

READ ME FIRST

All computer software is subject to change, correction, or improvement as the manu-
facturer receives customer comments and experiences. Radio Shack has estab-
lished a system to keep you immediately informed of any reported problems with
this software, and the solutions. We have a customer service network including rep-
resentatives in many Radio Shack Computer Centers, and a large group in Fort
Worth, Texas, to help with any specific errors you may find in your use of the pro-
grams. We will also furnish information on any improvements or changes that are
“cut in” on later production versions.

To take advantage of these services, you must do three things:

(1) Send in the postage-paid software registration card included in this manual
immediately. (Postage must be affixed in Canada.)

(2) If you change your address, you must send us a change of address card
(enclosed), listing your old address exactly as it is currently on file with us.

(3) As we furnish updates or “patches”, and you update your software, you must
keep an accurate record of the current version numbers on the logs below.
(The version number will be furnished with each update.)

Keep this card in your manual at all times, and refer to the current version numbers
when requesting information or help from us. Thank you.

APPLICATIONS SOFTWARE OP. SYSTEM
VERSION LOG VERSIONLOG

01.00.00

Cat. No. 26-5252

MSYASSEMBLER

TERMS AND CONDUIONS OF SALE AAD LICENSE F BATID Seedl e 4RI TANTY
COMPUTER EQUIPMENT AND SOFTWARE PURIHANT D FK T SHACR
COMPANY-DWNED CCMPUTER CENTER RETAN 570 J RATHE SHACK

FRANTHISED DR DEALER AT TS A "

CUSTOMER OBLIGATIONS

A CUSTOMER 2ssumes fu " resgonsd oty mhal 11S compuler Marowa'e Durcngses e Faupment + ang ey Lopaes o 22aire
neiuged witt e Fquprent ¢r nrenses sepatate v e S0Maare - MPEIS 1T sgeltoators capacily Capals few avsdbily A0
tmer ragurerenis of CUSTOMER
CUSTOMER sssumes il «esporsibelty or the 2onghon ang effectiveness o* tne IEEALSQ e nnment ot ot pen B preeet e
Scitware are 1T funcion and f0° 15 Sstallates

RADIO SHACK LIMITED WARRANTIES AND CONBITIONS OF SALE

A For a perigd ot rnety 1901 caendar days fom the date of 1o RAgy Snacs aes SOCLIMETT RCRGAR LERE Lo e 0 e Ty pinget
RADIQ SHACR warrarts to the ctigina CUSTOMER that the Fgu prent ang the megur upos atic” the So'ta. BE
mamutactuing ge‘ects This warranty is only applicable to purchases of Radio Shack and Tandy Equipment by the original customer
from Radio Shack company-owned computer centers. relal slores and from Radio Shack franchisees and dealers al ils authorized
location. “=e aarracty s vo < f e Fgupment & case or catiel vas heer openes the Fouipment or Sotaars a5 heen suliecten
10 mgeoper ar abnoreat use It a manutactunng cefect s discovered duting 1 Conartanty peand (e detecty
e “eiumed 10 2 Bado Shack Corrputer Center 3 Rag o Shack retad LAttt) Shace ‘tarrhuser oo
‘0r reQd . 3IoNg with 3 COPy 8° IR Sdes ZOCUMEN? dr '9ase dagreermeny oS ER S soie ang early
event 0% 3 aefect 1S imited 10 the correctior of Ine detecl Dy tepar 1efaCRment e ptun of [he purstase e
#1201 07 ang Sole expense AADIG SHACK "as ~c abligal 0= 10 replace or tepa Pxpeniahle tems
RADID SHACR mases no warra~ty 35 tg the ge CAPABITY capacly vt s tah oty Y0 oLse gf the Sott e ewipt as ot
s parag-agh Software rs ncensed or g AS DASIS W INOLL wartanty TR anged CUSTUMER S evclus o reimet,

'3 So'tware manufacturing defect § IS repar ot ceplacemen? within thuety 13 falendar 2ays ot 1 o e Ran o

dotumert “eceives upon ncense ot 1me Software The detective SoMadre sta b ceturrer tnog Raadie Stacs € X

Snack retar store. parbioigatiag Ragro Shack “ranttisee or Radic Shack deds aung AP 1he $aleg oo

Except as prov-ceg Nerem "0 emplovee agent 1rarc' ser deder 9 CIeT DEtsOr s ALIPDNIPT 1D SR 0y AT ETTies 1, e e
tenalt 0 RADIQ SHACK

Except as provided herein. Radio Shack makes no express warranties. and any implied warranly of merchantability or fitness for a
particular purpase 1s limited in ils duration to the duration of the written limited warranties sel lorih herein

Some slates do not alow MIAtoNSs b how 10nQ & IMphed wartanTy [3s1S S0 the 3bdwe ™ falier st may "1 3pg s o CLSTOMER

LIMITATIGN DF LIABILITY
A Except as pravided herein. Radio Shack shall have no liability or responsibility to customer os any other person or enli!y with

respecl to any liability. loss or damage caused or alleged to be caused directly or indirectly by “"Equipment” or "Soltware " sold.

leased. licensed or furnished by Radio Shack. including. but not limited to. any interruption of service. loss of business or
Y gmli s or i ges resulling from the use or operation of the “Egquipment” or “Soltware " In no evenl

shall Ragio Shack be liable for loss of profits. or any indirect, special. or consequential damages arising out of any breach ol this

wg"'anty 0r in any manner arising out ol or connected wilh the sale. lease. license. use or aniicipated use of the “Equipmen!’ or

" Software

Notwithistanding the above limitations and warranties. Radio Shack's liability hereunder for damages incurred by customer or

others shall not exceed the amoun! paid by customer for the particular “Equipment” or ~Software™" involved

RADIO SHACK srall 701 be halle for ry damages Caused by delay «n de verrg a* honishing Ecu prrent ang o Soltaare

Ng action arsing cut of any claimed breac™ o this Wartg ™ty 0+ trarsactions unger 175 Warra ™ty tray Be 2 ougt mpre 1o

(€3S after e cause of achon NS 3ccrued 0t MOre 1ma” ‘gur 14! years atter the aate of tre Raci Stacs sars morumart

Fqugment or Software. wchever rst Coeurs

Seme states <o ot dlpw the IIMItalon 6* eac'usio” of moidema or CONSPELeTt 3 2atmages $2 12 aDowe 1ulal 278t 00 R L Ssmay

may not appy 10 CUSTOMER

RADID SHACK SOFTWARE LICENSE

RADIQ SHACK grants to CUSTOMER 4 rom-exclusive pa:c-up lcense th use the RADID SMACK Sg'tad'r or one corputer syl ect 1o Me

161G "G Prov.$10nS

A Except as otrerwise provigeg i this So‘tware L cense azphicable copy'ight aws snall apply 1¢ the Suftwate
Titie to tre medium on whic™ the Software 15 *ecaraed icasseme and u* ciskelte o7 staree 1ROMI S Translerren 1o CUSTOMER byt =ot
title 10 the Software
CUSTOMER may use Scttware on one nost corpuler ang access thal Software 170ug ane 0r more Temieale | 1me SoMtaare pereits
this furctor
CUSTOMER shail not use make manu‘acture 0* eproguce cupics Of Satware 2xcep! ‘ar use on OB CUMPLIS 37 35§ sgect caty
proviges in th's Software License Customer s expressly protubited fram disassers =g the Soltware
CUSTOMER s permitted to make agmitional copies of the Software ORly *0r backuf 3¢ arc™val Durposes or | additiomal copes are
requ-red in e operatan of gne Comguler with the Software but only 10 the 2ater1 e Software aNows & Backub Copy 1e Be mage
However tor TRSDOS Softwa'e CUSTOMER 15 permitted fc make a lenlee numner 8 asct oma: copees for CLSTOMER § own Lse
CUSTOMER may resell o* distribute ummoditec copies of the Sultware provided CUSTOMER has purctase one copy of e Sg'taare
10* eacr one scic of drstributed The provisons 0f this So'tware L-cense shalt 4'so be applicabie 10 id £a*hes 'ece ving top es o* the
So'tware trom CUSTOMER

G All eapytignt notices shall be retaineg on 3t copres of the Software

APPLICABILITY OF WARRANTY

A The terms ang cond 1ans 0f 1ms Warranty are appucatie as betweer RADID SHACK a»g CUSTOMER 1c erther u sale of the Fguipment

and or Software License to CUSTOMER o t0 a transact o7 wnereby RADIO SHACK sel's of conmvevs such EQuipment 10 a thire £arty for
tease 1o CUSTOMER

The nrtations of “abibly ang Warranty provisions herewt shall ngse 1o the henetd of RADIQ SHACK e authar pwner ang or licensor
of the Scftware ana any marufacturer of tre Eeuipment solg by RADIO SHACK

STATE LAW RIGHTS

Tre warrartes granteq herein Give tre original CUSTOMER specific legal nghis ana the original CUSTOMER may have other ngnis whict vary
from state 1o state

8086/8088 and 8087 Instructions and Support

Presently MS-Assembler supports only 8686/8088 instructions and operands. The 8087
instructions and operands will be made available at a future date.

Tandy Corporation
Part No. 8759439

MS™-ASSEMBLER

Reference Manual

MS™-ASSEMBLER Software:
Copyright 1983 Microsoft Corporation.
Licensed to Tandy Corporation.

All Rights Reserved.

MS™-ASSEMBLER Manual:
Copyright 1983 Microsoft Corporation
and Tandy Corporation.
Licensed to Tandy Corporation.

All Rights Reserved.

Chapter 6 materials reprinted by permission of Intel Corpora-
tion, Copyright 1983.

Reproduction or use without express written permisssion from
Tandy Corporation, of any portion of this manual is prohibited.
While reasonable efforts have been taken in the preparation of
this manual to assure its accuracy, Tandy Corporation assumes
no liability resulting from any errors or omissions in this manual,
or from the use of the information contained herein.

Contents

Introduction. L v
System Requirements v
Package Contents......... i v
SOftWare v
About this Manual v
Syntax NOTationottt v
Learning More About Assembly language, .. \Y
Features of the MS-Assembler v
Overview of the MS-Assembler X1

Getting Started/Sample Session. L XVI

1/CreatingaSource File 1
1.1 General Facts about Source Files......... 1
1.2 Statement Line Format. 3
1.3 Names ... +
14 COMMENTS . ..ottt e e e 4

5
6
9
9
11
13

3 / Expressions: Operands and Operators 15
31 Memory Organization oo 15
3.2 Operands. 21
3.3 OPCIAtOrS. .. .o 2=

4/ Action: Instructions and Directives. +1
A1 Instructions. ... L +1
4.2 Directives (Pscudo-Ops). ... e 42

5 / Cross Reference Utility (CREF). 85

o 5.1 Creating a Cross Reference File.o oo oo oo o 85
./ 5.2 How to Start MS-CREF.. 86
3.3 Command Characters. 89

5.4 Format of Cross-Reference Listings o o . 91

5.5 MS-CREF File Processing. o0 o 91

5.6 Format of Source Files. o 92

G/ INSHUCHON S@TSottt ettt et e e 95

6.1 8086 INStruction SEtounniniriiiiiii i 95
6.2 8087 INStruction SEtt 197
7/AssemblingaSource Filel 289
7.1 How to Start the MS-Assemblerot 289
7.2 Command CharaCters.ouutnvrenennenennnenen.. 291
73 Command Prompts. ittt 292
7.4 Command Switcheso i 293
7.5 Listing and Symbol Table Formats............c.ovivevinnnnnn.. 296
AppPendiCes e 311
A/Reserved Words.ttt e e i e 311
B/FlagOperationsciiuiiiiiirinnniraniaeaaaa, 313
C / Instructions in Hexadecimal Order (OP Codes) 317
D / Instructions in Alphabetical Order (Mnemonics) 327
E / Instructions by Argument Type..........o, 333
F / Directives (Pseudo-Ops) by Type. ...t 341
G/ ASCII Character CoOdes. ieti it eian s 347
H/ MS-Assembler Messagescoiiiiiiernnnnneianan. 349
GloSSary e 363
INdeX. e 367

II

Figures

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7

Tables

The Assembly Process

Assembled Macros

Conditional Statements

Overview of Assembler Operation
Pass 1 and Pass 2

Files that the MS-Assembler Produces

The 8087 Stack Ficlds
8087 Environment

Status Word Format
Control Word Format

Tag Word Format
Exception Pointers Format
Data Formats

Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 6-7
Table 6-8
Table 6-9
Table 6-10
Table 6-11
Table 6-12
Table 6-13
Table 6-14

String Instruction Mnemonics

8086/8087 Conditional Transfer Operations
Symbols

Effcctive Address Calculation Time

8087 Data Typces

Rounding Modcs

Exception and Response Summary

Data Transfer Instructions

Arithmctic Instructions

Basic Arithmetic Instructions and Operands
Comparison Instructions

Transcendental Instructions

Constant Instructions

Processor Control Instructions

Introduction

System Requirements

The MS-Assembler and the MS-CREF Utility can be used with the Model 2000 with
256K bytes of random access memory and two floppy disk drives or one floppy disk
drive and one hard disk drive.

Package Contents

The MS-Assembler package includes one disk and one reference manual.

Software

The MS-Assembler contains the following files on disk:

File Contents
MASM MS-Assembler
CREF Cross-Reference File Utility

About this Manual

The MS-Assembler Reference Manual describes the operation of the MS-Assembler
and the mnemonics of the assembly language. This manual assumes that you have a
working knowledge of the MS-Assembler, the assembly language and MS-DOS.

Syntax Notation

The following notation is used throughout this manual in descriptions of command
and statement syntax:

UPPER-CASE

indicates keywords (material that you must type). You may type the keywords in any
combination of upper- and lower-casc letters. MS-DOS interprets them as upper-casc.

(KEYBOARD CHARACTER)

indicates a key you press.

lower case italics

represent words, letters, characters, or values that you supply.

[] (square brackets)

indicates optional parameters.

The MS-Assembler produces relocatable object code. Each instruction and directive
statement is given a relative offset from its segment base. The assembled code can then
be linked using Microsoft's MS-LINK utility to produce relocatable, executable object
code, which you can load anywhere in memory. Thus, the program can execute
where it is most efficient, instead of in some fixed range of memory addresses.

In addition, by using relocatable code you can create programs in modules, each of
which can be assembled, tested, and perfected individually. Because the
MS-Assembler tests and assembles smaller pieces of program code, recording time is
shortened. Also, all modules can be error free before being linked into larger modules
or into the whole program.

: : :

MOD 1 MOD 2 MOD 3
Macro
d Assembler
Individual modules
can be edited and

assembied until they
work correctly.

Does
no modulf

correctly
?

When the individual
modulestare ready,
MS-LINK lr)ey can pe linked
singly or into one
or more larger
modules.

full or panl
program file il

Figure 1-1. The Assembly Process

The MS-Assembler supports Microsoft’s complete 8080 macro facility, which is Intel
8080 standard. The macro facility lets you write blocks of code for a set of frequently
used instructions. This eliminates the need for recoding these instructions each time
they are required in the program.

These blocks of code are called macros. The instructions are the macro definition.
Each time you need a set of instructions, you call a macro in the source file. The
MS-Assembler expands the macro call by automatically assembling the block of
instructions into the program.

The macro call also passes parameters to the MS-Assembler for use during macro
expansion. Using macros reduces the size of a source module because the macro
definitions are given only once; other occurrences are one-line calls.

You can nest macros; that is, you can call one macro from inside another macro block.
The number of macros you can nest is limited only by the size of your computer’s
memory.

The macro facility includes repeat, indefinite repeat, and indefinite repeat character
directives for programming repeat block operations. You can also use the MACRO
directive to alter the action of any instruction or directive by using the instruction or
directive name as the macro name.

When you place any instruction or directive statement in the program, the MS-
Assembler first checks the symbol table it created to see if the instruction or directive
is a macro name. If it is, the MS-Assembler “expands” the macro call statement by
replacing it with the body of instructions in the macro’s definition. If the name is not
defined as a macro, the MS-Assembler tries to match the name with an instruction or
directive. The MACRO directive also supports local symbols and conditional exiting
from the block if further expansion is unnecessary.

VII

statement

statement

statement —

macro call

statement When the assembler
encounters a macro
call, it finds the
MACRO block and
replaces the call
with the block of
statements that

name MACRO x define the macro.
ENDM

name MACRO x

Nested MACRO call:
) name defined else-
name 1,2 H————— where as a macro,
is “expanded”
during assembly,

as shown above.

ENDM

Figure 1-2. Assembler Macros

Vil

The MS-Assembler supports an expanded set of conditional directives. Directives for
evaluating a variety of assembly conditions can test assembly results and branch
where required. Unneeded or unwanted portions of code are left unassembled. The
MS-Assembler can test for blank or nonblank arguments, for defined or undefined
symbols, for equivalence, and for first assembly pass or second and can compare
strings for identity or difference. The conditional directives simplify the evaluation of
assembly results and make programming the testing code for conditions easier.

You can also nest conditionals with the MS-Assembler’s conditional assembly facility.
You can nest a maximum of 255 levels of conditional assembly blocks.

If condition

is true, IF
block is
assembled up
to ELSE, then

skips to ENDIF.

If no ELSE,

IF block
assembles en-
tire condi-
tional block.

—»

statement
statement
statement
IF <exp true>

ELSE

—>

le— If condition

is false,
program skips
to ELSE, then

l¢— resumes at the
4— next statement.
If no ELSE,

. IF block skips
ENDIF 44— to ENDIF and
statement resumes with
statement next statement.
IF..

IF..
IF.. Nesting of

conditionals
. is allowed up to

ENDIF 255 levels.

ELSE

ENDIF

ENDIF

Figure 1-3. Conditional Statements

When the source file is ready, run the MS-Assembler as described in Chapter 7,

“Assembling a Source File.” Refer to Appendix H, “MS-Assembler Messages,” for

explanations of any messages displayed during or immediately after assembly. m
4

EDLIN ¢— Ch1-4

source
.ASM

1 S

(mesiages) < | Macro il Ch7

Assembler
Appen. H object
PP ASM

Figure 1.4. Overview of Assembler Operation

XI1

PASS 1

source
ASM
statement
statement
macro call
acro o
Assembler statement
symbol -- def
symbol -- def
variable -- def
variable -- def exact amount
label -- def lg——— of code to
macro name be generated
PASS 2
source
ASM
symbol
table
Macro ”
Assembler
object
.0BY

Figure 1-5. Pass 1 and Pass 2

X1

Getting Started and Sample Session

Preliminary Procedurcs

Backing Up Your MS-Assembler Disk
Setting Up Your MS-Asscmbler Disk
Program Development

Vocabulary

Preliminary Procedures

This section describes several preliminary procedures, some of which are required
and some of which are highly recommended before you begin the sample session or
assemble any programs of your own. If you are unfamiliar with any of the MS-DOS
procedures mentioned, consult your MS-DOS manual for instructions.

Backing Up Your MS-Assembler Disk
This step is optional but highly recommended.

The first thing you should do when you have unwrapped vour MS-Assembler disk is to
make copies to work with, saving the original disk for backup. Make the copies using
the COPY or DISKCOPY utilitics supplicd with MS-DOS.

Setting Up Your MS-Assembler Disk

This step is required.

You must have the file COMMAND.COM on the backup of vour MS-Assembler disk in
order to use your disk in every drive after booting MS-DOS. Therefore, you must copy
COMMAND.COM to the backup of your MS-Assembler disk (with the MS-DOS com-
mand COPY).

Program Development

This section provides a brief introduction to program development, a multistep
process which includes first writing the program, and then assembling, linking, and
running it. For a brief explanation of terms that may be unfamiliar, see Section 1.3,
“VYocabulary.”

A microprocessor can execute only its own machine instructions; it cannot execute
source program statements directly. Therefore, before you run a program, some type
of translation, from the statements in your program, to the machine language of your
microprocessor, must occur. Assemblers are programs that perform this translation.

An assembler translates a source program and creates a new file called an object file.
The object file contains relocatable machine code that can be placed and run at
different absolute locations in memory.

Assembly also associates memory addresses with variables and with the targets of
jump statements, so that lists of variables or of labels do not have to be searched during
excecution of your program.

Before a successfully assembled program can be executed, it must run through
MS-LINK. MS-LINK computes the absolute offset addresses for routines and variables
in relocatable objéct modules and then resolves all external references. The linker
saves your program on disk as an exccutable file, ready to run.

You may, at link time, link more than one object module, as well as routines written in
a compiler language such as MS-FORTRAN or other high-level languages, and routines
in other librarics.

The following illustrates the entire program development process.

——— [] ———

} MS-PORTRAN source MS-MACRO source
MS—-FORTRAN MS-MACRO 2
Compiler Assembler ’
v ¥
|— yes «— errors? errors?—»yes/
lno nol
for .0BJ Runtime asm.OBJ
file(s) library file(s)
v
MS-LINK 3
Linker *
12
for .EXE file
}
[torm .
< yes errors? —y N0 ——————» 5.

Program Development

XVII

Create and edit the MS-Asssembler source file.

Program development begins when you write an MS-Assembler program; any
general purpose text editor will serve the purpose.

Assemble the assembler source.

Once you have written a program, assecmble it with the MS-Assembler. The
assembler flags grammatical errors as it reads your source file. If assembly is
successful, the assembler creates a relocatable object file.

If you have written your own assembly language routines (for example, to
increase the speed of execution of a particular algorithm), assemble those
routines with the MS-Assembler.

Link the assembled OBJ files.

An asscmbled object file is not executable and must be run through the
MS-LINK utility. Separately compiled subroutines and functions can also be
linked to your program at this time.

Run the EXE file.

The linker links all modules needed by your program and produces, as output,
an executabte run file with .EXE as the extension. This file can be executed by
simply typing its filename.

Reassemble, relink, and rerun.

Repeat these processes until your program has successfully assembled, linked,
and run without errors.

XVIII

Vocabulary

This section reviews some of the vocabulary that is commonly used in discussing the
steps in program development. The definitions given are intended primarily for use
with this manual. Thus, neither the individual definition nor the list of terms is
comprehensive.

An MS-Assembler program is more commonly called a “‘source program™ or “source
file.” The source file is the input file to the assembler. The assembler translates this
source and creates, as output, a new file called a “relocatable object file.” The source
and object files generally have the default extensions .ASM and .OB]J, respectively.
After assembling, the object file must be passed through the Linker to produce an
executable program or run file. The run file has the ¢xtension .EXE.

Some other terms you should know are related to stages in the development and
execution of an assembled program. These stages are:

1. Asscmble time

The time during which the assembler is e¢xecuting and during which it
assembles an MS-Assembler source file and creates a relocatable object file.

2. Link time

The time during which the linker is executing and during which it links
together relocatable object files and library files.

3. antimc

The time during which an assembled and linked program is ¢xccuting. By
convention, runtime refers to the exccution time of your program and not
to the execution time of the assembler or the linker.

The following terms pertain to the linking process:
1. Module

A general term for a discrete unit of code. There are several types of
modules, including relocatable and executable modules.

The object files created by the assembler are said to be “relocatable,™ that
is, they do not contain absolute addresses. Linking produces an “execut-
able” module, that is, one that contains the necessary addresses to proceed
with loading and running the program.

2. Routine

Code, residing in a module, that represents a particular subroutine or
function. More than one routine may reside in a module.

XIX

External reference

A variable or routine in one given module that is referred to by a routine in
another module. The variable or routine is often said to be “defined” in the
module in which it resides.

The linker tries to resolve external references by searching for the declara-
tion of each such reference in other modules. If such a declaration is found,
the module in which it resides is selected to be part of the executable
module (if it is not already selected) and becomes part of your executable
file. These other modules are usually library modules in the runtime
library.

If the variable or routine is found, the address associated with it is substi-
tuted for the reference in the first module, which is then said to be
“bound.” When a variable is not found, it is said to be “undefined” or
“unresolved.”

Relocatable module

One whose code can be loaded and run at different locations in memory.
Relocatable modules contain routines and variables represented as offsets
relative to the start of the module. These routines and variables are said to
be at “relative” offset addresses.

When the module is processed by the linker, an address is associated with
the start of the module. The linker then computes an absolute offset
address that is equal to the associated address plus the relative offset for
each routine or variable. These new computed values become the absolute
offset addresses that are used in the executable file. Assembled object files
and library files are all relocatable modules.

These offset addresses are still relative to a “segment,” which corresponds
to an 8086 segment register. Segment addresses are not defined by the
linker; rather, they are computed when your program is actually loaded
prior to execution.

XX

Insert the following lines into B:Sampfil.1:

BRANCH.ADDRESSES SEGMENT
BRANCH_TABLE-1 DW ROUTINE_1
DW ROUTINE2
DW ROUTINE.3
DW ROUTINE.4
DW ROUTINE.5
DW ROUTINE.6
DW ROUTINE.7
DW ROUTINE-8

BRANCH_ADDRESSES ENDS
PROCEDURE.SELECT SEGMENT

ASSUME CS:PROCEDURE.SELECT,
ASSUME DS:BRANCH.ADDRESSES

MOV BX,BRANCH_.ADDRESSES ;base-address of

MOV DS,BX ;segment containing
lists

LEA BX,BRANCH_TABLE-1 ;base-address of list
;of branch addresses

MOV SI,7*TYPE BRANCH.TABLE-1 ;points initially to
;last such entry
sin list

MOV CX,8 ;loop-counter
;allowing 8 shifts
smaximum

L: SHL AL ;shifts high-order

;AL bit into CF

JNC NOT.YET ;if CF = 0, routine

;represented by that
:bit not desired

JMP WORD PTR [BX][SI] ;if CF = 1, transfer
;to procedure
;represented by most
;recent bit tested

XXII

;The names above are used by 1 or more of the procedures below, but the location or value referred
ito is located (defined) in a different module. These EXTeRNal references are resolved when the
;modules are linked together, meaning all addresses will then be known. Declaring these EXTRNs
;here indicates what segment they are in.

DATA_VAR ENDS

;The names below are defined later in this module. The PUBLIC directive makes their addresses
;available for other modules to use.

PUBLIC ALARM_1, ALARM.2, DEVICE-1, DEVICE.2, DEVICE.3
PUBLIC DEVICE-4

INTERRUPT.PROCEDURES SEGMENT
ALARM.1 PROC FAR
;The routine for type 2, "ALARM.1", is the most drastic because this interrupt is intended to signal

«disastrous conditions such as power failure. It is nonmaskable; that is, it cannot be inhibited by the
:Clear Interrupts (CLI) instruction.

MOV DX, WARNING.LIGHTS

MOV AL, OFFH

ouT DX,AL ;turn on all lights
MOV DX, CONTROL-1 ;

MOV AL, 38H sturn off

ouT DX,AL ;machine

HLT ;stops all processing

ALARM.1 ENDP

ALARM2 PROC FAR

PUSH DX

PUSH AX

MoV DX, WARNING.LIGHTS

MOV AL, 1 ;turn on warning light #1

ouT DX,AL ;to warn operator of
;device

MoV ALARM_FLAG, OFFH ;set alarm flag to inhibit

POP AX Jlater processes which may
:now be dangerous

POP DX

IRET ;return from interrupt:

1this restores the flags

;and returns control to
- ithe interrupted

;instruction stream

ALARM.2 ENDP

Chapter 1 / Creating a Source File

What's in a Source File?

A source file for the MS-Assembler consists of instruction statements and directive
statements. Instruction statements consist of 8086 instruction mnemonics and their
operands, which command specific processes directly to the 8086 processor. Direc-
tive statements are commands to the MS-Assembler to prepare data for use in and by
instructions.

Section 1.2 describes statement line format, and Sections 1.3-1.6 and Chapters 2-4
describe the parts of a statement. Statements are usually placed in blocks of code
assigned to a specific segment (code, data, stack, extra). The segments may appear in
any order in the source file. Within the segments, gencerally speaking, statements may
appear in any order that creates a valid program. Some exceptions to random ordering
do exist, and they are discussed under the affected assembler directives.

You must end every segment with an ¢nd segment statement (ENDS), every proee-
dure with an end procedure statement (ENDP), and every structure with an end
structure statement (ENDS). Likewise, vou must ¢nd the source file with an END
statement that tells the MS-Assembler where to begin executing the program.

Section 3.1, “Memory Organization.” describes how segments, groups. the ASSUME
directive. and the SEG operator relate to one another and to your programming as a
whole. This information is important and helpful for developing your programs. The
information is presented in Chapter 3 as a prelude to the discussion of operands and
operators.

1.2 Statement Line Format

Statements in source files follow a strict format, which allows some variation.

Directive statements consist of four “ficlds™: Name, Action, Expression, Comment. For
example:

FOO DB ODSE wreate variable FOO
containing the value

ODSEII

Name Action Expression Comment

Instruction statements usually consist of three “fields™: Action, Expression. Comment.
For example:

MOV CX.FOO :here’s the count number
Action Expression Comment

An instruction statement may have a Name ficld under certain circumstances (sce
Section 1.3, “Names™).

Chapter 1 / Creating a Source File

1.3 Names

The name field, when present, is the first entry on the statement line. You may begin a
name in any column, although normally names are started in Column 1.

You may make names any length. However, the MS-Assembler recognizes only the
first 31 characters when assembling your source file.

You also use names with the MACRO directive. All the rules for names in statement
lines also apply to MACRO names.

You use names in a statement line to represent code, to represent data, or to represent
constants.

To make a name represent code, use:
<NAME>: followed by a directive, instruction, or nothing at all
<NAMES> LABEL NEAR (for use inside its own segment only)
<NAME> LABEL FAR (for use outside its own segment)

EXTRN <NAME>:NEAR (for use outside its own module but inside its own
segment only)

EXTRN <NAME>FAR (for use outside its own module and segment)

To make a name represent data, use:

<NAME> LABEL <size> (BYTE, WORD, etc.)

<NAME> Dx <exp>

EXTRN <NAME>:<size> (BYTE, WORD, etc.)
To make a name represent a constant, use:

<NAME> EQU <constant>

<NAME> = <constant>

<NAME> SEGMENT <attributes>

<NAME> GROUP <segment-names>

1.4 Comments

The successful operation of an assembly language program does not depend on -~
comments, but we strongly recommend that you use them. {))

Chapter 1 / Creating a Source File

You must precede every comment on every line with a semicolon. If you want to place
a very long comment in your program, you can use the COMMENT directive, which
releases you from the required semicolon (see COMMENT in Section 4.2.1, “Memory
Directives”).

Comments document the processing at particular points in a program and are useful
for debugging, for altering code, and for updating code. We recommend that you
place comments at the beginning of each segment, procedure, structure, and module
and after each line in the code that begins a step in the processing,

The MS-Assembler ignores comments. Comments do not add to the memory required
to assemble or to run your program, except in macro blocks where comments are
stored with the code.

1.5 Action

The action field contains either an 8086 instruction mnemonic or an MS$-Assembler
directive. Refer to Section 4.1, “Instructions,” for a general discussion and to Appen-
dix D for a list of 8086 instruction mnemonics. The Macro Assembler directives are
described in detail in Section 4.2, “Dircctives.”

If the name field is blank, the action field is the first entry in the statement line. In this
case, the action may appear in any column, as long as column space remains for the
action and expressions fields.

The entry in the action field directs either the processor or the assembler to perform a
specific function. Instructions tell the processor to perform some action. An instruc-
tion may have the data and/or addresses it needs built into it, or data and/or addresses
may be in the expression part of an instruction. For example:

| opcode | Loperand I L data I ’ data I

I opcode I | operand addr§| L addr

N

supplied or found

supplied = part of the instruction

found = assembler inserts data and/or address from the information provided by
expression in instruction statements

(opcode is the action part of an instruction)

Chapter 1 / Creating a Source File

Directives give the MS-Assembler directions for I/O, memory organization, condition-
al assembly, listing and cross-reference control, and definitions.

1.6 Expressions

The expression field contains entrics that are operands and/or combinations of
operands and opcrators.

Some instructions take no operands; some take one, and others take two. For two-
operand instructions, the expression field consists of a destination operand and a
source operand, in that order, separated by a comma. For example:

opcode | ‘ dest-operand l \ source-operand

For one-operand instructions, the operand is a source or a destination operand,
depending on the instruction. If you omit one or both of the operands, the instruction
carries that information in its internal coding.

Source operands are immediate operands, register operands, memory operands,
or attribute operands. Destination operands arc register operands and memory
operands.

For directives, the expression ficld usually consists of a single operand. For example:

directive I 1 operand

A directive operand is a data opcrand, a code (addressing) operand, or a constant,
depending on the nature of the directive.

For many instructions and dircctives, you may connect operands with operators to
form a longer operand that looks like a mathematical expression. These operands are
called complex operands. Using a complex lets you specify addresses or data derived
from several places. For example:

MOV FOO[BX],AL

The destination operand is the result of adding the address represented by the variable
FOO and the address found in register BX. The processor is instructed to move the
value in register AL to the destination calculated from these two operand elements.
Another example:

MOV AX,FOO+5[BX]

In this case, the source operand is the result of adding the value represented by the
symbol FOO plus 5 plus the value found in the BX register.

6

Chapter 2 / Names: Labels, Variables, and Symbols

Sce Type below for a discussion of NEAR and FAR.
Examples:

FOO LABEL NEAR
GOO LABEL FAR

3, <name> PROC NEAR
<name> PROC FAR

Use the PROC directive. For further information, see Section 4.2.1, “Mem-
ory Directives.”

NEAR is optional because it is the default if you enter only <name> PROC.
See Type below for a discussion of NEAR and FAR.

Examples:

REPEAT PROC NEAR
CHECKING PROC
FIND.CHR PROC FAR

4., EXTRN <name>:NEAR
EXTRN <name>:FAR

Use the EXTRN directive. For further information, sce Section 4.2.1, “Mem-
ory Directives.” See Type below for a discussion of NEAR and FAR.

Examples:

EXTRN FOO:NEAR
EXTRN ZOO:FAR

A label has four attributes: segment, offset, type, and the CS ASSUME in effect when the
label is defined. Segment is the segment where the label is defined. Offset is the
distance from the beginning of the segment to the tabel’s location. Type is either NEAR
or FAR.

Segment

Labels are defined inside segments. You must assign a segment to the CS segment
register for it to be addressable. You may assign the segment to a group, in which case
the group must be addressable through CS. The MS-Assembler requires that a label be
addressable through the CS register. Therefore, the segment (or group) attribute of a
symbol is the base address of the segment (or group) where it is defined.

Offset

The offset attribute is the number of bytes from the beginning of the label’s segment to
where the label is defined. The offset is a 16-bit unsigned number.

10

Chapter 2 /| Names: Labels, Variables, and Symbols

Type

The two types of labels are NEAR and FAR. Use NEAR labels references from within the
segment where the label is defined. NEAR labels may be referenced from more than
once module, as long as the references are from a segment with the same name and
attributes and have the same CS ASSUME.

Use FAR labcls for references from segments with a different €S ASSUME or when
there are more than 64K bytes between the label reference and the label definition.

The MS-Assembler gencerates slightly different code for NEAR and for FAR. NEAR
labels supply their offset attribute only (a 2-byte pointer). FAR labels supply both their
segment and offsct attributes (a 4-byte pointer).

2.2 Variables

Variables are names used in expressions as operands to instructions and directives. A
variable represents an address where a specified value may be found.

Variables look much like labels and are defined similarly in some ways: however., the
differences are important.

Variables are defined three ways:

1. <name> <define-dir> ;no colon!
<name> <siruc-nanc> <cxpression>
<name> <rec-name> <expression>

<define-dir> is any of the five Define directives: DB, DW, DD, DQ. DT
Example:

START.MOVE DW ?

<struc-name> is a structure name defined by the STRUC directive.
<rec-name> is a record name defined by the RECORD directive.
Examples:

CORRAL STRUC

ENDS
HORSE CORRAL <'SADDLE’>

Note: HORSE is the same size as the structure CORRAL.

11

Chapter 2 /| Names: Labels, Variables, and Symbols

GARAGE RECORD CARS8="'P
SMALL GARAGE 10 DUP(<'Z'>)
Note: SMALL is the same size as the record GARAGE.

See the DEFINE, STRUC, and RECORD directives in Section 4.2.1, “Mem-
ory Directives.”

2. <name> LABEL <size>

Use the LABEL directive with one of the size specifiers. You may specify
size in the following ways:

BYTE — specifies 1 byte
WORD — specifies 2 bytes
DWORD — specifies 4 bytes
QWORD — specifies 8 bytes
TBYTE —specifies 10 bytes

Example:
CURSOR LABEL WORD
For further information, see Section 4.2.1, “Memory Directives.”
3. EXTRN <mame>:<size>

Use the EXTRN directive with a size specifier. For further information, see
Section 4.2.1, “Memory Directives.”

Example:
EXTRN FOO:DWORD

Variables also have three attributes — segment, offset, and type — as do labels.
Segment and Offset are the same for variables as for labels. The Type attribute is
different.

Type

The type attribute is the size of the variable’s location, as specified when the variable is
defined. The size depends on which Define directive or which size specifier was used
to define the variable.

Directive Type Size

DB BYTE 1 byte
DwW WORD 2 bytes
DD WORD 4 bytes
DQ QWORD 8 bytes
DT TBYTE 10 bytes

12

Chapter 2 | Names: Labels, Variables, and Symbols

2.3 Symbols

Symbols are names defined without reference to a Define directive or to code. Like
variables, symbols are also used in expressions as operands to instructions and
directives.

Symbols are defined three ways:
1. <name> EQU <expression>

Use the EQU directive. For further information, see Section 4.2.1, “Memory
Directives.”

<expression> may be another symbol, an instruction mnemonic, a valid
expression, or any other entry (such as text or indexed references).

Examples:

FOO EQU 7H
Z00 EQU FOO

2. <npame> = <expression>

Use the equal sign directive. For further information, see Section 4.2.1,
“Memory Directives.”

<expression> may be any valid expression.

Examples:
GO0 = OFH
GOO = $+2
GOO = GOO+FOO

3. EXTRN <name>:ABS

Use the EXTRN directive with type ABS. For further information, see
Section 4.2.1, “Memory Directives.”

Example:
EXTRN BAZ:ABS

You must define BAZ by an EQU or = directive to a valid expression.

13

Chapter 3 | Expressions: Operands and Operators

As a diagram, this arrangement could be represented as follows:

(O]
CODE
DS,ES,SS
A
DATA
<64K CONST
STACK
V

Given this arrangement, a statement such as
MOV AX,<variable>

causes the MS-Assembler to find the best segment register to reach this variable. (The
“best” register is the one that requires no segment overrides.)

A statement such as
MOV AX,OFFSET <variable>

tells the MS-Assembler to return the offset of the variable relative to the beginning of
the variable’s segment.

If this <variable>> is in the CONST segment and you want to reference its offset from
the beginning of DGROUP, you need a statement such as the following:

MOV AX,OFFSET DGROUP:<variable>

18

Chapter 3 | Expressions: Operands and Operators

For this reason, the MS-Assembler includes a number of operators that tell the
MS-Assembler what size instruction to generate when faced with an ambiguous
choice. As a benefit, you can also reduce the size of your program by using these
operators to change the nature of the arguments to the instructions.

Examples:
MOV AX,FOO ;FOO = forward constant

This statement causes the MS-Assembler to generate a move from memory instruction
on Pass 1. By using the OFFSET operator, you can cause the MS-Assembler to gencrate
an immediate operand instruction.

MOV AX,OFFSET FOO ;OFFSET says use the
:address of FOO

Because OFFSET tells the MS-Assembler to use the address of FOO, the assembler
knows that the value is immediate. This method saves a byte of code.

Similarly, if you have a CALL statement that calls to a label that may be in a different CS
ASSUME, you can prevent problems by attaching the PTR operator to the label:

CALL FAR PTR <forward-label>

At the opposite extreme, you may have a JMP forward that is fewer than 127 bytes.
You can save yourself a byte if you use the SHORT operator.

JMP SHORT <forward-label>
Be sure, however, that the target is within 127 bytes or the MS-Assembler will not find
it.
You can usc the PTR operator another way to save a byte when using forward
references. If you defined FOO as a forward constant, you might enter the statement:

MOV [BX],FOO

You may want to refer to FOO as a byte immediate. In this case, you could enter either
of these statements (they are equivalent):

MOV BYTE PTR [BX],FOO
MOV [BX],BYTE PTR FOO

These statements tell the MS-Assembler that FOO is a byte immediate. A smaller
instruction is generated.

20

Chapter 3 / Expressions: Operands and Operators

3.2 Operands

The three types of operands are Immediate, Register, and Memory. There is no
restriction on combining the types of operands.

The following list shows all the types and the items that constitute them:

Immediate operands
Data items
Symbols

Register operands

Memory operands
Direct
Labels
Variables
Offset (fieldname)

Indexed
Base register
Index register
[constant]
Displacement

Structure
3.2.1 Immediate Operands

Immediate operands arc constant values that you supply when you type a statcment
line. You may type the value either as a data item or as a symbol.

Instructions that take two operands permit an immediate operand as the source
operand only (the second opcrand in an instruction statement). For example:

MOV AX,9

Chapter 3 / Expressions: Operands and Operators

Data Items

The MS-Assembler recognizes values in forms other than decimal when you append
special notation. The default input radix is decimal. The MS-Assembler treats any
numeric values you enter without numeric notation appended as a decimal value.
These other values include ASCIH characters and numeric valucs.

Data Form Format Example
Binary XXXXXXXXB 011100018
Octal xxxO 7350 (letter O)
xxxQ 412Q
Decimal XXXXX 65535 (default)
xxxxxD 1000D (when .RADIX changes input
radix to nondecimal)
Hexadecimal xxxxH OFFFFH (1st digit must be 0-9)
ASCII ‘xx’ ‘OM’ (more than two with DB only;
“xx” “OM?” both forms are synonymous)
10 real xx.XxxE& + xx 25.23E-7 (floating point format)
16 rcal x...XxR 8F76DEAYR (1st digit must be 0-9; the

total number of digits must be 8, 16,
or 20; or 9, 17, 21 if first digit is 0)

Symbols

You may use symbol names cquated with some form of constant information (sce
Section 2.3, “Symbols”) as immediate operands. Using a symbol constant in a state-
ment is the same as using a numeric constant. Therefore, using the sample statement
above, you could type:

MOV AX,FOO

assuming FOO was defined as a constant symbol. For ¢example:
FOO EQU 9

3.2.2 Register Operands

The 8086 processor contains a number of registers. Thesc registers are identified by
two-letter symbols that the processor recognizes (the symbols are reserved).

The registers arc appropriated to difterent tasks: general registers, pointer registers,
counter registers, index registers, segment registers, and a flag register.

The general registers are two sizes: 8 bit and 16 bit. All other registers are 16 bit.

22

Chapter 3 | Expressions: Operands and Operators

The 16-bit general registers are composed of a pair of 8-bit registers, one for the low
byte (bits 0-7) and one for the high byte (bits 8-15). Note, however, that you can use
each 8-bit general register independently of its mate. In this case, cach 8-bit register
contains bits 0-7.

You initialize segment registers, which contain segment base values. You can use the
segment register names (CS, DS, SS, ES) with the colon segment override operator to
inform the MS-Assembler that an operand is in a different segment than that specified
in an ASSUME statement. (For further information, see Section 3.3.1, “Attribute
Operators.”)

The flag register is one 16-bit register containing ninc 1-bit flags (six arithmetic flags
and three control flags).

Eachregister (exceptsegment registers and flags) can be an operand in arithmetic and
logical operations.

Register/Memory Field Encoding:

MOD =11 Register Mode

R/M W=0 W=

000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

EFFECTIVE ADDRESS CALCULATION

R/M MOD =00 MOD =01 MOD =10
200 | [BX]+[SI] [BX]+[SI]+D8 [BX]+[SI|+D16
001 | [BX]+[DI] [BX]+[DI]+D8 [BX]+[DI]+ D16
010 | [BP]+[SI) [BP]+[S1)+ D8 [BP]+[SI|+ D16
011 | [BP]+[DI] [BP}+[DI]+D8 [BP]+[DI]+ D16
100 |[SI] [SI)+D8 [SI]+ D16
101 | [DN) [DI]+D8 [DI)+ D16
110 | DIRECT ADDRESS [BP]+ D8 [BP]+ D16
111 | [BX] [BX]+D8 [BX]+D16

Note: D8 = a byte value; D16 = a word value

Chapter 3 / Expressions: Operands and Operators

Other Registers:

Segment: CS code segment
DS data segment
AN stack scgment
ES extra segment
Flags: 1-bit arithmctic flags 3 1-bit control flags
CF carry flag DF direction flag
PF parity flag IF interrupt-enable flag
AF auxiliary flag TF trap flag
ZF zero flag
SF sign flag

Note:

You can also use the BX, BP, SI, and DI registers as memory operands. When these
registers are enclosed in square brackets[], they are memory operands; when they are
not enclosed in square brackets, they are register operands (see Section 3.2.3,
“Memory Operands”).

3.2.3 Memory Operands

A memory operand represents an address in memory. When you usc a memory
operand, you direct the MS-Assembler to an address to find some data or instruction.

A memory operand always consists of an offset from a basc address.

Memory operands fit into three categories: those that do not usc a register (direct
memory opcerands), those that use a base or index register (indexed memory oper-
ands), and structure operands.

Direct Memory Operands

Direct memory operands do not use a register, and they consist of a single offsct value.
Direct memory operands arc labels, simple variables, and offsets.

You can usec memory operands as destination operands and as source operands for
instructions that take two operands. For example:

MOV AX,FOO
MOV FOO,CX

24

Chapter 3 / Expressions: Operands and Operators

Indexed Memory Operands

Indexed memory operands use basc and index registers, constants, displacement
values, and variables, often in combination. When you combine indexed operands,
you create an address expression.

Enclose indexed memory operands in square brackets to indicate indexing (by a
register or by registers) or subscripting (for example, FOO[5]). The MS-Assembler
treats square brackets as plus signs (+). Therefore,

FOQI5] is equivalent to FOO +5
5[FOO] is equivalent to 5+ FOO

The only difference between square brackets and plus signs occurs when a register
name appears inside the square brackets. Then, the operand is indexed.

The types of indexed memory operands are:

Base registers: [BX] [BP]

The default segment register of BP is $5; the default segment register of all
others is DS.

Index registers: [DI] [s1]
[constant] Immediate in square brackets (8], [FOO]

+ Displacement 8-bit or 16-bit value.
Use only with another indexed operand.

You may combine these clements in any order; however, you cannot combine two
base registers and two indexed registers.

[BX + BP] ;illegal
[SI+DI] illegal

Some examples of indexed memory operand combinations:

[BP +8]
[SI+BX]4]
16[DI +BP + 3]
8[FOO]-8

More examples of equivalent forms:

5[BX][S!]
[BX+5][SI]
[BX+SI+5]
[BX]15[SI]

25

Chapter 3 / Expressions: Operands and Operators

Structure Operands
Structure operands take the form <variable>.<ficld>.

<variable> is any name you give when coding a statement line that initializes a
Structure ficld. The <variable> may be an anonymous variable, such as an indexed
memory operand.

<field> is a name defined by a DEFINE directive within a STRUC block. <field> is a
typed constant.

You must include the period (.).

Example:
Z00 STRUC
GIRAFFE DB ?
Z00 ENDS

LONG.NECK ZOO <16>
MOV AL,LONG_NECK.GIRAFFE
MOV AL,[BX].GIRAFFE ;anonymous variable

The use of structure operands can be helpful in stack operations. If you set up the stack
segment as a structure, setting BP to the top of the stack (BP equal to $P), then you can
access any value in the stack structure by field name indexed through BP. For
example:

[BP].FLD6
BP > - SP
FLD1
FLD3 | FLD2
STRUC FLD4
FLD6 | FLDS
FLD7

This method makes all values on the stack available all the time, not just the value at
the top. Therefore, this method makes the stack a handy place to pass parameters to
subroutines.

26

Chapter 3 | Expressions: Operands and Operators

3.3 Operators
The four types of operators are attribute, arithmetic, relational, and logical.

You use attribute operators with operands to override their attributes, to return the
value of the attributes, or to isolate fields of records.

You use arithmetic, relational, and logical operators to combine or compare operands.
3.3.1 Attribute Operators
Attribute operators used as operands perform one of three functions:
Override an operand’s attributes
Return the values of operand attributes
Isolate record fields (record specific operators)
The following list shows all the attribute operators by type:

Override operators
PTR
colon (:) (segment override)
SHORT
THIS
HIGH
LOW

Value-returning operators
SEG
OFFSET
TYPE
.TYPE
LENGTH
SIZE

Record specific operators
Shift count (Field name)
WIDTH
MASK

V]
~d

Chapter 3 / Expressions: Operands and Operators

Override Operators

You use these operators to override the segment, offset, type, or distance of variables
and labels.

Pointer (PTR) <expression>
<attribute> PTR <expression>

The PTR operator overrides the type (BYTE, WORD, DWORD) or the distance
(NEAR, FAR) of an operand.

<attribute> is the new attribute; the new type or new distance.
<expression> is the operand whosc attribute is to be overridden.

The most important and frequent use of PTR is to ensure that the MS-Assembler
understands what attribute the expression is supposed to have. This is especial-
ly true for the type attribute. Whenever you place forward references in your
program, PTR clarifies the distance or type of the expression. This way you can
avoid phase errors.

The second usc of PTR is to access data by type other than the type in the
variable definition. Most ‘often this occurs in structures. If the structure is
defined as WORD but you want to access an item as a byte, use PTR as the
operator. A much easier method, however, is to enter a sccond statement that
also defines the structure in bytes. This climinates the need to use PTR for every
reference to the structure. (See Section 4.2.1, “Memory Directives.”)

Examples:

CALL WORD PTR [BX][SI]
MOV BYTE PTR ARRAY

ADD BYTE PTR FOO,9

28

Chapter 3 /| Expressions: Operands and Operators

Segment Override (:) (colon)

<segment-register>:<address-expression>
<segment-name>:<address-expression>
< group-name>:<address-expression>

The segment override operator overrides the assumed segment of an address
expression (which may be a label, a variable, or other memory operand).

The colon operator helps with forward references by telling the MS-Assembler
to what a reference is relative (segment, group, or scgment register).

The MS-Assembler assumes that labels are addressable through the current CS
register. It also assumes that variables are addressable through the current DS
register, or possibly the ES register, by default. If the operand is in another
segment and you have not alerted the MS-Assembler through the ASSUME
directive, you need to use a segment override operator. If you want to usc a
nondefault relative base (that is, not the default segment register), you need to
use the segment override operator for forward references. If the MS-Assembler
can reach an operand through a nondefault segment register, it uses it, but the
reference cannot be forward in this case.

- <segment-register> is onc of the four scgment register names: CS, DS, §S, ES.
Qw/ <segment-name> is 2 name defined by the SEGMENT directive.
< group-name> is a name defined by the GROUP dircctive.
Examples:
MOV AX,ES:[BX + SlI]
MOV CSEG:FAR_LABEL,AX
MOV AX,OFFSET DGROUP:VARIABLE
SHORT
SHORT </label>

SHORT overrides NEAR distance attributes of 1abels used as targets for the JMP
instruction. SHORT tells the MS-Assembler that the distance between the JMP
statement and the <[abel> specified as its operand is not more than 127 bytes
either direction.

the <fabel> carries a 2-byte pointer to its offsct in its segment. Because a range
of 256 bytes can be handled in a single byte, the SHORT operator eliminates the
need for the extra byte (which would carry 00 or FF anyway). Be sure, however,
that the target is within 127 bytes of the JMP instruction before using SHORT.

; The major advantage of using the SHORT operator is to save a byte. Normally,

29

Chapter 3 / Expressions: Operands and Operators

THIS

Example:

JMP SHORT REPEAT

REPEAT:

THIS <distance>
THIS <type>

The THIS operator creates an operand. The value of the operand depends on
which argument you give THIS.

The argument to THIS may be:
1. A distance (NEAR or FAR)
2. A type (BYTE, WORD, or DWORD)

THIS <distance> creates an operand with the distance attribute you specify, an
offset equal to the current location counter, and the segment attribute (scg-
ment base address) of the enclosing segment.

THIS <type> creates an operand with the type attribute you specify, an offsct
equal to the current location counter, and the segment attribute (segment base
address) of the enclosing segment.

Examples:
TAG EQU THIS BYTE same as TAG LABEL BYTE

SPOT_CHECK = THIS NEAR same as
SPOT.CHECK LABEL NEAR

HIGH,LOW

HIGH <expression>

LOW

<expression>

HIGH and LOW are provided for 8080 assembly language compatibility. HIGH
and LOW are byte isolation operators.

HIGH isolates the high 8 bits of an absolute 16-bit value or address expression.

LOW isolates the low 8 bits of an absolute 16-bit value or address expression.

30

Chapter 3 / Expressions: Operands and Operators

Examples:
MOV AH,HIGH WORD.VALUE ;get byte with sign bit
MOV AL,LOW OFFFFH

Value-Returning Operators

These operators return the attribute vatues of the operands that follow them but do
not override the attributes.

The value-returning operators take labels and variables as their arguments.

Because variables in the MS-Assembler have three attributes, vou need to use value-
returning operators to isolate single attributes. as follows:

SEG isolates the segment base address
OFFSET isolates the offset value
TYPE isolates cither type or distance

LENGTII and SIZE isolate the memory allocation
SEG

SEG <label>
SEG <variable>

SEG returns the segment value (segment base address) of the segment enclos-
ing the label or variable.

Example:

MOV AX, SEG VARIABLE_NAME
MOV AX, SEG <segment-variable>:<variable>

OFFSET

OFFSET <label>
OFFSET <variable>

OFFSET returns the offset value of the variable or label within its segment (the
number of bytes between the segment base address and the address where the
label or variable is defined).

You usc OFFSET primarily to tell the MS-Assembler that the operand is an
immediate operand.

NOTE

OFFSET does not make the value a constant. Only MS-LINK can resolve the final
value. OFFSET is not required with uses of the DW or DD directives. The
MS-Asscmbler applies an implicit OFFSET to variables in address expressions
following DW and DD.

31

Chapter 3 / Expressions: Operands and Operators

Example:
MOV BX,0FFSET FOO

If you use an ASSUME to GROUP, OFFSET does not automatically return the
offset of a variable from the basc address of the group. Rather, OFFSET returns
the segment offset, unless you use the segment override operator (group-name
version). If the variable GOB is defined in a segment placed in DGROUP, and
you want the offset of GOB in the group, you need to enter a statement such as
the following:

MOV BX,OFFSET DGROUP:GOB

Be sure that the GROUP directive precedes any reference to a group name,
including its use with OFFSET.

TYPE

TYPE <label>
TYPE <variable>

If the operand is a variable, the TYPE operator returns a value equal to the
number of bytes of the variable type, as follows:

BYTE 1

WORD =2

DWORD = 4

QWORD = 8

TBYTE = 10

STRUC = the number of bytes declared by STRUC
If the operand is a label, the TYPE operator returns NEAR (FFFFH) or FAR
(FFFEH).
Example:

MOV AX,(TYPE FOO_BAR) PTR [BX + Sl]
.TYPE
.TYPE <variabie>

The .TYPE operator returns a byte that describes two characteristics of the
<variable>: (1)the mode, and (2)whether or not it is External. The argument
to .TYPE may be any expression (string, numeric, logical). If the expression is
invalid, .TYPE rcturns zcro.

The byte that is returned is configured as follows.

32

Chapter 3 / Expressions: Operands and Operators

The lower two bits are the mode. If the lower two bits are:
0 the mode is Absolute

1 the mode is Program Related

2 the mode is Data Related

The high bit (80H) is the External bit. If the high bit is on, the expression
contains an External. If the high bit is off, the expression is not External.

The Defined bit is 20H. This bit is on if the expression is locally defined, and it is
off if the expression is undefined or external. If neither bit is on, the expression
is invalid.

You usually use .TYPE inside macros, where you may need to test an argument
to make a decision regarding program flow, for example, when conditional
assembly is involved.

Example:
FOO MACRO X
LOCAL Z
V4 = .TYPE X
IF Z...

-TYPE tests the modc and type of X. Depending on the cvaluation of X, the block
of code beginning with IF Z. .. may be assembled or omitted.

LENGTH

LENGTH <variabie>
LENGTH accepts only one variablc as its argument.

LENGTH returns the number of type units (BYTE, WORD, DWORD, QWORD,
TBYTE) allocated for that variable.

If the variable is defined by a DUP expression, LENGTH returns the number of
type units duplicated, that is, the number that precedes the first DUP in the
expression.

If the variable is not defined by a DUP expression, LENGTIH returns 1,
Examples:
FOO DW 100 DUP(1)

MOV CX,LENGTH FOO ;get number of elements
;in array
\LENGTH returns 109

BAZ DW 100 DUP(1,10 DUP(?))

Chapter 3 / Expressions: Operands and Operators

LENGTH BAZ is still 100, regardless of the expression following DUP.
GOO DD (?)

LENGTH GOO returns 1 because only one unit is involved.

SIZE
SIZE <variable>
SIZE returns the total number of bytes allocated for a variable.
SIZE returns the product of the value of LENGTH times the value of TYPE.
Example:
FOO DW 160 DUP(1)
MOV BX,SIZE FOO ;get total bytes in array

SIZE = LENGTH X TYPE
SIZE = 100 X WORD
SIZE = 100 X2
SIZE = 200

Record Specific Operators
You use record specific operators to isolate fields in a record.

Records are defined by the RECORD directive (see Section 4.2.1, “Memory Direc-
tives™). A record may be a maximum length of 16 bits. The record is defined by ficlds,
which may be from 1 to 16 bits long. To isolate one of the three characteristics of a
record field, use once of the record specific operators, as follows:

Shift-count Number of bits from low ¢nd of record to low ¢nd of field (number
of bits to right shift the record to lowest bits of record)

WIDTH The number of bits widce the ficld or record is (number of bits the
field or record contains)

MASK Value of record if field contains its maximum value and all other
fields arc zero (all bits in field contain 1; all other bits contain)

In the following discussions of the record specific operators, we usc these symbols:

FOO a record defined by the RECORD directive FOO RECORD
FIELD1:3 FIELD2:6,FIELD3:7

BAZ a variable used to allocate FOO BAZ FOO < >

FIELD1, FIELD2, and FIELD3 are the ficlds of the record FOO.

Chapter 3 | Expressions: Operands and Operators

Shift-count - (record-fieldname)

- <record-fieldname>

The shift-count is derived from the record fieldname to be isolated.

The shift-count is the number of bits the field must be shifted right to place the
lowest bit of the field in the lowest bit of the record byte or word.

If a 16-bit record (FOQ) contains three fields (FIELD1, FIELD2, and FIELD3),
the record can be diagrammed as follows:

FIELDI1 FIELD2 FIELD3

FIELD1 has a shift-count of 13.
FIELD?2 has a shift-count of 7.
FIELD3 has a shift-count of 0.

To isolate the value in one of these ficlds, enter its name as an operand.
Example:

MOV DX,BAZ
MOV CL,FIELD2
SHR DX,CL

FIELD2 is now right shifted, ready for access.
WIDTH

WIDTH <record-fieldname>
WIDTH <record>

When a <record-fieldname> is given as the argument, WIDTH returns the
width of a record field as the number of bits in the record field.

When a <record> is given as the argument. WIDTH returns the width of a
record as the number of bits in the record.

Using the diagram under shift-count, WIDTH can be diagrammed as:

HEEEEEEEEEEEE.

35

Chapter 3 / Expressions: Operands and Operators

The WIDTH of FIELD1 equals 3.
The WIDTH of FIELD2 equals 6.
The WIDTH of FIELD3 equals 7.

Example:
MOV CL,WIDTH FIELD2

The numbecer of bits in FIELD2 is now in the count register.

MASK
MASK <record-ficldname>
MASK accepts a fieldname as its only argument.

MASK returns a bit-mask defined by 1 for bit positions included by the field and
0 for bit positions not included. The value return represents the maximum
value for the record when the ficld is masked.

Using the diagram for shift-count, MASK can be diagrammed as:

[T T T T T TTIT1]
0001|1111|1000|00@0<—MASK

1 F 8 0
The MASK of FIELD2 equals 1F80H.

Example:

MOV DX,BAZ
AND DX,MASK FIELD2

FIELD2 is now isolated.
3.3.2 Arithmetic Operators

Eight arithmetic operators provide the common mathematical functions (add, sub-
tract, divide, multiply, modulo, negation), plus two shift operators.

You use the arithmetic operators to combine operands to form an expression that
results in a data item or an address.

Except for + and — (binary), operands must be constants.

For plus (+), one operand must be a constant.

For minus (—), the first (Ieft) operand may be a nonconstant, or both operands may
be nonconstants. The right must be a constant if the left is a constant.

36

Chapter 3 | Expressions: Operands and Operators

3.3.3 Relational Operators
Relational operators compare two constant operands.

If the relationship between the two operands matches the operator, FFFFH is re-
turned.

If the relationship between the two operands does not match the operator, a zero is
returned.

You most often use relational operators with conditional directives and conditional
instructions to direct program control.

EQ Equal. Returns true if the operands equal cach other.

NE Not Equal. Returns truc if the operands are not equal to each
other.

LT Less Than. Returns true if the left operand is less than the

right operand.

LE Less Than or Equal. Returns true if the left operand is less
than or equal to the right operand.

GT Greater Than. Returns true if the left operand is greater than
the right operand.

GE Greater Than or Equal. Returns truc if the left operand is
greater than or equal to the right operand.

3.3.4 Logical Operators
Logical operators compare two constant operands bitwise.

Logical operators compare the binary values of corresponding bit positions of each
operand to evaluate the logical relationship defined by the logical operator.

You can use logical operators in two ways:

1. To combine operands in a logical relationship. In this case, all bits in the
operands have the same value (either 0000 or FFFFH). It is best to usc
these values for true (FFFFH) and to use for false (0000) the symbols you
use as operands, because in conditionals anything nonzero is true.

~N

In bitwise operations. In this case, the bits are different, and the logical
operators act the same as the instructions of the same name.

NOT Logical NOT. Returns true if left operand is true and right is
false or if right is true and left is false. Returns false if both are
truc or both are false.

Chapter 3 | Expressions: Operands and Operators

7. EQ, NE, LT, LE, GT, GE
8. Logical NOT

9. Logical AND

10. Logical OR, XOR

11. SHORT,.TYPE

40

Chapter 4

Action: Instructions and Directives

4.1 INSUTUCHONS. ..couvvarriersrereresnssereseans s sssss sttt sssaesstesessssmessoesessescoescoseseressasssensesssesensenmne 41
4.2 DIrectives.......cevnrverennns reerreenetas i senes s 42
4.2.1 MEMOTY DHIECUVES ...ccooovnieenevereetre st seesessesas s ssssssnsssssssesosessssssesessssesssnseeemneeeens 43
4.2.2 Conditional DifECUVES.........coouceeeceeeeeceevese s isese s eeee e serenes 66
4.2.3 Macro Directives............... 69
Calling a Macrocccccevcvveernanee .71
Repeat Directives rerenerene e b st s s ae e annaes 75
Special MaCro OPEIatOrS..........iveivenecmsicrerasseressseessesssessssesssssssssssssssossons 78
4.2.4 Listing Directives.........covurvremrrrrenerene. 80

Action: Instructions and Directives

The action field contains either an 8086 instruction mnemonic or an MS-Assembler
directive.

Following a name field entry (if any), action field entries may begin in any column.
Specific spacing is not required. The only benefit of consistent spacing is improved
readability. If a statement does not have a name field entry, the action field is the first
entry.

The entry in the action field directs either the processor or the MS-Assembler to
perform a specific function.

4.1 Instructions

Instructions tell the command processor to perform some action. An instruction may
have the data and/or addresses it needs built into it, or data and/or addresses may be
found in the expression part of an instruction. For example:

| opcode | | operand I | data] | data—l
| opcode I I operand ’ | addr I I addr |
supplied

supplied or found
supplied = part of the instruction

found = assembler inserts data and/or address from the information provided by
expressions in instruction statements.

(opcode equates to the binary code for the action of an instruction)

41

Chapter 4 / Action: Instructions and Directives

This manual does not contain dctailed descriptions of the 8086 instruction mnemo-
nics and their characteristics. For this information, we recommend that you consult
the following texts:

1. Morse, Stephen P. The 8086 Primer. Rochelle Park, NJ: Hayden Publishing
Co., 1980.

2. Rector, Russell and Alexy, George. The¢ 8086 Book. Berkeley, CA:
Osbourne/McGraw-Hill, 1980.

3. The 8086 Family User's Manual. Santa Clara, CA: Intel Corporation, 1980.

Appendix D contains an alphabetical listing of the instruction mnemonics.

4.2 Directives

Directives give the MS-Assembler directions and information about input and output,

memory organization, conditional assembly, listing and cross-reference control, and
definitions.

The directives are divided into groups by the function they perform. Within each
group, the directives are described alphabetically.

The groups are:

Memory Dircctives
You use dircctives in this group to organize memory. Becausc there is no
“miscellaneous” group, the memory directives group contains some direc-
tives that do not, strictly speaking, organize memory (for cxample, COM-
MENT).

Conditional Directives
You usce directives in this group to test conditions of assembly before

proceeding with assembly of a block of statements. This group contains all
the IF (and related) directives.

Macro Directives
You use directives in this group to create blocks of code called macros.
This group also includes some special operators and directives that are
used only inside macro blocks. The repeat directives are considered macro
directives for descriptive purposes.

Listing Dircctives
You use directives in this group to control the format and, to some cxtent,
the content of listings that the MS-Assembler producces.

42

Chapter 4 / Action: Instructions and Directives

4. The key word NOTHING. ASSUME NOTHING cancels all register assign-
ments made by a previous ASSUME statement

If you do not use ASSUME or if you type NOTHING for <seg-name>, you must
prefix cach reference to variables, symbols, labels, and so forth in a particular
segment by a segment register. For example, type DS:FOO instead of simply
FOO.

Example:

ASSUME DS:DATA,SS:DATA,CS:CGROUP,ES:NOTHING

COMMENT
COMMENT<declim> <text> <delim>

The first nonblank character encountered after COMMENT is the delimiter.
The following <text> constitutes a comment block that continues until the
next occurrence of <delimiter>.

COMMENT lets you enter comments about your program without placing a
semicolon (;) before each line.

If you use COMMENT inside a macro block, the comment block does not
appear on your listing unless you also place the .LALL directive in your source
file.

Example:
Using an asterisk as the delimiter, the format of the comment block would be:

COMMENT *
any amount of text entered
here as the comment block

* sreturn to normal mode

DEFINE BYTE
DEFINE WORD

DEFINE DOUBLEWORD
DEFINE QUADWORD
DEFINE TENBYTES

44

Chapter 4 / Action: Instructions and Directives

Example — Define Byte (DB):

NUM.BASE
FILLER

ONE-CHAR
MULT.CHAR
MSG

BUFFER
TABLE

NEW_PAGE
ARRAY

DB
DB

DB
DB
DB

DB
DB

DB
DB

16

? sinitialize with
;indeterminate value

IMI

‘TOM JEROME EDWARD BOB DEAN’
‘MSGTEST',13,10
:message, carriage return
;and linefeed
10 DUP(?) ;indeterminate block
100 DUP(5 DUP(4),7)
;100 copies of bytes
;with values 4,4,4,4.4,7
OCH sform feed character
1,2,3,4,5,6,7

Examplec — Dcfine Word (DW):

ITEMS
SEGVAL
BSIZE
LOCATION
AREA
CLEARED
SERIES

DISTANCE

DW
DW
DW
DW
DW
DwW
DW

Dw

TABLE,TABLE + 10,TABLE +20
OFFFOH

4+128

TOTAL + 1

100 DUP(?)

50 DUP(0Q)

2 DUP(2,3 DUP(BSIZE))

;iwo words with the byte values
;2,BSIZE,BSIZE,BSIZE,2,BSIZE,BSIZE,
;BSIZE

START_TAB -END_TAB
;difference of two labels is a
;constant

46

Chapter 4 / Action: Instructions and Directives

Example — Define Doubleword (DD):

DBPTR DD TABLE
;16-bit OFFSET,
;then 16-bit
;SEG base value

SEC_PER.DAY DD 60*60*24

;arithmetic is performed
;by the assembler

LIST DD *XY’,2 DUP(?)

HIGH 1 DD 4294867295
;maximum

FLOAT DD 6.735E2

;floating point

Example — Define Quadword (DQ):

LONG_REAL DQ 3.141597
;decimal makes
it real

STRING DQ ‘AB’
;no more than 2
;characters

HIGH 1 DQ 18446744073709661615
ymaximum

LOW 1 DQ -18446744073709661615
;minimum

SPACER DQ 2 DUP(?)
;uninit.data

FILLER DQ 1 DUP(?,?)
sinitalized w_/
sindeterminate
value

HEX_REAL DQ OFDCBA9A98765432105R

Example — Define Tenbytes (DT):

ACCUMULATOR DT ?

STRING DT ‘CD’
;no more than 2
iCharacters

PACKED.DECIMAL DT 1234567890

FLOATING_POINT DT 3.1415926

47

Chapter 4 / Action: Instructions and Directives

Example:

FOO EQU BAZ
;must be defined in this
;module or an error
results

B EQU [BP + 8]
;index reference (Text)

P8 EQU DS:(BP +8]
;segment prefix
;and operand (Text)

CBD EQU AAD
;:an instruction name
;(Opcode)

ALL EQU DEFREC<2,3,4>
;DEFREC = record name
;<2,3,4> = initial values
;for fields of record

EMP EQU 6

;constant value
FPV EQU 6.3E7
;floating point (text)

Equal Sign
<name = <exp>

< exp> must be a valid expression. It is shown as a Number or L (label) in the
symbol table (same as <exp>> type 3 under the EQU directive above).

The equal sign (=) lets you set and redefine symbols. The equal sign is like the
EQU directive, except you can redefine the symbol without generating an
error. You may redefine more than once, and a redefinition may refer to a
previous definition.

Example:
FOO = 5
;the same as FOO EQU 5
FOO EQU 6,
;error, FOO cannot be
;redefined by EQU
FOO e 7

;FOO can be redefined

;only by another =
FOO = FOO +3

;redefinition may refer

;to a previous definition

49

Chapter 4 | Action: Instructions and Directives

EVEN
EVEN

The EVEN directive sends the program counter to an even boundary, that is, to
an address that begins a2 word. If the program counter is not already at an even
boundary, the MS-Assembler adds an NOP instruction so that the counter
reaches an even boundary.

An error results if you use EVEN with a byte-aligned segment.
Example:

Before: The PC points to 0019 hex (25 decimal)

EVEN

After: The PC points to 1A hex (26 decimal); 0019 hex now contains a NOP
instruction

EXTRN
EXTRN <npame>:<type>[,...]

<npame> is a symbol that is defined in another module. <pame> must have
been declared PUBLIC in the module where <name> is defined.

< type> may be any one of the following, but must be a valid type for <name>:
1. BYTE, WORD, or DWORD

2. NEAR or FAR for labels or procedures (defined under a PROC directive)
3. ABS for pure numbers (implicit size is WORD, but includes BYTE)

Placement of the EXTRN directive is significant. If you give the directive with a
segment, the MS-Assembler assumes that the symbol is located within that
segment. If the segment is not known, place the directive outside all segments,
then use either

ASSUME <seg-reg>:SEG <name>
or an explicit segment prefix.
NOTE

If a mistake is made and the symbol is not in the segment, MS-LINK takes the
offset relative to the given segment, if possible. If the real segment is less than
64K bytes away from the reference, MS-LINK may find the definition. If the real
segment is more than 64K bytes away, MS-LINK cannot link the reference and
the definition and returns an error message.

50

Chapter 4 / Action: Instructions and Directives

Example:
In Same Segment:

In Another Segment:

In Module 1:

CSEG SEGMENT
PUBLIC TAGN

TAGN:

CSEG ENDS

In Module 2:

CSEG SEGMENT

EXTRN TAGN:NEAR

JMP TAGN

CSEG ENDS

GROUP

In Module'1:
CSEGA SEGMENT
PUBLIC TAGF
TAGF:
CSEGA ENDS
In Module 2:
EXTRN TAGF:FAR
CSEGB SEGMENT
JMP TAGF
CSEGB ENDS

<name> GROUP <seg-name>[,...]

The GROUP directive collects the scgments named after GROUP (<seg-
name>s)under one name. MS-LINK uses the GROUP to know which segments
to load together. The order in which the segments are named does not influ-
ence the order in which they are loaded. The loading order is determined by the
CLASS designation of the SEGMENT directive or by the order in which you
name object modules in response to the MS-LINK Object Module: prompt.

All segments in a GROUP must fit into 64K bytes of memory. MS-LINK checks
this: the MS-Assembler does not.

<seg-name> may be onc of the following:

1. A segment name, assigned by a SEGMENT directive. The name may be a

forward reference.

51

Chapter 4 | Action: Instructions and Directives

2. An expression: either SEG <var>
or SEG <label>
Both these entries resolve themselves to a segment name (see SEG oper-
ator, Section 3.3).

After you define a group name, you can use the name:
1. As an immediate value:

MOV AX,DGROUP
MOV DS,AX

DGROUP is the paragraph address of the base of DGROUP.
2. In ASSUME statements:
ASSUME DS:DGROUP

You can now use the DS register to reach any symbol in any segment of the
group.

3. As an operand prefix (for segment override):

MOV BX,0FFSET DGROUP:FOO
DW DGROUP:FOO
DD DGROUP:FOO

DGROUP: forces the offset to be relative to DGROUP, instead of to the
segment in which FOO is defined.

Example (Using GROUP to combine segments):

In Module A:
CGROUP GROUP XXX, YYY
XXX SEGMENT

ASSUME CS:CGROUP
XXX ENDS
YYY SEGMENT
YYY ENDS

END

52

Chapter 4 / Action: Instructions and Directives

Example — ORG to a boundary (conditional):

CSEG SEGMENT PAGE
BEGIN = $
IF (3 - BEGIN) MOD 256 ;if not already on

;256-byte boundary
ORG ($— BEGIN)+ 256 — (($ —BEGIN) MOD 256)

ENDIF
See Section 4.2.2, “Conditional Directives,” for an explanation of conditional
assembly.
PROC
<procname> PROC [NEAR]
or [FAR]
RET
<procname> ENDP

The default, if no operand is specified, is NEAR. Use FAR if:

1. The procedure name is an operating system entry point

2. The procedure will be called from code that has another ASSUME CS value
Each PROC block should contain a RET statement.

The PROC directive serves as a structuring device to make your programs more
understandable.

The PROC directive, through the NEAR/FAR option, informs CALLs to the
procedure to generate a NEAR or 2 FAR CALL, and RETs to generate a NEAR ora
FAR RET. You use PROC for coding simplification so that you do not have to
worry about NEAR or FAR for CALLs and RETs.

A NEAR CALL or RETURN changes the IP but not the CS register. A FAR CALL or
RETURN changes both the IP and the CS registers.

Procedures are executed either in line, from a JMP, or from a CALL.

PROCs may be nested, which means that they are put in line.

56

Chapter 4 / Action: Instructions and Directives

Combining the PUBLIC directive with a PROC statement (both NEAR and FAR)
lets you make external CALLs to the procedure or to make other external
references to the procedure.

Example:
PUBLIC FAR.NAME
FAR_NAME PROC FAR
CALL NEAR_.NAME
RET
FAR_NAME ENDP
PUBLIC NEAR_NAME
NEAR.NAME PROC NEAR
RET
NEAR_.NAME ENDP

You can call the second subroutine above directly from a NEAR segment (that
is, a segment addressable through the same CS and within 64K):

CALL NEAR.NAME

A FAR segment (that is, any other segment that is not a NEAR segment) must call
the first subroutine, which then calls the second (an indirect call):

CALL FARLNAME
PUBLIC
PUBLIC <symbol>[,...]

Place a PUBLIC directive statement in any module that contains symbols you
want to use in other modules without defining the symbol again. PUBLIC makes
the listed symbol(s), which are defined in the module where the PUBLIC
statement appears, available for use by other modules to be linked with the
module that defines the symbol(s). This information is passed to MS-LINK.

<symboi> may be a number, a variable, or a label (including PROC labels).

<symbol> may not be a register name or a symbol defined (with EQU) by
floating point numbers or by integers larger than rwo bytes.

57

Chapter 4 / Action: Instructions and Directives

Example:
PUBLIC GETINFO

GETINFO PROC FAR
PUSH BP ;save caller’s register
MOV BP,SP ;get address parameters

;body of subroutine

POP BP ;restore caller’s reg
RET ;return to caller

GETINFO ENDP
Example — illegal PUBLIC:
PUBLIC PIE.BALD,HIGH.VALUE

PIE.BALD EQU 3.1416
HIGH.VALUE EQU 999999999
RADIX

.RADIX <exp>

The default input base (or radix) for all constants is decimal. The .RADIX
directive lets you change the input radix to any base in the range 2 to 16.

<exp> is always in decimal radix, regardless of the current input radix.

Example:
MOV BX,0FFH
.RADIX 16
MoV BX,0FF

The two MOVs in this example are identical.

The .RADIX directive does not affect the generated code values placed in the
.OBJ, .LST, or .CRF output files.

The .RADIX directive does not affect the DD, DQ, or DT directives. Numeric
values entered in the expression of these directives are always evaluated as
decimal unless a data type suffix is appended to the value.

Example:

.RADIX 16
NUM_HAND DT 773 ;773 = decimal
HOT-HAND DQ 773Q ;773 = octal here only

COOL_HAND DD 773H ;now 773 = hexadecimal

58

Chapter 4 / Action: Instructions and Directives

RECORD

<recordname> RECORD
<fieldname>:<width>[= <exp>][...]

<fieldname> is the name of the field. <width> specifies the number of bits in
the field defined by <fieldname>. <exp> contains the initial (or default)
value for the field. You may not include forward references in a RECORD
statement.

<fieldname> becomes a value that you can use in expressions. When you use
<fieldname> in an expression, its value is the shift-count to move the field to
the far right. Using the MASK operator with the <fieldname> returns a bit mask
for that field.

<width> is a constant in the range 1 to 16 that specifies the number of bits
contained in the field defined by <fieldname>. The WIDTH operator returns
this value. If the total width of all declared fields is larger than 8 bits, then the
MS-Assembler uses two bytes. Otherwise, it uses only one byte.

The first field you declare goes into the most significant bits of the record.
Successively declared fields are placed in the succeeding bits to the right. If the
fields you declare do not total exactly 8 bits or exactly 16 bits, the entire record
is shifted right so that the last bit of the last field is the lowest bit of the record.
Unused bits will be in the high end of the record.

Example:
FOO RECORD HIGH:4,MID:3,LOW:3
Initially, the bit map would be:

HENEEEEEEEEEEEE

|<4— HIGH =" |=M|D=|~¢LOW-»

Total bits >8 means use a word; but total bits <16 means right shift, place
undeclared bits at high end of word. Thus:

000000111100000 0~——MASK
HEEEEEEEEEEEEE

not “4—HIGH = |-t=M|D = |- OW->-
declared >
WIDTH shift count

<exp> contains the initial value for the field. If the field is at least 7 bits wide,
you can use an ASCII character as the <exp>.

59

Chapter 4 | Action: Instructions and Directives

Example:

HIGH:7=*Q’

To initialize records, use the same method as that for DB. The format is:
[<name>] <recordname> <[exp][,...]>
or

[<name<> <recordname> [<exp>
DUP(<[exp],..-1>)

The name is optional. When given, name is a label for the first byte or word of
the record storage area. o

The recordname is the name used as a label for the RECORD directive.

The [exp] (both forms) contains the values you want placed into the fields of
the record. In the latter case, the parentheses and angle brackets are required
only around the second [exp] (following DUP). If [exp] is left blank, either the
default value applies (the value given in the indeterminate (when not initialized
in the original record definition). For fields that are already initialized to values
you want, place consecutive commas to skip over (use the default values of)
those fields.

For example:
FOO <, ,7>

From the previous example, the 7 would be placed into the LOW field of the
record FOO. The fields HIGH and MID would be left as declared (in this case,
uninitialized).

You may use records in expressions (as an operand) in the form:
recordname<[value[,...]]>

The value entry is optional. The angle brackets must be coded as shown, even if
the optional values are not given. A value entry is the value to be placed into a
field of the record. For fields that are already initialized to values you want,
place consecutive commas to skip over (use the default values of) those fields,
as shown above.

60

Chapter 4 | Action: Instructions and Directives

Example:
FOO RECORD HIGH:5,MID:3,LOW:3
BAX FOO <> ;leave undeterminate here
JANE FOO 10 DUP(<16,8>) ;HIGH=16,
;MID=8, LOW="7?
MOV DX,OFFSET JANE[2]
;get beginning record
;address
AND DX,MASK MID
MOV CL,MID
SHR DX,CL
MOV CL,WIDTH MID
(,« | SEGMENT

<segname> SEGMENT [<align>][<combine>)
[<‘class'>]

<segname> ENDS

At runtime, all instructions that generate code and data are in (separate)
segments. Your program may be a segment, part of a segment, several segments,
parts of several segments, or 2 combination of these. If a program has no
SEGMENT statement, an MS-LINK error (invalid object) results at link time.

The <segment name> must be unique and legal. The segment name must not
be a reserved word.

<align> may be PARA (paragraph — default), BYTE, WORD, or PAGE.

<combine> may be PUBLIC, COMMON, AT <exp>,STACK, MEMORY, or no
entry (which defaults to not combinable).

({ i <class> name is used to group segments at link time.
All three operands are passcd to MS-LINK.

61

Chapter 4 | Action: Instructions and Directives

The alignment type tells MS-LINK on what kind of boundary you want the
segment to begin. The first address of the segment for each alignment type is:

PAGE — address is xxx00H (low byte is 0)

PARA —address is xxxxOH (low nibble is 0)
bit map — IxIxIxIx|0I01010I

WORD — address is xxxxeH (e = even number;low bit is 0)
bit map — IxIxIxIxIxI|xixI0l

BYTE — address is xxxxxH (place anywhere)

The combine type tells MS-LINK how to arrange the segments of a particular
class name. The segments are mapped as follows for each combine type:

None (not combinable or Private)

0 Private segments are loaded separately and remain
A’ separate. They may be physically contiguous but not
logically, even if the segments have the same name.
A |0 Each private segment has its own base address.

>

H

Public and Stack
0 Public segments of the same name and class name are
loaded contiguously. Offset is from beginning of first
| A_] segment loaded through last segment loaded. There is
only one base address for all public segments of the
same name and class name. (Combine type stack is
treated the same as public. However, the Stack Pointer
is set to the first address of the first stack segment.
MS-LINK requires at least one stack segment.)

0 Common segments of the same name and class name
are loaded overlapping one another. There is only one
base address for all common segments of the same
name. The length of the common area is the length of
the longest segment.

Q)

g | >
> 3 -

=]

=

A’

Memory

The memory combine type causes the segment(s) to be placed as the highest
segments in memory. The first memory combinable segment encountered is
placed as the highest segment in memory. Subsequent segments are treated the
same as Common segments.

62

-
(; /

Chapter 4 / Action: Instructions and Directives

NOTE

This feature is not supported by MS-LINK. MS-LINK treats Memory segments
the same as Public segments.

AT <exp>

The segment is placed at the PARAGRAPH address specified in <exp>. The
expression may not be a forward reference. Also, you may not use the AT type to
force loading at fixed addresses. Rather, the AT combine type lets you define
labels and variables at fixed offsets within fixed areas of storage, such as ROM or
the vector space in low memory.

NOTE
This restriction is imposed by MS-LINK and MS-DOS.
You must enclose ciass names (any legal name) in quotation marks.

You may nest segment definitions. When segments are nested, the MS-
Assembler acts as if they are not and handles them sequentially by appending
the second part of the split segment to the first. At ENDS for the split segment,
the MS-Assembler takes up the nested segment as the next segment, completes
it, and goes on to subsequent segments. You may not use overlapping segments.

For example:

A SEGMENT A SEGMENT
B SEGMENT A ENDS
B SEGMENT
—_—
B ENDS .
B ENDS
A SEGMENT
A ENDS
A ENDS

Chapter 4 / Action: Instructions and Directives

The following arrangement is not allowed:

A SEGMENT
B S.EGMENT
A E-NDS ;This is illegal!
B ENDS
Example:

In module A:

SEGA SEGMENT PUBLIC ‘CODE’
ASSUME CS:SEGA

SEGA ENDS
END

In module B:

SEGA SEGMENT PUBLIC 'CODE’

ASSUME CS:SEGA
;MS-LINK adds this segment to same named
;segment in module A (and others) if class

. ;name is the same.
SEGA ENDS

END
STRUC
<structurename> STRUC
<structurename> ENDS

The STRUC directive is very much like RECORD, except STRUC has a multiple
byte capability. The allocation and initialization of a STRUC block are the same
as for RECORDs.

64

Chapter 4 / Action: Instructions and Directives

Inside the STRUC/ENDS block, you may allocate space with the Define direc-
tives (DB, DW, DD, DQ, DT). The Define directives and Comments set off by
semicolons (;) are the only statement entries allowed inside a STRUC block.

Any label on a Define directive inside a STRUC/ENDS block becomes a
<fieldname> of the structure. (This is how structure fieldnames are defined.)
Initial values given to fieldnames in the STRUC/ENDS block are default values
for the various fields. Some field values can be overridden; others cannot. A
simple field, a field with only one entry (but not a DUP expression), can be
overridden. A multiple field, a field with more than one entry, cannot be
overridden. For example:

FOO DB 1,2 :cannot be
;overridden

BAZ DB 10 DUP(?) ;cannot be
;overridden

Z00 DB 5 ;can be
;overridden

If the <exp> following the Define directive contains a string, it may be
overridden by another string. However, if the overriding string is shorter than
the initial string, the MS-Assembler pads with spaces. If the overriding string is
longer, the MS-Assembler truncates the extra characters.

Usually, structure fields are used as operands in some expression. The format
for a reference to a structure field is:

<variable>.<field>

<variable> represents an anonymous variable, usually set up when the struc-
ture is allocated. To allocate a structure, use the structure name as a directive
with a label (the anonymous variable of a structure reference) and any override
values in angle brackets:

FOO STRUCTURE
FOO ENDS
GOO FOO <,7,,'JOE>

.<field> represents a label given to a DEFINE directive inside 2a STRUC/ENDS
block (you must code the period). The value of <field> will be the offset
within the addressed structure.

65

Chapter 4 | Action: Instructions and Directives

Example:

To define a structure:

S STRUC

FIELD1 DB 1,2 ;cannot be
;overridden

FIELD2 DB 10 DUP(?) :cannot be
;overridden

FIELD3 DB 5 ;can be overridden

FIELD4 DB ‘DOBOSKY’ ;can be overridden

S ENDS

The Define directives in this example define the fields of the structure, and the
order corresponds to the order values that are given in the initialization list
when the structure is allocated. Every Define directive statement line inside a
STRUC block defines a field, whether or not the field is named.

To allocate the structure:

DBAREA S <, ,7,/ANDY"'> ;overrides 3rd and
14th fields only

To refer to a structure:

MOV AL,[BX].FIELD3
MoV AL,DBAREA.FIELD3

4.2.2 Conditional Directives
Conditional directives let you design blocks of code that test for specific conditions.
All conditionals follow the format:

IFxxxx [argument]
[ELSE

-]
ENDIF
Each IFxxxx must have a matching ENDIF to terminate the conditional. Otherwise, an M

“Unterminated conditional” message is generated at the end of each pass. An ENDIF “w
without a matching IF causes a Code 8, “Not in conditional block” error.

66

Chapter 4 / Action: Instructions and Directives

Each conditional block may include the optional ELSE directive, which allows alter-
nate code to be generated when the opposite condition exists. Only one ELSE is
permitted for a given IF. An ELSE is always bound to th¢ most recent, open IF. A
conditional with more than one ELSE or an EILSE without a conditional will cause a
Code 7, “Already had ELSE clause” error.

You may nest conditionals up to 255 levels. Any argument to a conditional must be
known on Pass 1 to avoid Phase errors and incorrect evaluation. For IF and IFE, the
expression must involve values that were previously defined. and the expression must
be absolute. If the name is defined after an IFDEF or IFNDEF, Pass 1 considers the name
undefined, but it is defined on Pass 2.

The MS-Assembler evaluates the conditional statement to TRUE (which equals any
nonzero value), or to FALSE (which equals 0000H). If the evaluation matches the
condition defined in the conditional statement, the MS-Assembler either assembles
the whole conditional block or, if the conditional block contains the optional ELSE
directive, assembles from IF to ELSE; the ELSE to ENDIF portion of the block is
ignored. If the evaluation does not match, the MS-Assembler either ignores the
conditional block completely or, if the conditional block contains the optional ELSE
directive, assembles only the ELSE to ENDIF portion; the IF to ELSE portion is ignored.

The following is a list of MS-Assembler conditional directives:

‘ IF <exp>

If <exp> evaluates to nonzero, the statements within the conditional block are
assembled.

IFE <exp>
If <exp> evaluates to 0, the statements in the conditional block are assembled.
IF1 Pass 1 Conditional

If the MS-Assembler is in Pass 1, the statements in the conditional block are
assembled. IF1 takes no expression.

IF2 Pass 2 Conditional

If the MS-Assembler is in Pass 2, the statements in the conditional block are
assembled. IF2 takes no expression.

IFDEF <symboil>

If the <symbol> is defined or has been declared External, the statements in the
conditional block are assembled.

67

Chapter 4 / Action: Instructions and Directives

IFNDEF <symbol>

iIf the <symbol> is not defined or not declared External, the statements in the
conditional block are assembled.

IFB <arg>
You must enclose <arg> with angle brackets.

If the <arg> is blank (none given) or null (two angle brackets with nothing in
between <>), the statements in the conditional block are assembled.

You normally use IFB (and IFNB) inside macro blocks. The expression follow-
ing the IFB directive is typically a dummy symbol. When the macro is called, the
dummy is replaced by a parameter passed by the macro call. If the macro call
does not specify a parameter to replace the dummy following IFB, the expres-
sion is blank, and the block is assembled. (IFNB is the opposite case.) For further
information, see Section 4.2.3, “Macro Directives.”

IFNB <arg>
You must enclose <arg> with angle brackets.
If <arg> is not blank, the statements in the conditional block are assembled.

You normally use IFNB (and IFB) inside macro blocks. The expression follow- w
ing the IFNB directive is typically 2 dummy symbol. When the macro is called, g
the dummy is replaced by a parameter passed by the macro call. If the macro

call specifies a parameter to replace the dummy following IFNB, the expression

is not blank, and the block is assembled. (IFB is the opposite case.) For further
information, see Section 4.2.3, “Macro Directives.”

IFIDN <argl>,<arg2>
You must enclose <argl> and <arg2> with angle brackets.

If the string <argl> is identical to the string <arg2>, the statements in the
conditional block are assembled.

You normally use IFIDN (and IFDIF) inside macro blocks. The expression
following the IFIDN directive is typically two dummy symbols. When the
macro is called, the dummys are replaced with parameters passed by the macro
call. If the macro call specifies two identical parameters to replace the dummys,
the block is assembled. (IFDIF is the opposite case.) For further information, see
Section 4.2.3, “Macro Directives.”

IFDIF <argl>,<arg2>

You must enclose <argl> and <arg2> with angle brackets.

68

Chapter 4 / Action: Instructions and Directives

If the string <argl> is different from the string <arg2>, the statements in the
conditional block are assembled.

You normally use IFDIF (and IFIDN) inside macro blocks. The expression
following the IFDIF directive is typically two dummy symbols. When the macro
is called, the dummys are replaced by parameters passed by the macro call. If
the macro call specifies two different parameters to replace the dummys, the
block is assembled. (IFIDN is the opposite case.)

ELSE

The ELSE directive lets you generate alternate code when the opposite condi-
tion exists. You may use ELSE with any conditional directive. You may use only
one ELSE for each IFxxx conditional directive. ELSE takes no expression.

ENDIF

This directive terminates a conditional block. You must give an ENDIF directive
for every IFxxxx directive used. ENDIF takes no expression. ENDIF closes the
most recent, unterminated IF.

4.2.3 Macro Directives

Macro directives let you write blocks of code that can be repeated without recoding.
The blocks of code begin with either the macro definition directive or one of the
repetition directives, and they end with the ENDM directive. You may use all macro
directives inside a macro block. The number of macros you may nest is limited only by
memory.

The macro directives of the MS-Assembler include:

macro definition:
MACRO

termination:
ENDM
EXITM

unique symbols within macro blocks:
LOCAL

undefine a macro:
PURGE

repetitions:
REPT (repeat)
IRP (indefinite repeat)
IRPC (indefinite repeat character)

69

Chapter 4 | Action: Instructions and Directives

The macro directives also include some special macro operators:

& (ampersand)

;3 (double semicolon)

! (exclamation mark)

% (percent sign)
Macro Definition

<name> MACRO [<dummy> ,...]

ENDM'
The block of statements from the MACRO statement line to the ENDM state-
ment line constitute the body of the macro, or the macro’s definition.

<name> is like a label and conforms to the rules for forming symbols. After you
define the macro, you use <mame> to invoke the macro.

You form a <dummy> just as you form any other name. A <dummy> is a place
holder that is replaced by a parameter in a one-for-one text substitution when
you use the macro block. You should include all <dummy>s used inside the
macro block on this line. The number of <dummy>s is limited only by the
length of a line. If you specify more than one <dummy>, you must separate
them with commas. The MS-Assembler interprets a series of <dummy>s the
same as any list of symbol names.

NOTE

A <dummy> is always recognized exclusively as a dummy. Even if a register
name (such as AX or BH) is used as a <dummy>, it is replaced by a parameter
during expansion.

One alternative is to list no <dummy>s:

<name> MACRO

This type of mucro block lets you call the block repeatedly, even if you do not
want or need to pass parameters to the block. In this case, the block contains no
<dummy>s.

A macro block is not assembled when it is encountered. Rather, when you call a
macro, the MS-Assembler “expands” the macro call statement by bringing in
and assembling the appropriate macro block.

70

Chapter 4 / Action: Instructions and Directives

MACRO is an extremely powerful directive. With it, you can change the value

and effect of any instruction mnemonic, directive, label, variable, or symbol.

. When the MS-Assembler evaluates a statement, it first looks at the macro table it

Q‘/ builds during Pass 1. If it sees a name there that matches an entry in a statement,

it acts accordingly. (Remember: The MS-Assembler evaluates macros, then
instruction mnemonics/directives.)

If you want to use the TITLE, SUBTTL, or NAME directives for the portion of
your program where a macro block appears, be careful about the form of the
statement. If, for example, you enter SUBTTL MACRO DEFINITIONS, the
MS-Assembler assembles the statement as a macro definition with SUBTTL as
the macro name and DEFINITIONS as the dummy. To avoid this problem, alter
the word MACRO in some way, for example, MACRO, MACROS, and so on.

Calling a Macro
To use a macro, enter 2 macro call statement:
<name> [<parameter> ,...]

<name> is the <name> of the macro block. A <parameter> replaces a
< dummy> on a one-for-one basis. The number of parameters is limited only by
the length of a line. If you enter more than one parameter, you must separate
them with commas, spaces, or tabs. If you place angle brackets around param-
eters separated by commas, the MS-Assembler passes all items inside the angle
brackets as a single parameter. For example:

FOO 1,2,3,4,5

passes five parameters to the macro, but
FOO <1,2,3,4,5>
passes only one.

The number of parameters in the macro call statement need not be the same as
the number of <dummy=>s in the MACRO definition. If there are more param-
eters than <dummy>s, the extras are ignored. If there are fewer, the cxtra
<dummy=>s are made null. The assembled code includes the macro block after
each macro call statement.

71

Chapter 4 | Action: Instructions and Directives

Example:
GEN MACRO XX,YY,ZZ
MOV AX,XX
ADD AX,YY
MoV ZZ,AX
ENDM
If you then enter a macro call statement:
GEN DUCK,DON,FOO
the MS-Assembler generates the statements:
MOV AX,DUCK
ADD AX,DON
MOV FOO,AX

On your program listing, these statements are preceded by a plus sign (+) to
indicate that they came from a2 macro block.

End Macro
ENDM
ENDM tells the MS-Assembler that the MACRO or Repeat block is ended.

You terminate every MACRO, REPT, IRP, and IRPC with the ENDM directive.
Otherwise, the “Unterminated REPT/IRP/IRPC/MACRO"” message is generated
at the end of each pass. An unmatched ENDM also causes an error.

If you wish to be able to exit a MACRO or repeat block before expansion is
complete, use EXITM.

Exit Macro
EXITM

You use the EXITM directive inside a MACRO or Repeat block to terminate an
expansion when some condition makes the remaining expansion unnecessary
or undesirable. You usually use EXITM in conjunction with a conditional
directive.

When an EXITM is assembled, the expansion is exited immediately. Any re-
maining expansion or repetition is not generated. If the block containing the
EXITM is nested within another block, the outer level continues to be ex-
panded.

72

Chapter 4 / Action: Instructions and Directives

Example:

FOO MACRO X

X =]
REPT X

X = X+1
IFE X-OFFH jtest X
EXITM ;if true, exit REPT
ENDIF
DB X
ENDM
ENDM

LOCAL

LOCAL <dummy>[,<dummy>...]

You may use the LOCAL directive only inside a macro definition block. A
LOCAL statement must precede all other types of statements in the macro
definition.

When LOCAL is executed, the MS-Assembler creates a unique symbol for each
-~ <dummy> and substitutes that symbol for each occurrence of the <dummy>
(' / in the expansion. You usually use these unique symbols to define a label within
a macro, thus eliminating multiple-defined labels on successive expansions of
the macro. The symbols created by the MS-Assembler range from 220000 to

2?FFFF. Avoid using the form ??nnnn for your own symbols.

73

Chapter 4 / Action: Instructions and Directives

Example:
0000 FUN SEGMENT
ASSUME CS:FUN,DS:FUN
FOO MACRO NUM,Y
LOCAL A,B,C,D,E
A DB 7
B: DB 8
C: DB Y
D: DW Y+1
E DW NUM + 1
JMP A
ENDM
FOO 0C0o0H,0BEH
0000 07 + 770000: DB 7
6001 08 + 770001: DB 8
0602 BE + ?70002: DB 0BEH
0003 0OBF + ??70003: DW OBEH +1
0005 0CO1 + 770004: DW 0CO0H +1
0007 EBF7 + JMP 770000
FOO 03COH,0FFH
G009 07 + ??70005: DB 7
000A 08 + 770006: DB 8
000B FF + ?70007: DB OFFH
0eeC 0100 + ?770008: DW OFFH+1
GO0E 03C1 + 770009: DW @3C0oH +1
0010 EBF7 + JMP 770005
0012 FUN ENDS
END

Notice that the MS-Assembler has substituted LABEL names in the form ??nnnn
for the instances of the dummy symbols.

PURGE

PURGE <macro-name>{(,...]
PURGE deletes the definition of the macro(s) listed after it.
PURGE provides three benefits:

1. It frees text space of the macro body.

2. It returns any instruction mnemonics or directives that were redefined by
macros to their original function.

74

Chapter 4 / Action: Instructions and Directives

Example:
X = 0
REPT 10 ;generates
;DB 1 - DB
10
X = X+1
DB X
ENDM
assembles as:
0000 X = 0
REPT 10 ;generates
;DB 1-DB
10
X = X+1
DB X
ENDM
0000’ 01 + DB X
eootr’ 02 + DB X
0002’ 03 + DB X
0003’ 04 + DB X
0004’ 05 + DB X
0005’ 26 + DB X
0006’ 07 + DB X
0007’ 08 + DB X
0008’ 09 + DB X
0009’ 2A + DB X
END

Indefinite Repeat

IRP <dummy>,<parameters inside angle brackets>

ENDM
You must enclose parameters (any legal symbol, string, numeric, or character
constant) in angle brackets. The block of statements is repeated for each
parameter. Each repetition substitutes the next parameter for every occurrence @
it/

of <dummy> in the block. If a parameter is null (that is, <>), the block is
processed once with a null parameter.

76

Chapter 4 / Action: Instructions and Directives

This example generates the same code (DB 1 to DB 10) as the two previous
examples.

Special Macro Operators

You can use several special operators in a macro block to select additional assembly
functions.

& Ampersand concatenates text or symbols. (You may not us¢ the ampersand ina
macro call statement.) A dummy parameter in a quoted string will not be
substituted in expansion unless preceded immediately by an ampersand. To
form a symbol from text and a dummy, put an ampersand between them.,

For example:

ERRGEN MACRO X

ERROR&X: PUSH BX
MOV BX,'&X’
JMP ERROR
ENDM
The call ERRGEN A will then generate:
ERRORA: PUSH BX
MOV BX,'A’
JMP ERROR

In the MS-Assembler, the ampersand does not appear in the expansion. One
ampersand is removed each time a dummyé& or &dummy is found. For complex
macros, where nesting is involved, you must supply as many ampersands as
there are levels of nesting.

For example:

Correct form Incorrect form
FOO MACRO X FOO MACRO X

IRP Z,<1,2,3> IRP Z,<1,2,3>
X&&Z DB Z X&Z DB Z

ENDM ENDM

ENDM ENDM

When called, for example, by FOO BAZ, the expansion would be { correctly in
the left column, incorrectly in the right):

1. MACRO build, find <dummy>s and change to d1

IRP Z,<1,2,3> IRP 2,<1,2,3>
d1&Z DB Y4 daiz DB Y4
ENDM ENDM

78

Chapter 4 / Action: Instructions and Directives

2. MACRO expansion, substitute parameter text for df

IRP Z,<1,2,3> IRP Z,<1,2,3>
BAZ&Z DB ZBAZZ DB Z
ENDM ENDM
3. IRP build, find dummys and change to d1?
BAZ&d1 DB dait BAZZ DB d1
4. IRP expansion, substitute parameter text for d1
BAZ1 DB 1 BAZZ DB 1
BAZ2 DB 2 BAZZ DB 2
BAZ3 DB 3 BAZZ DB 3

:here it's an error,
:multi-defined symbol

<text>

If you enclose text with angle brackets, the MS-Assembler treats the text as a
single literal. If you place parameters to a macro call inside angle brackets or
place the list of parameters following the IRP directive inside angle brackets,
the following occur:

1. All text within the angle brackets is seen as a single parameter, even if
commas are used.

2. Characters that have special functions are taken as literal characters. For
example, the semicolon inside angle brackets <;> becomes a character,
not the indicator that a comment follows.

One set of angle brackets is removed each time the parameter is used in a
macro. When using nested macros, you must supply as many sets of angle
brackets around parameters as there are levels of nesting,

In a macro or repeat block, a comment preceded by two semicolons is not saved
as a part of the expansion.

The default listing condition for macros is .XALL (see Section 4.2.4, “Listing
Directives,” below). Under the influence of .XALL, comments in macro blocks
are not listed because they do not generate code.

If you decide to place the .LALL listing directive in your program, then com-
ments inside macro and repeat blocks are saved and listed. This can be the cause
of an “out of memory error.” To avoid this error, place double semicolons
before comments inside macro and repeat blocks, unless you specifically want a
comment to be retained.

79

Chapter 4 / Action: Instructions and Directives

! You may enter an exclamation point in an argument to indicate that the next
character is to be taken literally. Therefore, !; is equivalent to <;>.

% The only time you use a percent sign in a macro argument is to convert the
expression that follows it (usually a2 symbol) to a number in the current radix.
During macro expansion, the number derived from converting the expression
is substituted for the dummy. Using the % special operator allows a macro call
by value. (Usually, a macro call is a call by reference, with the text of the macro
argument substituting exactly for the dummy.)

The expression following the % must evaluate to an absolute (nonrelocatable)

constant.
Example:
PRINTE MACRO MSG,N
%OUT * MSG,N *
ENDM
SYM1 EQU 100
SYM2 EQU 200
PRINTE <SYM1 + SYM2 = >,%(SYM1 + SYM2)

Normally, the macro call statement causes the string (SYM1 + SYM2) to be
substituted for the dummy N. The result is:

%0OUT *SYM1 + SYM2 = (SYM1 + SYM2) *
When you place % in front of the parameter, the MS-Assembler generates:

%0OUT * SYM1 + SYM2 = 300 *
4.2.4 Listing Directives

Listing directives perform two general functions: format control and listing control.
Format control directives let the programmer insert page breaks and direct page
headings. Listing directives turn on and off the listing of all or part of the assembled
file.

PAGE

PAGE [<length>][,<width>]
PAGE [+]

PAGE with no arguments or with the optional [,+] argument causes the
assembler to start a new output page. The MS-Assembler puts a form feed
character in the listing file at the end of the page.

80

Chapter 4 / Action: Instructions and Directives

The PAGE directive with either the length or width arguments does not start a
new listing page.

The value of <length>, if included, becomes the new page length (measured in
lines per page) and must be in the range 10 to 255. The default page length is 50
lines per page.

The value of <width>, if included, becomes the new page width (measured in
characters) and must be in the range 60 to 132. The default page width is 80
characters.

The plus sign (+) increments the major page number and rescts the minor
page number to 1. Page numbers are in the form major-minor. The PAGE
directive without the + increments only the minor portion of the page
number.

Example:

PAGE + ;increment major,set minor to 1

PAGE 58,60 page length=58 lines,
;width =60 characters

TITLE
TITLE <text>

TITLE specifics a title to be listed on the first line of each page. The <text> may
be a maximum of 60 characters. If you give more than one TITLE. an error
results. The MS-Assembler recognizes the first six characters of the title, if legal,

as the module name, unless you give a NAME directive.
Example:

TITLE PROG1 — 1st Program

If you do not usc the NAME directive, the module name is now PROG I—1st
Program. This title text appears at the top of every page of the listing.

81

Chapter 4 / Action: Instructions and Directives

SUBTITLE

SUBTTL <text>
SUBTTL specifies a subtitle to be listed in each page heading on the line after the “wu
title. The MS-Assembler truncates the <text> after 60 characters.

You may have any number of SUBTTLs in a program. Each time the MS-
Assembler encounters SUBTTL, it replaces the <text> from the previous
SUBTTL with the <text> from the most recently encountered SUBTTL. To turn
off SUBTTL for part of the output, enter a SUBTTL with a null string for <texr>.

Example:
SUBTTL SPECIAL I/0 ROUTINE

SUBTTL

The first SUBTTL causes the subtitle SPECIAL YO ROUTINE to be printed at the
top of every page. The second SUBTTL turns off subtitle (the subtitle line on the
listing is left blank).

%0UT
% OUT <text>

The screen displays the text during assembly. % OUT is useful for displaying
progress through a long assembly or for displaying the value of conditional
assembly switches.

% OUT outputs on both passes. If you want only one printout, use the IF1 or IF2
directive, depending on which pass you want displayed. See Section 4.2.2,
“Conditional Directives,” for descriptions of the IF1 and IF2 directives.

Example:
%OUT *Assembly half done*

The MS-Assembler sends this message to the terminal screen when encoun-
tered.

IF1
%QUT *Pass 1 started”
ENDIF

82

Chapter 4 / Action: Instructions and Directives

IF2
%0OUT *Pass 2 started*
ENDIF

.LIST

XLIST

.LIST lists all lines with their code (the default condition).
XLIST suppresses all listing,.

If you specify a listing file following the Listing: prompt, the MS-Assembler
prints a listing file with all the source statements.

When the MS-Assembler encounters .XLIST in the source file, it does not list
source and object code. XLIST remains in effect until a .LIST is encountered.

XLIST overrides all other listing directives. Nothing is listed, even if another
listing directive (other than .LIST) is encountered.

Example:

XLIST ;listing suspended here

.LIST listing resumes here
SFCOND

.SFCOND suppresses portions of the listing that contain conditional false
expressions.

.LFCOND

.LFCOND ensures the listing of conditional expressions that evaluate false. This
is the default condition.

.TFCOND

.TFCOND toggles the current setting. .TFCOND operates independently from
.LFCOND and .SFCOND. .TFCOND toggles the default setting, which is set by
the presence or absence of the /X switch when the MS-Assembler is running.
When /X is used, .TFCOND causes false conditionals to list. When /X is not used,
.TFCOND suppresses false conditionals.

Chapter 5

Cross-Reference Utility

5.1 Overview of MS-CREF OPeration.......c.ococccoiiiinreesessese s 83
5.2 Running MS-CREF ...ttt 86
5.2.1 Creating a Cross-Reference File ... 87
5.2.2 HOW 10 Start MS-CREF ..ot 87
5.3 Command CRATACTCTS. ... ess st st 89
5.4 Format of Cross-Reference LISUNESocovvcrcennerceirenececsiseneessssesssassssesssnnsessssnnnns. 89
5.5 Format of MS-CREF Compatible Files......comininsinssss s 91
5.6 MS-CREF Fil€ PrOCCSSINE.oorurreencrieintcniieien et 91
5.7 Format Of SOUTCC FIlCS ...t sssss s ssssssse s 92

Cross-Reference Utility (CREF)
5.1 Overview of MS-CREF

The MS-CREF Cross-Reference Utility can help vou in debugging your assembly
language programs. With MS-CREF you can output an alphabetical listing of all the
symbols to a special file created by your assembler. This listing lets you quickly locate
all occurrences of any symbol in your source program by line number.

To use MS-CREF. you must first create a cross-reference file with the assembler.
MS-CREF then converts this cross-reference file (which has the filename extension
-CRF)into analphabetical listing of the symbols in the file. (The cross-reference listing
file is given the dcfault filename extension (REF.)

Beside cach symbol in the listing, MS-CREF lists the line numbers where the symbol
occurs in the source program. A pound sign (#) indicates the line number where the
symbol is defined.

Figure 7 illustrates the MS-CREF operation.

85

Chapter 5 / Cross Reference Utility (CREF)

source
.ASM
Y
Assembler - listing » MS-CREF
CRF
A 4

listing
.REF

FOO 20 64 123# 145...
GAD 21 45# 49120 ..

5.2 Running MS-CREF

Before you can use MS-CREF to create the cross-reference listing, you must first create
a cross-reference file using your assembler. This step is described in the next section.

86

Chapter 5 / Cross Reference Ultility (CREF)

Examples:
CREF FUN;

This example causes MS-CREF to process the cross-reference file FUN.CRF and
to produce a listing file named FUN.REF.

To give the listing file a different filename, extension, or destination, simply
specify it when you type the command line.

CREF FUN,B:WORK.ARG

This example causes MS-CREF to process the cross-reference file named
RUN.CRF and to produce a listing file named WORK.ARG, which will be placed
on the disk in Drive B.

5.3 Command Characters
MS-CREF provides two command characters.

Semicolon
Use a single semicolon (;), followed immediately by a carriage return, at any
time after responding to the Cross reference: prompt to select the default
response to the Listing: prompt. This feature saves time and eliminates the need
to answer the Listing: prompt.

If you use the semicolon, MS-CREF gives the listing file the filename of the
cross-reference file and the default filename extension .REF.

Example:
Cross reference { .CRF]: FUN;

MS-CREF will process the cross-reference file named FUN.CRF and output a
listing file named FUN.REF.

CONTROL-C
Use at any time to abort the MS-CREF session. If you make a
mistake (for example, typing the wrong filename or incorrectly spelling a
filename), you must press to exit MS-CREF, and then restart
MS-CREF. If you have typed the error but you have not pressed the key.
you may delete the erroneous characters for that line.

5.4 Format of Cross-Reference Listings

The cross-reference listing is an alphabetical list of all the symbols in your program.
Each page begins with the title of the program module. Then the symbols are listed.
Following each symbol name is a list of the line numbers where the symbol occurs in
your program. The line number for the definition has a pound sign (#)appended to it.

89

Chapter 5 / Cross Reference Utility (CREF)

Example Of Cross-Reference Listing

ENTX PASCAL entry for initializing programs comes from
TITLE directive

Symbol Cross-Reference (# is definition) Cref-1
AAAXQQ............ 37# 38

BEGHQQ 83 84# 154 176
BEGOQQ........... 33 162
BEGXQQ............ 113 126# 164 223
CESXQaQ............ 97 99# 129
CLNEQQ............ 67 68#

CODE 37 182
CONST...ccooeeenn. 104 104 105 110
CRCXQQ........... 93 94# 210 215
CRDXQQ 95 96# 216
CSXEQQ............ 65 66# 149
CURHQQ........... 85 86# 155
DATA.................. 64# 64 100 110
DGROUP 110# 111 111 111 127 153
DOSOFF 98# 198 199
posxQQ........... 184 204# 219
ENDHQQ 87 88# 158
ENDOQQ........... 33# 195

ENDUQQ 31# 197
ENDXQQ............ 184 194#
ENDYQQ............ 32# 196
ENTGQQ............ 30# 187
ENTXCM............ 182# 183 221
FREXQQ............ 169 170# 178
HDRFQQ............ 71 72# 151
HDRvQQ............ 73 74# 152

HEAPccooeeeene 42 44 110
HEAPBEG.......... 54# 153 172
HEAPLOW 43 171

INIUQQ 31 161

90

171

172

Chapter 5 / Cross Reference Utility (CREF)

MAIN_START-

UP..iie 109# 111 180

MEMORY 42 48# 48 49 109 110
PNUXQQ............ 69 70 150

RECEQQ............ 81 82#

REFEQQ............ 77 78#

REPEQQ............ 79 80#

RESEQQ............ 75 76# 148

ENTX PASCAL entry for initializing programs

Symbol Cross-Reference (# is definition) Cref-2
SKTOP............... 59#

SMLSTK............. 135 137#

STACK ..o 53# 53 60 110
STARTMAIN 163 186# 200

STKBQQ............ 89 90# 146

STKHQAQ............ N 92# 160

5.5 Format of MS-CREF Compatible Files

MS-CREF will process files other than those generated by MS-Assembler, as long as the
file conforms to the valid MS-CREF format.

5.6 MS-CREF File Processing

MS-CREF reads a stream of bytes from the cross-reference file (or source file), sorts
them, then outputs them as a printable listing file (the .REF file). The symbols are held
in memory as a sorted tree. References to the symbols are held in a linked list.

MS-CREF keeps track of line numbers in the source file by the number of end-of-line
characters it encounters. Therefore, every line in the source file must contain at least
one end-of-line character (see the chart later in this section).

MS-CREF places a heading at the top of every page of the listing. The name MS-CREF
uses is passed by your assembler from a TITLE (or similar) directive in your source
program. The title must be followed by a title symbol (see chart below). If MS-CREF
encounters more than one title symbol in the source file, it will use the last title read
for all page headings. If MS-CREF does not encounter a title symbol in the file, the title
line on the listing will be blank.

91

Chapter 5 / Cross Reference Utility (CREF)

5.7 Format of Source Files

MS-CREF uses the first three bytes of the source file as format specification data. The
rest of the file is processed as a series of records that either begin or end with a byte
that identifies the type of record.

First Three Bytes

The PAGE directive in your assembler, which takes arguments for page length and line
length, will pass the following information to the cross-reference file:

First Byte
The number of lines to be printed per page (page length range is from 1 to 255
lines).

Second Byte
The number of characters per line (line length range is from 1 to 132
characters).

Third Byte
The Page Symbol (07) that tells MS-CREF that the two preceding bytes define
listing page size.

If MS-CREF does not find these first three bytes in the file, it uses default values for page
size (page length is 58 lines; line length is 80 characters).

Control Symbols

‘The two tables below show the types of records that MS-CREF recognizes and the byte
values and placement it uses to recognize record types.

Records have a control symbol (which identifies the record type) either as the first
byte of the record or as the last byte.

Records That Begin with a Control Symbol

Byte

Value* Control Symbol Subsequent Bytes

o1 Reference symbol Record is a reference to a sym-
bol name (1 to 80 characters)

02 Define symbol Record is a definition of a sym-
bol name (1 to 8@ characters)

04 End-of-line (none)

05 End-of-file 1AH

92

The 8086/8088 Instruction Set

Instruction Statement Formats

The format for the instruction statement was introduced in Chapter 4. The format is
shown below:

|'abel:| [prefix] mnemonic [operand {, operand])

This chapter describes the 8086/8087/8088 instruction set. The instruction set con-
sists of a sel of mnemonics that select different machine operations. The instruction
set encyclopedia at the end of this chapter describes cach of these mnemonics, their
operations, and allowed operands.

Addressing Modes

The 8086 instruction set provides several different ways to address operands. Mosl
two-operand instructions allow cither memory or a regisier to serve as one operand,
and either a register or a constant within the instruction to serve as the other
operand. Memory (o memory operations are excluded.

Operands in memory may be addressed dircctly with a 16-bit offset address, or
indirectly with base (BX or BP) and/or indev (S or DI) registers added 1o an
optional 8- or 16-bit displacement constant. This constant can be the name of a
variable or a pure number. When a name is used. the displacement constant is the
variable’s offset {(see Chapter 4).

The result of a two-operand operation may be directed to either memory or a
register. Single-operand operations are applicable uniformly to any operand except
immediate constants. Virtually all 8086 operations may specify either 8- or 16-bit
operands.

Memory Operands

Operands residing in memory may be addressed in four ways:
e Direct 16-bit offset address

¢ Indirect through a base register, BX or BP, optionally with an 8- or 16-bit
displacement

e Indirect through an index register, SI or DI, optionally with an 8- or 16-bit
displacement

e Indirect through the sum of one base register and one index register, optionally
with an 8- or 16-bit displacement.

The location of an operand in an 8086 register or in memory is specified by up to

three fields in each instruction. These fields are the mode field (mod), the register

field (reg), and the register/memory field (r/m). When used, they occupy the sccond

byte of the instruction sequence. This byte is referred to as the Modrm byte of the

instruction.

All mnemonics copyright Intel Corporation 1983
96

The mode field occupies the two most significant bits, 7 and 6, of the byte, and
specifies how the r/m field (bits 2, 1, 0) is used in locating the operand. The r/m
field can name a register that holds the operand or can specify an addressing mode
(in combination with the mod field) that points to the location of the operand in
memory. The reg field occupies bits 5, 4, and 3 following the mode field, and can
specify that one operand is either an 8-bit register or a 16-bit register. In some
instructions, this reg field gives additional bits of information specifying the instruc-
tion, rather than only encoding a register.

Description

The effective address (EA) of the memory operand is computed according to the
mod and r/m fields:

iimod = 00 then DISP = 0", disp-low and disp-high are absent
ifmod = 01then DISP = disp-low sign-extended to 16 bits, disp-high is absent
ifmod = 10 then DISP = disp-high:disp-low

ifr/m = 000then EA = (BX) + (SI) + DISP

ifr/im = 001then EA = (BX) + (DI) + DISP

ifrim = 010then EA = (BP) + (SI) + DISP

ifr/m = 011then EA = (BP) + (DI) + DISP

ifr/im = 100then EA = (SI) + DISP

itr/m = 101then EA = (DI) + DISP

ifr/m = 110then EA = (BP) + DISP*

ifr/m = 111then EA = (BX) + DISP

*exceptif mod =00and r/m = 110 then
EA = disp-high: disp-low

Instructions referencing 16-bit objects interpret EA as addressing the low-order
byte; the word is addressed by EA+1,EA.

Encoding

Imodregr/ml disp-low l disp-high

Segment Override Prefixes

General register BX and pointer register BP may serve as base registers. When BX is
the base the operand by default resides in the current Data Segment and the DS
register is used 10 compute the physical address of the operand. When BP is the
base, the operand by default resides in the current Stack Segment and the SS seg-
ment register is used to compute the physical address of the operand. When both
base and index registers are used, the operand by default resides in the segment
determined by the base register, i.e., BX means DS is used, BP means SS is used.
When an index register alone is used, the operand by default resides in the current
Data Segment. The physical address of most other memory operands is by default
computed using the DS segment register (exceptions are noted below). These
assembler-default segment register selections may be overridden by preceding the
referencing instruction with a segment override prefix.

Description

The segment register selected by the reg field of a segment prefix is used to compute
the physical address for the instruction this prefix precedes. This prefix may be com-
bined with the LOCK and/or REP prefixes, although the latter has certain require-
ments and consequences—see REP.

All mnemonics copyright Intel Corporation 1983

9-7

Encoding

001reg110

reg is assigned according to the following table:

Segment
00 ES
01 Cs
10 S8
1" DS

Exceptions

The physical addresses of all operands addressed by the SP register are computed
using the SS segment register, which may not be overridden. The physical addresses
of the destination operands of the string primitive operations (those addressed by
the DI register) are compuled using the ES segment, which may not be overridden.

Register Operands

The four 16-bit general registers and the four 16-bit pointer and index registers may
serve interchangeably as operands in nearly all 16-bit operations. Three exceptions
to note are multiply, divide, and some string operations, which use the AX register
implicitly. The eight 8-bit registers of the HL group may serve interchangeably in 8-
bit operations. Multiply, divide, and some string operations use AL implicitly.
Description

Register operands may be indicated by a distinguished field, in which case REG will
represent the selected register, or by an encoded field, in which case EA will repre-
sent the register selected by the r/m field. Instructions without a *‘w’’ bit always
refer to 16-bit registers (if they refer to any register at all); those with a ‘‘w’’ bit refer
to either 8- or 16-bit registers according to “w’’.

Encoding

General Registers:
Distinguished Field:
reg or reg
for mode = 11 EA = r/m (a register):
11 reg

REG is assigned according to the following table:

16-Blt [w = 1) 8-Bit[w = 0]
000 AX 000 AL
001 CX 001 CL
010 DX 010 DL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 0Ol 111 BH

All mnemonics copyright Intel Corporation 1983

98

Instructions that reference the flag register file as a 16-bit object use the symbol
FLAGS to represent the file:

FLAGS XCX:X:X:(OF):(DF):(IF):(TF)Y:(SF):(ZF): X:(AF):X:(PF): X:(CF)

where X is undefined.

Immediate Operands

All two-operand operations except multiply, divide, and the string operations allow
one source operand to appear within the instruction as immediate data. Sixteen-bit
immediate operands that have a high-order byte that is the sign extension of the low-
order byte may be abbreviated to cight bits.

Three points about immediate operands:

* Immediate operands always foflow addressing mode displacement constants
(when present) in the instruction.

* The low-order bvie of 16-bit immediate operands always precedes the
high-order byte.

* The 8-bit immediate operands of instructions with s:w = 11 are sign-extended to
16-bit values.

String Instructions and Memory References

Table 6-1 shows the mnemonics of the string instructions that can be coded without
operands (MOVSB, MOVSW | etc.) or with operands (MOVS. etc.).

The string instructions are unusual in several respects:
1. Before coding a string instruction, vou must:
® Load SI with the offset of the source string.
* Load DI with the offset of the destination string.

2. Oneof the forms of REP (REP. REPZ, REPE, REPNE. REPNZ) can be coded
immediately preceding (but separated from by at least one blank) the primitive
string operation mnemonic (thus, REPNZ SCASW is one possibility). This
specifies that the string operation is 10 be repeated the number of times deter-
mined by CX. (Refer to instruction descriptions.)

3. Each can be coded with or without symbolic memory operands.

* If symbolic operands are coded. the assembler can check the addressability
of the operands.

Table 6-1. String Instruction Mnemonics

Operation Mnemonic if Mnemonic if Mnemonic if
Being Operand Is Operand Is Symbolic Operands
Performed Byte String Word String Are Coded*
Move MOVSB MOVSW MOVS
Compare CMPSB CMPSW CMPS
Load AL/AX LODSB LODSW LODS
Store from AL/ AX STOSB STOSW STOS
Compare to AL/AX SCASB SCASW SCAS
Block Input INSB INSW INS
Block Qutput ouTSB ouTSW ouTs

“If symbolic operands are coded. the assembler can check their addressability. Also. their
TYPEs determine the opcode generated.

All mnemonics copyright Intel Corporation 1983

99

* Anonymous references that use the hardware defaults should be coded
using the operand-less forms (e.g. MOVSB, MOVSW), 10 avoid the
cumbersome (but otherwise required):

MOVS ES:BYTE PTR [DI], [SI]
as opposed to the simple:

Movss

* Anonymous references that do not use the hardware defaults require both
segment and type to be explicitly specified:

MOVS ES:BYTE PTR [DI], S§S:(SI]

* Never use [BX] or [BP] addressing modes with string instructions.

4. If the instruction mnemonic is coded without operands (e.g., MOVSB,
MOVSW), then the segment register defaults are as follows:

e Sidefaults to an offset in the segment addressed by DS,
e Dlisrequired to be an offset in the segment addressed by ES.

Thus, the direction of data flow for the default case in which no operands are
specified is from the segment addressed by DS to the segment addressed by ES.

5. If the instruction mnemonic is coded with operands (e.g. MOVS, CMPS), the
operands can be anonymous (indirect) or they can be variable references.

Example:

DESTSTRING EQU ES:BYTE PTR [DI]
SRCSTRING EQU DS:BYTE PTR ([SI]
ASSUME CS:CODE, DS:DATA, ES:DATA1
DATA SEGMENT

SRCARRAY DB 10 DUP (1)

DATA ENDS

DATA1 SEGMENT

DESTARRAY DB 10 DUP (?)

DATA1 ENDS

CODE SEGMENT
MOV AX, DATA

MOV DS, AX ;INIT DS
MOV AX, DATA1
MOV ES, AX +INIT ES

MOV ST, OFFSET SRCARRAY
MOV DI, OFFSET DESTARRAY

;INIT POINTER REGISTERS

Moy Cx, 10 ;NUMBER OF ELEMENTS
REP MOVS DESTSTRING, SRCSTRING

All mnemonics copyright Iritel Corporation 1983

100

;PERFORM STRING OPERATION

CODE ENDS

Mnemonic Synonyms

There are some machine operations that can have different mnemonics. The dif-
ferent mnemonics are all synonyms in that they refer to the same machine instruc-
tions. They are supplied by the assembler to allow you to think of the operation in
terms that are more helpful for your task. Many. of the conditional jump instruc-
tions have more than one mnemonic. When used after a compare, the conditional
jump mnemonic can express the type of compare or the result of the compare in
terms of the flags that were set. For example,

CMP DEST, SRC
JE LAB1 ;jump if dest is equal to source

or

CMP DEST, SRC
Jz LAB1 ;jump if zero flag set (dest = src)

In both cases, the same instruction will be encoded for the jump. Programmers
familiar with other assembly languages that use conditional jump mnemonics that
refer 1o flags may be more comfortable using this form. However, the first form that
expresses the relationship the compare is checking between the operands is more
expressive.

Organization of the Instruction Set

Instructions are described in this section in six functional groups:
¢ Datatransfer

¢ Arithmetic

* Logic

¢ String manipulation

¢ Control transfer

¢ Processor control

Each of the first three groups mentioned in the preceding list is further subdivided
into an array of codes that specify whether the instruction is to act upon immediate
data, register or memory locations, whether 16-bit words, or 8-bit bytes are to be
processed, and what addressing mode is to be employed. All of these codes are listed
and explained in detail, but you do not have to code each one individually. The con-
text of your program automatically causes the assembler to generate the correct
code. There are three general categories of instructions within each of the three func-
tional groups mentioned:

1. Register or memory space 1o or from register
2. Immediate data 10 register or memory
3. Accumulator 1o or from registers, memory, or ports

All mnemonics copyright Intel Corporation 1983

101

Data Transfer

Data transfer operations are divided into four classes:
general purpose

accumulator-specific

address-object

W N -

flag

None affect flag settings except SAHF and POPF.

General Purpose Transfers

Four general purpose data transfer operations are provided. These may be applied
to most operands, though there are specific exceptions. The general purpose
transfers (except XCHQ) are the only operations that allow a segment register as an
operand.

— MOV performs a byte or word transfer from the source (rightmost) operand to
the destination (leftmost) operand.

— PUSH decrements the SP register by two and then transfers a word from the
source operand 1o the stack element currently addressed by SP.

— POP transfers a word operand from the stack element addressed by the SP
register to the destination operand and then increments SP by 2.

— XCHG exchanges the byte or word source operand with 1he destination operand.
The segment registers may not be operands of XCHG.

Accumulator-Specific Transfers
Three accumulator-specific transfer operations are provided:

— IN transfers a byte {(or word) from an input port to the AL register (or AX
register). The port is specified either with an inline data byte, allowing fixed
access to ports 0 through 255, or with a port number in the DX register. allowing
variable access to 64K input ports.

— OUT is similar to [N e¢xcept that the transfer is from the accumulator to the
output port.

— XLAT performs a table lookup byte (ranslation. The Al register is used as an
index into a 256-byte table addressed by the BX register. The byte operand so
selected is transferred 1o AL.

Address-Object Transfers
Three address-object transfer operations are provided:

— LEA (load effective address) transfers the offset address of the source operand to
the destination operand. The source operand must be a memory operand and the
destination operand must be a 16-bit general, pointer, or index register.

— L.DS (load pointer into DS) transfers a *‘pointer-object’ (i.c., a 32-bit object
containing an offset address and a segment address) from the source operand
(which must be a doubleword memory operand) to a pair of destination registers.
The segment address is transferred to the DS segment register. The offset address
is transferred 10 the 16-bit general, pointer, or index register that you coded.

— LES (load pointer into ES) is similar to LDS except that the segment address is
transferred to the ES segment register.

All mnemonics copyright Intel Corporation 1983
102

Flag Register Transfers

Four flag register transfer operations are provided:

— LAHF (load AH with flags) transfers the flag registers SF. ZF, AF, PF, and CF
(the 8080 flags) into specific bits of the AH register.

— SAHF (store AH into flags) transfers specific bits of the AH register to the flag
registers, SF, ZF, AF, PF, and CF.

— PUSHF (push flags) decrements the SP register by two and transfers all of the
flag registers into specific bits of the stack element addressed by SP.

— POPF (pop flags) transfers specific bits of the stack element addressed by the SP
register to the flag registers and then increments SP by two.

Arithmetic

The 8086/8088 provides the four basic mathematical operations in a number of dif-
ferent varieties. Both 8- and 16-bit operations and both signed and unsigned
arithmetic are provided. Standard twos complement representation of signed values
is used. The addition and subtraction operations serve as both signed and unsigned
operations. In these cases the flag settings allow the distinction between signed and
unsigned operations to be made (see Conditional Transfer). Correction operations
are provided to allow arithmetic to be performed directly on unpacked decimal
digits or on packed decimal representations.

Flag Register Settings

Six flag registers are set or cleared by arithmetic operations to reflect certain proper-

tics of the result of the operation. They generally follow these rules (see also Appen-

dix C):

— CFisset if the operation results in a carry out of (from addition) or a borrow into
(from subtraction) the high-order bit of the result; otherwise, CF is cleared.

— AF is set if the operation results in a carry out of (from addition) or a borrow into
(from subtraction) the low-order four bits of the result; otherwise, AF is cleared.

— ZF issetif the result of the operation is zero; otherwise, ZF is cleared.

— SF is set if the high-order bit of the result of the operation is set; otherwise, SF is
cleared.

— PF is set if the modulo 2 sum of the low-order cight bits of the result of the
operation is 0 (even parity); otherwise, PF is cleared (odd parity).

— OF is set if the operation results in a carry into the high-order bit of the result but
not a carry out of the high-order bit, or vice versa; otherwise, OF is cleared.

Addition
Five addition operations are provided:

— ADD performs an addition of the source and destination operands and returns
the result 1o the destination operand.

— ADC (add with carry) performs an addition of the source and destination
operands. adds one if the CF flag is found previously set, and returns the result 1o
the destination operand.

— INC (increment) performs an addition of the source operand and one, and
returns the result to the operand.

— AAA (unpacked BCD (ASCIHI) adjust for addition) performs a correction of the
result in AL of adding two unpacked decimal operands, yielding an unpacked
decimal sum.

— DAA (decimal adjust for addition) performs a correction of the result in AL of
adding two packed decimal operands, vielding a packed decimal sum.

All mnemonics copyright Intel Corporation 1983

103

Subtraction
Seven subtraction operations are provided:

— SUB performs a subtraction of the source from the destination operand and
returns the result to the destination operand.

— SBB (subtract with borrow) performs a subtraction of the source from the
destination operand, subtracts one if the CF flag is found previously set, and
returns the result to the destination operand.

— DEC (decrement) performs a subtraction of one from the source operand and
returns the result to the operand.

— NEG {(negate) performs a subtraction of the source operand from zero and
returns the result to the operand.

— CMP (compare) performs a subtraction of the source destination operand,
causing the flags to be affected, but does not return the result.

— AAS (unpacked BCD (ASCII) adjust for subtraction) performs a correction of
the result in AL of subtracting two unpacked decimal operands, vielding an
unpacked decimal difference.

— DAS (decimal adjust for subtraction) performs a correction of the result in AL of
subtracting two packed decimal operands, yielding a packed decimal difference.

Multiplication
Three multiplication operations are provided:

— MUL performs an unsigned multiplication of the accumulator (AL or AX) and
the source operand, returning a double length result 10 the accumulator and its
extension (AL and AH for 8-bit operation, AX and DX for 16-bit operation). CF
and OF are set if the top half of the result is non-zero.

— IMUL (integer multiply) is similar to MUL except that it performs a signed
multiplication. CF and OF are set if the top half of the result is not the sign-
extension of the low half of the result.

— AAM (unpacked BCD (ASCII) adjust for multiply) performs a correction of the
result in AX of multiplying two unpacked decimal operands, viclding an
unpacked decimal product.

Division
There are three division operations provided and two sign-cxtension operations 10
support signed division:

— DIV performs an unsigned division of the accumulator and its extension (AL and
AH for 8-bit operation, AX and DX for 16-bit operation) by the source operand
and returns the single length quotient to the accumulator (AL or AX), and
returns the single length remainder to the accumulator extension (AH or DX).
The flags are undefined. Division by zero generates an interrupt of type 0.

— IDIV (integer division) is similar to DIV except that it performs a signed division.

— AAD (unpacked BCD (ASCII) adjust for division) performs a correction of the
dividend in AL before dividing two unpacked decimal operands, so that the result
will yield an unpacked decimal quotient.

— CBW (convert byte to word) performs a sign extension of AL into AH.
— CWD (convert word to double word) performs a sign extension of AX into DX.

All mnemonics copyright Intel Corporation 1983

104

Logic
The 8086/8088 provides the basic logic operations for both 8- and 16-bit operands.

Single-Operand Operations. Three-single-operand logical operations are provided:

— NOT forms the one’s complement of the source operand and returns the result to
the operand. Flags are not affected.

— Shift operations of four varieties are provided for memory and register operands:
SHL (shift logical left), SHR (shift logical right), SAL (shift arithmetic left), and
SAR (shift arithmetic right). Single bit shifts, and variable bit shifts with the shift
count taken from the CL register are available. The CF flag becomes the last bit
shifted out, OF is defined only for shifts with count of 1, and is set if the final
sign bit value differs from the previous value of the sign bit, and PF, SF, and ZF
are set to reflect the resulting value.

— Rotate operations of four varieties are provided for memory and register
operands: ROL (rotate left), ROR (rotate right), RCL (rotate through CF left),
and RCR (rotate through -CF right). Single bit rotates, and variable bit rotates
with the rotate count taken from the CL register, are available. The CF flag
becomes the last bit rotated cut; OF is defined only for shifts with count of 1, and
is set if the final sign bit value differs from the previous value of the sign bit.

Two-Operand Operations

Four two-operand logical operations are provided. The CF and OF flags are cleared
on all operations; SF, PF, and ZF reflect the result.

— AND performs the bitwise logical conjunction of the source and destination
operand and returns the result to the destination operand.

— TEST performs the same operations as AND, causing the flags to be affected but
does not return the result.

— OR performs the bitwise logical inclusive disjunction of the source and
destination operand and returns the result to the destination operand.

— XOR performs the bitwise logical exclusive disjunction of the source and
destination operand and returns the result to the destination operand.

String Manipulation

One-byte instructions perform various primitive operations for the manipulation of
byte and word strings (sequences of bytes or words). Any primitive operation can be
performed repeatedly in hardware by preceding its instruction with a repeat prefix
(see REP). The single-operation forms may be combined to form complex string
operations with repetition provided by iteration operations.

Hardware Operation Control

All primitive string operations use the SI register to address the source operands.
The DI register is used to address the destination operands that reside in the current
extra segment. If the DF flag is cleared, the operand pointers are incremented after
each operation, once for byte operations and twice for word operations. If the DF
flag is set, the operand pointers are decremented after each operation. See Processor
Control for setting and clearing DF.

Any of the primitive string operation instructions may be preceded with a one-byte
prefix indicating that the operation is to be repeated until the operation count in CX
is satisfied. The test for completion is made prior to each repetition of the operation.
Thus, an initial operation count of zero in CX will cause zero executions of the
primitive operation.

All mnemonics copyright Intel Corporation 1983

105

The repeat prefix byte also designates a value 1o compare with the ZF flag. If the
primitive operation is one that affects the ZF flag, and the ZF flag is unequal to the
designated value after any execution of the primitive operation, the repetition is ter-
minated. This permits the scan operation, for example, to serve as a scan-while or a
scan-until.

During the execution of a repeated primitive operation, the operand index registers
(Sl and DI) and the operation count register (CX) are updated after each repetition,
whereas the instruction pointer will retain the offset address of the repeat prefix byte
(assuming it immediately precedes the string operation instruction). Thus, an inter-
rupted repeated operation will be correctly resumed when control returns from the
interrupting task.

Using more than one prefix on an instruction is processor dependent. Please refer 1o
the User’s Manual for vour processor for further information.

Primitive String Operation

Iive primitive string operations are provided:

— MOVS (MOVSB, MOVSW) transfers a byie (or word) operand from the source
(rightmost) operand to the destination (leftmost) operand. As a repeated opera-
tion, this provides for moving a string from one location in memory 1o another.

— CMPS (CMPSBH, CMPSW) subtracts the rightmost byte (or word) operand from
the leftmost operand and affects the flags but does not return the result. As a
repeated operation, this provides for comparing two strings. With the appro-
priate repeat prefix it is possible to determine after which siring element the two
strings become unequal, thereby establishing an ordering between the strings.

— SCAS (SCASB, SCASW) subtracts the destination byte (or word) operand from
AL (or AX) and affects the flags but does not return the result. As a repeated
operation, this provides for scanning for the occurrence of, or departure from, a
given value in the siring.

— LODS (LODSB, LODSW) transfers a byte (or word) operand from the source
operand to AL (or AX). This operation ordinarily would not be repeated.

— STOS (STOSD, STOSW) transfers a byte (or word) operand from AL (or AX) to

the destination operand. As a repeated operation, this provides for Tilling a string
with a given value.

In all the cases above, the source operand is addressed by S1 and the destination
operand is addressed by DI. Only in CMPB/CMPW docs the DI-indexed operand
appear as the rightmost operand.

All mnemonics copyright Intel Corporation 1983

100

Software Operation Control

The repeat prefin provides for rapid iteration in a hardware-repeated string opera-
tion. The iteration control operations (see .LOOP) provide this same control for
implementing software loops 1o perform complex string operations. These iteration
operations provide the same operation count update, operation completion test, and
ZF flag tests that the repeat prelix provides.

By combining the primitive string operations and iteration control operations with
other operations, it is possible 10 build sophisticated vet efficient string manipula-
tion routines. One instruction that is particularly useful in this context is XLAT. It
permits a byte fetched from one string 1o be translated before being stored in a sec-
ond string, or before being operated upon in some other fashion. The translation is
performed by using the value in the AL register as an index into a table pointed at by
the BX register. The translated value obtained from the table then replaces the value
initially in the AL register (see NLAT).

Control Transfer

Four classes of control transfer operations may be distinguished: calls, jumps, and
returns; conditional transfers: iteration control; and interrupts.

All control transfer operations cause the program execution 10 continue at some new
location in memory, possibly in a new code segment. Conditional transflers are pro-
vided for targets in the range — 128 to +127 bytes from the transfer.

Calls, Jumps, and Returns

Two basic varieties of calls, jumps, and returns are provided—those that transfer
control within the current code segment, and those that transfer control to an arbi-
trary code scgment. which then becomes the current code segment. Both direct and
indirect transfers are supported: indirect transfers make use of the standard address-
ing modes as described in above.

The three transfer operations are described below.

— CALL pushes the offset address of the next instruction onto the stack (in the case
of an inter-segment transfer the CS segment register is pushed first) and then
transfers control 1o the target operand.

— IMP transflers control to the target operand.

— RET transflers control to the return address saved by a previous CALL operation,
and optionally may adjust the SP register so as to discard stacked parameters.

Intra-scgment direct calls and jumps specily a sell-relative direct displacement, thus
allowing position independent code. A shortened jump instruction is available lor
transfers in the range —128 to +127 bytes from the instruction for code compaction.

Conditional Jumps

The conditional transfers of controt perform a jump contingent upon various
Boolean lunctions of the flag registers. The destination must be within a =128 0
+127 byte range of the instruction. Table 6-2 shows the available instructions, the
conditions associated with them, and their interpretation.

All mnemonics copyright Intei Corporation 1983
107

Table 6-2. 8086/8087 Conditional Transfer Operations

Instruction Condition interpretation
JEorJ2z ZF =1 “‘equal’ or ‘‘zero"’
JL or JNGE {SF xor OF) =1 *'less’” or '‘nol greater or equal’’
JLE or ING ((SF xor OF) or ZF) =

1 Jjess or equal’’ or “‘not greater"
JBor JNAE CF=1 ‘‘below’’ or **not above or equal™
orJC or‘‘carry’’
JBE or JNA (CForZF)=1 “‘below or equal'’ or *'not above™
JPor JPE PF=1 “parity’ or 'parity even’’
JO OF =1 “overflow™
JS SF=1 vsign’t
JNE or JNZ ZF =0 “‘notequal’’ or *not zero™’
JNL or JGE {8F xorOF}=0 “notless’’ or “‘greater or equal’’
JNLE or JG {{SF xor OF) or ZF) =

0 ‘nol less or equal’ or ‘greater”
JNB or JAE CF=0 "nol below'" or "‘above or equal’’
or JNC or*‘nocarry’”
JNBE or JA {CForZF)=0 ‘*not below or equal™ or ‘‘above™’
JNPor JPO PF=0 **not parily”* or “*parity odd"’
JNO OF =0 *‘not overflow™
JNS SF=0 “'not sign"’

‘Above’ and “‘below’ refer to lhe relation belween two unsigned values, while ‘greater”
and “"less’ refer lo Llhe relation between two signed values.

Iteration Control

The iteration control transfer operations perform leading- and trailing-decision loop
control. The destination of iteration control transfers must be withina —128 to +127
byte range of the instruction. These operations are particularly useful in conjunction
with the string manipulation operations.

There are four iteration control transfer operations provided:

— LOQOP decrements the CX (“‘count’’) register by one and transfers if CX is not
sero.

— LOOPZ (also called LOOPE) decrements the CX register by one and transfers if
CX is not zero and the ZF flag is set (loop while zero or loop while equal).

— LOOPNZ (also called LOOPNE) decrements the CX register by one and
transfers if CX is not zero and the ZF flag is cleared (loop while not zero or loop
while not equal).

— JCXZ transfers if the CX register is zero.

Interrupts

Program execution control may be transferred by means of operations similar in
effect to that of external interrupts. All interrupts perform a transfer by pushing the
flag registers onto the stack (as in PUSHF), and then performing an indirect inter-
segment call through an clement of an interrupt transfer vector located at absolute
locations 0 through 3FFH. This vector contains a four-byle element for each of up
to 256 different interrupt types.

All mnemonics copyright Intel Corporation 1983

108

Three interrupt transfer operations provided.

— INT pushes the flag registers (as in PUSHF), clears the TF and IF flags, and
transfers control with an indirect call through any one of the 256 vector elements.
A one-byte form of this instruction is available for interrupt type 3.

— INTO pushes the flag registers (as in PUSHF), clears the TF and IF flags, and
transfers control with an indirect call through vector element 4 if the OF flag is set
(trap on overflow). If the OF flag is cleared, no operation takes place.

— IRET transfers control to the return address saved by a previous interrupt
operation and restores the saved flag registers (as in POPF).

Processor Control

Various instructions and mechanisms are provided for control and operation of the
processor and its interaction with its environment.

Flag Operations

There are seven opcrations provided that operate directly on individual flag
registers.

— CLC clears the CF flag.

— CMC complements the CF flag.

— STC sets the CF flag.

— CLD clears the DF flag, causing the string operations to auto-increment the
operand pointers.

— STD sets the DF flag, causing the string operations to auto-decrement the
operand pointers.

— CLI clears the IF flag, disabling external interrupts (except for the non-maskable
external interrupt).

— STI sets the IF flag, enabling external interrupts after the execution of the next
instruction.

Processor Halt

The HLT instruction causes the 8086 processor 10 enter its halt state. The halt state
is cleared by an enabled external interrupt or RESET.

Processor Wait

The WAIT instruction causes the processor to enter a wail state if the signal on its
TEST pin is not asserted. The wait state may be interrupted by an enabled external
interrupt. When this occurs the saved code location is that of the WAIT instruction,
so that upon return from the interrupting task, the wait state is re-entered. The wait
state is cleared and execution resumed when the TEST signal is asserted. Execution
resumes without allowing external interrupts until afier the execution of the next
instruction. This instruction allows the processor to synchronize itself with external
hardware.

Processor Escape

The ESC instruction provides a mechanism by which other processors may receive
their instructions from the 8086 instruction stream and make use of the 8086
addressing modes. The 8086 processor does no operation for the ESC instruction
other than to access a memory operand.

All mnemonics copyright Intel Corporation 1983

109

Bus Lock

A special one-byle prefix may precede any instruction causing the processor to assert
its bus-lock signal for the duration of the operation caused by that instruction. This
has use in multiprocessing applications (see LOCK).

Single Step

When the TF flag register is set, the processor generates a type 1 interrupt after the
execution of cach instruction. During interrupt transfer sequences caused by any
type of interrupt, the TF flag is cleared after the push-flags step of the interrupt
sequence. No instructions are provided (or setting or clearing TF dirccily. Rather,
the flag register image saved on the stack by a previous interrupt operation must be
modified, so that the subsequent interrupt return operation (IRET) restores TF set.
This allows a diagnostic task to single-step through a task under test, while still exe-
cuting normally itself.

If the single-stepped instruction itself clears the TF flag, the type 1 interrupt will still
oceur upon completion of the single-stepped instruction. I the single-stepped
instruction generates an interrupt or if an enabled external interrupt oceurs prior 10
the completion of the single-stepped instruction, the type 1 interrupt sequence will
occur after the interrupt sequence of the generated or external interrupt, but before
the first instruction of the interrupt service routine is executed.

The 8086/8088 hardware protects the execution of the instruction immediately
following a POP or a MOV 1o a segment register instruction from any kind of inter-
rupt, including type | interrupts used 1o single-step. When single-stepping through a
task under test, the single-step interrupt is not recognized until the instruction
following the POP or MOV 10 a segment register instruction is executed.

Example
TEST TASK SEGMENT
ASSUME CS:TEST TASK
INSTRUCT: POP DS
INSTRUC2: POP BX
INSTRUC3: ADD AX. |BX|
TEST TASK ENDS

When single-siepping through TEST. TASK, INSTRUCI steps to INSTRUC3
since the single-step interrupt is not recognized by the 8086/8088 until the instruc-
tion following the POP 10 the DS segment register (POP BX) is executed.

Instruction Description Formats
The formals presented in the individual instruction descriptions and bricfly dis-

cussed here reflect the assembly language processed by the 8086/8087/8088 Macro
Assembler (ASM86).

All mnemonics copyright Intel Corporation 1983

110

Format Boxes

The individual instruction descriptions show first a format box such as the following
example.

Mem/Reg * Immediate to Reg

Opcode | ModRM] : I : Data I ::’

These are byte-wise representations of the object code gencrated by the assembler
and are interpreted as follows:

* Opcode is the 8-bit opcode for the instruction. The actual opcode generated is
defined in the **Opcode’” column of the instruction table that follows each
format box.

* ModRM is the byte that specifies the operands of the instruction. It contains a
2-bit mode field (MOD), a 3-bit register field (REG), and a 3-bit Register or
Memory (R/M) field.

¢ Dashed blank boxes following the ModRM box are for any displacement
required by the mode field.
* Datais for a byte of immediate data.

® A dashed blank box following a Data box is used whenever the immediate
operand is a word quantity.

Instruction Detail Tables

Following each format box, an instruction detail table shows the opcode, the
number of clocks required for the operation to take place, the actual operation per-
formed, and a coding example for each variant of the instruction.

The instruction detail table for the instruction IMUL is shown below. The examples
in the table are neither complete nor restrictive; anyplace there is a memory operand,
any of the seven memory addressing modes can be used.

Opcode Clocks Operation Coding Exampte
F6 80-98 AX — AL *Reg8 IMUL BL
F6 (86-104) + EA AX — AL Mem38 IMUL BYTESOMETHING
F7 128-154 DX:AX — AX " Reg 16 IMUL BX
F7 (134-160) + EA DX:AX — AX " Mem 16 IMUL WOROSOMETHING
Flags

The flags produced by each instruction are represented by a table such as the
following:

0ODITS ZAPC
X - =--Uuuux

All mnemonics copyright Intel Corporation 1983

111

The top line in the table represents the individual flags, and the lower line shows the
effect on each flag by the instruction. The letters, numbers and symbols used in the
table are defined as follows:

Flag Definition
0 Overflow
D Direction (used in string ops)
| Interrupt Enable (1=enabled)
T Single Step Trap Flag (causes interrupt 1 after next instruction)
S Sign
Z Zero
A Auxiliary Carry (used primarily in BCD ops)
P Parity
Cc Carry
Effect
Code Effect
X Modified by the instruction; result depends on operands.
- Not modified.
u Undefined after the instruction.
1 Set to 1 by the instruction.
0 Set to 0 by the instruction.
Table 6-3. Symbols
8086/8088 i
Descriptor Meaning
AX Accumulator (16-bit)
AH Accumulator (high-order byte)
AL Accumulator {low-order byte)
BX Register BX (16-bit), which may be split and addressed as two
8-bit registers.
BH High-order byte of register BX.
BL Low-order byte of register BX.
CX Register CX (16-bit), which may be splitand addressed as lwo
8-bit registers.
CH High-order byte of register CX.
CL Low-order byte of register CX.
DX Register DX (16-bit), which may be split and addressed as two
8-bit registers.
OH High-order byte of register OX.
DL Low-order byte of register DX.
SP Stack pointer (16-bit)
BP Base pointer (16-bit)
P Instruction Pointer (16-bit)
Flags 16-bit register space. in which nine flags reside.
o] Destinalion Index register (16-bit)
Sl Stack Index register {16-bit)
CcS Code Segment register (16-bit)
DS Data Segment register (16-bit)
ES Extra Segment register (16-bit)
SS Stack Segment register (16-bit)

All mnemonics copyright Intel Corporation 1983

12

Table 6-3. Symbols (Cont’d.)

Meaning

8086/8088
Descriptor
REG8
REG16
LSRC. RSRC
reg
EA
rim
mode
w
d
(..}
{BX)
((8X))
(BX) + 1.(BX)
{(BX) + 1.(BX))

Concatenation. e.g..

{(DX) + 1:(DX)

addr
addr-low
addr-high
addr + 1: addr

data
data-low
data-high
disp
disp-iow
disp-high

+

i
%
&
{

i

The name or encoding of an 8-bit CPU register location.

The name or encoding of an 16-bit CPU register localion.
Refer to operands of an instruction. generally left source and
right source when two operands are used. The leftmost
operand is also called the destinalion operand, and the
rightmost is called the source operand.

A field that specifies REG8 or REG16 in the description of an
instruction.

Effective address (16-bit)

Bits 2. 1, and 0 of the MODRM byte used in accessing
memory operands. This 3-bit field defines EA, in conjunction
with the mode and w fields.

Bits 7 and 6 of the MODRM byte. This 2-bit field defines the
addressing mode.

A 1-bit field in an instruction, identifying byte instructions
(w=0), and word instructions (w=1)

A 1-bit field in an instruction. 'd’* identifies direction, i.e.
whether a specified register is source or destination.

Parentheses mean the contents of the enclosed register or
memory location,

Represents the contents of register BX, which can mean the
address where an 8-bit operand is located. To be so used in
an assembler instruction, BX must be enclosed only in
square brackets.

Means this 8-bit operand, the contents of the memory
location pointed at by the contents of register BX. This nota-
tion is only descriptive for use in this chapter. it cannot
appear in source statements.

Means the address (of a 16-bit operand) whose low-order
8-bits reside in the memory location pointed at by the con-
tents of register BX and whose high-order 8-bits reside in the
next sequential memory location, (BX) + 1.

Means the 16-bit operand that resides there.

Means a 16-bit word that is the concatenation of two 8-bit
bytes. the low-order byte in the memory location pointed at
by DX and the high-order byte in the next sequential memory
location.

Address (16-bit) of a byte 1n memory.
Leastsignificant byte of an address.
Most significant byte of an address.

Addresses of two consecutive bytes in memory, beginning at
addr.

Immediate operand (8-bit if w=0: 16-bit if w=1).
Least significant byte of 16-bit data word.
Most significant byte of 16-bit data word.
Displacement

Least significant byte of 16-bit dispiacement.
Most significant byte of 16-bit displacement.
Assignment

Addition

Subtraction

Multiplication

Division

Modulo

And

Inclusive or

Exclusive or

Al mnemonics copyright Intel Corporation 1983

113

Table 6-4. Effective Address Calculation Time

EA Components Clocks*
Displacement Only 6
Base or Index Only {BX BP, S|, DI) 5
Displacement

+ 9
Base or Index (BX. 8P, 81, DY)
Base BP + DI, BX +SI 7
+
Index B8P +S1,BX+DI 8
Displacement BP + DI+ DISP 1
+ BX + S1+DISP
Base
+ BP + Sl +DISP 12
Index . BX+DI+DISP

*Add 2 clocks for segment override

All mnemonics copyright Intel Corporation 1983

114

MNEMONIC

Sample 8086/8088 Instruction

Format
I opcode I modrm | I data | data :l
J I N R S—
-immediate data (either 8- or 16-bits)
. an offset value (either 8- or 16-bits)
amod/rm byte if needed
the opcode
Opcode Clocks Operation Coding Example

{the value (number of clocks (the machine operation) MNEMONIC

of the required)

opcode

byte)
Operation

(A description of the machine operation.)

Flags

0b1 TS ZAPC

(shows the effect on the flags)

Description

(Describes the use/operation of the instruction.)

All mnemonics copyright Intel Corporation 1983

AAA

ASCIl Adjust for Addition

Format

Opcode Clocks Operation Coding Example

37 4 adjust AL, flags. AH AAA

Operation

it (AL & OFH) > 8 or AF = 1 then do:
AL--AL + 6
AH—AH + 1
CF - AF —1

end:

AL <~ AL & OFH

Flags

0DITSZAPC
Uu=---uuuxux

Description

AAA is used 1o correct the result of adding two unpacked BCD digits in the AL
register. After the normal byte addition, AAA tests the auxiliary carry flag (AF),
which is set by a carry out of the low nibblc of AL. If either the AF is set or the low
nibble of AL is greater than 9, then a carry bit is added 10 the AH register, and the
low nibble of AL is increased by 6 to produce the decimal digit. AL is masked to 4
bits whether an adjustment was performed or not, thus always leaving an unpacked
BCD result in the low nibble of AL. High nibble data does not affect the corrected
result of the addition, so ASCII digits can be added correctly by following the AAA
with an OR AL,30H 10 restore the result 1o an ASCII character. The digit carry, in
AH, is not affected by this restoration.

All mnemonics copyright Intel Corporation 1983

116

AAD

ASCII Adjust for Division

Format

| Long —— Opcode I

Opcode Clocks Operation Coding Example
D5.0A 60 Adjust AL, AH prior to division AAD

Operation

AL = AL + (AH " 0AH)

AH =0

Flags

001 TS ZAPC

U---XXUXU

Description

AAD is used to prepare 2 unpacked BCD digits (least significant in AL, most signifi-
cant in AH) for a division operation that will vield an unpacked result. This is
accomplished by multiplyving AH by 10 and adding the product to AL. Then AH is
zeroed, leaving AX with the binary equivalent of the original unpacked 2-digit
number.

All mnemonics copyright Intel Corporation 1983

1

AAM

ASCII Adjust for Multiplication

Format
r Long —— Opcode
Opcode Clocks Operation Coding Example M
D4.0A 83 Adjusl AL, AH alter AAM
multiplication
Operation

AH = (AL / 0AH)
AL - (AL MOD 0AH)

Flags

0DITSZAPC

Uu--=-xxUxu

Description

AAM is used to produce 2 unpacked BCD digits (least significant in AL, most
significant in AH) after a multiplication of 2 unpacked digits. This is accomplished
by dividing the binary product in AL by ten. The quotient is left in AH as the most
significant digit, and the remainder is left in AL as the least significant digit.

All mnemonics copyright Intel Corporation 1983

118

AAS

ASCII Adjust for Subtraction

Format

C"’ - / Opcode Clocks Operation Coding Example

3F 4 adjust AL, flags. AH AAS

Operation

if (AL & OFH) >9 or AF = 1then do:
AL—AL-6
AH - AH-1
CF~ AF~1

end:

AL — AL & OFH

Flags

001 TS ZAPC

Uu---uvuvxux

Description

AAS is used 10 correct the result of subtracting two unpacked BCD digits in the AL
register. After the normal byte subtraction, AAS tests the auxiliary carry flag (AF),
which is set by a carry out of the low nibble of AL. If the AF is set or the low nibble
of AL is greater than 9, then a borrow bit is subtracted from AH, and the low nibble
of AL is decreased by 6 10 produce the proper decimal digit. AL is masked to 4 bits
whether an adjustment was performed or not, thus always leaving an unpacked
BCD result in the low nibble of AL. High nibble data does not affect the corrected
result of the subtraction, so ASCII digits can be subtracted correctly by following
the AAS with an OR AL,30H 10 restore the result to an ASCII character. The digit
borrow, in AH, is not affected by this restoration.

All mnemonics copyright Intel Corporation 1983

119

ADC

Integer Add With Carry

Format
Memory/Reg + Reg

I Opcode l ModRM _ | ::)

Opcode Clocks Operation Coding Example
12 3 Reg8 — CF + Reg8 + Reg8 ADC BL.CL
12 9+EA Reg8 — CF + Reg8 + Mem8 ADC BL.BYTESOMETHING
13 3 Reg16 — CF + Reg16 + Reglb ADC B8X.CX
13 9+EA Reg16 -- CF + Reg16 + Mem16 ADC BXWORDSOMETHING
10 16+ EA Mem8 - CF + Mem8 + Reg8 ADC BYTESOMETHING BL
1 16+ EA Mem16 — CF + Mem16 + Reg16 ADC WORDSOMETHING BX

Iimmed 10 AX/AL

Opcode l Data I : :]

Opcode Clocks Operation Coding Example
14 4 AL - CF + AL + Immed8 ADC ALS
15 4 AX — CF + AX + Immed16 ADC AX.400H

Immed 1o Memory/Reg

[opcodte | Moorm- |] [oaa]

*~(Reg field=010)

Opcode Clocks Operation Coding Example
80 4 Reg8 -- CF + Reg8 + Immed8 ADC BL,32
80 17+EA Mem8 — CF + Mem8 + Immed8 ADC BYTESOMETHING,32
] 4 Reg16 - CF + Reg16 + Immed16 ADC BX,1234H
81 17+ EA Mem16 - CF + Mem16 + Immed16 ADC WORDSOMETHING.1234H
83 4 Reg16 - CF + Reg16 + Immed8 ADC BX.32
83 17+ EA Mem16 — CF + Mem16 + Immed8 ADC WORDSOMETHING 32

(Immed8 is sign-exlended
before add in last 2 cases)

Operation
LeftOpnd ~ CF + LeftOpnd + RightOpnd

Flags

001 TS ZAPC
X = ==X X X XX

Description

The sum of two operands and the initial state of the carry flag replaces the left
operand.

All mnemonics copyright Intel Corporation 1983

120

ADD

Integer Addition

Format

Memory/Reg + Reg

[opcode | ModRM | ::|

Opcode Clocks Operation Coding Example
02 3 Reg8 — Reg8 + Reg8 ADD B8L.CL
02 9+EA Reg8 -- Regé + Mem§ ADD BL.BYTESOMETHING
03 3 Reg16 -~ Reg16 + Reg16 ADD 8X.CX
03 9+EA Reg16 -- Reg16 + Mem16 ADD BX.WORDSOMETHING
00 16+ EA Mem8 ~ Mem8 + Reg8 ADD BYTESOMETHING.BL
01 16+ EA Mem16+ Mem16 + Reg1é ADD WORDSOMETHING.BX

Immed to AX/AL

Opcode [Data l :l

Opcode Clocks Operation Coding Example
04 4 AL = AL + Immed8 ADD AL.S
05 4 AX = AX + Immed16 ADD AX.400H

Immed to Memory/Reg

LOpcode l ModRm* I : ! : l Data ::l

*—(Reg field = 000}

Opcode Clocks Operation Coding Exampie
80 4 Reg8 - Reg8 + Immed8 ADD BL.32
80 17+EA Mems -- Mem8 + Immeds8 ADD BYTESOMETHING.32
81 4 Reg16 — Reg16 + Immed16 ADD BX.1232H
81 17+ EA Mem16 — Mem16 + Immed16 ADD WORDSOMETHING.1234R
83 4 Reg16 - Reg16 + Immed8 ADD BX.32
83 17+ EA Mem16 - Mem16 + Immed8 ADD WORDSOMETHING,32

{immeds 1s sign-extended
before add in last 2 cases)

Operation
LeftOpnd - LeftOpnd + RightOpnd

Flags

001 TSZAPC

X = = =X X X X X

Description

The sum of iwo operands replaces the left operand.

All mnemonics copyright Intel Corporation 1983
121

AND

Logical AND

Format

Memory/Reg with Reg

I Opcode ModRM I
Opcode Clocks Operation Coding Example

22 3 Reg8 — Reg8 AND Reg8 AND BL.CL

22 9+ EA Reg8 — Reg8 AND Mem8 AND BL.BYTESOMETHING
23 3 Reg16 -- Reg16 AND Reg16 AND BX.CX

23 9+EA Reg16 — Reg16 AND Mem16 AND BX.WORDSOMETHING
20 16+ EA Mem8 - Mem8 AND Reg8 AND BYTESOMETHING.BL
21 16+ EA Mem16 — Mem16 AND Reg16 AND WORDSOMETHING.BX

Immed to AX/AL

Opcode Data |

Opcode Clocks Operation Coding Example
24 a AL - AL AND Immed8 AND AL.4
25 a AX — AX AND Immedi6 AND AX.400H

Immed to Memory/Reg

Opcode ModRm* — _ | Data I : :’

*—(Reg field = 100)

Opcode Clocks Operation Coding Example
80 4 Reg8 — Reg8 AND Immed8 AND BL,3FH
80 174+ EA Mem8 — Mem8 AND Immed8 AND BYTESOMETHING 3FH
81 4 Reg16 — Reg16 AND Immed16 AND BX.3FFH
81 17+EA Mem16 — Mem16 ANO Immed16 AND WORDSOMETHING 3FFH
Operation
LeftOpnd - LeftOpnd and RightOpnd
OF —CF -0
Flags
0oD1I TS ZAPC
0 - - - X X uxo
Description

The result of a bitwise logical AND of the two operands replaces the left operand.
The carry and overflow flags are cleared.

All mnemonics copyright Intel Corporation 1983

122

CALL

Call

Format

Within segment or group, IP relative

I Opcode | DispL DispH
Opcode Clocks Operation Coding Example
E8 19 IP—IP + Disp16 CALL NEAR LABEL FOO

—{SP) - return link

Within segment or group, Indirect

Opcode I ModRM* I I ::I

*—{Reg field = 010}

Opcode Clocks Operation Coding Example
FF 16 IP — Reg16 CALL SI
—(SP) = return link
FF 21+EA IP = Mem16 CALL WORDPTR [S)]
—(SP) = return link
FF 21+EA IP - Mem16 CALL POINTER_TO_FRED

—(SP) = return link

Operation

it IP-relative then do;
1P — IP + Disp16;
—(SP) = return link;
eise do;
IP — (EA);
—(SP) — return link;
end if;

Flags

0D0DITSZAPC

Description

There are two types of within-segment or group calls: one that is 1P-relative and is
specified by the use of a NEAR label as the target address, and one in which the
target address is taken from a register or variable pointer without modification (i.e.,
is NOT IP-relative). In the first case, the 16-bit displacement is relative to the first
byte of the next instruction.

The second case is specified when the operand is any (16-bit) general, base, or index
regisier—as in CALL AX, CALL BP, or CALL DI, respectively—or when the
operand is a word-variable, as in CALL WORD PTR [BP] or CALL
OPEN__ROUTINE[BX] (assuming that OPEN_ROUTINE is declared a word
array or structure element). When the effective address is a variable, as in the
preceding two examples, DS is the implied segment register for all EA’s not using
BP.

All mnemonics copyright Intel Corporation 1883

123

CALL

The return link, which is pushed to the TOS during the CALL, is the address of the

instruction following the CALL.

Inter-segment or group, Direct

CALL FAR LABEL FOO

Opcode offset I offset segbase I segbase
Opcode Clocks Operation Coding Example
9A 28 CS - segbase
IP - offset
Operation

CS - segbase:
IP — offset;
—{SP) « return link:

Flags

00I TS ZAPC

Inter-segment or group, Indirect

]

Opcode ModRM* I
*—(Reg field = 011)
Opcode Clocks Operation
FF 37+EA CS - segbase
IP - oftset
Operation
CS —(EA+2);
JP —(EA):
Flags
0Dt TS ZAPC

Description

Coding Example

CALL DWORDPTRFOO

An intersegment or group (long or far) CALL will transfer control by replacing both
the values in CS and 1P. This effectively transfers control to another segment or
group by changing both the base (paragraph number) and offset values.

All mnemonics copyright Intel Corporation 1983

124

CBW

Convert Byte to Word

Format

Opcode Clocks Operation Coding Example

98 2 convert byte in AL to word CBwW
nAX
Operation

if (AL AND 80H) = 80H then do:
AH «— OFFh

else do:
AH -0

end;

Flags

0DI TS ZAPC

Description

CBW converts the byte in AL to a word in AX by sign extension of Al through AH.
No flags are affected.

All mnemonics copyright Intel Corporation 1983

125

CLC

Clear Carry Flag

Format

Opcode Clocks Operation

F8 2 clear ihe carry flag

Operation
CF+0

Flags

0DITSZAPTEL

Description

Coding Example

CLC

CLC clears the carry flag, CF. No other flags are affected.

All mnemonics copyright Intel Corporation 1983

126

CLD

Clear Direction Flag

Format

Opcode Clocks Operation

FC 2 clear direction flag

Operation
DF -0

Flags

0bITSZAPC

Description

Coding Example

CLD

CLD clears the direction flag, DF. No other flags are affected.

All mnemonics copyright Intel Corporation 1983

127

(]

LI

Clear Interrupt Enable Flag

Format

Opcode Clocks Operation

FA 2 clear interrupt llag

Operation
IF -0

Flags

0DI TS ZAPCL

Description

Coding Example

CcLl

CLI clears the interrupt enable flag, IF. No other flags are affected.

All mnemonics copyright Intel Corporation 1983

128

Complement Carry Flag

Format
Opcode Clocks Operation

F5 2 complement carry flag

Operation

it CF =1thendo:
CF~0

else do;
CF~—1

end;

Flags

0DI TS ZAPC

Description

Coding Example

cMC

CMC complements the carry flag, CF. No other flags are affected.

All mnemonics copyright Intel Corporation 1983

129

CMP

Compare Two Operands

Format
Memory/Reg with Reg

[opcode | ModrM T

Opcode Clocks Operation Coding Example
3A 3 flags «- Reg8 - Reg8 CMP BL.CL
3A 9+EA flags — Reg8 - Mem8 CMP BL.BYTESOMETHING
3B 3 flags — Reg16 - Reg16 CMP BX.CX
38 9+EA flags — Reg16 - Mem16 CMP BX,WORDSOMETHING
38 S+EA flags — Mem8 - Reg8 CMP BYTESOMETHING.BL
a3 9+EA flags — Mem16 - Reg16 CMP WORDSOMETHING.BX
Immed to AX/AL
Opcode Data | I
Opcode Clocks Operation Coding Example
3C 4 flags < AL - Immed8 CMP AL.S
30 4 flags — AX -lmmed16 CMP AX. 400H

Immed 1o Memory/Reg

I Opcode l ModRM* I - __ I Data l ::I

*—(Reg field = 111)

Opcode Clocks Operation Coding Example
80 4 flags — Reg8 - Immed8 CMP BL.32
80 10+EA flags - Mem8 - Immed8 CMP BYTESOMETHING 32
81 4 flags - Reg16 - Immed16 CMP BX.1234H
81 10+ EA flags — Mem16 - Immed16 CMP WORDSOMETHING, 1234H
83 4 flags - Reg16 - Immed8 CMP BX.32
83 10+EA flags — Mem16 - Immed8 CMP WORDSOMETHING.32

{Immed 8 is sign-extended
before sub in last 2 cases)

Operation
flags « LeftOpnd - RightOpnd
Flags

0DITS ZAPCEC
X - - = X X X X X

Description
The flags are set by the subtraction of the right operand from the left operand.
Neither operand is modified. A table of signed and unsigned comparisons supported
by conditional jumps is provided under the ‘Jcond’ heading of this chapter.

Ali mnemonics copyright Intel Corporation 1983

130

CWD

Convert Word to Doubleword

Format

Opcode Clocks Operation Coding Example

99 5 convertword in AX to cwo
doubleword in DX;AX

Operation

if (AX AND 8000H) = 8000H then do:
DX — OFFFFH

else do:
DX ~-0

end;

Flags

Description

CWD converts the word in AN to a doubleword in DN:AX by sign extension of AN
through DX. No flags are affected.

All mnemonics copyright Intel Corporation 1983

131

DAA
Decimal Adjust for Addition

Format

Opcode Ctocks Operation Coding Exampte

27 4 adjust AL, flags, AH DAA

Operation

if{AL & OFH) > 9 or AF =1 then do;
AL AL + 6
AF —1
end;
if AL > 8F or CF =1 then do;
AL < AL + B0H
CF+—1
end;

Flags

0DITSZAPC
U=---XXXXX

Description

DAA is used to correct the result of adding two bytes, each of which contains two
packed BCD digits, in order to produce a packed decimal result. After the normal
byte addition in AL, DAA tests the auxiliary carry flag (AF), which is set by a carry
out of the low nibble of AL. If either the AF is set or the low nibble of AL is greater
than 9, then the low nibble of AL is increased by 6 to produce the correct decimal
digit, and the high nibble of AL is incremented, effecting the digit carry.

Whether this first adjustment is made or not, a second adjustment is made if AL is
greater than 9FH or if the CF is set, indicating a carry out of the high digit. In this
case, 60H is added to AL and the CF is set.

All mnemonics copyright intel Corporation 1983

132

DAS

Decimal Adjust for Subtraction

Format

Opcode Clocks Operation

2F 4 adjust AL, flags, AH

Operation

if (AL & OFH) > 9 or AF = 1 then do;
AL+ AL-6
AF —1
end;
if AL > 9F or CF = 1 then do;
AL - AL -60H
CF«1
end;

Flags

0DITSZAPC
Uu---XXXXX

Description

Ceding Example

DAS

DAS is used to correct the result of subtracting two bytes, each of which contains
two packed BCD digits, in order to produce a packed decimal result. After the nor-
mal byte subtraction in AL, DAS tests the auxiliary carry flag (AF), which is set by a
carry out of the low nibble of AL. If either the AF is set or the low nibble of AL is
greater than 9, then the low nibble of AL is reduced by 6 to produce the correct

decimal digit.

Whether this first adjustment is made or not, a second adjustment is made if AL is
greater than 9FH or the CF is set, indicating a borrow out of the high digit. In this

case, 60H is subtracted from AL and the CF is set.

All mnemonics copyright Intel Corporation 1983

133

DEC

Decrement by 1

Format
Word Register

Opcode + reg

Opcode Clocks Operation Coding Example

48 +reg 2 Reg16 — Reg16-1 DEC B8X

Memory/Byte Register

Opcode | ModRM®]

*—{Reg field = 001)

Opcode Clocks Operation Coding Example
FE 3 Reg8 — RegB-1 DEC BL
FE 15+ EA Mem8 — Mem8-1 DEC BYTESOMETHING
FF 15+EA Mem16 ~ Mem16 -1 DEC WORDSOMETHING
Operation

Operand ~ Operand -1

Flags

gDl TSZAPC
X - - - X XXX -
Description

The operand is decremented by 1.

All mnemonics copyright Intel Corporation 1983
134

DIV

Unsigned Division

Format
Memory/Reg with AX or DX:AX

Opcode I ModRM* I _ I ::I

*—(Reg field = 110)

Opcode Clocks Operation Coding Example
F8 80-90 AH.AL — AX / Reg8 DV BL
] (86-96) + EA AH.AL = AX / Mem8 DIV BYTESOMETHING
F? 144-162 DX.AX - DX:AX / Reg16 DIV BX
F7 (150-168) + EA DX.AX < DX:AX / Mem16 DIV WORDSOMETHING
Operation

if byte-operation then do;
it AX / divisor > OFFH then INT0;

else do;
AL - AX | divisor /* unsigned division */
AH = AX MOD divisor 1* unsigned modulo * /
end if;
else do; /* word-operation */
if DX:AX { divisor > OFFFFH then INT 0
else do;

AX — DX:AX [divisor 1* unsigned division */
DX — DX:AX MOD divisor /" unsigned modulo */
end if;
end if;

Flags

0DbI TS ZAPC
u---uvuuvuuy

Description

Depending on the opcode, either a word in AX is divided by a byte found in a
register or memory location, or a doubleword in DX:AX is divided by a word
register or memory location. A doubleword dividend is stored with its high word in
DX and low word in AX, and the results are: DX gets the unsigned modulo, and AX
gets the unsigned quotient. For a word dividend (byte divisor), the dividend is in AX
and the results are: AH gets the unsigned modulo, and AL gets the unsigned quo-
tient. In either case, if the result is too big to fit in the designated register (AX or AL)
then an interrupt of type 0 is performed to allow the overflow to be handled.

All mnemonics copyright Intel Corporation 1983

135

ESC

Escape

Format
[Opcode+i [MM | — [— 1]

Opcode Ctocks Operation Coding Example M

DB+i 8+EA data bus « (EA) ESC §,ARRAY
D8+i 2 data bus < (EA) ESC 20,AL
Operation

if mod # 11 then data bus + (EA)
if mod = 11 then no operation

Flags

¢CD0DITSZAPC

Description

The ESC instruction provides a mechanism by which other processors may receive
their instructions from the 8086 instruction stream and make use of the 8086
addressing modes. The 8086 processor does no operation for the ESC instruction
other than to access a memory operand and place it on the bus.

All mnemonics copyright Intel Corporation 1983

136

HLT

Halt

Format

Opcode Clocks Operation Coding Example

F4 2 halt operation HLT

Operation

cease operation;

Flags

0DITSZAPC

Description

The HLT instruction causes the 8086/8088 processor to enter its halt state. The halt
state is cleared by an enable interrupt or reset.

All mnemonics copyright Intel Corporation 1983

137

IDIV

Signed Division

Format
Memory/Reg with AX or DX:AX

[opcote [woamw T~ — | 1]

*—(Reg field =111)

Opcode Clocks Operation Coding Example
F6 101-112 AH,AL — AX / Reg8 DIV BL
F6 (107-118) + EA AH,AL - AX /| Mem8 IDIV BYTESOMETHING
F7 165-184 DX,AX — DX:AX / Reg16 DIV BX
F7 (171-190) + EA DX,AX < DX:AX Mem16 IDIV WORDSOMETHING
Operation

if byte-operation then do;
if AX 1 divisor > 7FH or AX / divisor < 80H then INT 0;

else do;
AL < AX / divisor I1* signed division */
AH < AX MOD divisor 1* signed modulo */
end if;
else do; 1* word-operation */
if DX:AX / divisor > 7FFFH or DX:AX / divisor «— 8000H then INT 0;
else do;

AX — DX:AX / divisor 1* signed division */
DX - DX:AX MOD divisor /* signed modulo */
end if;
end if;

Flags

0DITSZAPC
u---uvuuvuvuvu

Description

Depending on the opcode, either a word in AX is divided by a byte in a register or
memory location, or a dword in DX:AX is divided by a word register or memory
location. A dword dividend is stored with its high word in DX and low word in AX,
and the results are: DX gets the signed modulo, and AX gets the signed quotient.
For a word dividend (byte divisor) the dividend is in AX, and the results are: AH
gets the signed modulo, and AL gets the signed quotient. In either case, if the result
is too big to fit in the designated register (AX or AL) then an interrupt of type 0 is
performed 10 allow the overflow to be handled.

All mnemonics copyright Intel Corporation 1983

138

IMUL

Signed Muttiplication

Format
Memory/Reg with AL or AX

L Opcode I ModRM* : I :j

- —(Reg field = 101)

Opcode Clocks Operation Coding Example
F6 80-98 AX = AL * Reg8 IMUL BL
F6 (86-104) + EA AX = AL Msl_'nﬂ IMUL BYTESOMETHING
F? 128-154 DX:AX — AX * Reg16 IMUL BX
F7 (134-160) + EA DX:AX = AX * Mem1§ IMUL WORDSOMETHING
Operation
it byte-operation then do; 1* byte operation, word result */

AX +~ AL * (Mem8 or Reg8):
it AH is a sign extension of AL then CY — OF — ¢;
elseCY - OF - 1;
else if word-operation thendo; /* word-operation, dword result */
DX:AX — AX* (Mem16 or Reg16):
if DX is a sign extension of AX then CY — OF - 0;
elseCY — OF —1;
else do; I* immed-operation, word result =/
Reg16 - Immed16 * (Mem16 or Reg16);
if product fits in destination register then CY ~ OF - 0;
elseCY - OF - 1;
end if;

Flags

0DITSZAPC

X - --UVUVuUuuvuux

All mnemonics copyright Intel Corporation 1983

139

IMUL

Description
There are two types of integer (signed) multiplication in the ASM86, distinguishable
by the types of operands and the precision of the result:

1. Multiply a byte memory or register operand by a byte in AL, producing a word
result in AX (called ‘byte-operation, word result’ above).

2. Multiply a word memory or register operand by a word in AX, producing a
dword result in DX:AX (called ‘word-operation, dword result’ above).

All mnemonics copyright Intel Corporation 1983

140

Input Byte, Word
Format
Fixed port
| Opcode Port I
Opcode Clocks Operation
E4 10 AL -~ Port8
€5 10 AX ~ Port8

Variable port

Opcode Clocks Operation
EC 8 AL - Port16(in OX)
ED 8 AX — Port16(in DX)
Operation

if fixed-port then
portnumber in instruction;
0 < portnumber < 0FFH;
else
portnumber in DX;
0 < portnumber < OFFFFH;
end if;
if byte-input then AL « ioport[portnumber];
else AX « ioport{portnumber];

Flags

0D1ITSZAPC

Description

Coding Example

IN AL.BYTEPORTNUMBER
IN AL.BYTEPORTNUMBER

Coding Example

IN ALDX
IN AX.DX

IN transfers a byte or word from the specified input port to AL or AX. Use of the
fixed port format allows access to ports 0 through FF, and encodes the port number
in the instruction. To use the variable port format you load the DX register with a 16
bit port number and then code the mnemonic ‘DX’ in place of a constant port
number. This format allows access to 64k ports.

All mnemonics copyright Intel Corporation 1983

141

INC

Increment By 1

Format
Word Register

Opcode +reg

Opcode Clocks Operation Coding Example

40+reg 2 Reg16 — Reg16 + 1 INC BX

Memory/Byte Register

[opode [Mogrm- [~ T~ 7]

*—(Reg field = 000)

Opcode Clocks Operation Coding Example
FE 3 Reg8 — RegB + 1 INC 8L
FE 15+EA Mem8 -~ Mem8 + 1 INC BYTESOMETHING
FF 15+ EA Mem16 — Mem16 + 1 INC WORDSOMETHING
Operation

Operand - Operand + 1

Flags

0ODITSZAPC
X - -=-XXXX -

Description
The operand is incremented by 1.

All mnemonics copyright Intel Corporation 1983

142

INT
Interrupt INTO

Format

L Opcode [type :I

Opcode Ctlocks Operation Coding Example

cC 52 Interrupt 3 INT 3

CD 51 Interrupt ‘type’ INT §

CE 530r4 Interrupt 4 if FLAGS.OF =1, INTO
else NOP

Operation

SP~SP-2
—(SP) ~ FLAGS
IF+-0

TF~-0
SP-SP-2
—(SP)~CS
CS+~TYPE* 4 +2
SP - SP-2
—(SP) - 1P
IP-TYPE"4

Flags

<i/ 0DITSZAPECE

B I .

Description

INT pushes the flag registers (as in PUSHF), clears the TF and IF flags, and
transfers control with an indirect call through any one of the 256 vector elements.
The one-byte form of this instruction generates a type 3 interrupt.

INTO pushes the flag registers (as in PUSHF), clears the TF and IF flags, and
transfers control with an indirect call through vector element 4 (location 10H) if the
OF flag is set (trap on overflow). If the OF flag is clear, no operation takes place.

Ali mnemonics copyright Intel Corporation 1983

143

IRET

Return from Interrupt

Format

Opcode Clocks Operation Coding Example

CF 24 Relurn from interrupt IRET

Operation

IP—(SP) + +
SP—SP +2
CS—(SP) + +

SP <SP +2
FLAGS - (SP) + +
SP+—SP +2

Flags

0D0DI TS ZAPC
X X X X X X X XX

Description

IRET returns control to an interrupted routine by transferring control to the return
address saved by a previous interrupt operation and restoring the saved flag registers
(as in POPF).

All mnemonics copyright Intel Corporation 1983

144

Jcond

Jump on Condition

Operation

if condition is true then do;
sign-extend displacement to 16 bits;
IP ~ IP + sign-extended displacement;

end if;
Format
I Opcode Disp I
Opcode Clocks Operatlon Coding Example
77 16or4d jump if above JA TARGETLABEL (CF OR ZF)=0
73 16ord jump if above or egual JAE TARGETLABEL CF=0
72 16o0r4 jump if below JB TARGETLABEL CF=1
76 160rd jump if below or equal JBE TARGETLABEL (CF OR ZF)=1
72 160r4 jump if carry set JC TARGETLABEL CF=1
74 16or4 jump if equal JE TARGETLABEL ZF=1
7F 16074 jump if greater JG TARGETLABEL {(SF XOR OF) OR
ZF)=0
70 16or4 jump it greater or equal JGE TARGETLABEL (SF XOR OF)=0
7C 160r4 jump it less JL TARGETLABEL (SF XOR OF)=1
7E 16or4d jump if less or equal JLE TARGETLABEL {(SF XOR OF) OR
ZF)=1
76 160r4 jump if not above JNA TARGETLABEL (CF OR ZF)=1
72 160r4 jump if neither above nor equal JNAE TARGETLABEL CF=1
73 16ord jump if not below JNB TARGETLABEL CF=0
77 16o0r4 jump if neither below nor equal JNBE TARGETLABEL (CF OR ZF)=0
73 16o0r4 jump if no carry JNC TARGETLABEL CF=0
75 16or4 jump if not equal JNE TARGETLABEL ZF =0
7€ 160r4d jump if not greater JNG TARGETLABEL ((SF XOR OF) OR
ZF)=1
7c 16oréd jump if neither greater nor JNGE TARGETLABEL (SF XOR OF)=1
equal
7D 16or4 jump if not less JNL TARGETLABEL (SF XOR OF)=0
7F 16o0rd jump if neither less nor equal JNLE TARGETLABEL ((SF XOR OF) OR
Z2F)=0
n 16ord jump if no overilow JNO TARGETLABEL OF=0
78 160r4 jump if no parity JNP TARGETLABEL PF=0
79 160r4 jump if positive JNS TARGETLABEL SF=0
75 16or4 jump if not zero JNZ TARGETLABEL ZF=0
70 160r4 jump if overfiow Jo TARGETLABEL OF =1
7A 160r4 jump if parity JP TARGETLABEL PF=1
7A 16ord jump if parity even JPE TARGETLABEL PF=1
78 16o0r4d jump if parity odd JPO TARGETLABEL PF=0
78 16ord jump it sign Js TARGETLABEL SF=1
74 160r4 jump if zero Jz TARGETLABEL ZF =1
E3 18o0r6 jump if CX is zero (does not JCXZ TARGETLABEL
. test flags)
Flags

0DI1I TS ZAPC

All mnemonics copyright Intel Corporation 1983

145

Jeond

Description

Conditional jumps (except for JCXZ, explained below) test the flags, which
presumably have been set in some meaningful way by a previous instruction.
Because there are, in many instances, several meaningful and useful ways to inter-
pret a particular state of the flags, ASM86 allows different mnemonics for each
interpretation to resolve to the same op-code. This means that some op-codes are, in
effect, synonyms for others. As an example, consider that a programmer who has
just compared a character to another in AL might wish to jump if the two were equal
(JE), while another who had just ANDed AX with a bit field mask would prefer to
consider only whether the result was zero or not (he would use JZ, a synonym for
JE).

JCXZ differs from the other conditional jumps in that it actually tests the contents
of the CX register for zero, rather than interrogating the flags. This instruction is
useful following a conditionally repeated string operation (REPE SCASB for exam-
ple) or conditional loop instruction (such as LOOPNE TARGETLABEL), both of
which may terminate for either of two reasons. These instructions implicitly use a
limiting count in the CX register, and looping (or repeating) ends either when the
CX register goes to zero or when the condition specified in the instruction (flags
indicating equals in both of the above cases) occurs. JCXZ is useful when the two
terminations must be handled differently.

In every case, if the condition specified in the conditional jump is true, the signed
displacement byte is sign extended to a word and added to the IP, which has been
updated to point to the first byte of the next instruction. This limits the range of the
conditional jump to 127(decimal) bytes beyond and 126 bytes before the instruction
(remember, the IP was incremented by 2 to point to the next instruction before the
displacement was added).

All mnemonics copyright Intel Corporation 1983

146

JMP

Jump

Format

Within segment or group, IP relative

(-. [opcode DispL | E{j

Opcode Clocks Operation Coding Example
] 15 IP — IP + Disp16 JMP NEAR_LABEL_FOO
EB 15 IP —IP + Disp8 JMP SHORTNR_LAB_FQO

(Disp8 sign-extended)

Within segment or group, Indirect

l Opcode ModRM* l : l :__—I

*—(Reg field = 100)

Opcode Clocks Operation Coding Example
FF n IP - Reg16 JMP SI
FF 18+EA IP — Mem16 JMP WORDPTR |81}
FF 18+ EA IP — Mem16 JMP POINTER_TO_FRED
Operation

it IP-relative then do;
if short then sign-extend Disp8 to Disp16;
IP < IP + Disp16;

else do;
IP — (EA);

endif;

Flags

001 TS ZAPC

Description

There are two types of within-segment jumps: one which is IP-relative and is
specified by the use of a NEAR label as the target address; and one in which the
target address is taken from a register or variable pointer without modification (i.e.
is NOT IP-relative). In the first case, the displacement—which is relative to the first
byte of the next instruction—may be either a full word or a byte which will be sign-
extended to a word.

The second case is specified when the operand is any (16-bit) general, base, or index
register—as in JMP AX, JMP BP, or JIMP DI, respectively—or when the operand is
a word-variable, as in JMP WORD PTR [BP], or JMP CS:CASE__TABLE[BX]
(assuming that CASE__TABLE was defined as an array of word pointers). When
the effective address is a variable, as in the preceding two examples, DS is the
implied segment register for all EA’s not using BP. Note especially the difference
between JMP BX and JMP [BX). In the first jump the new IP is taken from a
register, while in the second it comes from a word variable which is pointed at by the
register.

All mnemonics copyright intel Corporation 1983

147

JMP

Inter-segment or group, Direct

I Opcode I offset I offset

I segbase

segbase J

Opcode Clocks Operation
EA 15 CS - segbase
IP - offset
Operation
CS « segbase
IP + offset
Flags

0DpDI TSZAPC

Inter-segment or group, Indirect

I Opcode I ModRM*

*—(Reg field = 101)

Opcode Clocks Operation
FF 24+ EA CS +~ segbase
P « oifset
Operation

CS -~ EA.segbase;
1P - EA.offset;

Flags

0oDITSZAPC

Description

Coding Example

JMP FAR_LABEL _.FOO

]

Coding Example

JMP CASE _TABLE(BX]

The long jumps transfer control using both an offset and paragraph number
(segbase), which may be either included in the instruction itself or found in a

DWORD variable.

All mnemonics copyright Intel Corporation 1983

LAHF

Load AH From Fiags

Format
Opcode Clocks Operation Coding Example
9F 4 copy low byle of flags word to LAHF
AH
Operation

AH +— SF:ZF:X:AF:X:PF:X:CF
{* 'x" indicates non-specified bit value */

Flags

0DI TS ZAPCEC

Description

The Sign, Zero, Auxiliary carry, Parity, and Carry Flags are transferred to AH in
the following format:
SF goes 1o AH bit7
ZF pgoesto AH bité
AF goesto AH bi4
PF goesto AH bi12
CF goesto AH bit0
The remaining bits are indeterminate.
No flags are altered.

All mnemonics copyright Intel Corporation 1983

149

LDS/LES

Load Pointer to DS/ES and Register

Format
[opcode | Modrm | | |
Opcode Clocks Operation Coding Example
c4 16+EA dword pointer at EA goes LES BX,DWORCPOINTER
to reg16 (1st word) and ES
(2nd word)
Cc5 16+EA dword pointer at EA goes LDS B8X,DWORDPOINTER
to reg16 (1st word) and DS’
(2nd word)
Operation
Reg16 - Mem16 @ EA 1* offset part of Virtual Address DWord */

DS (or ES) - Memi6 @ EA+2 /* selector part of Virtual Address DWord */

Flags

0DITSZAPC

Description

The double word in the memory location designated by the effective address and 3
successive bytes is treated as two word operands. The first of these in EA:EA+1 is
the offset part of the pointer and is loaded into the designated word-register. The
second word, at EA+2:EA+3, is the paragraph number (segment base) of the
address, and is loaded into the DS or ES register.

All mnemonics copyright Inte! Corporation 1983

150

Load Effective Address

Format
I Opcode I ModRM |
Opcode Clocks Operation Coding Example
8D 2+EA Reg16 — EA LEA BX,SOMEVARIABLE [SI]
Operation

if EA = register then UDtrap;
else Reg 16 + offset(EA)

Flags

001 TS ZAPCTC

Description

The effective address of the memory operand is put in the specified register. You
should use this instruction only if EA requires run time calculation, i.e., has indexing
with index or base register. Otherwise, you should use MOV reg, OFFSET variable.

All mnemonics copyright Intel Corporation 1983

151

LOCK

Assert Bus Lock

Format

Opcode Clocks Operation Coding Example

FO 2 assert the bus lock LOCK XCHG AX.SEMAPHORE
next instruction

Operation

None.

Flags

0DI TS ZAPC

Description

A special one-byte lock prefix may precede any instruction. It causes the processor
to assert its bus-lock signal for the duration of the operation caused by the instruc-
tion. In multiple processor systems with shared resources it is necessary (o provide
mechanisms to enforce controlled access to those resources. Such mechanisms, while
generally provided through software operating systems, require hardware
assistance. A sufficient mechanism for accomplishing this is a focked exchange (also
known as test-and-set-lock).

It is assumed that external hardware, upon receipt of that signal, will prohibit bus
access for other bus masters during the period of its assertion.

The instruction most useful in this context is an exchange register with memory. A
simple software lock may be implemented with the following code sequence:

Check: MOV AL,1 ;set AL to 1 (implies locked)
LOCK XCHG Sema,AL ;test and set lock
TEST AL, AL ;set flags based on AL
INZ Check ;retry if lock already set
l"IOV Sema,0 ;clear the lock when done

The LOCK prefix may be combined with the segment override and/or REP prefixes,
although the latter has certain problems. (See REP.)

All mnemonics copyright Intel Corporation 1983

152

LOOP

LOOPE
LOOPNE

LOOPZ

Loop Control LOOPNZ

Format

l Opcode I Disp]

Opcode Clocks Operation Coding Example
E1 18o0r6 dec CX: loop it equal and CX LOOPE TARGETLABEL
nol 0
EO 190r5 dec CX: loop it not equal and LOOPNE TARGETLABEL
CX not 0
E1 18or6 dec CX; Icop if zero and CX LOOPZ TARGETLABEL
not0
EO0 190r5 dec CX: loop il not zero and CX LOOPNZ TARGETLABEL
not0
E2 170r5 dec CX: loop it CX not 0 LooP TARGETLABEL
Operation
CX—CX-1;

if (condition is true) and (CX <> 0) then do:
sign-extend displacement to 16 bits;
IP ~ IP + sign-extended displacement;
end if;

Flags

0DI TS ZAPC

Description

The LOOP instructions are intended to provide iteration control and combine loop
index management with conditional branching. To use the LOOP instruction you
load an unsigned iteration count into CX, then code the LOOP at the end of a series
of instructions to be iterated. Each time LOOP is executed the CX register is
decremented and a conditional branch to the top of the loop is performed. The five
variants of the instruction (LOOP, LOOPE, LOOPZ, LOOPNE, and LOOPNZ)
allow branching on three sets of conditions, since two pairs of variants are
synonymous. Conditions for branching are:

LooOP branches if CX non-zero after decrementing.
LOOPZ, LOOPE branch if CX non-zero and ZF = 1;
LOCPNZ, LOOPNE branch if CX non-zero and ZF = 0.

In every case, if the condition specified in the conditional loop is true, the signed
displacement byte is sign extended to a word and added 10 the IP, which has been
updated to point 1o the first byte of the next instruction. This limits the range of the
conditional loop to 127 (decimal) bytes beyond and 126 bytes before the instruction
(remember, the 1P was incremented by 2 to point to the next instruction before the
displacement was added).

All mnemonics copyright Intel Corporation 1983

153

MOV

Move Data

Format
Memory/Reg to or from Reg

[opcode | moarm T

Opcode Clocks Operation Coding Example
88 9+EA Mem8 — Reg8 MOV BYTESOMETHING,BL
BA 2 Reg8 « Reg8 MOV BLAL
89 9+EA Mem16 - Reg16 MOV WORDSOMETHING,BX
88 2 Reg16 — Reg16 MOV BX,AX
BA 8+EA Reg8 — Mem8 MOV BL,BYTESOMETHING
88 8+EA Reg16 — Mem16 MOV BX,WORDSOMETHING

Direct-Addressed Memory to or from AX/AL

Opcode | AdaiL | Addarn]

Opcode Clocks Operation Ceding Example
A0 10 AL - Mem8 MOV AL BYTESOMETHING
Al 10 AX - Mem16 MOV AX,WORDSOMETHING
A2 10 Mem8 -~ AL MOV BYTESOMETHING,AL
A3 10 Memi6 «— AX MOV WORDSOMETHING,AX

Immed to Reg

Opcode l Data l : :'

Opcode Clocks Operation Coding Example
B0+reg 4 Reg 8 ~ Immed8 MOV CLS
B8+reg 4 Reg16 — immed16 MOV S1.400H

Immed to Memory/Reg

I Opcode ModRM* I T I T Data I :I

*—(Reg field = 000}

Opcode Clocks Operation Coding Example
o] 4 Reg8 - Immed8 MOV BL,32
c6 10+ EA Mem8 - Immed8 MOV BYTESOMETHING,32
c7 4 Reg16 — Immed16 MOV BX,1234H
c7 10+EA Mem16 — Immed16 MOV WORDSOMETHING,1234H

Memory/Reg to or from SReg

I Opcode ModRM* I : l ::’

*—(Reg field = SReg)

All mnemonics copyright Intel Corporation 1983

154

MOV

Opcode Clocks Operation Coding Example
8C 9+EA Mem16 - SReg MOV WORDSOMETHING,DS
8C 2 Reg16 - SReg MOV AX.DS
8E 8+EA SReg* — Mem16 MOV DS WORDSOMETHING
8E 2 SReg* — Reg16 MOV DS.AX

“CS not allowed

Operation
LeftOpnd -~ RightOpnd

Flags

0DI TS ZAPCEC

Description

The right operand (source) is copied 10 the left operand (destination). The right
operand is not modified. No flags are affected.

All mnemonics copyright intel Corporation 1983

155

MUL

Unsigned Multiplication

Format
Memory/Reg with AL or AX

l Opcode I ModRM* I [::l

*—(Reg field = 100)

Opcode Clocks Operation Coding Exampte
F6 70-77 AX « AL * Reg8 MUL BL
F6 (76-83) + EA AX = AL * Mem8 MUL BYTESCMETHING
F7 118-133 DX:AX — AX * Reg16 MUL BX
F7 (124-139)+ EA DX:AX = AX * Mem16 MUL WORDSOMETHING
Operation
if byte-operation then do; {* byte operation, word result *{

AX +~ AL * (Mem8 or Reg8),
if AH=0then CY -~ OF - 0;
elseCY ~OF - 1;
else if word-operation then do, {* word-operation, dword result */
DX:AX « AX * (Mem16 or Reg16);
if DX=0then CY <~ OF < 0;
else CY « OF —1;
end if;

Flags

00I TS ZAPC

X - - -uUuvuuvuxX

Description

There are two types of unsigned multiplication in the 8086/8088, distinguishable by

the types of operands and the precision of the result:

1. Multiply a byte memory or register operand by a byte in AL, producing a word
result in AX (called ‘byte-operation, word result’ above).

2. Muliiply a word memory or register operand by a word in AX, producing a
dword result in DX:AX (called ‘word-operation, dword result’ above).

In both types of multiply the carry and overflow flags are used to signal whether the
product has exceeded the precision of the operands which produced it. Thus, when

multiplying two bytes, if the product is larger than can be expressed in a byte (i.e.
prod > 256.) then the CY and OF flags will be set; otherwise, they will be cleared.

All mnemonics copyright Intel Corporation 1983

156

NEG

Negate an Integer

Format
Memory/Reg

(.!;‘} | Opcode ModRM* L j

*—(Reg field = 011)

Opcode Clocks Operation Coding Example
F6 3 Reg8 - 00H - Reg 8 NEG BL
F7 3 RegQ16 - 0000H - Reg16 NEG BX
Fé 16+ EA Mem8 « 00H - Mem8 NEG BYTESOMETHING
F7 16+EA Mem16 - 0000H - Mem16 NEG WOROSOMETHING
Operation

Operand + 2's complement of Operand

Flags
6 D1 TS ZaAPC
X - - - X X X x 1
(. / *except when operand is zero, then CF<« 0
Description
The two’s complement of the register or memory operand replaces the old operand
value.

All mnemonics copyright Intel Corporation 1983

157

NOP

No Operation

Format

Opcode Clocks Operation Coding Example

90 3 no operation NOP

Operation

Perform no operation.

Flags

0ODITSZAPC

Description

NOP is a one-byte filler instruction which takes up space but affects none of the
machine context except I[P.

All mnemonics copyright Intel Corporation 1983

158

NOT

Form One’s Complement

Format

Memory/Reg

[Opcode [ModFlM' — ::l

*—(Reg field = 010)

Opcode Clocks Operation Coding Example
Fé 3 Reg8 - 0FFH - Reg8 NOT BL
Fé 16+ EA Mem8 - 0FFH - Mem§ NOT BYTESOMETHING
F7 3 Reg16 < 0FFFFH - Reg16 NOT 8X
F7 16+ EA Mem16 -- QFFFFH - Mem16 NOT WORDSOMETHING
Operation

Operand — one’s complement of Operand

Flags

0oD1 TS ZaAPC

Description

The operand is inverted, that is, every 1 becomes a 0 and vice versa.

All mnemonics copyright Intel Corporation 1983

159

OR

Logical Inclusive OR

Format
Memory/Reg with Reg

I Opcode I ModRM — | ::I

Opcode Clocks Operation Coding Example
0A 3 Reg8 - RegB OR Reg8 OR BL.CL
0A 9+EA Reg8 — Reg8 OR Mem8 OR BL.BYTESOMETHING
[1]: 3 Reg16 — Reg16 OR Reg 16 OR BX.CX
o8 9+EA Reg16 — Reg16 OR Mem16 OR BX.WORDSOMETHING
08 16+ EA Mem8 - Mem8 OR Reg8 OR BYTESOMETHING.BL
09 16+ EA Mem16 ~ Mem16 OR Reg16 OR WORDSOMETHING,.BX

Immed to AX/AL

Opcode I Data I ___:‘

Opcode Clocks Operation Coding Example
0C q AL — AL OR Immed8 OR ALS
00] AX — AXOR Immed16 OR AX,400H

Immed to Memory/Reg

Opcode I ModRM* l T _ l Data ::I

*—(Reg field = 001)

Opcode Clocks Operation Coding Example
80 4 Reg8 - Reg8 OR Immed8 OR BL.32
80 17+EA Mem8 ~ Mem8 OR Immed8 OR BYTESOMETHING,32
81 4 Reg16 — Reg16 OR iImmed16 OR BX.1234H
81 17+EA Mem16 — Mem16 OR Immed16 OR WORDSOMETHING.1234H
Operation
LeftOpnd ~— LeftOpnd or RightOpnd
OF — CF -0
Flags
0D1 TS ZAPC
0 - - - XxxUXx0
Description

The inclusive OR of two operands replaces the left operand. The carry and overflow
flags are cleared.

All mnemonics copyright Intel Corporation 1983

160

ouT

Output Byte, Word

Format
Fixed port
j | Opcode Port I
Opcode Clocks Operation Coding Example
E6 10 Port8 — AL OUT BYTEPORTNUMBER.AL
E7 10 Port8 — AX OUT BYTEPORTNUMBER.AX

Variable port

Opcode Clocks Operation Coding Example
EE 8 Port16 (in DX) — AL OUT DX.AL
EF 8 Port16 tin DX) = AX OUT DX.AX
Operation

it fixed-port then
portnumber in instruction;
0 < portnumber < OFFH;
else
portinumber in DX;
0 < portnumber € OFFFFH;
end if;
if byte-output then ioport[portnumber) — AL;
else ioport{portnumber] — AX;

Flags

0ODI TS zZAPC

Description

OUT transfers a byte from AL or a word from AX to the specified output port. Use
of the fixed port format allows access to ports 0 through FF, and encodes the port
number in the instruction. To use the variable port format you load the DX register
with a 16 bit port number and then code the mnemonic ‘DX" in place of a constant

; port number. This format allows access to 64k ports.

All mnemonics copyright Intel Corporation 1983

161

POP

Pop a Word From the Stack

Format
Word Memory

N I

I Opcode | ModRM* I

*—(Reg field=000)
Opcode Clocks Operation Coding Example

8F 17+ EA Mem16 — (SP) + + POP WORDSOMETHING

Word Register

Opcode + reg

Opcode Clocks Operation Coding Example

58 + reg 8 Regl16 - (SP) + + POP BX

Segment Register

Opcode + SReg

Opcode Clocks Operation Coding Example

07 +(SReg*8) 8 SReg — (SP)++ POP DS

Operation
Operand - TOS;

SP—SP +2;
Flags

0ODITSZAPC

Description

The word on the top of the stack replaces the previous contents of the memory,
register, or segment register operand. The stack pointer is incremented by 2 to point
1o the new top of stack.

[f the destination operand is a segment register, the value POPed will be a paragraph
number.

POP CS is NOT allowed.

All mnemonics copyright Intel Corporation 1983

162

POPF

Pop the TOS Into the Flags

Format

Opcode Clocks Operation Coding Example

D 8 FLAGS +- (SPy+ + POPF

Operation

Flags — TOS;
SP—SP + 2;

Flags

0D0DI1I TS ZAPC
XX X X X X X X X

Description

The TOS is copied to the Flags and the stack pointer is incremented by 2 to point to
the new top of stack. Bil position 10 flag assignments are:

OF —bitn
Ko DF ~bit10
IF —bitg
TF - bit8
SF —bit7
ZF - bit6
AF —bit4
PF - bit2
CF ~—bit0

All mnemonics copyright Intel Corporation 1933

163

PUSH

Push a Word Onto the Stack

Format
Memory/Reg
| Opcode I ModRM* I
*—(Regq field=110)
Opcode Clocks Operation Coding Example
FF 16+ EA —{SP) —~ Mem16 PUSH WORDSOMETHING
Word Register
Opcode +reg
Opcode Clocks Operation Coding Example
50+reg 1" —(SP) — Reg16 PUSH BX

Segment Register

Opcode + SReg|

Opcodo Clocks Operation Coding Example
06+(SReg'8) 10 —{SP) - SReg PUSH 0OS
Operation
SP-SP-2;

TOS < Operand;
All mnemonics copyright Intel Corporation 1983

164

PUSH

Flags

0DITSZAPC

Description

The stack pointer is decreased by 2 and the word operand is copied 10 the new top of
stack.

All mnemonics copyright Intel Corporation 1983

165

PUSHF
Push the Flags to the Stack

Format

Opcode Clocks Operation Coding Example

9c 10 —{SP) - FLAGS PUSHF

Operation

SP~SP-2;
TOS - Flags:

Flags

Description

The stack pointer is decremented by 2 and the flags are copied to the new top of
stack. Flag to bit posilion assignments are:

bit 11 — OF
bit 10 — DF
bit9 «—IF
bit8 < TF
bit7 « SF
bit6 —ZF
bitd < AF
bit2 —PF
bit0 - CF

All mnemonics copyright Intel Corporation 1983

166

RCL

Rotate Left Through Carry

Format

Memory or Reg by 1

LOpcode l ModRM"* _ Ii__:l

"—(Reg field=010)

Opcode Clocks Operation Coding Example
Do 2 rotate Reg 8 by 1 RCL BL.1
DO 15+ EA rotate Mem8 by 1 RCL BYTESOMETHING.1
D1 2 rotate Reg 16 by 1 RCL B8X.1
D1 15+ EA rotate Mem16 by 1 RCL WOROSOMETHING.1

Memory or Reg by count in CL

Opcode l ModRM* I l :j

*—(Reg field=010)

Opcode Clocks Operation Coding Example
D2 8+ 4/bit rotate Reg8 by CL RCL BL.CL
D2 20+ EA + 4/bit rotate Mem8 by CL RCL BYTESOMETHING.CL
D3 8+ 4/bit rotate Reg16 by CL RCL BX.CL
D3 20 +EA +4/bit rotate Mem16 by CL RCL WORDSOMETHING.CL
Operation
if variable-bit-rotate then count=CL or count=Immed8;
else count=1;
do until count=0
tempcf — CF:

CF — high-order-bit of operand.
operand -~ operand * 2 + lempcl:
count - count-1;

All mnemonics copyright Intel Corporation 1983

167

RCL

end do;
if not variable-bit-rotate then do;
it high-order-bit of operand <> CF then OF — 1;

else OF ~¢;

end if;

Flags
0DITSZAPGCE
X = = - === - X
Description

The register or memory operand is rotated left through the CF according to the shift
count, which may be either a fixed count of 1 or a variable count that has been
loaded into the CL register. If the shift count is 1, the overflow flag is set if the high
bit of the rotated operand differs from the resulting carry flag. Only CF and OF are
affected.

All mnemonics copyright Intel Corporation 1983

168

RCR

Rotate Right Through Carry

Format

(,l_v ; Memory or Reg by 1

I Opcode I ModRM* I . L ::l

*—(Reg field = 011)

Opcode Clocks Operation Coding Example
00 2 rolale Reg8 by 1 RCR 8L
D0 15+EA rotate Mem8 by 1 RCR BYTESOMETHING,1
D1 2 rotate Reg16 by 1 RCR 8X.1
01 15+ EA rotate Mem16 by 1 RCR WORDSOMETHING.1

Memory or Reg by count in CL

Opcode ModRM* I _ I ::l

*—(Reg field = 011)

Opcode Clocks Operation Coding Example
) ! D2 8+ 4/bit rolale Reg8 by CL RCR BL.CL
S D2 20 + EA +4/Dbit rolale Mem8 by CL RCR BYTESOMETHING,CL
03 8+4/bit rolate Reg16 by CL RCR BX.CL
n3 20+ EA +4/bil rolate Mem16 by CL RCR WORDSOMETHING.CL
Operation
if variable-bit-rotate then count=CL
else do;
count=1;
if high-order-bit of operand <> CF then OF - 1;
else OF - 0;
end if;
do until count=0
tempct — CF;

CF - low-order-bit of operand;
All mnemonics copyright Intel Corporation 1983

169

RCR

operand «— operand / 2;
high-order-bil of operand - tempct;
count = counl-1;

end do;

Flags
0DITSZAPE
X - - ----- X
Description

The register or memory operand is rotated right through the CF according 1o the
shift count, which may be either a fixed count of 1 or a variable count thal has been
loaded into the CL register. If the shift count is 1, the overllow flag is set if the high
bit of the un-rotated operand differs from the original carry flag. Only CF and OF
are affected.

All mnemonics copyright Intel Corporation 1983

170

REP
Repeat Prefix ~REP/REPZ/REPE/REPNE/REPNZ

Format
Opcode Clocks Operation Coding Exampte
F3 2 repeat next instruclion until REP MOVSB
CX=0
F3 2 repeat next instruction until REPE SCASB
CX=0orZF=1 REPZ SCASB
F2 2 repeat next instruction until REPNE SCASS
CX=0o0r2F=0 REPNZ SCASB
Operation

do while CX <> 0:
{* acknowledge pending interrupts */
/* perform string operation in subsequent byte */
CX — CX-1; [*does not affect flags */
if string operation = SCAS or CMPS and
ZF <> repeat condition then undo;
end do:

C' Flags
001 TSZAPCE

Description

The REP prefix causes a succeeding string operation to be repeated until the count in
CX goes 10 zero (REP causes CX 1o be decremented after each repetition of the
string op). If the string operation is either SCAS or CMPS (or a variant of those
such as SCASB...) then the ZF is compared to the repeat condition after the string
op is performed, and the repeat is terminated if the ZF does not match the condi-
tion. For example, REPE SCASB will scan a string, comparing each byte to the AL
register, as long as the ZF is 1, indicating ‘EQUAL’.

REP, REPE, and REPZ are synonymous, as are REPNZ and REPNE.

Execution of the repeated string operation will not resume properly following an
interrupt if more than one prefix is present preceding the string primitive. Execution
will resume one byte before the primitive (presumably where the repeat resides), thus
ignoring the additional prefixes.

All mnemonics copyright Intel Corporation 1983

171

RET

Return From Subroutine

Format
Opcode Clocks Operaiion Coding Example
C3 8 intra-segment return RET
cB 18 inter-segment return RET

Return and add constant to SP

Opcode DatalL DataH I

Opcode Clocks Operation Coding Example

c2 12 intra-segment ret and add RET 8
CA 17 inter-segment ret and add RET 8

Operation

IP—(SP} + +;
SP—SP + 2;
it intersegment then
CS —(SP) + +;
SP—SP + 2;
if add immediate to SP then
SP — SP + immediate constant;

Flags

0DI1I TS ZAPC

Description

RET transfers control through a back-link on the stack, reversing the effects of a
CALL instruction. If the intra-segment RET is used, the back-link is assumed to be
just the return-1P, while inter-segment RETs assume both IP and CS are on the
stack. RETs may optionally add a constant 10 the stack pointer, effectively remov-
ing any arguments to the called routine which were pushed prior to the CALL.

All mnemonics copyright Intel Corporation 1983

172

ROL

Rotate Left

Format

Memory or Reg by 1

LOpcode] ModRM* - ::l

*—(Reg lield - 000)

Opcode Clocks Operation Coding Example
Do 2 rotate Reg8 by 1 ROL BL.1
DO 15+ EA rolate Mem8 by 1 ROL BYTESOMETHING.1
01 2 rotale Reg16 by 1 ROL BX.1
D1 15+ EA rotate Mem16 by 1 ROL WORDSOMETHING.1

Memory or Reg by countin CL

IJpcode I ModRM* I | :j

*—(Reg tield = 000}

Opcode Clocks Operation Coding Example
D2 8+ 4/bit rolate Reg8 by CL ROL BL.CL
D2 20+ Ea+4/bit rotate Mem8 by CL ROL BYTESOMETHING.CL
D3 8+ 4/bit rotate Regi6 by CL ROL BX.CL
D3 20+-EA+4/bit rolale Mem16 by CL ROL WORDSOMETHING.CL
Operation

if variable-bit-rotate then count=CL

else count=1;

do until count=0
CF ~ high-order-bit of operand;
operand — operand * 2 + CF;
count <~ count-1;

All mnemonics copyright Intel Corporation 1983

173

ROL

end do:

if not variable-bit-rotate then do;
if high-order-bit of operand <> CF then OF — 1;
else OF - 0;

end if;

Flags

00DI TS ZAPC

Description

The register or memory operand is rotated left according 1o the shift count, which
may be either a fixed count of I or a variable count that has been loaded into the CL
register. The high order bit of the operand is copied directly (o the low order bit dur-
ing the rotate, as well as to CF. If the shift count is 1, the overflow flag is set il the
high bit of the rotated operand differs from the resulting carry flag. (That is, if the
high and low order bits of the result are not the same.) Only CF and OF are affected.

All mnemonics copyright Intel Corporation 1983

174

ROR

Rotate Right

Format
Memory or Reg by |

Opcode ModRM*™ I T I :]

*—{Reg field = 001)

Opcode Clocks Operation Coding Example
Do 2 rotate Reg8 by 1 ROR BL.1
Do 15+ EA rotate Mem8 by 1 ROR BYTESOMETHING.1
D1 2 rotate Reg16 by 1 ROR BX.1
D1 15+ EA rotale Memi6 by 1 ROR WORDSOMETHING.1

Memory or Reg by count in CL

[opcode [mMosmm- [~ []

*—(Reg field = 001)

C 3 Opcode Clocks Operation Coding Example
g D2 8+ 4/bit rotate Reg8 by CL ROR BL.CL
D2 20 + EA + 4/bit rotate Mem8 by CL ROR BYTESOMETHING.CL
D3 8+4/bit rotate Reg16 by CL ROR BX.CL
D3 20+ EA + 4/Dbit rotate Mem16 by CL ROR WORDSOMETHING.CL
Operation

< if variable-bit-rotate then count=CL
o elsecount=1;

do untilcount =0
tempct - CF;
CF «— low-order-bit of operand;
operand - operand / 2;
high-order-bit of operand « CF;

All mnemonics copyright Intel Corporation 1983

175

ROR

count = count-1;
end do;
if not variable-bit-rotate then do;
if high-order-bit of operand <> CF then OF —1;

else OF - 0;

end if;

Flags
0ODITSZAPCE
X - - ----- X
Description

The register or memory operand is rotated right according to the shift count, which
may be either a fixed count of 1 or a variable count that has been loaded into the CL
register. The low bit of the operand is copied directly to the high bit during the
rotate, as well as to the CF. If the shift count is 1, the overflow flag is set if the high
bit of the rotated operand differs from the un-rotated high bit. Only CF and OF are
affected.

All mnemonics copyright Intel Corporation 1983

176

SAHF

Store AH in Flags

Format
Opcode Ctocks Operation Coding Example
9E 4 copy AH 1o low byle of flags SAHF
word
Operation

AH —~ SF:ZF:X:AF:X:PF:X:CF

1* ‘X' indicates non-specified bit value */

Flags

0DI TS ZAPC
== ==X XX XX

Description

The Sign, Zero, Auxiliary carry, Parity, and Carry Flags are loaded from AH in the
following format:

AH bit7 goesto SF
AH bit6 goesto ZF
AH bit4 goesto AF
AH bit2 goesto PF
AH bit0 goesto CF

No other flags are altered.

All mnemonics copyright Intel Corporation 1983

177

SAL/SHL

Arithmetic/Logical Left Shift

Format
Memory or Reg by 1

[opcode | Modrm: |

*—(Reg field = 100}

Opcode Clocks Operation Coding Example
DO 2 shift Reg8 by 1 SAL BL.t
Do 15+ EA shift Mem8 by 1 SHL BYTESOMETHING,1
o1 2 shift Reg16 by 1 SHL BX.1
D1 154+ EA shift Mem16 by 1 SAL WORDSOMETHING.1

Memory or Reg by count in CL

I R

*—(Reg field = 100)

Opcode I ModRM* I

Opcode Clocks Operation Coding Example

D2 8+ 4/bit shift Reg8 by CL SHL BL.CL

D2 20+EA +4/bit shift Mem8 by CL SAL BYTESOMETHING.CL

03 8+ 4/bit shift Reg16 by CL SAL BX.CL

D3 20+EA+4/bit shift Mem16 by CL SHL WORDSOMETHING,CL
Operation
if variable-bit-shift then count=CL
eise count=1;

do until count=0
CF « high-order-bit of operand;
operand - operand * 2;
count - count-1;

end do;

All mnemonics copyright Intel Corporation 1983

178

SAL/SHL

if not variable-bit-shift then do;
it high-order-bit of operand <> CF then OF ~ 1;
else OF ~ 0;

end if:

Flags

0D1 TS 2APC

X - - - X XU Xxx

Description

SHL (shift logical left) and SAL (shift arithmetic left) shift the operand left by
COUNT bits, shifting in low-order zero bits.

All mnemonics copyright Intel Corporation 1983

179

SAR

Arithmetic Right Shift

Format
Memory or Reg by 1

I Opcode l ModRM* l - l ::l

*—(Reg field = 111)

Opcode Clocks Operation Coding Example
Do 2 shift Reg8 by 1 SAR BL.}
00 15+ EA shift Mem8 by 1 SAR BYTESOMETHING.1
D1 2 shift Reg16 by 1 SAR BX.1
D1 15+ EA shift Mem16 by 1 SAR WORDSOMETHING 1

Memory or Reg by countin CL

[opcode | ModrM: L]

*—(Reg field = 111)

Opcode Clocks Operation Coding Example
D2 8+ 4/Dbit shift Reg8 by CL SAR BL.CL
D2 20+ EA+4/bit shift Mem8 by CL SAR BYTESOMETHING.CL
D3 8+ 4/bit shift Reg16 by CL SAR BX.CL
‘D3 20+ EA +4/bit shift Mem16 by CL SAR WORDSOMETHING.CL
Operation

if variable-bit-shift then count=CL

else count=1;

do until count=0
CF ~ low-order-bit of operand;
operand — operand / 2; /* SIGNED DIVIOE */
count ~ count - 1;

end do;

All mnemonics copyright Intel Corporation 1983

180

SAR

if not variable-bit-shift then do;
OF - 0;

end if;

Flags

0D1I1I TS ZAPC

X = ==XXUXZX

Description

SAR (shift arithmetic right) shifts the operand right by COUNT bits, shifting in
high-order bits equal to the original high-order bit of the operand (sign extension).

All mnemonics copyright Intel Corporation 1983

181

SBB

Integer Subtraction With Borrow

Format
Memory/Reg with Reg

[opcode | Mosmm [— :j

Opcode Clocks Operation Coding Example
1A 3 RegB — Reg8 - Reg8 - CF SBB BL.CL
1A 9+EA RegB + Reg8 - Mem8 - CF SBB BL,BYTESOMETHING
18 3 Reg16 - Reg16 - Reg16 - CF 58B BX.CX
1B 9+EA Reg16 - Reg16 - Mem16- CF SB88 BX,WORDSOMETHING
18 16+ EA Mem8 — Mem8 - Reg8 - CF SBB BYTESOMETHING,BL
19 16+ EA Mem16 ~ Mem16 - Reg16 - CF SBB WORDSOMETHING,BX

Immed from AX/AL

I Opcode Data ___ :I

Opcode Clocks Operation Coding Example
1C 4 AL = AL -Immed8 -CF SBB ALS
1D 4 AX = AX -immed16 - CF SBB AX.400H

Immed from Memory/Reg

[opcode | Modarm-] [ata |]

*—{Reg field = 011)

Opcode Clocks Operation Coding Example
80 4 Reg8 — Reg8-1mmed8 - CF $8B 8L,32
80 17+EA Mem8 — Mem8 - Immed8 - CF 58B BYTESOMETHING,32
81 4 Reg16 — Reg16- Immed16-CF S88 B8X,1234H
81 17+ EA Mem16 — Mem16 - Immed16 - CF SBB WORDSOMETHING,1234H
83 4 Reg16 ~— Reg16- immed8 - CF SBB BX,32
83 17+EA Mem16 ~ Mem16 - Imnmed8 - CF SBB WORDSOMETHING,32

(Immed8 is sign-extended
belore subtract)

Operation
LeftOpnd « LeftOpnd - RightOpnd - CF

Flags

0DITS ZAPC
X = ==X XX XX

All mnemonics copyright Intel Corporation 1983

182

SBB

Description

The result of subtracting the right operand, then the ongma] value of the carry flag,
from the left operand replaces the left operand.

All mnemonics copyright Intel Corporation 1983
183

SHR

Logical Right Shift

Format
Memory or Reg by 1

Opcode I ModRM* l

*—(Reg field = 101)

Opcode Clocks Operation Coding Example
Do 2 shift Reg8 by 1 SHR BL.1
[oli] 154 EA shift Mem8 by 1 SHR BYTESOMETHING,1
D1 2 shift Reg16 by 1 SHR BX,1
D1 15+ EA shift Mem16 by 1 SHR WORDSOMETHING,1

Memory or Reg by count in CL

Opcode ModRM* I _ l : :l

*—(Reg field = 101)

Opcode Clocks Operation Coding Example
D2 8+ 4/bit shift Reg8 by CL SHR BL.CL
D2 20 +Ea+4/bit shift Mem8 by CL SHR BYTESOMETHING.CL
D3 8+4/bit shift Reg16 by CL SHR BX.CL
D3 20+ EA+4/bil shift Mem16 by CL SHR WORDSOMETHING,CL
Operation
if variabla-bit-shift then count=CL
else do;
count=1;
OF « high-order-bit of operand;
end if;

do until count=0
CF — low-order-bit of operand;
operand — operand / 2; {* UNSIGNED DIVIDE */
count < count- 1;

end do;

All mnemonics copyright Intel Corporation 1983

184

SHR

Flags

0pDI TSZaPC
X - - -% XU XX

Description
SHR shifts the operand right by COUNT bits, shifting in high-order zero bits.

All mremonics copyright Intel Corporation 1983

185

STC

Set Carry Flag

Format

Opcode Clocks Operation Coding Example
F9 2 set the carry flag STC
Operation
CF+1
Flags

gDl TS ZAPC

Description

STC sets the carry flag, CF. No other flags are affected.

All mnemonics copyright Intel Corporation 1983

186

STD

Set Direction Flags

Format

Opcode Clocks Operation

FD 2 set direction flag

Operation
DF =1

Flags

0DI TS ZAPC

Description

Coding Example

STD

STD sets the direction flag, DF. No other flags are affected.

All mnemonics copyright Intel Corporation 1983

187

STI

Set Interrupt Enable Flag

Format

Opcode Clocks Operation

FB8 2 setinterrupt flag

Operation
IF -1

Flags

001 TS ZAPCE

Description

Coding Example

STI

STI sets the interrupt enable flag, IF. No other flags are affected.

All mnemonics copyright Intel Corporation 1983

188

String

String Operations

Format
Opcode Clocks Operation Coding Example
Ab 22 flags = (Sl) - (DN CMPS BSTRING
A7 22 flags — (S - (Dh CMPS WSTRING
A4 18 {Dl) = (Sh MOVS BSTRING1,BSTRING2
AS 18 (D1} — (S} MOVS WSTRING1, WSTRING2
AE 15 flags < (DI)- AX SCAS BSTRING
AF 15 tlags — (D)) - AL SCAS WSTRING
AC 12 AL ~ (81 LODS BSTRING
AD 12 AX — (S) LODS WSTRING
AA " (Dh — AL STOS BSTRING
AB 1" (1) — AX STOS WSTRING
Operation
do until CX = 0;

/* acknowledge any pending interrupts */
perform string primitive once;
CX CX-1; /* does not affect flags * /
it DF = 0 then add pointer adjustment to S| and/or DI
else subtract pointer adjustment from S| and/or DI;
it SCAS or CMPS, and repeat condition doas not match ZF
then undo;
end do;

Description

The string primitive operations are intended to be used primarily with the REP
prefix. There are 7 primitives which, when so prefixed, perform the following
operations:

Flags

0Dl TS ZaAPC

X - - - X X xxx

CMPS Compare the elements of two strings, one pointed to by ES:DI and the
CMPSB other by DS:SI.

CMPSW

All mnemonics copyright Intel Corporation 1983

189

S

S

Z APC
X X X x
Scun a string pointed to by ES:DI, compuring each element to AX or
AL according 1o the type of string, and setting the flags to the result
of such a comparison. Used with the conditional repeat-prefix

(REPE,...), this primitive can locatc the next element matching
AX/AL or next not-matching element.

Load each string element into AX/AL. This primitive would be used
with the LOOP construct rather than the REP prefix, since some further
processing on the data moved 10 AX/AL is almost surely necessary.

Store the AX or AL contents into the entire string.

All mnemonics copyright Intel Corporation 1983

190

SUB

Integer Subtraction

Format
Memory/Reg with Reg

I Opcode I ModRM]
Opcode Clocks Operation Coding Example
2A 3 Reg8 — Reg8 - Reg8 Sus BL.CL
2A 9+EA Reg8 — Reg8 - Mem8 SUB BL.BYTESOMETHING
28 3 Reg16 — Reg16 - Reg16 SuB BX.CX
28 9+ EA Reg16 — Reg16 - Mem16 SUB BX.WORDSOMETHING
28 16+ EA Mem8 — Mem8 - Reg8 SUB BYTESOMETHING.BL
29 16+EA Mem16 — Mem16 - Reg16 SUB WORDSOMETHING.BX
Immed to AX/AL
Opcode Data :l
Opcode Clocks Operation Coding Example
2C 4 AL = AL - Immed8 SUB AL.S
20 4 AX — AX -Immed16 SUB AX.400H

Immed to Memory/Reg

Opcode l ModRM* l I Data] :I
*—(Reg field = 101)

Opcode Clocks Operation Coding Example
80 4 Reg8 — Reg8 - immed§ SUB BL.32
80 17+EA Mem8 — Mem8 - Immed8 SUB BYTESOMETHING.32
81 4 Reg16 — Reg16 - Immed16 SUB BX.1234H
81 17+EA Mem16 — Mem16 - Immed16 SUB WORDSOMETHING,1234H
83 4 Reg16 — Reg16 - Immed8 SUB BX.32
83 17+ EA Mem16 - Mem16 - Immed8 SUB WORDSOMETHING. 32

(Immed8 is sign-extended
before subtract}
Operation

LeftOpnd - LeftOpnd - RightOpnd

Flags

0D1TSZAPC
X = - =X X X X X

Description

The result of subtracting the right operand from the left operand replaces the left
operand.

All mnemonics copyright Intel Corporation 1983

191

TEST

Logical Compare

Format
Memory/Reg with Reg

[opcode ModRM [|
Opcode Clocks Operation Coding Example
84 3 flags — Reg8 AND Reg8 TEST BL.CL
84 9+EA flags — Reg8 AND Mem8 TEST BL,BYTESOMETHING
85 3 flags — Reg16 AND Reg16 TEST BX.CX
85 9+EA flags — Reg16 AND Mem16 TEST BX,WORDSOMETHING

Immed to AX/AL

Opcode [Data :I

Opcode Ctocks Operation Coding Example
AB 4 flags — AL AND Immed8 TEST ALM
A9 4 flags «~ AX AND Immed16 TEST AX.400H

Immed to Memory/Reg

Opcode ModRM* | _ | — Data . j

*—(Reg field = 000)

Opcode Clocks Operation Coding Example
F6 5 flags — Reg8 AND Immed8 TEST BL.3FH
F6 11+EA flags — Mem8 AND Immed8 TEST BYTESOMETHING,3FH
F7 5 flags ~ Reg16 AND Immed16 TEST BX.,3FFH
F7 11 +EA flags — Mem16 AND Immed16 TEST WORDSOMETHING,3FFH
Operation
flags « LeftOpnd and RightOpnd
OF —CF -0
Flags
0DI TS ZAPC
0 - - - XX UX D
Description

The result of a bitwise logical AND of the t(wo operands modifies the flags. Neither
operand is modified.

All mnemonics copyright Intel Corporation 1983

192

WAIT

Wait While TEST pin not Asserted

Format
Opcode Clocks Operation Coding Example
98 3+5n° none WAIT

*3+5n clocks where n is the number of times the TEST line is polled and tound to be inactive.

Operation

None.

Flags

0DITSZAPC

Description

The WAIT instruction causes the processor to enter a wait state if the signal on a
TEST pin is not asserted. The wait state may be interrupted by an enabled external
interrupt. When this occurs the saved code location is that of the WAIT instruction,
so that upon return from the interrupting task the wait state is re-entered. The wait
state is cleared and execution resumed when the TEST signal is asserted. Execution
resumes without allowing external interrupts until after the execution of the next
instruction. The instruction allows the processor Lo synchronize itself with external
hardware.

All mnemonics copyright Intel Corporation 1983

193

XCHG

Exchange Memory/Register With Register

Format
Memory/Reg with Reg

[opcode | ModrM |]

Opcode Clocks Operation Coding Example
86 4 RegB —— Reg8 XCHG BL.CL
86 17+EA Mem8 —— Mem8 XCHG BYTESOMETHING.CL
87 4 Reg16 —— Reg16 XCHG BX,CX
87 17+EA Mem16 ——~ Mem16 XCHG CX WORDSOMETHING

Word Register with AX

Opcode + Reg

Opcode Clocks Operation Coding Example
90 + Reg 3 AX «—— Reg16 XCHG AX.BX
Operation

temp - left operand;
left operand « right operand;
right operand < temp;

Flags

0ODITSZAPC

Description

The two operands are exchanged. Segment registers are not legal operands. The
order of the operands is immaterial. No flags are affected.

All mnemonics copyright Intel Corporation 1983

194

XLAT

Table Look-up Translation XLATB
Format
Opcode Clocks Operation Coding Example
07 11 replace AL with table entry XLAT ASCI_TABLE (BYTE ARRAY)
o7 " XLATB
Operation

AL — table entry with effective address equal to BX + AL;

Flags

001 TS ZAPC

Description

XLAT is intended for use as a table look-up instruction. Y ou put the base address of
the table in BX and a byte 10 be translated in AL. XLAT adds AL to the contents of
BX and uses the result as an effective address. The byte at that EA is loaded into
AL. BXisunchanged, and no flags are modified.

All mnemonics copyright Intel Corporation 1983

195

XOR

Logical Exclusive OR

Format
Memory/Reg with Reg

I Opcode I ModRM I I I
Opcode Clocks Operation Coding Example
32 3 Reg8 — Reg8 XOR Reg8 XOR BL,CL
32 9+EA Reg8 - RegB XOR Mem§ XOR BL,BYTESOMETHING
33 3 Reg16 — Reg16 XOR Reg16 XOR BX,CX
33 9+EA Reg16 — Reg16 XOR Mem16 XOR BX,WORDSOMETHING
30 16+ EA Mem8 - Mem8 XOR Reg8 XOR BYTESOMETHING,BL
kil 16+EA Mem16 - Mem16 XOR Reg16 XOR WORDSOMETHING,BX
Immed to AX/AL
I Opcode | Data I :l
Opcode Clocks Operatlion Coding Example
34 a AL — AL XOR Immed8 XOR AL5
35 4 AX — AX XOR immed16 XOR AX,400H
Immed to Memory/Reg
Opcode ModRM* Data I j
*—{Reg lield = 110)
Opcode Clocks Operation Coding Example
80 4 Reg8 - Reg8 XOR Immeds XOR BL,32
80 17+EA Mem8 - Mem8 XOR Immed8 XOR BYTESOMETHING,32
81 4 Reg16 — Reg16 XOR Immed16 XOR BX,1234H
81 17+EA Mem16 — Mem16 XOR Immed16 XOR WORDSOMETHING,1234H
Operation
LeftOpnd < LeftOpnd XOR RightOpnd
OF ~CF <0
Flags
0Dl TSZAPTC
0 - - - XX UXO
Description

The exclusive OR of two operands replaces the left operand. The carry and overflow

flags are cleared.

All mnemonics copyright Intel Corporation 1983

196

The 8087 Instruction Set

This section provides a summary discussion of those elements of the 8087 Numeric
Processor that are of specific interest to the 8087 programmer. The following pro-
grammer accessible features of the architecture are included: floating-point stack;
status, control and tag words; exception pointers; and data types. An clementary
description of 8087 operation is provided 10 give a working understanding of
8086/8087/8088 coprocessing, 8087 numeric processing, exception handlers, and
8087 emulators.

Those users who wish detailed information on the 8087 architecture, operation,
and/or those who wish to write their own exception handlers are referred to The
8086 Family User's Manual, Numerics Supplemeni, Order No. 121586.

8087 Architectural Summary

The programmer accessible features of the 8087 Numeric Processor architecture
consist of the eight floating-point stack elements; the seven words which constitute
the 8087 environment (status word, control word, tag word, 2-word instruction
address, and 2-word data address); and the seven data types accessible by the 8087.

Floating-Point Stack

The 8087 stack consists of eight elements divided into the fields shown in figure 6-1.
The format of the fields corresponds with the temporary real data format used in all
stack calculations and described under Data Types.

At a given point in time, the ST field in the status word identifies the current stack
top element. This floating point stack element (rather than the status word field) is
referred 10 in the rest of this chapter as ST. A load (push) operation, asin FLDLN2,
decrements the stack pointer by | and loads a value (in this case logg2) into the new
stack top. An operation which pops the floating point stack increments the stack
pointer by 1 (FADDP ST(i),ST adds the contents of the stack top 1o the stack ele-
ment designated by (i), stores the result in ST(i) and increments the stack pointer by
1, making ST(1) the new stack top, ST(0).

79 64 63 0

S| EXPONENT SIGNIFICAND ST3

ST2

ST STACK POINTER
ST{0) ToP

ST7)

STi6)

ST{S)

ST(a)

Figure 6-1. The 8087 Stack Fields 1216238

All mnemonics copyright Intel Corporation 1983

197

Elements of the floating point stack can be addressed either implicitly or explicitly:

FST ST(3) Stores the contents of the stack top into element 3.

FADD Adds the contents of the stack top to the contents of ST(1),
stores the result in ST(1) and pops the stack. The result is now
in the new stack top.

Note that floating-point stack indices outside of the range 0-7 are flagged as “‘out of
range.”’

Environment

The 8087 environment consists of the seven words shown in figure 6-2.

15 0
B lc3| . ST |cz c1|co | . [ee]ue|oe|ze|oe| e | statusworp
N I:c Ac PC liem} - |pm]um| - [2m[om]|m] contROLwORD
TAGE) I TAGIG) | TAGIS) | TAGW@) | TAGIS) | TAGI2) | TAG(1) | TAG®) TAG WORD FORMAT
1 1 1 1 1 1 1
16LSB l
INSTRUCTION ADDRESS
amse [o] INSTRUCTION OPCODE |
16LSB l
DATA ADDRESS
amsB | [) |
*RESERVED
Figure 6-2. 8087 Environment 121623-9
Status Word

The status word reflects the overall condition of the 8087; it may be examined by
storing it into memory with an 8087 instruction and then inspecting it with
8086/8088 CPU code. The status word is divided into the exception flag and status
bit fields shown in figure 6-3. The busy field (bit 15) indicates whether the 8087 is
executing an instruction (B=1) or is idle (B=0).

Several 8087 instructions {e.g., comparison instructions) result in modification of
the condition code’ The condition code is contained in bits 14 and 10-8 (C3-C0) of
the status word. The condition code is used mainly for conditional branching. See
the following instruction descriptions later in this chapter for condition code inter-
pretations: FCOM, FCOMP, FCOMPP, FTST, FXAM and FPREM.

Bits 13-11 of the status word points to the 8087 stack element that is the current
stack top (ST). Note that if ST=000B, a ‘“‘push’’ operation which decrements ST,
produces ST=111B; similarly, popping the stack with ST=111B yields ST=000B.

Bit 7 (IR) is the interrupt request field. The 8087 latches this bit to record a pending
interrupt to the 8086/8088 CPU.

Bits 5-0 (PE, UE, OE, EE, DE, and IE) are set to indicate that the 8087 has detected
an exception while executing an instruction.

All mremonics copyright Intel Corporation 1983

198

15 7 0

IBlCSI lSTI [CZICI[CO'!RI ‘PElUElOElZEIDEIIEI

I— EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED}
INVALID OPERATION
DENORMALIZED OPERAND
ZERODIVIDE
OVERFLOW
UNDERFLOW
PRECISION

(RESERVED)
INTERRUPT REQUEST
CONDITION CODE("
STACK TOP POINTER{?
8uUsSY

Figure 6-3. Status Word Format 12162310

ST values

000 = element 0 is stack top
001 = element | is stack top

111 =element 7 is stack top

Control Word

The contro!l word consists of the exception masks, an interrupt enable mask, and
control bits as shown in figure 6-4. During the execution of most instructions, the
8087 checks for six classes of exception conditions:

I. Invalid operations—programming errors such as trying to load a floating point
stack element that is not empty, popping an operand from an element that is
empty, using operands that cause indeterminate results (0/0, square root of a
negative number, trying to store an unnormalized number which will not denor-
malize, etc.).

2. Overflow—usually the exponent of the true result is 100 large for the destination
real format.

3. Underflow—the true exponent is too small to be represented in the result
format.

4. Zerodivide—division of a finite non-zero operand by zero.
5. Denormalized—an instruction attempts to operate on a denormalized number.

Precision—for instructions that perform exact arithmetic, this exception means
that some precision has been lost in reporting the results of an operation.

When one of these six conditions occurs, the corresponding flag in the status word is
set 1o 1. The 8087 checks the appropriate mask in the Control Word to determine if
it should process the exception with a default handling procedure on chip (mask = 1)
or invoke a user written exception handler (mask = 0).

In the first case, the exception is said to be MASKED (from user software).

All mnemonics copyright Intel Corporation 1983

199

4]

IICI R‘C | PIC IIEMI JPMIUMIOMIZM'DM' IMl

INVALIDO OPERATION
DENORMALIZED OPERAND
ZEROODIVIDE
OVERFLOW
UNDERFLOW
PRECISION
{RESERVED)
CONTROL BITS
INTERRUPT-ENABLE MASK("

PRECISION CONTROL!)
ROUNDING CONTROL(

INFINITY CONTROLW)

(RESERVED)

) Interrupt-Enable Masu
0 = Inlerrupis Enabl
1 = Inlerrupis Dlsabled (Masked)
@ Preclsnon Control:
O 4 bits
01 = {reserved)
10 = 53 bits
11 = 64 bits
3} Rounding Control:
00 = Round ta Nearest ot Even
01 = Round Down (toward ~)
10 = Round Up ({loward - =)
11 = Chop (Truncate Toward Zero)
14} 1nfinity Conirol:
(‘) = APro,ecllve

Figure 6-4. Control Word Format

I_ EXCEPTION MASKS (1 = EXCEPTION IS MASKED)

121623-11

The control bits have the following meanings:

PC:

RC:

Tag Word

The 1ag word, as shown in figure 6-5, contains tags describing the contents of the
corresponding stack elements.

Precision control—results are rounded to one of three
precisions: Temporary Real (64 bits), Long Real (53 bits) or
Short Real (24 bits).

Rounding Control—results are rounded in one of four
directions: unbiased round to the nearest or even value, round
toward +, round toward —, or round toward zero.

Infinity Control—there are two types of infinity arithmetic
provided: affine and projective. The default means of closing a
Number system is projective. See The 8086 Family User’s
Manual, Numerics Supplement, for a complete description.

All mnemonics copyright Intel Corporation 1983

200

15 7 0
I TAGH) I TAGHS) ‘ TAG(S) l TAG() I u?ml TAGE) l TAG() I TAG(O) I

Tag values:
0 = Valid (Normal or Unnormal)
01 = Zero (True)
10 = Special (Not-A-Number. =, or Dencrmal)

11 = Empty
Figure 6-5. Tag Word Format 121623-12
| OPERAND ADDRESS!!
| INSTRUCTION OPCODE®
L INSTRUCTION ADDRESS(!)
10 [

11 20-bit physical address
121 11 least significant bils ol opcode: § mosl significant bils are alvays 8087 hook {110118)

Figure 6-6. Exception Pointers Format 12162313

Exception Pointers

The exception pointers shown in figure 6-6 are provided for user-written exception
handlers. Whenever the 8087 executes an instruction, it saves the instruction address
and the instruction opcode in the exception pointers. In addition, if the instruction
references a memory operand, the address of the operand is retained also. An excep-
tion handler can be written to store these pointers in memory and obtain informa-
tion concerning the instruction that caused the error.

Data Types

The 8087 addresses seven different data types using all of the 8086 addressing
modes. These data types and their valid ranges of value are shown in table 6-5.

Figure 6-7 describes how these formats are stored in memory (the sign is always
located in the highest-addressed byte). In the figure, the most significant digits of all
numbers (and field within numbers) are the leftmost digits.

Table 6-5. 8087 Data Types

Data Type Bits DI;itg'}i[f)t:inrl:al) Approximate Range (Decimal)
WORD INTEGER 16 a5 -32768 < x < +32767
SHORT INTEGER k?) 9 —2x109 s x g 22109
LONG INTEGER 64 18 -9x10"8 < x< +9x1018
PACKED DECIMAL | 80 18 -99...99 < x < +99...99 (18 digits)
SHORT REAL 32 6-7 0,1.2x10738 < x| £3.4x1038
LONG REAL 84 15-16 0,2.3x107308 ¢ x| £1.7x10308
TEMPORARY REAL | 80 19-20 0,3.4x1079932 ¢ | x| € 1.1 x104932

All mnemonics copyright Intel Corporation 1983

201

~a——— INCREASING SIGNIFICANCE

(TWO'S
WORD INTEGER MAGNITUDE COMPLEMENT)

15 0
(TWO'S
SHORT INTEGER ls] MAGNITUDE I COMPLEMENT)
31 0
LONG INTEGER Isl MAGNITUDE I gg&fsmen‘n
63 0
MAGNITUDE
P
ACKED DECIMAL FI X l;"ld|5|d|5ld“ld'3ld'zld” 4 910,09 , dg , d7 ,dg , dg dg,dy Dy, dy, "DI
79 72 [}

BIASED
SHORT REAL H EXPONENT I SIGNIFICAND |

31 2X_ N [

LONG REAL Isl - | SIGNIFICAND I
3
s\ _ |, 0
TEMPORARY REAL FI EraASED T I—.‘ SIGNIFICAND J
79 64 634 0

OTES:

S = Sign bit (0 = posilive. 1 = negative}
dn = Decimal digit (Iwo per byte)
X = Bits have no significance: 8087 ignores when loading. zeros when sloring.
A = Position of implicit binary point
| = Integer bil of signifi slored in y real. implicit in shori and tong real
Exponenlt Bias (normalized values):

Short Real: 127 (7FH)

Long Real: 1023 (3FFH)

Temporary Real: 16383 (3FFFH)

Figure 6-7. Data Formats 12162314

The three binary integer formats are identical except for length, which governs the
range that can be accommodated in each format. The leftmost bit is interpreted as
the number’s sign: 0 = positive and 1 = negative. Negative numbers are represented
in standard two’s complement notation (the binary integers are the only 8087 format
10 use two’s complement). The quantity zero is represented with a positive sign (all
bits 0). The 8087 word integer format is identical to the 16-bit signed integer data
type of the 8086 and 8088.

Decimal integers are stored in packed decimal notation, with two decimal digits
‘“‘packed’’ into each byte. Negative numbers are distinguished from positive ones
only by the sign bit. All digits must be in the range OH-9H.

The 8087 stores real numbers in a three-field binary format that resembles scientific
notation. The number’s significant digits are held in the SIGNIFICAND field, the
EXPONENT field locates the binary point within the significant digits (determining
the number’s magnitude), and the SIGN field indicates whether the number is
positive or negative. Negative numbers differ from positive numbers only in their
sign bit.

All mnemonics copyright Intel Corporation 1983

202

The short and long real formats exist only in memory. If a number in one of these
formats is loaded into the stack, it is automatically converted to temporary real.

Special values are included to increase flexibility though not within the domain of
normal floating point arithmetic. These special values are listed here, but the reader
is referred to The 8086 Family User's Manual, Numerics Supplement, for descrip-
tions. The special values include:

¢ Signed zero

® +o and — representations

¢ Indefinite values

* NAN values (Not-A-Number)
¢ Denormals

* Unnormals

8087 Operation

Coprocessing

The 8087 and host CPU act as coprocessors. They share the same instruction stream
and sometimes perform parallel executions. The 8086/8088 has a set of ESCAPE
instructions that, in memory addressing mode, cause the 8086/8088 1o calculate the
address and read the contents of that address. The 8086/8088 ignores the word it
reads and executes subsequent instructions. The 8087, however, monitors the same
instruction stream and when it detects an ESCAPE it begins processing. The 8087
latches the opcode and, if there was an address calculated, the 8087 captures both
the address and the daium read by the 8086/8088. The 8087 decodes the instruction
to determine how many more words it needs from memory. It increments the
address and feiches data until all required data is read. The 8087 then releases the
bus and begins calculating while the 8086/8088 continues executing the instruction
stream.

The 8086/8088 WAIT instruction allows software to synchronize the 8086/8088 (o
the 8087 so that the host processor does not execute the next instruction until the
8087 is finished with its current (if any) instruction. To accomplish this, the pro-
grammer should explicitly code the FWAIT instruction immediately before an
808678088 instruction that accesses a memory operand read or written by a previous
8087 instruction.

If an 8087 and a processor other than its host CPU can both update a variable,
access to that variable should be controlled so that one processor at a time has
exclusive rights 1o it. This can be done by using an 8086/8088 XCHG instruction
prefixed by LOCK. When the 8087 no longer needs the variable, the 8086/8088
clears it and again makes it available for use.

The 8087 interrupt requests are made to the 8086/8088 as the result of detecting an
exception. Interrupts are enabled or disabled by the [nterrupt Enable Mask (IEM) in
the Control Word. When [EM is set to 1, interrupts are masked (disabled). The

interrupt request remains set until it is explicitly cleared. This can be done by the
FNCLEX, FNSAVE, or FINIT instructions.

Numeric Processing

The 8087 has four rounding modes, selectable by the RC field in the control word.
The rounding modes and their corresponding RC fields are shown in table 6-6.

All mnemonics copyright Intel Corporation 1983

203

Table 6-6. Rounding Modes

RC Field Rounding Mode Rounding Action
00 Round to nearest Closer to b of a or ¢, if equally close, select
even number (the one whose |east significant
bit is zero).
01 Round down (toward —«) a
10 Round up {toward +x) ¢
1 Chop (toward 0} Smaller in magnitude ofa or¢

Note:a <b <c;a andc are representable, b is not.

Rounding occurs in arithmeltic and store operations when the format of the destina-
tion cannot exactly represent the true result. This can happen when a precise tem-
porary real number is stored in a shorter real format or in an integer format. Round-
ing introduces an error in a result that is less than one unit in the last place to which
the result is rounded. ‘‘Round to the nearest significant bit’’ is the default mode and
is suitable for most applications. Other modes and applications are described in The
8086 Family User’s Manual, Numerics Supplement.

The precision of results can be calculated to 64, 53, or 24 bits as selected by the PC
field of the control word. The default setting is 64 bits. This setting is best suited for
most applications.

The 8087’s system of real numbers may be closed by either of two models of infinity,
The IC field in the control word is set for either projective or affine closure. The
default is projective, which is recommended for most computations. Both closure
forms and their uses are described in The 8086 Family User’s Manual, Numerics
Supplement.

The 8087 can represent data and final results of calculations in the range
£2.3x107308 10 +1.7x10308 (double precision). Compared to most computers,
including large mainframes, the 8087 provides a very good approximation of the real
number system. It is important to remember, however, that it is not an exact
representation, and that arithmetic on real numbers is inherently approximate.

Conversely, and equally important, the 8087 does perform exact arithmetic on its
integer subset of the reals. That is, an operation on two integers returns an exact
integral result, provided that the true result is an integer and is in range.

The 8087 detects the six types of exceptions shown in table 6-7. The programmer has
a choice of using the 8087 on-chip fault-handling capability by masking exceptions
in the Control Word, or writing software exception handlers and unmasking excep-
tions in the control word. Table 6-3 shows the 8087 response to each situation.

If the exception is unmasked, its detection results in the generation of an interrupt.
When an interrupt is generated, the interrupt procedure (exception handler) has
available the exception flags, a pointer to the instruction causing the interrupt and a
pointer to the datum if memory was addressed. Each of the exceptions shown in
table 6-7 has a sticky flag associated with it, which means that once the flag is set, it
remains until reset by software. Several instructions can be used to clear the flag:
FCLEX clears exceptions; FRSTOR or FLDENYV overwrite flags.

Those users who wish 10 write their own exception handlers should consult The 8086
Family User’s Manual, Numerics Supplement since they will vary widely from one
application to the next.

All mnemonics copyright Intel Corporation 1983

204

Table 6-7. Exception and Response Summary

Exception Masked Response Unmasked Response
Invalid It one operand is NAN** return it; | Requestinterrupt.
Operation it both are NANS, return NAN with

larger absolute value; if neither is
NAN. return indefinite.

Zerodivide Return « signed with "‘exclusive | Requestinterrupt.
or'' of operand signs.

Denormalized | Memory operand: proceed as | Requestinterrupt.
usual. Register operand: convert to
valid unnormal, then re-evaluate
for exceptions.

Overflow Return properly signed . Register destination: adjust
exponenl.” store result, request
interrupt. Memory destination:
requestinterrupt.

Underflow Denormalize result. Register destination: adjust
exponent,* store result, request
interrupt. Memory destination:
request interrupt.

Precision Return rounded result. Return rounded result, request
interrupt.

* On overllow. 24.576 decimal is subtracted from the true result's exponent; this forces the
exponent back into range and permils a user exception handler to ascertain the true result
from the adjusted result that is returned. On underflow, the same constanl is added to the
true result’s exponent.

** NANis a member of a class of special values that exisl in the real formats only. See the The
8086 Family User's Manual, Numerics Supplement.

8087 Emulators

Numeric processing capability is not restricted to 8087 users. Intel offers two
8086/8088 software products which provide 8087 functionality. E8087 emulates the
full 8087 instruction sct for assembly language programs. PE8087 furnishes numeric
support for PL/M-86 software. Use of the 8087 Emulators necessitates modification
of the instruction formats presented in this chapter.

ASMB6, the Intel 8086/8087/8088 asscimbler, produces special object code for 8087
instructions. Floating point instructions are identified in such a way that they may
be linked to the 8087 Emulators. Refer to the 8086/8087/8088 Assembler Operating
Instructions for 1SIS-11 User’s manual for a short description of this change and link
procedure.

Organization of the 8087 Instruction Set

Data Transfer Instructions

These instructions are summarized in table 6-8. They move operands among stack
elements or between the stack top and memory. Any of the seven data types can be
converted (o temporary real and loaded (pushed) onto the stack in a single opera-
tion; they can be stored in memory in the same manner. The data transfer instruc-
tions automatically update the 8087 tag word to reflect the stack contents following
the instruction.

All mnemonics copyright Intel Corporation 1983

205

Table 6-8. Data Transfer Instructions

Real Transfers

FLD Load real

FST Store real

FSTP Store real and pop

FXCH Exchange registers
Integer Transfers

FILD Integer load

FIST Integer store

FISTP Integer store and pop

Packed Decimal Transfers

FBLD Packed decimal (BCD) load
FBSTP Packed decimal (BCD) store and pop

Arithmetic Instructions
The arithmetic instruction set for the 8087 provides a great many variations on the

basic add, subtract, multiply and divide operations, and a number of other useful
functions. Table 6-9 gives a summary of these instructions.

Table 6-9. Arithmetic Instructions

Addition
FADD Add real
FADDP Add real and pop
FIADD Integer add

Subtraction

FsSuB Subtract real

FSUBP Subtract real and pop

FISUB Integer subtract

FSUBR Subtract real reversed
FSUBRP Subtract real reversed and pop
FISUBR Integer subtract reversed

Multiplication

FMUL Multiply real
FMULP Multiply real and pop
FIMUL Integer multiply
Division
FDIV Divide real
FDIVP Divide real and pop
FIDIV Integer divide
FDIVR Divide real reversed
FOIVRP Divide real reversed and pop
FIDIVR Integer divide reversed
Other Operations
FSQRT Square root
FSCALE Scale
FPREM Partial remainder
FRNDINT Round tointeger
FXTRACT Extract exponent and significand
FABS Absolute value
FCHS Change sign

All mnemonics copyright Intel Corporation 1983

206

The stack element form is a generalization of the classical stack form; the program-
mer specifies the stack top as one operand and any stack element on the stack as the
other operand. Coding the stack top as the destination provides a convenient way to
make use of a constant held elsewhere in the stack. The converse coding (ST is the
source operand) allows, for example, adding the top into a stack element used as an
accumulator.

Often the operand in the stack top is needed for one operation but then is of no fur-
ther use in the computation. The stack element and pop form can be used 1o pick up
the stack top as the source operand, and then discard it by popping the floating
point stack. Coding operands of ST(1),ST with a stack element pop mnemonic is
equivalent to a classical stack operation: the top is popped and the result is left at the
new 1op.

Programmers no longer need to spend valuable time eliminating square roots from
algorithms because processors run too slowly. Other arithmetic instructions perform
exact modulo division, round real numbers to integers, and scale values by powers
of two.

The 8087’s arithmetic instructions (addition, subtraction, multiplication, and divi-
sion) allow the programmer to minimize memory references and to make optimum
use of the 8087 floating-point stack.

Table 6-10 summarizes the available operation/operand forms that are provided for
basic arithmetic. In addition to the four normal operations, two ‘‘reversed’’
instructions make subtraction and division ‘“‘symmetrical’’ like addition and
multiplication.

e QOperands may be located in stack elements or memory.
* Results may be deposited in a choice of stack elements.

¢ Operands may be a variety of 8087 data types: long real, short real, short integer
or word integer, with automatic conversion to temporary real performed by the
8087.

Five instruction forms may be used across all six operations, as shown in table 6-10.
The classical stack form may be used to make the 8087 operate like a classical stack
machine. No operands are coded in this form, only the instruction mnemonic is
coded. The 8087 picks the source operand from the stack top and the destination
from the next stack element. It then performs the operation, pops the stack, and
returns the result 10 the new stack top, effectively replacing the operands by the
result,

Table 6-10. Basic Arithmetic Instructions and Operands

Instruction Form Mn:::;nic dec;?i?\raat?:n'.:::)n:n::e ASM86 Example

Classical stack Fop {ST(1),ST} FADD

Stack element Fop ST{(i),ST or ST,ST(i) FSUB ST,ST(3)

Stack element FopP ST(i),ST FMULP ST(2),ST
and pop

Real memory Fop {ST,} short-real/long-real FDIWV AZIMUTH

Integer memory Flop {ST,} word-integer/short-integer | FIDIV N_PULSES

Notes: Braces {) surround impficit operands; these are not coded, and are shown here for
information only.

op = ADD destination - destination + source
SUB destination ~ destination - source
SUBR destination + source - destination
MUL destination — destination - source
DIv destination — destination + source
DIVR destination «— source + destination

All mnemonics copyright Intel Corporaticn 1983

207

The two memory forms increase the flexibility of the 8087’s arithmetic instructions.
They permit a real number or a binary integer in memory to be used directly as a
source operand. This is a very useful facility in situations where operands are not
used frequently enough to justify holding them in the floating point stack. Note that
various forms of data allocation may be used to define these operands; they may be
elements in arrays, structures or other data organizations, as well as simple scalars.

The six functional groups of instructions are discussed further in the next
paragraphs.

Comparison Instructions

Each of these instructions (table 6-11) analyzes the top stack element, often in rela-
tionship to another operand, and reports the result in the status word condition
code. The basic operations are compare, test (compare with zero), and examine
(report tag, sign, and normalization}. Special forms of the compare operation are
provided to optimize algorithms by allowing direct comparisons with binary integers
and real numbers in memory, as well as popping the stack after a comparison.

The FSTSW (store status word) instruction may be used following a comparison to
transfer the condition code to memory for inspection. See individual descriptions of
the instructions listed in table 6-11 for interpretations of the condition code bits.

Note that instructions other than those in the comparison group may update the

condition code. To ensure that the status word is not altered inadvertently, it should
be stored immediately after the compare operation.

Table 6-11. Comparison Instructions

FCOM Compare real

FCOMP Compare real and pop
FCOMPP Compare real and pop twice
FICOM Integer compare

FICOMP Integer compare and pop
FTST Test

FXAM Examine

Transcendental Instructions

The instructions in this group are summarized in table 6-12. They perform the core
calculations for all common trigonometric, inverse trigonometric, hyperbolic,
inverse hyperbolic, logarithmic and exponential functions. Prologue and epilogue
software may be used to reduce arguments to the range accepted by the instructions
and to adjust the result 10 correspond to the original arguments if necessary. The
transcendentals operate on the top one or two stack elements, and they return their
results to the stack.

Table 6-12. Transcendental Instructions

FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2%

FyLa2x Y * logsyX
FYL2XP1 Y loga(X +1)

All mnemonics copyright Intel Corporation 1983

208

The transcendental instructions assume that their operands are valid and in-range.
The instruction descriptions in this section provide the range of each operation. To
be considered valid, an operand to a transcendental must be normalized; denormals,
unnormals, infinities and NANs are considered invalid. Zero operands are accepted
by some functions and are considered out-of-range by others. If a transcendental
operand is invalid or out-of-range, the instruction will produce an undefined result
without signaling an exception. It is the programmer’s responsibility to ensure that
operands are valid and in-range before executing a transcendental. FPREM may be
used to bring an operand into range for periodic functions.

Constant Instructions

Each of these instructions (table 6-13) loads (pushes) a commonly-used constant
onto the stack. The values have full tempordry real precision (64 bits) and are
accurate to approximately 19 decimal digits. Since a temporary real constant
occupies 10 memory bytes, the constant instructions, which are only two bytes long,
save storage and improve execution speed, in addition to simplifying programming.

Table 6-13. Constant Instructions

FLDZ Load +0.0
FLD1 Load +1.0
FLDPI Load n
FLOL2T Load log,10
FLDL2E Load logpe
FLOLG2 Load log4g2
FLOLN2 Load Iogeg

Processor Control Instructions

When CPU interrupts are enabled, as will normally be the case when an application
task is running, the ‘‘wait’’ forms of these instructions should be used. Most of the
instructions shown in table 6-14 are used in system-level activities rather than in
computations. These activities include: initialization, exception handling, and task
switching.

Alternate mnemonics are shown for several of the processor control instructions in
table 6-14. This mnemonic, distinguished by a second character of “*N”’, instructs
the assembler not to prefix the instruction with a CPU WAIT instruction (instead, a
CPU NOP precedes the instruction). This ‘‘no-wait”’ form is intended for use in
critical code regions where a WAIT instruction might precipitate an endless wait.
Thus, when CPU interrupts are disabled, and the 8087 can potentially generate an
interrupt, the ‘‘no-wait’’ form should be used.

Except for FNSTENV and FNSAVE, all instructions which provide a no-wait
mnemonic are self-synchronizing and can be executed back-to-back in any combina-
tion without intervening FWAITSs. These instructions can be executed by one part of
the 8087 while the other part is busy with a previously decoded instruction. To
ensure that the processor control instruction executes after completion of any opera-
tion in progress, the “WAIT"’ form of that instruction should be used.

All mnemonics copyright Intet Corporation 1983

209

Table 6-14. Processor Control Instructions

FINIT/FNINIT
FDISI/FNDISI
FENI/FNENI
FLDCW
FSTCW/FNSTCW
FSTSW/FNSTSW
FCLEX/FNCLEX
FSTENV/FNSTENV
FLDENV
FSAVE/FNSAVE
FRSTOR
FINCSTP
FDECSTP

FFREE

FNOP

FWAIT

Initialize processor
Disable interrupts
Enable interrupts

Load control word
Store control word
Store status word

Clear exceptions

Store environment
Load environment

Save state

Restore state
Increment stack pointer
Decrement stack pointer
Free register

No operation

CPU wait

All mnemonics copyright Intel Corporation 1983

210

MNEMONIC

Sample 8087 Instruction

Format

I WAIT | op1 Imloplrml addr1 I addr2 |

A }

an offset value (either 8 or 16 bits)

modrm byte (middie 3 bits part of opcode)

opcode (possibly two bytes)

an 8086 wait instruction, NOP, or emulator instruction

Execution
8087 Emulator Clocks . .
Encoding Encoding Typical Operation Coding Example

Range

(the 8087 {(emulator typical {machine operation) MNEMONIC

instruction nstruclion range

coding) coding}

Operation

(A description of the machine operation.)

Exceptions
1zoouvp

(shows which exceptions could be set)

All mnemonics copyright Intel Corporation 1983

211

F2XM1

2*—1

Format

[war op1 op2 |

Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
9B D9 FO CD19F0 500 ST-25T4 F2xM1

310-630

Operation

This instruction calculates the function Y = 2*—1. X is taken from the top of the

floating point stack and must be in the range 0 € X < 0.5. The result Y replaces X at
the stack top.

Exceptions

I1ZDOUP *
X X

*QOperands not checked.

Description

This instruction is designed to produce a very accurate result even when x is close 10
zero. To obtain Y = 2%, add 1 10 the result delivered by F2XMI1.

The following formulas show how values other than 2 may be raised 10 a power of
X.

10% = 2% * loga10
X =% * logpe
YX=2% “fogyy
The 8087 has built-in instructions, described in this chapter, for loading the con-

stants LOG; 10 and LOG3 e, and the FYL2X instruction may be used to calculate X
*logaY.

All mnemonics copyright Intel Corporation 1983

212

FABS

Absolute Value
Format
[war o1 | op2 |
Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation
Range
9B DIE1 CD19E1 14 ST~ |ST|
10-17
Operation

Coding Example

FABS

The absolute value instruction changes the element in the top of the stack 1o its ab-
solute value by making its sign positive.

Exceptions

1Z00UP
X

All mnemonics copyright Intel Corporation 1983

213

FADD

Add Real

Format

Stack top + Stack element

[war | ot | op2e+i

Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation Coding Exampte
Range
9B DB CO+i CD18CO+i 85 ST - ST + ST{i) FADD ST.ST(2)
70-100
9B DOCCO+i CD1CCO+i 85 ST(i) — ST + ST(i) FADD ST(4),8T
- 70-100
Stack top + memory operand
war | opt miop/rm addrt | adar2 :'
Execution
8087 Emulator Clocks)
Encoding Encoding Typical Operation Coding Example
Range
9B D8 mOrm CD 18 mOrm 105 +EA ST - ST + mem-op FADD COUNT
{90-120) + EA (short-real)
9B DC mOrm CD1C mOrm 110+EA ST = ST + mem-op FADD MEAN
(95-125) + EA {long-real)

Operation

The add real instruction adds the source operand to the destination operand and
places the result in the destination. The source operand may be either the stack top,
a stack element, or a short or long real operand in memory. When the source is the
stack top, the destination is one of the stack elements. When the source is a stack ele-
ment or memory operand, the destination is the stack top.

Exceptions

1rzZzooue
X X X X X

All mnemonics copyright Intel Corporation 1983

214

FADDP
Add Real and Pop FADD

Format
Stack top + Stack Element

[war [op | op2+i]

Execution
8087 Emulator Clocks .)
Encoding Encoding Typical Operation Coding Example

Range

9B DE C1 CD1IECH 90 ST(1) = 8T + ST(1) FADD
75-105 pop stack

9BDECO+i CDIECO+i 90 ST(i} = ST + ST(i) FADDP ST{(2),ST
75-105 pop stack

Operation

The add real and pop stack instruction adds the stack top to one of the stack elements,
replacing the stack element with the sum. and then pops the floating point stack.

Exceptions

JZDOUuUP

X X X X X

All mnemonics copyright Intel Corporation 1983

215

FBLD
Packed Decimal (BCD) Load

Format
[war op1 miop/m | addl | ador2 |
Execution
8087 Emulator Clocks X
Encoding Encoding Typical Operation Coding Example
fRange
9B DF mdrm CD IF md4rm 300+ EA push stack FBLD YTD_SALES
(290-310)+ EA ST — mem-op
Operation

The BCD load instruction converts the memory operand from packed decimal to
temporary real and pushes the result onto the stack. The sign of source is preserved,
including the case when the value is negative zero.

Exceptions

I1ZDOUP
X

Note

The packed decimal digits of the source are assumed to be in the range
0-9H. The instruction does not check for invalid digits (A-FH) and the
result of attempting to load an invalid encoding is undefined.

All mnemonics copyright Intel Corporation 1983

216

: i
g

FBSTP

Packed Decimal (BCD) Store and Pop

Format
WAIT opl miopirm | addr1 L addr2 |
Execution
8087 Emulator Clocks i
Encoding Encoding Typical Operation Coding Example
Range
88 OF mbrm CD IF m6rm 530+ EA mem-op - ST FBSTP FORECAST
(520-540) + EA pop stack
Operation

The packed decimal store and pop stack instruction converts the contents of the
stack top 10 a packed decimal integer, stores the result at the destination in memory,
and pops the floating point stack.

Exceptions

I1ZDpoOoUuP
X

Note

FBSTP produces a rounded integer from a non-integral value by adding 0.5
to the value and then deleting least significant bits.

Users who are concerned about rounding may precede FBSTP with FRNDINT.

All mnemonics copyright Intel Corporation 1983

217

FCHS

Change Sign

Format

| WAIT op1 | op2

Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation Coding Example
Range
9B D9 EO CD19E0 15 ST~ -8T FCHS

10117

Operation

The change sign instruction complements the sign on the stack top element.

Exceptions

1Z0O0OUP
X

All mnemonics copyright Intel Corporation 1983

218

|

MM
2|10
2
-
m|><
>

Clear Exceptions

Format

[war | opt | op2

Execution
8087 Emutator Clocks X
Encoding Encoding Typical Operation Coding Example
Range

9B DB E2 CD1BE2 5 clear 8087 exceptions FCLEX
28

90 DB E2 CD1BE2 5 clear 8087 exceptions FNCLEX
2-8 (no wait)

Operation

This instruction clears all exception flags, the interrupt request flag and the busy flag
in the status word. As a consequence, the 8087's INT and BUSY lines go inactive.
The FCLEX form of this instruction is preceded by an assembler-generated WAIT
instruction.

Exceptions

I ZDOULUP

Description

FNCLEX is used in critical areas of code where a WAIT instruction might result in a
deadlock. FCLEX is used to insure that the processor control instruction executes
only after completion of any operation in progress in the NOP.

All mnemonics copyright Intet Corporation 1983

219

FCOM

Compare Real

Format

Compare Stack top and Stack element

WAIT opt op2+i |
Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
98 D8 O1 CcD18 01 45 ST -ST(1) FCOM
40-50
9B D8 D0 +i CD18D0+i 45 ST - ST(i) FCOM ST(2)
40-50

Compare Stack top and memory operands

[WAIT opi m/op/rm I addr1 | addr2 |
Execution
8087 Emulator Ctocks
Encoding Encoding Typical Operation Coding Example
Range
98 D8 m2rm CD18 m2rm 65+ EA ST - memop FCOM WAVELENGTH
(60-70) + EA {short-real)
98 OC m2rm CDiC m2rm 70+ EA 5T - memop FCOM MEAN
(65-75) + EA {long-real}
Operation

The compare real instruction compares the stack top with the source operand. The
source operand may be a stack element or short or long real memory operand. If no
operand is coded. ST is compared with ST(1).

Exceptions

1 ZDOUP
X X

Description

Following the instruction, the condition codes in the 8087 status byte reflect the
order of the operands as follows:

Cc3 c2 co ORDER

0 0 0 ST > source
0 0 1 ST < source
1 0 0 ST = source
1 1 1 ST ? source

All mnemonics copyright Intel Corporation 1983

220

FCOM

Note

NANs and o (projective) cannot be compared and return C3 = C0 =1 as
shown above.

The following procedures can be used to store the status word from this instructicn
and test the compare result.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 flags register. For cxample, the code required to transfer the
information to the flags register is:

FSTSW STAT_87 iSTORE RESULT FROM FCOM

FWAIT JWAIT FOR STORE

MOV AH, BYTE PTR STAT_87+1 ;MOVE STATUS BYTE TO AH

SAHF ;LOAD INTO 8086 FLAGS REGISTER

The 8086 instructions are now used to execute a conditional branch on the result of
the compare as follows:

JB - ;JUMP if ST
JBE - ;JUMP IF ST
JA - ;JUMP IF ST
JAE - ;JUMP IF ST
JE - ;JUMP IF ST
JNE - ;JUMP IF ST

source OR ST ? source
source OR ST ? source
source and NOT ST ? source
source and NOT ST ? source
source or ST ? source
source and NOT ST ? source

WV VAA

All mnemonics copyright Intel Corporation 1983

221

FCOMP

Compare Real and Pop

Format

Compare Stack top and Stack element and pop

I WAIT opt I op2+i J
Execution
8087 Emulator Clocks X
Encoding Encoding Typicat Operation Coding Example

Range

9B D8 D9 CD18D9 a7 ST - ST(1) FCOMP
42-52 pop stack

9BDBD8+i CD18DB+i 47 8T -ST(i) FCOMP ST(3)
42-52 pop stack

Compare Stack top and memory operand and pop

WAIT I opl I m/op/rm addrt I addr2 |
Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
9B D8 m3rm CD 18 m3rm 68+ EA ST - mem-op FCOMP DENSITY
{63-73)+ EA pop stack
{short-real)
9BDC m3rm CD1C m3rm 72+EA ST - mem-op FCOMP PERCENT
(67-77)+EA pop stack
{long-real)
Operation

The compare real and pop stack instruction compares the stack top with the source
operand and then pops the floating point stack. The source operand may be a stack
element or short or long real memory operand. If no operand is coded, ST is com-
pared with ST(1).

Exceptions

Irzoouvr
X X

All mnemonics copyright Intel Corporation 1983

222

FCOMP

Description

Following the instruction, the condition codes in the 8087 status byte reflect the
order of the operands as follows:

c3 c2 co ORDER
0 0 0 ST > source
0 0 1 ST < source
1 0 0 ST = source
1 1 1 ST ? source
Note

NANSs and o« {projective) cannot be compared and return C3 =C0 =1 as
shown above.

The lollowing procedures can be used to store the status word from this instruction
and test the compare result.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 flags register. FFor example, the code required 1o transfer the
information to the flags register is:

FSTSW STAT_87 ;STORE RESULT FROM FCOM

FWAIT ;WAIT FOR STORE

MOV AH, BYTE PTR STAT_87+1 ;MOVE STATUS BYTE TO AH

SAHF ;LOAD INTO 8086 FLAGS REGISTER

The 8086 instructions are now used to execute a conditional branch on the result of
the compare as follows:

source QR ST ? source
source OR ST ? source
source and NOT ST ? source
source and NOT ST ? source
source or ST ? source
source and NOT ST ? source

JB ;JUMP i f ST
JBE - ;JUMP IF ST
JA - ;JUMP IF ST
JAE - ;JUMP IF ST
JE - ;JUMP IF ST
JNE - ;JUMP IF ST

WV VAA

All mnemonics copyright Intel Corporation 1983

223

ECOMPP

Compare Real and Pop Twice

Format

[war | opt | op2

Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
98 OE D9 CD1ED9 50 ST - ST(1) FCOMPP
45-55 pop stack
pop stack

Operation

The compare real and pop stack twice instruction compares the stack top with ST(1)
and pops the floating point stack twice, discarding both operands. No operands may
be explicitly coded with this instruction.

Exceptions

1Zoour?P
X X

Description

Following the instruction, the condition codes in the 8087 status byte reflect the
order of the operands as follows:

C3 c2 co ORDER
0 0 0 ST > source
0 0 1 ST < source
1 0 0 ST = source
1 1 1 ST ? source
Note

NANs and o (projective) cannot be compared and return C3 = C0 = | as
shown above.

The following procedures can be used to store the status word from this instruction
and test the compare result.

The condition code can be transferred from the 8087 status byte to memory, an 8086

register, or the 8086 flags register. For example, the code required to transfer the Q
information to the flags register is: -
FSTSW STAT_87 sSTORE RESULT FROM FCOM

FWAIT sWAIT FOR STORE

MOV AH, BYTE PTR STAT_B7+1 ;MOVE STATUS BYTE TO AH

SAHF ;LOAD INTO B086 FLAGS REGISTER

All mnemonics copyright Intel Corporation 1983

224

FCOMPP

The 8086 instructions are now used to execute a conditional branch on the result of

the compare as follows:

JB - ;JUMP if ST
JBE - ;JUMP IF ST
JA - ;JUMP IF ST
JAE - ;JUMP IF ST
JE - ;JUMP IF ST
JNE - ;JUMP IF ST

WV VAA

source
source
source
source
source
source

OR ST ?
OR ST ?
and NOT
and NOT
or ST ?
and NOT

source
source
ST 7 source
ST ? source
source
ST ? source

All mnemonics copyright Intel Corporation 1983

225

FDECSTP

Decrement Stack Pointer

Format

WAIT opt op2 |

Execution
8087 Emulator Clocks .
Encoding Encading Typical Operation Coding Example
Range
9B DIF6 CD19F6 9 stack pointer - 2 FDECSTP
6-12 stack pointer - 1

Operation

This instruction subtracts 1 from the stack 1op pointer in the status word. No tags or
registers are altered, nor is any data transferred. Executing FDECSTP when the
stack top pointer is 0, changes the pointer to 7.

Exceptions

I1ZD0DOUP

All mnemonics copyright Intel Corporation 1983

226

EFDISI
FNDISI

Disable Interrupts

Format
[war | op op2
Execution
8087 Emulator Clocks . !
Encoding Encading Typical Operation Coding Example
Range
9B OB E1 CDIBE1 5 Set 8087 interrupt mask FDISI
2-8
900BE1 cDi1BEY 5 Set B087 interrupt mask FNDISI
2-8 (no wait)
Operation

The instruction sets the interrupt enable mask in the control word and prevents the
NDP from issuing an interrupt request. The FDISI form of this instruction is
preceded by an assembler-generated WAIT.

Exceptions

12D0O0UCFP

Description

The NO WAIT form of the instruction (FNDISI) is intended for use in critical code
regions where a WAIT instruction might induce an endless wait.

Note

If WAIT is decoded with pending exceptions, the 8087 gencrates an
interrupt— masked or not.

All mnemonics copyright Intel Corporation 1983

227

EDIV

Divide Real

Format
Stack top and Stack element

[wat | op | op2+i |
Execution
8087 Emulator Clocks
Encoding Encoding Typlcal Operation Coding Example

Range

9B DB FO+i CD18F0+i 198 ST - STIST(i) FDIV ST,ST(2)
193-203

88 DC FB+i CD1C F8+i 198 ST(i) — ST(i)/ST FDIV ST(3),ST
193-203

Stack top and memory operand

[war | opt] miopirm [addn agar2 |
Executlon
8087 Emulator Clocks
Encoding Encoding Typlcal Operatlon Coding Example
Range
98 D8 mérm CD 18 mérm 220+ EA ST - ST/mem-op FDIV DISTANCE
{215-225) + EA {short-real)
98DCmérm CD1C mérm 225+ EA ST = ST/mem-op FDIV GAMMA
(220-230) + EA (long-real)
Operation

The divide real instructions divide the destination by the source and return the quo-
tient to the destination. The source operand may be either the stack top, a stack ele-
ment, or a short or long real operand in memory. When the source is the stack top,
the destination is one of the stack elements. When the source is a stack element or
memory operand, the destination is the stack top.

The divide real and pop stack instruction divides one of the stack elements by the
stack top, replaces the stack element with the quotient, and then pops the floating
point stack.

Exceptions

12D0O0UVP
XX XX XX

All mnemonics copyright Intel Corporation 1983

228

FDIVP

Divide Real and Pop

Format

[war op1 op2+i |

Execution
8087 Emulator Clocks X .
Encoding Encoding Typical Operation Coding Example
Range
9B DEF9 CD1EF9 202 ST(1) — ST(INST FDIV
197-207 pop stack
9BDEF8+i CDI1EFB+i 202 ST(i) — ST(i)/IST FDIVP ST(3).ST
197-207 pop stack

Operation

The divide real instructions divide the destination by the source and return the quo-
tient to the destination. The source operand may be either the stack top, a stack ele-
ment, or a short or long real operand in memory. When the source is the stack top,
the destination is one of the stack elements. When the source is a stack element or
memory operand, the destination is the stack top.

The divide real and pop stack instruction divides one of the stack elements by the
stack top, replaces the stack element with the quotient, and then pops the floating
point stack.

Exceptions

IzZbpovuep
X X X X X X

All mnemonics copyright Intel Corporation 1983

229

EDIVR

Divide Real Reversed

Format

Stack top and Stack element

[war | op op2+i
Execution
8087 Emulator Clocks .)
Encoding Encoding Typical Operation Coding Example
Range
9B D8 F8+i CD 18 FB+i 199 ST — ST(iyST FDIVR ST.8T(2)
194-204
9BDCFO+i CD1CFO+i 199 ST(i) -~ STIST() FDIVR ST(3).8T
194-204
Stack top and memory operand
WAIT opl miop/rm addr1 addr2 I
Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
9B D8 m7rm CD18m7rm 221 +EA ST — mem-op/ST FDIVR RATE
{216-226) + EA (short-real)
9B DC m7rm Co1IC m7rm 226 +EA ST — mem-op/ST FDIVR SPEED
{221-231) + EA {long-real)

Operation

The divide real reversed instructions divide the source operand by the destination
and return the quotient to the destination. The source operand may be either the
stack top, a stack element, or a short or long real operand in memory. When the
source is the stack top, the destination is one of the stack elements. When the source
is a stack element or memory operand, the destination is the stack top.

The reverse divide and pop stack instruction divides the stack top by one of the stack
elements and returns the quotient to the stack element. The floating point stack is
then popped.

Exceptions

1 Z00UP
X X XX XX

All mnemonics copyright Intel Corporation 1983

230

FDIVRP

Divide Real Reversed and Pop

Format
[war op1 [op2+i |
Execution
8087 Emulator Clocks . .
Encoding Encoding Typical Operation Coding Example
Range
9B DE F1 CDIEF 203 ST(1) — STIST() FDIVR
198-208 pop stack
9BDE FO+i CO1EFO+i 203 ST(i) - STISTH) FDIVRP ST{4),ST
198-208
Operation

The divide real reversed instructions divide the source operand by the destination
and return the quotient to the destination. The source operand may be either the
stack top, a stack element, or a short or long real operand in memory. When the
source is the stack top, the destination is one of the stack elements. When the source
is a stack element or memory operand, the destination is the stack top.

The reverse divide and pop stack instruction divides the stack top by one of the stack
elements and returns the quotient to the stack element. The floating point stack is
then popped.

Exceptions

12ZDbpo0owuwe
X X X X XX

All mnemonics copyright Intel Corporation 1983

231

FENI

FNENI

Enable Interrupts

Format
[war | opr | op2
Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
98 08 €0 CD1BEO 5 clear 8087 interrupt mask FENI
2-8
90 D8 EC CD1BEO 5 clear 8087 interrupt mask FNENI
2-8 {no wait)
Operation

This instruction clears the interrupt enable mask in the control word, allowing the
8087 to generate interrupt requests. The FENI form of this instruction is preceded
by an assembler-generated WAIT instruction.

Exceptions

12DbO0UP

Description

The NO WAIT form of the instruction (FNENI), is intended for use in critical code
regions where a WAIT instruction might induce an endless wait.

The WAIT form of this instruction (FENI), should be used in all non-critical code

regions. This form insures that the processor control instruction executes after com-
pletion of any operation in progress in the NEU.

All mnemonics copyright Intel Corporation 1983

232

FFREE

Free Register

Format
[war opt | op2+i
Execution
8087 Emutator Clocks
Encoding Encoding Typical Operation Coding Example
Range
9BDDCO+i CD1DCO+i 1" TAG(i) masked empty FFREE ST(1)
9-16

Operation

This instruction changes the destination stack element’s tag to empty. The contents
of this stack element are unaffected.

Exceptions

12D0D0UcP

All mnemonics copyright Intel Corporation 1983

233

FIADD

Integer Add
Format
[war | opt m/op/rm addrt addz |
Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
98 DAmOrm CD 1A mOrm 125+EA ST - ST + mem-op FIADD OISTANCE
(108-143) + EA (short integer)
98 DE m0Orm CD 1E mOrm 120+ EA ST~ ST + mem-op FIADD PULSE
(102-137) + EA (word integer)
Operation

This instruction adds the integer memory source 10 the top of the stack and returns
the sum to the destination at the top of the stack.

Exceptions

1ZD0DO0UP
X X X X

All mnemonics copyright Intel Corporation 1983

234

FICOM

Integer Compare

Format

| war opi | miopirm ﬂJ addrz:l

Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation Coding Example
Range
98 DA m2rm CD 1A m2rm 85 + EA ST - mem-op FICOM PASSES
(78-91) + EA {short integer)
98DEm2rm CD1E m2rm 80 + EA ST - mem-op FICOM CENTS
{72-88) + EA {word integen

Operation

The integer compare instructions convert the memory operand (a word or short
binary integer) to temporary real and compare it with the top of the stack.

Exceptions

I ZDOUP
X X

Description

Following the instruction, the condition codes in the 8087 status byte reflect the
order of the operands as follows:

c3a c2 co ORDER

0 0 0 ST > source

0 [0} 1 ST < source

1 [} 0 ST = source

1 1 1 ST ? source
Note

NANs and @ (projective) cannot be compared and return C3 = C0 =1 as
shown above.

The following procedures can be used to store the status word from this instruction
and test the compare result.

The condition code can be transferred from the 8087 status byte 1o memory, an 8086
register, or the 8086 flags register. For example, the code required to transfer the
information to the flags register is:

FSTSW STAT_87 ;STORE RESULT FROM FICOM
FWALT WAIT FOR STORE

MOV AH, BYTE PTR STAT_87+1 ;MOVE STATUS BYTE TO AH

SAHF ;LOAD INTO 8086 FLAGS REGISTER

All mnemonics copyright Intel Corporation 1983

235

FICOM

The 8086 instructions are now used to execute a conditional branch on the result of

the compare as follows:

JB - ;JUMP if ST
JBE - ;JUMP IF ST
JA - ;JUMP IF ST
JAE - ;JUMP IF ST
JE - ;JUMP IF ST
JNE - ;JUMP IF ST

NV VAA

source
source
source
source
source
source

OR ST ? source
OR ST ? source
and NOT ST ? source
and NOT ST ? source
or ST ? source
and NOT ST ? source

All mnemonics copyright Intel Corporation 1983

236

FICOMP

Integer Compare and Pop

Format

L war | opt [miopim | agat | adaz |

Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Cading Example
Range
98 DA m3rm CD1A m3rm 87 + EA ST - mem-op FICOMP LIMIT
(80-93) + EA pop stack
tshortinleger)
9BDEmM3rm CD1Em3rm 82 ~ EA ST - mem-op FICOMP SAMPLE
(74-88) + EA pop stack
{word integer)

Operation

The integer compare instructions convert the memory operand (a word or short
binary integer) to temporary real and compare it with the top of the stack. FICOMP
additionally discards the value in ST by popping the floating point stack.

Exceptions

I1ZDOUP
X X

Description

Following the instruction, the condition codes in the 8087 status byte reflect the
order of the operands as follows:

[k} C2 Co ORDER

0 0 0 ST > source

0 0 1 ST < source

1 0 0 ST = source

1 1 1 ST ? source
Note

NANs and e (projective) cannot be compared and return C3 = C0 = | as
shown above.

The following procedures can be used to store the status word from this instruction
and test the compare result.

The condition code can be transferred from the 8087 status byte to memory, an 8086
register, or the 8086 flags register. For example, the code required to transfer the
information to the flags register is:

FSTSW STAT_87 ;STORE RESULT FROM FICOMP
FWAIT ;WAIT FOR STORE

MOV AH, BYTE PTR STAT_87+1 ;MOVE STATUS BYTE TO AH

SAHF ;LOAD INTO 8086 FLAGS REGISTER

All mnemonics copyright Intel Corporation 1983

237

FICOMP

The 8086 instructions are now used o execute a conditional branch on the result of

the compare as follows:

J8 - ;JUMP if ST
JBE - ;JUMP IF ST
JA - ;JUMP IF ST
JAE - ;JUMP IF ST
JE - ;JUMP IF ST
JNE - ;JUMP IF ST

H W VAA

source
source
source
source
source
source

OR ST ? source
OR ST ? source
and NOT ST ? source
and NOT ST ? source
or ST ? source
and NOT ST ? source

All mnemonics copyright Intel Corporation 1983

238

Integer Divide

Format
[war [op miopirm | addrt | adarz |
Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation Coding Example
Range
98 DA mérm CD 1A mérm 236+ EA ST - ST/mem-op FIDIV SURVEY
(230-243) + EA {shortinteger)
98 DE mbrm CO 1E mérm 230+ EA ST - ST/mem-op FIDIV ANGLE
(224-238) + EA {word integer)
Operation

The integer divide instruction divides the top of the stack by the integer memory
operand and returns the quotient to the top of the stack.
Exceptions

1 ZDOoOUP
X X X X X X

All mnemonics copyright intel Corporation 1983

239

FIDIVR

Integer Divide Reversed

Format

[war [opt | miopirm | adat [addrz |

Execution
8087 Emulrtor Clocks .
Encoding Encod:ng Typical Operation Coding Example
Range
9B DAm7rm CD1Am7rm 277 + EA ST - mem-op/ST FIDIVR COORD
(231-245) + EA {short integer)
98 OE m7rm CO1EmM7rm 230+ EA ST -~ mem-op/ST FIDIVR FREQUENCY
(225-239) + EA (word integer}

Operation
The reversed integer divide instruction divides the integer memory operand by the

top of the stack and returns the quotient to the stack top.
Exceptions

12Z00UP
X X X X X X

All mnemonics copyright Intel Corporation 1983

240

FILD

Integer Load

Format

[war [ot [mopim [agan | agerz |

Execution
8087 Emulator Clocks X .
Encoding Encoding Typical Operation Coding Example
Range
98 DB m0rm CD 18 m0rm 56+ EA push stack FILD STANDOFF

(52-60) + EA ST — mem-op
({shortinteger)

9B OF mOrm CD 1F mOrm 50+EA push stack FILD SEQUENCE
(46-54) + EA ST -~ mem-op
{word integer)
98 DF m5rm CD 1F m5rm 64 +EA push stack FILD RESPONSE

(60-68) + EA ST ~ mem-op
{long integer)

Operation

The integer load instruction converts the integer memory operand from its binary
integer format (word, short, or long) to temporary real and pushes the result onto
the stack. The new stack top is tagged zero if all bits in the source were zero, and is
tagged valid otherwise.

Exceptions

I Zobouvrp
X

All mnemonics copyright Intel Corporation 1983

241

EIMUL

Integer Multiply
Format
I WAIT | opi miop/rm addrt addr2 :I
Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
980AmMIrm CO1Amirm 136+ EA ST < ST * mem-op FIMUL BEARING
(130-144) + EA {shortinteger)
98 DE mirm CD1E mirm 130+ EA ST « ST * mem-op FIMUL POSITION
(124-138) + EA {word integer)
Operation

The integer multiply instruction multiplies the integer memory operand and the top
of the stack and returns the product to the top of the stack.

Exceptions

1z2pO0UP
X X X X

All mnemonics copyright Intel Corporation 1983

242

FINCSTP

Increment Stack Pointer

Format
[war | op opz |
Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation Coding Example
Range
9BDIF7 CD19F7 9 stack pointer « FINCSTP
6-12 stack pointer + 1
Operation

The stack pointer increment instruction adds 1 to the stack top pointer in the status
word. It does not alter tags or register contents, nor does it transfer data. It is not
equivalent to popping the stack since it does not set the 1ag of the previous stack 10
empty. Incrementing a stack pointer of 7 changes it 10 0.

Exceptions

1 ZDOUP

All mnemonics copyright intel Corporation 1983

243

FINIT

FNINIT

Initialize Processor

Format
[war | opt op2 |
Execution
8087 Emulator Clocks . i
Encoding Encoding Typica} Operation Coding Example
Range
98DBE3 CD1BE3 5 initialize 8087 FINIT
28
90DBE3 CD1BE3 5 initialize 8087 FNINIT
2-8 {no wait)
Operation

The initialize processor instruction performs the functional equivalent of a hardware
RESET, except that it does not affect the instruction fetch synchronization of the
8087 and its CPU. FINIT/FNINIT sets the control word to 03FFH, empties all
floating point stack elements, and clears exception flags and busy interrupts. The
FINIT form of this instruction is preceded by an assembler-generated WAIT
instruction.

Exceptions

rzooue

Note

The system should call the INIT87 procedure in lieu of executing
FINIT/FNINIT when the processor is first initialized, for compatability
with the 8087 emulator.

All mnemonics copyright Intel Corporation 1983

244

FIST

Integer Store

Format

[war [om miopltm addr addr2 j

Execution
8087 Emulator Clocks . .
Encoding Encoding Typical Operation Coding Example
Range

9BDBm2rm CD 1B m2rm 88+EA mem-op = ST FIST COUNT
(82-92) + EA {short integer)

9B DF m2rm CD 1F m2rm 86+ EA mem-op +- ST FIST FACTOR
(80-90) + EA (word integer)

Operation

The integer store instruction rounds the contents of the stack top to an integer
(according to the RC field of the control word) and transfers the result to the
memory destination. The destination may define a word or short integer variable.
Negative zero is stored in the same encoding as positive zero: 0000...00.

Exceptions

l1zZoouvr

X X

All mnemonics copyright Intel Corporation 1983

245

FISTP

Integer Store and Pop

Format
[war | opm miop/m | adart | addrz |
Execution
8087 Emutator Ctocks . .
Encoding Encoding Typical Operation Coding Example
Range
8B DB m3rm CD 1B m3rm 90+ EA mem-op — ST FISTP CORRECTED
(84-94) + EA pop stack
{shorlinteger}
8B DF m3rm CD 1F m3rm 88+ EA mem-op ~ ST FISTP ALPHA
{82-92) + EA pop slack
{(word integer)
9B DF m7rm CD 1F m7rm 100+ EA mem-op < ST FISTP READINGS
(34-105) + EA pop stack
(long integer)
Operation

The integer store and pop stack instruction rounds the contents of the stack top to
an integer (according to the RC field of the control word) and transfers the result to
the memory destination. The floating point stack is popped following the transfer.
The destination may be any of the binary integer data types.

Exceptions

I Z00UP
X X

All mnemonics copyright Intel Corporation 1983

246

FISUB

Integer Subtract

Format

[war opt | miopirm | adart | adarz |

Exgcution
8087 Emulator Clocks . .
Encoding Encoding Typical Operation Coding Example
Range

9B DA mdrm CD 1A mdrm 125+ EA ST - ST - mem-op FISUB BASE
(108-143) + EA (shortinteger)

9BDEm4rm CD1E mdem 120 + EA ST ~ 8T - mem-op FISUB SIZE
(102-137)+ EA (word integer)

Operation

This instruction subtracts the integer memory operand from the top of the stack and
returns the difference to the top of the stack.

Exceptions

ILzpopowvuve

;" X X X X

All mnemonics copyright Intel Corporation 1983

247

FISUBR

Integer Subtract Reversed

Format

[war | “opt | miopirm | adort | agarz |

Execution
8087 Emutator Clocks . .
Encoding Encoding Typical Operation Coding Example
Range
9B DA m&rm CD 1A m5rm 125+ €A ST -~ mem-op - ST FISUBR FLOOR
{109-144) + EA {shortinteger)
98 DE m5rm CD1E m5rm 120 + EA ST — mem-op - ST FISUBR BALANCE
{103-139) + EA (word integer)

Operation
The integer subtract reversed instruction subtracts the stack top from the integer

memory source and returns the difference to the stack top.
Exceptions

I1ZooOoup?p
X X X X

Al mnemonics copyright Intel Corporation 1983

248

FLD

Load Real

Format

Stack element 1o Stack top

Coding Example

FLD ST

[war op1 op2+i |
Execution
8087 Emulator Clocks .
Encoding Enceding Typical Operation
Range
9BDICO+1 CD19CO+i 20 T,- 8T
17-22 push slack
ST-T,
Memory operand to Stack top
war | opt miop/rm adart |
Execution
8087 Emulaior Clocks Operation
I
Encoding Encoding Typical p
Range
) 98 D9 mOrm CD 19 mOrm 43+ EA push stack
N (38-56)+EA ST~ mem-op
{short rea)n
98 OD morm CD 1D mOrm 46+ EA push stack
(40-60) + EA ST ~ mem-op
(long real)
88 08 m5rm CD 1B m5rm 57 +EA push stack
(53-65) + EA ST — mem-op
(temp real)
Operation

addr2 j

Coding Example
FLD READING
FLD TEMPERATURE

FLD SAVEREADING

The load real instruction pushes the source operand onto the 1op of the floating
point stack. This is done by decrementing the stack pointer by one and then copying
the contents of the source to the new stack top. The source may be a stack element
on the stack (ST(i)), or any of the real data types in memory. Short and long real
source operands are converted to temporary real automatically. Executing FLD

ST(0) duplicates the old stack top in the new stack top.

Exceptions

X X

1ZDovuPr

All mnemonics copyright intel Corporation 1983

249

FLDCW

Load Control Word

Format

l WAIT I opt I miop/rm T addr1 | addr2 :l

Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
9B D9 mSrm CD 19 m5rm 10+ EA processor control word FLDCW CONTROL
{7-14)+ EA = mem-op

Operation

This instruction replaces the current processor control word with the word defined
by the source operand.
Exceptions

1ZD00OoUP

Description

This instruction is typically used to establish, or change, the 8087’s mode of
operation.

Note

If an exception bit in the status word is set, loading a new control word that
unmasks that exception and clears the interrupt enable mask will generate
an immediate request before the next instruction is executed. When chang-
ing modes, the recommended procedure is to first clear any exceptions and
then load the new control word.

All mnemonics copyright Intel Corporation 1983

250

Load Environment

Format

L WAIT l opt I m/op/rm addri1 addr2 j
Execution

8087 Emulator Clocks .)
Encoding Encoding Typical Operation Coding Example
Range
9B D9 m4rm CD 19 mdrm 40+ EA 8087 environment FLDENV ENV STORE

(35-45)+ EA mem-op

Operation

The load environment instruction reloads the 8087 environment from the memory
area defined by the source operand. This data should have been written by a
previous FSTENV/FNSTENYV instruction.

Exceptions

1 ZDOWUP

Description

CPU instructions may immediately follow FLDENYV, but no subsequent NDP
instruction should be executed without an intervening FWAIT or assembler-
generated WAIT.

Note

Loading an environment image that contains an unmasked exception causes
an immediate interrupt request from 8087 (assuming IEM = 0 in the envi-
ronment image).

All mnemonics copyright Intel Corporation 1983

251

FLDLG2

Load Log4g2

Format

| WAIT I opi | op2 I

Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation Coding Example
Range
9BD9EC CD19EC 21 push stack FLDLG2

18-24 ST ~ 10992

Operation

The load log base 10
floating point stack.

of 2 instruction pushes the value log;g2 onto the top of the
The constant has temporary real precision of 64 bits and

accuracy of approximately 19 decimal digits.

Exceptions

1 ZDOUP
X

All mnemonics copyright Intel Corporation 1983

252

FLDLN2

Load Logg2

Format

[war | opt [op2

Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
SBDIED CD19ED 20 push stack FLOLN2
17-23 ST - log,2

Operation

The load log base e of 2 instruction pushes the value log.2 onto the top of the
floating point stack. This constant has temporary real precision of 64 bits with an
accuracy of approximately 19 decimal digits.

Exceptions

I Zoouvr
X

All mnemonics copyright Intel Corporation 1983

253

FLDL2E

Load Log,e

Format

l WAIT opi l op2 I

Execution
8087 Emulator Ctocks X
Encoding Encoding ‘Typical Operation Coding Example
Range
SBDIEA CD19EA 18 push stack FLDL2E

15-21 ST —log,e

Operation

The load log base 2 of ¢ instruction pushes the value logze onto the top of the
floating point stack. This value has full temporary real precision of 64 bits.

Exceptions

1 ZDoOoUuUF®P
X

All mnemonics copyright Intel Corporation 1983

254

FLDL2T

Load Log,10

Format
[war [opr op2 |
Execution
8087 Emulator Clocks . 5
Encoding Encoding Typical Operation Coding Example
Range
SB D9 E9 CD19ES 19 push stack FLDL2T

16-22 ST - log,10

Operation

The load log base 2 of 10 instruction pushes the constant log,10 onto the stack. This
constant has temporary real precision of 64 bits with accuracy of approximately 19
decimal digits.

Exceptions

1ZDOUCP
X

All mnemonics copyright Intel Corporation 1983

255

FLDPI

Load n

Format

[owar | opt op2 |

Execution
8087 Emutator Clocks)
Encoding Encoding Typical Operation Coding Example
Range
9809 EB CD19EB 19 push stack FLDPI
16-22
ST—n
Operation

This instruction pushes m onto the top of the stack. The n value has full temporary
real precision of 64 bits with an accuracy of approximately 19 decimal digits.

Exceptions

1ZDO0OUP
X

All mnemonics copyright Intel Corporation 1983

256

FLDZ

Load +0.0
Format
[war opt | op2 |
Execution
8087 Emulator Clocks 5
Encoding Encoding Typical Operation Coding Example
Range
9BDIEE CD19EE 14 push stack FLDZ
117 ST-0.0
Operation

The load zero instruction pushes the value +0.0 onto the 1op of the floating point
stack. The constant has temporary real precision of 64 bits.

Exceptions

1Zopouvr
X

All mnemonics copyright Intel Corporation 1983

b5

FLD1

Load +1.0
Format
[war op? | op2
Exocution
8087 Emulator Clocks . ‘
Encoding Encoding Typical Operation Coding Example
Range
98 DYES CD19ES8 18 push stack FLD1
15-21 ST~1.0
Operation

This instruction pushes the constant +1.0 onto the top of the floating point stack.
This constant has full temporary real precision of 64 bits.
Exceptions

1zoouvre
X

All mnemonics copyright Intel Corporation 1983

258

FMUL

Muitiply Real

Format

Stack top and Stack element

WAIT opt | op2+i
Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation Coding Example
Range

9B DE8CB+i CD18C8+i 138° ST~ ST*STti) FMUL ST,8T(3)
130-145°

9BDCC8+i CD1CCB«+i 138° STty - ST(i) * ST FMUL ST(2),ST
130-145°

97
*Clocks are 90-105 when one or both operands are short.

Stack top and memory operand

L WAIT I op1 | m/op/rm addr1 I addr2 :’

Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation Coding Example
Range
98 D8 mirm CD18mirm 118+ EA ST - ST * mem-op FMUL SPEED
(110-125)+ EA {shortreal)
9B OC mirm CD1Cmirm 161 + EA® ST - ST * mem-op FMUL HEIGHT
(154-168) » EA* (long real)
+ EA
“Clocks are 120 + E when one or both operands are short.

(112-126) + EA

Operation

The multiply real instruction multiplies the destination operand by the source and
returns the product 1o the destination. The source operand may be either the stack
top, a stack element, or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination is the stack top.

Exceptions

1ZD0O0UP

X X X X X

All mnemonics copyright Intel Corporation 1983

259

FMULP

Multiply Real and Pop
Format
WAIT op1 op2+i I
Execution
8087 Emulator Clocks
Encoding Encoding Typlcal Operation Coding Example
Range
9B DECB +i CDIECB+i 142° ST(i) — ST(i) * ST FMULP ST(2),ST
134-148° pop stack
100
“‘Clocks are when one or both operands are short.
94-108
Operation

The multiply real instruction multiplies the destination operand by the source and
returns the product to the destination. The source operand may be either the stack
top, a stack element, or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination is the stack top.

The multiply real and pop stack instruction multiplies one of the stack elements by
the stack top, replaces the stack element with the product, and then pops the floating
point stack.

Exceptions

1z2Zo0oo0uw?p
X X X X X

All mnemonics copyright Intel Corporation 1983

260

FNOP

No operation

Format

[war] op

[o]

Execution
Clocks

Typical
Range

Operation Coding Example

13 ST~ ST FNOP
10-16

This operation stores the stack top to the stack top and thus effectively performs no

8087 Emulator
Encoding Encoding
98 D9 DO €D 1900
Operation
operation.
Exceptions

1 ZDOUP

All mnemonics copyright Intel Corporation 1983

261

FPATAN

Partial Arctangent

Format

[war | opr | op2

Execution
8087 Emulator Clocks
Encoding Encoding Typicat Operation Coding Example
Range
98 D9F3 CD19F3 650 T, = arctan (ST(1)/ST) FPATAN
250-800 pop stack
ST-T,

Operation

The partial arctangent instruction computes the function © = ARCTAN (Y/X). X is
taken from the top stack element and Y from ST(l). Y and X must observe the
inequality 0 < Y < X < + . The instruction pops the floating point stack and
returns © 1o the new stack top, overwriting the Y operand.

Exceptions

1ZoouyUepP =
X X

*operands not checked

Description

This instruction assumes that the operands are valid and in-range. To be considered
valid, an operand must be normalized. If an operand is either invalid or out-or-
range, the instruction will produce an undefined result without signalling an
exception.

All mnemonics copyright Intel Corporation 1983

262

FPREM

Partial Remainder

Format

L WAIT] op1 I op2

Execution
8087 Emulator Clocks . X
Encoding Encoding Typical Operation Coding Example
Range
98 D9 F8 CD19F8 125 ST — REPEAT (ST STap FPREM
15-190

Operation

This instruction performs modulo division on the stack top by ST(1). FPREM pro-
duces an EXACT result; the precision exception does not occur. The sign of the
remainder is the same as the sign of the original dividend.

Exceptions

I Zpour
X X X

Description

FPREM operates by performing successive subtractions. It can reduce a magnitude
difference of up 1o 2°* in one execution. If FPREM produces a remainder that is less
than the modulus (ST(1)). the function is complete and bit C2 of the status word
condition code is ¢cleared. If the function is incomplete, C2is set to I; the result in ST
is then called the partial remainder.

Software can be used to inspect C2 by storing the status word following execution of
FPREM and re-executing the instruction (using the partial remainder in ST as the
dividend), until C2 is cleared. An alternate possibility is comparing ST to ST(1) to
determine when the function is complete. If ST > ST(1), FPREM must be executed
again. If ST = ST(1). the remainder is 0 and execution is complete. If ST <ST(1), ex-
ecution is complete and the remainder is ST.

Note

A context switch between the instructions in the remainder loop can be
forced by a higher priority interrupting routine which needs the 8087.

One important use of FPREM is to reduce arguments (operands) of periodic
transcendental functions o the range permitted by these instructions. For example,
the FPTAN (tangent) instruction requires its argument to be less than n/4. Using n/4
as a modulus, FPREM will reduce an argument so that it is in the range of FPTAN.
Because FPREM produces an exact result, the argument reduction does NOT intro-
duce roundoff error into the calculations even if several iterations are required to
bring the argument into range. The rounding of n produces a rounded period rather
than a rounded argument.

FPREM also provides the least-significant three bits of the quotient generated by
FPREM (in C,. C,, C,). This is also important lor transcendental argument reduc-
tion since it locates the original angle in the correct one of eight 7 /4 segments of the
unit circle.

All mnemonics copyright Intel Corporation 1983

203

EPTAN

Partial Tangent
Format
[war | op op2 |
Execution
8087 Emulator Clocks
Encoding Encoding Typlcal Operation Coding Example
Range
$BD9F2 CD19F2 450 Y/X — TAN(ST) FPTAN
30-540
§T+~Y
push slack
ST-X
Operation

The partial tangent instruction computes the function Y/X = TAN(0). © is taken
from the top stack element. The value of © must be within the range 0 <=0 < = /4.
The result of the operation is a ratio; y replaces O in the stack and X is pushed,
becoming the new stack top. © is measured in radians.

Exceptions

rzoouep =
X X

*operands not checked

Description

The ratio result of FPTAN is designed to optimize the calculation of the other
trigonometric functions.

This instruction assumes that the operand is valid and in-range; to be considered

valid, an operand must be normalized. If the operand is invalid or out-of-range, the
instruction will produce an undefined result without signalling an exception.

All mnemonics copyright Intel Corporation 1983

264

FRNDINT

Round to Integer

Format

I WAIT I op1 | op2

Execution
8087 Emulator Ctocks .
Encoding Encoding Typical Operation Coding Example
Range
9BDIFC CD19FC 45 ST - nearestinteger (ST) FRNDINT
16-50

Operation

This instruction rounds the top stack element Lo an integer.

Exceptions

IzZbpoure
X X

Description

Assume that ST contains the 8087 real number encoding of the decimal value
155.625. FRNDINT will change the value to 155 if the RC field of the control word
is set to down or chop; or to 156 if it is set to up or nearest.

All mnemonics copyright Intel Corporation 1983

265

FRSTOR

Restore Saved State

Format
[owar | opt miop/m | agan | agdrz |
Execution
8087 Emulator Clocks 5 :
Encoding Encoding Typlcal Operation Coding Example
Range
9BODmdrm CD 1D mdrm 202 + EA 8087 state — mem-op FRSTOR STATE SAVE
(197-207) + €A
Operation

The restore state instruction reloads the 8087 from the 94-byte memory area defined
by the source operand. This information should have been written by a previous
FSAVE/FNSAVE instruction.

Exceptions

12Z00UP

Note

CPU instructions may immediately follow FRSTOR, but no NDP instruc-
tion should be executed without an intervening FWAIT or an assembler-
generated WAIT.

The 8087 resets to its new state at the conclusion of the FRSTOR. The 8087 will, for

example, generate an immediate interrupt request if indicated by the exception and
mask bits in the memory image.

All mnemonics copyright Inte! Corporation 1983

266

FSAVE

Save State FNSAVE

Format
| WAIT I opl] m/op/rm addn I addr2 l
Execution
8087 Emulator Clocks i .
Encoding Encoding Typical Operation Coding Example
Range
98 DD mérm CD 1D mbrm 202 + EA mem-op * 8087 slale FSAVE STATE SAVE
(197-207) + EA
90 DD mérm CD 1D mérm 202 + EA mem-op - 8087 slale FNSAVE STATE
(197-207) + EA {no wait)
Operation

The save state instruction writes the full 8087 state—environment plus register
stack—to the memory location specified in the destination operand, and initializes
the NDP. The FSAVE form of this instruction is preceded by an assembler-
generated WAIT instruction.

Exceptions

1zZoouwr

Description

Figure 6-8 shows the 94-byle save area layoul. Typically, FSAVE/FNSAVE will be
coded 1o save this image on the CPU stack.

If an instruction is executing in the 8087 when FNSAVE is decoded, the CPU queues
the save and delays its execution until the running instruction completes normally,
or encounters an unmasked exception. The save image, therefore, reflects the state
of the 8087 following completion of any running instruction. After writing the stale
image 10 memory, FSAVE/FNSAVE initializes the 8087 as if FINIT/FNINT had
been exccuted.

FSAVE/FNSAVE is useful whenever a program wanis to save the current state of
the NDP and initialize it for a new routine. Three examples are:

1. An operating system neceds to perform a context switch (suspend the task that
has been running and give control to a new task);

2. Aninterrupt handler needs to use the 8087;
3. Anapplication task wants to pass a **clean”’ 8087 stack to a sub-routine.

All mnemonics copyright Intel Corporation 1983

207

FSAVE
FNSAVE

INCREASING ADDRESSES
15 0
CONTROL WORD +0
STATUS WORD +2
TAG WORD +4
1!
INSTRUCTION 1P15-0 +6
POINTER 1P19-16 |o| OPCODE +8
0P15.0 +10
OPERAND
POINTER oms-‘sl) +12
SIGNIFICAND 15-0 +14
SIGNIFICAND 31-16 +16
TOP STACK
HEMEN,:S,T SIGNIFICAND 47-32 +18
R SIGNIFICAND 63-48 +20
s EXPONENT 14-0 +22
SIGNIFICAND 150 +20
SIGNIFICAND 31-16 +26
NEXT STACK
ELEMENT:ST(1) < SIGNIFICAND 47-32 +28
N SIGNIFICAND 63-48 +30
S| EXPONENT 14-0 +32
N
N)
¢ SIGNIFICAND 150 +84
SIGNIFICAND 31-16 +86
LAST STACK
ELEMENT:ST() $ SIGNIFICAND 47-32 +88
R SIGNIFICAND 63-48 +90
\ s| EXPONENT 14.0 +92
NOTES:
S = Sign
Bit 0 of each lield is rig least signiticant bit of p
register field.
Bit 63 of signil Is integer bit binary point is immediately
10 the right).
Figure 6-8. FSAVE/FRSTOR Memory Layout 12162315

Note

FSAVE/FNSAVE, like FSTENV/FNSTENYV, must be protected from any
other 8087 instruction that might execute while the save is in progress.
When FSAVE is coded, this can be insured by placing an explicit FWAIT in
front of a subsequent no-wait mnemonic, if there is one. When FSAVE is
executed with CPU interupts disabled, an FWAIT should be executed
before CPU interrupts are enabled or any subsequent 8087 instruction is
executed. Because the FNSAVE initializes the NDP, there is no danger of
the FWAIT causing an endless wait. Other CPU instructions may be
executed between the FNSAVE and the FWAIT; this will reduce interrupt
latency if the FNSAVE is queued in the 8087.

All mnemonics copyright Intel Corporation 1983

268

FSCALE

Scale

Format

I WAIT op1 I op2 I

Execution
8087 Emulator Clocks . .
Encoding Encoding Typical Operation Coding Example
Range
98 D9 FD CD19FD 35 ST — ST+ 28" FSCALE

32-38

Operation

This instruction interprets the value contained in ST(1) as an integer, and adds this
value to the exponent of the number in ST. ST(1) must be in the range —2'* € ST(1)
<+ 2'*and ST(1) must be an integer.

Exceptions

1 Zboue
X X X

Description

FSCALE is particularly useful for scaling the elements of a vector because it pro-
vides rapid multiplication or division by integral powers of 2.

Note

FSCALE assumes the scale factor in ST(1) is an integral value in the range
=2'* £ x < 2'*. If the value is not an integer, but is in-range and is greater in
magnitude than 1, FSCALE uses the nearest integer smaller in magnitude,
i.e., it chops the value toward 0. If the value is out of range, or0< | x | <
1, the instruction will produce an undefined result and will not signal an
exception. The recommended practice is 10 load the scale facior from a
word integer 10 ensure correct operation.

All mnemonics copyright Intel Corporation 1983

269

FSQRT

Square Root

Format

[war | omt | op2 |

Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
9BOD9FA CD19FA 183 ST+~ yST FSQRT
180-186

Operation

This instruction replaces the contents of the top of the stack with its square root. ST
must be in therange -0 £ ST < + o,

Exceptions

1zZoouvr
X X X

All mnemonics copyright Intel Corporation 1983

FST

Store Real

Format

Stack top to Stack element

[war | opt [op2+i |

Execution
8087 Emutator Clocks
Encoding Encoding Typical Operation Coding Example
Range
980D 00 +i CO1DDO+i 18 ST(iy - ST FST ST(4)
15-22

Stack top 1o memory operand

LWAIT opl l miop/rm r addri1 I addr2 :l

Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
98 DS m2rm CD 19 m2rm 87+EA mem-op ~ ST FST MEAN
{84-90) + EA {short-real)
8B DO m2rm CD 10 m2rm 100 + EA mem-op — ST FST READING
(86-104)+ EA (long-real)

Operation

The store real instruction transfers the top of the stack to the destination, which may
be another stack element or a short or long real memory operand. If the destination
is short or long real, the significand is rounded to the width of the destination
according to the RC field of the control word and the exponent is converted to the
width and bias of the destination format.

Exceptions

1Zoowur
X X X X

Note

If the stack top is tagged special (it contains ©, a NAN, or a denormal), the
stack top significand is not rounded. In this case, the least significant bits of
the stack top are deleted to fit the destination. The exponent is treated in the
same way. This preserves the value’s identification as ©, or a NAN (expo-
nent of all ones), or a denormal (exponent all zeros) so that it can be prop-
erly loaded and tagged later in the program, if desired.

All mnemonics copyright Intel Corporation 1983

271

FSTCW
FNSTCW

Store Control Word
Format
I WAIT I op1 m/op/rm addr1 I addr2 :l
Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation Coding Example
Range
98 D9 m7rm CD 19 m7rm 154+ EA mem-op = processor FSTCW CONTROL
{12-18)+ EA control word
90 DI m7rm CD19m7rm 15+EA mem-op + processor FNSTSW CONTROL
(12-18)+ EA control word
(no wait)
Operation

The store control word instructions write the current processor control word to the
memory location defined by the destination. The FSTCW form of this instruction is
preceded by an assembler-generated WAIT instruction.

Exceptions

l1zZoouvr

Description

When application tasks are running, the WAIT form of this instruction should be
used. The NO WAIT form is provided for use in critical code regions where a WAIT
instruction might induce an endless wait.

All mnemonics copyright Intel Corporation 1983

272

FSTENV
Store Environment FNSTENV

Format

l WAIT opt l miop/rm I addri _l_ addr2 _—_l

Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation Coding Example
Range

98 D9 mérm CD 19 mérm 45+ EA mem-op - 8087 FSTENV ENVIRON
(40-50) + EA environment

90 09 m6rm CD 19 mérm 45+ EA mem-op - 8087 FNSTENV ENVIRON
(40-50) + EA environment

(no wait)

Operation

This instruction writes the 8087 basic status (control word, status word, and tag
word) and exception pointers to the memory location defined by the destination
operand. The FSTENV form of this instruction is preceded by an assembler-
gencrated WAIT instruction.

Exceptions

1Zoouvr

Description

FSTENV/FNSTENYV is often used by exception handlers because it provides access
to the exception pointers which identify the offending instruction and operand.

FSTENV/FNSTENV typically saves the environment on the CPU stack. After the
environment is saved, FSTENV/FNSTENV sets all exception masks in the pro-
cessor; it does not affect the interrupt enable mask. Figure 6-9 shows the format of
the environment data in memory. If FNSTENV is decoded while another instruction
is executing concurrently in the NEU, the 8087 does not store the environment until
the other instruction has completed. The data saved by this instruction, therefore,
reflects the state of the 8087 AFTER any previously decoded instruction has been
executed.

Note

FSTENV/FNSTENV must be allowed to complete before any other 8087
instruction is decoded. When FSTENV is coded, an assembler-generated
WAIT should precede any subsequent 8087 instruction. When using
FNSTENV, with CPU interrupts disabled, an explicit FWAIT should be
executed before enabling CPU interrupts.

There is no risk of the FWAIT causing an endless wait. FNSTENV masks
all exceptions so that interrupt requests from the 8087 are prevented.

All mnemonics copyright Intel Corporation 1983

73

ESTENV

FNSTENV

INCREASING ADDRESSES
15 0
CONTROL WORD +0
STATUS WORD +2
TAG WORD +a
INSTRUCTION 1150 +6
POINTER) 1 ip1g-16 Iol OPCODE +8
OPERAND OP15.0 +10
POINTER] |or1e-16 0 +12
Figure 6-9. FSTENV and FLDENV Memory Layouts 12162316

All mnemonics copyright Intel Corporation 1983

274

FSTP

Store Real and Pop

Format

Stack top to Stack element

[war T opr [op2+i |

Execution
8oa7 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
9B8DDOD8 +i CDIDDS8 + i 20 ST(i) — 8T FSTP ST(2)
17-24 pop stack

Stack top to memory operand

WAIT I opt] miopirm T addr1 I addr2 :'

Exacution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
98 09 m3rm CD19m3rm B89+ EA mem-op — ST FSTP TOTAL
(86-92) + EA pop stack
{short-real)
98 OD m3rm CD 1D m3rm 102+ EA mem-op — ST FSTP AVERAGE
(98-106) + EA pop stack
{long-real)
9B DB m7rm CD 1B m7rm 55+ EA mem-op — ST FSTP TEMP __STORE
(52-58) + EA pop stack
(temp-real)

Operation

The store real and pop stack instruction transfers the top of the stack 1o the destina-
tion and then pops the stack. The destination may be another stack element, or
memory operand (short-real, long-real, or temporary-real). If the destination is
short or long real memory, the significand is rounded to the width of the destination
according to the RC field of the control word and the exponent is converted to the
width and bias of the destination format.

This instruction allows storing temporary real numbers into memory. Coding FSTP
ST(0) is equivalent to popping the stack with no data transfer.

Exceptions
1 2 00UP

X X X X

All mnemonics copyright Intel Corporation 1983

275

ESTSW

FNSTSW

Store Status Word
Format
WAIT l opl miopirm I addri addr2 :'
Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
9BDDm?rm CD 1D m7rm 154 EA mem-op < B087 status FSTSW SAVE_STAT
(12-18) + EA word
300D m7rm CD1Dm7rm 15+ EA mem-op = B0B7 stalus FNSTSW SAVE STAT
(12-18) + EA word
{no wait)
Operation

The store status word instructions write the current value of the 8087 status word to
the destination operand in memory. The FSTSW form of this instruction is preceded
by an assembler-generated WAIT instruction.

Exceptions

1 ZD0D0O0UP

Description
The three primary uses of this instruction are:

1. To implement conditional branching following a comparison or FPREM
instruction (WAIT form).

To poll the 8087 to determine if it is busy (NO-WAIT form).

3. Toinvoke exception handlers in environments that do not use interrupts (WAIT
form).

Note

If the WAIT form is used with an outstanding unmasked exception,
deadlock will result.

All mnemonics copyright Intel Corporation 1983

276

FSUB

Subtract Real

Format

Stack top and Stack element

[war [ot] op2+i |

Execution
8087 Emulator Clocks . .

Encoding Encoding Typical Operation Coding Example
Range

9B OBEO+i CDIBEO+i 85 ST — ST - STy FSUB ST,8T(2)
70-100

98DCE8 +~i CDICEB - 85 ST(i) ~ STy - ST FSUB ST(3).8T
70-100

Stack top and memory operand

LWAIT I op1 mlop/rm l addr1 _I_ addr2 :I

Execution
8087 Emulator Clocks X .
Encoding Encoding Typical Operation Coding Example
Range

98 08 marm CD 18 marm 105+ EA ST - ST - mem-op FSUB VALUE
(90-120) + EA (short-real)

98 OC m4rm CD1Cmérm 110+ EA ST~ ST - mem-op FSUB BASE
(95-125) + EA (long-real)

Operation

The subtract real instruction subtracts the source operand from the destination and
returns the difference to the destination. The source operand may be either the stack
top, a stack element or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
clement or memory operand, the destination is the stack top.

Exceptions

1ZDOUP
X X X X X

All mnemonics copyright Intel Corporation 1983

ESUBP

Subtract Real and Pop

Format
WAIT op! [op2+i |
Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation Coding Example
Rango
SBDBE8+i CDDBEB+i 90 ST{1) = ST(1) - ST FSuB
75-105 pop stack
SBDEES+i CD1EEB+i 80 ST(i) ~ ST(i) - ST FSUBP ST{2),ST
75-105 pop stack
Operation

The subtract real instruction subtracts the source operand from the destination and
returns the difference to the destination. The source operand may be either the stack
top, a stack element or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination is the stack top.

The subtract real and pop stack instruction subtracts the stack top from one of the
stack elements, replacing the stack element with the difference and then pops the

floating point stack.

Exceptions

Izoouvr
X X X X X

All mnemonics copyright Intel Corporation 1983

278

FSUBR

Subtract Real Reversed

Format

Stack top and Stack element

I WAIT opl I op2+i]
Execution
8087 Emutator Clocks 5 .
Encoding Encoding Typical Operation Coding Example

Range

9B DBEB +i CDDBES +i 87 ST «~ ST(i} - ST FSUBR ST,ST(i)
70-100

9B DC EQ +i CDI1CEO+i 87 ST(i) = ST - ST FSUBR ST(3).ST
70-100

Stack top and memory operand

[war op1 [miopim | adan | agar :|
Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation Coding Example
Range
98 D8 m5rm CD 18 m5rm 105+ EA ST -~ mem-op - ST FSUBR INDEX
(80-120) + EA (short-real)
98 DC mS5rm CD1C mSrm 110+EA ST — mem-op - ST FSUBR VECTOR
(95-125) + EA {long-real
Operation

The reverse subtract instruction subtracts the destination from the source and
returns the difference to the destination. The source operand may be either the stack
top, a stack element, or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
element or memory operand, the destination is the stack top.

All mnemonics copyright Intel Corporation 1983

279

FSUBRP

Subtract Real Reversed and Pop

Format
[war | opt op2+i |
Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation Coding Example
Range
SBDEE1 CD1EE1 90 ST(1) ~ ST -8T(1) FSUBR
75-105 pop stack
SBDEEO+i CD1EEO+i 90 ST(i) - ST - ST{i) FSUBRP ST(2),ST
75-105 pop stack
Operation

The reverse subtract instruction subtracts the destination from the source and
returns the difference to the destination. The source operand may be either the stack
1op, a stack element, or a short or long real operand in memory. When the source is
the stack top, the destination is one of the stack elements. When the source is a stack
clement or memory operand, the destination is the stack top.

The reverse subtract and pop stack instruction subtracts one of the stack elements
from the stack top and returns the difference to the stack element. The floating
point stack is then popped.

Exceptions

1zoDoUuUcP®P
X X X X X

All mnemonics copyright Intel Corporation 1983

280

ETST

Test Stack Top Against +0.0

Format
I WAIT opl I op2
Execution
8087 Emulator Clocks . .
Encoding Encoding Typical Operation Coding Example
Range
9B DI E4 CD19E4 42 ST ~ST-0.0 FTST
38-48
Operation

The test instruction compares the element in the top of the floating point stack with
zero and posts the result to the condition code.

Exceptions

I Z0D0UP
X X

Description

[y =]
-0 = o

Condition Code Test Results

Result

ST is positive

ST is negative

STis zero(+ or-)

ST is not comparable {i.e.. it is a NAN or projective =)

All mnemonics copyright Intel Corporation 1983

281

FWAIT
(CPU) Wait while 8087 is busy

Format

WAIT

Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Cading Example
Range
98 90 3+5n 8086 wait instruclion FWAIT
3+5n

Operation

This instruction is an alternate mnemonic for the CPU WAIT instruction. FWAIT
must be used instead of WAIT for 8087 emulator compatability is desired.

Exceptions

1ZDOUP

Description
The FWAIT mnemonic should be coded whenever the programmer wants (o syn- e “\,
chronize the CPU to the NDP. This means that further instruction decoding will be il

suspended until the NDP has completed the current instruction. This is useful if the
CPU wants 10 inspect a value stored by the NDP (i.e., FIST should be followed by
FWAIT to ensure that the value has been stored before attempting to examine it).

Note

Programmers should not code WAIT to synchronize the CPU and 8087.
The routines that alter an object program for 8087 emulation change any
FWAITs to NOPs but do not change any explicitly coded WAITs. The pro-
gram will wait forever if a WAIT is encountered in emulated execution since
there is no 8087 to drive the CPU’s test pin active.

All mnemonics copyright Intel Corporation 1983

282

FXAM

Examine Stack Top

Format

[war | ot [op2 |

. /
Q/ Execution

8087 Emutator Clocks
Encoding Encoding Typical Operation Coding Example
Range
$BO9ES CD19ES 17 set condition code FXAM
12-23
Operation

The examine instruction reports the content of the top of the floating point stack as
positive/negative and NAN/unnormal/denormal/normal/zero, or empty. The con-
dition codes which can be generated are shown in table 6-15.

Exceptions

1ZD0D0UP

Description

Table 6-15 lists and interprets all of the condition code values that FXAM
generates. Although four different encodings may be returned for an empty register,
bits C3 and CO of the condition code are both 1 in all encodings. Bits C2 an C1
should be ignored when examining for empty.

Table 6-15. FXAM Condition Code Settings

Condition Code

c3 o2 c1 co Interpretation
0 0 0 0 + Unnormal
0 0 0 1 + NAN

0 0 1 0 - Unnormal
0 0 1 1 - NAN

0 1 0 0 + Normal

0 1 0 1 + ©

0 1 1 0 - Normal

0 1 1 1]

1 0 0 0 +0

1 0 0 1 Empty

1 0 1 0 -0

1 0 1 1 Empty

1 1 0 0 + Denormal
1 1 0 1 Empty

1 1 1 0 - Denormal
1 1 1 1 Empty

Al mnemonics copyright Intel Corporation 1983

283

FXCH

Exchange Registers

Format
I WAIT I op1 op2+i I
Execution
8087 Emulator Clocks
Encoding Encoding Typical Operation Coding Example
Range
9B 09 C8 cpi19cs 12 T, = ST(1) FXCH
10-15 ST(1}~ ST
ST~T,
9BD9CE+i CD19C8+i 12 T, = ST(i) FXCH ST(3)
10-15 ST(i) ~ ST
ST-T,
Operation

The exchange instruction swaps the contents of a stack element and the stack top. If
the stack element is not explicitly coded, ST(1) is used.

Exceptions

IrZbpouvue

X

Description

Many 8087 instructions operate only on the stack top; FXCH provides an easy way
1o use these instructions on lower stack elements. For example, the following
sequence takes the square root of the third element from the top.

FXCH ST(3)
FSQRT
FXCH ST(3)

All mnemonics copyright Intel Corporation 1983

284

FXTRACT

Extract Exponent and Significand

Format
I WAIT opl op2
Execution
8087 Emulator Clocks X .
Encoding Encoding Typical Operation Coding Example
Range
9B DIF4 CD19F4 50 T, = exponent (ST) FXTRACT
27-55 T, ~ signilicand (ST)
ST=T,
push stack
ST-T,
Operation

The extract instruction ‘*decomposes’’ the number in the stack top into two numbers
that represent the actual value of the operand’s exponent and significand fields. The
‘‘exponent’’ replaces the original operand on the stack and the ‘‘significand’ is
pushed onto the stack.

Exceptions

1Zopour

X

Description

FXTRACT is useful in conjunction with FBSTP for converting numbers in 8087
temporary real format to decimal representations (c.g., for printing or displaying).
It can also be useful for debugging, since it allows the exponent and significand parts
of areal number 1o be examined separately.

Note

Following execution of FXTRACT, ST (the new stack top), contains the
value of the original significand expressed as a real number. The sign of this
number is the same as the operand’s; its exponent is O true (16,383 or
3FFFH biased), and its significand is identical to the original operand’s.
ST(1) contains the value of the original operand’s true (unbiased) exponent
expressed as a real number. If the original operand is zero, FXTRACT pro-
duces zeros in ST and ST(1) and BOTH are sighed as the original operand.

< , Example

Assume ST contains a number whose true exponent is +4 (i.e., its exponent field
contains 4003H). After executing FXTRACT, ST(1) will contain the real number
+4.0; its sign will be positive, its exponent field will contains 4001+) (+2 true) and its
significand field will contain 1400 . . . 00B. In other words, the value in ST(1) will be
1.0x2° =4,

All mnemonics copyright Intel Corporation 1983

285

EXTRACT

If ST contains an operand whose true exponent is —7 (i.e., its exponent field con-
tains 3FF8H), then FXTRACT will return an ‘“‘exponent’’ of —=7.0. After the
instruction executes, ST(1)’s sign and exponent fields will contains CO01H (negative
sign, true exponent of 2) and its significand will be 141100 . . . 00B. The value in
ST(1) will be —1.11x2? = -7.0.

In both cases, following FXTRACT, ST’s sign and significand fields will be the
same as the original operand’s and its exponent field will contain 3FFFH, (0 true).

All mnemonics copyright Intel Corporation 1983

286

Y * Logy X
Format
[war | op op2
-
Execution
8087 Emulator Clocks .
Encoding Encoding Typical Operation Coding Example
Range
9B DI F1 CD19F1 950 ST, - ST(1}* Iog,(ST: FyL2x
$00-1100 pop stack
ST-T,
Operation

This instruction calculates the function:

Z=Y*log,X
X is taken from the stack top and Y from ST(1). The operands must be in the ranges
0< X <% and — ® < Y < + o, The instruction pops the stack and returns Z at the
(new) stack top replacing the Y operand.
Exceptions

1Z00UP

X

‘operands not checked

Note

This function optimizes the calculation of log to any base other than two
since a multiplication is always required:

log, X = ! * logyX
lo

gan

All mnemonics copyright Intel Corporation 1983

287

FYL2XP1

Y * Logy (X+1)

Format

| WAIT l opl | op2 |

Execution
8087 Emulator Clocks
Encoding Encoding Typical Operalion Coding Example
Range
9B D9 F9 CD19F9 850 T,=ST+1 FYL2XP1
700-1000 T, ST(1)*log, T,
pop stack
ST-T,

Operation

This instruction calculates the function Z = Y*LOG; (X + I). X is taken from the
stack top and must be in the range 0 < | X | < (1-v2/2). Y is taken from ST(1)
and must be in the range —©A <Y <. FYL2XP1 pops the floating point stack and
returns Z at the new stack top, replacing Y.

Exceptions

1zZD0U P

X

‘operands not checked

Note

This instruction provides improved accuracy over FYL2X when computing
the log of a number very close to 1. For example, when calculating 1 + E
where E << 1, being able to input E rather than | + E 1o the function allows
more significant digits to be retained.

All mnemonics copyright Intel Corporation 1983

288

Chapter 7

Assembling an MS-Assembler Source File

7.1 How to Start the MS-Assembler 289
j 7.1.1 Method 1: PrOmPS.ottt 289
Summary of Command Prompts 290

7.1.2 Method 2: Command Line........... 290
7.2 MS-Assembler Command Characters. 291
7.3 MS-Assembler Command Prompts. L 292
7.4 MS-Assembler Command Switches. oo 293
Summary of Command Switches. 295

7.5 Formats of Listings and Symbol Tables 296
7.5.1 Program Listing. 296
Summary of Listing Symbols.o o 0oL 297

7.5.2 Differences Between Pass 1 and Pass 2. 301
7.5.3 Symbol Table Format. i 301

Assembling an MS-Assembler Source File

Assembling a program with MS-Assembler requires two types of commands: a com-
mand to start MS-Assembler, and answers to command prompts. In addition, four
switches control alternate MS-Assembler features. Usually. vou will type all the
. commands to MS-Assembler on the computer keyboard. As an option, answers to the
command prompts and any switches may be contained in a response (batch) file. Two
command characters are provided to assist you while entcring assembler commands.
These command characters are described in Section 7.2, “Command Characters.”

7.1 How to Start MS-Assembler

MS-Assembler may be started in two ways. By the first method, you type the com-
mands in response to individual prompts. By the second method. you type all
commands on the line uscd to start MS-Assembler.

7.1.1 Method 1: Prompts
Type:
MASM

MS-Assembler is loaded into memory. Then, the MS-Assembler displays a series of four
prompts. You answer the prompts as commands to the MS-Assembler to perform
specific tasks.

At the end of each line, you may specify one or more switches, each of which must be
preceded by a forward slash (/).

The command prompts are summarized here and described in more detail in Section
7.3, “MS-Assembler Command Prompts.”

289

Chapter 7 /| Assembling a Source File

Summary of Command Prompts

PROMPT RESPONSES

Source filename [.ASM]: Enter List .ASM file to be assembled.
(There is no default; a filkename response is
required.)

Object filename [source.OBJ] Enter List filename for refocatable object
code. (The default is source-filename.OBJ)

Source listing [NUL.LST]: Enter List filename for listing. (The defauit is
no listing file.)

Cross reference [NUL.CRF]: Enter List filename for cross-reference file
(used with MS-CREF to create a
cross-reference listing). (The default is no
cross-reference file.)

7.1.2 Method 2: Command Line
Type:

MASM <source>,<object>,<listing>,<cross-ref>
[/switch . ..]

where the entries following MASM are responscs to the command prompts:
source is the source filename
object is the name of the file to receive the relocatable output
listing is the name of the file to receive the listing
cross-ref is the name of the file to reccive the cross-reference output

sswitch are optional switches, which may be placed following any of the
response entrics (just before any of the commas or after the <cross-ref>, as
shown).

To sclect the default for a field, simply enter a sccond comma without space in
between (see the example below).

Once you have entered the command line, MS-Assembler is loaded into memory.
Then MS-Assembler immediately begins assembly.

290

Chapter 7 /| Assembling a Source File

Example:
MASM FUN, ,FUN/D/X,FUN

/ This example causes MS-Asscmbler to be loaded and the source file FUN.ASM to be
assembled. MS-Assembler then outputs the relocatable object code to a file named
FUN.OBJ (default caused by two commas in a row), crcates a listing file named
FUNL.LST for both assembly passes but with false conditionals suppressed, and creates
across-reference file named FUNLCRF. If listing file switches are given but no filename,
the switches are ignored.

7.2 MS-Assembler Command Characters

MS-Assembler provides two command characters.

Semicolon
Use a single semicolon (;). followed immediately by a carriage return, at any
time after responding to the first prompt (from Source filename: on) to sclect
default responses to the remaining prompts. This feature saves time and climi-
nates the need to enter a series of carriage returns,

NOTE

Once the semicolon has been entered. you can no longer respond to any of the
prompts for that assembly. Therefore. do not use the semicolon to skip over
some prompts. For this. usce the (ENTER) key.

Example:

Source filename [.ASM]: FUN
Object filename [FUN.OBJ]: ;

The remaining prompts will not appear, and MS-Assembler will use the default
values (including no listing file and no cross-reference file).
To achieve the same result, you could tvpe:
Source filename [.ASM]: FUN ;
This response produces the same files as the previous example.

CONTROL-C
Use at any time to abort the assembly. If you enter an ¢rroncous
response, such as the wrong filename or an incorrectly spelled filename, vou
must press to exit MS-Assembler. You can then restart MS-
Assembler. If the crror has been typed but not entered. you may delete the
erroneous characters for that line only.

Chapter 7 | Assembling a Source File

Switch

D

0

IFunction

Produces a source listing on both assembler passes. The listings will,
when compared, show where in the program phase errors occur and
can possibly give you a clue to why the errors occur.

Outputs the listing file in octal radix. The generated code and the
offscts shown on the listing will all be given in octal. The actual code in
the object file will be the same as when the /O switch is not given. The
/0 switch affects only the listing file.

Suppresses the listing of false conditionals. If your program contains
conditional blocks, the listing file will show the source statements, but
no code if the condition cvaluates false. To avoid the clutter of
conditional blocks that do not gencrate code, use the /X switch to
suppress the blocks that evaluate false from vour listing.

The /X switch does not affect any block of code in your file that is
controlled by cither the SFCOND or .LFCOND directives.

If your source program contains the JTFCOND directive, the /X switch
has the opposite effect. That is, normally the .TFCOND dircctive
causcs listing or suppressing of blocks of code that it controls. The first
TFCOND directive suppresses false conditionals, the second restores
listing of falsc conditionals. and so on. When you use the /X switch,
false conditionals are already suppressed. When MS-Assembler ¢n-
counters the first TFCOND directive, listing of false conditionals is
restored. When the second .-TFCOND is encountered (and the /X
switch is used), false conditionals are again suppressed from the
listing,.

Of course, the /X switch has no cffect if no listing is crcated. See
additional discussion under the /TFCOND directive in Section 4.2.4,
“Listing Dircctives.”

The following chart illustrates the various cffects of the conditional
listing dircctives in combination with the /X switch.

294

Chapter 7 /| Assembling a Source File

Summary of Listing Symbols
R = Linker resolves entry to left of R
E = External

= Segment name, group name, or scgment variable used in MOV AX,<—
-, DD , JMP , and so on.

= = Statement has an EQU or = directive

nn: = Statement contains a segment override
n/ = REPxx or LOCK prefix instruction. Example:
003C F3/ A5 REP MOVSW
;move DS:SI to ES:DI
suntil CX=0

L T

[= DUP expression;xx is the value in parentheses following DUP; for
XX example: DUP(?) places ?? where xx is shown here
]
= Line comes from a macro expansion
C = Line comes from file named in INCLUDE directive statement

297

Chapter 7 / Assembling a Source File

MS-Assembler 1-Dec-81 PAGE 1-3
EXTX PASCAL entry for initializing programs

0000 STACK SEGMENT WORD STACK 'STACK'
= 0000 HEAPbeg EQU THIS BYTE
t____ indicates EQU or = directive

:Base of heap before init

6000 14 [DB 20 DUP ('?):l
?7? - Shows value in parentheses

1

Indicates DUP expression

= 0014 SKTOP EQU THIS BYTE

0014 STACK ENDS

Llululo] MAINSTARTUP SEGMENT ‘MEMORY"

DGROUP GROUP DATA,STACK<CONST,HEAP,
MEMORY
ASSUME CS:MAINSTARTUP,DS:

DGROUP,ES:DGROUP,SS:
DGROUP

PUBLIC BEGXQQ :Main entry

0000 BEGXQQ PROC FAR

0000 B8 ---- R MOV AX,DGROUP
:Get data segment value
0003 8E D8 MOV DS,AX ;Set DS seg
0005 8C 06 0022 R MOV CESXQQ,ES
Generated Name Action Expression Comment
Oftset
000C 26: 8B 1E 0002 MoV BX,ES:2 Highest

;paragraph
Segment override

298

Chapter 7 /| Assembling a Source File

MS-Assembler 1-Dec-81 PAGE 1-5
ENTX PASCAL entry for initializing programs

¢o00 STARTmain PROC FAR
;This code remains

E CALL ENTGQQ
;call main program

0000 9A 0000

0005 ENDXQQ LABEL FAR

;termination entry point
0005 9A 0000 E CALL ENDOQQ
;user system termination
000A 9A 0000 E CALL ENDYQQ
;close all open files
000F 9A 0000 E‘-l CALL ENDUQQ
file system
termination
0014 C7 06 0020 R 0000 MOV DOSOFF,0
Al T
offset
linker L External
signal; symbol
goes with
number to left;
shows DOSOFF is in segment
00 2E 0020 R JMP DWORD PTR DOSOFF
;return to DOS
001E STARTmain ENDP
0037 ENTXCM ENDS

END BEGXQQ

300

Chapter 7 / Assembling a Source File

MS-Assembler MACRO
Assembler date PAGE Symbols-1
CALLER - SAMPLE ASSEMBLER ROUTINE (EXMP1M.ASM)

Macros:

Name Length
BIOSCALL....ceeiiieeiicienns 0002
DISPLAY ..ot 0005
DOSCALLovvveveeeeeiiiies 0002
KEYBOARDcccevviiieeenas 0003
LOCATE....cccooiieeeineeeiiee 0003
SCROLL.......vvvvvvvviiirieieieienene 0004

Structures and records:

Name Width # fields
Shift Width Mask
PARMLIST ...cooovviiiiiiiireienees 001C 0004
BUFSIZEoeeeeeeeeeeee. 0000
NAMESIZEcooovvnnnnn. 0001
NAMETEXTcoovveeeeennn. 0002
TERMINATOR........vvvvvneee 001B

Segments and groups:

Name Size align combine
CSEG ... 0044 PARA PUBLIC
STACK ..ot 0200 PARA STACK
WORKAREAccccoeieee. 0031 PARA PUBLIC

302

Initial

class

‘CODE’
‘STACK'
‘DATA’

Chapter 7 /| Assembling a Source File

Type Value Attr

N PROC 0036 CSEG Length =000E
Number 0019
L BYTE 001C WORKAREA

L 001C 0000 WORKAREA
L FAR 0000 External
F PROC 0000 CSEG Length =0036
Warning Severe
Errors Errors
0 0
Macros:
Name Length-<=————number of 32-byte blocks
macro occupies in memory
BIOSCALL 0002
DISPLAY 2005
DOSCALL.............. 0002
KEYBOARD............ 0003
LOCATE...........cu. 0003
SCROLL................. 0004

|

names of macros

This section of the symbol table tells you the names of your macros and how big they
are in 32-byte block units. In this listing, the macro DISPLAY is 5 blocks longor (5 X 32
bytes =) 160 bytes long.

303

Chapter 7 | Assembling a Source File

Structures and records:

Example for Structures

Name Width # fields =— *
Shift Width Mask Initial «— **

PARMLIST 001C 0004

BUFSIZE................... 0000

M NAMESIZE................ 0001
NAMETEXT.............. 0002
TERMINATOCR 001B bl
field names of Offset of field

PARMLIST Structure into structure
The number of bytes
wide of Structure
Example for Records

Name Width # fields

Shift Width Mask Initial =— *
BAZ.......ccoovvvees ~0008 0003 number of fields
in Record
FLD1 0006 0002 00C0o 0040
FLD2............ 0003 +— 0003 0038 0000 «—— initial
value
FLDS............ 0000 0003 0007 0003
BAZ1................ ~-000B 0002 MASK of field
BZ1ccovue 0003 0008 07F8 0400 maximum
value
BZ2.............. 0000 —1 0003 0007 0002
number of L number of
bits in Record bits in field
shift
count
to right

*

This line applies to Structure Names (begin in column 1).
b This line for fields of Records (indented).
*** Number of fields in Structure.

This section lists your Structures and/or Records and their fields. The upper line of
column headings applies to Structure names, Record names, and field names of
Structures. The lower line of column headings applies to field names of Records.

304

Chapter.7 /| Assembling a Source File

For Structures

Width (upper line) shows the number of bytes vour Structure occupies in
memory.

fields shows how many fields comprise your Structure.
For Records:
Width (upper line) shows the number of bits the Record occupies.
fields shows how many fields comprise your Record.
For Fields of Structures:
Shift shows the number of bytes the fields arc offsct into the Structure.
The other columns are not used for fields of Structures.
For Ficlds of Records:
Shift is the shift count to the right.
Width (lower line) shows the number of bits this ficld occupies.

Mask shows the maximum value of the record, expressed in hexadecimal, if one
field is masked and ANDed (the field is sct to all 1’s and all other fields are set to
all 0’s).

Using field BZ1 of the Record BAZ1 above to illustrate:
000001111111 100 0+«——MASK=07F8

CITT TP ITTTITIT I IT1]

15 11|10 413 0

shift count = 0003

WIDTH = 0008

305

Chapter 7 / Assembling a Source File

Initial shows the value specified as the initial valuc for the ficld, if any.

When naming the ficld, you specified:
fieldname:# = value

Fieldname is the name of the field
is the width of the ficld in bits

Value is the initial value you want this ficld to hold. The symbol table shows this
value as if it is placed in the field and all other ficlds are masked (equal 0). Using
the example and diagram from above:

000001000|0000000 Initial = 0400

HEEEEEEEEEEEEEEE

Initial = 80H
80H = 128 decimal

Segments and groups:

Name Size align combine class
called Private
in MS-LINK manual

WORD NONE ‘CODE’ «——————— segment
group

WORD PUBLIC ‘DATA’

WORD STACK ‘STACK' segments

WORD PUBLIC ‘CONST’ of

WORD PUBLIC ‘MEMORY’ DGROUP

WORD PUBLIC ‘MEMORY’
WORD NONE ‘CODE’
PARA NONE ‘MEMORY’

segment

For Groups:

The name of the group appears under the Name column, beginning in column 1 with
the applicable Segment names indented 2 spaces. The word Group appears under the
Size column.

306

Chapter 7 /| Assembling a Source File

For Segments:

The segment names may appear in column 1 (as here) if you do not declare them part
of a group. If you declare a group, the segment names appear indented under their
group name.

For all Scgments, whether a part of a group or not:
Size is the number of bytes the Segment occupies.

Align is the type of boundary where the segment begins:
PAGE = pagc - address is xxx00H (low byte = 0); begins on a 256-byte

boundary
PARA = paragraph - address is xxxx0H (low nibble = 0); default
WORD = word - address is xxxx¢H (¢ = ¢ven number; low bit of
low byte = 0)
bit map - IxixIxIxIxIx|xI0I
BYTE = byte - address is xxxxxH (an).whcrc)

Combine describes how the LINK utility will combine the various segments.
(See the description of the LINK utility in the M$-DOS Commands Reference
Manual.)

Class is the class name under which MS-LINK will combine segments in mem-
ory. (Sce the description of the LINK utility in the M$-DOS Commands Refer-
ence Manual.)

Symbols:
Name Type Value Attr

Number 0005

. Text 1.234

... Number 0008 all formed by
Alias FOO EQUor =

. Text 5|BP][DIJ directive

307

Chapter 7 | Assembling a Source File

Symibols:
Name Type Value Attr
BEGRQQ 0012 DATA Global
BEGOQQ.. 0000 External
BEGXQQ.. 0000 MAIN.STARTUP Global Length = 006E
CESXQQ.. 0022 DATA Global I —
CLNEQQ .. 0002 DATA Global length
CRCXQQ.. 001C DATA Global of PROC
CRDXQQ.. BO1E DATA Global
CSXEQQ.. 0000 DATA Global
CURHQQ.. 2014 DATA Global
DOSOFF... 0020 DATA
DOSXQQ.. 001E ENTXCM Global Length =0019
ENDHQQ.. 0016 DATA Globai
ENDOQQ.. 0000 External
ENDUQQ 0000 External
ENDXQQ 0005 ENTXCM Global
ENDYQQ.. 0000 External
ENTGQQ........ccccc... 0000 External
FREXQQcceurnee 006E MAIN_STARTUP Global Length=0010
HDRFQQ.. . 0006 DATA Global
HDRVQQ................ 0008 DATA Global
HEAPBEG BYTE 0000 STACK EQU statements
0000 HEAP-:_ showing segment
0000 External
0004 DATA Global
0010 DATA Global
060C DATA Global
000E DATA Global
0B0A DATA Global

0014 STACK
001C MAIN.STARTUP

0000 ENTXCM Length =001E
0018 DATA Global
001A DATA Global

Llf MS-Assembler knows this length as one of the type lengths (BYTE, WORD, DWORD, QWORD,
TBYTE), it shows that type name here.

308

Chapter 7 / Assembling a Source File

This section lists all other symbolic values in your program that do not fit under the
other categories.

Type shows the symbol’s type:
L = Label
F = Far
N = Near
PROC = Procedure
Number
Alias all defined by EQU or = directive
Text
Opcode

These entries may be combined to form the various types shown in the
example.

For all procedures, the length of the procedure is given after its attribute
(segment).

You may also sce an entry under Type like:
L 6031

This entry results from code such as the following:
BAZ LABEL FOO
where FOO is a STRUC that is 31 bytes long.

BAZ will be shown in the symbol table with the L0031 entry. Basically, Number
(and some other similar ¢ntries) indicates that the symbol was defined by an
EQU or = directive.

Value usually shows the numeric value the symbol represents. When the symbol was
defined by an EQU or = directive. the Value column shows some text.

Attr shows the segment of the symbol. if known. Otherwise. the Attr column is blank.
Following the segment name, the table will show cither External. Global, or a blank
(which means not declared with cither the EXTRN or PUBLIC directive). The last
entry applies to PROC types only. This is a length = entry, which is the length of the
procedure.

If Type is Number, Opcodce, Alias, or Text, the Symbols section of the listing will be
structured differently. Whenever you see one of these four entries under Type, the

symbol was created by an EQU directive or an = dircctive. All information that
follows one of these entrics is considered its “value,” even if the “value™ is simple text.

309

Chapter 7 | Assembling a Source File

Each of the four types shows a value as follows:

Number shows a constant numeric valuc.

Opcode shows a blank. The symbol is an alias for an instruction mnemonic.
Sample directive statement: FOO EQU ADD

Alias shows a symbol name which the named symbol cquals.
Sample directive statement: FOO EQU BAX

Text shows the “text” the symbol represents. “Text” is any other operand to an
EQU directive that does not fit one of the other three categories above.

Sample directive statements:
GOO EQU ‘wOow'’
BAZ EQU DS:8[BX]
ZOO EQU 1.234

310

Appendix A / Reserved Words

DUAL FUNCTION KEYWORD/SYMBOLS

AND NOT
SYMBOLS
AAA ENTER
AAD ES
AAM ESC
AAS F2XM1
ADC FABS
ADD FADD
AH FADOP
AL FBLD
AX FBSTP
BH FCHS
FCLEX
BOUND FCOM
FCOMP
BX FCOMPP
CALL FDECSTP
cBw FDISI
CH FDIV
CL FDIVP
CLC FDIVR
CLD FDIVRP
CLI FENI
CMC FFREE
CMP FIADD
CMPS FICOM
CMPSB FICOMP
CMPSW EIDIV
Ccs FIDIVR
CWD FILD
CX FIMUL
DAA FINCSTP
DAS FINIT
DEC FIST
DH FISTP
DI FISUB
DIV FISUBR
DL FLD
DS FLD1
DX FLDCW

OR

FLDENV

NON-CONFLICTING KEYWORDS
NOERRORPRINT NOPR

DA INCLUDE
DATE L

DEBUG LIST

EJ M1
EJECT MACRO
EP MEMORY
ERRORPRINT MOD186
GEN MR
GENONLY NODB
GO NODEBUG
IC NOEP

HANDS-OFF KEYWORDS

ABS DWORD
ASSUME END

AT ENDM
BYTE ENDP
CODEMACRO ENDS
COMMON EQ

DB EQU
0D EVEN
o]0} EXTRN
DT FAR
pup GE

ow GROUP

NOOBJ ECT
NOPAGING
NOPI

NOPRINT

NOSB
NOSYMBOLS
NO

PAGEWIDTH
PAGING

Pl
PL
PR

PRINT
PW
RESTORE
/S

oJ SA
PAGELENGTH SAVE

NE

NEAR
NOSEGFIX
NOTHING
OFFSET
ONLY186
ORG
PAGE
PARA
PREFX

PROC
PROCLEN

RWFIX

All mnemonics copyright Intel Corporation 1983

311

SB

STACK
SYMBOLS
TITLE

17T

TY

TYPE

WF
WORKFILES
XR

XREF

Appendix B / Flag Operations

FLAG REGISTERS

Flags are used to distinguish or denote certain results of data manipulation. The
8086 provides the four basic mathematical operations (+, -, *, /) in a number of
different varieties. Both 8- and 16-bit operations and both signed and unsigned
arithmetic are provided. Standard two’s complement representation of signed
values is used. The addition and subtraction operations serve as both signed and
unsigned operations. In these cases the flag settings allow the distinction between
signed and unsigned operations to be made (see Conditional Transfer instructions in
Chapter 6).

Adjustment operations are provided to allow arithmetic 10 be performed directly on
unpacked decimal digits or on packed decimal representations, and the auxiliary flag
(AF) facilitates these adjusiments.

Flags also aid in interpreting certain operations which could desiroy one of their
operands. For example, a compare is actually a subtract operation; a zero result in-
dicates that the operands are equal. Since it is unacceptable for the compare (0
destroy either of the operands, the processor includes several work registers reserved
for its own use in such operations. The programmer cannot access these registers.
They are used for internal data transfers and for holding temporary values in
destructive operations, whose results are reflected in the flags.

Your program can test the setting of five of these flags (carry, sign, zero, overflow,
and parity) using one of the conditional jump instructions. This allows you to alter
the flow of program execution based on the outcome of a previous operation. the
auxiliary carry flag is reserved for the use of the ASCII and decimal adjust instruc-
tions, as will be explained later in this section.

It is important for you 10 know which flags are set by a particular instruction.
Assume, for example, that your program is 10 test the parity of an input byte and
then execute one instruction sequence if parity is even, a different instruction se-
quence if parity is odd. Coding a JPE (jump if parity is even) or JPQ (jump if parity
is odd) instruction immediately following the IN (input) instruction would produce
false results, since the IN instruction does not affect the condition flags. The jump
conditionally executed by your program would reflect the outcome of some previous
operation unrelated 10 the IN instructions.

FFor the operation to work correctly, you must include some instruction that alters
the parity flag after the IN instruction, but before the jump instruction. For exam-
ple, you can add zero to the input byte in the accumulator. This sets the parity flag
without altering,the data in the accumulator.

In other cases, you will want to set a flag though there may be a number of interven-
ing instructions before you test it. In these cases, you must check the operation of
the intervening instructions to be sure that they do not affect the desired flag.

The flags set by each instruction are detailed in the individual instructions in
Chapter 6 of this manual.

Details of Flag Usage. Six flag registers are set or cleared by most arithmetic
operations to reflect certain properties of the result of the operation. They follow
these rules below, where ‘‘set’” means set (1o 1 and **clear’’ means cler 10 0. Further
discussion of each of these flags follows the concise description.

All mnemonics copyright Intel Corporation 1983
313

Appendix B / Flag Operations

CF s set if the operation resulied in a carry out of (from addition) or a borrow
into (from subtraction) the high-order bit of the resuli; otherwise CF is
cleared.

AF issetif the operation resulted in a carry out of (from addition) or borrow into
(from subtraction) the low-order four bits of the result; otherwise AF is
cleared.

ZF issetif the result of the operation is zero; otherwise ZF is cleared.
SF issetif the high-order bit of the result is set; otherwise SF is cleared.

PF s set if the modulo 2 sum of the low-order eight bits of the result of the
operation is 0 (even parity); otherwise PF is cleared (odd parity).

OF is set if the signed operation resulted in an overflow, i.c., the operation
resulted in a carry into the high-order bit of the result but not a carry out of the
high-order bit, or vice versa; otherwise OF is cleared.

Carry Flag. As its name implies, the carry flag is commonly used to indicate
whether an addition causes a ‘‘carry”’ into the next higher order digit. (However, the
increment and decrement instructions (INC, DEC) do not affect CF.) The carry flag
is also used as a ‘“‘borrow’’ flag in subtractions.

The logical AND, OR, and XOR instructions also affect CF. These instructions set
or reset particular bits of their destination (register or memory). See the descriptions
of the logic instruction in Chapter 6.

The rotate and shift instructions move the contents of the operand (registers or
memory) one or more positions to the left or right. They treat the carry flag as
though it were an extra bit of the operand. The original value in CF is only preserved
by RCL and RCR. Otherwise it is simply replaced with the next bit rotated out of the
source, i.e., the high-order bit if an RCL is used, the low-order bit if RCR.

Example:

Addition of two one-byte numbers can produce a carry out of the high-order bit:

Bit Number: 7654 3210
AEH - 1010 1110B
+ 74H - 0111 0100B
122H 0010 0010B - 22H ;carry flag -1

An addition that causes a carry out of the high-order bit of the destination sets the
flag 10 1; an addition that does not cause a carry resets the flag to zero.

Sign Flag. The high-order bit of the result of operations on registers or memory can
be interpreted as a sign. Instructions that affect the sign flag set the flag equal 10 this
high-order bit. A zero indicates a positive value; a one indicates a negative value.
This value is duplicated in the sign flag so that conditional jump instructions can test
for positive and negative values. The high order bit for byte value is bit 7; for word
values it is bit 15.

All mnemonics copyright Intel Corporation 1983

314

Appendix B / Flag Operations

Zero Flag. Certain instructions set the zero flag to one. This indicates that the last
operation to affect ZF resulted in all zeros in the destination (register or memory). If
that result was other than zero, then ZF is reset to 0. A result that has a carry and a
zero result sets both flags, as shown below:

10100111
+01011001

00000000 Carry Flag =1
ZeroFlag=1
meaning yes, zero

Parity Flag. Parity is determined by counting the number of one bits set in the low
order 8 bits of the destination of the last operation to affect PF. Instructions that
affect the parity flag set the flag to one for even parity and reset the flag to zero to
indicate odd parity.

Auxiliary Carry Flag. The auxiliary carry flag indicates a carry out of bit 3 of the
accumulator. You cannot test this flag directly in your program; it is present to
enable the Decimal Adjust instructions to perform their function.

The auxiliary carry flag is affected by all add, subtract, increment, decrement, com-
pare, and all logical AND, OR, and XOR instructions.

All mnemonics copyright Intel Corporation 1983

315

Appendix C / Instructions Hexadecimal Order

00 00000000
01 00000001
02 00000010
03 00000011
04 00000100
05 00000101
06 00000110
07 00000111
08 00001000
09 00001001
0A 00001010
0B 00001011
0C 60001100
0D 00001101
OE 00001110
OF 00001111
10 00010000
11 00010001
12 00010010
13 00010011
14 00010100
15 00010101
16 00010110
17 00010111
18 00011000
19 06011001
1A 00011010
1B 00011011
1C 00011100
1D 00011101
1E 00011110
1F 00011111
20 00100000
21 00100001
22 00100010
23 00100011
24 00100100
25 00100101
26 00100110
27 00100111
28 00101000
29 00101001
2A 00101010
2B 00101011
2C 00101100
2D 00101101
2E 00101110
2F 00101111
30 00110000
31 00110001
32 00110010
33 00110011
34 00110100
35 00110101
36 00110110
37 00110111
38 00111000
39 00111001
3A 00111010
3B 00111011
3C 00111100
3D 00111101
3E 00111110
3F 00111111
40 01000000
41 01000001

MOD
MOD
MOD
MOD

MOD
MCD
MOD
MOD

MOD
MOD
MOD
MOD

MOD
MOD
MOD
MOD

MOD
MOD
MOD
MOD

MOD
MOD
MOD
MOD

MOD
MOD
MOD
MOD

MOD
MOD
MOD
MOD

REG
REG
REG
REG

REG
REG
REG
REG

REG
REG
REG
REG

REG
REG
REG
REG

REG
REG
REG
REG

REG
REG
REG
REG

REG
REG
REG
REG

REG
REG
REG
REG

R/M
RIM
RIM
RIM

RIM
R/M
RIM
RIM

R/M
RIM
RIM
RIM

RIM
RIM
RIM
RIM

RIM
R/M
RIM
RiIM

RIM
R/IM
R/IM
RIM

RIM
RIM
RIM
RIM

R/M
RIM
RIM
RIM

ADD EA.REG

ADD EA REG
ADD REG,EA
ADD REG,EA
ADD AL,DATAS

ADD AX.DATA16
PUSH ES

POP ES

OR EA REG
OR EA.REG
OR REG.EA
OR REG,EA
OR AL.DATAS
OR AX,DATA16
PUSH Ccs

(not used)

ADC EA,REG
ADC EA.REG

ADC REA.EA
ADC REG.EA
ADC AL,DATAS
ADC AX.DATA16
PUSH sS

POP SS

SBB EA,REG
sBs EA,REG
SBB REG,EA
SBB REG,EA
SBB AL,DATAS8
SBB AX.DATA16
PUSH DS

POP DS

AND EA REG
AND EA,REG
AND REG,EA

AND REG,EA
AND AL,DATAS8
AND AX,DATA16
ES:

DAA

Sus EA.REG

sus EA.REG
suB REG.EA
suB REG.EA

suB AL.DATAB
sus AX.DATA16
Cs:

DAS

XOR EA.REG
XOR EA.REG
XOR REG,.EA
XOR REG,EA
XOR AL,DATA8
XOR AX,DATA16
SS:

AAA

CMP EA REG
CMP EA.REG

CMP REG.EA
CMmP REG.EA
CMP AL.DATAB
CMP AX.DATA16
DS:

AAS

INC AX

INC CX

BYTE ADD (REG) TO EA
WORD ADD (REG) TO EA
BYTE ADD (EA) TO REG
WORD ADD (EA) TO REG
BYTE ADD DATA TO REG AL
WORD ADD DATA TO REG AX
PUSH (ES) ON STACK

POP STACK TO REG ES
BYTE OR(REG)TOEA
WORD OR (REG) TO EA
BYTE OR (EA) TO REG
WORD OR (EA) TO REG
BYTE ORDATA TO REG AL
WORD OR DATA TO REG AX
PUSH (CS) ON STACK

BYTE ADD (REG) W/ CARRY TO EA

WORD ADD (REG) W/ CARRY TO EA

BYTE ADD (EA) W/ CARRY TO REG

WORD ADD (EA) W/ CARRY TO REG

BYTE ADD DATA W/CARRY TO REG AL
WORD ADD DATA W/ CARRY TO REG AX
PUSH (S8) ON STACK

POP STACK TO REG SS

BYTE SUB (REG) W/ BORROW FROM EA
WORD SUB (REG) W/ BORROW FROM EA
BYTE SUB (EA) W/ BORROW FROM REG
WORD SUB (EA) W/ BORROW FROM REG
BYTE SUB DATA W/ BORROW FROM REG AL
WORD SUB DATA W/ BORROW FROM REG AX
PUSH (DS) ON STACK

POP STACK TO REG DS

BYTE AND (REG) TOEA

WORD AND (REG) TO EA

BYTE AND(EA) TO REG

WORD AND (EA) TO REG

BYTE AND DATA TO REG AL

WORD AND DATA TO REG AX

SEGMENT OVERIDE W/ SEGMENT REG ES
DECIMAL ADJUST FOR ADD

BYTE SUBTRACT (REG) FROM EA

WORD SUBTRACT (REG) FROM EA

BYTE SUBTRACT (EA) FROM REG

WORD SUBTRACT (EA) FROM REG

BYTE SUBTRACT DATA FROM REG AL
WORD SUBTRACT DATA FROM REG AX
SEGMENT OVERIDE W/ SEGMENT REG CS
DECIMAL ADJUST FOR SUBTRACT

BYTE XOR (REG) TO EA

WORD XOR (REG) TO EA

BYTE XOR (EA) TO REG

WORD XOR (EA) TO REG

BYTE XORDATATO REG AL

WORD XOR DATA TO REG AX

SEGMENT OVERIDE W/ SEGMENT REG S8
ASCII ADJUST FOR ADD

BYTE COMPARE (EA) WITH (REG)

WORD COMPARE (EA) WITH (REG)

BYTE COMPARE (REG) WITH (EA)

WORD COMPARE (REG) WITH (EA)

BYTE COMPARE DATA WITH (AL)

WORD COMPARE DATA WITH (AX)
SEGMENT OVERIDE W/ SEGMENT REG DS
ASCII ADJUST FOR SUBTRACT
INCREMENT (AX

INCREMENT (CX)

All mnemonics copyright Intel Corporation 1983

31-

Appendix C / Instructions Hexadecimal Order

01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111

01100011
01100100
01100101
01100110
01100111

01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011
01111100
01111101
01111110
01111111
10600000 MOD 000
10600000 MOD 001
10000000 MOD 010
10000000 MOD 011
10000000 MOD 100
10000000 MOD 101
10000000 MOD 110
10000000 MOD 111
10000001 MOD 000
10000001 MOD 001
10000001 MOD 010

INC
INC
INC
INC
INC
INC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
POP
POP
POP
POP
POP
POP
POP
POP

(not used)
(not used)
(not used)
(not used)
(not used)

Jo
JNO
JC/JBJINAE
JNC/INB/JAE
JENZ
JNE/INZ
JBE/INA
JNBE/JA
Js
JNS
JP/JPE
JNP/JPO
JL/INGE
JNL/JGE
JLEJING
JNLENG
R/M ADD
R/M OR
R/M ADC
R/M SBB
R/M AND
R/M SUB
R/M XOR
R/M CMP
R/M ADD
R/M OR
R/M ADC

DISP8
DISP8
DISP8
DISP8
DISP8
DISP8
DISP8
DISP8
DISP8
DISP8
DISP8
DISP8
DISP8
DISP8
DISP8
DiSP8
EA,DATAB
EA,DATAB
EA,DATAB
EA,DATA8
EA,DATA8
EA,DATA8
EA,DATAB
EA,DATA8
EA,DATA16
EA,DATA16
EA,DATA16

INCREMENT (DX)
INCREMENT (BX)
INCREMENT (SP}
INCREMENT (BP)
INCREMENT (Sl)
INCREMENT (DI)
DECREMENT (AX)
DECREMENT (CX)
DECREMENT (DX)
DECREMENT (BX)
DECREMENT (SP)
DECREMENT (BP)
DECREMENT (Sl
DECREMENT (DI)

PUSH (AX) ON STACK
PUSH (CX) ON STACK
PUSH (DX) ON STACK
PUSH (BX) ON STACK
PUSH (SP) ON STACK
PUSH (BP) ON STACK
PUSH (SI) ON STACK
PUSH (DI) ON STACK
POP STACK TO REG AX
POP STACK TO REG CX
POP STACK TO REG DX
POP STACK TO REG BX
POP STACK TO REG SP
POP STACK TO REG BP
POP STACK TO REG Sl
POP STACK TO REG DI

JUMP ON OVERFLOW

JUMP ON NOT OVERFLOW

JUMP ON BELOW/NOT ABOVE OR EQUAL
JUMP ON NOT BELOW/ABOVE OR EQUAL
JUMP ON EQUAL/ZERO

JUMP ON NOT EQUAL/NOT ZERO

JUMP ON BELOW OR EQUAL/NOT ABOVE
JUMP ON NOT BELOW OR EQUAL/ABOVE
JUMP ON SIGN

JUMP ON NOT SIGN

JUMP ON PARITY/PARITY EVEN

JUMP ON NOT PARITY/PARITY ODD
JUMP ON LESS/NOT GREATER OR EQUAL
JUMP ON NOT LESS/GREATER OR EQUAL
JUMP ON LESS OR EQUAL/NOT GREATER
JUMP ON NOT LESS OR EQUAL/GREATER
BYTE ADD DATA TO EA

BYTE OR DATA TO EA

BYTE ADD DATA W/CARRY TO EA
BYTE SUB DATA W/BORROW FROM EA
BYTE AND DATA TO EA

BYTE SUBTRACT DATA FROM EA
BYTE XOR DATA TO EA

BYTE COMPARE DATA WITH (EA)
WORD ADD DATA TO EA

WORD OR DATA TO EA

WORD ADD DATA W/CARRY TO EA

All mnemonics copyright Intel Corporation 1983

318

Appendix C / Instructions Hexadecimal Order

81 10000001
81 10000001
81 10000001
81 10000001
81 10000001
82 10000010
82 10000010
82 10000010
82 10000010
82 10000010
82 10000010
82 10000010
82 10000010
83 10000011
83 10000011
83 10000011
83 10000011
83 10000011
83 10000011
83 10000011
83 10000011
84 10000100
85 10000101
86 10000110
87 10000111
88 10001000
89 10001001
8A 10001010
8B 10001011
8C 10001100
8C 10001100
8D 10001101
8E 10001110
8E 10001110
8F 10001111
8F 10001111
8F 10001111
8F 10001111
8F 10001111
8F 10001111
8F 10001111
8F 10001111
90 100100600
91 10010001
92 10010010
93 10010011
94 10010100
95 10010101
96 10010110
97 10010111
98 10011000
99 10011001
9A 10011010
98 10011011
8C 10011100
8D 10011101
SE 10011110
SF 10011111
A0 10100000
A1 10100001
A2 10100010
A3 10100011
A4 10100100
A5 10100101
A6 10100110
A7 10100111
A8 10101000
A9 10101001
AA10101010
AB10101011
AC10101100
AD10101101
AE10101110

MOD o1
MOD 100
MOD 101
MOD 110
MOD 111
MOD 000
MOD 001
MOD 010
MOD 011
MOD 100
MOD 101
MOD 110
MOD 111
MOD 000
MOD 001
MOD 010
MOD 011
MOD 100
MOD 101
MOD 110
MOD 111
MQOD REG
MOD REG
MOD REG
MOD REG
MOD REG
MOD REG
MOD REG
MOD REG
MOD 0SR
MOD 1--~
MOD REG
MOD OSR
MOD --
MOD 000
MOD 001
MOD 010
MOD 01
MOD 100
MOD 101
MOD 110
MOD 111

RIM
RIM
RIM
RIM
RIM
RIM
RIM
R/M
RiM
R/M
RiIM
RIM
RiIM
R/M
RIM
R/M
R/M
R/IM
R/IM
RiM
RIM
RIM
R/M
R/M
R/M
R/IM
R/M
RIM
RIM
RIM
RIM
R/M
RIM
R/IM
R/M
RIM
RIM
R/IM
RI/IM
R/M
R/M
R/M

SBB

AND
suB
XOR
CMP

ADD

{not used)
ADC

SBB
(notused)
suB

(not used)
CMP
ADD

(not used)
ADC

SBB

(not used)
SuB

(not used)
CMP
TEST
TEST
XCHG
XCHG
MOV
MOV

MoV

MoV
MOV

(not used)
LEA
MOV

(not used)
POP

(not used)
(not used)
{notused)
(not used)
(not used)
(not used)
(not used)
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
CBwW
CWD
CALL
WAIT
PUSHF
POPF
SAHF
LAHF
MOV
MOV

MOV

MOV
MOVS
MOVS
CMPS
CMPS
TEST
TEST
STOS
STOS
LODS
LODS
SCAS

EA,DATA16
EA DATA16
EA.DATA16
EA,.DATA16
EA,DATA16
EA,DATAS

EA,DATAS
EA,DATAS8

EA DATAS8

EA,DATA8
EA,DATAS

EA,DATA8
EA,DATAS

EA.DATAS

EA.DATAS
EA.REG
EA,REG
REG.EA
REG.EA
EA,REG
EA.REG
REG.EA
REG,EA
EA.SR

REG,EA
SR.EA

EA

AX . AX
AX.CX
AX,DX
AX,BX
AX,SP
AX,BP
AX,SI
AX,DI

DISP16,SEG16

AL.,ADDR16
AX,ADDR16
ADDR16,AL
ADDR16,AX
DST8,SRC8
DST16,SRC16
SIPTR,DIPTR
SIPTR,DIPTR
AL.DATAS8
AX.DATA16
DST8

DST16

SRC8

SRC16
DIPTR8

WORD SUB DATA W/ BORROW FROM EA
WORD AND DATA TO EA

WORD SUBTRACT DATA FROM EA
WORD XORDATATO EA

WORD COMPARE DATA WITH (EA)

BYTE ADD DATATO EA

BYTE ADD DATAW/ CARRY TO EA
BYTE SUB DATA W/ BORROW FROM EA

BYTE SUBTRACT DATA FROM EA

BYTE COMPARE DATAWITH (EA)
WORD ADD DATATO EA

WORD ADD DATA W/ CARRY TO EA
WORD SUB DATA W/ BORROW FROM EA

WORD SUBTRACT DATA FROM EA

WORD COMPARE DATA WITH (EA)

BYTE TEST (EA) WITH (REG)

WORD TEST (EA) WITH (REG)

BYTE EXCHANGE (REG) WITH (EA)
WORD EXCHANGE (REG) WITH (EA)
BYTE MOVE (REG) TO EA

WORD MOVE (REG) TO EA

BYTE MOVE (EA) TO REG

WORD MOVE (EA) TO REG

WORD MOVE (SEGMENT REG SR) TO EA

LOAD EFFECTIVE ADDRESS OF EA TO REG
WORD MOVE (EA) TO SEGMENT REG SR

POPSTACK TOEA

EXCHANGE (AX) WITH (AX), (NOP)
EXCHANGE (AX) WITH (CX)
EXCHANGE (AX) WITH (DX)
EXCHANGE (AX) WITH (BX)
EXCHANGE (AX) WITH (SP)
EXCHANGE (AX) WITH (BP)
EXCHANGE (AX) WITH (S1)
EXCHANGE (AX) WITH (D)

BYTE CONVERT (AL) TO WORD (AX)
WORD CONVERT (AX) TO DOUBLE WORD
DIRECT INTER SEGMENT CALL
WAIT FOR TEST SIGNAL

PUSH FLAGS ON STACK

POP STACK TO FLAGS

STORE (AH) INTO FLAGS

LOAD REG AH WITH FLAGS
BYTE MOVE (ADDR) TO REG AL
WORD MOVE (ADDR) TO REG AX
BYTE MOVE (AL) TO ADDR
WORD MOVE (AX) TO ADDR
BYTE MOVE, STRING OP

WORD MOVE, STRING OP
COMPARE BYTE, STRING OP
COMPARE WORD, STRING OP
BYTE TEST (AL) WITH DATA
WORD TEST (AX) WITH DATA
BYTE STORE, STRING OP
WORD STORE, STRING OP

BYTE LOAD, STRING OP

WORD LOAD, STRING OP

BYTE SCAN, STRING OP

All mnemonics copyright Intel Corporation 1983

319

Appendix C / Instructions Hexadecimal Order

AF 10101111
B0 10110000
B1 10110001
B2 10110010
B3 1011001
B4 10110100
B85 10110101
B6 10110110
B7 10110111
B8 10111000
B9 10111001
BA10111010
8B10111011
BC10111100
BD10111101
BE 10111110
BF 10111111

C2 11000010
C3 11000011
C4 11000100
C5 11000101
C6 11000110
C6 11000110
C6 11000110
C6 11000110
C6 11000110
C6 11000110
C6 11000110
C6 11000110
C7 11000111
C7 11000111
C711000111
C7 11000111
C711000111
C7 11000111
C7 11000111
C7 11000111

CA11001010
CB11001011
CC11001100
CD11001101
CE 11001110
CF 11001111
D0 11010000
D0 11010000
D0 11010000
D0 11010000
DO 11010000
D0 11010000
DO 11010000
DO 11010000
D1 11010001

MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MQD
MOD
MOD
MOD

MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD

REG R/M
REG R/M

000
001
010
on
100
101
110
i
000
001
010
(1R
100
101
110
11

000
001
010
01
100
101
110
111
000

R/IM
RIM
RIM
RIM
R/M
RIM
RIM
RIM
R/M
R/IM
R/M
R/M
R/M
RIM
R/IM
R/IM

R/M
R/M
R/M
RiM
RiM
RIM
R/M
RIM
R/IM

SCAS
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

RET

RET

LES

LDS

MOV

(not used)
{not used)
(not used)
{(not used)
{nolused)
(nolused)
{nol used)
MOV

{not used)
(not used)
(not used)
(notused)
(not used)
{notused)
(not used)

RET
RET
INT
INT
INTO
IRET
ROL
ROR
RCL
RCR
SHL
SHR
(nol used)
SAR
ROL

DIPTR16
AL.DATASB
CL.DATAS
DL.DATAB
BL.DATA8
AH.DATAB8
CH.DATAB
DH.DATAS
BH.DATAS
AX.DATA16
CX.DATA16
DX.DATA16
BX.DATA16
SP.DATA16
BP.DATA16
SI.DATA16
DI.DATA16

DATA16

REG.EA
REG.EA
EA.DATA8

EA.DATA16

DATA16

3
TYPE

EAA
EAQ
EA
EA
EAN
EA

EA1
EA

WORD SCAN. STRING OP
BYTE MOVE DATATO REG AL
BYTE MOVE DATATOREG CL
BYTE MOVE DATA TO REG DL
BYTE MOVE DATA TO REG BL
BYTE MOVE DATA TO REG AH
BYTE MOVE DATA TO REG CH
BYTE MOVE DATA TO REG DH
BYTE MOVE DATA TO REG BH
WORD MOVE DATA TO REG AX
WORD MOVE DATATO REG CX
WORD MOVE DATA TO REG DX
WORD MOVE DATA TO REG BX
WORD MOVE DATA TO REG SP
WORD MOVE DATA TO REG BP
WORD MOVE DATATO REG SI
WORD MOVE DATATO REG D!

INTRA SEGMENT RETURN. ADD DATA TOREG &
INTRA SEGMENT RETURN y
WORD LOAD REG AND SEGMENT REG ES '

WORD LOAD REG AND SEGMENT REG DS
BYTE MOVE DATATO EA

WORD MOVE DATATO EA

INTER SEGMENT RETURN. ADD DATA TO REG SP
INTER SEGMENT RETURN

TYPE 3INTERRUPT

TYPED INTERRUPT

INTERRUPT ON OVERFLOW

RETURN FROM INTERRUPT

BYTE ROTATE EA LEFT1BIT / b
BYTE ROTATE EA RIGHT 1 BIT

BYTE ROTATE EA LEFT THRU CARRY 1 BIT &
BYTE ROTATE EA RIGHT THRU CARRY 1 BIT

BYTE SHIFT EALEFT 1 BIT

BYTE SHIFT EARIGHT 1 BIT

BYTE SHIFT SIGNED EA RIGHT 1 8IT
WORD ROTATE EA | EFT 1 BIT

All mnemonics copyright Intel Corporation 1983

320

Appendix C / Instructions Hexadecimal Order

D1 11010001 MOD 001 R/M ROR EAN WORD ROTATE EA RIGHT 1 BIT
- D111010001 MOD 010 R/M RCL EAN WORD ROTATE EALEFT THRU CARRY 1 BIT

D111010001 MOD 011 R/M RCR EAN WORD ROTATE EA RIGHT THRU CARRY 1 BIT
D1 11010001 MOD 100 R/M SHL EAN WORD SHIFT EA LEFT 1 8BIT
D1 11010001 MOD 101 R/M SHR EAN WORD SHIFT EARIGHT 1BIT
D111010001 MOD 110 R/M (notused)
0111010001 MOD 111 R/M SAR EAQ WORD SHIFT SIGNED EA RIGHT 1 BIT
D2 11010010 MOD 000 R/M ROL EA.CL BYTE ROTATE EA LEFT(CL)BITS

/ D2 11010010 MOD 001 RIM ROR EA.CL BYTE ROTATE EA RIGHT (CL) BITS

Vi D2 11010010 MOD 010 R/M RCL EA.CL BYTE ROTATE EA LEFT THRU CARRY (CL1 BITS
D2 11010010 MOD 011 R/M RCR EA.CL BYTE ROTATE EA RIGHT THRU CARRY (CL1 BITS
D2 11010010 MOD 100 R!M SHL EA.CL BYTE SHIFT EALEFT(CL)BITS
D2 11010010 MOD 101 R/M SHR EA.CL BYTE SHIFT EARIGHT (CL) BITS
0211010010 MOD 110 R/M (not used)
D211010010 MOD 111 RiM SAR EA.CL BYTE SHIFT SIGNED EA RIGHT (CL) BITS
0311010011 MOD 000 RiM ROL EA.CL WORD ROTATE EA LEFT (CL) BITS
D3 11010011 MOD 001 R/M ROR EA.CL WORD ROTATE EARIGHT (CL) BITS
0311010011 MOD 010 R/M RCL EA.CL WORD ROTATE EA LEFT THRU CARRY {(CL) BITS
D3 11010011 MOD 011 R/M RCR EA.CL WORD ROTATE EA RIGHT THRU CARRY (CL) BITS
D3 11010011 MOD 100 R/M SHL EA.CL WORD SHIFT EA LEFT (CLYBITS
0311010011 MOD 101 R/M SHR EACL WORD SHIFT EA RIGHT (CL) BITS
0311010011 MOD 110 R/M (not used)
D3 11010011 MOD 111 R/M SAR EA.CL WORD SHIFT SIGNED EA RIGHT (CL) BITS
D4 11010100 00001010 AAM ASCI ADJUST FOR MULTIPLY
D5 11010101 00001010 AAD ASCIt ADJUST FOR DIVIDE
D6 11010110 tnot used)
D7 11010111 XLAT TABLE TRANSLATE USING (BX}
08 11011--- MOD --- R/M €SC EA ESCAPE TO EXTERNAL DEVICE
08 11011000 MOD 000 R/M FADD Short-real ADD4-BYTEEATOST
D8 11011000 MOD 001 R/M FMUL Short-real MULTIPLY ST BY 4-BYTE EA
D8 11011000 MOD 010 R/M FCOM Short-real COMPARE 4-BYTE EAWITH ST
D8 11011000 MOD 011 R/M FCOMP Short-real COMPARE 4-BYTE EA WITH ST AND POP
D8 11011000 MOD 100 R/M FSuB Short-real SUBTRACT 4-BYTE EA FROM ST
0811011000 MOD 101 R/M FSUBR Short-real SUBTRACT ST FROM 4-BYTE EA
0811011000 MOD 110 R/M FDIV Short-real DIVIDE ST BY 4-BYTE EA
D8 11011000 MOD 111 R/M FDIVR Short-real DIVIDE 4-BYTE EA BY ST
D8 11011000 1 1 000 (i) FADD ST. STy ADD ELEMENT TO ST
D8 11011000 1 1 001 (i) FMUL ST. ST MULTIPLY ST BY ELEMENT
D8 11011000 1 1 010 (i) FCOM STy COMPARE ST(i) WITH ST
D8 11011000 1 1 011 (i) FCOMP ST COMPARE ST(1) WITH ST AND POP
D8 11011000 1 1 100 n) FSUB ST. ST SUBTRACT ELEMENT FROM ST
D8 11011000 1 1 101 (1 FSUBR ST.ST(i) SUBTRACT ST FROM STACK ELEMENT
D8 11011000 1 1 110 (1) FDIV ST.ST{i} DIVIDE ST BY ELEMENT
D8 11011000 1 1 111 (i) FDIVR ST.ST(i DIVIDE STy BY ST
D9 11011001 MOD 000 R/M FLD Short-real PUSHJ4-BYTEEATO ST
D9 11011001 MOD 001 R/M inot used)
D9 11011001 MOD 010 R/M FST Short-real STORE 4-BYTE REAL TOEA
D9 11011001 MOD 011 R!M FSTP Short-real STORE 4-BYTE REAL TO EA AND POP
D9 11011001 MOD 100 R/M FLDENV 14 BYTES LOAD 8087 ENVIRONMENT FROM EA
D9 11011001 MOD 101 R/M FLDCW 2-BYTES LOAD CONTROL WORD FROM EA
D9 11011001 MOD 110 R/M FSTENV 14-BYTES STORE 8087 ENVIRONMENT INTO EA
D9 11011001 MOD 111 R/M FSTCW 2-BYTES STORE CONTROL WORD INTO EA
D911011001 1 1 000 () FLD STHi) PUSH ST(iyONTO ST
D9 11011001 1 1 001 (i) FXCH ST EXCHANGE ST AND ST¢i)
D9 11011001 1 1 010 000 FNOP STORE STIN ST
Dg 11011001 1 1 010 001 (not used)
D9 11011001 1 1 010 01- {not used)
D9 11011001 1 1 010 1-- (not used)
0911011001 1 1 011 i) (N
09 11011001 1 1 100 000 FCHS CHANGE SIGN OF ST
0911011001 1 1 100 001 FABS TAKE ABSOLUTE VALUE OF ST
D9 11011001 1 1 100 O01- {notused)
D9 11011001 1 1 100 100 FTST TEST ST AGAINST 0.0
D9 11011001 1 1 100 101 FXAM EXAMINE ST AND REPORT CONDITION CODE
D9 11011001 1 1 100 11- (not used)
D9 11011001 1 1 101 000 FLD1 PUSH +1.0TO ST
D9 11011001 1 1 101 001 FLDL2T PUSH 10g210 TO ST
D911011001 1 1 101 010 FLDL2E PUSH logpe TO ST
0911011001 1 1 101 011 FLDPI PUSHPiTO ST
D9 11011001 1 1 101 100 FLDLG?2 PUSH log1p2 TO ST
D9 11011001 1 1 10V 101 FLDLN2 PUSH logg2 TO ST
D9 11011001 1 1 101 110 FLDZ PUSH ZERO TO ST

All mnemonics copyright Intel Corporation 1983

321

Appendix C / Instructions Hexadecimal Order

D9 11011001
D9 11011001
D9 11011001
D9 11011001
D9 11011001
D9 11011001
D9 11011001
D9 11011001
D9 11011001
D9 11011001
DS 11011001
D9 11011001
D9 11011001
D9 11011001
D3 11011001
D9 11011001

DA11011010
DA11011010
DA11011010
DA11011010
DA11011010
DA11011010
DA11011010
DA11011010
DA11011010
DB11011011
DB11011011
DB11011011
DB11011011
DB11011011
DB11011011
0811011011
DB11011011
0811011011
DB11011011
DB11011011
DB11011011
DB11011011
DB11011011
DB11011011
DB11011011
DC11011100
DC11011100
DC11011100
DC11011100
DC11011100
DC11011100
DC11011100
DC11011100
DC11011100
DC11011100
DC11011100
DC11011100
DC11011100
DC11011100
DC11011100
DC11011100
DD11011101
DD11011101
DD11011101
DD11011101
DD11011101
DD11011101
DD11011101
DD11011101
DD11011101
DD11011101
DD11011101
DD11011101
DD11011101
DE 11011110
DE 11011110

e b b a b ok ok d o a
b h b b h b b b b b o

MOD
MOD
MOD
MOD
MOD
MOD
MOD

MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD

—- = s
- =

MOD
MOD
MQD
MOD
MOD
MOD
MOD
MOD

s s
s s s

MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD

11

11
1
MOD
MOD

101
110
110
110
110
110
110
110
10
111
110
1m
111
m
1m
m

000
001
010
011
100
101
110
m
000
001
010
on
100
101
110
m
0--

100
100
100
100
100
101
1-
000
001
010
011
100
101
110
m
000
001
010
o
100
101
110
m
000
001
010
o1
100
101
110
m
000
001
010
011
1.-

000
001

m
000
001
010
on
100
101
110
im
000
001
010
011
100
101
11-
RIM
RIM
RIM
RIM
RIM
RIM
RIM
R/M
R/M
RIM
R/M
R/M
R/M
R/M
R/M
R/M
000
001
010
on
1--
RIM
R/IM
R/M
RiM
R/M
R/M
R/M
R/IM
(i)

(i
(i}

O]

(i)

{}]
(i)
{i)
R/M
R/M
R/M
R/M
R/M
R/M
RIM
R/M
(i)
(i)
(i
(i
RIM
R/M

(not used)
F2XM1
FyL2x
FPTAN
FPATAN
FXTRACT
(not used)
FDECSTP
FINCSTP
FPREM
FYL2XP1
FSQRT
(not used)
FRNDINT
FSCALE
(notused)

FIADD
FIMUL
FICOM
FICOMP
FISUB
FISUBR
FiDwv
FIDIVR
(not used)
FILD
{not used)
FIST
FISTP
(not used)
FLD
Reserved
FSTP
Reserved
FEN
FDISI
FCLEX
FINIT
Reserved
Reserved
Reserved
FADD
FMUL
FCOM
FCOMP
FSUB
FSUBR
FDIV
FDIVR
FADD
FMUL
“(2)

“(3)
FSUBR
FSUB
FDIVR
FOIvV
FLD
Reserved
FST
FSTP
FRSTOR
Reserved
FSAVE
FSTSW
FFREE
*(4)

FST
FSTP
Reserved
FIADD
FIMUL

Shorl-integer
Short-integer
Shorl-integer
Short-integer
Short-integer
Short-integer
Short-integer
Short-integer

Short-integer

Shortinteger
Short-integer

Temp-real

Temp-real

Long-real
Long-real
Long-real
Long-real
Long-real
Long-real
Long-real
Long-real
ST(). ST

ST(i). ST

ST(i). ST
ST(i). ST
ST(i). ST
ST(i). ST
Long-real

Long-real
Long-real
94-BYTES

94-BYES
2-BYTES
ST{i)

STi)
ST{i)

Word-integer
Word-integer

CALCULATE 2X -1

CALCULATE FUNCTION Y*logs X

CALCULATE TAN OF © AS A RATIO

CALCULATE ARCTAN OF ©

EXTRACT EXPONENT AND SIGNIFICAND FROM ST VALUE

DECREMENT STACK POINTER IN STATUS WORD”
INCREMENT STACK POINTER IN STATUS WORL,
MODULO DIVISION OF ST BY ST(1)
CALCULATE VALUE OF Y*log (X+1)
CALCULATE SQUARE ROOT OF ST

ROUND ST TO INTEGER
ADD ST(1) TO EXPONENT OF ST

ADD4-BYTE INTEGEREA TO ST

MULTIPLY ST BY 4-BYTE INTEGER EA

CONVERT 4-BYTE INTEGER EA, AND COMPARE WITH ST
CONVERT 4-BYTE INTEGER EA, COMPARE WITH ST, POP
SUBTRACT 4-BYTE INTEGER EA FROM ST

SUBTRACT ST FROM 4-BYTE INTEGER EA

DIVIDE ST BY 4-BYTE INTEGER EA

DIVIDE 4-BYTE INTEGER EA BY ST

PUSH 4-BYTE INTEGER EA ONTO ST

STORE ROUNDED STIN 4-BYTE INTEGEREA
STORE ROUNDED ST IN 4-BYTE INTEGER EA. POP

PUSH 10-BYTE EAONTO ST
STORE STINTO 10-BYTE EA. POP
ENABLE INTERRUPT

DISABLE INTERRUPTS

CLEAR EXCEPTIONS
INITIALIZE PROCESSOR

ADD8-BYTEEATO ST

MULTIPLY STBY 8-BYTE EA

COMPARE ST WITH 8-BYTE EA

COMPARE ST WITH 8-BYTE EA, POP STACK
SUBTRACT 8-BYTE EA FROM ST
SUBTRACT ST FROM 8-BYTE EA

DIVIDE ST BY 8-BYTE EA

DIVIDE 8-BYTE EABY ST

ADD ST TO ELEMENT

MULTIPLY ELEMENT BY ST

SUBTRACT ST FROM ELEMENT
SUBTRACT ELEMENT FROM ST
DIVIDE S§T(i) BY ST

DIVIDE ST BY ST(i)
PUSH8-BYTE EAONTO ST

STORE STINTO 8-BYTE EA
STORE STINTO8-BYTE EA. POP
RESTORE 8087 STATE FROM EA

SAVE 8087 STATE TO EA
STORE 8087 STATUS WORD TO 2-BYTE EA
SETSTACK TAG TO "EMPTY"'

STORE ST INTO ST(i)
STORE ST INTO ST(i). POP

ADD 2-BYTE INTEGER €A TO ST
MULTIPLY ST BY 2-BYTE INTEGER EA

All mnemonics copyright Intel Corporation 1983

322

Appendix C / Instructions Hexadecimal Order

DE11011110 MOD 010 R/M FICOM Word-integer COMPARE 2-BYTE EA INTEGER WITH ST
DE11011110 MOD 011 R/M FICOMP Word-integer COMPARE 2-BYTE INTEGER EA WITH ST. POP
DE11011110 MOD 100 R/M FISUB Word-integer SUBTRACT 2-BYTE INTEGER EA FROM ST

DE 11011110 MOD 11 R/M FISUBR Word-integer SUBTRACT STFROM 2-BYTE INTEGER EA
DE11011110 MOD 110 R/M FIDIV Word-integer DIVIDE ST BY 2-BYTE INTEGER EA
DE11011110 MOD 111 RiM FIDIVR Word-integer DIVIDE 2-BYTE INTEGEREA BY ST

DE11011110 1 1 000 «(n FADDP ST(. ST ADD ST TOELEMENT. POP
. DE1011110 1 1 001 () FMULP ST(. ST MULTIPLY ST BY ELEMENT. POP
“DE1M011110 1 1 010 - “(5)
DE11011110 1 1 011 000 Reserved
DE11011110 1 1 [N o0 FCOMPP COMPARE ST WITH ST(1), POP TWICE
DE11011110 1 1 011 01- Reserved
DE11011110 1 1 011 1-- Reserved
DE11011110 1 1 100 (i} FSUBRP ST(i). ST SUBTRACT ST FROM ELEMENT. POP
DE11011110 1 1 101 (i) FSUBP ST{(i). ST SUBTRACT ST(i} FROM ST, POP
DE1011110 1 1 10 (i) FOIVRP ST{(i). ST DIVIDE STACK ELEMENT BY ST. POP
DE11011110 1 1 111 (i) FOIVP ST(). ST DIVIDE ST BY STACK ELEMENT., POP
DF 11011111 MOD 000 R/M FILD Word-integer CONVERT 2-BYTE EA AND PUSH ONTO STACK
DF 11011111 MOD 001 R/M Reserved
DF 11011111 MOD 010 R/M FIST Word-integer ROUND ST AND STORE IN 2-BYTE INTEGER EA

DF 11011111 MOD 011 R/M FISTP Word-integer ROUND ST.STOREIN 2-BYTE INTEGER EA. POP

DF 11011111 MOD 100 R/M FBLD Packed decimal LOAD BCD TO ST

DF 11011111 MOD 101 R!M FILD Long-integer CONVERT8-BYTE INTEGER EA AND PUSHONTO STACK
DF 11011111 MOD 110 R/M FBSTP Packed decimal CONVERT ST.STORE IN 10-BYTE BCD EA. POP

OF 11011111 MOD 111 RiM FISTP Long-integer ROUND ST.STORE IN 8-BYTE INTEGEREA. POP

DF 11011111 1 1 000 (i) “(6)
DF 11011111 1 1 001 (1 “n
DF 11011111 1 1 010 (i) ‘(8
DF11011111 1 1 011 (1) “(9)
DF 11011111 1 1 - Reserved
EO0 11100000 LOOPNZ/LOOPNE DISP8 LOOP(CX) TIMES WHILE NOT ZERO/NOT EQUAL
E1 11100001 LOOPZ/LOOPE DISP8 LOOP({CX)TIMES WHILE ZERO/EQUAL
E2 11100010 LOOP DISP8 LOOP (CX) TIMES
E3 11100011 JCXZ DISP8 JUMP ON (CX)-0
E4 11100100 IN AL.PORT BYTE INPUT FROM PORT TO REG AL
. E511100101 IN AX.PORT WORD INPUT FROM PORT TO REG AX
jE6 11100110 ouT PORT. AL BYTE OUTPUT (AL) TO PORT
E7 11100111 ouT PORT.AX WORD QUTPUT (AX) TO PORT
E8 11101000 CALL DISP16 DIRECT INTRA SEGMENT CALL
E9 11101001 JMP DISP16 DIRECT INTRA SEGMENT JUMP
EA11101010 JMP DISP16.SEG16 DIRECT INTER SEGMENT JUMP
EB11101010 JMP DISP8 DIRECT INTRA SEGMENT JUMP
EC11101010 IN AL.DX BYTE INPUT FROM PORT (DX) TO REG AL
ED11101010 IN AX.DX WORD INPUT FROM PORT (DX) TO REG AX
EE 11101010 ouT DX.AL BYTE OUTPUT (AL) TO PORT (DX)
EF 11101010 out DX.AX WORD QUTPUT (AX) TO PORT (DX}
FO 11110000 LOCK BUS LOCK PREFIX
F1 11110001 (notused)
F2 11110010 REPNZ/REPNE REPEAT WHILE (CX)#0 AND (ZF)=0
F3 11110011 REPZ/REPE/REP REPEAT WHILE (CX)#0 AND (ZF)=1
F4 11110100 HLT HALT
F5 11110101 CMC COMPLEMENT CARRY FLAG
F6 11110110 MOD 000 R/M TEST EA.DATA8 BYTE TEST (EA) WITH DATA
F6 11110110 MOD 001 R/M (not used)
F6 11110110 MOD 010 R/M NOT EA BYTE INVERT EA
F6 11110110 MOD 011 R/M NEG EA BYTE NEGATEEA
F6 11110110 MOD 100 R/M MUL EA BYTE MULTIPLY BY (EA}. UNSIGNED
F6 11110110 MOD 101 R/M IMUL EA BYTE MULTIPLY BY (EA). SIGNED
F6 11110110 MOD 110 R/M DIV EA BYTE DIVIDE BY (EA). UNSIGNED
F6 11110110 MOD 111 R/M [[s]\ EA BYTE DIVIDE BY (EA). SIGNED

F7 11110111 MOD 000 R/M TEST EA.DATA16 WORD TEST (EA) WITH DATA
£7 11110111 MOD 001 R/M (not used)

F7 11110111 MOD 010 R/M NOT EA WORD INVERT EA

F7 11110111 MOD 011 R/M NEG EA WORD NEGATE EA

JF7 11110111 MOD 100 R/M MUL EA WORD MULTIPLY BY (EA). UNSIGNED
/ F7 11110111 MOD 101 R/M IMUL EA WORD MULTIPLY BY (EA). SIGNED

F7 11110111 MOD 110 R/M Div EA WORD DIVIDE BY (EA), UNSIGNED

F7 11110111 MOD 111 R/M DIV EA WORD DIVIDE BY (EA), SIGNED

F8 11111000 CLC CLEAR CARRY FLAG

F9 11111001 STC SET CARRY FLAG

FA 11111010 cul CLEARINTERRUPT FLAG

FB11111011 STI SETINTERRUPT FLAG

All mnemonics copyright Intel Corporation 19€3

323

Appendix C / Instructions Hexadecimal Order

FC 11111100 CLD CLEAR DIRECTION FLAG
FD11111101 STD SET DIRECTION FLAG
FE11111110 MOD 000 R/M INC EA BYTE INCREMENT EA
FE11111110 MOD 001 R/M DEC EA BYTE DECREMENT EA

FE11111110 MOD 010 R/M {not used)
FE11111110 MOD 011 R/M {not used)
FE11111110 MOD 100 R/M {not used)
FE11111110 MOD 101 R/M {not used)
FE11111110 MOD 110 R/M {not used}
FE11111110 MOD 111 R/M {not used)

FF 11111111 MOD 000 R/M INC EA WORD INCREMENT EA

FF 11111111 MOD 001 R/M DEC EA WORD DECREMENT EA

FF 11111111 MOD 010 R/M CALL EA INDIRECT INTRA SEGMENT CALL
FF 11111111 MOD 011 R/M CALL EA INDIRECT INTER SEGMENT CALL
FF 11111111 MOD 100 R/M JMP EA INDIRECT INTRA SEGMENT JUMP
FF 11111111 MOD 101 R/M JMP EA INDIRECT INTER SEGMENT JUMP
FF 11111111 MOD 110 R/M PUSH EA PUSH (EA) ON STACK

FF 11111111 MOD 111 R/M (not used)

REG IS ASSIGNED ACCORDING TO THE FOLLOWING TABLE:
16-BIT (W=1) 8-BITW=0) SEGMENT REG

000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 DX 010 DL 10 SS
011 BX 011 BL n DS
100 SP 100 AH
101 BP 101 CH
110 S 110 DH
111 Dl 111 BH

EA IS COMPUTED AS FOLLOWS: (DISPB SIGN EXTENDED TO 16 BITS)

00 000 (BX)+(Sh DS
00 001 (BX)+({(D)) DS
00 010 (BP)+(SI SS
00 011 ({BP)+(Dl) SS
00 100 ({Sh DS
00 101 (D)) DS
00 110 DISP16(DIRECT ADDRESS) DS
00 111 (BX) DS
01 000 (BX)+(Sh+DISP8 DS
01 001 (BX)+(Dl)+DISP8 DS
01 010 (BP)+(Sh+DISP8 SS
01 011 (BP)+(D))+DISP8 SS
01 100 (Sh+DISP8 DS
01 101 (Dl)+DISP8 DS
01 110 (BP)+DISPB SS
01 111 (BX)+DISP8 DS
10 000 (BX)+(Sh+DISP16 DS
10 001 (BX)+{(Dl)+DiSP16 DS
10 010 (BP)+(SI)+DISP16 SS
10 011 (BP)+ (D)) + DISP16 SS
10 100 (Si)+ DISP16 DS
10 101 (D) + DISP16 DS
10 110 (BP)+DISP16 SS
10 111 (BX)+DISP16 DS

11 000 REG AX /AL
11 001 REGCX/CL
11 010 REGDX /DL
11 011 REGBX/BL g

11 100 REGSP/AH)
11 101 REGBP/CH i
11 110 REGSI/DH

11 11 REGDI/BH

FLAGS REGISTER CONTAINS:
X:X:X:X:(OF):(DF):(IF):(TF):(SF):ZF):X:(AF):X:(PF):X:(CF)
All mnemonics copyright Intel Corporation 1983

324

Appendix C / Instructions Hexadecimal Order

*The marked encodings are NOT generated by the language translators. If however,
the 8087 encounters one of these encodings in the instruction stream, it will execute
itas follows:

(1) FSTPSTa)
(2) FCOMST()
(3) FCOMP ST(i)
(4) FXCH ST®)
(5) FCOMP STi)
(6) I'FREE ST() and pop stack
(7) FXCH ST()
(8) FSTPST()
(9) FSTP ST
86/88/ INSTRUCTION SET MATRIX
Hi| Lo Hi; Lo
[} 1 2 3 4 s 6 7 8 9 A] [4 0 _E F
? ADD ADD | ADD | ADD DD ADD | PUSH | POP 0 OR o] OR oR OR OR PUSH
_otem | wheim | brem [wirim D1a wia €S ES ofrim|whrim!l viem| wirim K] W cs
11 ADC ADC aDC | ADC aDC | ADC | PusH | PoOP 1| ses SB8 s88 SBB SBB | SBB | PUSH POP
Htrim whrim { btem fwtrim ' W sS sS bitrm i atem| btom| wirim D wa DS 0s
e - Ny il
2 AND AND anp | anp AND AND | SEG DAA 2 | sus SuB sus SUB suB suB SEG 0AS
otrm w trim btem tatem LN | oW ES pirm bwftem! nrom | wtom o W Ccs
3 xOR XOR | XOR | XOR , XOR | XOR | SEG | 3l cme Tcwp | cwp | cme | cme | cwe | se
A AAA i AAS
pte/m wieim ' pioim [witom b w1 SS iptem lwteim | btom |l wtom [N} Wt DS
INC INC | INC INC f INC | INC INC 4 ' DEC DEC DEC DEC DEC DEC DEC DEC
cx Ox | BX P BP st ol A [0x BX SP BP sl DI
S SR |]
PUSH | PUSH | PUSH | PUSH PUSH | PUSH " pusH 5 | POP POP POP POP POP POP POP POP
Iex obx Bx spP BP St ol Ax cx 3 BX sP 8P St DI
. ! . .
‘ ‘ \ |
! : o
14 J8! UNBi | JE! | UNE: | JBE: | JNBE! 7 . R INP: L INL JLE INLE!
0 MNO | gnae uae b ouz 1wz | aNa i ua NS gee | upo | ounGE | JGE | une 3G
8 immed Immed | Immed Immed I TEST | TEST | XCHG ;| XCMG 8 | Mov MoV MoV MOV MOV LEa | MoV POP
brim wrim pem o sem | brmo | wem [tem wrlm plem tateim ptrm [wtrm setom jsrtrim rm
2 . | S ot , -
9 XCHG . XCHG XCHG ' XCHG | XCHG | XCHG | XCHG] . o CALL . i | '
NOP " ox . Bx | i < o caw | CWD i WAIT | PUSHF | POPF | SAHF | LAHF
- e — -
A MOV MOV MoV | MOV | MOVS ' MOVS | CMPS | CMPS A | TEST | TesT | sToS 0S ' LODS | LODS | SCAS | SCAS
mAL mocAX [AL-m [AXem | T 3 “) “ b w | D w o v w
8 MOV MoV MOV MOV ' MOV MOV | MOV | MOV 8 | Mov | MOV MoV MOV MOV MoV MOV MOV
1AL 1=CL ! 1sDL . +~BL ;1 ~AH " 1=CH | =DH |1 +BH VrAX s CX |- DX .-ex{r-sp 1 28P | 18I RN
¢ ! RET e s Twmov | wov | c| RET | RET | T | Nt o
w.sp; RET O LES WS L rm Wi : 141-5P) | L Typed | ianye | 'NTO IRET
0 Sh Shity Shift Shit AEM AAD XLAT o ESC ESC ESC ESC [ESC ESC ESC ’ ESC
b w bv W) 1 2 3 | 4 5 6 7
£ T0OPNZ LOOPZ! LOO; Tchxz TN N OuT ouT E T CALL | MP P JMP N N out ouTt ’
LOOPNE LOOPE ' [o o w od < ' d std o vh VoW v W
Pl VT are TTRERP - TGt | o F o) G2z | Gw?
! . 3 - . s G
LOCK REP Lz HLT 1 eMe | M“ﬂ cLe STC cu STl] cLD S1D orim s |
ahere . _
moe rm | 000 | 00t | o0 | o w o nom ;’ ;’IV,I:C‘:U')”""’"
immed | ADD | OR | apc ! sBB AND SUB | XOR CMP ¢ trom CPU reg
ROR | RCL | RCR | SHLISAL | SHR SAR t - immediate
+ - —- . "> wamed e accum
— | NOT | NEG MUL . MUL DIV DIV b - mmediate byte
DEC ' CALL | CALL JMP JMP PUSH — d - indirect
| he I la 1S - immed byte sign ext
- "W immediale word
| long i¢ intersegment
m = memofty
r egister
¢im - EA1ssecond byle
H shortintrasegment
st = segmentregister
t - toCPUreg
v vanable
w ward operation
z = lero

Appendix D / Instructions in Alphabetical
Order

MS-Assembler supports both the 8086 and 8087 mnemonics. The mnemonics are
listed alphabetically with their full names. The 8086 instructions are also listed in
groups based on the type of arguments the instruction takes.

D.1 8086 Instruction Mnemonics,
Alphabetical

Mnemonic Full Name

AAA ASCII adjust for addition
AAD ASCII adjust for division
AAM ASCII adjust for multiplication
AAS ASCII adjust for subtraction
ADC Add with carry
ADD Add
AND AND
CALL CALL
cBwW Convert byte to word
CLC Clear carry flag
CLD Clear direction flag

: CLl Clear interrupt flag

¢ CMC Complement carry flag
N CMP Compare

CMPS Compare byte or word (of string)
CMPSB Compare byte string
CMPSW Compare word string
CWD Convert word to double word
DAA Decimal adjust for addition
DAS Decimal adjust for subtraction
DEC Decrement
DIv Divide
ESC Escape
HLT Halt
IDIV Integer divide
IMUL Integer multiply
IN Input byte or word
INC Increment
INT Interrupt
INTO Interrupt on overflow
IRET Interrupt return
JA Jump on above
JAE Jump on above or equal
JB Jump on below

327

Appendix D / Instruction in Alphabetical Order (Mnemonics)

Mnemonic Full Name
JBE Jump on below or equal
JC Jump on carry
JCXZ Jump on CX zero
JE Jump on equal
JG Jump on greater
JGE Jump on greater or equal
JL Jump on less than
JLE Jump on less than or equal
JMP Jump
JNA Jump on not above
JNAE Jump on not above or equal
JNB Jump on not below
JNBE Jump on not below or equal
JNC Jump on no carry
JNE Jump on not equal
JNG Jump on not greater
JNGE Jump on not greater or equal
JNL Jump on not less than
JNLE Jump on not less than or equal
JNO Jump on not overflow
JNP Jump on not parity
JNS Jump on not sign
JNZ Jump on not zero
JO Jump on overflow
JP Jump on parity
JPE Jump on parity even
JPO Jump on parity odd
JS Jump on sign
JZ Jump on zero
LAHF Load AH with flags
LDS Load pointer into DS
LEA Load effective address
LES Load pointer into ES
LOCK LOCK bus
LODS Load byte or word (of string)
LODSB Load byte (string)
LODSW Load word (string)
LOOP LOOP
LOOPE LOOP while equal

LOOPNE LOOP while not equal
LOOPNZ LOOP while not zero

328

Appendix D / Instruction in Alphabetical Order (Mnemonics)

Mnemonic Full Name
LOOPZ LOOP while zero
MOV Move
MOVS Move byte or word (of string)
MOVBS Move byte (string)
MOVSW Move word (string)
MUL Multiply
NEG Negate
NOP No operation
NOT NOT
OR OR
ouT Output byte or word
POP POP
POPF POP flags
PUSH PUSH
PUSHF PUSH flags
RCL Rotate through carry left
RCR Rotate through carry right
REP Repeat
RET Return
ROL Rotate left
ROR Rotate right
SAHF Store AH into flags
SAL Shift arithmetic left
SAR Shift arithmetic right
SBB Subtract with borrow
SCAS Scan byte or word (of string)
SCASB Scan byte (string)
SCASW Scan word (string)
SHL Shift left
SHR Shift right
STC Set carry flag
STD Set direction flag
STI Set interrupt flag
STOS Store byte or word (of string)
STOSB Store byte (string)
STOSW Store word (string)
suB Subtract
TEST TEST
WAIT WAIT
XCHG Exchange
XLAT Translate

XOR Exclusive OR

329

Appendix D / Instruction in Alphabetical Order (Mnemonics)

D.2 8087 Instruction Mnemonics,

Alphabetical
Mnemonic Full Name
F2XM1 Calculate 2X-1
FABS Take absolute value of top of stack
FADD Add real
FADDP Add real and pop stack
FBLD Load packed decimal onto top of stack
FBSTP Store packed decimal and pop stack
FCHS Change sign on the top stack element
FCLEX Clear exceptions after WAIT
FCOM Compare real
FCOMP Compare real and pop stack

FCOMPP Compare real and pop stack twice
FDECSTP Decrement stack pointer

FDISI Disable interrupts after WAIT
FDIV Divide real

FDIVP Divide real and Pop stack
FDIVR Reversed real divide

FDIVRP Reversed real divide and pop stack twice
FENI Enable interrupts after WAIT
FFREE Free stack element

FIADD Add integer

FICOM Integer compare

FICOMP Integer compare and pop stack
FIDIV Integer divide

FIDIVR Reversed integer divide

FILD Load integer onto top of stack
FIMUL Integer multiply

FINCSTP Increment stack pointer

FINIT Initialize processor after WAIT
FIST Store integer

FISTP Store integer and pop stack
FISuB Integer subtract

FISUBR Reversed integer subtract

330

Appendix D / Instruction in Alphabetical Order (Mnemonics)

Mnemonic

FLD
FLD1
FLDCW
FLDENV
FLDL2E
FLDL2T
FLDLG2
FLDLN2
FLDPi
FLDZ

FMUL
FMULP

FNCLEX
FNDISI
FNENI
FNINIT
FNOP
FNSAVE
FNSTCW
FNSTENV
FNSTSW

FPATAN
FPREM
FPTAN

FRNDINT
FRSTOR

FSAVE
FSCALE
FSQRT
FST
FSTCW
FSTENV
FSTP
FSTSW
FsSuB
FSUBP
FSUBR
FSUBRP

Full Name

Load real onto top of stack
Load + 1.0 onto top of stack
Load control word

Load 8087 environment

Load log 2 e onto top of stack
Load log 2 10 onto top of stack
Load log 10 2 onto top of stack
Load log e 2 onto top of stack
Load pi onto top of stack

Load + 0.0 onto top of stack

Multiply real
Multiply real and pop stack

Clear exceptions with no WAIT
Disable interrupts with no WAIT
Enable interrupts with no WAIT
Initialize processor, with no WAIT

No operation

Save 8087 state with no WAIT

Store control word without WAIT
Store 8087 environment with no WAIT
Store 8087 status word with on WAIT

Partial arctangent function
Partial remainder
Partial tangent function

Round to integer
Restore state

Save 8087 state after WAIT

Scale

Square root

Store real

Store control word with WAIT

Store 8087 environment after WAIT
Store real and pop stack

Store 8087 status word after WAIT
Subtract real

Subtract real and pop stack
Reversed real subtract

Reversed real subtract and pop stack

331

Appendix D / Instruction in Alphabetical Order (Mnemonics)

FTST Test top of stack

FWAIT Wait for last 8087 operation to complete

FXAM Examine top of stack element

FXCH Exchange contents of stack element and stack top
FXTRACT Extract exponent and significand fromnumberintopof stack
FYL2X Calculate Y:log 2 X

FYL2PI Calculate Y:log 2 (x+ 1)

332

Appendix E / Instructions by Argument
Type

E.1 8086 Instruction Mnemonics by
Argument Type

In this section, the instructions are grouped according to the type of argument(s) they
take. In cach group the instructions are listed alphabetically in the first column. The
formats of the instructions with the valid argument types are shown in the second
column. If a format shows OP, that format is legal for all the instructions shown in that
group. If a format is specific to one mnemonic, the mnemonic is shown in the format
instead of OP.

The following abbreviations arc used in these lists:
OP = opcode: instruction mnemonic

reg = byte register (ALAILBLBU.CLCILDL.DIT)
or word register (AX.BX.CX.DXSL.DLBPSP)

r'm = register or memory address or indexed and/or based
accum = AX or AL register

immed = immediate

mem = memory operand

segreg = segment register (CS.DSSSES)

General 2 operand instructions

Mnemonics Argument Types
ADC OP reg,r'm

ADD OP r/m,reg

AND OP accum,immed
CMP OP r/m,immed
OR

SBB

suB

TEST

XOR

In addition, add to the arguments a sign extent for word immediate.

CALL and JUMP type instructions

Mnemonics Argument Types
CALL OP mem {NEAR}HFAR} direction
JMP OP r/m (indirect data —

DWORD, WORD)

W
W
W

Appendix E / Instruction by Argument Type

Floating point load/store memory

*. Mnemonics Argument Types
FLD mem 4,8, or 10 bytes
FSTP
Integer load/store memory
Mnemonics Argument Types
FILD mem 2,4, or 8 bytes
FISTP
Load/store control or status
Mnemonics Argument Types
FLDCW mem 2 bytes
FNSTCW
FNSTSW
FSTCW
FSTSW
Save/Restore 8087 environment
Mnemonics Argument Types
FLDENV mem 14 bytes
FNSTENV
FSTENV
94-byte memory (8087 Save/Restore entire state)
Mnemonics Argument Types
FNSAVE mem 94 bytes
FRSTOR
FSAVE
BCD load/store
Mnemonics Argument Types
FBLD mem 1@ bytes

. FBSTP

339

Appendix F / Directives (Pseudo-Ops) by

Type

F.1

<name>
<hame>
<hame>
<name>
<hame>

<name>
<name>

<name>
<name>
<name>
<proc-name>

<name>

<name>
<name>

<seg-name>

<name>

<struc-name>

Memory Directives

ASSUME <seg-reg>:<seg-name>
[,<seg-reg>:<seg-name>...]

ASSUME NOTHING

COMMENT <delim> <text><delim>

DB <exp>
DD <exp>
DQ <exp>
DT <exp>
DW <exp>

END [<exp>]

EQU <exp>

= <exp>

EXTRN <name>:<type>[,<name>:
<type>...]

PUBLIC <name>[,<name>...]

LABEL <type>

NAME <module-name>

PROC [NEAR]

PROC [FAR]
|

ENDP

.RADIX <exp>
RECORD <field>:<width>[= <exp>]
[y..-1]

GROUP <segment-name=>[,...]
SEGMENT [<align>][<combine>]
[<class>]
|
ENDS
EVEN
ORG <exp>

STRUC
|
ENDS

Appendix F / Directive (Pseudo-Ops) by Type

F.2 Macro Directives

<name>

ENDM

EXITM

IRP <dummy>,<parameters in angle brackets>
IRPC <dummy>,string

LOCAL <parameter>[,<parameter>...]
MACRO <parameter>[,<parameter>. ..]
PURGE <macro-name>[, ...}

REPT <exp>

Special Macro Operators

& (ampersand) - concatenation

<text> (angle brackets - single literal)

;; (double semicolons) - suppress comment

! (exclamation point) - next character literal

% (percent sign) - convert expression to number

F.3 Conditional Directives

ELSE

IF <exp>

IFB <arg>

IFDEF <symbol>
IFDIF <arg1>,<arg2>
IFE <exp>

IFIDN <arg1>,<arg2>
IFNB <arg>

IFNDEF <symbol>
IF1

IF2

342

Appendix F / Directive (Pseudo-Ops) by Type

F.4 Listing Directives

.CREF

JLALL
.LFCOND
.LIST

%OUT <text>
PAGE <exp>
.SALL
.SFCOND
SUBTTL <text>
.TFCOND
TITLE <text>
XALL
XCREF
XLIST

F.5 Atiribute Operators

Override operators

Pointer (PTR)
<attribute> PTR <expression>
Segment Override (:) (colon)
< segment-register>:<address-expression>
<segment-name>:<address-expression>
<group-name>:<address-expression>
SHORT
SHORT <label>
THIS
THIS <distance>
THIS <type>

343

Appendix F / Directive (Pseudo-Ops) by Type

Value Returning Operators

SEG

SEG <label>

SEG <variable>
OFFSET

OFFSET <label>

OFFSET <variable>
TYPE

TYPE <label>

TYPE <variable>
.TYPE

.TYPE <variable>
LENGTH

LENGTH <variable>
SIZE

SIZE <variable>

Record Specific operators

Shift-count - (Record fieldname)
<record-fieldname>
MASK
MASK <record-fieldname>
WIDTH
WIDTH <record-fieldname>
WIDTH <record>

F.6 Precedence Of Operators

All operators in a single item have the same precedence, regardless of the order listed
within the item. Spacing and line breaks arc used for visual clarity, not to indicate
functional relations.

1. LENGTH, SIZE, WIDTH, MASK
Entries inside: parentheses ()
angle brackets < >
square brackets []
structure variable operand: <variable>.<field>

segment override operator: colon (:)
PTR, OFFSET, SEG, TYPE, THIS
HIGH, LOW

*, /, MOD, SHL, SHR

o > LD

344

Appendix F / Directive (Pseudo-Ops) by Type

6. +, — (both unary and binary)
7. EQ, NE, LT, LE, GT, GE
8
9

Logical NOT
Logical AND
10. Logical OR, XOR
11. SHORT, .TYPE

Appendix G / ASCII Character Codes

Dec Hex CHR Dec Hex CHR
000 @0H NUL 233 21H |
001 o1H SOH 034 22H “
002 02H STX 235 23H #
003 O3H ETX 036 24H 3
004 04H EOT 037 25H %
0905 o5H ENQ 038 26H &
006 06H ACK 039 27H .
007 o7H BEL 040 28H (
008 08H BS 041 29H)
009 09H HT 042 2AH *
010 0AH LF 043 2BH +
11 oBH vT 044 2CH ,
012 oCH FF 045 2DH -
013 eDH CR 046 2EH .
014 GEH SO 047 2FH /
015 OFH Sl 048 30H 0
216 10H DLE 049 31H 1
017 11H DC1 050 32H 2
018 12H DC2 051 33H 3
019 13H DC3 052 34H 4
020 14H DC4 053 35H 5
021 15H NAK 054 36H 6
022 16H SYN 055 37H 7
023 17H ETB 056 38H 8
024 18H CAN 057 39H 9
025 19H EM 058 3AH :
026 1AH suB 059 38H :
027 18H ESCAPE 060 3CH <
028 1CH FS 061 3DH =
029 1DH GS 062 3EH >
030 1EH RS 063 3FH ?
031 1FH us 064 40H @
032 20H SPACE

Dec =decimal, Hex = hexadecimal (H), CHR = character, LF =Line Feed,
FF=Form Feed, CR =Carriage Retum, DEL = Rubout

347

Appendix G / ASCII Character Codes

Dec Hex CHR Dec Hex CHR
065 41H A 097 61H a
066 42H B 098 62H b
067 43H C 099 63H c
068 44H D 100 64H d
069 45H E 101 65H e
070 46H F 102 66H f
071 47H G 103 67H g
072 48H H 104 68H h
073 49H [105 69H i
074 4AH J 106 6AH j
075 4BH K 107 6BH k
076 4CH L 108 6CH I
077 4DH M 109 6DH m
078 4EH N 110 6EH n
079 4FH o} 111 6FH 0
080 50H P 112 70H p
081 51H Q 113 71H q
082 52H R 114 72H r
083 53H S 115 73H s
084 54H T 116 74H 1
085 55H u 117 75H u
086 56H Y 118 76H v
087 57H w 119 77H W
088 58H X 120 78H X
089 59H Y 121 79H y
090 5AH z 122 7AH z
091 5BH [123 7BH {
092 5CH \ 124 7CH |
093 5DH 1 125 7DH }
094 5EH) 126 7EH .
095 5FH - 128 7FH DEL
096 60H ‘

Dec =decimal, Hex = hexadecimal (H), CHR = character, LF =Line Feed,
FF=Form Feed, CR=Carriage Return, DEL = Rubout

348

Glossary

Allocation — the assigning of a resource (memory space, etc) for the performance of
an operation.

Argument — a reference factor used to locate an item in a table. A variable whose
value will determine the value of the specified function. In a statement line, the
arguments of a function are listed in parentheses after the function name.

ASCII — the American Standard Code for Information Interchange. This group of
standard 8-bit codes is used by most computers, data terminals, and other computer
devices. The eighth bit is usually not used or is only used for parity coding. With the
remaining 7 bits there are 128 possible characters (four groups of 32 each).

One group of 32 is reserved for upper-case letters and common punctuation marks. A
second group is used for numbers, spacing, and other punctuation. A third group is
assigned to lower-case letters and rare punctuation marks. The remaining group is
used for machine and control command codes.

Attributes — a subdivision of an entity. For example, in 2 data base the entity might be
a person’s name. The attributes could be the person’s address, phone number, or job
description. For MS-Assembler the entity might be a label or variable and the attri-
butes would be items such as segment, offset, and type.

Binary — the base 2 numbering system used by computers at the machine language
level. In the binary system all data is represented by combinations of two digits (0 or

).
Bit — a binary digit (0 or 1).

Byte — a term that describes a group of binary digits (bits) that are acted on as a
group. Most often, bytes consist of 8 or 16 binary digits.

Call — temporarily diverting control of the computer from the main routine or
program to a designated (or “called”) subroutine.

Code — the rules governing the manner in which data or instructions must be
represented for a given computer.

Comment — a part of a program line that describes the effect or function of the line.
The comment portion of a line has no effect on the operation of the computer.
Comments are usually preceded by a character, such as an apostrophe, that tells the
computer to ignore the characters that follow. Or comments may be restricted to a
particular section of the display. MS-Assembler uses the fourth column for comments.

Concatenate — To link or unite together in a series.
Constant — data that has a fixed value.

Conditional — an instruction in a program that uses the values of designated
variables in determining the next instruction to be executed.

363

Cursor — a video display character that indicates the position at which data may be
entered or corrected. The character is most often an underline or flashing block on
the screen.

Data — a constant or variable value.
Debug — to locate and correct errors in a program.

Default — a value automatically inserted by the computer when none is specified by
the user.

Delimiter -— any character that limits or ends a string of characters or a statement.
Commas, plus signs, and square brackets are some of the delimiters used by MS-
Assembler.

Directive — an instruction that controls the translation process (from assembler
language to machine language for MS-Assembler).

Diskette Drives (A:,B:) — identifies the drives. These are used in front of a filename
in a command statement.

Edit — change the contents of source code using commands such as insert, delete,
change, copy, etc.

Expression — a group of characters or mnemonics that follow a required syntax and
cause a desired computation to take place.

Fleld — a group of characters that are treated as a unit.

Fieldname —a name assigned to a group of characters (afield) during programming.
When assembled, the field will be assigned an absolute address.

File —a collection of related records that are treated as a unit. A file may contain data,
programs, or both.

Filename — a character or group of characters used to identify a collection of related
records (a file).

Filespec — the identification of a file containing a disk drive ID (optional), filename,
and filename extension (optional).

Forward Reference — a reference to a variable in a program before the variable has
been introduced.

Hexadecimal — a base 16 numbering system used in computers at the assembly
language level. In addition to the normal decimal digits (O - 9), the hexadecimal
system uses A - F. This provides the necessary total of 16 digits.

Inpage — a section of memory storage of less than 256 bytes that is contained in a
single page.

364

Instruction — a step in a program that tells the computer to perform an operation.
I/O — an abbreviation for input/output.

Label — a symbol, word, or abbreviation designated to identify a specific block of
information. The name is usually closely related to the information it identifies. For
example, OBJ for object code.

Linker — a part of the disk operating system (an MS-DOS Utility) that creates a load
module from two or more independently translated object modules.

Loop — a series of instructions that is repeated a fixed number of times or until
certain conditionals are met.

Machine Code — a binary representation of the source code, that is capable of being
read and acted on by the computer.

Memory Address — the exact location in memory where a byte of data may be
found. Also, the memory location where a related group of information begins.
Memory addresses are most often referred to by their hexadecimal number.

Mnemonic — an abbreviation of or acronym for labels, variables, codes, etc., that is
intended to be easy for the programmer to remember. Most often this term refers to
the operation codes and directives.

Object Code — the machine code produced by the assembler that can be acted on by
the computer or which can be processed to produce executable code.

Octal Code —a code with a radix of 8, in which the code is represented by the digits 0
through 7.

Offset — an operator used in indirect addressing. It defines a position in the file, in
reference to another point. The reference point could be a label, a variable, the
beginning or end or a module, etc.

Operand — the part on which an operation is performed (data - possibly the result of
a previous operation). This data could be a variable, a memory location, an argument,
an attribute, etc.

Operator —the part of a statement that says what to do with data in the statement.
For example, move, add, subtract, store, load, etc.

Page — a section of memory storage with a beginning address that is a multiple of 256.
Pop — retrieving information from a stack.
Push — placing information on a stack.

Radix — the base of 2 numbering system. For example, binary numbering has a radix
of 2, octal 8, and hexadecimal 16.

365

Record — a group of consecutive related fields.

Register — a temporary memory storage location used to facilitate arithmetical,
logical, or transfer operation. A register is usually 8 or 16 bits of memory.

Segment — a part of a routine. If a routine is too large to fit in internal memory, it may
be divided into logical subroutines. Each subroutine will reference the address of the
next segment. Some assemblers will automatically divide long routines into segments.

Source Code — the code that is input by the programmer for translation into object
code and/or machine code.

Stack — a portion of memory or a register used to temporarily store data.
Truncation — deletion of the trailing portion of a string of items.
Variable — An item which assumes any of a given set of values.

‘Word —a character or group of characters that occupy one memory storage location.
A word is usually treated as a single unit by the computer.

366

PP 79
D6 e e 79
%OUT 82
& 77
CREF. ... 84
.CRF (default extension).......... 85
JALL oo 84
IFCOND........... 83
LIST.o 83
RADIX.o 58
.REF (default extension).......... 85
SALL. 84
SFCOND.....o, 83
JTFCOND...... ...t 83
TYPE. ..o 32
XALLo 84
XCREF.ttt 84
XLIST. .o 83
/D (assembler switch).. 294, 295, 353
/O (assembler switch)........... 294
/X (assembler switch)........... 294
8087 support 95
: (colon - segment
override operator). 29
; (command character)....... 89, 291
S 79
<record-fieldname
(shiftcount) 35
= (equal sign directive).......... 49
A
Action 5, 41
Arithmetic operators............. 36
Assembler errors 347
C
Calling a Macro 71
Colon (: - segment override
OPErator).covvuenn.. 29
Command Characters 89
PN 89
CONTROLC.................. 89

367

Command Prompts

Cross-reference. 290
Cross-reference [.CRF].......... 87
Listing [crffile. REF]. 88
Object filename 290
Source filename 290
Source listing 290
Summary of.................. 290
COMMENT 44
COMMENtS.veieen e 4
Control symbols. 92,93
CONTROL-C

(command character). ... 89, 291
Creating a cross-reference

file il 87
Cross reference [.CRF]
(command prompt).......... 87
D
Dataitems...................... 39
DB - Define Byte 44, 45, 46
DD - Define Doubleword 47
DD - Define Doubleword 44
Default extensions
CRF 85
REF o i 85
Direct memory operands 24
Directives 41, 42
%OUT 82
CREF.... o, 84
LALL 84
LFCOND...........cooon... 83
LISTt 82
RADIX. ..., 58
SALL. 84
SFCOND........covvviivnnn.. 83
TFCOND..............coonn.. 83
XALLo i 84
XCREF........cocoviiiann .. 84
XLIST. ...t ee e 83
= (equal sign)................ 49
COMMENT 44

Conditional 66
DB - Define Byte 44, 45, 46
DD - Define Doubleword 47
DQ - Define Quadword. 47
DT - Define Tenbytes: 44, 47
DW - Define Word. 46
ELSE..... 69
END............. i, 48
ENDIFcivvveiininnnns. 69
ENDM 72
ENDP........ccvviivieiaeennn 56
1000 S 48
EVENooiiiiiiianinnnn 50
EXITM 72
EXTRN........c.ciiiiiiiennn. 50
GROUP 51
IF o 67
IF1 .. 67
IF2 67
1) P 68
IFDEF. 67
IFDIF i, 68
IFE e 67
IFIDN.......cooiiiiiiinnnn. 68
IFNB. 68
IFNDEF 68
INCLUDE..............covvntn 53
IRP..... 76
IRPC........ .. i, 77
LABEL............. 54
Listing 80
LOCAL....................... 73
MACROccovinnnn 70
Memory...........covvnvvn.n. 43
NAME.............. ... o0 55
PAGE 80
PROC...........cciiivinnnnn 56
PUBLIC 57
PURGE....................... 74
RECORDc.une 59
REPT ..ot 75
SEGMENT 61
STRUCTURE 64

368

SUBTTLcoivviviiiannn. 82
TITLE.ocoviiiinn. 55, 81
Ditectives
DD - Define Doubleword 44
DQ - Define Quadword. 44
DW' - Define Word. 44
DQ - Define Quadword. 47
DQ - Define Quadword. 44
DT - Define Tenbytes 44, 47
DW - Define Word. 46
DW - Define Word. 44, 45
E
EISE...... ... i, 69
END.........o ... 48
ENDIFciiiiiiiinnn.. 69
ENDM it 72
ENDP....., 56
ENDS........ccvviiiiiiinn.. 61
EQU....ooiiiieiia 48
Equal sign directive (=) 49
Error messages
numerical list 356
EVEN 50
EXITM ... 72
Expression evaluation 39
Expressions................... 1, 15
EXTRN.......... ..ot 50
F
Formats
program listing. 296
symboltable................. 301
Format of cross-reference
listings 89
Format of MS-CREF compatible
files........... ..ol 91
Formats of listings and
symbol tables 296
G
General Facts about
Source Files. 1
GROUPcoiiiiiin.. 51

H
HIGH.................... 30
|
IO Handler efrors. 354
67
IF1 o e 67
IF2 . e 67
IFB ... i 68
IFDEF.t 68
IFDIF e 68
IFE ... e 67
IFIDN.t 68
IFNB. ... oo 68
IFNDEFot 68
Immediate operands 21
INCLUDE.coovooiivnn.. 53
Indexed memory operands. 25
Instructions. 41, 42, 95-288

Instructions by argument type. ... 331
Instructions,

alphabetical. 95-288, 325
Instructions, hexadecimal order .. 317
IRP 76
IRPC.........o i, 77

L
LABEL. ot 54
Labels............. 9
Legal characters 1
LENGTH 33
Listing [crffile.REF]

(command prompt).......... 88
LOCAL. 73
Logical operators 38
LOW. .. 30

M
MACRO...........ovt 70
MASKot e 36
Memory directives. 43
Memory operands 24
Memory organization. 15

369

Method 1 (MS-CREF Start)........ 87

Method 2 (MS-CREF Start)........ 88
N
NAME.cooiiiiiiiniinnnn. 55
NAMES .. .otveiieiiereenananes 4,9
Numeric notation. 2,22
o
OFFSETc..ciiiiiiinnnnn. 31
Offset attribute. 10
Operand summary 7
Operands. 21
Operator SUMMArY.c.co... 7
Operatorscoouvvnnn. 27
ORG.......coiiiiiiiiiiiai 55
Override operators 28
Overviews
MS-Assembler operation XI
MS-CREF operation 85
P
PAGE i, 80
Pass 1 listing versus pass 2
listing. 301
Pointer (PTR)................... 28
Precedence of operators.......... 39
PROC.coviiiiiiiiiiaean 56
Program listing format........... 296
PTR .. i as 28
PUBLIC ... 57
PURGE...........ooiiiiiiiinnns 74
R
RECORDcoivnnn. 59
Register operands. 22
Relational operators. 38
REPTcoiiiiiiiieiiaenn 75
Running MS-CREF 86
Runtime €frors. 354
S
SEG. ...ttt 31

SEGMENTc..ovivinnn.. 61
Segment attribute. 10
Segment override operator (:)..... 29
Shiftcount...................... 35
SHORT........ovviiiiiiinn 29
SIZE ... 34
Source file contents. 3
Source file naming................ 1
Special Macro Operators. 77
O 79
D6 e 79
& 77
B e e e 79
Starting
Method 1..................... 87
Method 2..............counn. 88
Starting MS-CREF 87
Statement Format
ACLiOn ...t 5
Comments.ocvvvenuinnns 4
Directives 3
Expressions.................... 6
Instructions. 3
Namescooiiiennionn.. 4
Statement line format 3
STRUCTURE 64
Structure operands. 26
SUBTTLcoiiiiiiin. 82

370

Summary

Operands. 7
Operatorscooenennn
Summary of CREF file record
CONLENTS.ovvivnnnnnn
Summary of listing symbols
Summary of methods to invoke
MACRO............ccvvnn. 289
Summary of methods to start. 87
Switches, MACRO
Summary of.................. 295
D 294, 295, 353
O i 294, 295
X o 294, 295
Switches (MACRO)............. 293
Symbol table format............. 301
Symbols........................ 13

v
Value returning operators......... 31
Variables 11
W
WIDTH ... 35

	MA_Disk
	MA_ReadMe
	MA_1stSection
	MA_2ndTab
	MA_2ndSection
	MA_3rdTab
	MA_3rdSection
	MA_4thTab
	MA_4thSection
	MA_5thTab
	MA_5thSection
	MA_6thTab
	MA_6thSection
	MA_7thTab
	MA_7thSection
	MA_8thTab
	MA_8thSection
	MA_9thTab
	MA_9thSection
	MA_10thTab
	MA_10thSection
	MA_11thTab
	MA_11thSection

