repeatable Nonrepeatable

I<w> XXX (character constants)
G<w>.<d> <n>Hxxx (character constants)
G<w> <d>E<e> <n>X (positional editing)
F<w> . <d> / (terminate record)

E<w> . <d> \ (don’t terminate record)
E<w> <d>E<e> <k>P (scale factor)

D<w> . <d> BN (blanks as blanks)

L<w> BZ (blanks as zcros)

Al<w>]

69

Chapter 3 / Statements

Notes for Table 3.3:

1. For the repeatable edit descriptors:

A, D,E F G, I, and L indicate the manner of editing.

<w> and <c¢> are nonzero, unsigned, integer
constants.

<d> is an unsigned integer constant,
2. For the nonrepeatable edit descriptors:

L H, X, /. \, P, BN, and BZ indicate the manner of
cditing.

X is any ASCIH character.
<n> is a nonzcro, unsigned, integer constant.
<k> is an optionally signed integer constant.

See Section .4, “Formatted 1/0,” for further information on
edit descriptors and formatted 1/O.

3.2.19 The FUNCTION Statement (External)

Syntax [<type>] FUNCTION <fname> ([<farg> [, <farg>]...])

Purpose Identifies a program unit as a function and supplies its type,
name, and optional formal parameter(s).

Remarks <type> is one of the following:

INTEGER

INTEGER*2

INTEGER*4

REAL

REAL*4

REAL*8

DOUBLE PRECISION

LOGICAL*2

LOGICAL* 4

<fname> is the user-defined name of the function.
<farg> is a formal argument name.

The function name is global, but it is also local to the
function it names. If <type> is omitted from the FUNCTION

70

Chapter 3 / Statements

Example

statement, the function’s type is determined by default and
by any subsequent IMPLICIT or type statements that would
determine the type of an ordinary variable. If <type> is
present, then the function name cannot appear in any
additional type statements. In any event, an external function
cannot be of type CHARACTER.

The list of argument names defines the number and, with
any subsequent IMPLICIT, EXTERNAL, type, or DIMENSION
statements, the type of arguments to that function. Neither
argument names nor the function name can appear in
COMMON, DATA, EQUIVALENCE, or INTRINSIC statements.

The function name must appear as a variable in the program
unit that defines the function. Every execution of that
function must assign a value to that variable. The final value
of this variable, upon execution of a RETURN or an END
statement, defines the value of the function.

After being defined, the value of this variable can be
referenced in an expression, like any other variable. An
external function may return values in addition to the value
of the function by assignment to one or more of its formal
arguments

A function can be called from any program unit. However,
FORTRAN does not allow recursive function calls, which
means that a function cannot call itself directly, nor can it
call another function if such a call results in that function
being called again before it returns control to its caller.
However, recursive calls are not detected by the compiler,
even if they are direct.

C EXAMPLE OF A FUNCTION REFERENCE
C GETNO IS A FUNCTION THAT READS A
C NUMBER FROM A FILE
I=2
10 IF (GETNO() .EQ. 0.0) GO TO 10
STOP
END

FUNCTION GETNO(NOUNIT)
READ(NOUNIT, '(F10.5)) R
GETNO = R

RETURN

END

71

Chapter 3 / Statements

3.2.20 The GOTO Statement (Assigned GOTO)

Syntax GOTO <name> [[.} (<slabel>
[, <slabel>]...)]

Purpose Causes the statement labeled by the label last assigned to
<name> to be the next statement executed.

Remarks <name> is an integer variable name.

<slabel> is a statement label of an executable statement in
the same program unit as the assigned GOTO statement.

The same statement label may appear repeatedly in the list
of labels. When the assigned GOTO statement is executed,
<name> must have been assigned the label of an executable
statement found in the same program unit as the assigned
GOTO statement.

Including the optional list of labels and sclecting the
$DEBUG metacommand results in a runtime error if the label
last assigned to <name> is not among those listed. Jumping
into a DO, IF, ELSEIF, or ELSE block from outside the block
is not permitted.

A special feature, extended range DO loops, does permit
jumping into a DO block. See Section 6.2.2, “The SDOG6
Metacommand,” for more information about this feature.

Example C EXAMPLE OF ASSIGNED GOTO
ASSIGN 10 TO 1
GOTO 1
10 CONTINUE

3.2.21 The GOTO Statement (Computed GOTO)

Syntax GOTO (<slabel> [, <slabel>]..) [.] <i>

Purpose Transfers control to the statement labeled by the <i>th label
in the list.

Remarks <slabel> is the statement label of an executable statement
from the same program unit as the computed GOTO
statement. The same statement label may be repeated in the
list of fabels.

<i> is an integer expression.

Chapter 3 / Statements

If there are n labels in the list of labels and <i> is out of range,
the computed GOTO statement serves as a CONTINUE
statement. <i> would be out of range in cither of the
following cases:

<i> <1
<i>>n

Otherwise, the next statement executed is the one labeled
by the <i>th label in the list of labels.

Jumping into a DO, IF, ELSEIF, or ELSE block from outside
the block is not permitted. A special feature, extended range
DO loops, does permit jumping into a DO block. See Section
6.2.2, "The $DOG6 Metacommand,” for more information.

Example C EXAMPLE OF COMPUTED GOTO
I =1
GOTO (10, 20) 1

10 CONTINUE

20 CONTINUE

3.2.22 The GOTO Statement (Unconditional

GOTO)
Syntax GOTO <slabel>.
Purpose Transfers control to the statement labeled <slabel>.
Remarks <slabel> is the statement label of an executable statcment

in the same program unit as the GOTO statement.

Jumping into a DO, IF, ELSEIF, or ELSE block from outside
the block is not permitted. A special feature, extended range
DO loops, does permit jumping into a DO block. See Section
6.2.2, “The $DO66 Metacommand,” for more information
about this feature.

Example C EXAMPLE OF UNCONDITIONAL GOTO
GOTO 4022

4022 CONTINUE
73

Chapter 3 / Statements

3.2.23 The IF Statement (Arithmetic IF)

Syntax IF (<cexpression>) <slabell>, <slabel2>, <slabel3>

Purpose Evaluates the expression and transfers control to the
statement labeled by one of the specified labels, according
to the result of the expression.

Remarks <expression> is an integer or real expression.

<slabell>, <slabel2>,and <slabel3>> are statement labels of
executable statements in the same program unit as the
arithmetic IF statement.

The same statement label may appear more than once among
the three labels. The first label is selected if the value of the
expression is less than zero, the second label if the value
equals zero, and the third label if the value is greater than
zero. The next statement executed is the statement labeled
by the selected label.

Jumping into a DO, IF, ELSEIF, or ELSE block from outside
the block is not permitted. A special feature, extended range
DO loops, does permit jumping into a DO block. See Section
6.2.2, ““The $DOG66 Metacommand,” for more information
about this feature.

Example C EXAMPLE OF ARITHMETIC IF
1=0
IF (1) 10, 20, 30
10 CONTINUE
20 CONTINUE
30 CONTINUE

3.2.24 The IF Statement (Logical IF)

Syntax IF (<expression>) <statement>

Purpose Evaluates the logical expression and, if the value of that
expression is TRUE., executes the statement given. If the
expression evaluates to .FALSE., the statement is not executed

74

Chapter 3 / Statements

Remarks

Example

and execution continues as if a CONTINUE statement were
encountered.
<expression> is a logical expression.

<statement> is any exccutable statement except a DO, block
IF, ELSEIF, ELSE, ENDIF, END, or another logical IF
statement.

C EXAMPLE OF LOGICAL IF
IF(I .EQ @) =2
IF (X .GT. 2.3) GOTO 100

100 CONTINUE

3.2.25 The IF THEN ELSE Statement (Block IF)

Syntax

Purpose

Remarks

IF (<expression>) THEN

Evaluates the expression and, if the expression evaluates to
TRUE., begins executing statements in the IF block. If the
expression evaluates to .FALSE., control transfers to the next
ELSE, ELSEIF, or ENDIF statement at the same IF-level.

<expression> is a logical expression.

The associated IF block consists of all the executable
statements (possibly none) that appear following the
statement, up to but not including the next ELSEIF, ELSE,
or ENDIF statement that has the same [F-level as this block
IF statement.

After execution of the last statement in the IF block, the next
statement executed is the next ENDIF statement at the same
IF-level as this block IF statement. If the expression in this
block IF statement evaluates to TRUE., and the IF block has
no executable statements, the next statement executed is the
next ENDIF statement at the same IF-level as the block IF
statement. If the expression evaluates to .FALSE., the next
statcment executed is the next ELSEIF, ELSE, or ENDIF
statement at the same IF-level as the block IF statement.

Transfer of control into an IF block from outside that block
is not permitted.

75

Chapter 3 / Statements

Example 1

Example 2

76

IF-Levels:

The concept of an IF-level in block IF and associated
statements is described as follows. For any statement, its IF-
level is nl minus n2, where:

1. nl is the number of block IF statements from the
beginning of the program unit in which the statement
occurs, up to and including that statement.

2. n2 is the number of ENDIF statements from the
beginning of the program unit, up to, but not
including, that statement.

The IF-level of every statement must be greater than or equal
to zero and the IF-level of every block IF, ELSEIF, ELSE, and
ENDIF must be greater than zero. Finally, the IF-level of every
END statement must be zero. The [F-level defines the nesting
rules for the block IF and associated statements and defines
the extent of IF, ELSEIF, and ELSE blocks.

Simple block IF that skips a group of statements if the
expression is false:

[F(I.LT.10)THEN
Some statements executed
only if I.LT.19

ENDIF

Block IF with ELSEIF statements:

IF(J.GT.1060)THEN
Some statements executed
only if J.GT.1000
ELSEIF(J.GT.160)THEN
Some statements executed
only if J.GT.100 and J.LE.1000
ELSEIF(J.GT.10)THEN
Some statements executed
. only if J.GT.10 and J.LE.100
ELSE
Some statements executed
. only if J.LE.1¢
ENDIF

Chapter 3 / Statements

Example 3 Nesting of constructs and use of an ELSE statement following
a block IF without intervening ELSEIF statements:

IF(LET100)THEN
Some statements executed
only if LLLT 100
IF(J.LT.10)THEN
Some statements executed
only if LLI. 100 and).LT.10
ENDIF
Some statements excecuted
only if LLLT. 100
ELSE
Some statements executed
only if LGE.10¢
IF(J.LT.10)THEN
Some statements executed
only if LGE.1¢ and J.LT.1¢
ENDIF
Some statements executed
only if LGE. 100

ENDIF

3.2.26 The IMPLICIT Statement

Syntax IMPLICIT <type> (<a> [, <a>]...) [<type> (<a> [, <a>]...)...]
Purpose Defines the default type for user-declared names.
Remarks <type> is one of the following types:

INTEGER
INTEGER*2
INTEGER* 4

REAL

REAL*4

REAL*8

DOUBLE PRECISION
LOGICAL* 2
LOGICAL* 4
CHARACTER

<a> is either a single letter or a range of letters. A range of
letters is indicated by the first and last letters in the range,
separated by a minus sign. The letters for a range must be
in alphabetical order.

Chapter 3 / Statements

Example

An IMPLICIT statement defines the type and size for all user-
defined names that begin with the letter or letters given. An
IMPLICIT statement applies only to the program unit in
which it appcars and does not change the type of any
intrinsic function.

IMPLICIT types for any specific user name can be overridden
or confirmed if that name is given in a subsequent type
statement. An explicit type in a FUNCTION statement also
takes priority over an IMPLICIT statcement. If the type in
question is a character type, the length is also overridden
by a later type definition.

A program unit can have more than one IMPLICIT statement.
However, all IMPLICIT statements must precede all other
specification statements in that program unit. The same letter
cannot be defined more than once in an IMPLICIT statement
in the same program unit.

C EXAMPLE OF IMPLICIT STATEMENT
IMPLICIT INTEGER (A - B)
IMPLICIT CHARACTER*16¢ (N)
AGE = 10
NAME = 'PAUL

3.2.27 The INTRINSIC Statement

Syntax
Purpose

Remarks

78

INTRINSIC <namel> [, <name2>]..
Declares that a name is an intrinsic function.
<name> is an intrinsic function name.

Each user name may appear only once in an INTRINSIC
statement. A name that appears in an INTRINSIC statement
cannot appear in an EXTERNAL statement. All names used
in an INTRINSIC statement must be system- defined
INTRINSIC functions. For a list of these functions, see Table
5.1 in Chapter 5, “Programs, Subroutines, and Functions.”

You must specify the name of an intrinsic function in an
INTRINSIC statement if you wish to pass it as a parameter
(i.e., as an actual argument to a program unit).

Chapter 3 / Statements

Example

C EXAMPLE OF INTRINSIC STATEMENT
INTRINSIC SIN, COS

C SIN AND COS ARE PARAMETERS TO CALC2
X = CALC2 (SIN. COS).

3.2.28 The OPEN Statement

Syntax

" Purpose

Remarks

OPEN (<unit-spec> [, FILE = "<fname>'|
[, STATUS = "<status>'] [, ACCESS = "<access>’]
[, FORM = '<format>'] [, RECL = <rec-length>])

Associates a unit number with an external device or file on
an external device.

<unit-spec> is a required unit specifier. It must appear as
the first argument; it must not be an internal unit specifier.
See Section 4.3.1, “Elements of 1/0 Statements,” for more
information about unit specifiers and other elements of 1/O
statements.

<fname> is a character expression. This optional argument,
if present, must appear as the second argument. If the
argument is omitted, the compiler creates a temporary
scratch file with a name unique to the unit. The scratch file
is deleted when it is cither explicitly closed or the program
terminates normally.

If the filename specified is blank (FILE =" '), the user will
be prompted for a filename at runtime. If opened with
STATUS ="OLD’, the file itself must exist.

All arguments after <fname> are optional and can appear
in any order. Except for RECL =, these options are character
constants with optional trailing blanks and must be enclosed
in single quotation marks.

<status> is OLD (the default) or NEW. OLD is for reading
or writing existing files; NEW is for writing new files.
<access> is SEQUENTIAL (the default) or DIRECT.
<format> is FORMATTED, UNFORMATTED, or BINARY. If
access is SEQUENTIAL, the default is FORMATTED:; if access
is DIRECT, the default is UNFORMATTED.

<rec-length> (record length) is an integer expression that
specifies the length of each record in bytes. This argument

79

Chapter 3 / Statements

is applicable only for DIRECT access files, for which it is
required.

Associating unit zero to a file has no effect: Unit zero is
permanently connected to the keyboard and screen.

Example 1 C PROMPT USER FOR A FILE NAME.
WRITE(*(A\)) Output file name? ’

PRESUME THAT FNAME IS SPECIFIED TO BE

CHARACTER*064.

READ THE FILE NAME FROM THE KEYBOARD.
READ(*'(A)’) FNAME

OPEN THE FILE AS FORMATTED SEQUENTIAL

AS UNIT 7.

NOTE THAT THE ACCESS SPECIFIED WAS

UNNECESSARY SINCE IT IS THE DEFAULT.

FORMATTED IS ALSO THE DEFAULT.
OPEN(7,FILE = FNAME ACCESS = 'SEQUENTIAL,
+STATUS = 'NEW").

Example 2 C OPEN AN EXISTING FILE CREATED BY EDITOR
C CALLED DATA3TXT AS UNIT 3.
OPEN(3,FILE = "DATA3 TXT")

[oEeNe!

oNoNoNoNe

3.2.29 The PAUSE Statement

Syntax PAUSE [<n>]

Purpose Suspends program execution until the RETURN key is
pressed.

Remarks <n> is either a character constant or a string of not more

than five digits.

The PAUSE statement suspends execution of the program,
pending an indication that it is to continue. The argument
<n>, if present, is displayed on the screen as a prompt
requesting input from the keyboard. If <n> is not present,
the following message is displayed on the screen:

PAUSE. Please press <return> to continue.

After you press the RETURN key, program execution resumes
as if a CONTINUE statement were executed.

80

Chapter 3 / Statements

Example

C EXAMPLE OF A PAUSE STATEMENT

IF (IWARN .EQ. 0) GOTO 300

PAUSE "WARNING: IWARN IS NONZERO'
300 CONTINUE

3.2.30 The PROGRAM Statement

Syntax

Purpose

Remarks

Example

PROGRAM <program-name>.

Identifies the program unit as a main program and gives it
4 name.

<program-name> is the name you have given to your main
program. The program name is a global name. Therefore, it
cannot be the same as that of another external procedure
or common block. (It is also a local name to the main
program and must not conflict with any local name in the
main program.) The PROGRAM statement may only appear
as the first statement of a main program.

If the main program does not have a program statement, it
will be assigned the name MAIN. The name MAIN then
cannot be used to name any other entity.

PROGRAM GAUSS
REAL COEF (16,10), CONST (10)

END

3.2.31 The READ Statement

Syntax

Purpose

Remarks

READ (<unit-spec> [, <format-spec>] [, REC = <rec-num>]
[, END = <slabel1>] [, ERR = <slabel2>]) <iolist>

Transfers data from the file associated with <unit-spec> to
the items in the <ijolist>, assuming that no end-of-file or
error occurs.

If the read is internal, the character variable or character array
clement specified is the source of the input; if the read is
not internal, the source of the input is the external unit.

81

Chapter 3 / Statements

82

<unit-spec> is a required unit specifier, which must appear
as the first argument.

<format-spec> is a format specifier. It is required for
formatted read as the second argument; it must not appear
for unformatted read.

Other arguments, if present, can appear in any order

<rec-num> is a record number, specified for direct access
files only; if <rec-num> is given for other than direct files,
an error results. The record number is a positive integer
expression and positions to the record number <rec-num>
(the first record in the file has record number 1) before the
transfer of data begins. If this argument is omitted for a direct
access file, reading continues sequentially from the current
position in the file.

<slabell> is an optional statement label in the same program
unit as the READ statement. If this argument is omitted,
reading past the end of the file results in a runtime error.
If it is present, encountering an end-of-file condition
transfers control to the executable statement specified.

<slabel2>> is an optional statement label in the same program
unit as the READ statement. If this argument is omitted, 1/O
errors result in runtime errors. If it is present, /O errors
transfer control to the executable statement specified.

<iolist> specifies the entities into which values are
transferred from the file. An <iolist> may be empty, but
ordinarily consists of input entities and implied DO lists,
separated by commas. '

See Section 4.3.1, “Elements of 1/O Statements,” for more
information about unit specifiers and other elements of 1/0O
statements.

If the file has not been opened by an OPEN statement, an
implicit OPEN operation is performed. This operation is
equivalent to the following statement:

OPEN (<unit-spec>,FILE =’ " STATUS = 'OLD’,
ACCESS = 'SEQUENTIAL,FORM = '<format>’)

<format> is FORMATTED if the READ statement is formatted
and UNFORMATTED if the READ statement is unformatted.
See Section 3.2.28, “The OPEN Statement,” for a description
of the effect of the FILE = parameter.

Chapter 3 / Statements

Example

@)

SET UP A TWO DIMENSIONAL ARRAY.
DIMENSION 1A(10,20)

READ IN THE BOUNDS FOR THE ARRAY.
THESE BOUNDS SHOULD BE LESS THAN OR
EQUAL TO 10 AND 20 RESPECTIVELY.
THEN READ IN THE ARRAY IN NESTED
IMPLIED DO LISTS WITH INPUT FORMAT OF
8 COLUMNS OF WIDTH 5 EACH.

READ (3,990)IL JL,((IA(1J).J = LJL). I = LIL)
990 FORMAT(215/,(815))

CcCOoOOO0O0n

3.2.32 The RETURN Statement

Syntax
Purpose

Remarks

Example

RETURN
Returns control to the calling program unit.
RETURN can only appear in a function or subroutine.

Execution of a RETURN statement terminates execution of
the enclosing subroutine or function. If the RETURN
statement is in a function, the function’s value is equal to
the current value of the variable with the same name as the
function.

Execution of an END statement in a function or subroutine
is equivalent to exccution of a RETURN statement. Thus,
either a RETURN or an END statement, but not both, is
required to terminate a function or subroutince.

C EXAMPLE OF RETURN STATEMENT
C THIS SUBROUTINE LOOPS UNTIL
C YOU TYPE Y”
SUBROUTINE LOOP
CHARACTER IN

C
10 READ(*)(A1)) IN
IF (IN .EQ. 'Y') RETURN
GOTO 10
C RETURN IMPLIED
END

83

Chapter 3 / Statements

3.2.33 The REWIND Statement

Syntax

Purpose

Remarks

Example

REWIND <unit-spec>

Repositions to its initial point the file associated with the
specified unit.

<unit-spec>> is a required external unit specifier. See Section
4.3.1, “Elements of I/O Statements,” for more information
about unit specifiers and other elements of 1/0 statements.

INTEGER A(86)
WRITE (7,(8011)") A
REWIND 7

READ (7, '(8011))) A

3.2.34 The SAVE Statement

Syntax

Purpose

Remarks

Example

84

SAVE /<cnamel>/ [, /<cname2>/]...

Causes variables to retain their values across invocations of
the procedure in which they are defined.

<cname> is the name of a common block. After being saved,
variables in the common block have defined values if the
current procedure is subsequently re-entered.

Since in the current implementation, all common blocks and
variables are statically allocated, all common blocks and
variables are saved automatically. In practice, therefore, the
SAVE statement has no effect.

C EXAMPLE OF SAVE STATEMENT
SAVE /MYCOM/

Chapter 3 / Statements

3.2.35 The Statement Function Statement

Syntax
Purpose

Remarks

<fname> ([<farg> [, <farg>]..]) = <expr>
Defines a function in one statement.

<fname> is the name of the statement function.
<farg> is a formal argument name.

<expr> is any expression.

The statement function statement is similar in form to the
assignment statement. A statement function statement can
only appear after the specification statements and before any
executable statements in the program unit in which it
appears.

A statement function is not an executable statement, since
it is not executed in order as the first statement in its
particular program unit. Rather, the body of a statement
function serves to define the meaning of the statement
function. Like any other function, a statement function is
executed by a function reference in an expression.

The type of the expression must be assignment compatible
with the type of the statement function name. The list of
formal argument names serves to define the number and type
of arguments to the statement function. The scope of formal
argument names is the statement function. Therefore, formal
argument names can be re-used as other user-defined names
in the rest of the program unit enclosing the statement
function definition.

The name of the statement function, however, is local to the
enclosing program unit; it must not be used otherwise,
except as the name of a common block or as the name of
a formal argument to another statement function. In the latter
case the type of all such uses must be the same.

If a formal argument name is the same as another local name,
then a reference to that name within the statement function
defining it always refers to the formal argument, never to
the other usage.

Within the expression <expr>, references to variables, formal
arguments, other functions, array elements, and constants
are permitted. Statement function references, however, must

85

Chapter 3 / Statements

refer to statement functions defined prior to the statement
function in which they appear. Statement functions cannot
be called recursively, either directly or indirectly.

A statement function can only be referenced in the program
unit in which it is defined. The name of a statement function
cannot appear in any specification statement, except in a
type statement (which may not define that name as an array)
and in a COMMON statement (as the name of a common
block). A statement function cannot be of type CHARACTER.

Example C EXAMPLE OF STATEMENT FUNCTION STATEMENT
DIMENSION X(10)
ADD(A, B) = A + B

C
DO 1, 1=1, 10
X(I) = ADD(Y, Z)
1 CONTINUE

3.2.36 The STOP Statement

Syntax STOP [<n>]
Purpose Terminates the program.
Remarks <n> is either a character constant or a string of not more

than five digits.

The argument, <n>, if present, is displayed on the screen
when the program terminates. If <n> is not present, the
following message is displayed:

STOP - Program terminated.

Example C EXAMPLE OF STOP STATEMENT
IF (IERROR .EQ. 0) GOTO 200
_ STOP 'ERROR DETECTED'
200 CONTINUE

3.2.37 The SUBROUTINE Statement

Syntax SUBROUTINE <subroutine-name> [([<farg> [, <farg>]...}])]

Purpose Identifies a program unit as a subroutine, gives it a name,
and identifies the formal parameters to that subroutine.

86

Chapter 3 / Statements

Remarks

Example

<subroutine-name> is the user-defined, global, external
name of the subroutine,

<farg> is the user-defined name of a formal argument, also
known as a dummy argument.

A subroutine begins with a SUBROUTINE statement and ends
with the next following END statement. It can contain any
kind of statement other than a PROGRAM statement,
SUBROUTINE statement, or a FUNCTION statement.

The list of argument names defines the number and, with
any subsequent IMPLICIT, EXTERNAL, type, or DIMENSION
statements, the type of arguments to that subroutince.
Argument names cannot appear in COMMON, DAIA,
EQUIVALENCE, or INTRINSIC statements.

The actual arguments in the CALL statement that reference
a subroutine must agree with the corresponding formal
arguments in the SUBROUTINE statement, in order, in
number, and in type or kind.

The compiler will check for correspondence if the formal
arguments are known. To be known, the SUBROUTINE
statement that defines the formal arguments must precede
the CALL statement in the current compilation. Rules for the
correspondence of formal and actual arguments are
described in Section 3.2.4, “The CALL Statement.”

SUBROUTINE GETNUM (NUM,UNIT)
INTEGER NUM, UNIT

10 READ (UNIT;(110), ERR = 10) NUM
RETURN
END

3.2.38 The Type Statement

Syntax
Purpose

Remarks

<type> <vnamel> [, <vname2>]..

Specifies the type of user-defined names.

<type> is one of the following data type specificrs:
INTEGER
INTEGER*2
INTEGER*4

87

Chapter 3 / Statements

88

REAL

REAL*4

REAL*8

DOUBLE PRECISION
LOGICAL
LOGICAL*2
LOGICAL*4
CHARACTER

<vname> is the symbolic name of a variable, array, or
statement function; or a function subprogram; or an array
declarator.

A type statement can confirm or override the implicit type
of a name. A type statement can also specify dimension
information.

A user name for a variable, array, external function, or
statement function may appear in a type statement. Such an
appearance defines the type of that name for the entire
program unit. Within a program unit, 2 name can have its
type explicitly specified by a type statement only once.

A type statement may also confirm the type of an intrinsic
function, but it is not required. The name of a subroutine
or main program cannot appear in a type statement.

The following rules apply to a type statement:

1. A rtype statement must precede all executable
statements.

2. The data type of a symbolic name can be declared
explicitly only once.

[)

A type statement cannot be labeled.

BN

A type statement can be used to declare an array by
appending a dimension declarator to an array name.

A symbolic name can be followed by a data type length
specifier of the form *<length>, where <length> is one of
the acceptable lengths for the data type being declared. Such
a specification overrides the length attribute that the
statement implies and assigns a new length to the specified
item. If both a data type length specifier and an array
declarator are included, the data type length specifier goes
last.

Chapter 3 / Statements

Example C EXAMPLE OF TYPE STATEMENTS
. INTEGER COUNT. MATRIX(4,4), SUM
QJ REAL MAN,IABS
LOGICAL SWITCH

INTEGER*2 Q, M1

2%4, IVEC(10)*4
REAL*4 WX1, WX3*4,

WX5, WX6*4

CHARACTER NAME*10, CITY*8@, CH

89

Chapter 3 / Statements

3.2.39 The WRITE Statement

Syntax

Purpose

Remarks

90

WRITE (<unit-spec> [, <format-spec>] [, ERR = <slabel>]
[, REC = <rec-num>)) <iolist>

Transfers data from the <iolist> items to the file associated
with the specified unit.

<unit-spec is a required unit specifier and must appear as
the first argument. See Section 4.3.1, “Elements of 1/0Q
Statements,” for more information about unit specifiers and
other elements of I/O statements.

<format-spec> is a format specifier. It is required as the
second argument for a formatted WRITE; it must not appear
for an unformatted WRITE.

The remaining arguments, if present, may appear in any
order.

<slabel> is an optional statement label. If it is not present,
/O errors result in runtime errors. If it is present, /O errors
transfer control to the executable statement specified.

<rec-num> is a record number, specified for direct access
files only (otherwise, an error results). It is a positive integer
expression, specifying the number of the record to be
written. The first record in the file is record number 1. If
the record number is omitted for a direct access file, writing
continues from the current position in the file,

<iolist> specifies the entities whose values are transferred
by the WRITE statement. An <iolist> may be empty, but
ordinarily consists of output entities and implied DO lists,
separated by commas.

If the WRITE is internal, the character variable or character
array element specified as the unit is the destination of the
output; otherwise, the external unit is the destination.

If the file has not been opened by an OPEN statement, an
implicit open operation is performed. The OPEN operation
is cquivalent to the following statement:

OPEN (<unit-spec>, FILE=" ', STATUS='NEW’,
ACCESS = 'SEQUENTIAL, FORM = <format>)

Chapter 3 / Statements

Example

<format> is FORMATTED for a formatted WRITE statement
and UNFORMATTED for an unformatted WRITE statement.
See Section 3.2.28, “The OPEN Statement,” for a description
of the effect of the FILE = argument.

¢ Display message: “One= [[Two= 2Three= 3"

C on the screen, not doing

C things in the simplest way!
WRITE(*980)One="11+Lee="+(1+1+1)

980 FORMAT(A,12"Two = | 1X,I1,Thr’ A 12)

91

Chapter 4

The 1I/0 System

4.1

4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.3
4.3.1
4.3.1.1
4.3.1.2
4.3.1.3
4.3.2
4.4
4.4.1

4.4.2
4.4.2.1
4.4.2.2
4.5
4.5.1
4.5.2

RECOIDS . vensunmmmsmmnnsssns wis s timsns s Ar i s ssn 95
BLLeS covsnenusnsmmammpunsvgss o s sus A A S5 R Sk m 26
File Propertles: .. scacsmsssiomsisssonsnnnnnns 96
FALCOAIIC oo oncossuununmmivuvienios s sises iinsnmmennons 96
File POSTEON s amiimisisiirtsssmmmnansenens 2 7
File StruthilCa s eeenonsnnsns 97
File Access Method........cccccvuvevnvnennnnnen. 97
Special Properties of Internal Files........ 98
L0itS i smsresessnnmensmnsns savsns 99
Commonly Used File Structures............ 100
Other File Structures......cocveeuvuviuvnennnenns 101
OLD and NEW FileS...cccoeverrernernninennennnn. 162
LimitationsSocouvuvieieiniiiiiiieieeeennnenen. 103
I/O Statements......ccceeuvenverenrenrneenennenenncnen. 105
Elements of I/O Statements................... 165
The Unit Specifiefr...cccoeeieiennnnvnnnnnnn... 165
Format Specifier........ccccoevviviviinininnnn. 106
InputOutput List.....ceeeeneeveennnreennnnnnnn.. 106
Carriage Control.........cccooviiiiininiininnnnn. 107
Formatted I/O....ovveeiniiiaieiiiiiniiieneenenene. 169
Interaction Between Format
amd IR THBE oo venmvsmmmsnts i s sianse 1609
Edit Descriplors. awrsvsimmsasis isssoasses 111
Nonrepeatable Edit Descriptors.......... 111
Repeatable Edit Descriptors............... 114
EistDirected YO . snnmpmmomnisaspsss 120
List:-Divected InpUL . oocwsamasnnss i 120
List-Directed Output. .. oisusmmmesiiiass 122

Chapter 4/ The 1/0 System

94

This chapter supplements the presentation of the 1/O
statements in Chapter 3, “‘Statements.” It describes the
clements of the MS-FORTRAN file system, defines the basic
concepts of 1/O records and I/O units, and discusses the
various kinds of file access available. It further relates these
definitions to how various tasks are accomplished using the
most common forms of files and I/O statements. The chapter
includes a complete program illustrating the 1/O statements
and discusses general [/O system limitations.

Chapter 4/ The 1/0 System

4.1 Records

The building block of the MS-FORTRAN filc¢ system is the
record. A record is a sequence of characters or values. There
ar¢ three kinds of records: formatted, unformatted, and
endfile,

1.

Formatted

A formatted record is a sequence of characters
terminated by a system-dependent end-of-line marker.
Formatted records are interpreted in a manner
consistent with the way most operating systems and
editors interpret lines.

Unformatted

An unformatted record is a sequence of values, with
no system alteration or interpretation. Unformatted
files contain a structure that defines the physical
record. Binary files contain only the values written
to them, and the record structure cannot, in general,
be determined from this information.

Endfile

The MS-FORTRAN file system simulates a virtual
endfile record after the last record in a file. The way
end-of-file is represented depends in part on the
operating system,

Chapter 4/ The I/O System

4.2 Files

A file is a sequence of records. Files are either external or
internal.

1. External

An external file is either a file on a device or the device
itself.

2. Internal

An internal file is a character variable that serves as
the source or destination of some formatted 1/0O
operation.

For the remainder of this manual, both intcrnal MS-
FORTRAN files and the files known to the operating systcm
are usually referred to simply as ‘‘files,” with context
determining meaning. The OPEN statement provides the link
between the two notions of files; in most cases, the
ambiguity disappears after opening a file, when the two
notions coincide.

4.2.1 File Properties
A FORTRAN file has the following properties:
1. name
2. position
3. structure (formatted, unformatted, or binary)

4. access method (sequential or direct)

4.2.1.1 Filename

A file can have a name. If present, a name is a character string
identical to the name by which the file is known to the
operating system. Filenaming conventions arc determined
by your operating system.

96

Chapter 4 / The 1/0 System

4.2.1.2 File Position

The position of a file is usually set by the previous 1/O
operation. A file has an initial point, terminal point, current
record, preceding record, and next record.

It is possible to be between records in a file, in which case
the next record is the successor to the previous record, and
there is no current record.

Opening a sequential file for writing positions the file at its
beginning and discards all old data in the file. The file
position after sequential WRITEs is at the end of the file,
but not beyond the endfile record.

Executing the ENDFILE statement positions the file beyond
the endfile record, as does a READ statement executed at the
end of the file. You can detect the endfile condition by using
the END = option in a READ statement.

4.2.1.3 File Structure

An external file may be opened as a formatted, unformatted,
or binary file. All internal files are formatted.

1. Formatted

Files consisting entirely of formatted records.

2. Unformatted
Files consisting entirely of unformatted records.
3. Binary

Sequences of bytes with no internal structure,

4.2.1.4 File Access Method

An external file is opened as either a sequential file or a direct
access file.

1. Sequential

Files that contain records whose order is determined
by the order in which the records were written (the
normal sequential order). These files must not be read
or written using the REC = option, which specifics
a position for direct access 1/0.

97

Chapter 4 / The 1/0 System

2. Dircct

Files whose records can be read or written in any
order (they are random access files). Records are
numbered sequentially, with the first record
numbered 1. All records have the same length,
specified when the file is opened; each record has a
unique record number, specified when the record is
written.

It is possible to write records out of order (e.g., 9, 5, and
11 in that order), without the records in between. It is not
possible to delete a record once written; however, a record
can be overwritten with a new value,

Reading a record from a direct access file that has not been
written will result in an error. Direct access files must reside
on disk. The operating system attempts to extend direct
access files if a record is written beyond the old terminating
file boundary; the success of this operation depends on the
existence of room on the physical device.

4.2.2 Special Properties of Internal Files.

An internal file is a character variable or character array
element. The file has exactly one record, which is of the
same length as the character variable or character array
element.

If less than the entire record is written, the remaining portion
of the record is filled with blanks. The file position is always
at the beginning of the file prior to execution of the I/O
statement. Internal files permit only formatted, sequential
I/O; and only the I/O statements READ and WRITE may
specify an internal file.

Internal files provide a mechanism for using the formatting
capabilities of the 1/O system to convert values to and from
their external character representations within the MS-
FORTRAN internal memory structures. That is, reading a
character variable converts the character values into numeric,
logical, or character values and writing a character variable
allows values to be converted into their (external) character
representation.

The backslash edit descriptor (\) may not be used with
internal files.

Chapter 4 / The 1/O System

4.2.3 Units

A unit is a means of referring to a file. A unit specified in
an I/O statement is either an external unit specifier or an
internal unit specifier. Unit numbers in the range -32767 to
+ 32767 arc accepted.

1.

External unit specifier

An cxternal unit specifier is either an integer
expression (which evaluates to a nonnegative value)
or the character * (which stands for the screen (for
writing) and the keyboard (for reading)).

In most cases, an external unit specifier value is bound
to a physical device (or files resident on the device)
by name, using the OPEN statement. Once this
binding of unit to system filename occurs, MS-
FORTRAN I/O statements specify the unit number to
refer to the associated external entity. Once the file
is opencd, the external unit specifier value is uniquely
associated with a particular external entity until an
explicit CLOSE operation occurs or until the program
terminates.

The only exception to these binding rules is that the
unit value zero is initially associated with the
keyboard for reading and the screen for writing and
no explicit OPEN statement is necessary. The MS-
FORTRAN file system interprets the character * as unit
zero.

Internal unit specifier

An internal unit specifier is a character variable or
character array element that directly specifies an
internal file.

7

See Section 4.3.1, “Elements of 1/O Statements,” for a
discussion of how these unit specifiers are used.

99

Chapter 4 / The 1/0 System

4.2.4 Commonly Used File Structures

100

Numerous combinations of file structures are possible in MS-
FORTRAN. However, two kinds of files suffice for most
applications:

1. * files
2. named, external, sequential, formatted files.

* represents the keyboard and screen, that is, a sequential,
formatted file, also known as unit zero. When reading from
unit zero, you must enter an entire line; the normal operating
system conventions for correcting typing mistakes apply.

An external file can be bound to a system name by any one
of the following methods:

1. If the file is explicitly opened, the name can be
specified in the OPEN statement.

2. If the file is explicitly opened and the name is
specified as all blanks, the name is read from the
command line (if available). If the command line is
unavailable or contains no name, the user will usually
be prompted for the name.

If the file is implicitly opened (with a READ or WRITE
statcment) the name is obtained as in method 2,
described in the preceding paragraph.

(S]

4. If the file is explicitly opened and no name is specified
in the OPEN statement, the file is considered a scratch
or temporary file, and an implementation-dependent
name is asumed. (See Appendix D, “MS-FORTRAN
Scratch Filenames,” in the MS-FORTRAN Compiler
User's Guide for the default name used by your
operating system.)

The following sample program uses * files and named,
external, sequential, formatted files for reading and writing.
The /O statements themselves are explained in general in
Section 4.3, “'I/O Statements.” For details of each individual
1/0 statement, sce the appropriate entries in Section 3.2,
“*Statement Directory.”

Chapter 4 / The 1/0 System

C COPY A FILE WITH THREE COLUMNS OF
C INTEGERS, EACH 7 COLUMNS WIDE, FROM A FILE
C WHOSE NAME IS ENTERED BY THE USER TO AN-
C OTHER FILE NAMED OUT . TEXT, REVERSING THE
C POSITIONS OF THE FIRST AND SECOND COLUMNS.

PROGRAM COLSWP
CHARACTER*64 FNAME

C PROMPT TO THE SCREEN BY WRITING TO *.
WRITE(*,900)
900 FORMAT(' INPUT FILE NAME - '\)

C READ THE FILE NAME FROM THE KEYBOARD BY
C READING FROM *.

READ(*,910) FNAME
910 FORMAT(A)

C USE UNIT 3 FOR INPUT; ANY UNIT NUMBER EXCEPT
C @ WILL DO.
OPEN(3,FILE = FNAME)

C USE UNIT 4 FOR OUTPUT; ANY UNIT NUMBER EXCEPT
C 0 AND 3 WILL DO.
OPEN(4,FILE="OUT . TXT',STATUS = 'NEW’)

C READ AND WRITE UNTIL END OF FILE.
100 READ(3,920,END = 200)1,J,K
WRITE(4,920)),1,K

920 FORMAT(317)
GOTO 100

200 WRITE(*,910) Done’
END

4.2.5 Other File Structures

The less commonly used file structures are appropriate for
certain classes of applications. A very general indication of
their intended uses follows:

1. If random access /O is needed, as would probably
be the case in a data base, direct access files are
necessary.

101

Chapter 4 / The 1/0 System

2. If the data is to be both written and reread by MS-
FORTRAN, unformatted files are perhaps more
efficient in terms of speed, but possibly less efficient
in terms of disk space. The combination of direct and
unformatted files is ideal for a data base created,
maintained, and accessed exclusively by MS-
FORTRAN.

3. If the data must be transferred without any system
interpretation, especially if all 256 possible byte values
are to be transferred, unformatted 1/O is necessary.

One use of unformatted /O is in the control of a
device that has a single-byte, binary interface.
Formatted I/O would, in this example, interpret
certain characters, such as the ASCII representation
for RETURN, and fail to pass them through to the
program unaltered.

The number of bytes written for an integer constant
is determined by the $STORAGE metacommand (for
details, see Section 6.2.8, “The $STORAGE
Metacommand™).

If the data is to be transferred as in the third use
described in this list, but will be read by non-
FORTRAN programs, the BINARY format is
recommended. Unformatted files are blocked
internally, and consequently the non-FORTRAN
program must be compatible with this format to
interpret the data correctly. BINARY files contain only
the data written to them. Backspacing over records
is not possible and incomplete records cannot be read
from them.

=

4.2.6 OLD and NEW Files

102

A file opened in MS-FORTRAN is ¢ither OLD or NEW, but
“opened for reading” is not distinguishable from “‘opened
for writing.” Therefore, you can open OLD (existing) files
and write to them, with the effect of overwriting them.

Similarly, you can alternately WRITE and READ to the same
file (providing that you avoid reading beyond the end of the
file, or reading unwritten records in a direct file). A WRITE

Chapter 4 / The I/0 System

to a sequential file effectively deletes any records that existed
beyond the newly written record.

When a device such as the keyboard or printer is opened
as a file, it normally makes no difference whether it is opened
as OLD or NEW. With disk files. however, opening a file as
NEW creates a new file:

[

If a previous file existed with the same name, the
previous file is deleted.

If the new file is closed with STATUS = 'KEEP’ or if
the program terminates without doing a CLOSE
operation on that file, a permanent file is created with
the name given when the file was opened.

4.2.7 Limitations

Certain limitations on the use of the MS-FORTRAN [/O
system arc described briefly in the following list:

1.

o

Direct files/direct device association

There are two kinds of devices: sequential and direct.
The files associated with scquential devices are
streams of characters; except for reading and writing,
no explicit motion is allowed. The keyboard, screen,
and printer are all sequential devices.

Direct devices, such as disks, have the additional task
of seeking a specific location. Direct devices can be
accessed cither sequentially or randomly, and thus
can support direct files. The MS-FORTRAN /O system
does not allow direct files on sequential devices.

BACKSPACE/BINARY sequential file association
There is no indication in a binary sequential file of
record boundaries; therefore, 2 BACKSPACE operation
on such files is defined as backing up by one¢ byte.
Direct files contain records of fixed, specified length,
so it is possible to backspace by records on direct
unformatted files.

Partial READ/BINARY file

The data read from a binary file must correspond in

103

Chapter 4 / The I/0 System

104

length to the data written. Unformatted sequential
files differ, in that an internal structure allows part or
none of a record to be read (the unread part is
skipped).

Side effects of functions called in I/O statements
During execution of any I/O statement, evaluation of
an expression may cause a function to be called. That

function call must not cause any I/O statement to be
executed.

Chapter 4 / The 1/0 System

4.3 I/0 Statements

This section discusses the elements of 1/O statements in
general. For specific details on each of the seven /O
statements OPEN, CLOSE, READ, WRITE, BACKSPACE,
ENDFILE, and REWIND, see the appropriate entries in
Section 3.2, “Statement Directory,” in the previous chapter.

In addition to these 1/O statements, there is an 1/O intrinsic
function, EOF(<unit-spec>), which is described in Section
5.3.2, “Intrinsic Functions.” EOF returns a logical value that
indicates whether there is any data remaining in the file after
the current position.

4.3.1 Elements of I/O Statements

The various I/O statements take certain parameters and
arguments that specify sources and destinations of data
transfer as well as other facets of the /O operation. The
elements described in this subsection are the following:

1. unit specifier (<unit-spec>)
2. format specifier (<format-spec>)

3. input/output list (<iolist>)

4.3.1.1 The Unit Specifier

The unit specifier, <unit-spec>, can take one of the following
forms in an /O statement:

1 *
Refers to the keyboard or screen.
2. Integer expression

Refers to an external file with a unit number equal
to the value of the expression (* is unit number zero).

3. Name of a character variable or character array
clement

Refers to the internal file represented by the the
variable or array clement.

See Section 4.2.3, “Units,” for a discussion of the difference
between external and internal unit specifiers.

105

Chapter 4 / The 1I/O System

4.3.1.2 The Format Specifier.

The format specifier, <format-spec>, can take one of the
following forms in an [/O statement:

1. Statement label

Refers to the FORMAT statement labeled by that label.
For further information, sce Section 3.2.18, “The
FORMAT Statement.”

2. Integer variable name

Refers to the FORMAT label assigned to that integer
variable using the ASSIGN statement. For further
information, see Section 3.2.1, “The ASSIGN
Statement.”

3. Character expression

The format specified is the current value of the
character expression provided as the format specifier.

4' *

Indicates a list-directed [/OQ transfer. For further
information, see Section 4.5, ‘‘List-Directed 1/Q.’

4.3.1.3 Input/Output List

The input/output list, <iolist>, specifies the entities whose
values are transferred by READ and WRITE statements. An
<iolist> may be empty, but ordinarily consists of input or
output entities and implied DO lists, separated by commas.
An input entity can be specified in the <iolist> of a READ
statement and an output entity in the <iolist> of 2 WRITE
statement.

1. Input entities

An input entity is cither a variable name, an array
clement name, or an array name. An array name
specifics all of the elements of the array in memory
sequence order.

2. Output entities

In addition to being any of the items listed as input
entities, an output entity can be any other expression

106

Chapter 4/ The 1/0 System

not beginning with the left parenthesis character (7
(The left parenthesis distinguishes implied DO lists
from expressions.)

To distinguish it from an implied DO list, the
following expression

(A +B)*(C+D)

can be written as:
+{A+B)*(C+D)

3. Implicd DO lists.

Implicd DO lists can be specified as items in the O
list of READ and WRITE statements and have the
following format:

(<iolist>, <variable> = <exprl>.

<expr2>, |, <expr3>))
<iolist> is defined the same as for elements of 1O
statements (including nested implied DO lists).

<variable>, <expr1>, <expr2>, and <expr3> are the
same as defined for the DO statement. That s,
<variable> is an integer variable, while <exprl>,
<expr2>, and <expr3> are integer expressions.

In a READ statement, the DO variable (or an
associated entity) must not appear as an input list item
in the embedded <iolist>, but may have been read
in the same READ statement before the implicd DO
list. The embedded <iolist> is effectively repeated for
cach iteration of <variable> with appropriate
substitution of values for the DO variable.

In the case of nested implied DO loops, the innermost
(most deeply nested) loop is always executed first.

4.3.2 Carriage Control

The first character of every record transferred to a printer
or other terminal device, including the console, is not
printed. Instead, it is interpreted as a carriage control
character. The MS-FORTRAN /O system recognizes certain
characters as carriage control characters. These characters
and their effects when printed are shown in Table <1

107

Chapter 4 / The 1/0 System

Table 4.1.

Carriage Control Characters

Character

Effect

space
(/]
1

+ (plus)

Advances one line.
Advances two lines.

Advances to top of next page (ignored by the
console).

Does not advance (allows overprinting).

Any character other than those listed in the preceding table
is treated as a space and deleted from the print line. If you
accidentally omit the carriage control character, the first
character of the record is not printed.

108

Chapter 4 / The 1/0 System

4.4 Formatted 1I/0

If a READ or WRITE statement specifies a format, the /O
statement is considered a formatted, rather than an
unformatted, /O statement. Such a format can be specified
in onc of four ways, as explained previously in Section
4.3.1.2, "The Format Specifier.”

Two of the four methods that refer to FORMAT statements
are described in Section 3.2.18, *“The FORMAT Statement™;
the third is a character expression containing the format itself
(sce Section -.44.2, “Edit Descriptors™); the fourth denotes
that the operation is to be list-directed (see Section 4.5, “List-
Directed 1/O™).
The following five examples are all valid and equivalent
means of specifying a format:
WRITE (*.990) 1.J.K
990 FORMAT(1X,215.13)
ASSIGN 990 TO IFMT
990 FORMAT(1X,215.13)
WRITE(*IFMT) 1.].K

WRITE("(1X,215.13))1] .K

CHARACTER* 11 FMTCH

FMTCH = "(1X,215,13)

WRITE(*, FMTCH)IJ,K

WRITE(**) 1)K
The format specification must begin with a left parenthesis
character and ¢nd with a matching right parenthesis
character. The leading left parenthesis can be preceded by
initial blank characters. Characters beyond the matching right
parenthesis are ignored.

4.4.1 Interaction Between Format and I/O List

If an <iolist> contains at least onc item. at least one
repeatable edit descriptor must exist in the format
specification. In particular, the empty edit specification, ().
can be used only if no items are specified in the <iolist> (in
which case a WRITE writes a zero length record and 2 READ
skips to the next record).

109

Chapter 4 / The 1/0 System

110

Each item in the <iolist> is associated with a repeatable edit
descriptor during the 1/O statement execution. In contrast,
the remaining format control items interact directly with the
record and do not become associated with items in the
<iolist>.

The items in a format specification are interpreted from left
to right. Repeatable edit descriptors act as if they were pre-
sent <r> times (if omitted, <r> is treated as a repeat factor
of one). A format specification itself can have a repeat fac-
tor, as in:

10(5F1.04, 2(3x,513))

During the formatted 1/0 process, the “‘format controller”
scans and processes the format items as described in the
previous paragraph. When a repeatable edit descriptor is en-
countered, one of the following occurs:

1. A corresponding item appears in the <iolist>, in
which case the item and the edit descriptor are
associated and I/O of that item procceds under for-
mat control of the edit descriptor.

2. No corresponding item appears in the <iolist>, in
which case the format controller terminates 1/0. Thus,
for the following statements:

I=5
WRITE (*,10) 1
10 FORMAT (I1X, 'I= " I5,’J= " ,I5)

the output would look like this:

If the format controller encounters the matching final right
parenthesis of the format specification and if there are no
further items in the <iolist>, the format controller terminates
1/0.

If, however, there are further items in the <iolist>, the file
is positioned at the beginning of the next record and the for-
mat controller continues by rescanning the format, starting
at the beginning of the format specification terminated by
the last preceding right parenthesis.

Chapter 4 / The 1/0 System

If there is no such preceding right parenthesis, the format
controller rescans the format from the beginning. Within the
portion of the format rescanned. there must be at least one
repeatable edit descriptor.

If the rescan of the format specification begins with a
repeated nested format specification, the repeat factor in-
dicates the number of times to repeat that nested format
specification. The rescan does not change the previously set
scale factor or the BN or BZ blank control in cffect.

When the format controller terminates, the remaining
characters of an input record are skipped or an end-of- record
is written on output. An exception to this occurs when the
\ edit descriptor is used. (Sec Section 4.4.3, “"Nonrepeatable
Edit Descriptors,” for information on backslash editing.)

4.4.2 Edit Descriptors

Edit descriptors in FORTRAN specify the form of a record
and control the editing between the characters in a record
and the internal format of data. There are two types of edit
descriptors: repeatable and nonrepeatable. Both are describ-
ed in the following sections of this chapter.

4.4.2.1 Nonrepeatable Edit Descriptors

1. Apostrophe editing ('xxxx’)

The apostrophe cdit descriptor has the form of a
character constant and causes the character constant
to be transmitted to the output unit. Embedded blanks
are significant; two adjacent apostrophes, i.e., single
quotation marks, must be used to represent a single
apostrophe within a character constant. Apostrophe
editing cannot be used for input (READ). For an ex-
ample, see “Hollerith editing (H).”

2. Hollerith editing (H)

The <n>H edit descriptor transmits the next <n>
characters, with blanks counted as significant, to the
output unit. Hollerith editing cannot be used for in-
put (READ).

111

Chapter 4 / The I/O System

112

Examples of apostrophe and Hollerith editing:

C EACH WRITE OUTPUTS CHARACTERS
C BETWEEN THE SLASHES: /ABC’'DEF/

C APOSTROPHE EDITING
WRITE (*,970)

970 FORMAT (' ABC"DEF’)
WRITE (*, '(" ABC""DEF")")

C SAME OUTPUT USING HOLLERITH EDITING
WRITE (*, '(8H ABC DEF)’)
WRITE (*,960)

960 FORMAT (8H ABC’DEF)

The leading blank in each case in the preceding ex-
amples is a carriage control character to cause a line
feed (carriage return) on output.

Positional editing (X)

On input (READ), the <n>X edit descriptor advances
the file position <n> characters, skipping <n>
characters. On output (WRITE), the <n>X edit
descriptor writes <n> blanks, providing that further
writing to the record occurs; otherwise, the <n>X
descriptor results in no operation.

Slash editing (/)

The slash indicates the end of data transfer on the
current record. On input, the file is positioned to the
beginning of the next record. On output, an end-of-
record is written, and the file is positioned to write
on the beginning of the next record.

Backslash editing (\)

Normally when the format controller terminates, the
end of data transmission on the current record occurs.
If the last edit descriptor encountered by the format
controller is a backslash (\), this automatic end-of-
record is inhibited, allowing subsequent I/O
statements to continue reading (or writing) from (or
to) the same record. This mechanism is most
commonly used to prompt to the screen and read a

Chapter 4 / The 1/0 System

6.

response from the same line, as in the following
example:

WRITE (* ' (A\)) 'Input an integer -->
READ (%, ’ (BN,I6)") I

The backslash edit descriptor does not inhibit the
automatic end-of-record generated when reading from
the * unit; input from the keyboard must always be
terminated by the RETURN key. The backslash edit
descriptor may not be used with internal files.

Scale factor editing (P)

The <k>P edit descriptor sets the scale factor for
subsequent F and E edit descriptors until the next
<k>P edit descriptor. At the start of each I/O0
statement, the scale factor is initialized to zero. The
scale factor affects format editing in the following
ways:

a. Oninput, with F and E editing (providing that no
explicit exponent exists in the field) and F output
editing, the externally represented number equals
the internally represented number multiplied by
10**<k>.

b. On input, with F and E editing, the scale factor
has no effect if there is an explicit exponent in
the input field.

c. On output, with E editing, the real part of the
quantity is output multiplied by 10* *<k> and the
exponent is reduced by <k> (effectively altering
the column position of the decimal point but not
the value output).

Blank interpretation (BN and BZ)

These edit descriptors specify the interpretation of
blanks in numeric input fields. The default, BZ, is set
at the start of each /0 statement. This makes blanks,
other than leading blanks, identical to zeros. If a BN
edit descriptor is processed by the format controller,
blanks in subsequent input fields are ignored unless,
and until, a BZ edit descriptor is processed.

The effect of ignoring blanks is to take all the

113

Chapter 4 / The 1/0 System

nonblank characters in the input field and treat them
as if they were right-justified in the field with the
number of leading blanks equal to the number of
ignored blanks. For instance, the following READ
statement accepts the characters shown between the
slashes as the value 123 (where <RETURN> indicates
pressing the RETURN key):

READ(*,100) 1
100 FORMAT (BN,IG)

23 <RETURN>/
/123 456<RETURN>/
/' 123<RETURN>/

Reading “‘short” records can temporarily invoke BN
status automatically. If the total numberof characters
in the input record is fewerthan that specified by the
combination offormat descriptors and <iolist>
elements, the record is padded on the right with
blanks to the required length, and BN editing goes
into effect temporarily. Thus, the following example
results in the value 123, rather than 12300:

READ (*, < (I5) I
/123<RETURN>/
The BN edit descriptor, in conjunction with the

infinite blank padding at the ¢nd of formatted records,
makes interactive input very convenient.

4.4.2.2 Repeatable Edit Descriptors

The I, F, E, D, and G edit descriptors are used for /O of
numeric data. The following general rules apply to all
numeric edit descriptors:

114

1.

On input, leading blanks are not significant. Other
blanks are interpreted differently depending on the
BN or BZ flag in effect, but all blank fields always
become the value zero. Plus signs are optional. The
blanks supplied by the file system to pad a record to
the required size are also not significant.

On input with F and E editing, an explicit decimal
point appearing in the input field overrides the edit
descriptor specification of the decimal point position.

Chapter 4 / The 1/0 System

On output, the characters generated are right-justified
in the field and padded by leading blanks, if necessary.
On output, if the number of characters produced
exceeds the field width or the exponent exceeds its
specified width, the entire field is filled with asterisks.

Individual descriptions of the repeatable edit descriptors
follow.

1.

Integer editing (I)

The edit descriptor I<w> must be associated with an
<iolist> item of type INTEGER. The field is <w>
characters wide. On input, an optional sign may
appear in the field.

F real editing

The edit descriptor F<w>.<d> must be associated
with an <jolist> item of type REAL or REAL*8. The
field is <w> characters wide, with a fractional part
<d> digits wide. The input field begins with an
optional sign followed by a string of digits which may
contain an optional decimal point. If the decimal
point is present, it overrides the <d> specified in the
edit descriptor; otherwise, the rightmost <d> digits
of the string are interpreted as following the decimal
point (with leading blanks converted to zeros, if
neccessary). Following this is an optional exponent
which is cither:

4. + (plus) or - (minus) followed by an integer, or

b. E followed by zero or more blanks followed by
an optional sign followed by an integer.

The output field occupies <w> digits, <d> of which
fall beyond the decimal point. The value output is
controlled both by the <iolist> item and the current
scale factor. The output valuc is rounded rather than
truncated.

E and D real editing

The E edit descriptor takes one of the forms
E<w>.<d> or E<w> <d>E<e>. The D edit descriptor
takes the form D<w>.<d>. All parameters and rules
for the E edit descriptor apply to the D edit descriptor.

115

Chapter 4 / The I/0 System

For each form, the field is <w> characters wide. The
<e> has no effect on input. The input field for the
E and D edit descriptors is identical to that described
by an F edit descriptor with the same <w> and <d>.

The form of the output field depends on the scale
factor (set by the P edit descriptor) in effect. For a
scale factor of zero, the output field is a minus sign
(if necessary), followed by a decimal point, followed
by a string of digits, followed by an exponent ficld
for exponent <exp>, of one of the forms shown in
Table 4.2.

Table 4.2. Scale Factors for E and D Editing

Edit Absolute Value Form of

Descriptor of Exponent Exponent

E<w>.<d> lexp| <= 99 E followed by plus Pt
or minus, followed (D
by the two-digit
exponent

E<w>.<d> 99 < |exp| <= 999 Plus or minus,

followed by the
three-digit exponent

E<w>.<d>E<e> |exp| <= (10**<e>)-1 E followed by plus
or minus, followed
by <e> digits which
are the exponent
with possible lead-
ing zeros

D<w>.<d> lexp| <= 99 D followed by plus
or minus, followed
by the two-digit
exponent

D<w>.<d> 99 < |exp| <= 999 Plus or minus,
followed by the
three-digit exponent

116

Chapter 4 / The 1/0 System

The forms E<w>.<d> and D<w>.<d> must not be
used if the absolute value of the exponent to be
printed exceeds 999.

The scale factor controls the decimal normalization
of the printed E or D field. If the scale factor, <k>,
is in the range (-d<k<=40), then the output field
contains exactly <k> leading zeros after the decimal
point and <d> + <k> significant digits after this. If
(0<k<d + 2), then the output field contains exactly
<k> significant digits to the left of the decimal point
and (d-k-1) places after the decimal point. Other
values of <k> are errors.

s

G real editing

The G edit descriptor takes the forms G<w>.<d>and
G<w> .<d>E<e>. For either form, the input field is
<w> characters wide, with a fractional part consisting
of <d> digits. If the scale factor is greater than one,
the exponent part consists of <e> digits.

G input editing is the same as F input editing.

G output editing is dependent on the magnitude of
the data being edited. Table 4.3 illustrates the output
equivalent for the magnitude of data.

Table 4.3. Data Conversion Equivalents

Data Magnitude Conversion Equivalent
M<@0.1 E<w> <d>
0.1<=M<1 F(<w>-n).<d>,n('b) [1, 2]

1<=M< 10 F(<w>-n).(<d>-1), n('b’)

10**(<d>-2) <= M

<10* *(<d>-1) F(<Kw>-n).1, n(’b’)
10**(<d>1) <=M

<190* *<d> F(<w>-n).@, n(’b’)
M>= 10**<d> E<w> .<d>

117

Chapter 4 / The I/0 System

118

6.

Notes for Table 4.3:
1. b’ represents a blank character.

2. nis 4 for G<w>.<d>;
n is <e¢> + 2 for GK<w> <d>E<Le>.

Logical cditing (L)

The edit descriptor takes the form L<w2>, indicating
that the field is <w> characters wide. The <iolist>
clement associated with an L edit descriptor must be
of type LOGICAL. On input, the field consists of
optional blanks, followed by an optional decimal
point, followed by T (for TRUE.) or F (for .FALSE.).
Any further characters in the field are ignored, but
accepted on input, so that TRUE. and .FALSE. are
valid inputs. On output, w-1 blanks are followed by
cither T or F, as appropriate.

Character editing (A)

The forms of the edit descriptor are A or A<w>. In
the first form, A acquires an implied field width, <w>,
from the number of characters in the <iolist>
associated item. The <iolist> item must be of type
CHARACTER if it is to be associated with an A or
A<w> edit descriptor.

On input, if <w> exceeds or equals the number of
characters in the <iolist> element, the rightmost
characters of the input field are used as the input
characters; otherwise, the input characters are left-
justified in the input <iolist> item and trailing blanks
are provided.

If the number of characters input is not equal to <w>,
then the input field will be blankfilled or truncated
on the right to the length of <w> before being
transmitted to the <iolist> item. For example, if the
following program fragment is executed,

CHARACTER*10 C
READ(* , ’ (A15)) C

Chapter 4 / The 1/0 System

and the following thirteen characters are typed in at
the keyboard,

ABCDEFGHIJKLM'
the input field will be filled to fifteen characters:
‘ABCDEFGHIJKLM

Then the rightmost ten characters will be transmitted
to the <iolist> element C:

'FGHIJKLM ~

On output, if <w> exceeds the characters produced
by the <iolist> item, leading blanks are provided,;
otherwise, the leftmost <w> characters of the <iolist>
item are output.

119

Chapter 4 / The 1/0 System

4.5 List-Directed I/0

A list-dirccted record is a sequence of values and value
separators.

Each value in a list-directed record is one of the following:
1. a constant
2. a null value

3. either a constant or a null value multiplied by an
unsigned, nonzero, integer constant; that is, r*c (r
successive appearances of the constant ¢) or r* (r
successive null values). Except in string constants,
none of these may have embedded blanks.

Each value separator in a list-directed record is one of the
following:

1. acomma, optionally preceded or followed by one or
more contiguous blanks

2. a slash, optionally preceded or followed by one or
more contiguous blanks

3. one or more contiguous blanks between two
constants, or after the last constant

4.5.1 List-Directed Input

Except as noted in the following list, input forms acceptable
to format specifications for a given type are also acceptable
for list-directed formatting.

The form of the input value must be acceptable for the type
of the input list item. Never use blanks as zeros. Only use
embedded blanks within character constants, as specified in
the following list. Note that the end-of-record has the effect
of a blank, except when it appears within a character
constant.

1. Real or double precision constants

A real or double precision constant must be a numeric
input field; that is, a field suitable for F editing. It is
assumed to have no fractional digits unless there is.
a decimal point within the field.

120

Chapter 4 / The I/0 System

ok

Logical constants

A logical constant must not include either slashes or
commas among the optional characters permitted for
L editing.

Character constants

A character constant is a nonempty string of
characters, enclosed in single quotation marks. Each
single quotation mark within a character constant
must be represented by two single quotation marks,
with no intervening blank or end-of-record.

Character constants may be continued from the end
of one record to the beginning of the next; the end
of the record doesn't cause a blank or other character
to become part of the constant. The constant may be
continued on as many records as needed and may
include the characters blank, comma, and slash.

If the length <n> of the list item is less than or equal
to the length <m> of the character constant, the
leftmost <n> characters of the latter are transmitted
to the list item. If <n> is greater than <m>, the
constant is transmitted to the leftmost <m> characters
of the list item.

The remaining <n> minus <m> characters of the list
item are filled with blanks. The effect is the same as
if the constant were assigned to the list item in a
character assignment statement.

Null values
You can specify a null value in one of three ways:
a. no characters between successive value separators

b. no characters preceding the first value separator
in the first record read by cach execution of a list-
directed input statement

¢. ther* form (described at the beginning of Section
4.5, “List-Directed 1/0”’)

A null value has no effect on the definition status of
the corresponding input list item. If the input list item
is defined, it retains its previous value; if it is
undefined, it remains so.

121

Chapter 4 / The 1/0 System

A slash encountered as a value separator during
execution of a list-directed input statement stops
execution of that statement after the assignment of
the previous value. Any further items in the input list
are treated as if they were null values.

Blanks

All blanks in a list-directed input record are considered
to be part of some value separator, except for the
following:

blanks embedded in a character constant

b. leading blanks in the first record read by each
execution of a list-directed input statement (unless
immediately followed by a slash or comma)

4.5.2 List-Directed Output

The form of the values produced is the same as required for
input, except as noted in the following list.

122

1.

New records are created as necessary, but except for
character constants, neither the end of a record nor
blanks will occur within a constant.

Logical output constants are T for the value true and
F for the value false.

Integer output constants are produced with the effect
of an 112 edit descriptor.

Real and double precision constants are produced
with the effect of either an F or an E edit descriptor,
depending on the value of x in the following range:

10**0 <= x <= 10**7

a. Ifxis within the range, the constant is produced
using OPF16.7 for single precision and OPF23.14
for double precision.

b. If x is outside the range, the constant is produced
using 1PE14.6 for single precision and 1PE21.13
for double precision.

Chapter 4 / The 1/0 System

6.

8.

Character constants produced have the following

characteristics:

a. They are not delimited by apostrophes (single
quotation marks).

b. They are neither preceded nor followed by a
value separator.

¢. Each internal apostrophe (single quotation mark)
is represented by one externally.

d. A blank character is inserted at the start of any

record that begins with the continuation of a
character constant from the preceding record.

Slashes, as value separators, and null values are not
produced by list-directed formatting.

In order to provide carriage control when the record
is printed, each output record begins with a blank
character.

The list-directed output line size is 80 columns.

: \{"1

e L
e i) | 2 =y
Bl ,! ”.‘-IF \r,ﬂ;%]-‘-‘x =
.,H|w '-'-’ﬁl tll‘f’:"i"_'j

TIRETRg
' !
2 i LA
1. »
E
= e
jeE a)
")
!
X g = 4 h
R .=
B v

Chapter 5

Programs, Subroutines, and Functions

5.1 Main Prografi...ccssvscevnsrssnsmmsmamanmnsnisssonnas 127
5.2 SUDTOUHNES. . civimumnsusimssmnssmnmmmnmmnmmenmsots 128
5.3 FUNCHIONS teeiveieererreneanecnconcenssnssnnsnnsnnsnnsanes 129
5.3.1 External FunctionS......eeeeeeociecieccnncoaianns 129
5.3.2 Intrinsic FunctionsS......c.cceevveieiiniinnnennnn.. 130
5.5.3 Statement Eoncllons. oo con cmmenmes 136
5.4 P S t41 051 L i1 i, DO — 137

125

Chapter 5 / Programs, Subroutines, and Functions

126

As described in Section 1.2, “Programs and Compilable Parts
of Programs,” a program unit is either a main program, a
subroutine, or a function. Functions and subroutines are
collectively called subprograms, or procedures. The
PROGRAM, SUBROUTINE, and FUNCTION statements, as
well as the statement function statement, are described in
detail in Section 3.2, “‘Statement Directory.” Related
information is provided in the entries for the CALL and
RETURN statements.

This chapter supplements the discussion of these individual
statements with information on types of functions and a
description of the relationship between formal and actual
arguments in a function or subroutine call.

Chapter 5 / Programs, Subroutines, and Functions

5.1 Main Program

A main program is any program unit that does not have a
FUNCTION or SUBROUTINE statement as its first statement.
The first statement of a main program may bec a PROGRAM
statement. If the main program does not have a program
statement, it will be assigned the name MAIN. The name
MAIN then cannot be used to name any other global entity.

The execution of a program always begins with the first
executable statement in the main program. Consequently,
there must be precisely one main program in every
executable program.

For further information about programs, see Section 3.2.30,
“The PROGRAM Statement.”

127

Chapter 5 / Programs, Subroutines, and Functions

5.2 Subroutines

128

A subroutine is a program unit that can be called from other
program units with a CALL statement. When invoked, a
subroutine performs the set of actions defined by its
executable statements and then returns control to the
statement immediately following the one that called it.

A subroutine does not directly return a value, although values
can be passed back to the calling program unit via arguments
or common variables.

For further information about subroutines, see Section
3.2.37, “The SUBROUTINE Statement,” and Section 3.2 .4,
“The CALL Statement.”

il

Chapter 5 / Programs, Subroutines, and Functions

5.3 Functions

A function is referred to in an expression and returns a value
that is used in the computation of that expression. There
are three kinds of functions:

1. external functions
2. intrinsic functions
3. statement functions

Each of these is described in more detail in the following
sections.

Reference to a function may appear in an arithmetic or
logical expression. When the function reference is executed,
the function is evaluated and the resulting value used as an
operand in the expression that contains the function
reference. The format of a function reference is as follows:

<fname> ([<arg> [, <arg>] ...])

<fname> is the user-defined name of an external, intrinsic,
or statement function.

<arg> is an actual argument.

The rules for arguments for functions are identical to those
for subroutines and are described in Section 3.2.4, “The
CALL Statement.” Some additional restrictions that apply for
intrinsic functions and for statement functions are described
in Section 5.3.2, “Intrinsic Functions,” and Section 5.3.3,
“Statement Functions,” respectively.

5.3.1 External Functions

An external function is specified by a function program unit.
It begins with a FUNCTION statement and ends with an END
statement. It may contain any kind of statement other than
a PROGRAM statement, FUNCTION statement, or a
SUBROUTINE statement.

129

Chapter 5 / Programs, Subroutines, and Functions

5.3.2 Intrinsic Functions

130

Intrinsic functions are predefined by the MS-FORTRAN
language and available for use in an MS-FORTRAN program.
Table 5.1 gives the name, definition, argument type, and
function type for all of the intrinsic functions available in
MS-FORTRAN, with additional notes following the table.

An IMPLICIT statement cannot alter the type of an intrinsic
function. For those intrinsic functions that allow several
types of arguments, all arguments in a single reference must
be of the same type.

An intrinsic function name can appear in an INTRINSIC
statcment. An intrinsic function name also can appear in a
type statement, but only if the type is the same as the
standard type of that intrinsic function.

Arguments to certain intrinsic functions are limited by the
definition of the function being computed. For example, the
logarithm of a negative number is mathematically undefined,
and therefore not permitted.

All angles in Table 5.1 are expressed in radians. All arguments
in an intrinsic function reference must be of the same type.
X and Y are real, I and J are integer, and C, C1, and C2 are
character values. Numbers in square brackets in column 1
refer to the notes following the table.

Furthermore, REAL is equivalent to REAL*4, DOUBLE
PRECISION is equivalent to REAL*8. If the specified type
of the argument is INTEGER, the type may be INTEGER*2
or INTEGER*4. If the specified type of the function is
INTEGER, the type will be the default integer determined
by the 8STORAGE metacommand. (For further information,
see Section 6.2.8, “The 8STORAGE Metacommand.”)

Chapter 5 / Programs, Subroutines, and Functions

Table 5.1. Intrinsic Functions

Type of Type of
Name Definition Argument Function

Type Conversion

INT(X) [1] Convert to integer REAL*4 Int

Int Int
IFIX(X) Convert to integer REAL*4 Int
IDINT(2) Convert to integer REAL*8 Int
REAL(X) [2] Convert to REAL*4 Int REAL*4

REAL*4 REAL*4
FLOAT(I) Convert to REAL*4 Int REAL*4
ICHAR(C) [3] Convert to integer Char Int
CHAR(X) [3] Convert to character Int Char
SNGL(X) Convert to REAL*4 REAL*8 REAL*4
DBLE(X) [4] Convert to REAL*8 Int REAL*8

REAL*4 REAL*8

REAL*8 REAL'8

Truncation
AINT(X) Truncate to REAL*4 REAL*4 REAL*4
DINT(X) Truncate to REAL*8 REAL*8 REAL*8
Nearest Whole Number
ANINT(X) Round to REAL*4 REAL*4 REAL*4
DNINT(X) Round to REAL*8 REAL*8 REAL*8

Nearest Integer

NINT(X) Round to integer REAL*4 Int
IDNINT(X) Round to integer REAL*8 Int

Absolute Value

TABS(I) Int absolute Int Int

ABS(X) REAL*4 absolute REAL*4 REAL*4

DABS(X) REAL*8 absolute REAL*8 REAL*8
Remaindering

MOD(1,)) Int remainder Int Int

AMOD(X)Y) REAL*4 remainder REAL*4 REAL*4

DMOD(X)Y) REAL*8 réemainder REAL*8 REAL*8

131

Chapter 5 / Programs, Subroutines, and Functions

132

Table 5.1. Intrinsic Functions (continued)
Type of Type of

Name Definition Argument Function
Transfer of Sign

ISIGN(L,}) Int transfer Int Int

SIGN(X.Y) REAL*4 transfer REAL*4 REAL*4

DSIGN(X)Y) REAL*8 transfer REAL*8 REAL*8
Positive Difference [5]

IDIM(1.]) Int difference Int Int

DIM(X)Y) REAL*4 difference REAL*4 REAL*4

DDIM(X)Y) REAL*8 difference REAL*8 REAL*8
Choosing Largest Value

MAX@(1,],...) Int maximum Int Int

AMAX1(X)Y,...) REAL*4 maximum REAL*4 REAL*4

AMAX®(1],...) REAL*4 maximum Int REAL*4

MAX1(XY,...) Int maximum REAL*4 Int

DMAXI(XY,...) REAL*8 maximum REAL*8 REAL*8
Choosing Smallest Value

MINO(,],...) Int minimum Int Int

AMINI(X)Y,...) REAL*4 minimum REAL*4 REAL*4

AMINO(1,),...) REAL*4 minimum Int REAL*4

MINK(X)Y,...) Int minimum REAL*4 Int

DMIN1(X)Y,...) REAL*8 minimum REAL*8 REAL*8
REAL*8 Product

DPROD REAL*8 product REAL*4 REAL*8
Square Root

SQRT Square root REAL*4 REAL*4

DSQRT REAL*8 square root REAL*8 REAL*8
Exponential

EXP(X) REAL*4 e to power REAL*4 REAL*4

DEXP(X) REAL*8 e to power REAL*8 REAL*8
Natural Logarithm

ALOG(X) Nat’l log of REAL*4 REAL*4 REAL*4

DLOG(X) Nat’l log of REAL*8 REAL*8 REAL*8

Chapter 5 / Programs, Subroutines, and Functions

Table 5.1. Intrinsic Functions (continued)

Type of Type of

Name Definition Argument Function
Common Logarithm

ALOGIG(X) Common log of REAL*4 REAL*4 REAL*4

DLOGINX) Common log of REAL*8 REAL*8 REAL*8
Sine

SIN(X) REAL*4 sine REAL*4 REAL*4

DSIN(X) REAL*8 sine REAL*8 REAL*8
Cosine

COS(X) REAL*4 cosine REAL*4 REAL*4

DCOS(X) REAL*8 cosin¢ REAL*8 REAL*8
Tangent

TAN(X) REAL*4 tangent REAL*4 REAL*4

DTAN(X) REAL*8 tangent REAL*8 REAL*8
Arc Sine

ASIN(X) REAL*4 arc sine REAL*4 REAL*4

DASIN(X) REAL*8 arc sine REAL*8 REAL*8
Arc Cosine

ACOS(X) REAL*4 arc cosine REAL*4 REAL*4

DACOS(X) REAL*8 arc cosine REAL*8 REAL*8
Arc Tangent

ATAN(X) REAL*4 arc tangent REAL*4 REAL*4

DATAN(X) REAL*8 arc tangent REAL*8 REAL*8

ATAN2(X)Y) REAL*4 arctan of X/Y REAL*4 REAL*4

DATAN2(X)Y) REAL*8 arctan of X/Y REAL*8 REAL*8
Hyperbolic Sine

SINH(X) REAL*4 hyperbolic

sine REAL*4 REAL*4
DSINH(X) REAL*8 hyperbolic
sine REAL*8 REAL*8

133

Chapter 5 / Programs, Subroutines, and Functions

Table 5.1. Intrinsic Functions (continued)

Type of Type of
Name Definition Argument Function
Hyperbolic Cosine
COSH(X) REAL*4 hyperbolic
cosine REAL*4 REAL*4
DCOSH(X) REAL*8 hyperbolic
cosine REAL*8 REAL*8
Hyperbolic Tangent
TANH(X) REAL*4 hyperbolic
tangent REAL*4 REAL*4
DTANH(X) REAL*8 hyperbolic
tangent REAL*8 REAL*8
Lexically Greater Than or Equal
LGE(C1,C2) Ist argument
greater than
or equal to 2nd Char Logical
Lexically Greater Than
LGT(C1,C2) Ist argument
greater than 2nd Char Logical
Lexically Less Than or Equal [6]
LLE(C1,C2) Ist argument
less than or
equal to 2nd Char Logical
Lexically Less Than
LLT(C1,.C2) Ist argument
less than 2nd Char Logical
End of File [7]
EOF(X) Int end of file Int Logical

134

Chapter 5 / Programs, Subroutines, and Functions

Notes for Table 5.1:

L.

LN

L1}

For X of type INTEGER, INT(X) = X. For X of type
REAL or REAL*S, if X is greater than or equal to zero,
then INT(X) is the largest integer not greater than X,
and if X is less than zero, then INT(X) is the most
negative integer not less than X. For X of type REAL,
IFIX(X) is the same as INT(X).

For X of type REAL, REAL(X)=X. For X of type
INTEGER or REAL*8, REAL(X) is as much precision
of the significant part of X as a rcal datum can contain,
For X of type INTEGER, FLOAT(X) is the same as
REAL(X).

For X of type REAL*8, DBLE(X) = X. For X of type
INTEGER or REAL, DBLE(X) is as much precision of
the significant part of X as a double precision datum
can contain.

ICHAR converts a character value into an integer
value. The integer value of a character is the ASCII
internal representation of that character, and is in the
range @ to 255. For any two characters, ¢l and ¢2, (¢l
LE. ¢2) is TRUE. if and only if (ICHAR(c1) .LE.
ICHAR(c2)) is TRUE.

CHAR<Ii> returns the <i>th character in the collating
sequence. The value is of type CHARACTER, length
one, while <i> must be an integer expression whose
value is in the range 0 <= <i> <= 255,

[CHAR(CHAR<I>) = <> for) <= <i> <= 255

CHAR(ICHAR(c)) = ¢ for any character ¢ in the
character set.

DIM(X)Y) is XY if X>v, zero otherwise.

LGE(XY) returns the value TRUE. if X = Y or if X
follows Y in the ASCII collating sequence; otherwise
it returns .FALSE.

LGT(X.Y) returns TRUE. if X follows Y in the ASCII
collating sequence; otherwise it returns .FALSE.
LLE(X,Y) returns TRUE. if X = Y or if X precedes Y
in the ASCII collating sequence; otherwise it returns
.FALSE.

135

Chapter 5 / Programs, Subroutines, and Functions

LIT(X,Y) returns TRUE. if X precedes Y in the ASCII
collating sequence; otherwise it returns .FALSE.

If the operands are of unequal length, the shorter
operand is considered to be blankfilled on the right
to the length of the longer.

7. EOF(X) returns the value . TRUE. if the unit specified
by its argument is at or past the end-of-file record;
otherwise it returns .FALSE. The value of X must
correspond to an open file, or to zero which indicates
the screen or keyboard device.

5.3.3 Statement Functions

136

A statement function is defined by a single statement and
is similar in form to an assignment statement. A statement
function statement can only appear after the specification
statements and before any executable statements in the
program unit in which it appears.

A statement function is not an executable statement, since
it is not executed in order as the first statement in its
particular program unit. Rather, the body of a statement
function serves to define the meaning of the statement
function. It is executed, as any other function, by the
execution of a function reference in an expression.

For information on the syntax and use of a statement
function statement, sce Section 3.2.35, “The Statement
Function Statement.”

/

Chapter 5 / Programs, Subroutines, and Functions

5.4 Arguments

: A formal argument is the name by which the argument is
known within a function or subroutine; an actual argument
is the specific variable, expression, array, ctc., passed to the
procedure in question at any specific calling location. The
relationship between formal and actual arguments in a
function or subroutine call is discussed in detail in the
following paragraphs.

Arguments pass values into and out of procedures by
reference. The number of actual arguments must be the same
as the number of formal arguments, and the corresponding
types must agree.

Upon entry to a subroutine or function, the actual arguments
are associated with the formal arguments, much as an
EQUIVALENCE statement associates two or more arrays or
variables, and COMMON statements in two or more program
units associate lists of variables. This association remains in
effect until execution of the subroutine or function is
terminated. Thus, assigning a value to a formal argument
during execution of a subroutine or function may alter the
value of the corresponding actual argument.

If an actual argument is a constant, function reference, or
an expression other than a simple variable, assigning a value
to the corresponding formal argument is not permitted, and
can have some strange side effects. In particular, assigning
a value to a formal argument of type CHARACTER, when
the actual argument is a literal, can produce anomalous
behavior.

If an actual argument is an expression, it is evaluated
immediately prior to the association of formal and actual
arguments. If an actual argument is an array element, its
subscript expressions are evaluated just prior to the
association, and remain constant throughout the execution
of the procedure, even if they contain variables that are
redefined during the execution of the procedure.

A formal argument that is a variable can be associated with
an actual argument that is a variable, an array clement, or
an expression.

A formal argument that is an array can be associated with

137

an actual argument that is an array or an array element. The
number and size of dimensions in a formal argument may
be different from those of the actual argument, but any
reference to the formal array must be within the limits of
the memory sequence in the actual array. While a reference
to an element outside these bounds is not detected as an error
in a running MS-FORTRAN program, the results are
unpredictable.

A formal argument may also be associated with an external
subroutine, function, or intrinsic function if it is used in the
body of the procedure as a subroutine or function reference,
or if it appears in an EXTERNAL statement.

A corresponding actual argument must be an external
subroutine or function, declared with the EXTERNAL
statement, or an intrinsic function permitted to be associated
with a formal procedure argument. The intrinsic function
must have been declared with an INTRINSIC statement in
the program unit where it is used as an actual argument.

All intrinsic functions, except the following, may be
associated with formal procedure arguments:

INT CHAR AMAX0®
IFIX LGE MAXI1
IDINT LGT MING®
FLOAT LLE AMINI
SNGL LLT DMINI
REAL MAXO AMINO
DBLE AMAX1 MIN1
ICHAR DMAX1

138

Chapter 6

The MS-FORTRAN Metacommands

6.1
6.2
6.2.1

6.2.2
6.2.2a

6.2.3
6.2.4
6.2.5

6.2.5a
6.2.6
6.2.7
6.2.8
6.2.9

6.2.10
6.2.11

L0077 w75 T
Metacommand Directory.....cccceevuvenennn....

The $DEBUG and $NODEBUG
MetacommandsS.....cocoeeiiiiiniiniianannnnnnns

The $FLOATCALLS and
$NOFLOATCALLS Metacommands......

The $INCLUDE Metacommand..............
The $LINESIZE Metacommand..............

The $LIST and $NOLIST
MetacommandsS...ccoeeiieiiiiieiirnaneeeanannnns

The $STRICT and $NOTSTRICT
Metacommands.......coeevvnmmnmnnnnnnnnnnnnnnns

139

Chapter 6/ The MS-FORTRAN Metacommands

6.1 Overview

Metacommands are directives that order the MS-FORTRAN
Compiler to process MS-FORTRAN source text in a specific
way. MS-FORTRAN metacommands are described briefly in
Table 6.1 and discussed in more detail in the remainder of
the chapter.

Table 6.1. The MS-FORTRAN Metacommands

Metacommand Action

SDEBUG Turns on runtime checking for
arithmetic operations and assigned
GOTO. SNODEBUG turns checking
off.

$DO6G6 Causes DO statements to have
FORTRAN 66 semantics.

$FLOATCALLS Causes floating-point operations to be
processed by library procedures
through CALL instructions rather than
through interrupts. $NOFLOATCALLS
suppresses this option.

S$INCLUDE:<file> Directs compiler to proceed as if
<file> were inserted at that point.

SLINESIZE:<n> Makes subsequent pages of listing <n>
columns wide.

SLIST Sends subsequent listing information
to the listing file. 3NOLIST stops
generation of listing information.

$MESSAGE Sends message to the standard output

<message> device when running the Fortran front
end.

$PAGE Starts new page of listing.

3PAGESIZE:<n> Makes subsequent pages of listing <n>
lines long.

S8STORAGE:<n> Allocates <n> bytes of memory to all
LOGICAL or INTEGER variables in
source.

140

Chapter 6/ The MS-FORTRAN Metacommands

SSTRICT Disables MS-FORTRAN features not in
1977 subset or full language standard.
SNOTSTRICT enables them.

SSUBTITLE: <sub>' Gives subtitle for subsequent pages of
listing.

STITLE: <title> Gives title for subsequent pages of
listing.

Mctacommands can be intermixed with MS-FORTRAN
source text within an MS-FORTRAN source program;
however, they are not part of the standard FORTRAN
language. Any line of input to the MS-FORTRAN Compiler
that begins with a 8" character in column one is interpreted
as a metacommand and must conform to one of the
following formats.

A metacommand and its arguments (if any) must fit on a
single source line; continuation lines are not permitted. Also,
blanks are significant, so that the following pair is not
cquivalent:

8§ TRICT
SSTRICT

141

Chapter 6 / The MS-FORTRAN Metacommands

6.2 Metacommand Directory

The remainder of this chapter is an alphabetical directory
of available MS-FORTRAN metacommands.

6.2.1 The $DEBUG and $NODEBUG

Metacommands
Syntax S[NOJDEBUG
Purpose Directs the compiler to test all subsequent arithmetic

operations for overflow and division by zero, test assigned
GOTO values against the allowable list in an assigned GOTO
statement, and provide the runtime error-handling system
with source filenames and line numbers. A runtime error
occurs if one of these conditions is detected. If any runtime
crror occurs, the source line and filename are displayed on
the console.

Remarks The metacommand can appear anywhere in a program.

The default value of the pair of metacommands, SDEBUG
and SNODEBUG, is $NODEBUG.

6.2.2 The $DO66 Metacommand

Syntax $DOG6
Purpose Causes DO statements to have FORTRAN 66 semantics.
Remarks $DOG6 must precede the first declaration or executable

statement of the source file in which it occurs.
The FORTRAN 66 semantics are as follows:
1. All DO statements are executed at least once.

2. Extended range is permitted; that is, control may
transfer into the syntactic body of a DO statement.
The range of the DO statement is thereby extended
to logically include any statement that may be
exccuted between a DO statement and its terminal
statement. However, the transfer of control into the
range of a DO statement prior to the execution of the

Chapter 6/ The MS-FORTRAN Metacommands

DO statement or following the final execution of its
terminal statement is invalid.

If a program contains no $DOG6G6 metacommand. the default
is to FORTRAN 77 semantics, as follows:

1. DO smatements may be executed zero times, if the
initial control variable value exceeds the final control
variable value (or the corresponding condition for a
DO statement with negative increment).

2. Extended range is invalid; that is, control may not
transfer into the syntactic body of a DO statement.
(Both standards do permit transfer of control out of
the body of a DO statement.)

6.2.2a The $FLOATCALLS and $NOFLOATCALLS

Metacommands
Syntax S[NOJFLOATCALLS
Purpose Causes floating-point operations to be processed by library

procedures through CALL instructions rather than through
interrupts. SNOFLOATCALLS suppresses this option.

Remarks A call to the floating-point routines may require up to 25
percent less processor time than the equivalent emulated
interrupt instruction. But, this can generate up to twice as
much code. Other operations are unaffected, however, and
the total operations are unaffected, however, and the total
increase in code size is between 10 and 30 percent. A full
25 percent improvement in execution speed. therefore,
should not be expected.

The subroutines called are part of the emulator. Because the
subroutines are in the library and use mechanisms for
carrying out arithmetic as in-line instructions, you can freely
mix modules compiled with SFLOATCALLS with those
compiled without SFLOATCALLS. In fact, you can switch
SFLOATCALLS on and off within a subroutine. However, this
practice might not take effect exactly where you specified
it, because optimizations may group statements or reorder
code.

THe default value of the pair of metacommands,
S$FLOATCALLS and SNOFLOATCALLS, is SNOFLOATCALLS.

143

Chapter 6 / The MS-FORTRAN Metacommands

6.2.3 The $INCLUDE Metacommand
Syntax SINCLUDE: '<file>'

Purpose Directs the compiler to proceed as though the specified file
were inserted at the point of the SINCLUDE.

Remarks <file> is a valid file specification as described for your
operating system.

At the end of the included file, the compiler resumes
processing the original source file at the line following
SINCLUDE.

The compiler imposes no limit on nesting levels for
SINCLUDE metacommands. SINCLUDE metacommands are
particularly uscful for guaranteeing that several modules use
the same declaration for a COMMON block.

6.2.4 The $LINESIZE Metacommand

Syntax SLINESIZE: <n>
Purpose Formats subsequent pages of the listing <n> columns wide.
Remarks <n> is any positive integer.

If a program contains no 8LINESIZE metacommand, a default
line size of 80 characters is assumed. The minimum line size
is 40 characters, the maximum is 132 characters.

6.2.5 The $LIST and $NOLIST Metacommands

Syntax S[NOJLIST

Purpose Sends subsequent listing information to the listing file
specified when starting the compiler. If no listing file is
specified in response to the compiler prompt, the
metacommand has no effect. SNOLIST directs that
subsequent listing information be discarded.

Remarks SLIST and $NOLIST can appear anywhere in a source file.

The default condition for the pair of metacommands, SLIST
and SNOLIST, is SLIST.

Chapter 6 / The MS-FORTRAN Metacommands

6.2.5a The $MESSAGE Metacommand

Syntax SMESSAGE '<message>’

Purpose Sends messages to the standard output device when running
the Fortran front end.

Remarks <message> is a string of characters enclosed in single quotes.

6.2.6 The $PAGE Metacommand

Syntax SPAGE
Purpose Starts a new page of the listing.
Remarks If the first character of a line of source text is the ASCII form

feed character (hexadecimal code @Ch), it is considered as
equivalent to the occurrence of a $PAGE metacommand at
that point.

6.2.7 The $PAGESIZE Metacommand

Syntax SPAGESIZE: <n>
Purpose Formats subsequent pages of the listing <n> lines high.
Remarks <n> is any positive integer equal to or greater than 15.

If a program contains no SPAGESIZE metacommand, a
default page size of 66 lines is assumed.

6.2.8 The $STORAGE Metacommand

Syntax SSTORAGE: <n>

Purpose Allocates <n> bytes of memory for all variables declared in
the source file as INTEGER or LOGICAL.

Remarks <n> is either 2 or 4. Use a value of 2 for code that defaults
to 16-bit arithmetic. See also the important note on
performance issues in Section 2.3, “Data Types.”

145

Chapter 6 / The MS-FORTRAN Metacommands

SSTORAGE does not affect the allocation of memory for
variables declared with an explicit length specification, for
example, as INTEGER*2 or LOGICAL*4.

If several files of a source program are compiled and linked
together, you should be particularly careful that they are
consistent in their allocation of memory for variables (such
as actual and formal parameters) referred to in more than
one module.

The 8STORAGE metacommand must precede the first
declaration statement of the source file in which it occurs.

If a program contains no $STORAGE metacommand, a
default allocation of 4 bytes is used. This default results in
INTEGER, LOGICAL, and REAL variables being allocated the
same amount of memory, as required by the FORTRAN 77
standard.

6.2.9 The $STRICT and $NOTSTRICT

Metacommands
Syntax S[NOTI]STRICT
Purpose SSTRICT disables the specific MS-FORTRAN features not

found in the FORTRAN 77 subset or full language standard.

Remarks The SNOTSTRICT metacommand enables these MS-
FORTRAN features, which are the following:

1. Character expressions may be assigned to
noncharacter variables.

2. Character and noncharacter expressions may be
compared.

3. Character and noncharacter variables are allowed in
the same COMMON block.

4. Character and noncharacter variables may be
equivalenced.

5. Noncharacter variables may be initialized with
character data.

SSTRICT and $NOTSTRICT can appear anywhere in a source
file.

Chapter 6/ The MS-FORTRAN Metacommands

The default condition for the pair of metacommands,
SSTRICT and SNOTSTRICT, is SNOTSTRICT.

6.2.10 The $SUBTITLE Metacommand

Syntax
Purpose

Remarks

SSUBTITLE: "<subtitle>’

Assigns the specified subtitle for subsequent pages of the
source listing (until overridden by another SSUBTITLE
metacommand).

<subtitle> is any valid character constant. The maximum
length is 40 characters.

If a program contains no SSUBTITLE metacommand, the
subtitle is a null string.

6.2.11 The $TITLE Metacommand

Syntax

Purpose

Remarks

STITLE: '<title>'

Assigns the specified title for subsequent pages of the listing
(until overridden by another STITLE metacommand).

<title> is any valid character constant. The maximum length
is 40 characters.

If a program contains no $TITLE metacommand, the title
is a null string.

Appendices

Appendices

A / MS-FORTRAN and

ANSI Subset FORTRAN......cicctitierenrtercccccanasseass 151
2/B / ASCII Character Codes.....ccevvveruenrnimrnnnninnanennnne 155
C / ELrrOor MeESSAZES..ccueumicreineiciniissassisssassssssssssssossases 157

149

: 1| Lo } IL"!('
el F

r L
J‘ ||’|:‘| |“lwll‘*l'\1

Appendix A

= MS-FORTRAN and ANSI Subset
@/ FORTRAN

A.l Full Language Features....... ceeesesstietintnenns 149
A.2 Extensions to the Standard...................... 151

This appendix describes how MS-FORTRAN differs from the
standard subset language. The ANSI standard defines two
levels, full FORTRAN and subset FORTRAN. MS-FORTRAN
is a superset of the latter. The differences between MS-
FORTRAN and the standard subset FORTRAN fall into two
general categories: full language features and extensions to
the standard.

A.1 Full Language Features

Several features from the full language are included in this
implementation. In all cases, a program written to comply
with the subset restrictions compiles and executes properly,
since the full language includes the subset constructs.

1. Subscript expressions

The subset does not allow function calls or array
element references in subscript expressions; however,
these are allowed in the full language and in this
implementation.

2. DO variable expressions

The subset restricts expressions that define the limits

of a DO statement; the full language does not. MS-

FORTRAN also allows full integer expressions in DO

statement limit computations. Similarly, arbitrary

_ integer expressions are allowed in implied DO loops
Q/ associated with READ and WRITE statements.

3. Unit I/0Q0 number

MS-FORTRAN allows an /O unit to be specified by
an integer expression, as does the full language.

151

Appendix A / MS-FORTRAN and ANSI Subset FORTRAN

I~

EEN

6.

Expressions in input/output list <iolist>

The subset does not allow expressions to appear in
an <iolist>, whereas the full language does allow
expressions in the <iolist> of WRITE statements. MS-
FORTRAN allows cxpressions in the <iolist> of a
WRITE statement providing that the expressions do
not begin with an initial left parenthesis.

Note that an expression like (A + B)*(C + D) can be
specified in an output list as + (A + B)*(C + D). Doing
so does not generate any extra code to evaluate the
leading plus sign.

Double precision

The subset does not allow double precision real
numbers; MS-FORTRAN provides for them as in the
full language.

Edit descriptors

MS-FORTRAN allows for D and G cdit descriptors as
in the full language.

Expression in computed GOTO

MS-FORTRAN allows an expression for the selector
of a computed GOTO, consistent with the full, rather
than the subset, language.

Generalized 1/0

MS-FORTRAN allows both scquential and direct access
files to be either formatted or unformatted. The subset
language requires direct access files to be unformatted
and scquential files to be formatted.

MS-FORTRAN also includes the following:

a. an augmented OPEN statement that takes
additional parameters not included in the subset
(see Section 3.2.28, “The OPEN Statement’)

b. a form of the CLOSE statement, which is not
included in the subset (sce Section 3.2.5, “The
CLOSE Statement”™)

Appendix A / MS-FORTRAN and ANSI Subset FORTRAN

¢. END =, ERR =, STATUS =, and FILE = specificrs
on /O statements

9. List-directed /O

MS-FORTRAN provides for list-directed 1/O as
described in the full language standard.

A.2 Extensions to the Standard

The implemented language also has several minor extensions
to the full language standard.

1. User-defined names greater than six characters are
allowed, although only the first six characters are
significant.

2. Tabs in source files are allowed. See Section 2.1.3,

“Tabs,” for details.

3. Metacommands, or compiler directives, have been
added to allow the programmer to communicate
certain information to the compiler. The
metacommand line is characterized by a dollar sign
(8) appearing in column 1. A metacommand linc may
appear any place that a comment line can appear.
although certain metacommands are restricted as to
their location within a program (see Section 2.2 4,
“Statement Definition and Order’).

A metacommand line conveys certain compile time
information about the nature of the current
compilation to the MS-FORTRAN Compiler.
Metacommands are described in Chapter 6, “The MS-
FORTRAN Mctacommands.”

The standard is relaxed when the SNOTSTRICT
metacommand is in effect. This relaxation allows, for
example, such MS-FORTRAN features as assignment
of character to any variable type and initialization of
any variable with character data. See Section 6.2.9,
“The SSTRICT and S$NOTSTRICT Metacommands,”’
for a complete list of these features.

LN

5. The backslash (\) edit control character can be used
in format specifications to inhibit normal

153

Appendix A / MS-FORTRAN and ANSI Subset FORTRAN

154

advancement to the next record associated with the
completion of a READ or WRITE statement. This is
particularly useful when prompting to an interactive
device, such as the screen, so that a response can
appear on the same line as the prompt.

An end-of-file intrinsic function, EOF, is provided.
The function accepts a unit specifier as an argument
and returns a logical value that indicates whether the
specified unit is at its end-of-file.

Both upper and lowercase source input are allowed.
In most contexts, lowercase characters are treated as
indistinguishable from their uppercase counterparts.
However, lowercase is significant in character
constants and Hollerith ficlds.

Binary files are similar to unformatted sequential files
except that they have no internal structure. This allows
the program to create or read files with arbitrary
contents, which is particularly useful for files created
by or intended for programs written in languages
other than FORTRAN.

Appendix B

ASCII Character Codes

Dec Hex CHR Dec Hex CHR
000 0oH NUL 032 20H SPACE
001 01H SOH 033 21H !
002 02H STX 034 22H ¢
003 03H ETX 035 23H #
004 04H EOT 036 24H $
005 @5H ENQ 037 25H %
006 @6H ACK 038 26H &
007 07H BEL 039 27H ’
008 08H BS 040 28H (
009 Q9H HT o41 29H)
010 GAH LF 042 2AH .
o1 0BH VT 043 2BH +
012 OCH FF 044 2CH '
013 QDH CR 045 2DH

014 0EH SO 046 2EH .
015 OFH Si 047 2FH /
016 10H DLE 048 30H [}
017 11H DC1 049 31H 1
218 12H DC2 050 32H 2
019 13H DC3 051 33H 3
020 14H DC4 052 34H 4
21 15H NAK 053 35H 5
022 16H SYN 054 36H 6
023 17H ETB 055 37H 7
024 18H CAN 056 38H 8
025 19H EM 057 39H 9
026 1AH suB 058 3AH :
027 1BH ESCAPE 59 3BH ;
928 1CH FS 060 3CH <
029 1DH GS 061 3DH =
030 1EH RS 062 3EH >
031 1FH us 063 3FH ?

155

Appendix B / ASCII Character Codes

064 40H @ 096 60H :
065 41H A 097 61H a
066 42H B 098 62H b
067 43H c 099 63H ¢
068 44H D 100 64H d
069 45H E 101 65H e
070 46H F 102 66H f
071 47H G 103 67H g
072 48H H 104 68H h
073 49H [105 69H i
074 4AH J 106 6AH i
075 4BH K 107 6BH k
076 4CH L 108 6CH !
077 4DH M 109 6DH m
078 4EH N 110 6EH n
079 4FH 0 111 6FH 0
080 50H P 112 70H P
081 51H Q 13 7H q
082 52H R 114 72H r
083 53H S 115 73H s
084 54H T 116 74H t
085 55H u 17 75H u
086 56H v 118 76H v
087 57H w 119 77H w
088 58H X 120 78H X
089 59H Y 121 79H y
090 5AH z 122 7AH z
091 5BH [123 7BH {
092 5CH \ 124 7CH |
093 5DH] 125 7DH }
094 5EH A 126 7EH ~
095 5FH 127 7FH DEL

Dec = Decimal, Hex = Hexadecimal (H), CHR =Character, LF =Line Feed, FF =Form Feed,
CR = Carriage Return, DEL = Rub Out

156

Appendix C

Error Messages

C.1

C.2
C.2.1
C.2.2
C.2.2.1
C.2.2.2
C.2.2.3
C.2.2.4

Compile Time Error Messages.........coceuee. 156
Runtime Error MesSSages.....cccoveuverierunnnenns 161
File System Effors.....ccccoicieieieirniaienencananee 161
Other Runtime Efrors.....cccceeveinieieienennnene. 164
MemoOry EfforS....ccccvveireieiniinieniuciecnienenes 164
Type REAL Arithmetic Errors...........cc...... 165
Type INTEGER4 Arithmetic Errors........... 165
Other EffOrS..ccciiciueereerereeccecasenresanenennans 166

157

Appendix C / Error Message

Error Messages

C.1 Compile Time Error Messages

Code Message

Fatal error reading source
Non-numeric characters in label field
Too many continuation lines
Fatal end of file encountered
Label in continuation line
Missing field in metacommand
Cannot open file
Unrecognizable metacommand
Input file invalid format

Too many nested include files
11 Integer constant error

12 Real constant error

13 Too many digits in constant

14 Identifier too long

e
SN RN - NV I N SO Sy

15 Character constant not closed
16 Zero length character constant
17 Invalid character in input
18 Integer constant expected

19 Label expected

20 Label error

21 Type expected

22 Integer constant expected

23 Extra characters at end of statement
24 “(” expected

25 Letter already used in IMPLICIT

26 “y” expected

27 Letter expected

28 Identifier expected

29 Dimensions expected

30 Array already dimensioned

31 Too many dimensions

32 Incompatible arguments

33 Identifier already has type

34 Identifier already declared

35 INTRINSIC FUNCTION not allowed here
36 Identifier must be a variable

158

Appendix C / Error Message

37

38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
65
66

67
68

69
70
71
72
73
74

Identifier must be a variable or the current
FUNCTION

“I” expected

Named COMMON block already saved
Variable already appears in COMMON
Variables in two different COMMON blocks
Number of subscripts conflicts with declaration
Subscript out of range

Forces location conflict for items in COMMON
Forces location in negative direction

Forces location conflict

Statement number expected

CHARACTER and numeric items in same
COMMON block

CHARACTER and non character item conflict
Invalid symbol in expression

SUBROUTINE name in expression

INTEGER or REAL expected

INTEGER, REAL or CHARACTER cxpected
Types not compatible

LOGICAL expression expected

Too many subscripts

Too few subscripts

Variable expected

“="" expected

Size of CHARACTER items must agree
Assignment types do not match

SUBROUTINE name expected

Dummy argument not allowed

Assumed size declarations only for dummy arrays
Adjustable size array declarations only for
dummy arrays

Assumed size must be last dimension
Adjustable bound must be parameter or in
COMMON

Adjustable bound must be simple integer variable
More than one main program

Size of named COMMON must agree

Dummy arguments not allowed

COMMON variables not allowed
SUBROUTINE, FUNCTION, or INTRINSIC names
not allowed

159

Appendix C / Error Message

160

75
76
77
78
79
8¢
81
82
83
84
85
87
88

89
90
91
93
94
95
96
98
100
101
102
103
104
105
106
1647
108
109
116
111
112
113
114
15
116
117
118
119
120

Subscript out of range

Repeat count must be > = 1

Constant expected

Type conflict

Number of variables does not match

Label not allowed

No such INTRINSIC FUNCTION
INTRINSIC FUNCTION type conflict
Letter expected

FUNCTION type conflict with previous call
SUBROUTINE / FUNCTION already defined
Argument type conflict

SUBROUTINE / FUNCTION conflict with
previous use

Unrecognizable statement

CHARACTER FUNCTION not allowed
Missing END statement

Fewer actual than dummy arguments in call
More actual than dummy arguments in call
Argument type conflict

SUBROUTINE / FUNCTION not defined
CHARACTER size invalid ?

Statement order

Unrecognizable statement

Jump into block not allowed

Label already used for FORMAT

Label already defined

Jump to FORMAT not allowed

DO statement not allowed here

DO label must follow DO statement
ENDIF not allowed here

Matching IF missing

Improperly nested DO block in IF block
ELSEIF not allowed here

Matching IF missing

Improperly nested DO or ELSE block

(" expected -
)" expected

THEN expected

Logical expression expected

ELSE not allowed here

Matching IF missing

GOTO not allowed here

Appendix C / Error Message

122
123
124
125
126
127
128
129
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

Block IF not allowed here

Logical IF not allowed herc
Arithmetic IF not allowed here
7 expected

Expression of wrong type
RETURN not allowed here

STOP not allowed here

END not allowed here

Label not defined

DO or IF block not terminated
FORMAT not allowed here
FORMAT label already referenced
FORMAT label missing

Identifier expected

Integer variable expected

TO expected

Integer expression expected
ASSIGN statement missing
Unrecognizable character constant
Character constant expected
Integer expression expected
STATUS option expected

Only character expression allowed
Conflicting options

Option already defined

Integer expression expected
Unrecognizable option

RECL = missing

Adjustable arrays not allowed here
End of statement encountered in implied DO
Variable required as control for implied DO
Expressions not allowed in 1/O list
REC = option already defined
Integer expression expected

END = not allowed here

END = already defined
Unrecognizable 1/0 unit
Unrecognizable format in 1/O
Options expected after **, *
Unrecognizable 1/O list element
FORMAT not found

ASSIGN missing

Label used as FORMAT

161

Appendix C / Error Message

162

166
167
188
203
406
407
408
409
410
411

415

420
421

501
502
503
504
601
701
703
705
706
708
709
710

711

712

713

714

715

717

718

862
803
804
805
806
807
808
809
810
811

812
813

Integer variable expected

Label defined more than once as format
Statement too complicated
CHARACTER FUNCTION not allowed
Unit zero must be formatted and sequential
ERR = already defined

Too many labels

Invalid size for this type
PRECISION expected

Integer type conflict

Dimension too big

Invalid FUNCTION call

INTRINSIC not allowed
Unrecognizable character

Blank not allowed in metacommand
Mectacommand not allowed here
Size already defined

Out of range

CHARACTER type expected

Internal error

Internal error

Internal error

Internal error

CHARACTER type not expected
Internal error

Internal error

Internal error

Long integer conversion error
Cannot convert to single

Cannot convert to double

Internal error

Internal error

Invalid radix

Starting location is odd

Real constant overflow

Integer constant too big

Missing actual argument

Variable too big

Data size exceeds max

Numeric expected

Numeric or CHARACTER expected
Numeric or character expected
COMMON exceeds max size

Array dimension upper bound < lower bound

Appendix C / Error Message

C.2 Runtime Error Messages

Runtime errors fall into two classes:

1. file system crrors
2. nonfile system crrors
Nonfile system errors include the following:
l. memory errors
2. type REAL arithmetic errors
3. type INTEGER*4 arithmetic errors
4. other errors

If you see an error message that is not listed, check your
operating system manual, as the error may be an operating
system error.

C.2.1 File System Errors

Code numbers 1000 through 1099 are status codes, always
issued in conjunction with an OS status code.

Code Message

1000 Write error when writing end of file

1002 Filename extension with more than 3 characters

1003 Error during creation of new file (Disk or
directory full)

1804 Error during open of existing file (File not
found)

1005 Filename with more than 8 or zero characters

1007 Filename over 21 characters or contains invalid
characters

1008 Write error when advancing to next record

1009 File too big (Over 65535 logical scectors)

1010 Write error when seeking to direct record device

1011 Attempt to open a random file to a non-disk
device

1012 Forward space or back space on a non-disk
device

18013 Disk or directory full error during forward space
or back space

163

Appendix C / Error Message

164

1200
1201
1202
1263
1204
1205
1206
1267
1208
1209
1210
1211

1212
1213
1214

1215

1216
1217
1218
1219
1220

1221
1222
1223
1224
1225

1226

1227
1228
1229
1230
1231

1232
1233
1234
1235
1236

Format missing final **)*

Sign not expected in input

Sign not followed by digit in input

Digit expected in input

Missing N or Z after B in format

Unexpected character in format

Zero repetition factor in format not allowed
Integer expected for w ficld in format
Positive integer required for w field in format
T expected in format

Integer expected for d field in format

Integer expected for e ficld in format
Positive integer required for e ficld in format
Positive integer required for w field in format
Hollerith field in format must not appear for
reading

Hollerith field in format requires repetition
factor

X field in format requires repetition factor

P ficld in format requires repetition factor
Integer appears before + or - in format
Integer expected after + or - in format

P format expected after signed repetition factor
in format

Maximum nesting level for formats exceeded
“)" has repetition factor in format

Integer followed by |, illegal in format

.7 is illegal format control character
Character constant must not appear in format for
reading

Character constant in format must not be
repeated

“/" in format must not be repeated

“\"" in format must not be repeated

BN or BZ format control must not be repeated
Attempt to reference unknown unit number
Formatted 1/0O attempted on file opened as
unformatted

Format fails to begin with ("

I format expected for integer read

F or E format expected for real read

Two ** . 7 characters in formatted real read
Invaid REAL number

Appendix C / Error Message

1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

1251
1252
1253
1255
1256
1257

1258
1260

1261

1262
1263

1264
1265

1266

1267
1268
1269
1270
1272

L format expected for logical read

Blank logical ficld

T or F expected in logical read

A format expected for character read

I format expected for integer write

w field in F format not greater than d field + 1
Scale factor out of range of d field in E format
E or F format expected for real write

L format expected for logical write

A format expected for character write

Attempt to do unformatted 1/0 to a unit opened
as formatted

Integer overflow on input

Too many bytes read from input record

Too many bytes written to direct access unit
record

Attempt to do external 1/O on a unit beyond end
of file record

Attempt to position a unit for direct access on a
non-positive record number

Attempt to do direct access to a unit opened as
sequential

Unable to seek to file position

Attempt to BACKSPACE, REWIND or ENDFILE
unit connected to unblocked device.

Premature end of file of unformatted sequential
file

Invalid blocking in unformatted sequential file
Incorrect physical record structure in
unformatted file

Attempt to do unformatted [/O to internal unit
Attempt to put more than one record into
internal unit

Attempt to write more characters to internal unit
than its length

EOF called on unknown unit

Dynamic file allocation limit exceeded

Scratch file opened for read

Console 1/O error

File operation attempted after error encountered
on previous operation

165

Appendix C / Error Message

1273 Keyboard buffer overflow: too many bytes
written to keyboard input record (Must be less
than 132)

1274 Reading long integer

1275 Writing long integer

1281 Repeat field not on integer

1282 Multiple repeat character

1283 Invalid numeric data in list directed input

1284 List directed numeric items bigger than record
size

1285 Invalid string in list directed input

1298 End of file encountered

1299 Integer variable not ASSIGNed a label used in
assigned GOTO

C.2.2 Other Runtime Errors

Nonfile system error codes range from 2000 to 2999. In some
cases, metacommands determine if errors are checked; in
other cases, error codes are always checked.

C.2.2.1 Memory Errors

The heap is the storage.area where MS-FORTRAN
dynamically allocates storage for file control blocks. Since
the stack and the heap grow toward each other, memory
crrors are all related; for example, a stack overflow can cause
a “Heap is Invalid” error.

Code Message

2000 Stack Overflow

2002 Heap is Invalid

2052 Signed Divide By Zero (This error appears only
when $DEBUG is set.)

2054 Signed Math Overflow

2084 INTEGER Zero to Negative Power

166

Appendix C / Error Message

C.2.2.2 Type REAL Arithmetic Errors

Code Message

2100 REAL Divide By Zero

2101 REAL Math Overflow

2102 SIN or COS Argument Range

2103 EXP Argument Range

2104 SQRT of Negative Argument

2165 LN of Non-Positive Argument

2106 TRUNC/ROUND Argument Range

2131 Tangent Argument Too Small

2132 Arcsine or Arccosine of REAL > 1.0

2133 Negative REAL to REAL Power

2134 REAL Zero to Negative Power

2135 REAL Math Underflow

2136 REAL Indcfinite (uninitialized or previous error)

2137 Missing Arithmetic Processor (You have linked
your program with the runtime library intended
for use with the 8087 numeric coprocessor, but
there is no coprocessor on your system. Relink
your program with the runtime library that
emulates floating point arithmetic.)

2138 REAL IEEE Denormal Detected (A very small real
number was generated and may no longer be
valid due to loss of significance.)

2139 REAL Precision Loss (An arithmetic operation on
the 8087 numeric coprocessor has generated a
loss of numeric precision in the result of an
operation.)

2140 REAL Arithmetic Processor Instruction Illegal Or
Not Emulated (An attempt was made to execute
an illegal arithmetic coprocessor instruction, or
the floating point emulator cannot emulate a
legal coprocessor instruction.)

C.2.2.3 Type INTEGER4 Arithmetic Errors

Code Message

2200 Long integer divided by zero
2201 Long integer math overflow
2234 Long integer zero to negative power

167

Appendix C / Error Message

C.2.2.4 Other Errors

Code Message

2451 Assigned GOTO label not in list (This error
appears only when $DEBUG is set.)

168

Index

$DEBUG, 142
$0066, 142
SFLOATCALLS, 143
SINCLUDE, 144
SLINESIZE, 144
SLIST, 144
SMESSAGE, 145
$SNOFLOATCALLS, 143
$NOLIST, 144
$NOTSTRICT, 146
SPAGE, 145
$PAGESIZE, 145
$STORAGE, 145
$STRICT, 146
$SUBTITLE, 147
STITLE, 147
* files. 100
.AND., 37
.EQ., 35
.GT.. 35
LE., 35
NE., 35
NOT., 37
.OR., 37
ABS, 131
Absolute value functions, 131
ACOS, 133
Actual argument, 133
Adjustable-size array, 57, 58
AINT, 131
ALOG, 132
ALOG10, 133
Alphanumeric charaters, 16
AMAX9, 132
AMAX1, 132
AMINOQ, 132
AMIN1, 132
AMODS, 131
ANINT, 131
Apostrophe editing, 111
Arc cosine functions, 133
Arc sine functions, 133
Arc tangent functions. 133
Arguments, 137
assignments, 46
errors, 167-168
expressions, 32
IF statement, 74
integer operations, 34
operators, 33
type conversion, 48
Array
adjustable-size, 57, 58
assumed-size, 57, 58
declarator, 57
dimensions, 57
element reference, 38

maximum size, 57
order of elements, 58
subscript expression, 38
ASIN, 132
ASSIGN statement, 46
Assigned GOTO statement, 72
Assignment statement, 46
Assumed-size array, 58
ATAN, 133
ATAN2, 133

Backslash editing, 112
BACKSPACE statement, 50
Binary files, 154
Blank
character, significance, 16
interpretation, 113
Block IF statement, 75
BN, 113
BZ, 113

CALL statement, 50
Carriage control, 107
CHAR, 131
Character

alphanumeric, 16

blanks, 16

constant, 27

data type, 27

editing, 118

expressions, 35

standard set, 14, 16

TAB, 17

variable, 27
Choosing largest value function, 132
Choosing smallest value function, 132
CLOSE statement, 53
Columns, 17
Comment lines, 18
Common block

saving, 84

size, 54
Common logarithm funcitons, 133
COMMON statement, 53
Compile time errors, 158
Compiler control, 2
Computational assignment statement, 46
Computed GOTO statement, 72
Constants

double precision, 25

integer, 23

REAL"4, 24

REAL"8, 25

single precision, 24
Continuation lines, 18
CONTINUE statement, 55
COsS, 133

169

Index

COSH, 134
Cosine functions, 133
DABS, 131
DACOS, 133
DASIN, 133
DATA, 43, 55
Data types, 12
basic, listed, 22
double precision, 25
ranks, 34
REAL*4, 24
REAL*8, 25
character, 27
integer, 23
logical, 26
memory requirements, 22
DATAN, 133
DATAN2, 133
DBLE, 131
DCOS, 133
DCOSH, 134
DDIM, 132
DEGUB metacommand, 142
Defining statements, 19
DEXP, 132
DIM, 132
Dimension declarators, 57
DIMENSION statement, 57
DINT, 131
Direct
access files, 98, 101
devices, files, 183
DLOG, 132
DLOG10, 132
DMAX1, 132
DMIN1, 132
DOMOD, 131
DNINT, 131
DO statement, 58
D066 metacommand, 142
Double precision
constant, 26
data type, 25
exponent, 26
range, 25
DPROD, 132
DSIGN, 132
DSIN, 133
DSINH, 133
DSQRT, 132
DTAN, 133
DTANH, 134

Edit descriptors
A, 118
BN, 113
BZ, 113

170

D, 114

E, 114

Fw.d, 115

Iw, 115

L<w>, 118

<k>P, 113

\, 112

nonrepeatable, 69

numeric, 114

repeatable, 69

types, 111
Editing

apostrophe, 111

backslash, 112

character, 118

Hollerith, 111

integer, 114

logical, 118

numeric, 114

positional, 112

real, 115

short records, 114

slash, 112
Elements of O statements, 106
ELSE statement, 61
ELSEIF statement, 62

description, 62

in block IF statement, 75
END statement, 63
End-of-file function, 185, 134
END=

option 97

specifier, 153
ENDFILE statement, 63
ENDIF statement, 64
EOF function, 105, 134
EQUIVALENCE statement, 64
ERR= specifier, 153
Error messages, 158
Errors

compile time, 158

file system, 163

memory, 166

runtime, 163, 166

type INTEGER*4 arithmetic, 167

type REAL arithmetic, 167
Evaluation rules, 38
EXP, 132
Explicitly opened files, 100
Exponent

double precision, 26

single precision, 25
Exponential functions, 132
Expressions, 19, 32

arithmetic, 32, 38

character, 35

logical, 36

-

Index

relational, 35
restrictions, 38
External
files, 7
unit specifier, 99
EXTERNAL statement. 68
File system errors, 163
FILE= specifier, 153
Files,
access methods, 97
binary, 154
commonly used structures, 100
device asociation, 103
direct access, 97, 98, 102
explicitly opened, 100
external, 96
formatted, 97
internal, 96, 98, 103
keyboard and screen (*files), 100
limitations, 103
names, 96
NEW, 102
OLD, 102
position, 97
properties, 7, 96, 98
sequential access, 97
special properties, 98
structure, 100
unformatted, 97
FLOAT, 131
FLOATCALLS
metacommand, 143
Formal argument, 137
Format
controller, 110
specification, 109
FORMAT statement, 68, 109
Formatted
files, 97
records, 95
FORTRAN
character set, 16
file system, 96
/O system, 6
identifiers, 11, 29
learning about, ix
main program, 4, 20, 127
names, 11, 29
program units, 4, 20, 127
statements, 8, 18, 39
subprogram, 20
subroutines, 4, 128
Function
absolute value, 131
arc cosine, 133
arc sine, 133
arc tangent, 133

arguments, 137
choosing largest value, 132
choosing smallest value, 132
common logarithm, 133
cosine, 133
description of, 4, 129
EQOF (end-of-file), 105, 134
exponential, 132
external, 129
hyperbolic cosine, 134
hyperbolic sine, 134
hyperbolic tangent, 134
intrinsic, 78, 130-136
lexically greater than, 134
lexically less than or equal, 134
lexically less than, 134
name, 71
naltural logarithm, 132
nearest integer, 131
nearest whole number, 131
positive difference, 132
REAL'8 product, 132
recursive call, 71
reference to, 129
remaindering, 131
sign, 132
sine, 133
square root, 132
tangent, 133
transfer of sign, 132
truncation, 131
type conversion, 131
types of, 129

FUNCTION statement, 70

Global name, 29
GOTO statement, 72, 73

Hollerith editing, 111
Hyperbolic
cosine functions, 134
sine functions, 133
tangent funclions, 134

110, See Input/Output
IABS, 131

ICHAR, 131

IDIM, 132

IDINT, 131

IDNINT, 131

IF-levels, 76

IFIX, 131

IMPLICIT statement, 77
Implied DO lists, 107
INCLUDE metacommand, 144
Initial lines, 18

Input entity, 106

171

Index

172

Input/Qutput
BACKSPACE statement, 50
carriage control, 107
character expression. 79
CLOSE statement, 53
ENDFILE statement. 63
entities, 106
format specifier, 19
FORMAT statement, 68
iolist, 105, 109
OPEN statement, 79
READ statement, 81
REWIND statement, 84
statements, 6, 7. 45, 105, 106
unit specifier, 185
WRITE statement. 90
INT. 131
Integer
constants, 23
data types, 23
division, 34
editing. 115
expression, 105
variable name, 72
INTEGER*2, 23, 130-134
INTEGER"4, 23, 129-134
Internal
files. 6, 96, 98, 102
unit specifier, 99
Intrinsic function
name, 78
list of, 130-134
INTRINSIC statement, 78
Introduction to MS-FORTRAN, vi
iolist, 106
ISIGN, 132
Label assignment statement, 46
Language overview, 1
Learning about FORTRAN, ix
Lexically greater than function, 134
Lexically greater than or equal function, 134
Lexically less than function, 134
Lexically less than or equal function, 134
LGE, 134
LGT, 134
Limitations, 183
Lines, 13, 18
LINESIZE metacommand, 144
LIST metacommand, 144
List-directed
input, 120
output, 122
LLE. 134
LLT, 134
Local name, 30
Logical
.FALSE, 26

.TRUE, 26
data type, 26
expressions, 36
IF. 75
operators. 37

Main program, 127

MAX@, 132

MAX1, 132

Memory errors, 166

MESSAGE metacommand, 145

Metacommands
available, 2
SDEBUG. 142
SDO66. 142
SFLOATCALLS. 143
SINCLUDE. 144
SLINESIZE, 144
SLIST, 144
SMESSAGE, 145
SNOFLOATCALLS, 143
SNOLIST, 144
$NOTSTRICT, 146
SPAGE, 145
SPAGESIZE, 145
$STORAGE, 145
SSTRICT, 146
SSUBTITLE, 147
STITLE, 147

MIN®, 132

MINt, 132

MODS. 131

Name

common block, 53

common data block, 30

external subroutine 68

formal argument, 87

global, 29

integer variable. 72

local, 30

program, 81

restrictions, 11

subroutine, 50, 86

symbolic, 88

undeclared, 30

user-defined, 87

Natural logarithm Functions, 132
Nearest integer functions, 131
Nearest whole number functions, 131
NEW files, 102
NINT, 131
NOFLOATCALLS metacommand, 143
NOLIST metacommand, 144
Nonfile system errors, 166
Nonrepeatable edit descriptors, 111
Normal termination, 53

Index

Notation. 16

FORTRAN, 16

statement syntax. viii
NOTSTRICT metacommand 146
Numeric editing, 114

OLD files. 182
OPEN statement, 79
Operators
arithmetic, 33
classes, 37
logical, 37
precedence, 37
relational, 35
Output
see also Input/Quiput
entities. 106
Overview of MS-FORTRAN, 2

PAGE metacommand. 145
PAGESIZE metacommand. 145
PAUSE statement, 80

Positional editing, 69, 112
Positive difference functions. 132
Precedence of operators, 37
PROGRAM statement, 81

Radix specifier, 23
READ statement, 81
Reading short records, 114
Real

constant, 25

editing, 115, 117
REAL"4, 24,
REAL’8, 25,
REC = option, 97
Records_

endfile, 95

formatted, 95

properties. 6

shon, 114

unformatted. 95
Recursive functions calls, 71
Reference manual organization, vit
Relational

expressions. 35

operators, 35
Remaindering functions. 131
Repeat

factor, 56

specification, 69
Repeatable edit descriptors, 114
RETURN statement, 83
REWIND statement, 84
Runtime errors

arithmetic, 167

classes of, 163

file system, 163
memory errors, 166
nonfile system. 166
other. 168

SAVE statement, 84
Scale factor editing, 69. 113, 117
Sequential properties, 97
Short records. 114
SIGN, 132
SIN, 133
Sine functions, 133
Single precision data type, 24
SIGH, 133
Slash editing. 69. 112
SINH. 131
Specification statement. 42. 43
Specifiers on I/O statements, 153
SQRT. 132
Square root functions, 132
Statement
arithmetic IF. 74
ASSIGN, 46
assigned GOTO. 72
assignment. 46
BACKSPACE. 50
block IF, 75
CALL. 50
categories, 7, 41
CLOSE, 53
COMMON, 53
computed GOTO, 72
CONTINUE, 55
DATA, 43, 55
definition, 19
DIMENSION, 57
directory, 46
DO, 58
ELSE, 61
ELSEIF, 62
END, 63
ENDFILE. 63
ENDIF, 64
EQUIVALENCE. 64
EXTERNAL, 68
FORMAT, 68
FUNCTION. 70. 129
functions, 136
GOTO. 72, 73
IF. 74
IF THEN ELSE. 75
IfO. elements, 185
IMPLICIT, 77
INTRINSIC, 78, 129-134
labels, 46, 74
lines, 17, 18, 19
logical IF, 74

173

Index

nesting rules, 76

OPEN, 79

ordering, 19-21

PAUSE, 80

PROGRAM, 81, 127

READ, 81

RETURN, 83

REWIND, 84

SAVE, 84

specification, 43

statement function, 85

STOP, 86

SUBROUTINE, 86, 127

syntax notation, viii

type, 87

unconditional GOTO, 73

WRITE, 90
Statement function statement, 70
STATUS = specifier, 153
STORAGE metacommand, 145
STRICT metacommand, 146
SUBROUTINE statement, 86
Subroutines, 4, 127
Subscript expression, 38
SUBTITLE metacommand, 147
Symbolic name, 88
Syntax notation, viii

TAB character, 17
TAN, 133
Tangent functions, 133
TANH, 134
Terms and concepts, 15
TITLE metacommand, 147
Transfer of sign functions, 132
Truncation functions, 131
Type, data, 12
Type conversion
arithmetic operands, 34
functions, 130-134
real values, 49
Type INTEGER*4 arithmetic errors, 167
Type REAL arithmetic errors, 167
Type statement, 87

Unconditional GOTO statement, 73
Undeclared FORTRAN names, 30
Unformatted files, 97, 102

Units, 99

User-defined names, 87

WRITE statement, 90

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U. K.
91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.§.W. 2770 5140 NANINNE WEST MIDLANDS WS10 7N

10/83-SP Printed in U.S.A.

	Disk
	FT_Readme
	Introduction
	Tab1
	Section1
	Tab2
	Section2
	Tab3
	Section3

