

PURE & SIMPLE

I come to you not as a prophet

HARVARD PENNINGTON....WOULD YOU BE-
LIEVE A SECOND BOOK IN THE OFFING! This one
will be called "Basic Faster and Better" and will have
to be just that to outsell his first book called "TRS-80
Disks and Other Mysteries". Knowing Harvard as I
do...the second will outsell the first....and the third
will outsell the second. I'm going to ask him if I may
borrow his Midas Pen for a month.
Here we go into another spring of shows forthe micro
community. I would like to hear from other past and
present exhibitors regarding your feelings on the
expense, time and manpower involved in these
ventures. How about three major shows annually...
One in California, one in mid America and one in
either Boston or Atlanta...it's food for thought.
I n the aftermath of the World Power incident, I would
like periodically to advise you on some things that
you should check carefully when reading an ad. If
you see any or most of the following in the ad, then
CONSUMER BEWARE!!
(1) An address listing only a PO Box
(2) No telephone number
(3) Requests for front money....No COD shipments
(4) No description of a complete package
(5) Guarantees with no terms listed
Play it safe!
We at SoftSide Publications are looking forward to
the 27th of February when we will be opening our
retail computer store called "Computer Haven".
"Computer Haven" will be the first privately owned
computer store in Southern New Hampshire and will
be a showplace fortheTRS-80* and its peripherals. I
cordially extend an invitation to each and every one
of you. We will begin with a press briefing and a tour
of the total facility at 10 a.m. and then officially open
the store. I imaginethat there will bea bargain ortwo
or mark the occasion. Hope to see you there.

Now that we have two issues distributed, and you are
reading the third, you should see the direction we
plan to take editorially. The last thing I want for The
S-EIGHTY is to have it associated with the "Games"
magazines. Game programs are big sellers, and
most likely will be for some time, but I feel that "The
S-EIGHTY" readers is more interested in programs
that will be of some value to him or her
professionally or useful in some other application.
We are looking for articles on business applications

and utilities. Articles not only keep the readers inter-
ested, but also provide a better market for the adver-
tisers. If we can keep the readers and advertisers
happy, then The S-EIGHTY will be around for many
months to come.
Keep the press releases coming...it's the best
publicityyou can gettointroducea new product, and
you can't argue with the price.
It's interesting to sit back and try to evaluate the
growth and impact of a single industry on us as
consumers. I was sitting here writing a press release
for a newspaper feature and suddenly realized that a
most accurate measurement was the growth of our
own business here in Milford. The S-EIGHTY is an
offspring of SoftSide Publications, which is an
division of Robitaille & Sons Enterprises, Inc. Two
years ago we were two people working from the
basement of a local house, now we are 50 strong,
working from two large buildings, have added two
new business enterprises in HardSide and the
Ramworks to cover hardware and software requests,
and have added two new national publications in
SoftSide - Apple Edition and The S-EIGHTY.
lncredible!....not really, as we've been trying like
crazy to grow gracefully, but the industry has placed
demand on our products to the poi nt where growth is
a daily affair and we temper it as best we can.
Considering the fact that the "Micro" industry is still
in relative infancy...try and imagine what things will
be like two years hence. Any projections?

Creative Computing Editor John Craig has departed
from the New Jersey based publication to take over
as the editor of Intelligent Machines Journal, now
Info World, in California. Computer World Magazine
bought the IMJ, offered Craigthejobandhetookit. A
definite gain for Info World. Best of luck, John, and
keep us posted.

I had dinner recently with Dick Govatski, Advertis-
ing Director with Popular Electronics Magazine,
and he provided me with some most interesting
information that I would like to share with you.

Popular Electronics polled 2,000 of their readers
randomly with reference to microcomputers, and
their response plus a few extra tidbits should
make believers out of everyone. Their prediction
of microcomputers sold during 1979 was 300,000
(which we feel is a little high) for a sales figure of
$350,000,000.00. Half of those polled either owned

or had access to a microcomputer. The people
surveyed had an average investment of $2,600 in
hardware and software. 75% of the microcom-
puter owners reported an average expenditure of
$1,800.00 in the past year. 30% are planning to
buy a micro, and spend $1,300.00 not including
the cost of software and peripherals.

It paints a very bright picture for those of us who
have diversified into all of the elements of the in-
dustry to keep pace with the demand. Someday
this is all going to end . . . but it won't be in our
professional lifetime. I have a 6 year old daughter
who is developing into a computer addict, and I
wouldn't be surprised if when she is ready to pur-
chase a system of her own, the TRS-80 will be sell-
ing for $200.00 and be the size of some of the elec-
tronic games of today.

Advertising is always a subject of interest to a
magazine editor, as without it he doesn't have a
publication!...keep those ads coming folks!!! I was
doing some radio commercials for a new
undertaking here at SOFTSIDEand I was amazed at
how fast the material drew results. Radio ads give a
touch of "Locality" to your product, and really bring
out the interested customer. Try radio in your local
ad campaigns and see how itworksforyou. We're in
the process of preparing a television commercial as
well to see what reaction we get from the three state
region surrounding New Hampshire. Don't be
frightened away by rumors of high prices...l was
pleasantly surprised at the price structure. We won't
have to sell many computers to have the ad pay for
itself. Speaking of ads paying for themselves...a
good formula to use in measuring results is not
necessarily in the number of bingo cards received,
but if your $$$$ sales are 10 times what you spent for
the advertisment, then your campaign was
successful. Our rate structure is so low in The
S-EIGHTY that if you sell one business system,
then your ad has paid for itself 10 times over....and if
an ad in The S-EIGHTY doesn't move more than one
computer, I'll hang up my pen and go back to being
a policeman. You never would have guessed from
the picture!

As you may have noticed, the name of our magazine
has been changed slightly since last we were with
you. We are now known as The S-EIGHTY, but
nothing else will change with the exception of our
name. It's really a treat when you get a call from the
Secretary of State and he says "You can't use that
name anymore!" but being a former bureaucrat,
the matter was quickly resolved. Onward and
upward.

Effective with the April issue, the advertising rates in
The S-EIGHTY will be increased ever so slightly to
keep pace with the rising costs of paper and
printing. Full pages will increase by $50.00, half
pages by $30.00 and quarters by $18.00

The new structure will look like this:

Current term advertisers will not be affected by the
changes. As unpleasant as rate hikes can be, they
are indeed necessary so that we can continue to
bring The S-EIGHTY to you each month...it also
gives us more latitude to bring additional services
and specials your way.

Catalog Rates:
Catalog pages are always of great benefit to the
advertiser, and the rates are always easier on the
cash flow. The S-EIGHTY is featuring a special
catalog rate of the page price for the first page, with
additional pages being reduced by 10%. A
maximum of 8 pages would be comfortable for us.
You could run 8 pages for a total of $2,178.50, and
your catalog entry would be listed on the front of the
issue....that's 8 pages at a rate of $272.30 per page
(with the 15% included). Not bad partner!

ABOUT THE COVER
We thought that you might like this photograph,
which was taken of chess figures from an antique
chess set, using natural light. We will be using many
different styles of photographs on ourcovers...come
computer related, and othersjustpleasingtotheeye.
(Cover photograph taken by Elaine Cheever)

Full
Half
Quarter

1X
$450
$270
$162

3X
$425
$240
$144

6X
$400
$225
$135

12X
$375
$210
$126 READER SERVICE 4

Mapping the TRS-80
into the Big Time
Omikron Modification Review
by John R. Marler

The time for all TRS-80 MODEL 1 owners (who feel re-
jected from Radio Shack's apparent overlooking of our
needs for more disk storage) to be in the big time with
8" drives has finally arrived! OMIKRON Systems of
Berkeley, California has developed a modification
system for the Model I that allows the use of normal
CP/M. Nearly everyone knows about CP/M and that it is
an (almost) universal operating system forZ80 and 8080
microprocessor systems. One of the key features of
CP/M is the fact that it is "debugged" and is operating
in many types and brands of computers throughout the
world and the amount of software written for CP/M
system operation would probably fill many catalogs.
CP/M version 2.0 is fast becoming the most acceptable
operating system for the MODEL II. Two newsletters I
subscribe to that are dedicated to the TRS-80 have
published the "rumor" that Radio Shack will soon an-
nounce CP/M instead of TRSDOS for the MODEL II. The
running of CP/M really protects the investment one can
develop in software due to the upward compatibility of
CP/M to other computers.

A system consists of Mapper I and Mapper II and can
be purchased with/without 8" Shugart disk drives (two
drives will give MODEL I the same storage as the
MODEL II with more than $1,000.00 savings!). The Hard-
ware consists of the electronic boards called MAPPER I
to utilize the Random Access Memory as low memory
and not located above the ROM where any machine ac-
tivity begins under normal TRS-80 operation. This per-
mits the use of "normal" CP/M to be used and makes
the world of "real" CP/M available for us Model I owners
for the first time. Mapper II consists of a board that,
coupled with the disk controller chip, provides true data
separation and eliminates the cause for most disk I/O
errors — that of poorly separated data reading from the
mini disk. Mapper I also provides a way of using the
graphics capability of the TRS-80 and adds cursor con-
trol in a manner similar to the Soroc 120 CRT Terminal
which uses a very simple and easy to understand X, Y
addressing of the cursor.

Installing the system is easy for even a novice. The in-
structions are easy to understand and written in plain
English! First, open the keyboard casing and locate the
Z80 chip. Pull this chip out and MAPPER I's board is in-
serted into the now vacant socket. The Z80 is now in-
serted into a similar socket on MAPPER I. Two
"pincher" connectors then "wire" the board with sur-
prisingly strong connection. No soldering!!! Pull the
connector wire through the opening where the interface
cable is connected, close the keyboard case and MAP-
PER I is ready.

MAPPER II is installed in the expansion interface.
When the expansion interface is opened, locate the
DISK CONTROLLER chip; remove the chip; insert MAP-
PER II; re-insert the disk controller chip on MAPPER II;
two "pinch" connections; pull the end of the connector
through the opening where the interface cable is con-
nected, close the expansion interface, connect the
MAPPER connection wire, connect the interface cable
and you are ready to connect the disk drives.

OMIKRON designates which drives are to be Mini
drives and which drives are to be 8" Drives. Mini drives
are not required for this modification, a system of four
8" drives can be ordered. OMIKRON sells the drives or
will sell the MAPPER boards only. I purchased the MAP-
PER boards and TWO 8" SHUGART drives in a two drive
enclosure. The enclosure allows for the mini drives to
be placed on top of the 8" drives. This system costs
$1795.00, but is worth far more in convenience. Connec-
ting the drives is as simple as making the connections.

Now, the modified MODEL I TRS-80 is ready to run.
On power-up the screen displays:

OMIKRON
C = CP/M
T = TRS80-
Insert the CP/M disk provided by OMIKRON in drive A,

depress the letter C and CP/M boots up with the sign-on:
OMIKRON CP/M VER 1.4
48K MEMORY
A ^
This indicates that a 48K version of CP/M is up and

running and waiting for the next command.

An immediate backup of the CP/M should be made.
OMIKRON provides several utilities that are very

useful and easy to implement at no additional cost.
These are:

1. SETUP.COM This allows for custom selection of
the following options: A). Selects if a deleted character
is to be echoed to the screen. B). Selects automatic line
feeds with carriage returns. C). Provides a lower case
driver for a modification from a reprint of an article in
COMPUTRONICS and 80-US Newsletter (which cost
less than $20.00). D). Implements the graphic characters
of the TRS-80 in the same manner as LEVEL II. E).
Utilizes the form feed character in the same manner as
TRS-80 DISK BASIC allows. This is done by keeping an
internal counter of lines used and sending out lines
feeds to equal the value for the size page being used.

2. SERIAL.COM This program reads the switch set-
ting of the RS232 board and sets all printer output to the
RS232 board for serial printers. Pretty nice feature.

3. MEMTEST This is a most extensive memory test.
The minimum time (unless a defective chip is
discovered) is 15 minutes for each bank of 16K. It tests
the relationship and interaction of the memory chips.

I now have my OMIKRON modified TRS-80 MODEL I
working and working very well. I was told that a system
could take 6 weeks from receipt of order but I got
delivery in three. Installation was easy, and OMIKRON's
utilization of the graphics of the TRS-80 and the ad-
dresable cursor shows that OMIKRON's heart is in the
right place. With the OMIKRON System the MODEL I
owner has the best of BOTH worlds - FULL CP/M
capability AND Graphics. Any system this capable
would normally be very costly, a computer that provides
the use of three different operating systems AND using
BOTH mini and 8 inch drives AT THE SAME TIME!

APPARAT, INC of Colorado, (NEWDOS +) have adver-
tised that they have SUPERDOS to allow TRSDOS com-
patible operation with this disk configuration.

There's the Great news that yes, Radio Shack Mod I
owners, there is a way to get into the Big Time - With
OMIKRON's MAPPER I And MAPPER II.

15

Disk users are aware of a DOS command called
DEVICE. Almost no one understands what DEVICE
means, including Radio Shack, and just about
everybody considers it a meaningless command. Accor-
ding to the latest information I have, Radio Shack has
now dropped DEVICE, LINK, and ROUTE from the
TRSDOS vocabulary, and no longer plans to support
these features. Microsoft, I am told, is rewriting their in-
struction manuals for their FORTRAN package, to
eliminate all reference to DEVICES.

DEVICES are one of the most powerful features in the
Model I operating system. The idea is not new. Anyone
who uses a DEVICE oriented mainframe computer will
tell you how hard it is to program on a system which is
vector driven, such as the Model II TRSDOS.

What's wrong here is this. First, DEVICES were never
implemented in TRSDOS. So, it doesn't work. Second,

many TRS-80 users have never used any other type of
computer system. So, they don't know what they are
missing.

VTOS 3.0, commonly called DOS 3.0, by Randy Cook,
the original author of TRSDOS, is what TRSDOS 2.2
would have been, complete with operating DEVICE com-
mands, had Cook and Radio Shack not parted ways. To
date, it is the only TRSDOS compatible operating
system that supports all of the DEVICE commands.
Now that the DOS software is there to support them, the
DEVICE commands start to make a lot of sense.

What exactly is a DEVICE?
It is something which does one of two things, or both.

First, it will provide, on request, one byte of data. Se-
cond, it can be sent one byte of data. Once sent, the
data is gone and cannot be changed. The physical thing
which is the DEVICE is not known to the operating
system - nor does it care. So, the first thing that we learn
about DEVICES is that one DEVICE is just like another.
The only difference is that some DEVICES are input on-
ly, others output only, and some are input and output.

The fact that all DEVICES appear to be the same is
what makes them so very powerful, as we shall see.

Since computers usually have several DEVICES, we
must distinguish one DEVICE from another. To do this,
we give each DEVICE a name. In our case, a DEVICE
name is made up of three characters. The first character
is ALWAYS an asterisk symbol. The next two characters
are letters. Thus, we have DEVICES whose names are
*KI, *DO, and *PR as standard DEVICES and names,
even in Level II BASIC without a disk.

If we output a byte of data to a DEVICE, how does it
get to the physical thing we want it to?

The secret is in a machine language program which is
called a DRIVER. The DRIVER is the interface between
the operating system, and a physical thing. A physical
thing might be a keyboard, video monitor, printer,
cassette recorder, and so on. These are all physical
things we can look at, touch, hold, etc. Or, to put it
another way, and this is a poor way to define it, a
physical thing is something that can break and will cost
you money to fix.

The DRIVER defines the DEVICE. It knows what the
DEVICE can and cannot do. You cannot output a byte to
a keyboard, or input a byte from the printer.

Another property of the DRIVER is the fact that it may
service more than one physical DEVICE. The same
DRIVER may be used to service either cassette machine
-1 or -2, even though these are two different physical
things.

The third thing common to all DEVICES is that each
one has its own Data Control Block, or DCB. This is
nothing more than several bytes of information that is
used by the DRIVER to do whatever it does. All
DEVICES, have one thing in common. The very first byte
identifies what the DCB is for. Based on that informa-
tion, the rest of the bytes in the DCB are assigned. Ex-
cept for disk files, the second and third positions in the
DCB are the address of the DRIVER which uses the
DCB.

To input or output to a DEVICE is very simple. We
simply load the DE register with the address of the DCB
for that device. If we are going to output to the DEVICE,
we put the byte in register C. Then we call address X'lB'.
If the zero flag is NOT set, then there was an error and
register A contains the error code. To input from a
DEVICE, just load registers DE with the DCB address,
and call address X'13'. If the zero flag is NOT set, there
was an error and register A contains the error code. If
the zero flag was set, then register A contains the byte
which was input.

18

Now that's power. It means that you, as a machine
language programmer, do not have to worry about
DRIVERS, whether you are dealing with a printer or a
file. You treat them all the same way, as DEVICES, and
let the operating system do the work. The DCB and the
DRIVER can be anywhere in memory.

This is the secret to making KVP work. KVP is nothing
more than three DRIVERS - keyboard, video, and printer.
All KVP does is change the address of the drivers in the
*KI, *DO,and*PRDCB's.

Here's something else to think about. In BASIC, did
you ever stop to think that PRINT, LPRINT, and PRINT#
(for file I/O) all have the word PRINT in them? BASIC
handles all of these statements exactly the same way.
The only difference is in which DCB it uses to output the
bytes.

And how about this? Take RSM2D and look at
Microsoft's M80 assembler program. Please notice that
nowhere does it call addresses X'4436', X'4439', and
X'443C. In other words, it appears, at first, that it never
reads or writes to files. BUT IT DOES! You will find calls
to X'1B' and X'13'. That's right. It does not input or out-
put to files. It inputs and outputs to DEVICES. AND A
FILE CAN BE TREATED AS IF IT WERE A DEVICE.
Therefore, input and output can be processed by
anything-ANYTHING!

Now, use RSM2D and follow a CALL 33H. First, it
loads DE with the address of the *DO DCB. Next, it
jumps to address X'1B'. At this location, the DE register
is assumed to have the address of the DCB. It now sets
up the registers to indicate an output function.

We could put the *DO DCB any place in memory, in
which case we bypass the first step by loading DE with
the address of our newly moved *DO DCB. Instead, we
just call X'1B' directly. The only advantage in keeping
the *DO DCB in its present location is it saves the trou-
ble of loading register pair DE with the DCB address.

What does all of this mean to the end user who is run-
ning his payroll? It means that a summary report is sent,
not to the line printer, but to a DEVICE. Thus, the user,
when he runs the program, can decide where he
physically wants the output to go. In a typical situation,
a payroll program makes only one summary report. Sup-
pose, on some special occasion, you need five reports.
Then, from the DEVICE you normally send the output to,
ROUTE the output to a file. After running your payroll
program, RESET the DEVICE to CLOSE the file. Now,
PRINT the file five times.

Here's something else you can do. You can make
your own DEVICES up. A case in point was THE MEAN
CHECKERS MACHINE. The source code file for all of
the machine language subroutines is 32 granules. This
part of the program was written for the M80 Microsoft
Assembler. To get a listing from the assembler, you
would normally specify a /LST file. After assembly, you
would just print the /LST file.

There were two problems with this. First, the /LST file
produced is more than 67 granules. The second problem
is the way the listing appeared on my printer. I kept my
listings bound in report folders. Unfortunately, the bin-
ding blocked the leftmost edge of the paper from view,
so I couldn't always see all of the information on the
page. What I needed was the ability to tab each line 10
spaces before anything was printed on a page.

The solution to the first problem was very simple us-
ing DOS 3.0. Rather than specifying a /LST file, I
specified a DEVICE, which was *PR. That made it possi-
ble to print this rather large listing with no problem at
all.

The solution to the second problem was a little more
work, but was worth the trouble. Because the problem
of the left hand margin comes up so often, I simply
created my own new DEVICE which I called *LM. The
letters are my initials. If your name is George Blank,
then I guess you can change the DEVICE to *GB. Why
not?

The assembly listing at the end of this article shows
you how I wrote the DRIVER program from my new *LM
DEVICE. It was written for the Microsoft M80 assembler,
but I don't think you'll have any trouble modifying it for
EDTASM. If you decide to put this little program
together for yourself, remember one thing. Since this is
a DRIVER, the COMMAND file you create must have the
file extension /DVR and not /CMD. What I did was create
this program under file name of SPACE/CMD and then
renamed the file SPACE/DVR. Don't let the extension
throw you. DRIVERS are nothing more than command
files, they just use a different file extension.

To create the DEVICES *LM, you type the following
line from VTOS 3.0's prompt of "DOS READY":

SET *LM SPACE 10

What happens is the following: First, the SET com-
mand will load the file SPACE/DVR. Then, it will locate a
place in memory where the DCB is to be built. Control
will then be turned over to my DRIVER as follows. HL
will point to the next ASC character on the input line. In
this case, it will be pointing to the " 1 " in "10". DE will
point to the address in memory where I should build the
DCB for my DRIVER. My program looks at the number
10, or whatever number was typed in, which is the
number of spaces to TAB at the beginning of every line.
This number is put into my DRIVER routine. The DRIVER
routine is then loaded into high memory, and HIGH$ is
reset to protect my DRIVER'S memory from use. My pro-
gram also builds the DCB, specifying that this DEVICE
is output only, with the second and third bytes of the
DCB being the address of my DRIVER.

Be sure you're clear on this. The program I made is
NOT the DRIVER. Rather, it is a program which BUILDS
a DRIVER. The name of'the DEVICE is defined by the
command you give DOS 3.0 SET *LM means you want to
name your DEVICE *LM. If you type *GB, then your
DEVICE will be named *GB. So, anybody can use my
routine and call it anything they want.

Once control returns back to DOS 3.0, the DEVICE
command should now show my new *LM DEVICE in the
list.

I'd like to make a subtle, but important point about
my DRIVER. It outputs to the *PR DEVICE. You should
not think of it as outputting to the printer. It might very
well be that the *PR DEVICE is not a printer. So, what
the *LM DEVICE really does is output to the *PR
DEVICE anything it receives. Anytime a RETURN or
FORM FEED character is sent, it will add a specified
number of spaces after those characters.

Now, my problem is solved. I have the M80 Assembler
list to DEVICE *LM, but leave DEVICE *PR tied to my
printer. M80 then lists on my printer, and every line is
moved to the right 10 spaces. When I put the listing in
my report folder, a large left hand margin is under the
binding, and I can read all of the listing.

Here's another interesting idea. How about building a
device which encrypts any data sent to it, and another
device which decrypts. This would give you a system
where you could read and write to a disk file in scrambl-
ed form, yet your BASIC program, communicated
through your DEVICES, always is seeing real informa-
tion (i.e. decrypted).

by Lance Micklus
Which computer language is the best language? The
answer is, "None of them." In any specific situation,
one language may be better than another. The proper
choice can make the difference between a well written
program and a poor one. There are times when even
Level I BASIC is the best language to choose.

One very good reason for selecting BASIC as the
language to write in is because it's the only language
you know. There's nothing wrong with that, but it might
be much better if you had a selection greater than one.

There are several popular languages you can run on the
TRS-80. These are BASIC, PASCAL, FORTRAN, and
machine language. Under TRS-80 CPM, you can also get
COBOL. We will not include COBOL in this discussion,
because so few people have it. And then there is
MMSFORTH, which does not have the wide acceptance
the others have, either. Although that may change, we
will also leave FORTH out of our discussion.

PASCAL appears to be a big up-and-coming language,
but the TRS-80 version, distributed by FMG, is a disap-
pointment. It has single precision math, and is thus wor-
thless for any serious work with numbers. Second,
PASCAL, like other fringe languages, lacks the good I/O
handling that BASIC, FORTRAN, and COBOL have.
What many people are calling PASCAL, is PASCAL plus
the I/O handlers of another language, often FORTRAN.
That gives you a combination of PASCAL with FOR-
TRAN format statements. The third problem with
TRS-80 PASCAL is that it is still under development. It
costs you $150 to buy a prototype. I still haven't gotten
my instruction manual and one of the books I ordered
with my PASCAL package. So, for the time being, we
will have to forget about PASCAL

That narrows the logical choices for the TRS-80 pro-
grammer to BASIC, FORTRAN, and machine language.
These are all good choices. Any can be run on a TRS-80
without special operating systems which must be pur-
chased separately. And all can be loaded and run on
either tape or disk systems. Thus, most people could
put programs written in any of these languages to work
immediately.

Many TRS-80 programmers have not had experience
with FORTRAN. And that's a shame. FORTRAN is an old
language, but it's still nice to work in.

FORTRAN'S advantages are numerous: it's fast, the
coding technique is protected, it has powerful library
functions, it is an excellent number cruncher, its func-
tions are complete subroutines instead of single lines,
and it interfaces easily with machine language
subroutines. (The last feature eliminates loading
machine language programs, entering BASIC, and try-

22

ing to tie into the machine language programs with USR
functions, especially if you're passing several
arguments to and from the machine language routines.)

FORTRAN does have its bad points. Unlike BASIC, FOR-
TRAN programs must be written with a text editor pro-
gram. The code must then be saved on disk. Now the
FORTRAN compiler must be called to create a /REL file.
If syntax errors are found, you must load the source
code back into the text editor, and repeat the process.
After eliminating the syntax errors, you must then LINK
the /REL file to create machine language code which
can be executed.

Debugging your FORTRAN program can be a difficult,
time-consuming task. There are no line numbers in the
machine language code, so it's difficult to figure out
where in memory anything is. There's no way to start
and stop the program at will, as there is in BASIC, just
by pressing the (BREAK) key, so it's hard to figure out
what your variables are doing.

Some of the large timesharing computers have special
debug options in their FORTRAN programs which help
overcome these problems. But the TRS-80 FORTRAN is
minimal, so you're left to your own devices to find pro-
blems. Unfortunately, in order to keep the FORTRAN
compiler and run time package small, Microsoft had to
leave out a number of error checking features which
normally would identify problems for you.

A case in point is THE MEAN CHECKERS MACHINE
which developed an interesting problem when the forc-
ed jump option was added. After coding in all of the ad-
ditional instructions, and taking care of syntax errors, I
finally got a good compile and link. I loaded TMCM into
memory. When the checker board appeared on the
screen, I entered my move. It was rejected. No move I
could make was considered legal by the computer. So I
typed UMOV, which lets the computer take its turn first
at the beginning of a game. In less than a second, the
computer declared itself the winner even though not a
single piece had been moved. It prompted me to hit the
(ENTER) key and it came back all sad because it lost the
game. But wait a minute, nobody had even made a
single move!

It took me eight hours to find the problem. One of the
arguments being passed to a subroutine was the cons-
tant 1. This gets passed to another subroutine, which
passes it to a third subroutine. The third routine
changes the constant 1 to a 2, but later puts it back to a
1. That is a no-no. It does prove, indeed, what Murphy's
Law says about computer programs. "ALL CONSTANTS
ARE VARIABLE, AND ALL VARIABLES ARE CONS-
TANT."

O.K. I can take a hint. I changed the argument to a
variable whose value was 1. The variable worked like a
constant and the problem was solved.

The worst problem was a subroutine called TITLE. TI-
TLE was written in machine language. All it does is
display THE MEAN CHECKERS MACHINE title and
copyright on the screen for 8 seconds, and then returns
to the calling FORTRAN program. No arguments are
passed. TITLE is a very simple little program. Yet, it
blew up THE MEAN CHECKERS MACHINE. Why?

The problem had nothing in the world to do with the TI-
TLE subroutine. One of my variables was never set to
zero. It turned out that whenever I loaded TMCM, that
memory location just happened to be zero'd. Luck! But
when I added CALL TITLE to the program, it shifted that
variable's location three bytes higher, and it wasn't zero
there any more.

Now that we know what a terror FORTRAN can be, let's
look at BASIC. We can code and run immediately. This
makes it a lot easier to work on and debug a program.
We can easily set break points with the STOP command
and check variable. In BASIC, all variables are variables,
all constants are constant, and all variables start out
being zero.

But BASIC does have its weak points. The biggest pro-
blem with BASIC is the fact that it's slow.

Before writing THE MEAN CHECKERS MACHINE in
FORTRAN, I had a working version written in BASIC.
The BASIC version took 10 seconds to generate a play-
ing board, while the FORTRAN version takes about a
quarter of a second. Playing at an IQ of 2, the BASIC ver-
sion took five minutes to find a move. The FORTRAN
version takes 40 seconds and does 50 % more work.

The final alternative to the TRS-80 programmer is to
write in machine language, such as the Radio Shack
Editor Assembler and the Microsoft M80 assembler and
L80 linker.

There are two major advantages with machine
language. One is fast execution speed, and the other is
that the memory requirements are usually smaller. No
compiler can write code as well as the shrewd and cun-
ning programmer. In addition, the code is kept rather
secret because you can't list it very easily. Your source
code can be loaded with tons of remarks, and is self-
documenting, yet the remarks never appear in the
finished product because remarks generate no code in
memory.

In machine language you are actually controlling the
machine. In BASIC, you are spending most of your time
solving a problem.

EDTASM is the Radio Shack Editor/Assembler which is
also available on disk from Apparat. It is an in-memory
program, which means the maximum size of the pro-
gram you're building is limited by the amount of
memory in your system. Being both editor and
assembler in one, you can code and then compile
without reloading. This makes errors easy to fix. Once
the syntax errors are fixed, you can assemble the
machine language code, save your source code, and
run. Because it is an absolute assembler, you know
where everything in memory is from the listings you can
get on your printer. This makes debugging a lot easier.

The major drawback to EDTASM is that it will not
assemble large programs. ST-80D is a prime example. It
was written with an earlier version of EDTASM which
was modified to run under TRSDOS. Although it has
fewer features than the Apparat one, it does have more
memory to work with. Even with a 48K system, ST-80D
completely fills the memory of the machine. The Ap-
parat EDTASM will not assemble ST-80D because it
runs out of memory. This means that little more can be
added to ST-80D because there is just no more room to
assemble it.

Microsoft's M80 assembler is disk-oriented. It is limited
not by memory, but how much room you have on your
disk drives. Just on that basis alone, it will assemble a
much larger program than EDTASM. However, by
writing several machine language programs and linking
them together, huge machine language programs can
be assembled. This is, in fact, how Level II BASIC, which
is 12K, was assembled.

A second powerful feature of M80 is conditional
assembly. This lets you write code which can be
assembled or not, at will. Using this technique, you can
write two routines, one for a Level II machine, and

another for a disk TRS-80, and include both in the same
code. By changing one true or false condition, you can
assemble either version.

But M80 does have its drawbacks. Like FORTRAN, you
have to use an editor to code, an assembler to get a
/REL file, and then the linker to get machine language
code. In other words, there are a lot more steps.

If you're lucky enough to know three computer
languages, how do you decide which language to use?
The best way I can answer that is to give you some ex-
amples, based on my own experience.

STAR TREK III was written in BASIC for a very good
reason. At the time I started to write the program, I still
had a Level I machine, my EDTASM was on back order,
and FORTRAN was still in the works. If I had to do it
over again today, I would code it a little differently, but I
would still use BASIC.

BASIC executes the program fast enough; time is not a
major problem. BASIC has all the computing power
needed to make the program run. Of all of the
languages, BASIC is the easiest to write code for, and
debug. And, from a marketing standpoint, people prefer
games written in BASIC rather than some other
language which they can't understand.

THE MEAN CHECKERS MACHINE was written in FOR-
TRAN mostly to get an increase in speed. Like BASIC,
FORTRAN can handle arrays very nicely. On the other
hand, FORTRAN is much easier to code than machine
language, especially for a program which is so complex.
Believe me, it isn't easy to code a 13.5 K machine
language program.

KVP was written in machine language to get control of
the machine. There are things you can do in machine
language that you can't do any other way. Also, KVP
can be in the machine running while the user runs his
own program. Thus, there's no problem having the user
integrate his program with the KVP program.

MASTERMIND II is an example of a program written in
the wrong language. There's nothing wrong with it. It
plays an almost unbeatable game, and the display is
nice. But, it would best be written in FORTRAN which
would still give it the speed, but make the coding job
much easier. You have to remember that in machine
language, you have to do all of the work. There's no
such thing as a PRINT command in machine language.
You've got to run the printer yourself.

True, you can call a subroutine in the ROM and save
yourself a little effort. But, it's not nearly as easy as an
LPRINT statement in BASIC. In the MASTERMIND pro-
gram, much of the code is spent on simple things like
displaying information on the screen. So, another
reason for picking one language over another is the fact
that a particular language may save you a lot of work.

It all comes down to this. No one language is going to
be right all the time. FORTRAN works best for some ap-
plications, and is useless in others. The thing to do is to
keep an open mind on the subject. When you start out to
write a program, consider each of the languages you
know. Weigh the pros and cons of each language, then
pick the language best suited to the task. The result will
be a better program and less work.

O O

PIRATES
by Lance Micklus

For quite a long time, I have wanted to write an
article on the subject of pirates. But, for one reason
or another, I never did. Much to my surprise, little
seems to have been written on this subject. So, I'm
going to bite the bullet, and speak out, quite frankly,
on this subject.

I guess living in Burlington, Vermont, does have a
few disadvantages. One of which is that I am
somewhat isolated from the larger areas of the
country. We're doing pretty good just to have a
computer club in Burlington representing all types
of systems. Yet, many of you have so many
computer people living near you, you can have the
luxury of a club of just TRS-80 users.

Still, I hear many things...many stories. I find
some of the stories hard to believe, yet, because I
hear them so often, I must assume that they are true.
I have heard of TRS-80 computer clubs who swap
software. One club I heard about in New Jersey is
connected with a college. At the January 1980
meeting, one member brought in a copy of
Microsoft's Disk Adventure game. How he got a
copy of the program is unknown, because the
product had not yet been released for sale. This
person, very proudly announced that he, because of
his superior knowledge, had found a way to make a
back up copy of the disk. He had with him, several
back up copies, which he was willing to fence for
$15 each, provided at least four members would buy
these pirate copies to cover his expenses. There
were plenty of takers.

A certain gentleman, who had come to the
meeting for the first time, spoke up. The man, who
later relayed this whole story to me, pointed outthat
what the members were doing was not ethical, if not
out right illegal. The gentleman was boo'd down. He
was told all about Supreme Court rulings which
made this type of thing O.K., and how expensive
computer software was.

After thinking about the incident, the gentleman
who stood up to defend the pirating of Microsoft's
Adventure program, called me for some technical
information. But, our conversation soon spread to
this computer club. A few weeks later, the
gentleman again called me back. We chatted a little
more about this computer club and he said he was
planning on returning to the next meeting to see if
he could talk some sense into these people. I wish
him luck.

It seems that some people are offended by the
idea that somebody else is making money. They
seem to think that they have it so bad. Yet, not a
singie one of them would be willing to pay $600 for
phone services a month out of their own pocket. I
doubt that any of them would work more than 70
hours a week, with no over time, for only $4.00 per
hour. Not to mention the fact that they might notget
paid on time, or might not get paid at all. Worse yet,

. they also have to hock everything they own just to
keep their job. I mean really, wouldn't you have to be
crazy to take a job like that. Well, I guess, I'm crazy.

What was funny about this one computer club is
that they're college people. You'd think they'd

realize that people like myself have to make money
so we can live. If aguygoesandtradesaStarTreklll
for a Scott Adam's Adventure, then how are Scott
and I going to make any money?

It seems these people don't see it that way. They
look at all the money they spent buying their TRS-80
Level II with 16K. And then, they found out that the
machine was stupid. Now they've got to spend more
money to buy software so it does something, and
they feel ripped off. All right. I can understand that.
But I didn't sell them the computer. Why are they
ripping me off? If they feel ripped off, then at least
rip Radio Shack off. That might make a little sense.
But me, why?

Of course the software people are at the
disadvantage. If a guy only has $150 to spend, the
argument goes, then that's all he is going to spend.
No sale was lost because he wouldn't have bought
the software any way. That's a valid argument if your
name is TSE, or Computer City. But not if you are
Lance Micklus. Whether the guy buys a modem at
$150, or an ST80-III, TSE gets all the guy's got. If he
wants both, he can buy the modem and steal the
software. TSE still gets all the money the guy is
going to spend. But, the company that makes
modems is going to make a lot of sales and I will
make none. You can not photocopy or make a back
up copy of a modem. You can with software. So, in
the pinch, the software guy always loses.

A few nights ago, Randy Cook and I had a rather
interesting discussion about this.

It turns out that at one time, Randy Cook had an
interest in magic. Also, at one time, I was very active
as a magician. Both Randy and I found that our
experience with magicians involved one very
interesting fact. The method of performing a feat of
magic is a secret. If everybody knew how to make
the lady float in the air, it wouldn't be a mystery any
more. Of course, to be a magician, you must learn
what these secrets are. Long ago, magicians
developed a set of ethics. To really become involved
with magic, you will probably join a magic club. The
first thing you will learn are the rules of ethics.
Magicians, it seems, understand that there are
people whose ability to make a living is based on the
fact that people don't know how to make a lady float
in the air. Magicians respect that fact. They also
know that only by seeing to it that all magicians
follow good ethics, can the art of performing magic
survive.

This doesn't seem to happen with computer
clubs. Many do not try to instill good ethical
character into their members. Indeed, some clubs,
like this one club in New Jersey, are more interested
in seeing how much they can get away with.

In the 1960's, everything that was wrong, that
could not be blamed on somebody else, was blamed
on society. Remember the song, "Society's Child".
Today, we blame all of our troubles on the
establishment. Another thing I found that Randy
Cook and I have in common is the fact that we
appear to many people as being establishment.
Fortunately, my articles have helped to humanize
me. But there are still people who think that there is
no such person as Lance Micklus. Randy Cook,
getting less exposure than I do, tends to suffer
worse. Not too many people know anything about
Randy Cook. Perhaps some software pirating is not
based so much on financial considerations as it is
trying to rip off the establishment in an act of
retaliation.

26

One of the very funny things about Randy Cook is
that he has a reputation for being so secretive.
Actually, you might be surprised. Randy really
enjoys helping people learn about computers. In
fact, so do I. That's why I enjoy writing articles.
Randy is really proud of what he's done and he really
wishes he could find a way to share what he's
learned with people just like yourself, no matter who
you are. But, if he let the cat out of the bag, then he
would probably would find himself ripped off. It
takes a lot of money and equipment to write a disk
operating system. If everybody starts ripping him
off, Randy would be unable to continue his work. In
a way, Randy's DOS is almost like another child to
him. Letting too many secrets out might almost be
like putting his child in danger of being killed.
Rather than do that, he'd rather protect that child, no
matter what. I can understand that because I've felt
that way, myself, about some of my own programs.
After a while, the program almost becomes part of
you, and you begin to become very protective of it.
Considering that Randy's DOS is the result of 13
years of work, you can imagine how much a part of
Randy that program has become.

In fact, you could almost say that TRSDOS and
VTOS were NOT written by Randy Cook. They ARE
Randy Cook. They are as much a part of Randy
Cook as his arm or his leg. Perhaps, even more a
part of him then his wife and two children.

What can be done to stop pirating? Several things
can be done. Here's what they are:

First, software people can use various little tricks
to bury into their code little things that later, could
be used to prove that it is their code. The most
amazing example of this can be found on any copy
of TRSDOS or NEWDOS — but not VTOS. Read this
first — then do. From DOS, type the following
command: BOOT/SYSO.WHO. As soon as you hit
the (ENTER) key and your disk drive starts to run,
press and hold down both the 2 and the 6 keys. It
wasn't until TRSDOS 2.3 that Radio Shack found it,
and changed it. It's interesting thatTandyCorp. and
Randy Cook both contain 10 letters.

But this type of thing is only good for use with a
big law suit where the damages run into at least six
figures. The fact of the matter is, the guy who, all by
himself, swaps or even sells software probably will
get away with it. He's just too small a fish to worry
about. That's where you, the reader come in.

First, never accept free software unless it is in the
public domain, or you and the other guy are the
original authors. If you do receive software as a gift,
don't accept it unless it is an original copy.

Second, do not associate yourself with computer
clubs like this one in New Jersey. For one thing,
such clubs are almost never incorporated. As such,
if the club ever was sued, you, a member of the club
could also be sued. In fact, it is even possible that
you could personally be sued for something the
club did, EVEN THOUGH YOU WEREN'T EVEN
THERE.

Third, encourage your computer club to always
observe good rules of ethics. Then, try to teach
those ethics to the newcomers who are just starting
out. If our computer club is like the one in New
Jersey, then start your own computer club. Most
people really want to do what's right. And certainly,
part of the pirating problem is that some people
don't know what is right and what is wrong. Help
them.

The rules of ethics shouldn't be too hard to
understand. A computer program represents the
way some people make their living. They are entitled
to protect their livelihood. A software author is
entitled to a royalty for each computer which runs
his code. That doesn't mean that if you own two
TRS-80's, you need to buy two Star Trek III games.
Unless you're some kind of a nut, you're really only
going to be playing it on one computer, even if it's
one of the two computers that happens to be free at
the moment. But, programs like KVP or ST80 are the
kinds of things that you buy to use on two
computers. Ethically, then the author is entitled to
receive a royalty for two computers, not one.

Nobody really knows how much pirating is really
going on. My guess would be that for each copy of
Star Trek 111 sold, any where from 2 to 5 pirate copies
are made. Electric Pencil, I suspect, is pirated once
for each copy sold. I'm sure games suffer the most
from pirates. Far more than practical and utility
programs like Pencil and ST80.

Am I serious? You bet. Haven't you noticed, the
last game I released was in September 1979. It was
The Mean Checkers Machine. Although TMCM has
been upgraded several times (we are now at version
1.3), it is the last game I've worked on. No new
games are being worked on now. Instead, I find I
must devote most of my time to the higher ticket
items which do not suffer as much from pirating.

Still, I think there's hope that some how, this
problem can be solved. But the only person who can
really solve it is you

DATA BASE MANAGER IDM-IV $69
You can use it to maintain a data base & produce reports without any
pqramming. Define file parameters & report formats on-line. Features key
random access, fast multi-key sort, field arith., label generator, audit log.
MOD-II version with more than 50 enhancements $199.
ACCOUNTS RECEIVABLE ACCT-III $69
One or more drives. Order entry calculates sales tax, shipping, amount for
multiple items. Credit checking, aging, sales analysis, invoices, statements
and reports. As opposed to most other A/R, ours can be used by doctors,
store managers, etc. MOD-II version $149.
WORD PROCESSOR 16K $39. 32K $49. MOD-II $49.
First word processor specifically designed for the TRS-80 that uses disk
storage for text. Written in BASIC. No special hardware and text limit. Use
for letters, manuals & reports. 32K version features upper/lower case
without hardware change and multiple input text files.
MAILING LIST advanced MAIL-V $59.
Fast sort by any field. Multiple labels and reports. 4-digit selection code,
new zip code ext., screen input, live keyboard, powerful report writer. MOD-II
$99.
INVENTORY INV-V $99.
9-digit alphanumeric key for fast key random access. Reports include order
info, performance summary, etc. Calculate E.O.Q. Powerful report writer.
MOD-II $149.
All programs are on-line, interactive, random access, virtually bug free,
documented and delivered on disks. MODI requires 32K. DOS. We challenge
all software vendors to offer low cost manuals so you can compare and
avoid those high-priced undocumented, 'on-memory' programs. Send $5 for
a MOD-I manual and $10 for MOD-II.
MOD-II programs are extensively modified, guaranteed to run with 1 year
newsletter & updates. 10% off for ordering more than 1 MOD-II programs.

MICRO ARCHITECT
96 Dothan St., Arlington, MA 02174

READER SERVICE: U

27

