BY MARK D. GOODWIN

LEVEL Il ROMs

BY MARK

I

=8 BLUE RIDGE SUMMIT. PA 17214

To my princess and our wonderful family.

NOTICES

TRS-80 s a registered trademark of the Radio Shack Division of Tandy Corpora-
tion.

ESF and Exatron String Floppy are trademarks of the Exatron Corporation.

Epson MX-80 is a registered trademark of Epson America Inc.

FIRST EDITION
FIRST PRINTING
Copyright © 1983 by TAB BOOKS Inc.

Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Gooodwin, Mark D. (Mark Dennis), 1956-
Level Il Roms.

Includes index.
1. TRS-80 (Computer)—Programming. 2. Basic (Computer
program language) 3. Read-only storage. 1. Title.
Il. Title: Level 2 ROMs. |ll. Title: Level two ROMs.
IV. Title: Level Il R.O.M.s.
QA76.8.T18G66 1983 001.64'2 83-4931
ISBN 0-8306-0275-5
ISBN 0-8306-0175-9 (pbk.)

List of Programs
Introduction

The Level !l ROM Routines

Integer Routines—Single Precision Routines—Double Precision
Routines—Math Routines—Keyboard Input Routines—Output
Routines—Cassette Input/Output Routines—Data Movement
Routines—ASCIl Conversion Routines—Restart Routines—A
Sample Program

Machine Language Subroutines

A Graphics Subroutine—The Cassette Method—The POKE
Method—The Array Packing Method—The String Packing
Method

The Disk BASIC and DOS Links
Links to BASIC—Enhancing USR—Using This New Command

Below BASIC
Moving the BASIC Program Area—Tabbing Beyond 63

Adding New BASIC Commands
Intercepting Errors—Double Width Graphics

Programmable Shift Key Entries
The Keyboard Device Control Block—The Shift Key Program—
The New Keyboard Driver

Contents

vii

viii

29

43
51
60

73

10

A RAM Printer Spooler
The Purpose of a Spooler—The Spooler Program

The JKL-to-Printer Function

The JKL-to-Printer Program—Epson MX-80 Printer—Non-graph-

ic Printers

Spelled-Out Error Messages

A Machine Language Monitor
The Monitor's Commands—The Monitor Program

Appendix Level Il ROM Memory Map

Index

91

101

107

118

187

533

Program
Listing
1-1

21
2-2
2-3
2-4
2-5
3-1
3-2

*Type:

Type*
EDTASM
EDTASM
BASIC
BASIC
BASIC
BASIC
EDTASM
EDTASM
BASIC
BASIC
EDTASM
BASIC
EDTASM
BASIC
EDTASM
EDTASM
EDTASM
EDTASM
EDTASM
EDTASM
EDTASM
EDTASM
EDTASM

) Title
Four Function Calculator
Graphics Reversal Program
BASIC Program for the Cassette Method
BASIC Program for the POKE Method
BASIC Program for Array Packing
BASIC Program for String Packing
Enhanced USR Command
Enhanced USR Test Program
BASIC Program to Test Enhanced USR
The Completed Test Program
TAB Enhancer Program
TAB Enhancer Test Program
DSET and DRESET Program
DSET and DRESET Test Program
Shift Key Program
Spooler Program
The JKL-to-Printer Program
Spelled-out Error Message Program
The Monitor Program, Part 1
The Monitor Program, Part 2
The Monitor Program, Part 3
The Monitor Program, Part 4
The Monitor Program, Part 5

EDTASM—Requires the Radio Shack EDTASM. To load use the
EDTASM's L command.
BASIC—To load use the CLOAD command.

LIST OF PROGRAMS

vii

Introduction

Ever since the TRS-80 Model I microcomputer was introduced to
the computer world, there has been an astonishing interest in Z-80
assembly language programming. This great interest has led to
much curiosity about the inner workings of the Level II BASIC
ROMs. Programmers realized early on that there are many useful
routines in the ROMs, and knowledge of these routines could
greatly simplify the development of highly complex assembly lan-
guage programs.

Although there have been many magazine articles and books
written about the inner workings of the Level I BASIC ROMs, none
of this information really presents the subject in a way that is useful
to the Z-80 assembly language programmer. In writing this book I
hope that I have solved this problem. Not only does this book
present line-by-line comments for the Level II BASIC interpreter,
it goes further by explaining how the powerful ROM routines can be
put to practical use.

In addition to explaining the many useful ROM routines, the
book presents many methods for interfacing machine language sub-
routines with Level II BASIC. It goes even further by explaining
how commands can be added to the Level II BASIC interpreter and
how existing Level II BASIC commands can be greatly enhanced.
There is something in this book for anybody who has ever had an
interest in learning more about the Level II BASIC ROMs. In
closing, I hope you will have as much fun exploring the Level II
BASIC ROMs as I have had writing about them.

viii

Chapter 1
The Level Il ROM Routines

The Z-80 microprocessor supports 8-bit and 16-bit addition and
subtraction, but this is not a sufficient amount of precision for most
program applications. Although it is possible to write routines to
achieve higher precision, these routines are quite difficult to write
and would require an extensive amount of program development
time. So why not put the Level Il math routines to work? After all, is
there any sense in reinventing the wheel?

Level II BASIC supports three different types of numbers:
integers, single precision numbers, and double precision numbers.
This chapter deals with how these types of numbers can be put to
use via the Level Il ROM routines. The math routines as well as
most of the important input/output routines are covered.

The highest amount of precision available on the Z-80 micro-
processor is 16-bit. However, Level II BASIC’s highest amount of
precision, double precision numbers, uses 64 bits. As you can see,
there is no way to manipulate the Level II high precision number
types by using the Z-80s registers. Therefore, Level I BASIC must
make certain areas of memory available as jumbo-sized registers.
Level II BASIC uses two areas of memory for these registers. The
locations are 411DH-4124H (hereinafter referred to as REG1) and
4127H-412EH (hereinafter referred to as REG2). Figure 1-1 shows
how REGI stores the three different types of Level II BASIC
numbers. REG2 stores numbers exactly the same as REG1, but
remember REG2 resides in a different area of memory.

Single Double

Address Integer Precision Precision
411DH LSB
411EH NMSB
411FH NMSB
4120H NMSB
4121H LSB LSB NMSB
4122H MSB NMSB NMSB
4123H MSB MSB
4124H EXP EXP

Fig. 1-1. REG1 memory locations. LSB = Least Significant Byte, NMSB = Next
Most Significant Byte, MSB = Most Significant Byte.

In order for Level II BASIC to know which type of number is
being used, it must use a number type flag (NTF). This number type
flag is located in memory at 40AFH, and it must always hold the
proper value necessary to reflect the current number type being
used. The proper values for the number type flag are:

Integer

String

Single Precision
Double Precision

00 > W

The rest of this chapter presents the major ROM routines one
by one. Short examples are given where appropriate. A program at
the end of the chapter makes use of some of these routines. You are
encouraged to try all of the programs presented in this book; they
will help you understand the topics discussed.

2

INTEGER ROUTINES

The integer math routines always use register pair HL and DE.
The number type flag must be set for integer.

Integer Addition, address 0BD2H. This routine
adds the value in register pair DE to the value in register
pair HL. The result will be returned in register pair HL.
Register pair DE will remain intact. If the result of the
addition exceeds that of a legitimate integer value, the
values will be converted to single precision, and the single
precision result will be returned in REG1. For example:

LD A,2 ;A=INTEGER NUMBER TYPE
LD (40AFH),A ;SET NTF TO INTEGER

LD HL,60 ;LOAD HL WITH VALUE
LD DE,200 ;LOAD DE WITH VALUE
CALL 0BD2H ;ADD THEM H%:ﬁL + DE

Integer Subtraction, address 0BC7H. This rou-
tine subtracts the value in register pair HL from the value
in register pair DE. The result will be returned in register
pair HL. Register pair DE will remain intact. If the result of
the subtraction is less than that of a legitimate integer
value, the values will be converted to single precision, and
the single precision result will be returned in REGI.
Example:

D A,2 ; A=INTEGER NUMBER TYPE

LD (40AFH),A ;SET NTF TO INTEGER

LD DE,75 ; LOAD DE WITH VALUE

LD HL,45 ; LOAD HL WITH VALUE

CALL OBC7H $ SUBTRACT THEM HL=DE - HL

Integer Multiplication, address 0BF2H. This
routine multiplies the value in register pair DE by the value
in register pair HL. The result is returned in register pair
HL. Register pair DE will remain intact. If the result
exceeds a legitimate integer value, the values will be
converted to single precision, and the single precision
result will be returned in REG1. Example:

LD A,2 tA=INTEGER NUMBER TYPE

LD (40AFH),A ;SET NTF TO INTEGER
LD HL,30 ;LOAD HL WITH VALUE
LD DE,=-20 ;LOAD DE WITH VALUE
CALL OBF2H sMULTIPLY THEM HL =DE * HL

Integer Division, address 2490H. This routine will
divide the value in register pair DE by the value in register
pair HL. Both values are first converted to single preci-
sion, and then the single precision values are divided. The
result will be returned in REG1. For example:

D A,2 $ A=INTEGER NUMBER TYPE
LD (40AFH),A ;SET NTF TO INTEGER

LD DE,1000 s LOAD DE WITH VALUE

LD HL,110 ; LOAD HL WITH VALUE

CALL 2490H +DIVIDE THEM REG1=DE / HL

Integer Compare, address 0A39H. This routine
compares the value in register pair DE to the value in
register pair HL. The result is returned in register A and
the flags are set accordingly. The values returned in reg-
ister A are:

If DE<HL then register A will be equal to 1

If DE=HL then register A will be equal to 0

If DE>HL then register A will be equal to —1

LD A,2 s A=INTEGER NUMBER TYPE
LD (40AFH) ,A ;SET NTF TO INTEGER
LD HL, (FNUM) ;LOAD HL WITH VALUZ
LD DE, (SNUM) ;LOAD DE WITH VALUE
CALL 0A39H ; COMPARE DE WITH HL

SINGLE PRECISION ROUTINES

All of the single precision math routines require one value to be
in register pairs BC and DE. The other single precision value must

4

always be in REG1. The number type flag must be set for single
precision.
Single Precision Addition, address 0716H. This
routine will add the single precision value in register pairs
BC and DE to the single precision value in REG1. The
single precision result will be returned in REG1. Example:

LD A4 s A=SINGLE PRECISION NUMBER TYPE
LD (40AFH) ,A ;SET NTF TO SINGLE PRECISION
LD HL,NUM1 sHL POINTS TO THE FIRST VALUE
CALL 09B1H ;REG1=NUM1

LD HL,NUM2 sHL POINTS TO SECOND VALUE
CALL 09C2H s BCDE=NUM2

CALL 0716H s REG1=BCDE +REG1

Single Precision Subtraction, address 0713H.
This routine subtracts the single precision value in REG1
from the single precision value in register pairs BC and
DE. The single precision result will be returned in REG1.

Example:
LD AL ; A=SINGLE PRECISION NUMBER TYPE
D (40AFH),A ;SET NTF TO SINGLE PRECISION
LD HL,NUM1 sHL POINTS TO FIRST VALUE
CALL 09B1H s REGL=NUM1
LD HL ,NUM2 ;HL POINTS TO SECOND VALUE
CALL 09C2H ;BCDE= NUM2
CALL 0713H ; REGL=BCDE~REG1

Single Precision Multiplication, address 0847H.
This routine will multiply the single precision value in
register pairs BC and DE by the single precision value in
REG1. The single precision result will be returned in
REG1. Example:

LD AL 3 A=SINGLE PRECISION NUMBER TYPE
LD (40AFH) ,A ;SET NTF TO SINGLE PRECISION

D
CALL
LD
CALL
CALL

HL,NUML
09B1H
HL,NUM2
09C2H
0847H

+HL, POINTS TO FIRST VALUE
s REG1=NUM1

;HL POINTS TO SECOND VALUE
s BCDE =NUM2
;REG1=BCDE#REGL

Single Precision Division, address 08A2H. This
routine will divide the single precision value in register
pairs BC and DE by the single precision value in REG1.

The single precision result will be returned in REG1. For
example:

LD

LD
CALL
LD
CALL
CALL

Ak s+ A=SINGLE PRECISION NUMBER IYPE

(40AFH) ,A 3SET NTF TO SINGLE PRECISION
HL ,NUM1 sHL POINTS TO FIRST VALUE

09B1H sREG1=NUML

HL,NUM2 ;HL POINTS TO SECOND VALUE

09C2H $BCDE =NUM2

08A2H ;REG1=BCDE/REGL

Single Precision Compare, address 0AOCH. This
routine will compare the single precision value in register
pairs BC and DE with the single precision value in REG1.
The result will be returned in register A and the flags will
be updated accordingly. The values returned in register A

are:

1f BCDE<REG] then register A will be equal to 1
If BCDE=REG]I then register A will be equal to 0
If BCDE>REG]I then register A will be equal to —1

LD
LD
LD
CALL
D

A4 s+ A=SINGLE PRECISION NUMBER TYPE

(40AFH) ,A ;SET NTF TO SINGLE PRECISION

HL,NUM1 ;HL POINTS TO FIRST VALUE
09B1H s REG1=NUM1

HL,NUM2 ;HL POINTS TO SECOND VALUE

CALL 09C2H s BCDE=NUM2

CALL O0AOCH sCOMPARE BCDE WITH REGL

DOUBLE PRECISION ROUTINES

All of the double precision math routines require one value to

be in REG1. The other double precision value must always be in
REG2. Furthermore, the number type flag must be set for double
precision.

Double Precision Addition, address 0C77H. This
routine will add the double precision value in REG1 to the
double precision value in REG2. The double precision
result will be returned in REG1. Example:

D A,8 3+ A=DOUBLE PRECISION NUMBER TYPE
D (40AFH) ,A ;SET NTF TO DOUBLE PRECISION
LD DE,NUM1 ;DE POINTS TO FIRST VALUE

iny HL,411DH ;HL POINTS TO REGL

CALL 09D3H $REG1=FIRST VALUE

LD DE,NUM2 ;DE POINTS TO SECOND VALUE

LD HL,4127H ;HL POINTS TO REG2

CALL 09D3H s REG2=SECOND VALUE

CALL 0C77H $REG1=REG1 REG2

Double Precision Subtraction, address 0C70H.
This routine will subtract the double precision value in
REG2 from the double precision value in REG1. The dou-
ble precision result will be returned in REG1. For exam-
ple:

D A,8 3+ A~~DOUBLE PRECISION NUMBER TYPE
LD (40AFH),A ;SET NTF TO DOUBLE PRECISION
LD DE,NUM1 ;DE POINTS TO FIRST VALUE

LD HL,411DH ;HL POINTS TO REGl

CALL 09D3H ;REG1=FIRST VALUE

LD DE,NUM2 ;DE POINTS TO SECOND VALUE

LD HL,4127H ;HL POINTS TO REG2
CALL 09D3H :REG2=SECOND VALUE
CALL 0C70H sREG1=REG1l+REG2

Double Precision Multiplication, address
ODA1H. This routine will multiply the double precision
value in REG1 by the double precision value in REG2. The

double precision result will be returned in REG1. Exam-
ple:

LD A,8 ; A=DOUBLE PRECISION NUMBER TYPE
1D (40AFH),A ;SET NTF TO DOUBLE PRECISION
LD DE,NUM1 ;DE POINTS TO FIRST VALUE

LD HL,411DH ;HL POINTS TO REG1

CALL 09D3H sREG1=FIRST VALUE

LD DE,NUM2 sDE POINTS TO SECOND VALUE

LD HL,4127H ;HL POINTS TO REG2

CALL 09D3H ;REG2=SECOND VALUE

CALL ODA1H ; REG1=REGL¥REG2

Double Precision Division, address ODE5H. This
routine will divide the double precision value in REG1 by
the double precision value in REG2. The double precision
result will be returned in REG1. Example:

LD A,8 ; A=DOUBLE PRECISION NUMBER TYPE
LD (40AFH),A ;SET NTF TO DOUBLE PRECISION

LD DE,NUML ;DE POINTS TO FIRST VALUE

LD HL,411DH ;HL POINTS TO REGL

CALL 09D3H +REG1=FIRST VALUE

LD DE,NUM2 $sDE POINTS TO SECOND VALUE

D HL,4127H ;HL POINTS TO REG2

CALL 09D3H ;s REG2=SECOND VALUE

CALL ODESH ;REG1=REG1/REG2

Double Precision Compare, address 0A4FH and
0A78H. These two routines will perform a double preci-
sion compare. The routine at 0A4FH will compare the
double precision value in REG2 with the double precision
value in REG1. The routine at 0A78H will compare the
double precision value in REG1 with the double precision
value in REG2. Both will return the result in register A and
update the flags accordingly. The values returned in reg-
ister A are:

0A4F 0A78
REG2<REG1 A=1 REG1<REG2 A=l
REG2=REG1 A=0 REGI=REG2 A=0
REG2>REG1l A=-1 REGI>REG2 A=-1

LD A,8 ; A=DOUBLE PRECISION NUMBER TYPE
LD (40AFH) ,A ;SET NTF TO DOUBLE PRECISION

LD DE,NUM1 ;DE POINTS TO FIRST VALUE

LD HL,411DH ;HL POINTS TO REGL

CALL 09D3H ;REGI=FIRST VALUE

LD DE,NUM2 ;DE POINTS TO SECOND VALUE

LD HL,4127H ;HL POINTS TO REG2

CALL 09D3H ;REG2=SECOND VALUE

CALL OA4FH ; COMPARE REG2 WITH REG1

MATH ROUTINES

All of the following math routines expect a value in REG1. The
number type flag should properly reflect the number type in REGL.

Absolute Value ABS(REG1), address 0977H. This
routine will figure the absolute value for the value in
REG1. The result will be returned in REGL.

Arc tangent ATN(REG1), address 15BDH. This
routine will figure the arc tangent for the value in REGI.
The result will be returned in REGL.

Convert to Double Precision CDBL(REG1), ad-
dress OADBH. This routine will convert the value in REG1
to a double precision value. The double precision result
will be returned in REG1.

10

Convert to Integer CINT(REG1), address 0A7FH.
This routine will convert the value in REG1 to an integer
value. The integer result will be returned in REG1.

Cosine COS(REG1), address 1541H. This routine
will figure the cosine for the value in REG1. The result will
be returned in REG1.

Convert to Single Precision CSNG(REG1), ad-
dress 0AB1H. This routine will convert the value in REG1
to a single precision value. The single precision result will
be returned in REG1.

EXP(REG1), address 1439H. This routine will fig-
ure the natural exponential of the value in REG1. The
result will be returned in REG1.

Stack4REGI1, address 13F2H. This routine will
raise the single precision value on the stack to the single
precision power in REG1. The single precision result will
be returned in REG1.

FIX(REG1), address 0B26H. This routine will trun-
cate the fractional part of the value in REG1. The result
will be returned in REG1.

INT(REG1), address 0B37H. This routine will figure
the integer portion of the value in REG1. The result will be
returned in REG1.

Invert Sign: Integer, address 0C51H. This routine
will invert the sign of an integer value in REG1. The
integer result will be returned in REG1.

Invert Sign: Single Precision or Double Preci-
sion, address 0982H. This routine will invert the sign of a
single precision or double precision value in REG1. The
single precision or double precision result will be returned
in REG1.

LOG(REG1), address 0809H. This routine will fig-
ure the natural log for the value in REG1. The result will be
returned in REGI.

RANDOM, address 01D3H. This routine will reseed
the random number generator.

RND(REG1), address 14C9H. This routine will gen-
erate a random number for the value in REG1. The result
will be returned in REG1.

SIN(REG1), address 1547H. This routine will figure
the sine for the value in REG1. The result will be returned
in REG1.

SQR(REG1), address 13E7H. This routine will fig-
ure the square root for the value in REG1. The result will
be returned in REGI.

TAN(REG1), address 15A8H. This routine will fig-
ure the tangent for the value in REG1. The result will be
returned in REG1.

KEYBOARD INPUT ROUTINES

The following routines will make inputting data from the
keyboard much easier.

Scan Keyboard, address 002BH. This routine will
scan the keyboard. If a key isn’t pressed, register A will
return with a value of zero and the flags will be updated
accordingly. If a key is pressed, register A will return with
the ASCII value for the key that was pressed. Example:

sWAIT TILL KEY PRESSED

PUSH DE ;SAVE DE
PUSH Iy ;SAVE IY
LOOP CALL 002BH ; SCAN KEYBOARD
JR Z,LO0P ;IF NO KEY PRESSED LOOP
POP Iy ;GET IY
POP DE sGET DE

Wait Till Key Pressed, address 0049H. This rou-
tine will continually scan the keyboard until a key is
pressed. The ASCII value for the appropriate key will be
returned in register A.

Get a Line of Input from the Keyboard, address
0361H. This routine will accept keyboard input and place
each character in a buffer. Input is terminated by pressing
either the ENTER key or the BREAK key. On return,
register pair HL will contain the address of the first
character input minus one. If the BREAK key is pressed,
the Carry flag will be set.

Get a Line of Input from the Keyboard, address
1BB3H. This routine functions the same as the routine at
0361H except that a ? will be displayed before input begins.

11

CUTPUT ROUTINES

The following routines allow for output to the video display, to
the printer, and to the cassette. The current output device is
determined by the value stored at memory location 409CH. The
correct values are:

1 Printer
0 Video
-1 Cassette

The current output device will normally be set for the video display.

Display the Character in Register A, address
0033H. This routine will display the character in register A
at the current cursor location.

Clear the Screen, address 01C9H. This routine will
clear the screen and home the cursor.

Display the Character in Register A, address
032AH. This routine will display the character in register
A at the current cursor location. Furthermore, the current
cursor location will be updated.

Display or Print a String, address 28A7H. This
routine will send a string of text to the current output
device. On entry to this routine, register pair HL should
point to the start of the string to be sent. The string should
be terminated with either a zero (00H) or a carriage return
(0DH). The current output device flag at 409CH must be
set to 0 for video or 1 for printer.

Display or Print a String, address 2B75H. This
routine is the same as the routine at 28A7H except that the
string can only be terminated by a zero (00H). The current
output device flag at 409CH must be set to 0 for video or 1
for printer.

Print the Character in Register C, address
003BH. This routine will print the character in register C
on the printer.

CASSETTE INPUT/OUTPUT ROUTINES
The following routines allow for input and output on the cas-
sette recorder. The current output device flag at 409CH must be set
to —1. .
Turn on the Cassette Motor, address 0212H. This

12

routine will turn on the motor for the cassette drive
specified by the value in register A.

Write Cassette Leader, address 0284H. This rou-
tine will write a leader on the cassette recorder.

Read Cassette Leader, address 0296H. This rou-
tine will read a leader on the cassette recorder.

Read a Byte, address 0235H. This routine will read a
byte on the cassette recorder and place it in register A.

Write a Byte, address 0264H. This routine will
write the byte in register A on the cassette recorder.

DATA MOVEMENT ROUTINES
The following routines are used to move data around in mem-

ory.

Move REG1 to Stack, address 09A4H. This routine
will move the value in REGI to the stack. The number of
bytes moved is determined by the current value of the
number type flag. This routine can only be used for integer
and single precision values.

Move (HL) to REG1, address 09B1H. This routine
will move the single precision value pointed to by register
pair HL to REG1. The number type flag should be set for
single precision.

Move BCDE to REGI1, address 09B4H. This
routine will move the single precision value in register
pairs BC and DE to REG1. The number type flag should be
set for single precision.

Move REG1 to BCDE, address 09BFH. This
routine will move the single precision value in REG1 to
register pairs BC and DE. The number type flag should be
set for single precision.

Move (HL) to BCDE, address 09C2H. This routine
will move the single precision value pointed to by register
pair HL to register pairs BC and DE. The number type flag
should be set for single precision.

Move REG1 to (HL), address 09CBH. This routine
will move the single precision value in REG1 to the loca-
tion pointed to by register pair HL. The number type flag
should be set for single precision.

Move (DE) to (HL), address 09CEH. This routine
will move the single precision value pointed to by register

13

pair DE to the location pointed to by register pair HL. The
number type flag should be set for single precision.

Move (HL) to (DE), address 09D2H. This routine
will move the value pointed to by register pair HL to the
location pointed to by register pair DE. The number of
bytes moved is determined by the value of the number type
flag.

Move (DE) to (HL), address 09D3H. This routine
will move the value pointed to by register pair DE to the
location pointed to by register pair HL. The number of
bytes moved is determined by the value of the number type
flag.

Move (DE) to (HL), address 09D6H. This routine
will move the area of memory pointed to by register pair
DE to the location pointed by register pair H. The number
of bytes moved is determined by the value in register A.

Move (DE) to (HL), address 09D7H. This routine
will move the area of memory pointed to by register pair
DE to the location pointed to by register pair HL. The
number of bytes moved is determined by the value in
register B.

Move REG2 to REG1, address 09F4H. This routine
moves the value in REG2 to REG1.

Move REG1 to REG2, address 09FCH. This rou-
tine moves the value in REG1 to REG2.

ASCIli CONVERSION ROUTINES

14

The following routines allow for ASCII conversions.

ASCII to Binary, address OE6CH. This routine will
convert the ASCII string pointed to by register pair HL to
binary. The result will be returned in REG1, and the
number type flag will be updated accordingly. The routine
will convert the ASCII string to the least amount of preci-
sion required.

ASCII to Double Precision, address OE65H. This
routine will convert the ASCII string pointed to by register
pair HL to a double precision value. The double precision
result will be returned in REG1, and the number type flag
will be updated accordingly.

ASCII to Integer, address 1ES5AH. This routine will
convert the ASCII string pointed to by register pair HL to

an integer value. The integer result will be returned in
register pair DE.

Binary to ASCII, address OFBDH. This routine will
convert the value in REG1 to an ASCII string. On return,
register pair HL will point to the first character of the
ASCII string.

RESTART ROUTINES

The following routines are all RSTs and can be quite useful
when trying to interface a routine with Level II BASIC.

Check Syntax, RST 0008H. This routine will com-
pare the byte pointed to by register pair HL with the byte
following the RST 0008H call. If the two bytes match,
register pair HL will be incremented and register A will
contain the byte pointed to by register pair HL. Execution
will resume at the location following the byte which was
compared.

Get Next Character, RST 0010H. This routine will
increment register pair HL and place the byte pointed to by
register pair HL in register A. If the character in register A
is alphabetic, the Carry flag will be cleared. If the character
in register A is numeric, the Carry flag will be set. If the
character in register A is a control code or a space, the
routine will start over.

Compare DE to HL, RST 0018H. This routine will
perform an unsigned compare of register pairs DE and HL.
On return, the flags will be set as follows:

HL<DE Carry Set
HL>DE Carry Clear
HL=DE Zero Set
HL<>DE Zero Clear

A SAMPLE PROGRAM

While there are many more useful routines in Level II BASIC,
the routines presented in this chapter are the ones that will be most
often put to use in a variety of program applications. More
specialized routines are presented in future chapters when neces-
sary.

The program presented in Listing 1-1 is a simple four function
calculator. It will perform addition, subtraction, multiplication, and

15

division. Furthermore, it will perform all of these operations in
integer, single precision, and double precision number representa-
tions. The program makes use of many of the ROM routines pre-
sented in this chapter and will help you understand these powerful
routines.

Listing 1-1

4300 00100 ORG ZOQO0H
4300 CDCRO1L Q0110 START cAaLL QO1C9H
4307 216144 Q0120 LD HL., M1
4306 CD7T2R Q0130 CALL 2R75H
4309 218E44 00140 LOOF1 LD HL, M2
430C CD7S2R 00150 CAL.L ZR73H
430F €D4?00 00160 CALL 0049H
4312 214744 00170 LD HL., CTAR
4315 0603 aQ180 LD E,3

4317 BE 00190 LOOR2 cP (HL)

4318 CAZ243 QO200 JP Z,MATCH
4318 23 Q0210 INC HL

431C 23 QQ220 INC HL

431D 23 Q0230 INC HL

431E 10F7 Q0240 DJINZ LOOF2
4320 18E7 QO2G0 JR LOOF1
4322 23 QQ260 MATCH INC HL.

4323 SE QO27Q LD E, (HL)
4324 23 Q0280 INC HL

4325 Sb6 Q020 LD D, (HL)
4326 ER QQI0O0 EX DE, HL
4327 E9 00F10 JP (HL)

4328 CD2D44 QOT20 INT CALL INFUT
432E CD7F0A CALL QA7FH
432E 2A2141 L.D HL, (4121H)
4331 226144 00350 LD CNUML) , HL
4334 CD2D44 QOT&L0 CALL INFUT
4337 CD7FOA Q0370 CALL OA7FH
433A 2A2141 QO3B0 LD HL., (4121H)
433D 225944 Q0390 LD (NUM2) , HL
4340 [CD3IAR44 QQ400 CAL.L FUN

4343 2A5144 Q0410 LD HL, (NUML)
4346 EB QO420 EX DE, HL
4347 2AS944 00430 LD HL., (NUMZ)
434A IASO44 Q0440 LD A, (FUNSAV)
434D FEZ2B 00450 CpP 47

434F 2B0E QU460 JR Z,INTA
4351 FEZ2D 00470 CF et

4353 280F Q0480 JR Z,INTS
4355 FE2A Q0490 CF i

4357 2810 Q0500 JR Z,INTM
4359 FEZF QOG10 CF /7

435SR 2811 QUS20 JR Z,INTD
435D 18AA 00530 JR LOOF1
435F CDD20R QOS540 INTA CAL.L ORD2H
4362 180D QO350 JR DISF
4364 CDC70R QOS540 INTS CAaLL QRC7H
4367 1808 00570 JR DISF
4369 CDF20R Q0380 INTM caLL ORF2H
436C 1803 QQS0 JR DISF
436E CDR024 Q0600 INTD CALL 24890H
4371 CDEDOF Q0610 DISF CAaLL OFRBDH
4374 CD752R Q0620 CaLL ZB75H
4377 ZEOD 0O&30 LD A, ODH
4379 CDZAO3 00640 CALL QIZAH

16

437C
437E
4381
4384
4387
438A
438D
4390
4393
4396
4399
439C
439F
43A2
43R5
43A8
43AA
43AC
43AE
43R0
4302
43R4
436
43B8
43BER
43RE
43C0
43C3
43CS
43C8
43CA
43CD
43CF
4302
43DS
43D8B
ZDE
43DE
43E1
4ZE4
43E7
43EA
43ED
43FQ
43F3
43F 6
43F9
43FC
43FF
4402
4405
4407
4409
440R
440D
440F
4411

4415
4418
441K
441E
4421
4423
4426
4428
442w
442D

188H
CD2D44
CDE10A
215144
CDCERO9
CDh2D44
CDE10A
215944
CDCEBO9
CD3A44
215944
CDR109
215144
CDC209
IAS044
FEZR
280F
FE2D
2810
FE2A
2811
FE2F
2812
C30943
CD1&07
18E1
CD1307
18AC
CD4708
18A7
CDAZO8
18A2
CDh2D44
CDDROA
211D41
115144
CDD209
CDZD44
CDDROA
211D41
115944
CDD209
CD3A44
215144
111D41
CDD20Y
218944
112741
CDD209
ZAS044
FE2R
280F
FE2D
2811
FE2A
2812
FE2F

C30943
CD770C
C37143
cp7ooc
18F8

CDA1OD
18F3

CDESOD
18EE

21D244

QOS50
QOLELO
QQ670Q
QO680
QOLF0
QO70Q0
00710
QO720
Q0730
QO740
0Q750
QQ760
00770
Q0780
QO790
QOBOO
Q0810
QOB20
Q0830
Q0840
QO8S0
QQ86OQ
QOB7Q
Q08B0
Q0890
QOO0
Q010
QOY20
Q930
QOI40
QOIS0
QOIS0
QP70
Q0980
QU0
Q1000
01010
Q1020
01030
01040
01030
01060
Q1Q70
Q1080
01090
01100
o1t1Q
Q1120
Q1130
Q1140
Q1150
Q11460
01170
01180
01190
Q1200
01210
Q1220
Q12370
01240
01250
Q1260
01270
01280
01290
2Q0
Q1310
01320

SIN

SINA

SINS

SINM

SIND

DAU

DOUA
DIS1
Dous
DOuM
DOUD

INFUT

LOOF1
INFUT
QAE1H
HL, NUM1
O9CEH
INFUT
QAELH

HL , NUM2
QICEH
FUN

HL, NUM2
Q9B1H
HL, NUM1
QPC2H

A, (FUNSAV)
s 4
Z,SINA
Z,SINS
sk
Z,SINM

+ e
Z,SIND
LOOF1
Q716H
DISF
O713H
DISF
Q847H
Digp
08A2H
DISF
INFUT
QADEH
HL., 411DH
DE, NUM1
O9D2H
INFUT
OADEH
HL,411DH
DE . NUMZ2
Q?D2H
FUN

HL, NUM1
DE,411DH
Q9D2H
HL., NUM2
DE,4127H
QD2H

A, (FUNSAV)
s e
Z,Dboun

PR

Z,Dous
Sxe
Z.bhoum
v ye
Z.DOUD
LLOOF1
QC77H
DISF
QC70H
DIS1
ODALH
DISt
ODESH
Dist
HL M3

17

4470
44733
4436
4437
443
443D
44840
4443
44446
4447
4448
4444
4441
444D
444E
4450
0008
[alulel:]
4461
4462
4463
44464
4465
4466
4467
44468
4469
446A
446R
4460
446D
446E
446F
4470
4471
4472
4473
4474
4475
4474
4477
4478
4479
447n
447R
447C
447D
447
447F
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
448A
448R
448C
448D
448E
448F
4490
4491

18

CD782R

CDA%O0
325044
co

49
2843
53
7EAT
44
CF43
QO

46
4F
55
52
20
46
55

AE

54
49
4F
4
20
43
41
4c
43

Ene

01330
013F40
01350
Q1360

FUN
01380
01390

01400

01410

01420 CTAR
01430

01440

01450

01460

01470

01480 FUNSAV
Q1490 NUML
Q1500 NUM2
01510 M1

01520
01330

01540
01350
Q1560 M2

CALL
caLL
RST

LD
CaLl
CALL
LD

RET

DEFE
DEFW
DEFE
DEFW
DEFR
DEFW
DEFR
DEFS
DEFS
DEFM

DEFR
DEFM

DEFE
DEFE
DEFM

2B73SH
1BER3IH
Q010H
OE6CH
HL., M4
2B75H
QO49H
(FUNSAV)Y A

s1v
INT

rge

SIN

s p*

DOU

]

8

8

"FOUR FUNCTION CALCULATOR

3

"BY MARK D. GOODWIN?

13
Q
*FRESS:

4492
44973
4494
4495
4494
4497
4498
4499
4494
4495
449C
449D
449E
449F
44K0
44A1
44A2
A44A7
44n84
4445
4406
4487
4408
4449
4404
44AH
44AC
444D
440E
A44AF
44RO
44R1
44R2
44R3
44R4
44K
4484
4407
4418
44R9
44EAH
44RE
44EC
44ED
44RE
44EF
44C0
44C1
44c2
44C3
44C4
44CS
44Cé
44C7
44C8
44C9
44CA
44CR
44cC
44CD
44CE
44CF
44D0
44D1
44D2
44D
44D4
44D5

53
3A
oD
49
20
46
4F
52

20

4
54
45
47
45
52
oD
53
20
46
4F
52
20
53
49
4E
47
4c
45
20
S50

S3

01570
Q1580

01390
01600

Q1610
Q1620

Q1630
01640
Q1650 M3

DEFE
DEFM

DEFR
DEFM

DEFE
DEFM

DEFE
DEFE
DEFM

13

*I FOR INTEGER?

13

"8 FOR SINGLE FRECISION®

13

"D FOR DOUELE FRECISION?

12
Q
TENTER VALUE®

19

44D6
44D7
4408

44D9
44DA

44DE
44DC
44DD
44DE
44DF
44E0
44E1
44E2
44E3
44E4
44E5
44E6L
447
448
44E9
44EA
44ER
44EC
44€D
44EE
44EF
44F0
44F1
44F2
44F3
44F4
44F5
44F 6
44F7
44F8
44F9
44FA
44FR
44FC
44FD
44FE
44FF
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
450A
450R
450C
450D
450E
450F
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519

20

S2

20

41
4c

o9
45
QO
S0

o2

20

Q1660
01670 M4

01680
Q1690

1700
01710

01720
01730

DEFR
DEFM

DEFR
DEFM

DEFR
DEFM

DEFE
DEFM

O
*FRESS:®

13

'+ FOR ADDITION®

13

- FOR SUBTRACTION?

13

¥ FOR MULTIFLICATION?

prone

451A
4518
4351C
451D
4S1E
451F
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4524
4300
00000

M4

M3
DIsy
DOUD
DOUM
Dous
DouUA
Doy
SIND
SINM
SINS
SINA
SIN
DISF
INTD
INTM
INTS
INTA
FUNSA
FUN
NUMZ2
NUM1
INPUT
INT
MATCH
LOOF2
CTAR
M2
LOOPY
M1
START

QD Q1740 DEFB 13
2F 01750 DEFM '/ FOR DIVISION®

D Q1760 DEFE 13
[o]e] Q1770 DEFR [+]

01780 END START
TOTAL ERRORS

44DE
44D2
441K
4428
4423
441E
4418
43CF
43CA
43CS
43CO
43BE
437€
4371
436E
4369
4364
43SF
V 4450
443A
4459
4451
442D
4328
4322
4317
4447
448E
4309
4451
4300

Listing 1-1 Comments

100
110
120

130
140

150

- Set the starting address for the program.

Go clear the screen.

Load register pair HL with the starting address for the

message to be displayed.

- Go display the message.

- Load register pair HL with the starting address for the
message to be displayed.

- Go display the message.

21

160 -

170 -

180 -

190 -

Go get a character from the keyboard and return with it in
register A.

Load register pair HL with the starting address for the
command jump table.

Load register B with the number of commands in the com-
mand jump table.

Check to see if the character at the location of the command
table jump pointer in register pair HL is the same as the
character in register A.

200 - Jump if the character at the location of the command jump

210 -
220 -
230 -
240 -

table pointer inregister pair HL is the same as the character
in register A.

Bump the command jump table pointer in register pair HL.
Bump the command jump table pointer in register pair HL.
Bump the command jump table pointer in register pair HL.
Loop till all of the commands in the command jump table
have been examined.

250 - Jump if the character in register A doesn’t match any of the

260 -
270 -

280 -
290 -

300 -

commands in the command jump table.

Bump the command jump table pointer in register pair HL.
Load register E with the LSB of the command’s starting
address at the location of the command jump table pointer in
register pair HL.

Bump the command jump table pointer in register pair HL.
Load register D with the MSB of the command’s starting
address at the location of the command jump table pointer in
register pair HL.

Load register pair HL with the command’s starting address
in register pair DE.

310 - Jump to the command’s starting address in register pair HL.

320 -
330 -
340 -
350 -
360 -
370 -
380 -
390 -
400 -
410 -
420 -

22

Go get the first value.

Convert the first value in REG1 to an integer.

Load register pair HL with the integer value in REG1.
Save the integer value in register pair HL.

Go get the second value.

Convert the second value in REG1 to an integer.

Load register pair HL with the integer value in REG1.
Save the integer value in register pair HL.

Go get the function to be performed.

Load register pair HL. with the first integer value.
Load register pair DE with the first integer value in register
pair HL.

430 - Load register pair HL with the second integer value.
440 - Load register A with the function to be performed.
450 - Check to see if the function to be performed in register A is

addition.

460 - Jump if the function to be performed in register A is addi-
tion.

470 - Check to see if the function to be performed in register A is
subtraction.

480 - Jump if the function to be performed in register A is sub-
traction.

490 - Check to see if the function to be performed in register A is
multiplication.

500 - Jump if the function to be performed in register A is multi-
plication.

510 - Check to see if the function to be performed in register A is
division.

520 - Jump if the function to be performed in register A is divi-
sion.

530 - Jump if the function to be performed in register A isn’t any of
the four allowable functions.

940 - Go add the integer value in register pair HL to the integer
value in register pair DE and return with the result in
REGL.

550 - Jump.

560 - Go subtract the integer value in register pair HL from the
integer value in register pair DE and return with the result
in REGL.

570 - Jump.

980 - Go multiply the integer value in register pair DE by the
integer value in register pair HL and return with the result
in REG1.

590 - Jump.

600 - Go divide the integer value in register pair DE by the
integer value in register pair HL and return with the result
in REG1.

610 - Go convert the result in REG1 to an ASCII string.

620 - Go display the ASCII string.

630 - Load register A with a carriage return character.

640 - Go display the carriage return.

650 - Jump.

660 - Go get the first value.

670 - Convert the first value in REG1 to a single precision value.

23

680 -
690 -
700 -
710 -
720 -
730 -
740 -
750 -

760 -
770 -

780 -

790 -
800 -

Load register pair HL with the storage address for the
single precision value in REG1.

Go move the single precision value in REG1.

Go get the second value.

Convert the second value in REG1 to a single precision
value.

Load register pair HL with the storage address for the
single precision value in REG1.

Go move the single precision value in REG1.

Go get the function to be performed.

Load register pair HL with the storage address for the
second single precision value.

Go move the second single precision value into REG1.
Load register pair HL with the storage address for the first
single precision value.

Go move the first single precision value into register pairs
BC and DE.

Load register A with the function to be performed.
Check to see if the function to be performed in register A is
addition.

810 - Jump if the function to be performed in register A is addi-

820 -

tion.
Check to see if the function to be performed in register A is
subtraction.

830 - Jump if the function to be performed in register A is sub-

840 -

850 -

860 -

traction.

Check to see if the function to be performed in register A is
multiplication.

Jump if the function to be performed in register A is multi-
plication.

Check to see if the function to be performed in register A is
division.

870 - Jump if the function to be performed in register A is divi-

sion.

880 - Jump if the function to be performed in register A isn’t any of

the four allowable functions.

890 - Go add the single precision value in REG1 to the single
precision value in register pairs BC and DE. Return with
the result in REG1.

900 - Jump.

910 - Go subtract the single precision value in REG1 from the

24

single precision value in register pairs BC and DE. Return
with the result in REG1.

920 - Jump.
930 - Go multiply the single precision value in register pairs BC
and DE by the single precision value in REG1. Return with
the result in REGI1.
940 - Jump.
950 - Godivide the single precision value in register pairs BCand
DE by the single precision value in REG1.
960 - Jump.
970 - Go get the first value.
980 - Convert the first value in REG1 to a double precision value.
990 - Load register pair HL with the starting address of REG1.
1000 - Load register pair DE with the storage address for the
double precision value in REG1.

1010 - Go move the double precision value in REG1.

1020 - Go get the second value.

1030 - Convert the second value in REG1 to a double precision
value,

1040 - Load register pair HL with the starting address of REGL.

1050 - Load register pair DE with the storage address for the
double precision value in REG1.

1060 - Go move the double precision value in REG1.

1070 - Go get the function to be performed.

1080 - Load register pair HL with the storage address for the first
double precision value.

1090 - Load register pair DE with the starting address of REGI.

1100 - Go move the first double precision value into REG1.

1110 - Load register pair HL with the storage address for the
second double precision value.

1120 - Load register pair DE with the starting address of REG2.

1130 - Go move the second double precision value into REGZ.

1140 - Load register A with the function to be performed.

1150 - Check to see if the function to be performed in register A is
addition.

1160 - Jump if the function to be performed in register A is addi-
tion.

1170 - Check to see if the function to be performed in register A is

subtraction.

1180 - Jump if the function to be performed in register A is sub-

traction.

25

1190 - Check to see if the function to be performed in register A is
multiplication.

1200 - Jump if the function to be performed in register A is multi-
plication.

1210 - Check to see if the function to be performed in register A is
division.

1220 - Jump if the function to be performed in register A is divi-
sion.

1230 - Jump if the function to be performed in register A isn’t any of
the four allowable functions.

1240 - Go add the double precision value in REG2 to the double
precision value in REG1 and return with the result in
REGI.

1250 - Jump.

1260 - Go subtract the double precision value in REG2 from the
double precision value in REG1 and return with the result in
REG1.

1270 - Jump.

1280 - Go multiply the double precision value in REG1 by the
double precision value in REG2 and return with the result in
REG1.

1290 - Jump.

1300 - Go divide the double precision value in REG1 by the double
precision value in REG2 and return with the result in
REG1.

1310 - Jump.

1320 - Load register pair HL with the starting address of the
message to be displayed.

1330 - Go display the message.

1340 - Go get the input from the keyboard.

1350 - Bump the input buffer pointer in register pair HL till it
points to the first character.

1360 - Go convert the ASCII string at the location of the input
buffer pointer in register pair HL to binary and return with
the result in REG1.

1370 - Load register pair HL with the starting address of the
message to be displayed.

1380 - Go display the message.

1390 - Go wait till akey is pressed and return with the ASCII value
for the key in register A.

1400 - Save the function to be performed in register A.

1410 - Return.

26

1420 -
1430 -
1440 -
1450 -
1460 -
1470 -

1480 -
1490 -
1500 -
1510 -
1520 -

1530 -
1540 -

1550 -
1560 -
1570 -

1580 -
1590 -

1600 -
1610 -

1620 -
1630 -

1640 -
1650 -
1660 -
1670 -
1680 -

1690 -
1700 -

1710 -
1720 -

1730 -

The integer command is stored here.

The integer command jump address is stored here.

The single precision command is stored here.

The single precision command jump address is stored here.
The double precision command is here.

The double precision command jump address is stored
here.

The function to be performed is stored here.

The first value will be stored here.

The second value input will be stored here.

Part of the sign-on message is stored here.

This will display a carriage return as part of the sign-on
message.

Part of the sign-on message is stored here.

This will display a carriage return as part of the sign-on
message.

The sign-on message terminator is stored here.

Part of the command message is stored here.

This will display a carriage return as part of the command
message.

Part of the command message is stored here.

This will display a carriage return as part of the command
message.

Part of the command message is stored here.

This will display a carriage return as part of the command
message.

Part of the command message is stored here.

This will display a carriage return as part of the command
message.

The command message terminator is stored here.

The value prompting message is stored here.

The value prompting message terminator is stored here.
Part of the function message is stored here.

This will display a carriage return as part of the function
message.

Part of the function message is stored here.

This will display a carriage return as part of the function
message.

Part of the function message is stored here.

This will display a carriage return as part of the function
message.

Part of the function message is stored here.

27

1740 - This will display a carriage return as part of the function

message.

1750 - Part of the function message is stored here.
1760 - This will display a carriage return as part of the function

message.

1770 - The function message terminator is stored here.
1780 - End of the program.

28

Chapter 2
Machine Language Subroutines

Perhaps the easiest method of interfacing a machine language sub-
routine with Level II BASIC is by using the USR command. Al-
though there are many more advanced techniques for linking
machine language with Level II BASIC, they are incomprehensible
until you understand the USR command, an essential first step.

Let’s take a second to review the scanty information contained
in the Level II Reference Manual about the USR command. With
Level II BASIC there is only one USR call allowed. Before calling
the subroutine, the starting address must be poked into memory.
Suppose that there is a machine language subroutine at 27648. To
tell BASIC where the starting address is, POKE16526,0 and
POKE16527,108 would have to be executed. If these pokes were a
part of a BASIC program, they might appear as:

10 POKE16526,03POKE16527,108

To call this routine, the program would have to contain a line
similar to

20 X =USR(0)

If a value is to be passed to the machine language subroutine,
lines such as the following might be used.
20 X=USR(100)
100 Z=USR(I(5))

29

To pass the value to the machine language subroutine, a call to
0A7FH must be executed by the subroutine. This routine places the
value into register pair HL.

To return from a machine language subroutine, simply put a
RET instruction in the subroutine at the point where BASIC execu-
tion is to be resumed. To pass a value back to BASIC and return,
load register pair HL with the value to be passed back and execute a
JP to OA9AH. To illustrate how values are passed back and forth,
let’s take a look at the following:

100 A=USR(25)sPRINTA

The value of 25 is to be passed to the machine language
subroutine. The subroutine is

CALL OA7FH $ HL=VALUE PASSED
ADD HL,HL s HL=HL#*2
JP 0A9AH s RETURN TO BASIC WITH VALUE

A blow-by-blow description of this example, would go some-
thing like this. As soon as BASIC encounters the USR command in
line number 100, program control is given to the machine language
subroutine. The call to 0A7FH will place the value passed, 25, in
register pair HL. Next by adding register pair HL with itself,
register pair HL will contain 50. Now the program executes a JP to
0A9AH, which in turn, makes the variable A equal to 50. Further-
more, the JP to 0A9AH resumes BASIC execution. This in turn will
cause a 50 to appear on the video display.

Now that the use of USR has been covered, it’s time to take a
look at how subroutines can be loaded into memory. For the rest of
the chapter, we will take a look at the various methods for loading
subroutines. These methods include loading the subroutine from
cassette, poking the subroutine into high memory, packing the
subroutine into an array, and packing the subroutine into a string.

A GRAPHICS SUBROUTINE

Before we look at subroutine loading methods, we need a
subroutine. The subroutine used to demonstrate the various
methods of subroutine loading is one that will reverse all of the
graphic characters on the video display.

In order to write this subroutine, you must understand the

30

Bit No. 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 11=19N

Graphic Character 01 1
21 8
41 5

The video display is broken down into 64 spaces
by 16 lines. Each space can be further broken
down into a 2 by 3 graphic character. Thus the
effective graphics resolution on the Model | is 128
by 48 graphic points. Each of these points is
called a pixel. Each pixel corresponds with a
particular bit of video memory. Shown above is
what a byte would look like if 191 were poked into
video memory. Also shown is an enlarged
graphic character which has each pixel num-
bered. These numbers correspond directly with
the bits in video memory. Any bit with a value of 1
will be on and any bit with a value of 0 will be off.
Therefore, if 191 were poked into video memory;
agraphic character with all of it's pixels on would
be displayed. So the value for any graphic
character can be determined as follows:

Bit 0 or Pixel 0 To set add a value of 1

Bit 1 or Pixel 1 To set add a value of 2
Bit 2 or Pixel 2 To set add a value of 4
Bit3 or Pixel 3 To set add a value of 8
Bit4 or Pixel 4 To set add a value of 16
Bit 5 or Pixel 5 To set add a value of 32

Bit 6 Always off
Bit 7 Always on, add a value of
128

Thus, if we wished to display a graphic char-
acter with pixels 0, 3 and 4 on, we would de -
termine the code to be used like this.

Pixel 0 - 1
Pixel 3 - 8
Pixel 4 - 16
Bit 7- 128

153

Fig. 2-1. Model | graphic codes.

31

Model I's video display system. The Model I uses a memory-
mapped video display system. The video memory starts at address
3CO0H (15360) and is 1024 bytes long. Each byte of video memory
holds one character. The value of each byte is determined by the
ASCII code for the character to be displayed. If you were to
POKE15360,90, a Z would be displayed in the upper left-hand
corner of the video display. The codes for graphic characters are any
value from 128 to 191. Figure 2-1 illustrates how the code is
determined for a particular graphic character.

Now that graphic codes have been illustrated, it is an easy
matter to determine how the graphic display can be reversed. We
know that if a pixel is on, the corresponding bit is equal to 1; and
when a pixel is off, the corresponding bit is equal to 0. Therefore,
we must change all 0’s to 1's and all 1's to 0’s in bits 0 through 5 of
each graphic character in video memory. Also, bit 6 must be off and
bit 7 must be on for each graphic character. Figure 2-2 illustrates
the three machine language instructions necessary to complete the
reversal process.

Now that the method for graphics reversal is clear, it is an easy
matter to write the subroutine. Listing 2-1 presents a program that
reverses all graphic characters on the video display. The program
will leave all non-graphic characters intact.

Listing 2-1

TFE& Q000 ORG 7FEGH
7FE6 21FF3R 00110 REVER LD HL , SEFFH
7FE9 23 QG120 INC HL

7FEA O1FFOZ 00130 LD BC, O3FFH
7FED 03 00140 INC EC

7FEE 7E 00150 LOOP LD A, (HL)
7FEF FEBO 00160 CF BOH

7FF1 3806 Q0170 JR C, NBRAFH
7FF3 2F 0O180 CFPL

7FF4 CEFF 00190 SET 7.A

7FF&6 CER7 QOZ00 RES 6.A

7FF8 77 00210 LD (HL) 4 A
7FF9 23 00220 NBRAFH INC HL

7FFA OB 00230 DEC EC

7FFE 78 Q0240 LD A, B

7FFC E1 00250 OR c

7FFD 20EF Q0260 IR NZ, LOOF
7FFF C9 QOR70 RET

7FES Q0280 END REVER

00000 TOTAL ERRORS
NGRAFH 7FF9

LOOF 7FEE
REVER 7FE6

32

;REGISTER A CONTAINS THE VALUE 191 or 10111111

CPL ;A NOW HOLDS 01000000
SET 7:A $+A NOW HOLDS 11000000
RES 6,A ;A NOW HOLDS 10000000

Fig. 2-2. Graphics reversal.

Listing 2-1 Comments

100 - Set the starting address for the program.

110 - Load register pair HL with the start of video memory minus
one.

120 - Bump the video memory pointer in register pair HL.

130 - Loadregister pair BC with the length of video memory minus
one.

140 - Bump the video memory counter in register pair BC.

150 - Loadregister A with the character at the location of the video
memory pointer in register pair HL.

160 - Check to see if the character in register A is a graphic
character.

170 - Jump if the character in register A isn’t a graphic character.

180 - Compliment the character in register A.

190 - Set bit 7 of the character in register A.

200 - Reset bit 6 of the character in register A.

210 - Display the graphic character in register A at the location of
the video memory pointer in register pair HL.

220 - Bump the video memory pointer in register pair HL.

230 - Decrement the video memory counter in register pair BC.

240 - Load register A with the MSB of the video memory counter
in register B.

250 - Combine the LSB of the video memory counter in register C
with the MSB of the video memory counter in register A.

260 - Jump if this isn’t the end of the video memory.

270 - Return.

280 - End of the program.

A close inspection of this program reveals something a little
strange at the start of the program. As stated earlier, video memory
starts at 3COOH (15360) and is 0400H (1024) bytes in length. So why
does the program load register pair HL with 3BFFH and register
pair BC with 03FFH? Normally lines 110 and 130 would be written

33

110 REVER LD HL,3CO00H
130 LD BC, 0400H

Lines 120 and 140 would also be deleted. However, if the
program were to be assembled with these changes, the object code
for these lines would be

110 - 21003C
130 - 010004

Note that both of these machine language instructions will
result in two bytes of zeros (00H) in the object code. While this is
acceptable for most applications, it would cause problems if this
subroutine were packed into a string. These problems will be
discussed later in this chapter. For now it is only necessary to
understand that by loading register pair HL with 3BFFH and then
incrementing it, register pair HL will contain 3COOH. Furthermore,
by loading register pair BC with 03FFH and incrementing it, regis-
ter pair BC will contain 0400H. Thus, the zero bytes are avoided in
the object code, and the register pairs HL and BC contain the
correct values after incrementing.

THE CASSETTE METHOD

The simplest method for interfacing this subroutine with
BASIC is to load the subroutine into high memory via the cassette.
To do this, a copy of the object code for the program in Listing 2-1
must be made on cassette. Once the object code has been produced,
memory size must be set at 32742 (7FE6H), and the subroutine
must be loaded with the SYSTEM command.

Next a BASIC program is needed, in order to make use of the
machine language subroutine. Listing 2-2 contains a short BASIC
program that first draws alternating horizontal lines on the video
display. Once the display has been completed, the reversal sub-
routine is called over and over again giving the effect of the lines
bouncing up and down.

Listing 2-2

O * LISTING 2.2

5 * SUBRDUTINE SHOULD BE LOADED AND MEM SIZE = 32742
10 * DISPLAY ALTERNATING LINES

15 CLS

20 FORY=0TO47STEF2

34

30 FORX=0TO127

40 SET(X,Y)

S50 NEXTX

&0 NEXTY

70 * WAIT FOR SHORT DELAY

80 FORI=1T0100

0 NEXTI

100 " SET STARTING ADDRESS

110 POKE16526,230: POKEL16527, 127
120 * REVERSE THE GRAFHICS

130 I=USR(Q)

140 * WAIT FOR SHORT DELAY

150 FORI=1TO100

160 NEXTI

170 ’*KEEP DOING UNTIL BREAK FRESSED
180 GOTOBO

THE POKE METHOD

Although the cassette method for interfacing a machine lan-
guage subroutine is quite easy, it can be quite a pain. Remember,
each time the BASIC program is to be used, memory size? must be
set and the subroutine must be loaded from cassette.

The poke method for loading the subroutine eliminates the
need for a cassette recorder. In order to use the poke method, the
object code must be converted to it’s decimal equivalent. This
conversion is necessary because the subroutine will be stored in the
program data statements. Figure 2-3 shows the object code’s deci-
mal equivalent.

Now that we know the decimal equivalent for the subroutine’s
object code, add the following lines to the program appearing in
Listing 2-2:

6 FORM=32742T032767
7 READB

8 POKEM,B

9 NEXTM

1000 DATA33,255,59,35,1,255,3,3,126,254,128,56,6,47
1010 DATA203,255,203,183,119,35,11,120,177,32,239,201

Once these changes are completed, the program should look
like Listing 2-3. What these new lines do is really quite simple.
Lines 6 to 9 poke the values read from the data statements into high
memory. So by using the poke method, the need for loading the
machine language subroutine from cassette is completely elimi-
nated. However, the need for setting memory size is still there.

35

Hex Decimal Hex Decimal
21 33 2F 47
FF 255 CB 203
3B 59 FF 255
23 35 CB 203
01 1 B7 183
FF 255 77 119
03 3 23 35
03 3 0B 11
7E 126 78 120
FE 254 B1 177
80 128 20 32
38 56 EF 239
06 6 C9 201

Fig. 2-3. Decimal equivalents for the object code in Listing 2-1.

Listing 2-3

0 * LISTING 2.3

5 * POKE SUBROUTINE INTO HIGH MEMORY

&6 FORM=32742T032767

7 READR

8 POKEM,B

9 NEXTM

10 ° DISPLAY ALTERNATING LINES

15 CLS

0
100

FORY=0TO47STEF2
FORX=0TO127
SET(X,Y)
NEXTX
NEXTY
* WAIT FOR SHORT DELAY
FORI=1TO100
NEXTI
* SET STARTING ADDRESS

110 POKE16526, 230: FOKE16527, 127
120 * REVERSE THE BRAFHICS

130 I=USR(O)

140 * WAIT FOR SHORT DELAY

150 FORI=1TO100

160 NEXTI

170 * KEEF DOING UNTIL EBREAK FRESSED

180 GOTO8O

1000 DATAZ3,255,59,35, 1,255, 3,3, 126, 254, 128, 56, 6, 47

101

0 DATA203, 255,203, 183,119,35,11,120,177,32, 239,201

THE ARRAY PACKING METHOD

The necessity for setting memory size can be eliminated by

interfacing the machine language subroutine with a method called
array packing.

In order to change the program in Listing 2-3 to an array

packing program, add

36

1 DEFINTA-Z
2 DIMS(12)

These lines initialize all variables as integers and array S with
13 elements. The reason for setting array S at 13 elements is that
the machine language subroutine is 26 bytes long. Since an integer
variable is 2 bytes long you divide 26 by 2 and get 13. Thus, the
array to be packed must have at least 13 elements.

Array Element Memory Location Contents

S(0) LSB 17152 0
S(0) MSB 17153 0
S(1)LSB 17154 0
S(1) MSB 17155 0
S(2) LSB 17156 0
S(2) MSB 17157 0
S(3)LSB 17158 0
S(3) MSB 17159 0
S4)LSB 17160 0
S4)MSB 17161 0
S(5) LSB 17162 0
S(5) MSB 17163 0
S(6) LSB 17164 0
S(6) MSB 17165 0
S(7) LSB 17166 0
S(7) MSB 17167 0
S(8) LSB 17168 0
S(8) MSB 17169 0
S(9) LSB 17170 0
S(9) MSB 17171 0
S(10)LSB 17172 0
S(10) MSB 17173 0
S(11)LSB 17174 0
S(11) MSB 17175 0
S(12) LSB 17176 0
S(12) MSB 17177 0

Fig. 2-4. An integer array containing 13 elements.

37

Figure 2-4 will help you understand why packing the array is
possible. Note that all elements in the array take up a consecutive
area in memory. Although an integer array will be used in our
program, a single precision array or a double precision array could
be used. To figure the number of elements necessary for a single
precision array, you simply divide the number of bytes in the
subroutine by four. Remember, a single precision variable requires
4 bytes of memory. The size of the array is figured by dividing 26 by
4, which equals 6.5. Because an array can’t have half an element, the
array must be dimensioned for 7 elements. This example demon-
strates an important point. Although a single precision array can be
used, the extra array element wastes memory space. Therefore, an
integer array should be used to conserve memory space.

To pack the array, the program will have to be changed as
follows:

6 FORM=0T025
8 POKEVARPTR(S(0))+M,B

110 I=VARPTR(S(0)):POKEL6526,1-INT(I/256)%256:POKE
16527 ,INT(I/256)

Once these changes are made, the program will look like the
one in Listing 2-4. The VARPTR(S(0)), in lines 8 and 110 locates
the starting address for the subroutine. After the packing has been
completed, array S will appear in memory as shown in Fig. 2-5.

Once the array has been packed, the program must never use
array S as a normal variable. Just consider what would happen if the
program contained a line like 11 S(5)=15.

This line changes the contents of element 5 in array S, and the
machine language program would not function properly if the sub-
routine were called.

Listing 2-4

o LISTING 2.4

1 DEFINTA-Z

2 DIMS(12)

S ° FOKE SUEBROUTINE INTO ARRAY SO
& FORM=0T02S

7 READE

8 FOKEVARFTR(S(O))+M, K

? NEXTM

10 7 DISFLAY ALTERNATING LINES
15 CLS

20 FORY=0TOD47STEF2

30 FORX=0TO127

38

40 SET(X,Y)

SO NEXTX

60O NEXTY

70 7 WAIT FOR SHORT DELAY

80 FORI=1TO10Q

Q0 NEXTI

100 ° SET STARTING ADDRESS

110 I=VARPTR(S(O)):PDHEleEﬁ,I~INT(I/ES&)*ZS&:PDKEI&S27,
INT(1/258)

120 * REVERSE THE GRAFHICS

130 I=USK ()

140 * WAIT FOR SHORT DELAY

150 FORI=1TO100

160 NEXTI

170 * KEEF DOING UNTIL EREAK FRESSED

180 60OTO8O

1000 DATA33Z, 285,59, 35, 1,255, 3,3, 126,254, 128,56, 6,47

1010 DATAZOZ, 255, 203,183,119,35, 11, 120,177, 32,239, 201

THE STRING PACKING METHOD

The last method of interfacing machine language with BASIC is
called string packing. Although string packing takes a little more
program development time, it has many advantages over the other
methods. It eliminates the need for cassette loading and the neces-
sity of setting memory size. It also speeds up program execution
time and is more memory efficient than the three previous methods
because the string packing routine and the data statements can be
eliminated after packing is completed. String packing does have one
disadvantage though. You can’t pack 00H into the string because
zero is used by Level I BASIC as the BASIC line terminator. So, if
you want to use string packing in your programs, avoid zeros. Beat
around the bush, as in the graphics reversal program.

To change the array packing program to a string packing pro-
gram, delete line 2 and change the following lines:

1 SB="eiiieieitinrarstroncenenns
8 I=VARPTR(S$) : SA=PEEK(I+2)*256+PEEK(I+1) s POKESA+M,B
9 NEXTM:STOP

110 I=VARPTR(S$):POKE16526,PEEK(I+1):POKEL6527,
PEEK(I+2)

Note that in line 1, S$ is set to a string constant of 26 periods.
The reason for this is that the machine language subroutine to be
packed is 26 bytes long. It doesn't really matter if you use 26 periods
or 26 other characters, just so long as S$ is 26 bytes in length.

In order to understand why string packing is a very desirable
method for interfacing machine language with BASIC, it is first
necessary to understand how a string is stored in memory. All

39

Array Element Memory Location Contents

S(0)LSB 17152 33
S(0)MSB 17153 255
S(1)LsB 17154 59
S(1)MSB 17155 35
S(2)LSB 17156 1
S(2) MSB 17157 255
$(3)LSB 17158 3
S(3) MSB 17159 3
S@4)LSB 17160 126
S(4)MSB 17161 254
S(5)LsSB 17162 128
S(5) MSB 17163 56
S(6)LSB 17164 6
S(6) MSB 17165 47
S(7)LSB 17166 203
S(7) MSB 17167 255
S(8)LSB 17168 203
$(8) MSB 17169 183
S(9)LSB 17170 119
S(9) MSB 17171 35
S(10) LSB 17172 11
S(10) MSB 17173 120
S(11)LSB 17174 177
S(11) MSB 17175 32
S(12) LSB 17176 239
S(12) MSB 17177 201

Fig. 2-5. A 13 element packed integer array.

string constants, like S$, are stored in the program itself and not in
string space. Once the string constant has been packed with the
machine language subroutine, the string will always hold the sub-
routine.

To find the starting address for the string, the VARPTR com-

40

mand must be used. In line 8, the variable I is set to VARPTR(S$).
Although variable I doesn't point to the string’s starting address, it
does point to the following information:

LOCATION CONTENTS
I Length of the String
I+1 LSB of the String’s Starting Address
[+2 MSB of the String’s Starting Address

With this information, the string’s starting address can be
determined by

PEEK(I+2)#256+PEEK(I+1)

Now that the string’s starting address can be determined, the
string can be packed in much the same way as an array is packed. If
you have entered the program in Listing 2-5, try running it. The
program will break in line 9. The string should now be packed. Try
listing the program. If your video display seemed to throw afit, then
the string is probably packed correctly. The reason for this strange
listing is that the BASIC interpreter can't list a packed string
correctly, and, therefore, will not print it correctly either. The
packed string is displayed as control codes and BASIC keywords. If
the string has been properly packed, you may delete lines 5-9 and
lines 1000-1010. The reason for this is that once the string is packed
it will always stay packed. Therefore, the string packing routine and
the data statements are no longer needed by the program.

Listing 2-5

O * LISTING 2.5

1 S=" et nuieecrnaranssnansanens "

S ° POKE SUEBROUTINE INTO S%

6 FORM=0TD2S

7 READE

8 I=VARPTR(S5%) : SA=PEEK (I1+2) ¥256+FEEK (1+1) : FOKESA+M, &
9 NEXTM:STOF

10 " DISPLAY ALTERNATING LINES

15 CLS

20 FORY=0TO47STEFZ

30 FORX=0T0127

40 SET(X,Y)

50 NEXTX

60 NEXTY

70 * WAIT FOR SHORT DELAY

80 FORI=1TO100

90 NEXTI

100 * SET STARTING ADDRESS

110 I=VARPTR(S%) : FOKE16526, FEEK (I+1) : POKE16527 , PEEK (I+2)
120 * REVERSE THE GRAFHICS

41

130 I=USR(Q)

140 * WAIT FOR SHORT DELAY

150 FORI=1T0100

160 NEXTI

170 *KEEF DOING UNTIL BREAK PRESSED

180 GOTOBO

1000 DATAZSE, 255,59,35,1,255,3,3, 126,254, 128,56, 6,47
1010 DATAZ0F, 255,203,183,119,35,11,120,177,32,239,201

42

Chapter 3
The Disk BASIC and DOS Links

Although the USR command is the simplest way to interface
machine language with BASIC, there are other more advanced
techniques that can be used. This chapter introduces a technique
utilizing the Disk BASIC and the DOS links. By using these links,
new commands can be added to Level II BASIC, and existing Level
IT commands can be enhanced.

LINKS TO BASIC

Figure 3-1 shows all of the Disk BASIC links. Figure 3-2 lists
all of the DOS links. If Level I BASIC is initialized, the Disk BASIC
links are set to jump to the L3 ERROR routine whenever a Disk
BASIC command is encountered. If Disk BASIC is loaded, these
jumps to the L3 ERROR routine are replaced with jumps to the
appropriate Disk BASIC routines. The DOS links are set to RET
instructions by the Level Il BASIC initialization routine. If a DOS is
not in memory, the DOS links will simply return to Level II BASIC
whenever a DOS link is encountered. When a DOS is in memory,
the DOS links are set to jump to DOS.

In order to make use of these links, the Level II BASIC
interpreter must be understood. The BASIC interpreter uses
register pair HL as a pointer to the current location in the BASIC
program. Think of register pair HL as a program counter. Whenever
one of these links is called, register pair HL will either point to the

43

Exit BASIC Exit BASIC
Location Keyword Location Keyword
4152H CvI 417CH FIELD
4155H FN 417FH GET
4158H CVvSs 4182H PUT
415BH DEF 4185H CLOSE
415EH CvD 4188H LOAD
4161H EOF 418BH MERGE
4164H LOC 418EH NAME
4167H LOF 4191H KILL
416AH MKI$ 4194H &
416DH MKS$ 4197H LSET
4170H MKD$ 419AH RSET
4173H CMD 419DH INSTR
4176H TIMES 41A0H SAVE
4179H OPEN 41A3H LINE

Fig. 3-1. Disk BASIC links.

last byte executed or the next byte immediately following the
BASIC keyword.

ENHANCING USR

Let’s try using a DOS link to enhance the USR command. The
link at 41A9H is called by the USR command just before the value to
be passed is examined. By intercepting this link, the USR command
can be enhanced to call subroutines without poking the starting
address into memory. The format for this new USR command will
be

USR starting address, (x)

Some examples of how this new USR command might be used
are

10 N=USR27648, (25)
100 X2 =USRN, (M1)

Listing 3-1 presents a program that utilizes the USR command
to poke the starting address via the DOS link.

44

Hcaco
Hvyg¢ PUE H8.Lce
Hdcee
H36Le
Hivic pue Hg0lLe
HEOoLe
H900¢
H490¢
HOvV3l
H8SED

(s)uoneaoy
N0y woid jje]

He3 Ly HOZED
HAQLY HY.iC
HOdLy HO0gQat pue HO8g!L
Hodtv HZ4vi
HEQLY HO3vi
HOdLP HivVL
HAOLy H89€0
HVOLY HOLVL
HLOlLv H3dL2
HYO LY HO361
(s)uonesoy
uonedo 1x3 WO0Y woig jjel

HILOLY
H3gly
Hagiy
H8gly
HSglLy
Healy
HAV Iy
HOV iy
H6V LY
HOV ¥

uoneaoy yx3

45

First, the program intercepts the DOS link at 41A9H. It per-
forms this task by placing a jump to the desired location and then
returning to the Level II BASIC READY routine. Note that a JP
0072H will return to the BASIC READY routine. This jump should
always be used whenever a machine language routine is to return to
the Level II BASIC command mode. While there are other jumps
which return to the Level II BASIC command mode, the jump at
0072H is the only one which is error free. Other jumps may cause a
BASIC error.

Whenever a USR command is executed, Level II BASIC im-
mcdiately calls the DOS link at 41A9H. Because this link has been
intercepted, it will cause a jump to 7FCFH. Note that at this point
the BASIC program pointer in register pair HL will be pointing to
the USR keyword. The new USR routine will start by calling the
ROM routine located at 2BO1H. This routine performs the following

Bump the BASIC Program Pointer, and evaluate
expression address 2BO1H.

This routine will increment the value of the BASIC program
pointer and will evaluate the expression.

The BASIC program pointer is bumped by RST 0010H
until register pair HL points to the first character in the
expression. The expression is then evaluated. On exit, reg-
ister pair DE will hold the 16-bit result and register pair HL
points to the character immediately following the expression.

So, after the call 2B01H, register pair DE will hold the starting
address. This starting address is then stored in memory location
16526 (408EH). Remember that the normal USR command requires
the starting address to be poked at memory locations 16526 and
16527. Thus, the routine has just poked the starting address au-
tomatically.

After poking the starting address, the program performs a
syntax check. If a comma doesn'’t follow the expression which was
evaluated, an SN ERROR will be issued. Next, the BASIC program
pointer, in register pair HL, must be decremented. This is neces-
sary for two reasons. First, the RST 0008H syntax check executes a
RST 0010H immediately after the syntax check. Therefore, regis-
ter pair HL will point to the left parenthesis. Remember that on
entry to the DOS link, register pair HL pointed to the USR
keyword. So, by decrementing register pair HL, the BASIC pro-
gram pointer will be adjusted to the correct position which BASIC
expects on return from the subroutine.

This procedure demonstrates an important point about the

46

BASIC program pointer. Whenever a Disk BASIC or DOS link is
used, you must consider the consequences of adjusting the BASIC
program pointer when writing a routine. If you don't plan ahead,
your routine may cause SN errors everytime it is executed.

Listing 3-1

7FER
7FRE
7FED
7FCO
7FCE
7FC6
7FCe
7FCC
7FCF
7FD2
7FD&
7FD7
7FDE
7FD?
7FDA
7FDR
7FDC
7FDD
7FDE
TFDF
7FEQ
7FEL
TFEZ
7FE3
7FE4
7FES
7FE6
7FE7
7FES
7FE®
7FEA
7FER
7FEC
7FED
7FEE
7FEF
TFFQ
TFF1
7FF2
7FF3
7FF4
7FFS
7FF&
7FF7
7FF8
TEF9
7FFA
7FFR
7FFC
7EFD
7FFE
7FFF
7FRR

JEC3
J2A941
21CF7F
22AA41
21DA7F
CD752k
CI7200
CDO12E
EDSIBE4Q
CF

20
55
53
52
20
43
4F
4D
4D
41
4E
44
oD
42
89
20
4D
41
52
4B
20
47
4F
4F
44
57
49
4€
QD
00

Q010G
Q0110 START
00120
QQ130
00140
Q0150
Q0160
00170
Q0180 USR
00190
Q0200
00210
QO220
QU230
0240 M1

Q0250
00260

QQ270
00280
QG290

00000 TOTAL ERRORS

M1
UsRk
START

7FDA
7FCF
7FER

ORG
LD
LD
LD
LD
LD
CAaLL
JP
CALL
LD
RET
DEFB
DEC
RET
DEFM

DEFR
DEFM

DEFE
DEFR
END

7FEEH
A, OC3H
(B1A9H) A
HL . USR
(41AAH) HL
HL M1
2R75H
QO72H
2RO1H
(408EH) , DE
OOOBH

LR

HL

TENHANCED USR COMMAND®

13

TBY MARK GOODWIN®

13
Qo
START

47

Listing 3-1 Comments

100 - Set the starting address for the program.

110 - Load register A with a JP op code.

120 - Save the JP op code in register A at the first byte of the DOS
link.

130 - Load register pair HL with the starting address for the new
USR routine.

140 - Save the starting address for the new USR routine in register
pair HL at the second and third bytes of the DOS link.

150 - Load register pair HL with the starting address for the
message to be displayed.

160 - Go display the message.

170 - Jump to the Level II BASIC READY routine.

180 - Go evaluate the expression at the location of the current
BASIC program pointer in register pair HL and return with
the integer result in register pair DE.

190 - Save the subroutine’s starting address in register pair DE.

200 - Go check the syntax. The character at the location of the
current BASIC program pointer in register pair HL mustbe a
comma.

210 - The character to be checked for is stored here.

220 - Decrement the current BASIC program pointer in register
pair HL.

230 - Return to the normal Level II BASIC USR routine.

240 - Part of the sign-on message is stored here.

250 - This will cause a carriage return to be displayed as part of the
sign-on message.

260 - Part of the sign-on message is stored here.

270 - This will cause a carriage return to be displayed as part of the
sign-on message.

280 - The sign-on message terminator is stored here.

290 - End of the program.

USING THIS NEW COMMAND

The enhancement to the USR command can be tested with a
machine language subroutine and a BASIC program. Listing 3-2
presents a short machine language subroutine suitable for this
demonstration. Before writing a BASIC program to go along with
this machine language subroutine, let’s first consider what method
will be used to interface this subroutine with a BASIC program.
First of all, the machine language subroutine is short and doesn’t
have any zeros. Can you guess which method I chose for interfac-

48

Hex Decimal

CD 205

7F 127

0A 10 Fig. 3-3. Decimal equivalents for the
29 41 object code in Listing 3-2.

C3 195

9A 154

0A 10

ing? If you guessed string packing, you're absolutely right. In order
to pack the subroutine into a string, we must first determine the
object code’s decimal equivalent. Figure 3-3 shows the decimal
equivalent for the object code. Next, a BASIC program such as the
one in Listing 3-3 might be used to pack the string.

Once the string is properly packed, delete lines 35-70 and lines
999-1000. The program should now appear as in Listing 3-4. Now
run the program. As you can see, the machine language subroutine
simply multiplies the value passed by two. Although this program
demonstrates how the enhanced USR command is used, it really
doesn’t show it's advantages. First the enhanced USR command
eliminates the need for having to poke the starting address into
memory. This will cause easier program development and faster
program execution. One added benefit is also caused by the elimi-
nation of the pokes. Elimination of the pokes will reduce memory
usage.

Listing 3-2

QOO0 CD7F0A Q0100 SUR CALL QA7FH
QOO3F 29 00110 ADD HL, HL
Q004 CI9A0A Q0120 JF QA?AH
QOO0 Q0130 END SUR

QOO0O0 TOTAL ERRORE

SUB 0000

Listing 3-2 Comments

100 - Go get the value passed.

110 - Add the value passed in register pair HL to itself. The result
in register pair HL will be the value passed times two.

120 - Return to Level Il BASIC with the adjusted value in register
pair HL.

49

130 - End of the program.

Listing 3-3

10 * LISTING 3.3

20 * ENHANCED USR DEMO (BASIC)

30 S86="senanas"

35 ° PACK THE SUBROUTINE INTO 8%

40 FORM=0TO&

50 READB

60 I=VARPTR (8%) : SA=PEEK (I+2) ¥256+PEEK (I+1) : FOKESA+M, B
70 NEXTM: STOF

80 CLS

90 FORN=1TO10

100 PRINTNg "% 2 ="y

110 I=VARPTR(8%) t N1=USRPEEK (I+2) ¥256+PEEK (I+1) , (N)
120 PRINTN1

130 NEXTN

999 END

1000 DATAZ205,127,10,41,195,154,10

Listing 3-4

10 * LISTING 3.4

20 * ENHANCED USR DEMO (RASIC)
30 S$="+

) ERRDEFSNG

"

80 CLS

90 FORN=1T010

100 PRINTN; "% 2 ="3

110 I=VARPTR(S$) : N1=USRPEEK (I+2) X256+PEEK (I1+1), (N)
120 PRINTN1

130 NEXTN

50

Chapter 4
Below BASIC

Have you ever wondered how some machine language utilities,
such as DOS or Disk BASIC, can operate between Level II BASIC
and the BASIC program area? Figure 4-1 presents a memory map
for Level I BASIC. Note that the BASIC program area immediately
follows the Level II BASIC interpreter. Now examine the memory
map in Fig. 4-2, which shows how memory would be configured if a
DOS or Disk BASIC were present. A DOS or Disk BASIC is loaded
into memory immediately following the Level Il BASIC interpreter,
and the BASIC program area follows the DOS or Disk BASIC in
memory.

Wouldn’t it be nice to be able to write machine language
subroutines that could reside in this area of memory between the
Level I BASIC interpreter and the BASIC program area? Well, it is
really quite simple to do. All that has to be done is to tell the Level II
BASIC interpreter that the BASIC program area will be located
higher in memory than usual.

MOVING THE BASIC PROGRAM AREA

In order to make a program operate below the BASIC program
area, Level II BASIC must be told where the new BASIC program
area will reside. The obvious place for it is immediately following
the machine language subroutine. The new start of the BASIC
program area must be stored at memory location 40A4H. Memory

51

0000H
42E8H

42E9H

7FFFH
BFFFH
FFFFH

Level |l Basic

Program Area

Simple Variables

Array Variables

Free Memory

Stack

String Space

Reserved Memory (If any)
End of Memory - 16K
End of Memory - 32K

End of Memory - 48K

Fig. 4-1. Level Il BASIC memory map.

location 40A4H is used by Level 11 BASIC to point to the first byte
available for BASIC program material.

One more point must be taken into consideration. The byte
immediately preceding the start of the BASIC program area must

0000H
42E8H

42E9H

7FFFH
BFFFH
FFFFH

Level Il BASIC
DOS
Disk BASIC

Program Area

Simple Variables

Array Variables

Free Memory

Stack

String Space

Reserved Memory (If any)
End of Memory - 16K
End of Memory - 32K

End of Memory - 48K

Fig. 4-2. Disk BASIC memory map.

52

always equal zero (00H). The following example can be used to
meet the above conditions.

s INITTALIZE NEW START OF BASIC

D HL,BASIC ;POINT TO LAST BYTE
OF PROGRAM
D (HL),0 ; ZERO THIS BYTE
INC HL 3 BUMP POINTER
ID (40A4H),HL; SAVE BASIC START
BASIC DEFB 0
END

Next the string space pointer must be reset in order to assure
proper Level IT BASIC operation. The string space pointer can be
reset by calling the ROM routine at 1E83H.

Reset String Space Pointer, address 1E83H. On
entry to this routine, register pair DE holds the number of
bytes to be reserved as string space. The routine will
reserve the amount of string space specified and reset the
string space pointer to it's proper position. Level Il BASIC
reserves 50 bytes of string space on initialization. The
following example meets both of these criteria.

sRESET THE STRING SPACE POINTER
;AND RESERVE 50 BYTES FOR STRING SPACE
LD DE, 50 s NUMBER OF BYTES
CALL 1E83H 3G0 TO ROUTINE
One last thing must be done for proper operation of Level II
BASIC. The simple variables pointer, the array variables pointer,

the free space pointer, and other miscellaneous pointers must be

reset. This is easily accomplished by calling the ROM routine
located at 1B4DH.

After these steps have been completed in their proper order,
Level I BASIC will function properly with the machine language

53

subroutine imbedded between the Level II BASIC interpreter and
the BASIC program area. The short program listing in Fig. 4-3
presents all steps necessary to write programs in this manner.

TABBING BEYOND 63

Before trying to write your own program using this method, it
may be best to study the example presented in Listing 4-1. The

; INSERT YCUR OWN MATERIAL WHERE EINDICATED

ORG 42 E9H

START CALL 01C9H ; CLEAR THE SCREEN
LD HL,N1 ;POINT TO MESSAGE
CALL 2B75H ;DISPLAY MESSAGE
LD HL,BASIC ;POINT TO BASIC START
LD (HL),0 3 ZERO IT
LD (40A4H) , HL 3SAVE BASIC START
D DE, 50 ;# OF BYTES TO RESERVE
CALL 1E83H ;RESET STRING SPACE
CALL 1B4DH sRESET BASIC POINTERS

; INSERT ANY DISK BASIC OR DOS LINKS HERE

JP 0072H sRETURN TO LEVEL II
; INSERT ANY PROGRAM MATERIAL HERE

M1 DEFM 'INSERT SIGN ON MESSAGE HERE'
BASIC DEFB 0
END START

Fig. 4-3. Below BASIC.

54

program enhances the Level Il TAB command so that it will permit
TABs greater than 63 on the printer. If your computer has the newer
Level Il BASIC ROMs, this TAB extender isn't necessary; but you
should study the program to better understand this Below BASIC
interfacing method.

The program starts by clearing the screen and displaying a
sign-on message. Next, the program sets the start of the BASIC
program area to the end of the TAB enhancer program. String space
isreserved and the pointers are reset. Then, the program links with
the TAB routine via the DOS link located at 41D3H. Once this link
is set, program control is returned to Level II BASIC.

Now that the program is linked with Level II BASIC, every
time a TAB statement is encountered, the Level II BASIC in-
terpreter will branch to the machine language subroutine via the
DOS link. The subroutine first checks to see if the current output
device is the printer. This is accomplished by loading the contents
of 409CH, the current output device flag, into register A. Next,
register A is ORed with itself to set the flags. This causes a RET M
if the cassette is the current output device and a RET Z if the video
display is the current output device.

DOS link 41D3H is called from two locations. These locations
are 2108H and 2141H. The TAB command calls this DOS link from
2141H. Therefore, the return address must be checked to insure
that the DOS link was called from 2141H and not from 2108H. If the
DOS link was called from 2108H, the return address on the stack
will be 210BH. Note that the MSB for both calls is 21H. Therefore,
it is only necessary to check the LSB of the return address. If the
LSB of the return address is equal to OBH, the subroutine will
return to the Level II BASIC routine which called the DOS link.

Once the return address has been checked for it’s proper value,
the subroutine discards the return address. The return address can
be discarded because program control will be returned to the Level
II BASIC interpreter by a JP 214EH. Next, the BASIC program
pointer is taken off the stack and placed in register pair HL. On
entry to the DOS link, it points past the TAB(N) statement. There-
fore, it is necessary to back up the pointer to the TAB(keyword.
Because BASIC stores keywords in memory as one byte values, the
program searches for a byte equal to BCH. BCH is the value Level II
BASIC gives to TAB(. Once the TAB(keyword is located, the
subroutine evaluates the TAB position by calling the ROM routine
located at 2B1BH and places the result in register A.

Evaluate Expression, address 2B1BH. This rou-

55

tine first bumps the BASIC program pointer to the first
character of the expression via the RST 0010H. The ex-
pression is then evaluated and the 8-bit result is returned in
register A. On exit, the BASIC program pointer in register
pair HL, will point to the byte immediately following the
expression.

The TAB is transferred from register A to register E because,
upon return to Level II BASIC, the TAB(N) command will expect
the TAB position to be in register E. Next a syntax check is made.
Then, the BASIC program pointer is decremented and placed on the
stack. Control is then returned to Level Il BASIC, by a JP 214EH.

Program Listing 4-2 is a short BASIC program which will test
the TAB enhancer program. Note that with the TAB enhancer
program, Level Il BASIC will do any TAB from 0 to 255 on a printer.

Listing 4-1

42E9 Q0100 ORG 42E9H
429 CDC901 00110 START CALL Q1C9H
42EC 213343 Q0120 LD HL , M1
42EF CD752B Q0130 CALL 2B75H
42F2 215143 Q0140 LD HL . BASIC
42F5 3600 00150 LD (HL) ,0
42F7 23 00160 INC HL

42F8 22A44Q 00170 LD (40A4H) , HL
42FB 113200 Q0180 L.D DE, S0
42FE CDB831& Q0190 CALL 1EB3H
4301 CD4D1B Q0200 CALL 1R4DH
4304 3IEC3 00210 LD A, OC3H
4304 32D341 Q0220 L.D (41D3H) , A
4309 211243 00230 LD HL, TAB
430C 22D441 Q0240 LD (41D4H) ,HL
43I0F C3I7200 00250 JP QO72H
4312 3AFC40 Q0260 TAB LD A, (409CH)
4315 B7 Q0270 OR A

4316 FB QO280 RET M

4317 C8 00290 RET z

4318 E3 QO300 EX (SP) ,HL
4319 3EOB 00310 LD A, OBH
4318 BD QQO320 cpP [

431C 2002 00330 JR NZ, TABRL
431E E3 00340 EX (8P) ,HL
431F C9 QOISO RET

4320 E1 00360 TARL POP HL

4321 E1l 00370 POP HL

4322 2B 00380 TABZ2 DEC HL

4323 7E Q0390 LD A, (HL)
4324 FEBC Q0400 cpP ORCH
4326 20FA 00410 JR NZ,TAB2
4328 CDIR2B Q0420 cAaLl 2B81BH
4328 SF 00430 LD E,A

432C CF 00440 RST 0008H
432D 29 00450 DEFB)

432E 2B Q04460 DEC HL

432F ES 00470 FUSH HL

4330 C34E21 00480 JP 214EH
4333 54 00490 M1 DEFM *TAB EXTENDER®

56

4334
4335
4336
4337
4338
4339
433A
433R
433C
433D
433E
333F
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
434A
434R
434¢C
434D
434E
434F
4350
4351
42E9

oD 0OS00 DEFB 13
42 Q0510 DEFM *BY MARK GOODWIN®

oD 00520 DEFB 13

[ele] QOG3I0 DEFB (]

Qo Q0540 BASIC DEFR d]
00550 END START

QO000 TOTAL ERRORS

TAB2
TAR1
TAR

4322
4320
4312

BASIC 4351

M1

4333

START 42E9

Listing 4-1 Comments

100

110
120

130
140

150

160

170

180

- Set the program’s starting address to the normal start of the
BASIC program area.

- Go clear the screen.

- Load register pair HL with the starting address for the
message to be displayed.

- Go display the message.

- Load register pair HL with the end of the TAB enhancer
program.

- Zero the address at the location of the start of the BASIC
program area pointer in register pair HL.

- Bump the start of the BASIC program area pointer in register
pair HL.

- Save the start of the BASIC program area pointer in register
pair HL.

- Load register pair DE with the number of bytes to be re-
served as string space.

57

190 -
200 -
210 -
220 -

230 -

240 -

Go reserve string space and reset the string space pointer.
Go reset the BASIC pointers and variables.

Load register A with a JP op code.

Save the JP op code in register A as the first byte of the DOS
link.

Load register pair HL with the starting address of the TAB
enhancer program.

Save the starting address of the TAB enhancer program in
register pair HL as the second and third bytes of the DOS
link.

250 - Jump to the Level I BASIC READY routine.

260 -
270 -

280 -
290 -
300 -
310 -

320 -

330 -
340 -
350 -
360 -
370 -
380 -
390 -

400 -

Load register A with the current output device code.

Set the flags according to the current output device code in
register A.

Return if the current output device is the cassette.

Return if the current output device is the video display.
Exchange the value in register pair HL with the return
address on the stack.

Load register A with the LSB of the return address to check
for.

Check to see if the return address to be checked for in
register A is the same as the LSB of the return address in
register L.

Jump if the LSB of the return address in register L doesn’t
match the value in register A.

Exchange the return address in register pair HL with value
on the stack.

Return.

Get the value from the stack and put it in register pair HL.
Get the correct BASIC program pointer from the stack and
put in register pair HL.

Decrement the current BASIC program pointer in register
pair HL.

Load register A with the character at the location of the
current BASIC program pointer in register pair HL.
Check to see if the character in register A is a TAB(
keyword.

410 - Jump if the character in register A isn’t a TAB(keyword.

420 -

430 -
58

Go evaluate the expression at the location of the current
BASIC program pointer in register pair HL. and return with
the 8-bit result in register A.

Load register E with the TAB value in register A.

440 - Go check the syntax. The byte at the location of the current

BASIC program pointer in register pair HL must be a).

450 - The character to be checked for is stored here.
460 - Decrement the current BASIC program pointer in register

pair HL.

470 - Save the current BASIC program pointer in register pair HL

on the stack.

480 - Jump to the Level II BASIC TAB routine.
490 - Part of the sign-on message is stored here.
500 - This will display a carriage return as part of the sign-on

message.

510 - Part of the sign-on message is stored here.
520 - This will display a carriage return as part of the sign-on

message.

530 - The sign-on message terminator is stored here.
540 - The new start of the BASIC program area will start here.
550 - End of the program.

Listing 4-2

10
20
30
40
S0

P LISTING 4.2

" TAB EXTENDER DEMO
FORN=OT{O131
LFRINTTAE (N) "¥"
NEXTN

59

Chapter 5
Adding New BASIC Commands

Although the Disk BASIC links can be used to add new commands,
the name of a new command is limited to the names for the existing
Disk BASIC commands. Wouldn’t it be nice to be able to use
SOUND as the name for the new BASIC command which would
send sound out the cassette port? This chapter presents a method
that enables you to add new BASIC commands and give these new
commands any name you desire. Although this method does have a
few limitations, it is preferable to other methods for adding new
BASIC commands.

INTERCEPTING ERRORS

This method uses a DOS link at 41A6H. This DOS link is called
by the Level II BASIC error routine. It's primary function is to
branch to Disk BASIC so that Disk BASIC can display spelled-out
error messages. On entry to this DOS link, register E holds the
error code. The routine must check this error code to see if a syntax
error has occurred. Register E must be checked for the syntax error
code because using a new name for a BASIC command which isn’t
part of the reserved words list will cause a syntax error. Try typing
DSET(0,16) followed by pressing ENTER on your computer. You
will get a syntax error everytime it is entered. Therefore, the
program must check for a syntax error. If an error occurs and it isn’t
a syntax error, the program will have to return from the DOS link
without any further processing. If a syntax error does occur, regis-

60

ter E will be equal to two. A routine which would handle the above
check could be written like this.

PUSH AF ;SAVE AF

D AE +PUT ERROR CODE IN A

Cp 2 ; CHECK FOR SN ERROR

JR NZ,NOSN ;IF NOT THEN RETURN
NOSN POP AF ;GET AF

RET ;RETURN FROM DOS LINK

Once it has been determined that a syntax error has occurred,
the program must check the syntax error to see if it is one of the new
commands. Memory location 40E6H contains the position of the
BASIC program pointer just before the error occurred. The pro-
gram pointer will point to one of the two possibilities as shown in
Fig. 5-1.

As shown in Fig. 5-1, if the syntax error occurred at the start of
the new line; memory location 40E6H will point to the end of the
last BASIC line. Therefore, the value contained in memory location
40E6H must be incremented by four to point to the byte im-
mediately preceding the error. If the error occurs inside of a BASIC
program line, memory location 40E6H will already be pointing to
the byte immediately preceding the error.

Once the error location has been determined, the syntax error
must be checked to see if it matches a new command. If you were
going to add just one new command, a simple byte by byte compari-

00H Location of Line number DSET(0,16)
next line (2 bytes)
(2 bytes)
00H Location of Line number X=N:DSET(3,47)
next line (2 bytes)
(2 bytes)

Fig. 5-1. BASIC program pointer positions.
61

son would be the easiest method to use for the syntax check. If more
than one command is to be added, a table search would probably be
the best method.

If the syntax error matches a new command, the program
should jump to the proper function. Also, the program should set
memory location 409AH to zero. Memory location 409AH is used
by Level Il BASIC as an error flag. To return to Level I BASIC after
the error, the return address should be removed from the stack and
a JP 1D1EH should be used.

If the syntax error doesn’t match a new command, the program
should return to the ERROR routine via the DOS link return ad-
dress on the stack.

DOUBLE WIDTH GRAPHICS

The next program adds two new commands to Level II BASIC.
These commands enable the use of double width graphics. The
syntax for these two new commands and the new ROM routines are
as follows.

DSET(X,Y). This command will set a double width
graphics point on the video display at the coordinates

specified by X and Y.

X must be> =0 and< = 63.
Y must be>=0 and < = 47,

For example 10 DSET(0,32) would be the same as
10 SETY(0,32):SET(1,32).
DRESET(X,Y). This command will reset a double
width graphics point on the video display at the coordinates
specified by X and Y.

X must be>=0 and< 63

Y must be>=0 and < = 47

For example, 10 DRESET(5,16) is the same as
10 RESET(10,16):RESET(11, 16).

Evaluate Expression, address 2B1CH. This
routine evaluates the expression at the current location of
the BASIC program pointer in register pair HL. The 8-bit
result is returned in register A. On exit, the BASIC pro-
gram pointer will point to the byte immediately following
the expression.

Check Syntax and Evaluate Expression, address
2B17H. This routine will first do a syntax check before

62

evaluating the expression. The expression must be pre-
ceded by a comma or a syntax error will result. The rest of
the routine functions the same as the ROM routine at
2B1CH described above.

FC ERROR Routine, address 1E4AH. This routine
will jump to the Level II BASIC error routine and output a
FC ERROR message.

Graphics, address 0150H. This routine will perform
the SET, RESET, and POINT graphic functions. On entry,
the stack should have the following values:

1. The return address

2. The graphic flag—00H POINT, 01H RESET and 80H

SET
3. The X value
Register A should hold the Y value. Register pair HL should

point to a) character because this routine will perform a syntax
check upon completion. Memory location 018DH is equal to a)
character, so register pair HL should point to this location. The
following example illustrates these points.

$SET(1,30)
LD HL, END ;POINT TO RETURN ADDRESS

PUSH HL ;PUT IT ON STACK
D A,80H ;A=SET MODE
PUSH AF ;PUT IT ON STACK
1D A,1 3A=X VALUE
PUSH AF $PUT IT ON STACK
D A,30 A=Y VALUE

LD HL,018DH ;HL=DUMMY PROGRAM POINTER

JP 0150H :1GO DO GRAPHICS
END sRETURN HERE ON COMPLETION
The program in Listing 5-1 uses a table search for syntax
checks. Note that the commands are not searched for a DSET and
DRESET. This is because both new commands contain reserved

words and the BASIC interpreter will store all keywords as one
byte values. So whenever a new command uses a reserved word in

63

it's syntax, the one byte value must be compared for proper check-
ing. Also, reserved words can't be used to start a new command
name. Such words as SETS and PUTON would be illegal uses of
reserved words.

As mentioned at the start of this chapter, there are a few
limitations with this method. The reserved word limitation is one
and the IF.THEN.ELSE structure is another. The newly created
words cannot be used inside of the IF. THEN.ELSE statements as
this example shows.

This would not work properly.

100 IFX=1THENDSET(1,0)ELSEDRESET(1,0)
But this would be alright.

100 IFX=1THEN11lOELSElZ20
110 DSET(1,0):GOT0130
120 DRESET(1,0)

Finally, Listing 5-2 presents a program which will dem-
onstrate the use of DSET and DRESET. Although Listing 5-1 only
adds two new commands, it is easily modified to add more.

Listing 5-1

429 00100 ORG 42E9H
42E9 CDCRO1 00110 START CALL 01C9H
42EC Z1CA43 00120 LD HL, M1
42EF CD732B 00130 CALL 2BE75H
42F2 21F143 Q0140 LD HL, BASIC
42F5 3600 00150 LD (HL) 4O
42F7 23 Q0160 INC HL

42F8 22A440 Q0170¢ LD (40A4H) JHL
42FR 113200 Q0180 LD DE, S0
42FE CD83I1E 00190 CALL 1E83H
4301 CD4DiIR Q200 CcALL 1B4DH
4304 3EC3 Q0210 LD A, OCTH
4306 I2A641 QOZ220 LD (41A6H) 4 A
4309 211243 Q0230 LD HL, DOUBLE
430C 22A741 00240 LD (41A7H) JHL
430F C3E7200 00250 JF QO72H
4312 FS Q0260 DOUBLE PFUSH AF

4313 7B 00270 LD AVE

4314 FEOQ2 00280 CF 2

4316 2060 00290 JR NZ, NOSN
4318 ES QO300 PUSH HL

4319 DS 00310 PUSH DE

431A 2AREL40 QQ320 LD HL, (40E&H)
431D AF 00330 XOR A

431E RE 00340 CF (HL)

431F 2004 Q0350 JR NZ, DOUL
4321 23 QOI60 INC HL

4322 23 00370 INC HL

64

4323
4324
4325
4326
4329
432C
432F
4332
4334
4336
4339
433D
433E
4341
4342
4343
4344
4346
4347
4348
4344
434C
434E
4351
4355
4358
4350
435D
435E
435F
4360
4361
4362
4363
4364
4365
4366
4367
4368
436R
436C
436D
436E
436F
4371
4372
4373
4374
4376
4377
4378
4379
437A
437¢C
437E
4380
4383
4386
4387
4388
4389
438C
438E
4391
4392
4395
4397
439A

23

23

D7
220243
20843
216C43
Q10A0Q
EDE1
2040
220443
ED43C643

1A
FEQO
280E
18F3
2AC443
ED4BCL4AZ
JACB4S
18D8
22E640
EB

23

SE

23

S6

EB

F1

F1

Fi

F1

AF
3I29A40
E?

44

83

0
7E43
44

82

QO
7A43
D1

El

F1

ce
JEQ1
1802
3JEBQ
J2C943
2AEL40Q
D7

CF

28
CDiC2R
FE40
D24A1E
FS
CD1i72B
FEZOQ
D24ALE

FS

Q0380
00390
Q0400
00410
Q0420
Q0430
Q0440
Q0450
Q0450
00470
Q0480
QQ490
QOS00
00510
QOS20
00530
00540
00550
QOS60
00570
Q0S80
QOS90
00600
00610
Q0620
QU630
00640
00650
QQ&LL0
00670
Q0680
Q0&I0
00700
00710
Q0720
Q0730
Q0740
00750
Q0760
Q0770
Q780
Q0790
Q0800
00810
QOB820
00830
Q0840
Q0850
Q0860
00870
Q880
00890
QOR00
QU910
QQ920
QOIT0
Q0940
QU950
QO350
Q0970
QOIBO
Q0990
Q1000
Q1010
Q1020
01030
01040
01050

DOU1

L1

L3

L4

TABLE

SNE
NOSN
DOFF

DON
GR3

INC
INC
RST
LD
LD
LD
LD
CFIR
JR
LD
LD
EX
LD
INC
LD
cP
JR
INC
LD
cr
JR
IR
LD
LD
LD
JR
LD
EX
INC
LD
INC
LD
EX
FOP
FOF
FOP
FOP
XOR
LD
JP
DEFR
DEFB
DEFB
DEFW
DEFM
DEFB
DEFEK
DEFW
FOF
POP
FOP
RET
LD
JR
LD
LD
LD
RST
R8T
DEFB
CALL
cpP
JP
FUSH
caLL
cr
JFP
FUSH

HL
HL

Q010H
(V1) HL
(V4) A
HL, TABLE
EC,10

NZ, SNE
(V2) (HL
(V) ,BC
DE, HL

HL, (V1)

HL

A, (DE)

(HL)

NZ,L3

DE

A, (DE)

Q

Z.L4

L2

HL, (V2)
BC, (VD)

A, (V4)

L1
(40E6H) 4 HL
DE, HL

(409AH) , A
(HL)
lDf
83H
0
DON
,D?
82H
o
DOFF
DE
HL
AF

A, O01H
GR3
A,B0H
(GFLAG) 4 A
HL, (40E&H)
Q010H
QO0O8H

s (=

2B1CH

&4

NC, 1E4AH

NC, 1E4AH
AF

65

4398
439E
439F
43A0
43A1
43A2
43A%
43A4
43AS
43A8
43AR
43AC
43AD
43RO
43E3
43B4
43ES
43RG
4389
4ZEA
43ER
43EC
43BF
4302
43C4
43C6
43C8
43C9
43CA
43CE
a3cC
43CD
43CE

VICF
43D0
43D1
43D2
43D3
43D4
43D5
43D6
43D7
43p8
43D9
43DA
43DR
43DC
43DD
43DE
43DF
43E0
43E1
43E2
43ET
43E4
43ES
43E6
437
43E8
43E9
43EA
43ER
43EC
43ED
43EE
43EF
43F0
43F1

66

cDsCcal
F1

SF

F1

a7

57

ES

DS
JACP43
CDE?43
D1

14
JACR43
CDB?43
El

2R

D7
CE1E1D
FS

DS

7B
218001
CIS00L
0000
QOO0
Q000
00

0Q

44

4F

S5

42

4C

45

20

57

49

44

S4

48

20

47

52

41

50

48

49

43

53

oD

42

59

20

4D

41

52

4B

20

47

4F

4F

44

G7

49

4E

ob

00

QQ

Q1060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
1170
01180
01190
Q1200
01210
Q1220
a1230
Q1240 GRAFH
01250
Q1260
01270
Q1280
01290 V1
01300 v2
01310 V3
Q1320 V4
01330 GFLAG
031340 M1

Q1350
Q1360

Q1370
01380
Q1390 RASIC

CALL
POP
LD
FOP
ADD
LD
PUSH
PUSH
LD
CALL
FOP
INC
LD
CALL
FOP
DEC
R8T
JP
FUSH
PUSH
LD
LD
JP
DEFW
DEFW
DEFW
DEFR
DEFB
DEFM

DEFE
DEFM

DEFR
DEFE
DEFB

018CH

AF

E.A

AF

AA

D.A

HL

DE

A, (BFLAG)
GRAPH

DE

D

A, (BFLAB)
GRAPH

HL

HL

OO10H
1D1EH

AF

DE

A,E

HL, 018DH
O150H

(]

[¢]

]

O

(¢]
*DOUBLE WIDTH BRAPHICS?

13
*BY MARK GOODWIN®

42E9 01400 END START
00000 TOTAL ERRORS

GRAFH 43B9
GFLAG 43C9

BR3 4380
DOFF 437A
DON 437E
L4 435A
L3 434E
L2 4341
V3 43Co
v2 43C4
SNE 4376
L1 4332
TABLE 436C
V4 43C8
vi 43C2
DOU1 4325

NOSN 4378
DOUBLE 4312
BASIC 43F1
M1 43CA
START 42E9

Listing 5-1 Comments

100 - Set the starting address to the normal start of the BASIC
program area.

110 - Go clear the screen.

120 - Load register pair HL with the starting address for the
message to be displayed.

130 - Go display the message.

140 - Load register pair HL with the ending address of the pro-
gram.

150 - Zero the location of the start of the BASIC program area in
register pair HL.

160 - Bump the start of the BASIC program area pointer in
register pair HL.

170 - Save the start of the BASIC program area pointer in regis-
ter pair HL.

180 - Load register pair DE with the number of bytes to be
reserved for string space.

190 - Goreserve string space and reset the string space pointer.

200 - Go reset the BASIC pointers and variables.

210 - Load register A with a JP op code.

220 - Save the JP op code in register A as the first byte of the DOS
link.

230 - Load register pair HL with the starting address of the
double width graphics routine.

240 - Save the starting address of the double width graphics

67

250 -
260 -
270 -
280 -
290 -
300 -
310 -
320 -
330 -
340 -
350 -
360 -
370 -
380 -
390 -
400 -
410 -
420 -
430 -
440 -
450 -
460 -
470 -

480 -

68

routine in register pair HL as the second and third bytes of
the DOS link.

Jump to the Level II BASIC READY routine.

Save the value in register pair AF on the stack.

Load register A with the error code in register E.

Check to see if the error code in register A is a syntax error
code.

Jump if the error code inregister Aisn’t a syntax error code.
Save the value in register pair HL on the stack.

Save the value in register pair DE on the stack.

Load register pair HL with the syntax error location.
Zero register A.

Check to see if the character at the location of the current
BASIC program pointer in register pair HL is equal to zero.
Jump if the character at the location of the current BASIC
program pointer in register pair HL isn't equal to zero.
Bump the current BASIC program pointer in register pair
HL.

Bump the current BASIC program pointer in register pair
HL.

Bump the current BASIC program pointer in register pair
HL.

Bump the current BASIC program pointer in register pair
HL.

Go bump the current BASIC program pointer in register
pair HL till it points to the next character.

Save the current BASIC program pointer in register pair
HL.

Save the character at the location of the current BASIC
program pointer in register A.

Load register pair HL with the starting address of the
command jump table.

Load register pair BC with the length of the command jump
table.

Go search for the character in register A in the command
jump table.

Jump if the character in register A wasn't found in the
command jump table,

Save the current command jump table pointer in register
pair HL.

Save the remaining length of the command jump table in
register pair BC.

490 - Load register pair DE with the current command jump table
pointer in register pair HL.

500 - Load register pair HL with the current BASIC program
pointer.

510 - Bump the current BASIC program pointer in register pair
HL.

520 - Load register A with the character at the location of the
current command jump table pointer in register pair DE.

530 - Check to see if the character at the location of the current
BASIC program pointer in register pair HL matches the
character at the location of the current jump table pointer in
register A.

540 - Jump if the character at the location of the current BASIC
program pointer in register pair HL doesn’t match the
character at the location of the current jump table pointer in
register A.

550 - Bump the current command jump table pointer in register
pair DE.

560 - Load register A with the character at the location of the
command jump table pointer in register pair DE.

570 - Check to see if the character at the location of the command
jump table pointer in register A is equal to zero.

580 - Jump if the character at the location of the command jump
table pointer in register A is equal to zero.

590 - Continue comparison.

600 - Load register pair HL with the current command jump table
pointer.

610 - Load register pair BC with the remaining length of the
command jump table to be searched.

620 - Load register A with the character to be searched for.

630 - Jump.
640 - Save the eurrent BASIC program pointer in register pair
HL.

650 - Load register pair HL with the current command jump table
pointer in register pair DE.

660 - Bump the current command jump table pointer in register
pair HL.

670 - Load register E with the LSB of the jump address at the
location of the command jump table pointer in register pair
HL.

680 - Bump the command jump table pointer in register pair HL.

690 - Load register D with the MSB of the jump address at the

69

location of the command jump table pointer in register pair
HL.

700 - Loadregister pair HL with the jump address in register pair
DE.

710 - Clean up the stack.

720 - Clean up the stack.

730 - Clean up the stack.

740 - Clean up the stack.

750 - Zero register A.

760 - Clear the Level II BASIC error flag.

770 - Jump to the command’s starting address in register pair HL.

780 - Part of the DSET command is stored here.

790 - Part of the DSET command is stored here.

800 - The DSET command terminator is stored here.

810 - The DSET command starting address is stored here.

820 - Part of the DRESET command is stored here.

830 - Part of the DRESET command is stored here.

840 - The DRESET command terminator is stored here.

850 - The DRESET command starting address is stored here.

860 - Get the value from the stack and put it in register pair DE.

870 - Get the value from the stack and put it in register pair HL.

880 - Get the value from the stack and put it in register pair AF.

890 - Return.

900 - Load register A with the RESET flag.

910 - Jump.

920 - Load register A with the SET flag.

930 - Save the graphic flag in register A.

940 - Load register pair HL with the current BASIC program
pointer.

950 - Bump the current BASIC program pointer in register pair
HL till it points to the next character.

960 - Go check the syntax. The character at the location of the
current BASIC program pointer in register pair HL must be
al.

970 - The character to be checked for is stored here.

980 - Go evaluate the expression at the location of the current
BASIC program pointer in register pair HL and return with
the X value in register A.

990 - Check to see if the X value in register A is greater than 63.

1000 - Go to the Level II BASIC error routine and output a FC
ERROR message, if the X value in register A is greater than
63.

70

1010 -
1020 -

1030 -
1040 -

1050 -
1060 -

1070 -
1080 -
1090 -
1100 -
1110 -
1120 -

1130 -
1140 -
1150 -
1160 -

1170 -
1180 -
1190 -
1200 -

1210 -

1220 -

1230 -
1240 -
1250 -
1260 -
1270 -

1280 -
1290 -

Save the X value in register A on the stack.

Go evaluate the expression at the location of the current
BASIC program pointer in register pair HL and return with
the Y value in register A.

Check to see if the Y value in register A is greater than 47.
Go to the Level II BASIC error routine and output a FC
ERROR message, if the Y value in register A is greater than
47,

Save the Y value in register A on the stack.

Go check the syntax. The character at the location of the
current BASIC program pointer in register pair HL must be
a).

Get the Y value from the stack and put it in register A.
Load register E with the Y value in register A.

Get the X value from the stack and put it in register A.
Multiply the X value in register A by two.

Load register D with the X value in register A.

Save the current BASIC program pointer in register pair
HL on the stack.

Save the X and Y values in register pair DE on the stack.
Load register A with the graphic flag.

Go do the graphics.

Get the X and Y values from the stack and put it in register
pair DE.

Bump the X value in register D.

Load register A with the graphic flag.

Go do the graphics.

Get the current BASIC program pointer from the stack and
put it in register pair HL.

Decrement the current BASIC program pointer in register
pair HL.

Bump the current BASIC program pointer in register pair
HL till it points to the next character.

Jump to Level II BASIC.

Save the graphic flag in register A on the stack.

Save the X value in register D on the stack.

Load register A with the Y value in register E.

Load register pair HL with the dummy BASIC program
pointer,

Jump to the Level II BASIC graphics routine.

A value from the command jump table search will be stored
here.

71

1300 - A value from the command jump table search will be stored

here.

1310 - A value from the command jump table search will be stored
here.

1320 - A value from the command jump table search will be stored
here.

1330 - The graphic flag will be stored here.

1340 - Part of the sign-on message is stored here.

1350 - This will display a carriage return as part of the sign-on
message.

1360 - Part of the sign-on message is stored here.

1370 - This will display a carriage return as part of the sign-on
message.

1380 - The sign-on message terminator is stored here.

1390 - The BASIC program area will start here.

1400 - End of the program.

Listing 5-2

0 7 LISTING 5.2
10 * DOUBLE WIDTH GRAFHICS DEMO
15 CLS

20 FORX=0T063

30 FORY=QTD47STEF2

40 DSET(X,Y)

50 NEXTY

60 NEXTX

70 FORX=0TD63

80 FORY=0TQ47

90 IFFOINT (X¥2,Y) THEN1OOELSE110
100 DRESET (X,Y) :B0TO120

110 DSET(X,Y)

120 NEXTY

130 NEXTX

140 GOTO70

72

Chapter 6
Programmable Shift Key Entries

On the Model I, the keyboard, the video display, and the printer are
all controlled by device control blocks. These device control blocks
are used by Level II BASIC to branch to the appropriate driver
routines and to hold data relating to each device. The driver routine
for each device is a program which handles the input or output for
the device. This chapter describes how the keyboard driver can be
intercepted to allow for modification of the driver routine.

THE KEYBOARD DEVICE CONTROL BLOCK

The keyboard device control block is shown in Fig. 6-1 as it
appears in memory. The keyboard driver address is shown as
03E3H. By placing a new address in memory location 4016H, Level
IT BASIC will branch to a new driver routine. The next program
presents a way to modify the keyboard driver to provide program-
mable shift key entries. Shift key entries provide for faster program
development by allowing you to enter a string of characters simply
by holding the shift key down and pressing any key from A to Z.

Figure 6-2 lists the shift key entries, as they are initialized by
the program. The program also makes use of the following three
Disk BASIC links:

LSET. This command turns the shift key entries off
thus allowing for normal keyboard operation. To use, sim-

ply type LSET and press ENTER.

73

4015H - Device type: 1

4016H - Driver address (with Level Il BASIC this is 03E3H)
4018H - Not used

4019H - Not used

401AH - Not used

401BH - RAM Buffer Address

Fig. 6-1. Keyboard device contro! block.

RSET. This command turns the shift key entries on.
To use, simply type RSET and press ENTER.

CMDiletter=string. This command is used to
change the value of a shift key entry. The shift key entry to

A - STRING3(B - INT(

C - CHR$(D - DATA

E - ELSE F - LEFT(
G - GOTO H - RIGHTS(
I - INPUT J - INKEY$
X - RUN ENTER L - LIST

M - MID$(N - NEXT

0 - ASC(P - LPRINT
Q - SYSTEHM ENTER R - RETURN
S - GOSUB T - THEN

U - USING V - VAL(

W - RND(X - STR$(
Y - LEN(Z - EDIT

Fig. 6-2. The shift key entries.
74

be changed is specified by ‘letter’ and must be any letter
from A to Z. The value of the shift key entry will be changed
to the string, which can be any Level II BASIC string.
Some examples follow.

CMDA="AUTO"
CMDM=STRING$(31,191)

The string must not be any more than 32 characters in length. If
the string is more than 32 characters in length, the shift key entry
value will be set to the first 32 characters of the string.

THE SHIFT KEY PROGRAM

Let’s examine the program in Listing 6-1. The program starts
by moving the start of the BASIC program area above the shift key
entry program. Next, the three Disk BASIC commands are linked
with the program. The keyboard driver address is loaded into
register pair HL and saved as part of the program. The RSET
function is then called to initialize the shift key entries. Program
control is then returned to Level IT BASIC.

The LSET command turns off the shift key entries by first
saving the BASIC program pointer. Then, the old keyboard driver
address is retrieved and placed in the keyboard device control
block. The BASIC program pointer is retrieved and program control
is returned to Level II BASIC.

The RSET command turns on the shift key entries by first
saving the BASIC program pointer. Then, the new keyboard driver
address is stored in the keyboard device control block. The BASIC
program pointer is retrieved and program control is returned to
Level II BASIC.

CMD changes a shift key entry by first checking the character
pointed to by register pair HL. If the character is less than an A or
the character is greater than a Z, program control will be passed to
the FC ERROR routine.

Next, 65 is subtracted from the character pointed to by register
pair HL. This gives the program an offset of from 0 to 25. This value
is then multiplied by 2 in order to give the program a two byte offset.
This offset is placed in register pair DE.

The BASIC program pointer is saved on the stack and register
pair HL is loaded with the location of the shift key entry table.
Register pairs HL and DE are then added resulting in register pair
HL pointing to the storage location of the shift key entry to be

75

changed. This address is loaded into register pair DE and saved.
The BASIC program pointer is retrieved from the stack. Register
pair HL is incremented until it points to the next character.

A syntax check is done to check for the = sign. Note that Level
II BASIC treats = as a BASIC keyword and that all =’s are stored as
D5H in memory. The number type flag is then set to a string. The
string expression is evaluated by calling the ROM routine at 2337H.
ROM routine 2337H performs as follows.

Evaluate Expression, address 2337H. This routine
evaluates the expression at the location of the current
BASIC program pointer in register pair HL. The result is
returned in REG1. On exit, the BASIC program pointer
will be pointing to the byte immediately following the
expression.

The number type flag is then checked to make sure that the
expression was a string. RST 0020H is used to perform this func-
tion. This ROM routine functions as follows:

Test the Number Type Flag, RST 0020H. This
routine tests the number type flag to determine the current
type of value in REG1. The flags register and register A
will be as follows on exit:

FLAGS REGISTER A
INTEGER NZ/C/M/E -1
STRING Z/C/P/E 0
SINGLE NZ/C/P/0O 1
DOUBLE NZ/NC/P/E 5

Once this check is completed, program control is passed to the
TM ERROR routine if the number type flag is any other value
except a string. Once the string has been correctly evaluated,
memory location 4121H will hold the VARPTR for the string result.
The length of the string is checked to see if it is greater than 32. If
the length of the string is greater than 32, the length will be set to
32. Otherwise, the length is set to the actual string length. Once the
length of the string has been set, the string is block moved to the
shift key entry location.

Listing 6-1

429 00100 ORG 42E9H
42E9 CDCI01 00110 START CALL Q1C9H
42EC 214C47 Q0120 LD HL, M1
42EF €CD752B 00130 CALL 2B75H

76

42F2
42FS
42F7
42Fg
42FB
42FE
4301
4304
4306
4309
430C
430F
4312
4315
4318
4318
431E
4321
4324
4327
432A
432D
432E
4331
4333
4334
4337
433A
433B
433C
433E
4341
4343
4346
4348
4344
434C
434D
434
4351
4352
4353
4354
4355
4359
435A
4358
435C
435D
435F
4362
4365
4348
4349
436C
436F
4370
4372
4374
4375
4377
4379
4378
437¢C
437D
437E
437F
4380

217B47 00140
3600 00150
23 00160
22A440 00170
113200 Q0180
CD831E 00190
CD4D1R 00200
3ECS 00210
327341 QO220
213C43 00230
227441 00240
329741 00250
212D43 Q0260
229841 00270
329A41 Q0280
213343 00290
229841 QQ300
2A1640 00310
22A043 00320
CD3343 00330
C37200 00340
ES 00350
2AA04A3 003460
1804 00370
ES 00380
218D43 Q0390
221640 Q0400
El 00410
ce Q0420
FE41 00430
DA4ALE 00440
FESB 00450
D24A1E 00460
D&4t 00470
CB27 00480
1600 00490
SF 00500
ES 00510
218943 00520
19 00530
SE Q0S40
23 00550
Sé6 Q0560
EDS34747 00570
El Q580
D7 Q0590
CF QOL00
DS Q0610
3E03 Q0620
32AF40 00630
CD3723 Q0640
22E640 00650
E7 QQ6LQ
C2F60A 00670
2A2141 Q0680
7E 00620
FE21 QQ700
3003 00710
4F QQ72Q
1R02 Q0730
QE20 QQ740
0600 00750
23 QQ760
SE Q0770
23 Q0780
Sé6 00790
ER Qa8LO

EDSB4747 00810

LSET

RSET

LP1

CMD

cM2
CM3

LD
LD
INC
LD
LD
CAaLL
CALL
LD
LD
LD
L.D
LD
LD
LD
Lp
LD
LD
LD
LD
CALL

PUSH
LD
JR
PUSH
LD
LD
FOP
RET

HL,BASIC
(HL) , 0

HL
(40A4H) , HL
DE, 50
1E83H
1E4DH

A, OCIH
(4173H) , A
HL., CMD
(4174H) (HL
(4197H) A
HL,LSET
(4198H) , HL
(419AH) , A
HL,RSET
(419EH) (HL
HL, (4016&6H)
(JUMP+1) ,HL
RSET

QO72H

HL

HL, (JUMP+1)
LP1

HL

HL, KEY
(4016H) ,HL
HL

Y]

C, 1E4AH
91

NC, 1E4AH
65

A

D,0

E.A

HL

HL, TARLE
HL, DE

E, (HL)
HL

D, (HL)
(CM1) ,DE
HL

0010H
QOOBH
ODSH

A, 3
(40AFH) , A
23I37H
(A40E&H) , HL
QO20H

NZ , OAF 6H
HL, (4121H)
A, (HL)
33

NC, CM2
C.A

cM3

c,32

B,0

HL

E, (HL)
HL

D, (HL)
DE, HL
DE, (CM1)

77

4384
4386
4387
4389
438C
438D
4390
4391
4393
4396
4397
4398
439R
439E
439F
43A2
43R4
43AS
43A7
43A8
43AA
43AC
4ZAE
43AF
4382
43EE
43R4
43RS
43B6
43R7
43RS
43EBE
43ED
43BF
43C1
43C3
4305
43C7
43C9
43CHE
43CD
43CF
43D1
A43DE
43D5
43D7
43D%
43DR
43DD
43DF
47E1
43E3
4ZES
43E7
43EQ
4ZER
4ZED
43EE
43EF
43FQ
43F1
43F2
43F3
43F 4
43FS
o018
440K
440F

78

EDRO
ER
I&6Q0
2REL40
ce
IA4B47
EB7
280C
2A4947
7E

23

224947
IR4RAT
c9
CDOOOO
FE61
D8
FEBO
Do
D&61
CE27
1600
SF
218943
19
SE
23
56
ER
18DD
ED43
0E44
2F44
5044
7144
9244
E344
D444
FS544
1645
3745
5845
7945
9A45
RE4S
DC4S5
FD4S
1E46
3IFaG
65046
8146
AR46
C346
E444
0547
2647
53
54
52
49
4E
47

2

28
Q0

49
4E

00820
Q0B3I0
00840
QOBS0
QOB6O
0OB70 KEY
[lui=2=14)
00890
QOR00
00910 KEY1
0020
QOIFIQ
Q0940
009350
QOPE0 JUMP
QOR70
QOe80
Q0990
Q1000
01010
Q1020
QL1030
41040
01050
Q1060
01070
01080
01090
01100
01110
01120 TABLE
01130
01140
01150
01160
01170
01180
01190
Q1200
01210
01220
01230
Q1240
01280
O1260
01270
01280
01290
01300
01310
Q1320
01330
01340
01350
Q1360
Q1370
Q1380 SHA

01390
01400
01410 SHB

LDIR
EX
LD
LD
RET
LD
OR
JR
LD
LD
INC
LD
LD
RET
CAatL
cP
RET
cP
RET
SuUR
SLA
LD
LD
LD
ADD
LD
INC
1.D
EX
JR
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFM

DEFR
DEFS
DEFM

DE, HL
(HL) ,0
HL, (40E&H)

A, (FLAB)

A

7, JUMP

HL, (FOINT)
A, (HL)

HL

(POINT) ,HL
(FLAG) , A

QOOOH
97

c

128
NC

97

A

D,0
E.A
HL, TABLE
HL,DE
E, (HL)
HL

D, (HL)
DE, HL
KEY1
SHA
SHE
SHE
SHD
SHE
SHF
SHEB
SHH
SHI
SHI
SHK
SHL
SHM
SHN
SHO
SHP
SHE
SHR
SHS
SHT
SHU
SHY
SHW
SHX
SHY
SHZ

* STRINGS (°

Q
24
TINT (S

4410
4411
4412
oolc
442F
4430
4431
4432
4433
4434
001B
4450
4451
4452
4453
4454
001C
4471
4472
4473
4474
4475
001C
4492
4493
4494
4495
4496
4497
4498
001A
44R3
44E4
44BS
44R6
44R7
001iC
4404
44D5
44D6
44D7
44D8
44p9
44DA
44DR
0019
44FS
44F &
44F7
44F8
44F9
44FA
001B
4516
4517
4518
4519
451A
451H
451C
001A
4537
45738
4539
453A
AS3ER
o1C

54
28
Q0

43
48
S2
24
28
(Y]

44
a1
54
a1
00

45
4C
53
45
Q0

4C
435
44
G4
24
28
Qo

47
4F
54
4R

52
49
47
48
S4
24
28

QQ

49
4E
S0
SS
54
QQ

Q1420
01430
Q1440

Q1450
01460
Q1470

01480
01490
013500

01510
01520
Q1330

01540
01550
Q1360

01570
01580
Q1590

01600
01610
Q1620

Q1630
01640
Q1650

01660
01670
Q1680

a1690
0170¢
01710

SHC

SHD

SHE

SHF

SHB

SHH

SHI

SHJ

SHE

DEFR
DEFS
DEFM

DEFE
DEFS
DEFM

DEFR
DEFS
DEFM

DEFR
DEFS
DEFM

DEFE
DEFS
DEFM

DEFE
DEFS
DEFM

DEFB
DEFS
DEFM

DEFE
DEFS
DEFM

DEFE
DEFS
DEFM

DEFE
DEFE
DEFS

Q
28
PCHR® (7

27

*DATA?

Q
28
TELSE?

(]
28
PLEFTS (*

(o]
26
*60TO°

()
28

TRIGHTS ¢

Q
25

" INPUT

]
27
P INKEYS®

Q
26
TRUN?

13
Q
28

79

4558
4559
455A
455E
4s55C
oo1c
4579
457A
4578
457¢C
457D
457E
001B
459A
459H
459¢C
459D
4S9E
001C
45RE
45RC
45ED
45BE
45BF
001C
4s5DC
45DD
45DE
45DF
45E0
45E1
4562
001A
45FD
45FE
4SFF
4600
4601
4602
4603
4604
0019
461E
461F
4620
4621
4622
4623
4624
001A
463F
4540
4641
4642
4643
4644
001B
4660
4661
4662
4663
4664
001C
3681
4682
4683
4684
4585

80

4c
49
53
54

(o]

4p
49
44
24

Q0

4E
45
S8
54
Qo

41
83
43
28
00

4Cc

52
49
4E
s4
oo

53
59
o3
54
45
4D
oD
00

S2
45
S4
S5
52
4E
Q0

47
4F
53
55
42
00

54
48
45
4E
Q0

S5
53
49
4
47

01720

01730
01740
Q17350

01760
Q1770
01780

01790
01800
01810

01820
01830
01840

01850
01860
01870

01880
01890
01900
01910

01920
Q1930
013940

01950
01960
01970

01980
01990
Q2000

SHL

SHM

SHN

SHO

SHP

SHE

SHR

SHS

SHT

SHU

DEFM

DEFR
DEFS
DEFM

DEFE
DEFS
DEFM

DEFE
DEFS
DEFM

DEFB
DEFS
DEFM

DEFB
DEFS
DEFM

DEFE
DEFB
DEFS
DEFM

DEFE
DEFS
DEFM

DEFR
DEFS
DEFM

DEFR
DEFS
DEFM

TLIST?

(v}
28
*MIDS (7

TASC(?

Q
28
*LPRINT?

o]
26
*SYSTEM®

13

Q

25
*RETURN?

26

* GOsSUB*?

27
* THEN®

Q
28
USING?

4686
001B
46A2
46A3
46A4
46AS
46A6
001C
4603
46C4
46CS
46C6
46C7
001C
44E4
446ES
46E6
46E7
46E8
46E9
QO1R
4705
4706
4707
4708
4709
QO1C
4726
4727
4728
4729
472A
0o01C
4747
4749
474R
474C

474D
474E
474F
4750
4731

4732
4753
4754
47353
4756
4757
4758
47359
475A
475R
4750
475D
475E
475F
4760
4761

4762
4763
4764
4765
4766
4767
4768
4769
476A

QQ

S6
41
4c
28
Q0

52
4E
44
28
00

S3
5S4
52
24
28
QO

4c
45
4E
28
QO

45
44
49
s4
00

QOO0
[e1¢]ele]
QO
S0

s2
4F
47
52
41
4D
41
42
4ac
45
20
53
48
49
46
54
20
45
45
59
20
45
4E
54
o2
49
45
3
oD
42

Q2010
Q2020
Q2030

Q2040
02050
Q2060

Q2070
02080
02090

Q2100
02110
Q2120

Q2130
02140
Q21350

Q216Q
Q2170
02180
02190
Q2200
02210

02220
Q2230

SHY

SHW

SHX

SHY

SHz

CM1
FOINT
FLAG
M1

DEFE
DEFS
DEFM

DEFR
DEFS
DEFM

DEFE
DEFS
DEFM

DEFE
DEFS
DEFM

DEFE
DEFS
DEFM

DEFR
DEFS
DEFuW
DEFW
DEFE
DEFM

DEFE
DEFM

o]

VAL (7

[}
28
TRND (?

28

TETRE(?

*LENCT

Q
28
TEDIT?

Q
" PROGRAMABLE SHIFT
KEY ENTRIES’

13

"RY MARK GOODWIN®

81

4760 59

476C 20

476D 4D

476E 41

476F 52

4770 4B

4771 20

4772 47

4773 4F

4774 4F

4775 44

4776 57

4777 49

4778 4E

4779 QD 02240 DEFE 13
4776 Q0 02230 DEFB [&]
4778 0Q 02260 BASIC DEFE [¢]
42E9 Q2270 END START
QOQOQ TOTAL ERRORS
8SHZ 4726
SHY 4705
SHX 446E4
SHW 4603
SHV 46A2
SHU 44681
SHT 4660
SHS 46EF
SHR 461E
SHR 45FD
SHF 45DC
SHO 43ER
SHN 459A
SHM 4579
SHL 4558
SHE 4537
SHJ 4516
SHI 44F3
SHH 44D4
SHB 4483
SHF 4492
SHE 4471
SHD 4450
SHC A42F
SHB 440E
SHA 43ZED
KEY1 4396
FOINT 4749
FLAG 474
CM3 4379
cM2 4377
CM1 4747
TABLE 43R9
KEY 438D
LP1 4337
JUMP 439F
RSET 4333
LSET 432D
CMD 433C
BASIC 477R
M1 474C

START 42E9

Listing 6-1 Comments
100 - Set the starting address to the normal start of the BASIC
program area.

82

110 -
120 -

130 -
140 -

150 -
160 -
170 -
180 -
190 -
200 -
210 -
220 -
230 -

240 -

250 -

260 -

270 -

280 -

290 -

300 -

310 -

320 -
330 -

Go clear the screen.

Load register pair HL with the starting address for the
message to be displayed.

Go display the message.

Load register pair HL with the ending address of the pro-
gram.

Zero the location of the start of the BASIC program area
pointer in register pair HL.

Bump the start of the BASIC program pointer in register
pair HL.

Save the start of the BASIC program area pointer in regis-
ter pair HL.

Load register pair DE with the number of bytes to be
reserved as string space.

Go reserve the string space and reset the string space
pointer.

Go reset the BASIC pointers and variables.

Load register A with a JP op code.

Save the JP op code in register A as the first byte of the
CMD Disk BASIC link.

Load register pair HL with the starting address for the
CMD routine.

Save the starting address for the CMD routine in register
pair HL as the second and third bytes of the CMD Disk
BASIC link.

Save the JP op code in register A as the first byte of the
LSET Disk BASIC link.

Load register pair HL with the starting address for the
LSET routine.

Save the starting address for the LSET routine in register
pair HL as the second and third bytes of the LSET Disk
BASIC link.

Save the JP op code in register A as the first byte of the
RSET Disk BASIC link.

Load register pair HL with the starting address for the
RSET routine.

Save the starting address for the RSET routine in register
pair HL as the second and third bytes of the RSET Disk
BASIC link.

Load register pair HL with the keyboard driver address.
Save the old keyboard driver address in register pair HL.
Go initialize the shift key entries.

83

340 - Jump to the Level Il BASIC READY routine.

350 - Save the current BASIC program pointer in register pair
HL on the stack.

360 - Loadregister pair HL. with the old keyboard driver address.

370 - Jump.

380 - Save the current BASIC program pointer in register pair
HL on the stack.

390 - Load register pair HL with the new keyboard driver ad-
dress.

400 - Save the keyboard driver address in register pair HL.

410 - Get the current BASIC program pointer from the stack and
put it in register pair HL.

420 - Return.

430 - Check to see if the character at the location of the current
BASIC program pointer in register A is less than an A.

440 - Jump to the Level II BASIC error routine and output a FC
ERROR message if the character at the location of the
current BASIC program pointer in register A is less than an
A.

450 - Check to see if the character at the location of the current
BASIC program pointer in register A is greater than a Z.

460 - Jump to the Level II BASIC error routine and output a FC
ERROR message if the character at the location of the
current BASIC program pointer in register A is greater than
alZ

470 - Subtract 65 from the value in register A to give an offset of 0
to 25.

480 - Multiply the offset in register A by two.

490 - Zero register D.

500 - Load register E with the offset in register A.

510 - Save the current BASIC program pointer in register pair
HL on the stack.

520 - Load register pair HL with the starting address of the shift
key location table.

530 - Add the offset in register pair DE to the starting address of
the shift key location table in register pair HL.

540 - Load register E with the L.SB of the shift key’s starting
address at the location of the shift key location table pointer
in register pair HL.

550 - Bump the shift key location table pointer in register pair
HL.

560 - Load register D with the MSB of the shift key’s starting

84

570 -
580 -

590 -
600 -
610 -
620 -
630 -
640 -
650 -
660 -
670 -
680 -
690 -
700 -
710 -
720 -
730 -
740 -
750 -
760 -
770 -

780 -
790 -

800 -

810 -

address at the location of the shift key location table pointer
in register pair HL.

Save the shift key’s starting address in register pair DE.
Get the current BASIC program pointer from the stack and
put it in register pair HL.

Go bump the current BASIC program pointer in register
pair HL till it points to the next character.

Go check the syntax. The character at the location of the
current BASIC program pointer in register pair HL must be
an =,

The character to be checked for is stored here.

Load register A with the string number type code.

Set the number type flag to string.

Go evaluate the string expression at the location of the
current BASIC program pointer in register pair HL and
return with the result in REG1.

Save the current BASIC program pointer in register pair
HL.

Go check the number type flag.

Go to the Level II BASIC error routine and output a TM
ERROR if the current value of the number type flag isn’t a
string.

Load register pair HL with the string’s VARPTR.

Load register A with the length of the string at the location
of the string’s VARPTR in register pair HL.

Check to see if the length of the string in register A is
greater than 32.

Jump if the length of the string in register A is greater than
32.

Load register C with the length of the string in register A.
Jump.

Load register C with the length of the string.

Zero register B.

Bump the string’s VARPTR in register pair HL.

Load register E with the LSB of the string’s starting ad-
dress.

Bump the string’s VARPTR in register pair HL.

Load register D with the MSB of the string’s starting
address.

Load register pair HL with the string’s starting address in
register pair DE.

Load register pair DE with the shift key’s starting address.

85

820 - Move the string to the shift key’s storage location.

830 - Loadregister pair HL with the end of the shift key’s storage
location.

840 - Zero the end of the shift key’s storage location.

850 - Load register pair HL with the current BASIC program
pointer.

860 - Return.

870 - Load register A with the shift key flag.

880 - Check to see if a shift key is still being processed.

890 - Jump if a shift key isn’t being processed.

900 - Load register pair HL. with the current shift key pointer.

910 - Load register A with the character at the location of the
current shift key pointer in register pair HL.

920 - Bump the current shift key pointer in register pair HL.

930 - Save the current shift key pointer in register pair HL.

940 - Save the character in register A as the shift key flag.

950 - Return.

960 - Go call the old keyboard driver.

970 - Check to see if the key pressed is less than a shift A.

980 - Returnifthe key pressedinregister A is less than a shift A,

990 - Check to see if the key pressed in register A is greater than
a shift Z.

1000 - Returnif the key pressed in register A is greater than a shift
Z.

1010 - Subtract 97 from register A so that register A will hold an
offset from 0 to 25.

1020 - Multiply the offset in register A by two.

1030 - Zero register D.

1040 - Load register E with the offset in register A.

1050 - Load register pair HL with the starting address of the shift
key location table.

1060 - Add the offset in register pair DE to the starting address of
the shift key location table in register pair HL.

1070 - Load register E with the LSB of the shift key’s starting
address at the location of the shift key location table pointer
in register pair HL.

1080 - Bump the shift key location table pointer in register pair
HL.

1090 - Load register D with the MSB of the shift key’s starting
address at the location of the shift key location table pointer
in register pair HL.

86

1100 - Load register pair HL with the shift key's starting address
in register pair DE.

1110 - Jump.

1120 - Shift A’s starting address is stored here.

1130 - Shift B’s starting address is stored here.

1140 - Shift C’s starting address is stored here.

1150 - Shift D’s starting address is stored here.

1160 - Shift E’s starting address is stored here.

1170 - Shift F’s starting address is stored here.

1180 - Shift G’s starting address is stored here.

1190 - Shift H's starting address is stored here.

1200 - Shift I's starting address is stored here.

1210 - Shift J's starting address is stored here.

1220 - Shift K’s starting address is stored here.

1230 - Shift L’s starting address is stored here.

1240 - Shift M’s starting address is stored here.

1250 - Shift N's starting address is stored here.

1260 - Shift O’s starting address is stored here.

1270 - Shift P’s starting address is stored here.

1280 - Shift Q’s starting address is stored here.

1290 - Shift R’s starting address is stored here.

1300 - Shift S’s starting address is stored here.

1310 - Shift T’s starting address is stored here.

1320 - Shift U’s starting address is stored here.

1330 - Shift V's starting address is stored here.

1340 - Shift W’s starting address is stored here.

1350 - Shift X’s starting address is stored here.

1360 - Shift Y’s starting address is stored here.

1370 - Shift Z's starting address is stored here.

1380 - Shift A is stored here.

1390 - Shift A’s terminator is stored here.

1400 - Make sure there’s enough room for 32 characters.

1410 - Shift B is stored here.

1420 - Shift B’s terminator is stored here.

1430 - Make sure there’s enough room for 32 characters.

1440 - Shift C is stored here.

1450 - Shift C’s terminator is stored here.

1460 - Make sure there’s enough room for 32 characters.

1470 - Shift D is stored here.

1480 - Shift D’s terminator is stored here.

1490 - Make sure there’s enough room for 32 characters.

87

1500 - Shift E is stored here.

1510 - Shift E’s terminator is stored here.

1520 - Make sure there’s enough room for 32 characters.
1530 - Shift F is stored here.

1540 - Shift F’s terminator is stored here.

1550 - Make sure there’s enough room for 32 characters.
1560 - Shift G is stored here.

1570 - Shift G’s terminator is stored here.

1580 - Make sure there's enough room for 32 characters.
1590 - Shift H is stored here.

1600 - Shift H’s terminator is stored here.

1610 - Make sure there’s enough room for 32 characters.
1620 - Shift I is stored here.

1630 - Shift I's terminator is stored here.

1640 - Make sure there’s enough room for 32 characters.
1650 - Shift J is stored here.

1660 - Shift J's terminator is stored here.

1670 - Make sure there’s enough room for 32 characters.
1680 - Part of shift K is stored here.

1690 - This will cause a carriage return as part of shift K.
1700 - Shift K’'s terminator is stored here.

1710 - Make sure there’s enough room for 32 characters.
1720 - Shift L is stored here.

1730 - Shift L's terminator is stored here.

1740 - Make sure there’s enough room for 32 characters.
1750 - Shift M is stored here.

1760 - Shift M’s terminator is stored here.

1770 - Make sure there’s enough room for 32 characters.
1780 - Shift N is stored here.

1790 - Shift N’s terminator is stored here.

1800 - Make sure there’s enough room for 32 characters.
1810 - Shift O is stored here.

1820 - Shift O’s terminator is stored here.

1830 - Make sure there’s enough room for 32 characters.
1840 - Shift P is stored here.

1850 - Shift P’s terminator is stored here.

1860 - Make sure there’s enough room for 32 characters.
1870 - Part of shift Q is stored here.

1880 - This will cause a carriage return as part of shift Q.
1890 - Shift Q’s terminator is stored here.

1900 - Make sure there’s enough room for 32 characters.
1910 - Shift R is stored here.

88

1920 - Shift R’s terminator is stored here.

1930 - Make sure there’s enough room for 32 characters.

1940 - Shift S is stored here.

1950 - Shift S’s terminator is stored here.

1960 - Make sure there's enough room for 32 characters.

1970 - Shift T is stored here.

1980 - Shift T's terminator is stored here.

1990 - Make sure there’s enough room for 32 characters.

2000 - Shift U is stored here.

2010 - Shift U’s terminator is stored here.

2020 - Make sure there’s enough room for 32 characters.

2030 - Shift V is stored here.

2040 - Shift V’s terminator is stored here.

2050 - Make sure there’s enough room for 32 characters.

2060 - Shift W is stored here.

2070 - Shift W’s terminator is stored here.

2080 - Make sure there’s enough room for 32 characters.

2090 - Shift X is stored here.

2100 - Shift X's terminator is stored here.

2110 - Make sure there’s enough room for 32 characters.

2120 - Shift Y is stored here.

2130 - Shift Y’s terminator is stored here.

2140 - Make sure there’s enough room for 32 characters.

2150 - Shift Z is stored here.

2160 - Shift Z’s terminator is stored here.

2170 - Make sure there’s enough room for 32 characters.

2180 - Temporary storage location.

2190 - The current shift key entry pointer is stored here.

2200 - The shift key entry flag is stored here.

2210 - Part of the sign-on message is stored here.

2220 - This will display a carriage return as part of the sign-on
message.

2230 - Part of the sign-on message is stored here.

2240 - This will display a carriage return as part of the sign-on
message. :

2250 - The sign-on message terminator is stored here.

2260 - The start of the BASIC program area will start here.

2270 - End of the program.

THE NEW KEYBOARD DRIVER

The new keyboard driver first checks the shift key flag to see if
there is a shift key entry to be processed. If the program is still

89

processing a shift key entry, the next character is placed in register
A. The value in register A is returned to Level II BASIC.

If the shift key entry flag indicates there isn't a shift key entry
to be processed, then the old keyboard driver routine is called. If
the character returned by the old keyboard driver is less than a shift
A or greater than a shift Z, the program will return to Level II
BASIC.

If a shift A to shift Z was pressed, the driver program figures
the address for the shift key entry. The first shift key character is
placed in register A. The shift key entry flag is loaded with this
character to indicate a shift key entry is being processed. Then, the
character in register A is returned to Level II BASIC.

The value of the shift key entries can be easily changed before
assembly to any initial values you desire.

90

Chapter 7
A RAM Printer Spooler

A RAM printer spooler can be added to Level II BASIC by simply
intercepting the keyboard driver and the printer driver. For those
who are not familiar with a printer spooler, a short explanation
about spoolers is in order.

THE PURPOSE OF A SPOOLER

Under normal operation of Level Il BASIC, program execution
is temporarily suspended while characters are sent to the printer.
By halting program execution, the computer’s throughput is greatly
reduced. After all, just think how much time would be saved if the
computer didn't have to wait for the printer.

Well, a printer spooler will virtually eliminate these delays for
the printer. There are two basic types of printer spoolers: the RAM
spooler and the disk spooler. With both types of spoolers, the
program checks to see if the printer is busy. If the printer is busy,
the spooler program sends the character to be printed to a buffer
area in RAM for the RAM printer spooler or to the disk for the disk
spooler.

Let’s look at the RAM printer spooler’s operation in more
detail. When the printer spooler is first initialized, you are asked to
enter the size of the buffer area. This buffer area is used by the
spooler program to temporarily hold the characters while the
printer is busy. The size of the buffer area is determined by the
memory size of the computer and the memory requirements of the

o1

program which will be executed. Suppose the buffer area is set to
2000 bytes upon initialization of the spooler program. If a program
of 1500 bytes was LLISTed, the spooler program will immediately
send the whole program to the buffer area. There will be no notice-
able delay while the spooler performs this operation. The Level II
BASIC READY message will return almost instantly. Now, the
operator is able to continue with his next task.

For instance, he might choose to load a new program or maybe
run the program that is already in memory while the spooler pro-
gram will be sending all of the characters to the printer one at a time
until the buffer is empty.

You may be wondering what would happen if a program longer
than 2000 bytes was LLISTed. The spooler program would start by
sending the first 2000 bytes of the program to the buffer area. At this
point, printer operation will function like a normal Level II printer
operation. The spooler will take a character out of the buffer and
send it to the printer. Also the spooler will place the next character
sent to it in the buffer area. This taking one character out and putting
another character in will continue until there aren’t anymore
characters left to be placed in the buffer area. At this time, the
spooler will return control of the computer to the operator and
continue sending characters to the printer until the buffer area is
empty.

As you can see from the above examples, the larger the buffer
area the fewer delays will occur. So when the spooler program is
initialized the buffer area should be set to the largest practical size.

A disk spooler works in much the same way as the RAM
spooler. Instead of sending the characters to a buffer area in RAM,
they are stored on the disk while the printer is busy. Although the
disk spooler doesn’t use any of the computer’s RAM, it is slower
because of the time involved with disk read/writes. Therefore, the
RAM spooler is the preferred method.

THE SPOOLER PROGRAM

Program Listing 7-1 is a RAM printer spooler. It uses the
keyboard driver to determine if the printer is busy. If it is, the
spooler program jumps to the normal keyboard driver routine. If the
printer isn't busy, then the spooler program performs it’s intended
function.

The program also uses the printer driver to determine if a
character is being sent to the printer or not. The printer driver is
intercepted in much the same way as the keyboard driver is inter-

92

4025H
4026H - 4027H
4028H
4029H
402AH
402BH - 402CH

Device Type

Driver Address
Lines per page
Lines printed so far
Not Used

RAM Buffer Address

Fig. 7-1. The printer device control block.

cepted; a new driver address is put in the printer device control
block. The printer device control block is shown in Fig. 7-1 as it
appears in memory.

The program in Listing 7-1 uses only one new ROM routine

which hasn’t been previously discussed. This routine is located at
OA9DH. This routine simply sets the number type flag to integer.

Listing 7-1

42E9
42E9
42EC
42EF
42F2
42FS
42F &6
42F9
42FC
A42FF
4302
4303
4304
4307
4308
430A
430R
430E
4311
4314
4317
431A
431D
4320
4323
4326
4329
432C
432F
4332
4335
4338
433C
433D
433F
4342

4344

€bC901
21AC43
CD752B
CDB31B
D7
CDSALE
21E543
22A643
22AB43
19

2B
22AA43
23
3600
23
22A440
113200
CD831E
CD4D1B
2A1640
226A43
213543
221640
2A2640
228643
224943
216C43
222640
C37200
2AAB4Z
EDSBAL4E
DF
282A
CDD10S
2025
2AA643

00100

00110 START

Q0120
00130
Q0140
00150
00160
00170
00180
00190
00200
00210
QU220
Q0230
Q0240
00250
QO260
Q0270
Q0280
Q0290
QOI00
00310
Q0320
QOZ30
QU340
Q0350
00360
QU370
0Q380O
Q0390
00400
00410
Q0420
Q0430
Q0440
Q0450
QQ460

KEY

ORG
CALL
LD
CALL
CALL
RST
CALL
LD
LD
LD
ADD
DEC
LD
INC
LD
INC
LD
LD
calL
CALL

LD
LD
LD
LD
LD
LD
LD
LD
JP
LD
L.D
RST
JR
CAL.L
JR
LD

42E9H
01C9H

HL, M1
2B75H
1BB3H
QO10H
1ESAH
HL,BASIC
(SBUFF) , HL
(NBUFF) , HL
HL,DE

HL

(EBUFF) ,HL

(40A4H) , HL.
DE, 50

1E83H

1B4DH

HL, (4016H)
(IMP1+1) (HL
HL, KEY
(4016H) JHL
HL . (4026H)
(IMP2+1) , HL
(IMP3+1) HL
HL,PRINT
(4026H) 4 HL.
00724

HL, (NEUFF)
DE, (SEUFF)
QO18H
Z,IMP1
OSD1H

NZ, IMF1

HL . (BEUFF)

93

4347
4348
A34H
434E
4351
4355
4358
4359
435A
435D
435E
435F
4360
4362
4365
4366
4369
436C
436F
4373
4374
4377
437A
437H
437C
437F
4380
4381
4384
4385
4388
438B
438E
4392
4395
43946
4397
439A
439
439C
439D
439F
43A2
43AZ
43R4
43A5
43A6
43A8
43AA
43AC
43AD
AZAE
4ZAF
43RO
A3E1
4TE2
43R3
43R4
4TES
43Bé&
43R7
4ZR8
43R
43BA
43BE
43BC
43BD
43BE

94

4E
CDOOOO
CD9DOA
2AA643
EDSBABAZ
CDC70R
ES

ci
2AAL43
ES

D1

23
EDBCQ
2AAB43
2K
220843
C3I0000
2AABA43
EDSBAA4T
DF
CAB043
2AAB43
71

23
22AB43
[

(o<
2AA643
4E
CDOQOOO
CDSDOA
2AAR643
EDSEBAB43
CDC70B
ES

c1
2AR643
ES

D1

23
EDBO
20AB4AS
2B

[#3

71

co
0000
QOO0
0000
52

41

4D

20

50

52

49

4E

54

45

52

20

53

S0

4F

4F

4ac

45

52

00470
Q0480 IMP3
00490
QOS00
00510
QOUSR0
00330
Q0540
Q0550
QOS560
00570
Q0580
00520
Q0600
Q0610
QG620
00630 JMF1L
Q0640 FRINT
QLLEQ
QQb660
Q0670
Q0680
00690
Q0700
00710
QG720
00730 SUB2
Q0740
Q0750
Q0760 JIMP2
00770
Q0780
00790
00800
00810
Q0820
00830
Q0840
00BSO
QOB&O
00870
Q0880
00890
Q000
00910
00220
Q0930 SBUFF
Q0940 NEUFF
Q0950 EBUFF
Q0960 M1

€, (HL)
0OOOH
0ASDH

HL, (SEUFF)
DE, (NBUFF)
OBC7H

HL

BC

HL, (SBUFF)
HL

DE

HL

HL , (NEUFF)
HL

(NBUFF) ,HL
QOOOH

HL , (NRUFF)
DE, (ERUFF)
QO18H
Z,S8UR2

HL, (NBUFF)
(HL),C

HL
(NBUFF) , HL

BC

HL, (SBUFF)
C, (HL)
0000H
OAYDH

HL., (SBUFF)
DE, (NBUFF)
OEC7H

HL.

EC

HL, (SBUFF)
HL

DE
HL

HL, (NBUFF)

43BF
43co
431
43C2
43C3
43C4
43CS
43C6
43C7
43C8
43C9
43CA
43CB
43cc
43CD
43CE
43CF
43D0
43D1
43D2
43D3
43D4
43D5
43D6
43D7
43D8
43D9
43DA
43DE
43DC
43DD
43DE
43DF
4ZEQ
43E1
43E2
43E3
43E4
43ES
42E9

oD
42
59
20
4D
41
52
4B
20
44
2E
20
47
4F
4F
44
57
49
4E
oD
43
4E
54
45
52
20
42
55
46
46
45
52
20
53
49
5A
45
Q0
o

QQI70Q
00980

00970
01000

01010
01020 RASIC
Q1OZ0

00000 TOTAL ERRORS

SuUR2
FRINT
JMP3
JMP2
KEY
JMP1
ERUFF
NBUFF
SEUFF
BASIC
M1
START

4380
436C
4348
4382
4333
4369
43AA
43A8
43A6
43ES
43AC
42E9

Listing 7-1 Comments
100 - Set the starting address for the program to the start of user

110
120

130
140

RAM.
Go clear the screen.

DEFB
DEFM

DEFB
DEFM

DEFR
DEFB
END

13

"BY MARK D. GOODWIN®

13
*ENTER BUFFER SIZE’

START

- Load register pair HL with the starting address for the
message to be displayed.
Go display the message.
Go get the response from the keyboard.

95

150 -

160 -

170 -
180 -

190 -

200 -

210 -

220 -

230 -

240 -

250 -

260 -

270 -

280 -

290 -
300 -

310 -

320 -

330 -

340 -

96

Bump the input buffer pointer in register pair HL till it
points to the first character.

Go evaluate the expression at the location of the input
buffer pointer in register pair HL and return with the in-
teger result in register pair DE. The value in register pair
DE is the size of the spooler’s buffer area.

Load register pair HL with the end of the spooler program.
Save the end of the spooler program in register pair HL as
the start of the buffer area.

Save the end of the spooler program in register pair HL as
the next available location in the spooler buffer.

Add the buffer size in register pair DE to the start of the
buffer area in register pair HL.

Decrement the end of the spooler buffer area pointer in
register pair HL.

Save the end of the spooler buffer area pointer in register
pair HL.

Bump the pointer in register pair HL so that it points to the
new start of the BASIC program area.

Zero the location of the start of the BASIC program area
pointer in register pair HL.

Bump the start of the BASIC program area pointer in
register pair HL.

Save the new start of the BASIC program area pointer in
register pair HL.

Load register pair DE with the number of bytes to be
reserved as string space.

Go reserve the amount of string space and reset the start of
string space pointer.

Go reset the Level II BASIC variables and pointers.
Load register pair HL with the present keyboard driver
address.

Save the present keyboard driver address in register pair
HL so that the program can jump to the old keyboard driver
when necessary.

Load register pair HL with the starting address of the new
keyboard driver.

Save the new keyboard driver address in register pair HL in
the keyboard device control block.

Load register pair HL with the present printer driver ad-
dress.

350 -

360 -

370 -
380 -

390 -
400 -

410 -

420 -

430 -

440 -
450 -

460 -

470 -

480 -

490 -

500 -

510 -

520 -

530 -

Save the present printer driver address in register pair HL
so that the program can jump to the old printer driver when
necessary.

Save the present printer driver address in register pair HL
so that the program can jump to the old printer driver when
necessary.

Load register pair HL with the starting address of the new
printer driver.

Save the new printer driver address in register pair HL in
the printer device control block.

Return to the Level I BASIC READY routine.

Load register pair HL with the next available location in the
spooler buffer area pointer.

Load register pair DE with the start of the spooler buffer
area pointer.

Go compare the next available location in the spooler buffer
area pointer in register pair HL to the start of the spooler
buffer area pointer in register pair DE.

If the next available location in the spooler buffer area
pointer in register pair HL is the same as the start of the
spooler buffer area pointer in register pair DE then jump to
the normal Level IT BASIC keyboard driver routine.

Go check to see if the printer is busy.

If the printer is busy, then jump to the normal Level II
BASIC keyboard driver routine.

Load register pair HL with the start of the spooler buffer
area pointer.

Load register C with the character at the location of the
start of the spooler buffer area pointer in register pair HL.
This is a dummy call, but will be set to call the normal Level
IT BASIC printer driver by the initialization phase of the
spooler program.

Go set the current number type flag to integer.

Load register pair HL with the start of the spooler buffer
area pointer.

Load register pair DE with the next available location in the
spooler buffer area pointer.

Go subtract the start of the spooler buffer area pointer in
register pair HL from the next available location in the
spooler buffer area pointer in register pair DE.

Save the length of the remaining characters in register pair
HL on the stack.

97

540 -

550 -

560 -

570 -

580 -

590 -

600 -

610 -

620 -

630 -

640 -

650 -

660 -

Get the length of the remaining characters from the stack
and put it in register pair BC.

Load register pair HL with the start of the spooler buffer
area pointer.

Save the start of the spooler buffer area pointer in register
pair HL on the stack.

Get the start of the spooler buffer area pointer in register
pair HL.

Bump the start of the spooler buffer area pointer in register
pair HL.

Move the remaining characters in the spooler buffer down
one byte.

Load register pair HL with the next available location in the
spooler buffer area pointer.

Decrement the next available location in the spooler buffer
area pointer in register pair HL.

Save the next available location in the spooler buffer area
pointer in register pair HL.

Dummy jump. This will be changed by the spooler pro-
gram’s initialization phase, so that it will jump to the
normal Level II BASIC keyboard driver.

Load register pair HL with the next available location in the
spooler buffer area pointer.

Load register pair DE with the end of the spooler buffer
area pointer.

Go compare the next available location in the spooler buffer
area pointer in register pair HL to the end of the spooler
buffer area pointer in register pair DE.

670 - Jump to the spooler ‘one in, one out’ routine, if the next

680 -

690 -

700 -

710 -

98

available location in the spooler buffer area pointer in
register pair HL is the same as the end of the spooler buffer
area pointer in register pair DE.

Load register pair HL with the next available location in the
spooler buffer area pointer.

Save the character to be sent to the printer at the location of
the next available location in the spooler buffer area pointer
in register pair HL.

Bump the next available location in the spooler buffer area
pointer in register pair HL.

Save the next available location in the spooler buffer area
pointer in register pair HL.

720 -
730 -
740 -

750 -

760 -

770 -

780 -

790 -

800 -

810 -

820 -

830 -

840 -

850 -

860 -

870 -

880 -

890 -

900 -

910 -

Return.

Save the character to be printed in register C on the stack.

Load register pair HL with the start of the spooler buffer
area pointer,

Load register C with the next character to be sent to the
printer at the location of the start of the spooler buffer area
pointer in register pair HL.

Dummy call. This will be changed by the spooler program’s
initialization phase, so that it will call the normal Level II
BASIC printer driver routine.

Go set the current number type flag to integer.

Load register pair HL with the start of the spooler buffer
area pointer.

Load register pair DE with the next available location in the
spooler buffer area pointer.

Go subtract the start of the spooler buffer area pointer in
register pair HL from the next available location in the
spooler buffer area pointer in register pair DE.

Save the length of the remaining characters in the spooler
buffer area in register pair HL on the stack.

Get the length of the remaining characters in the spooler
buffer area from the stack and put it in register pair BC.

Load register pair HL with the start of the spooler buffer
area pointer.

Save the start of the spooler buffer area pointer in register
pair HL on the stack.

Get the start of the spooler buffer area pointer from the
stack and put it in register pair DE.

Bump the start of the spooler buffer area pointer in register
pair HL.

Move the remaining characters in the spooler buffer area
down one byte.

Load register pair HL with the next available location in the
spooler buffer area pointer.

Decrement the next available location in the spooler buffer
area pointer in register pair HL.

Get the character to be put in the spooler buffer area from
the stack and put it in register C.

Save the character to be put in the spooler buffer area in
register C at the location of the next available location of the
spooler buffer area pointer in register pair HL.

99

920 - Return.
930 - Reserve two bytes for the start of the spooler buffer area

pointer.

940 - Reserve two bytes for the next available location in the

spooler buffer area pointer.

950 - Reserve two bytes for the end of the spooler buffer area

pointer.

960 - Part of the sign-on message is stored here.
970 - This will cause a carriage return to be displayed as part of

the sign-on message.

980 - Part of the sign-on message is stored here.
990 - This will cause a carriage return to be displayed as part of

the sign-on message.

1000 - Part of the sign-on message is stored here.
1010 - The sign-on message terminator is stored here.
1020 - The spooler buffer area will start here.

1030 - End of the program.

100

Chapter 8
The JKL-to-Printer Function

The utility program in this chapter is called the JKL-TO-PRINTER
function. This utility is included on many disk operating systems.
The utility’s function is quite simple. Whenever the JKL keys are all
pressed at the same time, the utility will print the contents of the
video display on the printer. It can be quite useful when debugging
programs. If an error occurs, the operator can dump the contents of
the screen on the printer, and this screen dump can be referred to
later when trying to determine the problem in the program.

THE JKL-TO-PRINTER PROGRAM

The keyboard on the TRS-80 Model I is a memory-mapped
device. Simply stated, this means that Level II BASIC looks at a
specific location in memory to determine if a key is being pressed.
The], K, and L keys are all located at memory location 3802H. If all
of the keys are being pressed at the same time, memory location
3802H will have the value of 28. Therefore, the program simply
reads the value stored at 3802H. If it is equal to 28, the program
knows that the JKL keys are all being pressed at the same time.

Program Listing 8-1 performs the JKL-TO-PRINTER func-
tion. The program intercepts the keyboard driver, upon initializa-
tion. Once initialized, the program will check to see if the JKL keys
are being pressed all at the same time. This check is performed each
time level II BASIC scans the keyboard. If the JKL keys are being
held down, the program will dump the contents of the screen on the

101

printer. If the JKL keys aren’t being held down, the program will
jump to the normal Level II BASIC keyboard driver.

Listing 8-1

42E9
42E9
42EC
42EF
42F2
42FS
42F7
42F9
42FR
42FD
42FF
4301
4303
4306
4309
43T0R
430C
430F
4312
4315
4318
431R
431E
4321
4324
4327
4324
432C
432F
4332
4334
4336
4337
4339
433R
4330
433D
4340
4341
4347
4345
4348
4349
434K
434C
434D
434E
434F
4350
4351
4382
4353
4354
4355
4356
4357
4358
4359
4354
435K

102

CDE901
214D43
CD732E
€CD4%200
FES?
2808
FE4E
20EC
JEIE
1802
3ECS
323R43
219247
JI6O0
23
22A440
113200
CD831E
CD4D1E
2A1640
222D43
212743
221640
CE7200
3A0238
FELC
C20000
21003C
CEL10
0640
7E
FEBOQ
3802
Q0

20
CD3ROO
23
10F3
JEOD
CD3IROO
oD
20E9
AF

ce

4A

4R

4C

Q0100
00110
Q0120
QO130
Q0140
00180
00160
00170
Q0180
00190
QO200
00210
QO220
00230
Q0240
00250
Q0260
00270
Q0280
00290
QU300
QO310
QQ320
QU330
QQIR40
QOIS0
QQ360
OQI70
QOI8O
QO3IR0
QOA400
Q041Q
QQ420
00430
Q0440
00450
QO460
Q0470
00480
0049¢Q
OO500
00510
QOS20
00530
00340
Q0850

Q0560

START

LP1
LF2

JkL

JUMPF

JELE
JkL4

JEL2

JELS

M1

ORG
CALL
LD
CALL
CALL
cP
JR
cP
JR
LD

LD
LD

DEFE

42E9H
01C9H
HL , M1
2E75H
0049H

sy

Z,LP1

e
NZ,START
A, ZEH

LF2

A, OC&H
(IKLD) , A
HL,BASIC
(HL) 4 ©

HL
(40A4H) , HL
DE, 50
1EBTH
1B4ADH

HL, (4016H)
(JUMP+1) , HL
HL , JKL
(4016H) L HL
0072H

A, (3BO2H)
28

NZ, O000H
HL , 3CO0H
C,16

B,64

C,JKLS
32
JEL4
A, 13
QOZRH
c
NZ,JKL3
A

*JKL-TO-FRINTER?

13

435C
435D
435E
435F
4360
4361
4362
4363
4364
4365
43646
4367
4368
4369
436A
436R
436C
436D
436E
436F
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
437A
437R
437C
437D
437E
437F
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4358A
438R
438C
438D
438E
438F
4390
4391
4392
42E9

42
59
20
4D
41
52
4K
20
44
2E
20
a7
4F
4F
44
57
49
4E
oD
44
4F
20
59
4F
55
20
48
41
56
45
20
41
4E
20
45
S0
53
4F
4E
20
4D
58
=D
38
30
20
28
59
2F
4E
29
3F
D
Qo
QQ

Q0570

QOS8O
QQB0

GO6O0
Q0610
QQ620 BASIC
QOLIO

QQOO0 TOTAL ERRORS

JELS
JKL4
JKLI
JKL

JUMF

BASIC

JRL2
LFP2
LFP1
M1

START

433D
4336
4334
4327
432C
4392
433R
4303
4301
434D
42E9

DEFM

"BY MARK D.

DEFE 13

DEFM "DO YOU HAVE AN EFSON MX-80

DEFE
DEFB
DEFR
END

13

o)

Q
START

GOODWIN®

(Y/N)??

103

Listing 8-1 Comments

100 -

110 -
120 -

130 -
140 -

150 -

Set the starting address of the program to the start of user
RAM.

Go clear the screen.

Load register pair HL with the starting address for the
message to be displayed.

Go display the message.

Go scan the keyboard and wait till a key has been pressed.
Return with the key pressed in register A.

Check to see if the key that was pressed in register Aisa Y.

160 - Jump if the key that was pressed in register A is a Y.

170 - Checkto see if the key that was pressed in register Aisa N.

180 - Go ask again if the key that was pressed in register A isn’t a
N.

190 - Load register A with the op code for a LD A,N instruction.

200 - Jump.

210 - Loadregister A with the op code fora ADD A, N instruction.

220 - Save the op code in register A so that it will perform the
proper operation when the JKL-to-printer function is used.

230 - Load register pair HL with the start of the BASIC program
area pointer.

240 - Zerothe location of the start of the BASIC program pointer in
register pair HL.

250 - Bump the start of the BASIC program pointer in register pair
HL.

260 - Save the start of the BASIC program area pointer in register
pair HL.

270 - Load register pair DE with the number of bytes to be re-
served as string space.

280 - Go reserve the amount of string space in register pair DE.

290 - Go reset the BASIC variables and pointers.

300 - Load register pair HL with the starting address of the pres-
ent Level II BASIC keyboard driver.

310 - Save the starting address of the present Level II BASIC
keyboard driver in register pair HL so that it can be used by
the JKL-TO-PRINTER function to branch to the normal
keyboard driver routine.

320 - Load register pair HL with the starting address of the JKL-
TO-PRINTER routine.

330 - Save the starting address of the JKL-TO-PRINTER routine

104

in register pair HL in the keyboard device control block as
the current keyboard driver address.

340 - Jump to the Level II BASIC READY routine.

350 -

360 -

370 -

380 -
390 -
400 -

410 -
420 -
430 -
440 -
450 -
460 -
470 -
480 -
490 -
500 -
510 -
520 -
530 -
540 -
550 -
560 -

570 -
580 -

590 -

Load register A with the memory location which holds the
value for the JKL keys.

Check to see if the value in register A is the same as the
expected value for the JKL keys all being pressed at the same
time.

Dummy jump. This will be set to jump to the normal
keyboard driver routine by the initialization process, if the
JKL keys aren’t being pressed all at the same time.

Load register pair HL with the start of video memory.
Load register C with the number of lines to be printed.
Load register B with the number of characters per line to be
printed.

Load register A with the character being displayed at the
location of the video memory pointer in register pair HL.
Check to see if the video character in register A is a graphic
character,

If the video character in register A isn’t a graphic character
then jump.

Dummy op code. This will be changed to eithera LD A,Nora
ADD A,N op code by the initialization process.

The value to either load register A with or the value to add to
register A is stored here. This is determined by the value of
the op code in the previous line.

Go print the character in register A on the printer.

Bump the video memory pointer in register pair HL.
Loop if all of the characters on the present line of the video
display haven’t been printed.

Load register A with the ASCII code for a carriage return.
Go print a carriage return on the printer.

Decrement the number of lines to be printed in register C.
Loop till all of the lines on the video display have been
printed.

Zero register A.

Return.

Part of the sign-on message is stored here.

This will cause a carriage return to be displayed as part of the
sign-on message.

Part of the sign-on message is stored here.

This will cause a carriage return to be displayed as part of the
sign-on message.

Part of the sign-on message is stored here.

105

600 - This will cause a carriage return to be displayed as part of the
sign-on message.

610 - The sign-on message terminator is stored here.

620 - The new start of the BASIC program area will be here.

630 - End of the program.

EPSON MX-80 PRINTER

Most of the recent printers introduced on the market have
graphics printing capability. The Epson MX-80 is one of them. The
program presented in this chapter starts it’s initialization phase by
asking the operator if he has an Epson MX-80. If one is available, the
JKL utility will be able to print any graphic characters displayed on
the screen. The Epson graphic codes are the same as the Model Is,
except that 32 must be added to the value of the Model I graphic
code to print the same graphic character on the MX-80. Therefore,
the program checks each character to be sent to the printer to see if
it's a graphic character. If it is, the utility adds 32 to the character’s
value.

NON-GRAPHIC PRINTERS

If the printer available doesn’t have graphics capability, then
the appropriate response should be given to the program’s initiali-
zation phase. By telling the JKL utility that an Epson MX-80 isn't
available, the program will print a space for any graphic character
appearing on the video display. The program performs this by
checking each character to be sent to the printer to see whether or
not it is a graphic character.

106

Chapter 9
Spelled-Out Error Messages

The abbreviated Level Il BASIC error messages just don’t provide
enough information to be adequate. They're okay for errors which
occur frequently, but a lot of time can be wasted looking up error
messages which don’t occur frequently.

The program in Listing 9-1 adds spelled-out error messages to
Level II BASIC. Upon initialization of the program, it intercepts the
DOS link at 41A6H. Whenever an error occurs in Level II BASIC,
the error routine will call the DOS link. On entry to the DOS link,
register E will hold the appropriate code. The program adds the
value of the error code to a table pointer, which in turn, will point to
the new error message to be displayed. The routine jumps back
to Level I BASIC with the starting address of the new error
message in register pair HL and the Level II BASIC error routine
continues on normally.

Listing 9-1

42E9 Q0100 ORG 42E9H
42E9 CDCYO01 00110 START CALL O1C9H
42EC 21E244 Q0120 LD HL, M1
42EF CD752B 00130 CALL 2B75SH
42F2 211145 Q0140 LD HL.EBASIC
42FS 3600 00150 LD (HL) , O
42F7 23 Q0160 INC HL

42F8 22A440 Q0170 LD (40A4H) (HL
42FR 113200 Q0180 LD DE, 50
42FE CD831E 00190 CALL 1E83H
4301 CD4D1R Q0200 CALL 1B4DH

107

4304
4306
4309
430C
430F
4312
4314
4317
4318
4319
431A
431K
431C
431F
4321
4323
4325
4327
4329
4320
432D
432F
4331
4I3E3
4335
4337
4339
433R
433D
433F
4341
4343
4345
4347
4349
4T 4R
434D
434E
4T4F
4350
4351
43352
4353
4354
4355
4356
4357
43358
4359
435A
4358
435C
435D
43SE
435F
4360
4361
4362
4363
4364
4365
43646
4367
4368
4369
436A
436K
4360

108

3EC3

JI2A641

211243

22A741

C37200
1600

211F43
19

SE

23

S6

ER
SI011A

4D43

SE43

&B43

8043

8C43

AZ243

AB43

B943

CF43

E643

FA43

OR44

2444

3244

4644

S644

7144

8044

8A44

9F44

B144

C144

CFa4

4E

45

o8

54

20

57

49

54

48

4F

S5

S4

20

46

4F

S2

a0

o3

&9

AE

54

45
52
52
4F
52
00
82

45

00210
Q0220
00230
QO240
00250
00260 ERROR
00270
Q0280
Q0290
QQ300
QO30
QO3I20
00330
QO340 TABLE
Q03IZ0
QQT60
QQ3I70
QO3B0
QO30
QQ400
Q0410
Q0420
QU430
Q440
QO4E0
Q460
00470
Q0480
Q0490
QOSO0
00510
QOS20
QOS30
Q0540
00530
Q0560
Q0S70 NF

0OS80
00590 SN

[Jr-Tele]
00610 RG

DEFHE
DEFM

DEFE
DEFM

A, OC3H
(41A6H) A
HL , ERROR
(41A7H) HL
QO72H

D,0

HL, TARLE
HL., DE

E, (HL)

HL

D, (HL)
DE . HL
1A01H

NF

SN

RG

ap

FC

"NEXT WITHOUT FOR”®

[¥]
*8YNTAX ERROR’

O
TRETURN WITHOUT GOSUBR’

54
55
52
4E
20
57
49
54
48
4F
55
54
20

4F
53
55
42
QO

S5
S4

20

44
20
44
41

41
Qo
49
4C
4C
45
47
41

20

46

4E
43

49
4F
4E
20
43
41

ac
00
4F
56
45
52
46
ac
4F
57
00
4F
55
s4
20
4F
46

QU&E20
00630 QD

QQ640
Q0650 FC

00660
Q0670 OV

QQ&680
Q0620 OM

DEFE
DEFM

DEFEB
DEFM

DEFR
DEFM

DEFR
DEFM

O
TOUT OF DATAT

V]

*ILLEGAL FUNCTION CALL?

Q
? OVERFLOW?

o]
QUT OF MEMORY?

109

43B1

43B2
43R3
43R4
43RG
43R6
43R7
43R8
43R9
43EA
43ER
43RC
43ED
43RE
43RF
43C0
43C1

4302
43C3F
43C4
43CS
43C6
43C7
43C8
4309
43CA
43CE
43CC
43CD
43CE
43CF
43DO
43D1

4302
43D3
43D4
43D5
43D6
43D7
43D8
43D9
43DA
43DR
43DC
43DD
43DE
43DF
43E0
43E1

43E2
43EX
43E4
43ES
43E6
43E7
438
43TE?
43EA
43ER
43EC
43ED
43EE
43EF
43F0
43F1
43F2
43F3
43F4

110

20
4D
45
4D
52
59
00
55
4E
44
45
46
49
4E
45

20
4C
49
4E
45
20
4E
55
4D
42
45
52
o0
S3
k]
42

53

43
52
49
50
54
20
4F
55
54
20
4F
46
20
52
44
4E
47
45
Q¢
52

435

49
4D
45
4E
53
49
4F
4E
45
44
20
41

QQ700
Q0710 UL

Q0720
Q0730 BS

Q0740
00750 DD

DEFR
DEFM

DEFR
DEFM

DEFE
DEFM

[#]
TUNDEF INED LINE NUMBER®

Q
TSURSCRIFT OUT OF RANGE®

Q
"REDIMENSIONED ARRAY”

4407
440
4400
440D
440E
440F
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4414
441FR
441C
441D
441E
441F
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
442A7
442B
442C
442D
442E
442F
4430
44314
4432
4433
4434
4435
4436
4437
4438

52
52
41
59
00
44
49
=)
49

ey
peISY

20

QO7 L0
Q0770 DO

Q0780
Q0790 ID

QOgoo
00810 TM

Q0820
00830 0S8

DEFE
DEFM

DEFE
DEFM

DEFER
DEFM

DEFE
DEFM

(4]
*DIVISION RY ZERO?

Q

TILLEGAL DIRECT OFERATION?

Q
*TYPE MISMATCH?

Q
TOUT OF STRING SFACE’

111

4439
4437
443R
443C
443D
443E
443F
4440
4441
4442
4543
4444
4445
4444
4447
4448
4449
4444
444p
444¢
444D
444
444F
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
445
445R
445¢
445D
445E
445F
4440
4461
4462
4463
4444
4445
4466
4447
4448
4469
446A
446B
446C
446D
444E
444F
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
447¢
447m
447cC

112

S3
54
52
49
4E
47
20
a3
S0
41
43
45
(u]4]
a3
54
574
49
4E
47
20
54
4F
4F
20
4C
4aF
4E
47
00
53
54
52
49
4E
47
20

4F
52
4D
S5
4c
41
20
54
4F
4F
20
43
4F
3
50
ac
45
s8
00
43
41
4E
27
54
20
43
4F
4E
54
49
4E

QOB4O
00850 LS

00860
00870 8T

00880
00890 CN

00200
00910

DEFE
DEFM

DEFR
DEFM

DEFR
DEFM

DEFR
DEFM

(]
"STRING TOO LONG?

Q
’STRING FORMULA TOO COMFLEX®

QO
TCAN®

39
*T CONTINUE®

447D
447
447F
4480
4481
4482
4483
4484
4485
4484
4487
4488
4489
448
4488
448C
448D
448E
448F
4490
4491
4492
4493
4494
4495
4494
4497
4498
4499
4494
449R
449¢
449D
449E
449F
44A0
44A1
44p2
44A3
444
4445
44086
4447
4448
4449
44AA
44
44paC
44AD
44AE
444F
4450
44E1
44p2
4453
44B4
4455
44B6
44R7
4418
4459
4450
44ER
44BC
44ED
44EE
445F
34C0

55
45
QQ
4E
4F
20
82
45
S3
55
4D
45
QG
52
45
53
55
4D
45
20
57
49
54
48
4F
o5
54
20
45
52
52
4F
52
oQ
S5
4E
S0
52
49
48
S4
41

42
4c
45
20
45
S52
G2
4F
52
QQ
4D
49
53
53
49
4E
47
20
4F
50
45
52
41
4E
44
0o

Q020
Q0930 NR

Q0R40
QOPE0 RW

QOR60
Q0970 UE

Q0980
Q0990 MO

Q1000

DEFE
DEFM

DEFE
DEFM

DEFR
DEFM

DEFR
DEFM

DEFR

Q
NG RESUME”

Q
TRESUME WITHOUT ERROR?

Q
>UNFRINTABLE ERROR”

Q
"MISSING OFPERAND?

113

4401
44c2
44C3
4404
44C5
44C6
44Cc7
4408
4409
44cA
44CE
44cC
440D
44CE
44CF
44D0
44D1
44p2
44D3%
44D4
44Dp5
44D6
44p7
44D8
44p%
44pA
44DE
44pC
44DD
44DE
44DF
44E0
44E4
44E2
44E3
44E4
44E5
44E8
44E7
44E8
44E9
44EA
43ER
44EC
44ED
44EE
44EF
44F0
44F1
44F2
44F 3
44F4
44FS
44F6
44F7
44F8
44F9
44F0
44FR
44FC
44FD
44FE
44FF
4500
4501
4502
4503

4504

114

42
41
44
20
46
49
4C
45
20
44
41
54
41
Qo
44
49
53
4R
20
42
33
49
43
20
43
4F
4D
4D
41
4E
44
oQ
83
S0
45
4C
4C
45
44
20
4F
55
54
20
45
S2
52
4F
52

20

45
53
53
41
47
45
a3

oD
42
59
20

41
52

20

01010 FD

QL0220
01030 L3

01040
Q1030 ML

01060
01070

DEFM

DEFR
DEFM

DEFR
DEFM

DEFR
DEFM

"BAD FILE DATA’

]
*DISK RASIC COMMAND?

(8]
TSPELLED OUT ERROR MESSAGES®

13
*RY MARK D. GOODWIN:

4505 44

4506 2E

4507 20

4508 47

4509 4F

450A 4F

450R 44

4500 57

450D 49

450E 4E

450F QD Q1080 DEFE 13
4510 00 Q1090 DEFE Q
4511 QG 01100 BASIC DEFR (4]
42E9 01110 END START
QOOOQ TOTAL ERRORS

L3 44CF

FD 44C1

u{n] 44R1

UE L49F

RW 448a

NF 4480

CN 4471

ST 4456

LS 4444

s 4432

™ 4424

1D 4408

jala] 43FA

DD 4TEL

BS 43CF

uL. 43R9

oM 43AR

av 43A2

FC 438C

oD 4380

RG 436R

SN 435E

NF 434D

TABRLE 431F
ERROR 4312
BASIC 4511
M1 442
START 42E9

Listing 9-1 Comments

100 - Set the program’s starting address to the start of user RAM.

110 - Go clear the screen.

120 - Load register pair HL with the starting address of the
message to be displayed.

130 - Go display the message.

140 - Load register pair HL with the start of the BASIC program
area pointer.

150 - Zero the location of the start of the BASIC program area
pointer in register pair HL.

160 - Bump the start of the BASIC program area pointer in reg-
ister pair HL.

170 - Save the start of the BASIC program area pointer in regis-
ter pair HL.

115

180 -
190 -
200 -
210 -
220 -
230 -

240 -

Load register pair DE with the number of bytes to be
reserved as string space.

Go reserve the number of bytes of string space as specified
by register pair DE.

Go reset the BASIC variables and pointers.

Load register A with a JP op code.

Save the JP op code in register A as the first byte of the DOS
link.

Load register pair HL with the starting address of the
spelled-out error message routine.

Save the starting address of the spelled-out error message
routine in register pair HL as the second and third bytes of
the DOS link.

250 - Jump to the Level II BASIC READY routine.

260 -

270 -

280 -

290 -

300 -
310 -

320 -

Zero register D, so that register pair DE will hold the error
code.

Load register pair HL with the starting address of the table
of error message locations.

Add the error code in register pair DE to the table pointer in
register pair HL.

Load register E with the LSB of the error message starting
address at the location of the table pointer in register pair
HL.

Bump the table pointer in register pair HL.

Load register D with the MSB of the error message starting
address at the location of the table pointer in register pair
HIL.

Load register pair HL with the starting address of the error
message in register pair DE.

330 - Jump to the Level II error routine and display the appro-

340 -
350 -
360 -
370 -
380 -
390 -
400 -
410 -
420 -
430 -
440 -

116

priate error message.

The starting address of the NF error message.
The starting address of the SN error message.

The starting address of the RG error message.
The starting address of the OD error message.
The starting address of the FC error message.

The starting address of the OV error message.
The starting address of the OM error message.
The starting address of the UL error message.
The starting address of the BC error message.
The starting address of the DD error message.
The starting address of the /O error message.

450 - The starting address of the ID error message.

460 - The starting address of the TM error message.

470 - The starting address of the OS error message.
480 - The starting address of the LS error message.
490 - The starting address of the ST error message.
500 - The starting address of the CN error message.
510 - The starting address of the NR error message.

520 - The starting address of the RW error message.

530 - The starting address of the UE error message.

940 - The starting address of the MO error message.

550 - The starting address of the FD error message.
960 - The starting address of the L3 error message.
570 - The NF error message is stored here.
580 - The NF error message terminator.
590 - The SN error message is stored here.
600 - The SN error message terminator.
610 - The RG error message is stored here.
620 - The RG error message terminator.
630 - The OD error message is stored here.
640 - The OD error message terminator.
650 - The FC error message is stored here.
660 - The FC error message terminator.
670 - The OV error message is stored here.
680 - The OV error message terminator.
690 - The OM error message is stored here.
700 - The OM error message terminator.
710 - The UL error message is stored here.
720 - The UL error message terminator.
730 - The BS error message is stored here.
740 - The BS error message terminator.
750 - The DD error message is stored here.
760 - The DD error message terminator.
770 - The /O error message is stored here.
780 - The /O error message terminator.

790 - The ID error message is stored here.
800 - The ID error message terminator.

810 - The TM error message is stored here.
820 - The TM error message terminator.
830 - The OS error message is stored here.
840 - The OS error message terminator.
850 - The LS error message is stored here.
860 - The LS error message terminator.

117

870 - The ST error message is stored here.
880 - The ST error message terminator.
890 - The CN error message starts here.
900 - This will display an ‘ with the CN error message.
910 - The rest of the CN error message is stored here.
920 - The CN error message terminator.
930 - The NR error message is stored here.
940 - The NR error message terminator.
950 - The RW error message is stored here.
960 - The RW error message terminator.
970 - The UE error message is stored here.
980 - The UE error message terminator.
990 - The MO error message is stored here.
1000 - The MO error message terminator.
1010 - The FD error message is stored here.
1020 - The FD error message terminator.
1030 - The L3 error message is stored here.
1040 - The L3 error message terminator.
1050 - Part of the program’s sign-on message is stored here.
1060 - This will cause a carriage return to be displayed as part of
the sign-on message.
1070 - Part of the sign-on message is stored here.
1080 - This will cause a carriage return to be displayed as part of
the sign-on message.
1090 - The sign-on message terminator.
1100 - The start of the BASIC program area will begin here.
1110 - End of the program.

118

Chapter 10
A Machine Language Monitor

This chapter presents a relocatable machine language monitor. This
monitor makes liberal use of the Level I BASIC ROM routines.
Because of the program’s size, it has been broken down into five
parts, so that it can be assembled on a 16K computer.

THE MONITOR'S COMMANDS

The monitor has many useful commands. All of the monitor’s
commands require from 0 to 4 values to be input. The values should
be entered as hexadecimal numbers. When more than one value is
required for a command, the values should be separated by spaces.
Leading zeros are not required. The syntax for each command
follows the colon and does not include the period.

Display Memory: D starting address ending ad-
dress. This command will display the contents of memory
from the ‘starting address’ specified to the ‘ending address’
specified. The values, at these memory locations, will be
displayed as two digit hexadecimal numbers. To end
execution of this command before the ending address is
reached, simply press the BREAK key. To pause the
display, press the space bar. To resume execution, after
pressing the space bar, press any key.

Jump to Address: G jump address. This command
will cause program execution to begin at the ‘jump address’
specified.

119

120

Edit Memory: E starting address. This command
will allow you to change the contents of memory. The
command will begin by displaying the ‘starting address’
specified and the value currently at this memory address.
To change the contents of an address, enter the desired
value. To leave the contents of the address unchanged,
press the carriage return without any input. To exit the
Edit Memory mode, press the BREAK key.

Zero Memory: Z starting address ending address
value. This command will change all of the memory loca-
tions from the ‘starting address’ specified to the ‘ending
address’ specified to the ‘value’ given.

Input from Port: I port number. This command will
get the value at the ‘port’ specified and display this value.

Output to Port: O port number value. This command
will send the ‘value’ specified to the ‘port’ specified.

Convert Hexadecimal Numbers to Decimal
Numbers: B first number second number. If only one
number is input after the B command, this hexadecimal
number will be converted to decimal and the result will be
displayed. If two numbers are given, then they will be
displayed like this.

A B A+B A-B B-A
7FFF 0001 8000 7FFE 8002
32767 1 32768 32766 32770

Set Breakpoint: @ breakpoint location. This com-
mand will set a breakpoint at the address specified. If no
input follows the@command or an address of zero is given,
then the current breakpoint location will be displayed.

Read a SYSTEM Tape: R. This command will load
into memory a Level II BASIC SYSTEM tape. After the
program has been completely loaded, the monitor will
display the program’s name, it’s starting address, it’s end-
ing address, and it’s execution address.

Write a SYSTEM Tape: P starting address ending
address execution address. This command will prompt you
to enter the file name for the program to be written on the
cassette recorder. Once the file name has been entered, a
Level II BASIC SYSTEM tape will be written beginning at
the ‘starting address’ specified to the ‘ending address’
specified. If an ‘execution address’ is specified, then this
address will also be written as part of the SYSTEM tape. If

an ‘execution address’ isn’t specified, then the ‘starting
address’ will be written as the program’s execution ad-
dress.

Display Characters in Memory: A starting ad-
dress ending address. This command will display the
ASCII characters for all of the locations from the ‘starting
address’ specified to the ‘ending address’ specified.

Find 8-bit Value: F starting address ending address
8-bit value. This command will search the locations from
the ‘starting address’ specified to the ‘ending address’
specified for the ‘8-bit value’ given. All of the locations
which contain the 8-bit value being searched for will be
displayed.

Find the 16-bit Value: H starting address ending
address 16-bit value. This command is the same as the F
command except that it will search a block of memory for a
16-bit value.

Move Block of Memeory: M starting address ending
address new starting address. This command will move the
block of memoryfrom the ‘starting address’ specified to the
‘ending address’ specified to the new area of memory be-
ginning at the ‘new starting address.’

Figure Checksum: Q starting address ending ad-
dress. This command will figure and display the checksum
for the block of memory from the ‘starting address’ to the
‘ending address.’

Test Memory: T starting address ending address.
This command will test the block of memory from the
‘starting address’ to the ‘ending address.” Any bad memory
locations will be displayed.

Verify Memory: V starting address ending address
second starting address. This command will compare the
contents of a block of memory beginning at the ‘starting
address’ to the ‘ending address’ to the second block of
memory beginning at the ‘second starting address.” Any
memory locations which don’t match will be displayed.

Exchange Memory: X starting address ending ad-
dress second starting address. This command will ex-
change the contents of a block of memory beginning at the
‘starting address’ to the ‘ending address’ with the contents
of a second block of memory beginning at the ‘second
starting address.’

121

Set the Current Output Device to Printer: L.
This command will set the current output device to the
printer.

Set the Current Output Device to Video Dis-
play: C. This command will set the current output device
to the video display.

Save a Program on an ESF: “starting address
ending address execution address file number. This com-
mand will save a program beginning at the ‘starting ad-
dress’ to the ‘ending address’ on a Stringy Floppy wafer at
the ‘file number.” The ‘execution address’ will also be
saved as the program’s autostart address.

Certify an ESF Wafer: ! file number. This command
will certify a Stringy Floppy wafer beginning at the ‘file
number.’

Load a Program from the ESF: #file number. This
command will load a program from a Stringy Floppy wafer
at the ‘file number’ given. The program’s starting address,
ending address, and execution address will be displayed
after the program has been loaded.

THE MONITOR PROGRAM

The following pages contain the five parts of the monitor
program (Listing 10-1 through 10-5). The line by line program
comments follow each listing.

Listing 10-1

42F 1 00100 ORG 42FFH-0EH
42F1 21EB14A 00110 REND LD HL, 4AB1H
42F4 EDSBEZ4A 00120 LD DE, (4AR2H)
42F8 O1BR207 Q0130 LD BC, 1970
42FB EDRB 00140 LDDR

42FD EB GO150 EX DE,HL
42FE 23 QQ160 INC HL

42FF E9 Q01790 JP (HL)

4300 Q0180 END 4300H

00000 TOTAL ERRORS

REND 42F ¢
Listing 10-1 Comments

100 - Set the starting address of the program so that it resides
below the monitor program.

110 - Loadregister pair HL with the end of the monitor program.

120 - Load register pair DE with the monitor program’s new
ending address.

122

130

140
150

160

170

180

- Load register pair BC with the length of the monitor pro-

gram.
- Move the monitor program.

- Load register pair HL with the starting address of the

monitor program — 1.

- Bump the starting address of the monitor in register pair

HL.

- Jump to the location of the monitor’s starting address in
register pair HL.

Listing 10-2

4300
4300
4303
4306
4309
430C
430F
4310
4313
4316
4317
4318
4319
431K
431D
431E
4320
4322
4324
4325
4327
4328
432A
432B
432D
4330
4331
4333
4335
4337
4339
4338
433D
433F
4341
4343
4345
4346
4347
434/
434D
43350
4352
4353
4356
4359
4335R

21ABA4S
CD7528
210000
22BE45
CI2C46
AF
328C4S
110000
23

7E

B7
282A
D630
D8
FEOA
3808
FEL1
D8
FEL17
ol
D&O7
FS
JEOL
3I28C45
F1
CRr27
CB27
Cr27
CRr27
Q604
CBe27
CR13
Ce12
10F8
18D1
2R

co
CD9F44
2A8545
CDB544
0610
7E
CD9244
CD2044
10F7
CDB044

00100
00110
00120
00130
Q0140
00150
QQ1460
00170
00180
Q0190
QQ200
Q0210
Q0220
00230
Q0240
Q0250
QO260
00270
Q0280
00290
QQZQ0
00310
QO320
QOIZ0
QO340
QO350
QQ3I60
QO370
0O3IBO
QO30
QQ400
00410
Q0420
00430
Q0440
00450
QQ46Q
00470
Q0480
Q0490
QOS00
Q0510
QO320
QOS30
QOS540
Q0550
Q0560

End of the program.

ST

HEX

H4

I
7

H1

DI1sP

DIt

D12

4300H
HL, M1
2B7SH
HL, 0
(BREAK) , HL
{551

A
(FLAG) , A
DE, O

HL

Ay (HL)

A

Z,H1

JIOH

[

OAH

C,H3

11H

C

17H

NC

7

AF

Al
(FLABG) ,A
AF

CH1
HL, (N1)
pDIS1

B, 16

A, (HL)
psF
CH2
pDI2

CR

123

435E
4361
4363
4364
4367
4368
436H
436D
4370
4371
4373
4376
4377
4378
437A
437C
437E
4380
4383
4386
4387
438A
438D
43BE
4391
4394
4395
4398
439H
439¢C
439D
43A0
43A%
43R4
43A6
430A
43AD
430E
43AF
43R0
43E2
43ES
4388
4359
43ED
43EE
43C1
43C2
43C4
43C7
43CA
43CH
43CD
43DO
43D3
43D6
43D7
43DA
43DC
43DF
43E2
43ES
43ES
43E7
43EA
43ED
43F0
43F3

124

CDil46
18EA
ES
328845
AF
218845
ED&F
CD7843
AF
ED&F
€D7843
E1
c9
Co630
FEZA
3802
C607
C32A03
2AB545
E9
2A8545
CDBS44
7E
28545
CD9244
ES
CD&6103
DAZCA6
D7
2B
CDOF43
3ABCAS
B7
2804
EDS38545
38545
E1
77
23
18D8
268545
3ABY4AS
77
EDSEE745
DF
CAZ2CA&
23
18F 1
CDAZ44
IABS45
4F
ED78
CD634F
CD2946
3ABS4S
4F
38745
ED79
C32C46
CDAZ44
CDA944
74
B3
CA4ES4
21CE4%
Cn752
248545
CD7644

00570
0Os8Q
00590
QQ600
00610
QO620
Q0630
QQ640
00650
0QL660
Q0L70
00680
00690
Q0700
Q0710
Q0720
00730
Q0740
00750
00760
Q0770
Q0780
00790
00800
00810
00820
00830
Q0840
00850
00860
00870
00880
0OBQ
0000
Q0?10
QOR20
QO30
00240
Q0SB0
Q060
Q0270
QO8O
oOR0
Q1000
01010
Q1020
Q1030
Q1040
01080
QL1060
01070
01080
Q1090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
Q1200
01210
Q1220
01230
01240

D1

D2

D3

EDIT
E1l

E3

ZERO
z1

INP

OuUF

MATH
MA3

JF
CALL
caLL
LD
OR
JF
LD
CAaL L
LD
CALL

KEY
DIl

HL
(N4) . A
A
HL . N4

D2
A

D2
HL

A, 3OH
3AH
C,D3
A7
32AH
HL, (N1)
(HL)
HL, (N1)
DISt

A, (HL)
(N1) . A
DSP

HL.
361H
C,L1

16

HL

HEX

A, (FLAB)
A

7,EX
(N1),DE
A, (N1}
HL
(HL) , A
HL

E1

HL, (N1)
A, (N3)
CHL) , A
DE, (N2)
18H
Z,L1
HL

71

PR

A. (N1
C.A

A, (D)
D1

CHI

A, (N1)
C,A

A, (N2)
(L), A
L1

PR

LO

A,D

E
Z,MAL
HL., M2
2R75H
HL, (N1)
DIWS

43F 6
43F9
43FC
43FF
4400
4403
4406
4409
4404
440C
440F
4412
4415
4416
4417
4419
441C
441F
4422
4425
4427
4420
442D
442F
4432
4435
4437
443A
443D
443F
4442
4445
4448
444R
444E
4451
4454
4457
4459
4450
445D
445E
4461
4442
4464
44467
4469
4460
446D
446E
446F
4470
4473
4475
4474
4479
447R
447E
4480
4482
4485
4488
4487
448D
448F
4492
4495
4497

2AB745
CD7&644
CDA944
19
229345
CD7644
CDA944
AF
EDS2
29545
CD7644
CDA%44
EB
AF
EDS2
229745
CD7644
CDBC44
2A8545
1EQ0S
CD5944
2AB8745
1E0C
CD35944
2R9345
1E12
CD5944
2A9545
1E18
CDS5944
2089743
CDAFOF
cD044
C32C44
2A8545
CDAFOF
Chg044
18F2
DS
CDAFOF
D1
JARC4H0
E7
2805
JAPB40
1803
IARGL4A0
2F
83
3C
47
CD8D44
10FB
ceo
CD7B44
1812
CDe744
180D
JEQD
C32A03
Ch?744
3ETA
CD2A03
JE20
C32A03
CD&343
18F6
7€

01250
Q1260
Q1270
01280
01290
Q1300
01310
Q1320
01330
01340
01350
Q1360
01370
01380
Q1390
Q1400
Q1410
01420
01430
01440
Q1450
01460
Q1470
01480
01490
01500
01510
01520
01530
Q1540
01850
Q1560
01570
Q1580
Q1590
Q1600
01610
Q1620
Q1630
Q1640
Q1650
01660
01670
Q1680
01690
01700
01710
Q1720
01730
Q1740
01730
Q1760
01770Q
Q1780
Q1790
Q1800
01810
01820
01830
01840
01830
01860
01870
01880
01890
Q1900
01910
01920

MA2
MAL

TAB

DIWS
DIS
CR

DISt

SFA
DsP

DISW

HL, (N2)
DIWS

LO

HL, DE
(REG) , HL
DIWS

LO

a

HL, DE
(REG+2) ,HL
DIWS

Lo

DE, HL

A

HL, DE
(REG+4) , HL
DIWS

CR

HL, (N1)
E.b

TAB

HL, (N2)
E, 12

TAE

HL, (REG)
E,18

TAB

HL . (REG+2)
E,24

TAR

HL, (REG+4)
OFAFH

CR

1

HL, (N1)
OFAFH

CR

MAZ

DE

OFAFH

DE

A, (409CH)
a

Z,VID

A, (409BH)
T1

A, (40A6H)

ALE
A
E,A
SFA
T2

pIs
SFA
DISW
SFA
A, 13
Z2AH
DISW

125

4498
4491
445¢C
449F
4442
4445
448
44p9
44pc
44B0
44R1

44B3
44B5
44p8
4489
44BC
44BE
44C0
44C3
4405
44c8
44CA
44CD
44CF
44D1
4404
44D5
44D6
44D7
44DA
44DB
44pC
44DD
44EQ
44E3
44E4
44E7
44E8
44E9
44ER
44eC
44EF

44F2
44F4

44F5
44F6
44F7
44F8
44FA
44FR
44FD
44FE
4501

4502
4503
4504
4507
450A
450D
4510
4513
4516
4519
a51A
4518
451C
451D

126

CD&343
7D
C36343
CDD144
JABD4S
329C40
ce
2AB545
EDSEB8745
ce
05604
CDCS44
10FB
ce
CDCE44
DD23
DD23
cDneSas
18BRB
DD&EOO
DD23
DD&&LOO
DD23
18AA
2A8040
7C
BS
co
2A8745
7C
BS
co
21FFFF
228745
co
2ABSA45
7C
B3
2819
ES
228E49
119045
0603
7E
12
23
13
10FA
El
34CD
23
111645
73
23
72
21E845
CD732R
2ABEA4S
CD?744
cDBO44
C32C46
22A745
El
2B
2B
2B
22A943

01930
01940
0195Q
Q1960
01970
Q1980
01990
Q2000
02010
02020
02030
02040
02050
02060
02070
Q2080
02090
02100
02110
02120
02130
02140
02150
021460
Q2170
02180
02190
Q2200
02210
02220
02230
QRZ240
02250
Q2260
02270
Q2280
02290
Q2300
02310
Q2320
02330
02340
02350
02360

2370
02380
02390
Q2400
02410
Q2420
02430
02440
02450
02460
02470
Q2480
02490
02500
025190
Q2520
02530
02540
02550
02560
02570
02580
02590

CH1
PR

Lo

CH4
CHA4

CH6

CHS

CHECK

ERK

B1

RENT

CALL
LD
JpP
CAaLL
LD

RET

FET

PLSH

INC
INC
DJINZ
FOP

INC
LD
LD
INC
LD
LD
CAaLL

CALL
CALL

LD
FOP
DEC
DEC
DEC
LD

D1
A,L

D1

CHECK

A, (FL2)
(409CH) , A

HL, (N1)
DE, (N2)

B, 4
CHS
CHA4

CHS

IX

X

CHS

CR

L, (IX+0)
IX

He (IX+0)
IX

DIS

HL, (N1)
ALH

L

NZ

HL, (N2)
AH

L

NZ

HL , OFFFFH
(N2) , HL

HL, (N1)
A H

L

Z.B1

HL
(BREAK) , HL
DE, SAVE
B,3

A, (HL)

(DE) ,A

HL

DE

B2

HL
(HL)> , OCDH
HL.

DE, RENT
(HL) LE

HL

(HL) ,D
HL,RE1
2E7SH

HL, (BREAK)
DISW

CR

L1
(REG+20) , HL
HL

HL

HL

HL
(REG+22) , HL

4520
4523
4527
452A
4352C
452
452F
4530
4531
4532
4533
4534
4535
4536
4537
4538
453RB
453E
4541
4544
4546
4547
4548
4549
454A
454C
454F
4552
4555
4558
455B
455E
4561
4564
4568
456B
456E
4572
4575
4579
457C
487F
4582
4585
4587
4589
458R
458C
458D
458E
QOOX
Q018
45AR
435A/C
45AD
45AE
45AF
43BO
4511
45R2
45R3
45R4
4585
4SB6
45R7
45E8
45R9
45ERA

2AR745
ED73A745
31A745
FDES
DDES
ES

DS

cs

F3

08

D9

ES

DS

cS

FS
310043
CDA244
2ABEA4S
119045
0603
1A

77

23

13
10FA
21E84%5
CD732B
2ABEA4S
CD?744
CD8044
CD8044
21F245
CD752R
DD219R45
CDR144
CDB944
DD219345
CDE144
DD21AS4S
CDE944
210000
228E45
C32C46
0000
QO0Q
[alelule
Qo

Qo

Qo0
Q000

1ic
1F
a3
87
41
54
20
Sé
32
2E
30
[9)s]
42
59

20

Q2600
02610
Q2620
Q2630
Q2640
02650
Q2660
Q2670
Q2680
02690
Q2700
Q2710
Q2720
02730
02740
02750
Q27460
02770
Q2780
Q2790
Q2800
02810
Q2820
02830
02840
02850
Q2860
02870
02880
02890
Q2900
02910
Q2920
Q2930
Q2940
02950
Q2960
QRIP70
2980
Q2990
QI000
Q3010
Q3020
0FQ30
Q3040
0I050
Q3060
03070
Q3080
03090

J100
03110
03120

3130
03140

03150
03160

R1

N1
N2
N3

FLAG
FL2
BREAK
SAVE
REG
M1

DEFE
DEFM

HL, (REG+20)
(REG+20) , SP
5P, REG+20
Iv

X

HL

DE

BC

AF

AF, AF?

HL
DE

BC

AF

SP, ST

FR

HL, (BREAK)
DE, SAVE
B,3

A, (DE)
(HL) ,A

HL

DE

R1

HL., RE1
2R75H

HL, (BREAK)
DISW

CR

CR

HL,RE2
2E75H

IX,REG+18
CH6

HL, O
{BREAK) (HL
Lt

]

Q

o]

Q

[o]

Q

Q

3

24

1CH

1FH

BWAT V2.0°

13

*BY MARK D. GOODWIN?

127

41
52
4E
20
44
2E
20
47
4F
4F
44
57

49

oD
Q0
41
20
20
20
20
20
42
2

20

-
<

20
20
41
2B
42
20

20

. 20

41

2D

20
20
20

42

Q3170
03180
03190 M2

6;’10

03220 RE1L

QI230

03240 RE2

DEFR 13

NOP

DEFM A B

DEFE 13

NOF

DEFM "BREAE. AT 7
NOF

DEFM T AF BC DE

IX/Y STAK7

HL

45FE

20

03250
03260
Q3270
03280
OF290
300
Q3310
Q3Z20
Q3Z30
Q3340
OQ3TE0
03360
03370
Q3380
QITF0
03400
03410
03420

TOTAL ERRORS

45FF 2

4600 20

4601 48

44602 4C

4603 20

4604 20

4605 20

4606 49

4607 S8

4608 2F

4609 G9

460A 20

4460B 53

4460C 54

460D 41

460E 4R

460F OD

4610 00

4611 CD2ZROO
4614 B7

4615 C8

4616 FEOL
4618 2812
461A FE20
4461C Co

461D C34900
44620 EDSEB745
44624 DF

44625 2802
4627 23

44628 C9

44629 CDB044
462C QO

4300

QQOOQQ

REZ2 45F2
R1 4546
RE1 45E8
RENT 4516
B2 44F 4
SAVE 4590
B1 4504
EBRK 44E4
CHs& 44R9
CHS 4405
CHA4 4483
CH4 44B1
FL2 458D
CHECK 44D1
DIsSW 4497
DIS 4478
SFA 448D
T2 4470
T1 4460
vID 4469
MAZ 444R
TAB 4459
REG 4593
DIWS 4476
M2 45CR
MAL 444
Lo 44R/9
MA3 47E2
MATH 43DF
auP 43D3
CH3 4629

KEY

CH2

CHZ

129

PR 44A2

INP 43C4
N2 4587
N3 4589
Z1 4ZRS
ZERO 43R2
E3 43AA
El 438A
EDIT 4387
60 4383
D3I 4380
D2 4378
N4 458H
D1 4363
KEY 4611
CR 4480
CH2 4620
DSF 4492
DIZ2 4352
DISt 4485
DIt 434D
N1 4585
CH1 449F
DIsP 4347
HS 433R
H3 432A
Hi 47345
H4 4316
FLAG 458C
HEX 430F
[4620
EBREAK 458E
M1 45AR
8T 4300

Listing 10-2 Comments

100 - Set the starting address for the monitor program.

110 - Load register pair HL with the starting address of the
message to be displayed.

120 - Go display the message.

130 - Zero register pair HL.

140 - Save the value in register pair HL at the breakpoint address
location.

150 - Jump.

160 - Zero register A.

170 - Zero the input flag.

180 - Zero register pair DE.

190 - Bump the input pointer in register pair HL.

200 - Load register A with the character at the location of the
input pointer in register pair HL.

210 - Check to see if this is the end of the input.

220 - Jump if this is the end of the input.

230 - Check to see if the character in register A is less than a 0.

240 - Return if the character in register A is less than a 0.

250 - Check to see if the character in register A is numeric.

130

260 -
270 -
280 -
290 -
300 -
310 -

320 -
330 -
340 -
350 -
360 -
370 -
380 -
390 -
400 -

410 -

420 -

430 -
440 -

450 -
460 -
470 -

480 -
490 -

500 -

510 -

520 -

530 -
540 -

550 -

Jump if the character in register A is numeric.

Check to see if the character in register A is less thanan A,
Return if the character in register A is less than an A.
Check to seeif the character in register Ais greater thana F,
Return if the character in register A is greater than a F.
Adjust the letter in register A so that it will be a binary
10-15.

Save the binary value in register A on the stack.

Load register A with a 1.

Save the value in register A as the current input flag.
Get the binary value from the stack and put it in register A.
Move the binary value in register A over one bit.

Move the binary value in register A over one bit.

Move the binary value in register A over one bit.

Move the binary value in register A over one bit.

Load register B with the number of bits to be moved into
register pair DE.

Move the most significant bit in register A into the Carry
flag.

Move the bit in the Carry flag into register E and move
register E’s most significant bit into the Carry flag.
Move the bit in the Carry flag into register D.

Loop till all four bits of the hex digit have been moved into
register pair DE.

Loop till the end of the hex number has been processed.
Decrement the input pointer in register pair HL.

Return with the binary value of the hex number in register
pair DE.

Go check the addresses and set the current output device.
Load register pair HL with the starting address to be dis-
played.

Go send the value in register pair HL to the current output
device.

Load register B with the number of memory locations per
line to output.

Load register A with the value at the location of the memory
pointer in register pair HL.

Go display the value in register A as two hex digits.
Check to see if the memory pointer in register pair HL is
the same as the last address.

Loop till 16 values have been sent to the current output
device.

131

560 -
570 -

580 -
590 -
600 -
610 -
620 -

630 -

640 -
650 -
660 -

670 -
680 -
690 -
700 -

710 -

Go display a carriage return.

Go check to see if the BREAK or the space key was
pressed.

Loop till done.

Save the value in register pair HL on the stack.

Save the value in register A.

Zero register A.

Point register pair HL to the storage location of the value to
be displayed.

Load register A with the most significant four bits at the
location in register pair HL.

Go display the 4-bit value in register A.

Zero register A,

Load register A with the most significant four bits at the
location in register pair HL.

Go display the 4-bit value in register A.

Get the value from the stack and put it in register pair HL.
Return.

Adjust the 4-bit value in register A so that it will be an
ASCII character.

Check to see if the character in register A is a 0-9.

720 - Jump if the character in register A is a 0-9.

730 -

740 -

750 -
760 -
770 -
780 -
790 -

800 -
810 -
820 -
830 -
840 -
850 -

860 -
870 -

132

Adjust the 4-bit value in register A so that it will be the
proper ASCII value for A-F.

Go send the character in register A to the current output
device.

Load register pair HL with the location to jump to.

Jump to the location in register pair HL.

Load register pair HL. with the starting address.

Go display the address in register pair HL.

Load register A with the value at the location of the memory
pointer in register pair HL.

Save the value in register A.

Go display the value in register A.

Save the memory pointer in register pair HL on the stack.
Go get the input from the keyboard.

Jump if BREAK is pressed.

Point the input pointer in register pair HL to the first
character in the input.

Decrement the input pointer in register pair HL.

Go convert the hex input to binary.

880 - Load register A with the input flag.
890 - Check to see if a hex number was input.
900 - Jump if a hex number wasn’t input.
910 - Save the binary value for the hex input in register pair DE.
920 - Load register A with the value to be saved.
930 - Get the memory pointer from the stack and put it in register
pair HL.
940 - Save the value in register A at the location of the memory
pointer in register pair HL.
950 - Bump the memory pointer in register pair HL.
960 - Loop till the BREAK key is pressed.
970 - Load register pair HL with the starting address.
980 - Load register A with the value to save.
990 - Save the value in register A at the location of the memory
pointer in register pair HL.
1000 - Load register pair DE with the ending address.
1010 - Go compare the memory pointer in register pair HL with
the ending address in register pair DE.
1020 - Jump if the memory pointer in register pair HL is the same
as the ending address in register pair DE.
1030 - Bump the memory pointer in register pair HL.
1040 - Loop till done.
1050 - Go set the current output device.
1060 - Load register A with the port to input from.
1070 - Load register C with the port number in register A.
1080 - Go read the port.
1090 - Go display the value read in register A.
1100 - Go send a carriage return to the current output device and
return.
1110 - Load register A with the port number.
1120 - Load register C with the port number in register A.
1130 - Load register A with the value to send to the port.
1140 - Send the value in register A to the port in register C.
1150 - Jump.
1160 - Go set the current output device.
1170 - Go load the first value input into register pair HL and the
second value input into register pair DE.
1180 - Load register A with the MSB of the second value input in
register D.
1190 - Combine the MSB of the second value input in register A
with the LSB of the second value input in register E.

133

1200 - Jump if there wasn’t a second value input.

1210 -

1220 -
1230 -
1240 -
1250 -
1260 -
1270 -

1280 -
1290 -
1300 -
1310 -

1320 -
1330 -

1340 -
1350 -
1360 -
1370 -

1380 -
1390 -

1400 -
1410 -
1420 -
1430 -
1440 -
1450 -

1460 -
1470 -

1480 -

134

Load register pair HL with the starting address of the
message to be displayed.

Go display the message.

Load register pair HL with the first number.

Go display the number in register pair HL.

Load register pair HL with the second number.

Go display the second number in register pair HL.

Go load the first number in register pair HL and the second
number in register pair DE.

Add the second number in register pair DE to the first
number in register pair HL.

Save the result in register pair HL.

Go display the result in register pair HL.

Load the first number in register pair HL and the second
number in register pair DE.

Clear the Carry flag.

Go subtract the second number in register pair DE from the
first number in register pair HL.

Save the result in register pair HL.

Go display the result in register pair HL.

Go load the first number in register pair HL and the second
number in register pair DE.

Exchange the first number in register pair HL with the
second number in register pair DE.

Clear the Carry flag.

Subtract the first number in register pair DE from the
second number in register pair HL.

Save the result in register pair HL.

Go display the result in register pair HL.

Go display a carriage return.

Load register pair HL with the first number.

Load register E with the tab position after displaying the
result in register pair HL.

Go display the number in register pair HL and tab to the
next position.

Load register pair HL with the second number.

Load register E with the next tab position after displaying
the number in register pair HL.

Go display the number in register pair HL and tab to the
next position.

1490 - Load register pair HL with the result of adding the first and
second numbers.

1500 - Load register E with the next tab position after displaying
the result in register pair HL.

1510 - Godisplay the result in register pair HL and tab to the next
position.

1520 - Load register pair HL with the result of subtracting the
second number from the first number.

1530 - Load register E with the next tab position after displaying
the result in register pair HL.

1540 - Godisplay the result in register pair HL and tab to the next
position.

1550 - Load register pair HL with the result of subtracting the first
number from the second number.

1560 - Go display the result in register pair HL.

1570 - Go display a carriage return.

1580 - Jump.

1590 - Load register pair HL. with the number to be converted.

1600 - Go display the number in register pair HL.

1610 - Go display a carriage return.

1620 - Jump.

1630 - Save the tab position in register E on the stack.

1640 - Go display the number in register pair HL.

1650 - Get the tab position from the stack and put it in register E.

1660 - Load register A with the current output device.

1670 - Check to see if the current output device is the video
display.

1680 - Jump if the current output device is the video display.

1690 - Load register A with the current carriage position.

1700 - Jump.

1710 - Load register A with the current cursor position.

1720 - Compliment the current print position in register A.

1730 - Figure the number of spaces to be printed.

1740 - Bump the number of spaces to be printed in register A.

1750 - Load register B with the number of spaces to be printed in
register A.

1760 - Go print a space.

1770 - Loop till all of the spaces have been printed.

1780 - Return.

1790 - Go display the value in register pair HL and a space.

1800 - Go display a space.

135

1810 -
1820 -
1830 -
1840 -
1850 -
1860 -
1870 -

1880 -
1890 -

1900 -
1910 -
1920 -

1930 -
1940 -

1950 -
1960 -

1970 -
1980 -

1990 -
2000 -
2010 -
2020 -
2030 -
2040 -

2050 -
2060 -
2070 -

2080 -
2090 -
2100 -
2110 -
2120 -

136

Go print the value in register pair HL.

Go display a space.

Load register A with a carriage return character.

Go display a carriage return on the current output device.
Go display the value in register pair HL.

Load register A with a : character.

Go send the : character in register A to the current output
device.

Load register A with a space character.

Go send the space in register A to the current output
device.

Go display the 8-bit value in register A.

Go display a space.

Load register A with the MSB of the value to be displayed in
register H.

Go display the 8-bit value in register A.

Load register A with the LSB of the value to be displayed in
register L.

Go display the 8-bit value in register A.

Go check the numbers that were input and set the default
values if necessary.

Load register A with the output device number.

Save the value in register A as the current output device
flag.

Return.

Load register pair HL with the first number.

Load register pair DE with the second number.

Return.

Load register B with the number of values to be displayed.
Go display the value at the location of the memory pointer in
register pair IX.

Loop till all of the numbers have been displayed.

Return.

Go display the value at the location of the memory pointer in
register pair IX.

Bump the memory pointer in register pair IX.

Bump the memory pointer in register pair IX.

Go display the value at the location of the memory pointer in
register pair IX.

Go display a carriage return.

Load register L with the LSB of the value to be displayed at

2130 -
2140 -

2150 -
2160 -
2170 -
2180 -

2190 -
2200 -
2210 -
2220 -
2230 -
2240 -
2250 -
2260 -
2270 -
2280 -
2290 -

2300 -

the location of the memory pointer in register pair IX.
Bump the memory pointer in register pair IX.

Load register H with the MSB of the value to be displayed at
the location of the memory pointer in register pair IX.
Bump the memory pointer in register pair IX.

Go display the value in register pair HL.

Load register pair HL with the first number input.

Load register A with the MSB of the first number input in
register H.

Combine the MSB of the first number input in register A
with the LSB of the first number input in register L.
Return if the first number input isn’t equal to zero.

Load register pair HL with the second number input.
Load register A with the MSB of the second number input in
register H.

Combine the MSB of the second number input in register A
with the LSB of the second number input in register L.
Return if the second number input isn’t equal to zero.
Load register pair HL with the end of memory.

Save the value in register pair HL as the second number
input.

Return.

Load register pair HL with the first number input.

Load register A with the MSB of the first number input in
register H.

Combine the MSB of the first number input in register A
with the LSB of the first number input in register L.

2310 - Jump if the first number input is equal to zero.

2320 -
2330 -

2340 -

2350 -
2360 -

2370 -
2380 -

2390 -
2400 -

Save the first number input in register pair HL on the stack.
Save the first number input in register pair HL as the
current breakpoint location.

Load register pair DE with the location to save the values at
the breakpoint location.

Load register B with the number of values to be saved.
Load register A with the value at the breakpoint pointer in
register pair HL.

Save the value in register A at the location of the breakpoint
storage pointer in register pair DE.

Bump the breakpoint pointer in register pair HL.

Bump the breakpoint storage pointer in register pair DE.
Loop till the three bytes at the breakpoint location have
been saved.

137

2410 - Get the location of the breakpoint from the stack and put it
in register pair HL.

2420 - Save a call op code at the location of the breakpoint pointer
in register pair HL.

2430 - Bump the breakpoint pointer in register pair HL.

2440 - Load register pair DE with the reentry point.

2450 - Save the LSB of the reentry point in register E at the
location of the breakpoint pointer in register pair HL.

2460 - Bump the breakpoint pointer in register pair HL.

2470 - Save the MSB of the reentry point in register D at the
location of the breakpoint pointer in register pair HL.

2480 - Load register pair HL with the starting address of the
message to be displayed.

2490 - Go display the message.

2500 - Load register pair HL with the current breakpoint location.

2510 - Go display the current breakpoint location in register pair
HL.

2520 - Go display a carriage return.

2530 - Jump.

2540 - Save the value in register pair HL.

2550 - Get the return address from the stack and put it in register
pair HL.

2560 - Decrement the return address in register pair HL.

2570 - Decrement the return address in register pair HL.

2580 - Decrement the return address in register pair HL.

2590 - Save the return address in register pair HL.

2600 - Load register pair HL with the value previously saved.

2610 - Save the current location of the stack pointer.

2620 - Set the stack pointer at the storage locations for the regis-
ters.

2630 - Save the value in register pair IY.

2640 - Save the value in register pair IX.

2650 - Save the value in register pair HL.

2660 - Save the value in register pair DE.

2670 - Save the value in register pair BC.

2680 - Save the value in register pair AF.

2690 - Exchange the prime and the nonprime registers.

2700 - Exchange the prime and the nonprime registers.

2710 - Save the value in register pair HL.

2720 - Save the value in register pair DE.

2730 - Save the value in register pair BC.

2740 - Save the value in register pair AF.

138

2750 -
2760 -
2770 -

2780 -

2790 -

2800 -

2810 -

2820 -
2830 -
2840 -
2850 -

2860 -
2870 -
2880 -

2890 -
2900 -
2910 -

2920 -
2930 -
2940 -
2950 -
2960 -

2970 -
2980 -

2990 -
3000 -
3010 -

3020 -
3030 -
3040 -
3050 -

Reset the stack pointer.

Go set the current output device.

Load register pair HL with the current location of the
breakpoint.

Load register pair DE with the location of the breakpoint
storage location.

Load register B with the number of bytes to be replaced in
memory.

Load register A with the value at the location of the break-
point storage location in register pair DE.

Save the value in register A at the location of the breakpoint
pointer in register pair HL.

Bump the breakpoint pointer in register pair HL.

Bump the breakpoint storage pointer in register pair DE.
Loop till all of the bytes have been replaced.

Load register pair HL with the starting address of the
message to be displayed.

Go display the message.

Load register pair HL with the current breakpoint location.
Go display the current breakpoint location in register pair
HL.

Go display a carriage return.

Go display a carriage return.

Load register pair HL with the starting address of the
message to be displayed.

Go display the message.

Load register pair IX with the register storage location.
Go display the register values.

Go display the register values.

Load register pair IX with the location of the registers to be
displayed.

Go display the register values.

Load register pair IX with the register values storage loca-
tion.

Go display the register values.

Zero register pair HL.

Save the value in register pair HL as the current breakpoint
location.

Jump.

The first number input is stored here.

The second number input is stored here.

The third number input is stored here.

139

3060 - Temporary storage location.

3070 - Input flag.

3080 - Current output device number is stored here.

3090 - The current breakpoint location is stored here.

3100 - The values at the current breakpoint location are stored
here.

3110 - The register values are stored here upon reentry from a
breakpoint.

3120 - This will home the cursor.

3130 - This will clear to the end of the screen.

3140 - Part of the sign-on message is stored here.

3150 - This will display a carriage return as part of the sign-on
message.

3160 - Part of the sign-on message is stored here.

3170 - This will display a carriage return as part of the sign-on
message.

3180 - Sign-on message terminator.

3190 - Math conversion message is stored here.

3200 - This will display a carriage return as part of the math con-
version message.

3210 - Math conversion message terminator is stored here.

3220 - Breakpoint message is stored here.

3230 - Breakpoint message terminator is stored here,

3240 - Register display message is stored here.

3250 - This will display a carriage return as part of the register
display message.

3260 - Register display message terminator is stored here.

3270 - Go scan the keyboard.

3280 - Check to see if there was a key pressed.

3290 - Return if a key wasn’t pressed.

3300 - Check to see if the BREAK key was pressed.

3310 - Jump if the BREAK key was pressed.

3320 - Check to see if the space key was pressed.

3330 - Return if the space key wasn’t pressed.

3340 - Loop till another key is pressed.

3350 - Load register pair DE with the second number input.

3360 - Go check to see if the current value in register pair HL is
the same as the second number input in register pair DE.

3370 - Jump if the value in register pair HL is the same as the
second number input in register pair DE.

3380 - Bump the value in register pair HL.

3390 - Return.

140

3400 - Go display a carriage return.
3410 - Link to the next part,
3420 - End of the program.

Listing 10-3

4585
4587
4589
4s8C
4497
4480
44py
44p2
4485
4492
4363
448D
449F
4620
4629
4611
462¢
462C
462F
4630
4633
4636
4639
463C
463E
4640
4642
4645
4648
4649
464A
464C
464F
4652
4654
4656
4658
465a
465D
465E
4661

4662
4663
4666
4668
866A
466D
466F
4672
4675
4676
4677
4674
467m
467C
467E
4681

4482

C3E948
AF
328045
CDRCA4&
€D9602
CD3S02
FESS
20F9
0606
21D246
CD3502
77

23
1OF9
cp2c02
CD3502
FE78
2835
FEZC
20F5
CD3502
47
CD1403
85

4F
3ABCA4S
FEO1
2808
228545
3E01
328C45
CD3502
77

00100
00110
Q0120
Q0130
Q0140
Q0150
QO160
Q0170
00180
Q0190
QO200
00210
Q022

00230
QQ240
00250
QQ26Q
Q0270
QO280
Q0290
QOI00
Q0310
QO320
QO3Z0
QO340
Q350
QO340
0Q370
QO3B0
0030
Q0400
00410
Q0420
Q430
a0440
00450
Q0460
Q0470
Q0480
00490
QOS00
Q0510
QOS520
00530
GOS40
00550
Q0560
Q0570
Q0580
Q0590
QQ&600
00610
Q0620
QQ&30
Q0640
Q0650
Q0660
00670

N1
N2
N3
FLAG
DISW
CR
CHECK
PR
DIst
DSP
D1
SPA
CH1
CH2
CH3
KEY

READ

RA1

RA2

RA3
RA4

RAS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
QU
EQU
EQU
ORG
JF

X0R

CAL.L
CALL
CALL
CF
JR
LD
LD
CALL
LD
INC
DJINZ
cALL
CALL
CF
JR
cP

CALL
LD
CALL
ADD
LD
LD
CP
JR
LD
LD
LD
CALL

INC
LD
ADD

DJINZ
CALL
CF
JR

4585H
4587H
4589H
458CH
4497K
4480H
44D1H
44A2H
4485H
44924
4363H
448DH
449FH
4620H
4629H
4611H
462CH
L1

A
(FLAG) , A
cAss
296H
235H
554
NZ,RA1
H,6

HL , NAME

235H

(HL) A
HL

RAZ
22CH
235H
78H
Z.RAb
3CH
NZ,RA4
235H
B,A
I14H
AlL

c,A

A, (FLAB)
1

Z,RAS
(N1) ,HL
ALl
(FLAB) , A
235H
(HL) 4 A
HL.
(N2 L HL
A,C

C,A

RAS
235H

c

Z,RA3

141

44684
45686
44689
446BH
4468E
4691
4694
4697
4497
469D
46A0
46AT
4606
46AF
46AC
46AD
46BO
46B3
446B6
4689
46RC
46EF
46C2
46CS
46C7
46CA
46CD
46CF
Q004
46D8
446D9
46DA
446DB
44DC
44DD
46DE
44DF
A46EQ
46E1
A6E2
A6EZR
456E4
46ES
46E6
46E7
46E8
46E9
A46EA
46ER
46EC
46ED
46EE
46EF
46FOQ
46F3
46F4
46FS
4&6F7
46FA
44FD
4700
4703
4706
4709
470A
470C
47QF

142

3E43
J23E3C
18C4
€D1403
228945
CDFB801
21E946
CD732B
21D246
CD752B
cDB044
2ABS45
CDCA4s
2AB745
2B
CDCA4s
2AB945
CD9744
CDs0va4q
C3IE?48
21D%4646
CD752
CD4?00
3EOL
C31202
CDh?744
JE2C
CI2A03

Q0

52

45

41

44

59

20

43

41

53

53

45

54

54

45

oD

00

4E

41

4D

45

3A

20

QO
2AB945
7C

BS
2006
2A8545
228945
21E946
CD752
CD6103
DAE®48
D7
2003
217D47
ES

a0s680
00690
QO700
00710
00720
00730
QQ740
00750
QO760Q
Q0770
Q0780
00790
QOBOO
00810
QOB20
00830
QOB40
00850
QOB6O
00870
[el=1=1d)
00890
Q000
00910
QU920
QOPE0
QP40
00930
QOP&0
00970
Q0980

00990
01000
01010

Q1020
G1O30
01040
01050
01060
G1L070
01080
Q1090
01100
01110
01120
01130
41140
011350
01160

RA&

CASs

DIs2

NAME

CAl

CAZ2

PUNCH

PUN

FPUL

DEFRE
NOF
DEFM

FUSH

A, 43H
(ICIEH) , A
RA4
314H
(N3) , HL
1F8H
HL, LAZ
2B75H
HL , NAME
2R75H
CR

HL, (N1)
pisz
HL, (N2)
HL

pisz
HL., (N3)
DISW

CR

L1
HL,CAl
2E75H
49H

Ayl
2124
DISW
A!’!“
326H

P

*READY CABBETTE’

13

*NAME: *

HL, (NT)
AL H

L
NZ , PUN
HL, (N1)
(NZ) HL
HL, CAZ
2E75H
J61H
c,L1

16

NZ ,FPUL
HL, CAZ
HL

4710
4713
4715
4718
4718
471D
4720
4722
4725
4728
472A
472C
472D
4730
4732
4735
4736
4739
473C
473E
473F
4740
4742
4744
4747
4748
474R
474E
4750
47E3
4756
4759
4735C
475F
4762
4765
4766
4767
476A
47 6B
476E
47&F
4770
4771
4774
4775
4776
4777
4779
477A
477D
477E
477F
4780
4781
4782
4783
4786
4789
478C
478E
478F
4791
4793
4795
4797
4799

CDEC46
FDE1
CDCAA7
€DB402
3ESS
CD6402
0606
FD7E0Q
CD6402
FD23
10F6
25
FA3E47
3E3C
CD6402
AF
CDb402
CD&6S47
18EE
AF

ED
280C
3EIC
CD6402
7D
CD6402
CD&S47
JE78
CD6402
3A8945
CD&402
XABASLS
CD6402
CDF801
C3E948
47

7R
CD6402
74
CD6402
as

4F

1A
CD6402
81

C36402
4

4F

4E

41

4D

45
CD9F44
2A8545
CDB544
0630
7E
CEEBF
FE20
3804
FESO
3802
SEZE

01170
1180
01190
Q1200
01210
01220
01230
Q1240
01250
Q1260
01270
01280
01290
Q1300
01310
01320
01330
Q1340
01350
Q1360
Q1370
Q1380
Q1390
01400
01410
Q01420
01430
01440
01450
Q14460
Q1470
01480
01490
01800
01510
01320
01830
G1540
Q1530
Q1560
01370
Q1580
Q1590
Q1600
Q1610
Q1620
01630
Q1640
01650
01660
01670

01680
Q1690
Q1700
01710
Q1720
Q1730
Q1740
Q1750
01760
01770
01780

PU2

PU3

FU4

FUé

PUS

FU7

CA3

ASC

AS1

AS2

AS3

CAaLL
FOpP

CALL
CALL

cAss
v
LENGTH
284H
A, S5H
264H
B, 6

Ay (IY+0)
264H
1y
PU2

H

M, PU4
A, 3CH
264H
A
2644
FUS
FU3

A

L
Z,PUs
A, 3CH
264H
AL
264H
PUS

A, 78H
264H
A, (NS)
264H
Ay (NZ+1)
264H
1FBH
L1
E,A
AE
264H
A, D
264H
ALE
C,A

A, (DE)
264H
A,C
C,A
DE
FU7
a,C
2644

* NONAME*

CH1
HL, (N1)
DIS1

E, 48

A, (HL)
7,4
C.AS3
128
c,AS4
P

143

4798
479E
47A1
47A3
4706
47A7
47A/R
47RE
4781
47R2
4785
4786
47R9
478BA
478D
47CQ
47C2
47C5
47C7
47CA
47CD
47D1
47D2
4704
47D3
47D6
47D%
47DA
47DE
47DE
47E1
47EZ
47E6
47E9
47EA
47ED
47F0
47F1
47F2
47FS
47F&
47F7
47F8
47F%
47FC
A47FF
4800
4803
48046
4808
480R
480E
4810
4813
4816
4817
481A
481R
481C
481D
481E
481F
4820
4821
4822
4824
4825
4828

144

CD2A03
CD2046
10ER
CD8044
CD1146
18DE
CD9F44
CDD&47
FS
CDD348
7E
CDCS48
Fi
E2E?48
CD1146
18EC
CD9F44
1803
ChD144
2AB745
EDSEB8G4S
AF
EDS2
23

C2ZER48
228545
co
CDRF44
£DD647
F3
2B
CDD348
SE
23
56
ER
CDY744
cDgn4as
Fi1
E2E948
CD1144
18ES
CDERA4B
CDCR48
EDEOQ
3E948
CDC247
ER
2AB545
47

213248
CD732R

01790
01800
01810
01820
01830
01840
01850
Q1860
01870
1880
01890
Q1900
01910
01920
01930
01940
01950
Q1960
01970
01980
01990
Q2000
02010
Q2020
Q2030
Q2040
02050
Q2060
02070

22080
02090
A2100
02110
Q2120
Q2130
02140
02150
Q2160
02170
Q2180
Q2190
Q2200
02210
Q2220
Q2230
Q2240
02250
Q2260
Q2270
Q2280
Q2290
Q2300
02710
Q2ZF20
Q2330
02340
02350
Q260
02370
02380
Q2390
Q2400
02410
Q2420
02430
02440
02450
02460

AS4

FIND
Fi

CH9

CH7
LENGTH

SEARCH

HUNT
H1

MOVE

SuUM

=3

32AH
CH2
AsS2
CR

KEY
AS1
CH1
SEARCH
AF
CH19
A, (HL)
CH12
NS
FO,L1
KEY

F1

CH1
LENGTH
CHECK,
HL . (N2
DE, (N1)
A

HL.,DE
HL

LENGTH
HL

BC

HL, (N1)
A, (NX)

NZ,L1
(N1) JHL

CH1
SEARCH
AF

ML
CH19
E, (HL)
HL

D, (HL)
DE, HL
DISW
CR

AF

FO, L1
KEY
H1
CH8
CH13

L1
cHY

DE, HL
HL, (N1)
E, A

A, (HL)
AL B
E,A

HL

DE

A.D

E

NZ, 81
BC

ML, SU1L
2R7S5H

482p
482C
482F
4832
4833
4834
4835
4836
4837
4838
4839
483A
483E
483C
483D
4840
48473
4844
4845
4846
4847
4848
4849
4841
484C
484F
4850
4853
4854
48357

4858

485A
48SE
485C
485D
485SE
4860
4861

4864 =

4866
4869
486A
486D
4870
4872
4875
4878
4879
487A
487R
487C
487D
4881
4884
4886
4887
4888
4889
488C
488D
4890
4892
4895
4898
4899
48947
489D
489E

F1
CD&343
C32946
43
48
45
43
4R
S3
S5
4D
3A
20
QO
CDCO048
208545
SE
AF
77

CDCER48
7E

EB

EBE

23

13
EDS38545
228945
281K
ES

ER

2B
cCDeS44
7E
CD?244
3JEZD
CD2A0Z
cDh8h44

CDCS48

02470
02480
02490
02500

02510
Q2520
Q2530
Q2340
Q2850
Q2560
Q2570
02580
Q2590
02600
02610
02620
Q2630
02640
Q2650
02660
Q2670
02680
QR690
Q2700
Q2710
Q2720
Q2730
02740
Q2750
02760
Q2770
02780
Q2790
02800
Q2810
02820
Q2830
02840
Q2850
Q2860
Q2870
02880
02890
Q2900
02910
02920
Q2930
02940
Q2950
Q2960
Q2970
02980
02990
Q3000
03010
Q3020
QI0Z0Q
03040Q
03050

Su1t

TEST

T1

T2

T3

VERF
Vi

POP
cALL

DEFM

AF

D1

CH3
*CHECKSUM: 2

CH10
HL, (N1)
E, (HL)
A

(HLY , A
D, (HL)
D

(HL)Y ,E
Z,72
DE
DIS1

A

DsP

AF
CHiZ
E, (HL)
A, OFFH
HL) A
D, (HL)
D
(HL) L E
7,73
DE
pIS1
A, OFFH
DSF

AF
CH12
CH18
T
CH1O
CH1Z
Al (HL)
DE, HL
(HL)
HL

DE
(N1) ,DE
(N3) (HL
Z,v2
HL

DE, HL
HL
DIS1
A, (HL)
DSP
P
A2AH
SFA

HL

HL
DIS1
A, (HL)
CH12

145

4801
48A4
48A7
48AA
48AD
48AE
48AF
48R0
48R1
4gR2
48B3
48R4
48EB5
48B8
48EBA
48RD
48RE
48BF
48C0
48C3
48CS
48C8
48CH
48CE
4802
48D3
48D4
48D7
48D8
48DE
48DC
48DD
48DE
48E1
48E3
48E4
48ES
48E6
48E7
48E8
48E9
4300

CDDEA48
C37348
CDEA4S
CDCR4B
cS

46

EB

7E

70

EB

77

ci
CDE348
18F3
cDC747
ES

C1

ce
€pC247
18F8
CD9244
€344
2A8545
EDSRB945
ce

2B
cDes44
7E
CD9244
23

ce

23

CD1146

03060
Q3070
03080
Q3I0Q

03100
Q3110
Q3120
03130
03140
Q3150
03160
Q3170
03180
03190
Q3200
03210
03220
03230
Q3240
Q3250
Q3260
Q3270
03280
03290
03300
03310
Q3320
Q3330
03340
Q3FTO
03360
03370
03380
03390
03400
03410
Q3420
03420
03440
03450
03460
03470

00000 TOTAL ERRORS

CH15
CH1&
CH20
CH11
CH14
El
EXCH
CH17
v2
Vi
VERF
CH1B
T3
T2
T1
CH10
TEST
sut
s1
sSuM
CH13
CH8
MOVE
H1

146

48E4
48ES
48D7
48RBD
4BE3X
48AD
48A7
48DE
48A1
4875
4872
48DD
486D
4857
4843
48C0
483D
4832
481B
4813
48CB
48EA
4808
47ED

va

EXCH

El

CH8

CH11t

CH10O

CH12

CH13

CH19

CH20

CH18
CH17
CH14

CH1S
CH1é6

L1

CALL

CALL
CALL
FUSH
LD
EX
LD
LD
EX
LD
FOP
CALL
JR
CALL
FUSH
FOP
RET
CALL

CALL
JP
LD
LD
RET
DEC
CALL
LD
CALL
INC
RET
INC
CALL
JR
INC
INC
DEC
LD
OR
RET
DEFRE
END

CHY
CH11
DSP

CR

HL, (N1)
DE, (N3)

HL
DIS}
A, (HL)
DSF
HL

HL.
KEY
CHi6
DE

HL

BC
AE

C

NZ

0
4300H

HUNT 47EA
CH7 47c7
CH? 47C2
CH12 48CS
CH19 48D3
SEARCH 47Dé6

F1 47AE
FIND 47AB
AS4 4798
AB3 4799
AS2 478E
AS1 4789
ASC 4783
PU7 4770
FUs 474E
PUS 4765
FU4 473E
PU3 472C
PU2 4722
LENGTH 47CA
CAS 477D
PUL 470F
PUN 46FD
PUNCH 46F0
cal 46D
DIS2 46CA
CAz 46EF
RAS {4672
RA6 4468B
RA4 464F
RA3 464C
RA2 4645
NAME 46D2
RA1 4639
CAss 46EC
READ 462F
L1 4BE?
KEY 4611
CH3 4629
CH2 4620
CH1 449F
SPA 448D
D1 43483
DSP 4492
DIs1 4485
PR 44/2
CHECK 44D1
CR 4480

DIsW 4497
FLAG 458C

N3 4589
N2 4587
N1 4585

Listing 10-3 Comments

100 - Value from previous part.
110 - Value from previous part.
120 - Value from previous part.
130 - Value from previous part.
140 - Value from previous part.
150 - Value from previous part.
160 - Value from previous part.

147

170 - Value from previous part.

180 - Value from previous part.

190 - Value from previous part.

200 - Value from previous part.

210 - Value from previous part.

220 - Value from previous part.

230 - Value from previous part.

240 - Value from previous part.

250 - Value from previous part.

260 - Set the starting address to the end of the last part.
270 - Jump.

280 - Zero register A.

290 - Zero the input flag.

300 - Go display the prompt and turn on the cassette.
310 - Go read the leader and find the sync byte.

320 - Goread abyte from the cassette recorder and return with it

in register A.

330 - Check to see if the byte read from the cassette is the

filename header byte.
340 - Loop till the filename header byte is found.

350 - Load register B with the number of bytes to be read for the

filename.

360 - Load register pair HL with the filename storage location.
370 - Go read a byte from the cassette recorder and return with

the byte in register A.

380 - Save the byte read from the cassette in register A at the
location of the filename storage pointer in register pair HL.

390 - Bump the filename storage pointer in register pair HL.

400 - Loop till all of the bytes in the filename have been read.

410 - Go blink the asterisks on the video display.

420 - Goread abyte from the cassette recorder and return with it

in register A.

430 - Check to see if the byte read from the cassette recorder is

the jump address header.

440 - Jump if the byte read from the cassette recorder is the jump

address header.

450 - Check to see if the byte read from the cassette in register A

is the data block header.

460 - Jump if the byte read from the cassette in register A isn’t a

data block header.

470 - Go read a byte from the cassette recorder and return with it

in register A.

148

480 -

490 -

500 -

510 -

520 -
530 -

Save the number of bytes in the file block in register A in
register B.

Go read two bytes from the cassette recorder and return
with the data block starting address in register pair HL.
Add the MSB of the data block’s starting address in register
A to the LSB of the data block’s starting address in register
L.

Save the combined starting address in register A as the
starting checksum in register C.

Load register A with the input flag.

Check to see if the starting address has been saved.

540 - Jump if the program’s starting address has already been

550 -
560 -

570 -
580 -

590 -

600 -
610 -

620 -
630 -
640 -
650 -

660 -

saved.

Save the starting address in register pair HL.

Load register A with the value to indicate the starting
address has been saved.

Save the value in register A in the input flag.

Go read a byte from the cassette recorder and return with it
in register A.

Save the value in register A at the location of the memory
pointer in register pair HL.

Bump the memory pointer in register pair HL.

Save the memory pointer in register pair HL as the ending
address.

Add the current checksum in register C with the value in
register A.

Save the updated checksum in register A in register C.
Loop till the data block has been read.

Go read the checksum from the cassette recorder and re-
turn with it in register A.

Compare the checksum read from the tape in register A
with the computed checksum in register C.

670 - Jump if the checksum read from the tape in register A

matches the checksum computed in register C.

680 - Load register A with a C character.

690 - Go display the C character in register A on the video
display.

700 - Jump.

710 - Go read the execution address from the cassette recorder
and return with it in register pair HL.

720 - Save the execution address in register pair HL.

730 - Go turn off the cassette recorder.

149

740 - Load register pair HL with the starting address for the
message to be displayed.

750 - Go display the message.

760 - Load register pair HL with the starting address for the
filename.

770 - Go display the filename.

780 - Go display a carriage return.

790 - Load register pair HL with the starting address.

800 - Go display the program’s starting address in register pair
HL.

810 - Load register pair HL with the program’s ending address.

820 - Decrement the program’s ending address in register pair

830 - gg.display the program’s ending address in register pair
840 - II:%;d register pair HL with the program’s execution ad-
850 - él'; (Si?:;play the program’s execution address in register pair
860 - I(-‘E)J .display a carriage return.

870 - Jump.

880 - Load register pair HL with the starting address of the
cassette prompting message.
890 - Go display the message.
900 - Go wait till a key is pressed.
910 - Load register A with the drive number to turn on.
920 - Go start the cassette motor.
930 - Go display the value in register pair HL.
940 - Load register A with a comma character.
950 - Go display a comma.
960 - The program’s name will be stored here.
970 - The program’s name message terminator is stored here.
980 - The cassette prompting message is stored here.
990 - This will display a carriage return as part of the cassette
prompting message.
1000 - The cassette prompting message terminator is stored here.
1010 - The NAME message is stored here.
1020 - The NAME message terminator is stored here.
1030 - Load register pair HL with the program’s execution ad-
dress.
1040 - Load register A with the MSB of the program’s execution
address in register H.

150

1050 -

Combine the MSB of the program’s execution address in
register A with the LSB of the program’s execution address
in register L.

1060 - Jump if the execution address in register pair HL isn’t equal

1070 -
1080 -

1090 -

1100 -
1110 -
1120 -
1130 -

1140 -
1150 -

1160 -

1170 -
1180 -

1190 -

1200 -
1210 -
1220 -
1230 -

1240 -

1250 -

1260 -
1270 -

1280 -
1290 -
1300 -
1310 -

to zero.

Load register pair HL with the program’s starting address.
Save the program’s starting address in register pair HL as
the program’s execution address.

Load register pair HL with the starting address of the
NAME message.

Go display the NAME message.

Go get the keyboard input.

Jump if the BREAK key was pressed.

Go bump the input buffer pointer in register pair HL till it
points to the first character in the input.

Jump if a name was input.

Load register pair HL with the starting address for the
NONAME program name.

Save the starting address for the program name in register
pair HL on the stack.

Go prompt for the cassette and turn on the cassette motor.
Get the program name’s starting address from the stack and
put it in register pair IY.

Go figure the program’s length and return with it in register
pair HL.

Go write the leader and the sync byte.

Load register A with the filename header byte.

Go write the filename header byte on the cassette recorder.
Load register B with the length of the filename to write on
the cassette recorder.

Load register A with the character at the filename pointer in
register pair IY.

Go write the filename character in register A on the cas-
sette recorder.

Bump the filename pointer in register pair IY.

Loop till the filename has been completely written on the
cassette.

Decrement the MSB of the program’s length in register H.
Jump if this is the last data block to be written.

Load register A with the data block file header.

Go write the data block file header byte on the cassette
recorder.

151

1320 -
1330 -
1340 -
1350 -
1360 -
1370 -

Load register A with the data block’s length.

Go write the data block’s length on the cassette recorder.
Go write the data block.

Loop till all but the last data block has been written.
Zero register A.

Check to see if the LSB of the program’s length in register L
is zero.

1380 - Jump if the LSB of the program’s length is zero.

1390 - Load register A with the data block header byte.

1400 - Go write the data block header byte on the cassette.

1410 - Load register A with the data block’s length in register L.

1420 - Go write the data block’s length on the cassette recorder.

1430 - Go write the data block on the cassette recorder.

1440 - Load register A with the execution address header byte.

1450 - Go write the execution address header byte on the cassette
recorder.

1460 - Load register A with the LSB of the execution address.

1470 - Go write the execution address’s LSB on the cassette
recorder.

1480 - Load register A with the MSB of the execution address.

1490 - Go write the MSB of the execution address on the cassette
recorder.

1500 - Go turn off the cassette recorder.

1510 - Jump.

1520 - Load register B with the data block’s length in register A.

1530 - Load register A with the data block’s starting address in
register E.

1540 - Go write the LSB of the data block’s starting address on the
cassette recorder.

1550 - Load register A with the MSB of the data block’s starting
address in register D.

1560 - Go write the MSB of the data block’s starting address on the
cassette recorder.

1570 - Add the LSB of the data block’s starting address in register
E to the MSB of the data block’s starting address in register
A.

1580 - Load register C with the starting checksum in register A.

1590 - Load register A with the byte at the location of the memory
pointer in register pair DE.

1600 - Go write the byte in register A on the cassette recorder.

1610 - Add the current checksum in register C to the value in

152

register A.

1620 - Save the updated checksum in register A in register C.

1630 - Bump the memory pointer in register pair DE.

1640 - Loop till the data block has been completely written on the
cassette recorder.

1650 - Load register A with the checksum in register C.

1660 - Go write the checksum on the cassette recorder.

1670 - The NONAME program file name is stored here.

1680 - Go check the input values.

1690 - Load register pair HL with the starting address.

1700 - Go display the memory pointer in register pair HL.

1710 - Load register B with the number of characters to be dis-
played.

1720 - Load register A with the value at the location of the memory
pointer in register pair HL.

1730 - Clear bit-7 of the character to be displayed in register A.

1740 - Check to see if the character in register A is a control code.

1750 - Jump if the character in register A is a control code.

1760 - Check to see if the character in register A is greater than
80H.

1770 - Jump if the character in register A is less than 80H.

1780 - Load register A with a . character.

1790 - Go display the character in register A.

1800 - Go check to see if the memory pointer in register pair HL is
the same as the ending address.

1810 - Loop till 48 characters have been displayed.

1820 - Go display a carriage return.

1830 - Go check to see if a key has been pressed.

1840 - Jump till all of the memory locations have been displayed.

1850 - Go check the input values.

1860 - See if the character can be found.

1870 - Save the flags on the stack.

1880 - Go display the memory location and the value found.

1890 - Load register A with the next byte after the one found.

1900 - Go display the byte in register A.

1910 - Get the flags from the stack.

1920 - Jump if this is the end of the search.

1930 - Go check to see if a key is pressed.

1940 - Jump till the end of the search.

1950 - Go check the input values.

1960 - Jump.

1970 - Go check the input values.

1980 - Load register pair HL with the ending address.

153

1990 - Load register pair DE with the starting address.

2000 - Clear the Carry flag.

2010 - Subtract the starting address in register pair DE from the
ending address in register pair HL.

2020 - Bump the length in register pair HL.

2030 - Return.
2040 - Go figure the length and return with the length in register
pair HL.

2050 - Save the length in register pair HL on the stack.

2060 - Get the length from the stack and put it in register pair BC.

2070 - Load register pair HL with the starting address.

2080 - Load register A with the value to be found.

2090 - Go see if the value in register A can be found.

2100 - Jump if the value in register A can’t be found.

2110 - Save the next value to be searched for in register pair HL.

2120 - Return.

2130 - Go check the input values.

2140 - Go check to see if the value can be found.

2150 - Save the flags on the stack.

2160 - Decrement the memory pointer in register pair HL.

2170 - Godisplay the memory location and the value at the location
of the memory pointer in register pair HL.

2180 - Load register E with the LSB of the value at the location of
the memory pointer in register pair HL.

2190 - Bump the memory pointer in register pair HL.

2200 - Loadregister D with the MSB of the value at the location of
the memory pointer in register pair HL.

2210 - Exchange the memory pointer in register pair HL with the
value in register pair DE.

2220 - Go display the value in register pair HL.

2230 - Go display a carriage return.

2240 - Get the flags from the stack.

2250 - Jump if this is the end of the search.

2260 - Go check to see if a key has been pressed.

2270 - Jump if the search hasn't been completed.

2280 - Go get the length of the portion of memory to be moved and
return with it in register pair BC.

2290 - Go get the starting address of the section of memory to be
moved in register pair HL and the new starting address in
register pair DE.

2300 - Go move the memory.

154

2310 - Jump.

2320 -

2330 -

2340 -
2350 -
2360 -

2370 -

2380 -
2390 -
2400 -
2410 -
2420 -

Go get the length of the section of memory to be check-
summed.

Load register pair DE with the length of the section of
memory to be checksummed.

Load register pair HL with the starting address.

Load register B with the starting checksum.

Load register A with the value at the location of the memory
pointer in register pair HL.

Add the current checksum in register B to the value in
register A.

Load register B with the updated checksum in register A.
Bump the memory pointer in register pair HL.
Decrement the length in register pair DE.

Load register A with the MSB of the length in register D.
Combine the LSB of the length in register E with the MSB
of the length in register A.

2430 - Jump if this isn’t the end of the section of memory to be

checksummed.

2440 - Save the checksum in register B on the stack.

2450 - Load register pair HL with the starting address of the
message to be displayed.

2460 - Go display the message.

2470 - Get the checksum from the stack and put it in register A.

2480 - Go display the checksum in register A.

2490 - Jump.

2500 - The checksum message is stored here.

2510 - The checksum message terminator is stored here.

2520 - Go check the input values and get the length of the section
of memory to be tested.

2530 - Load register pair HL with the starting address.

2540 - Loadregister E with the value at the location of the memory
pointer in register pair HL.

2550 - Zero register A.

2560 - Save the value in register A at the location of the memory
pointer in register pair HL.

2570 - Loadregister D with the value at the location of the memory
pointer in register pair HL.

2580 - Compare the value in register D with the expected value in
register A.

2590 - Save the original value in register E at the location of the

155

memory pointer in register pair HL.

2600 - Jump if the value in register D is the same as the value in

2610 -
2620 -

2630 -
2640 -
2650 -
2660 -
2670 -

2680 -
2690 -

2700 -

2710 -

2720 -

register A.

Save the value in register D on the stack.

Go display the value of the memory pointer in register pair
HL.

Zero register A.

Go display the expected value in register A.

Get the actual value from the stack and put it in register A.

Go display the value in register A and a carriage return.

Load register E with the value at the location of the memory
pointer in register pair HL.

Load register A with the value to be tested.

Save the value in register A at the location of the memory
pointer in register pair HL.

Load register D with the value at the location of the memory
pointer in register pair HL.

Check to see if the value in register D matches the expected
value in register A.

Save the original value in register E at the location of the
memory pointer in register pair HL.

2730 - Jump if the value in register D matches the expected value

2740 -
2750 -
2760 -
2770 -
2780 -
2790 -

2800 -

in register A.

Save the value in register D on the stack.

Go display the memory pointer in register pair HL.

Load register A with the expected value.

Go display the expected value in register A.

Get the actual value from the stack and put it in register A.
Go display the actual value in register A and a carriage
return.

Go check to see if this is the last location to be checked.

2810 - Jump till all of the locations have been tested.

2820 -

2830 -

2840 -

2850 -

2860 -

156

Go check the input values and return with the length in
register pair BC.

Load register pair HL with the first starting address and
register pair DE with the second starting address.

Load register A with the value at the location of the memory
pointer in register pair HL.

Exchange the memory pointer in register pair HL with the
second memory pointer in register pair DE.

Compare the value in register A with the value at the
location of the second memory pointer in register pair HL.

2870 -
2880 -
2890 -
2900 -
2910 -
2920 -

2930 -
2940 -
2950 -
2960 -
2970 -
2980 -
2990 -
3000 -
3010 -
3020 -
3030 -
3040 -
3050 -
3060 -
3070 -
3080 -
3090 -

3100 -
3110 -

3120 -

3130 -

3140 -

3150 -

3160 -

Bump the second memory pointer in register pair HL.
Bump the first memory pointer in register pair DE.

Save the first memory pointer in register pair DE.

Save the second memory pointer in register pair HL.
Jump if the two values in memory match.

Save the second memory pointer in register pair HL on the
stack.

Load register pair HL with the first memory pointer.
Decrement the first memory pointer in register pair HL.
Go display the value of the first memory pointer in register
pair HL.

Load register A with the value at the location of the first
memory pointer in register pair HL.

Go display the value in register A.

Load register A with a - character.

Go display the character in register A.

Go display a space.

Get the second memory pointer from the stack and put it in
register pair HL.

Decrement the second memory pointer inregister pair HL.
Go display the second memory pointer in register pair HL.
Load register A with the value at the location of the memory
pointer in register pair HL.

Go display the value in register A and a carriage return.
Go check to see if this is the last location to be checked.
Loop till all of the locations have been checked.

Go check the input values and return with the length in
register pair BC.

Go load register pair HL with the first starting address and
register pair DE with the second starting address.

Save the length in register pair BC on the stack.

Load register B with the value at the location of the first
memory pointer in register pair HL.

Exchange the memory pointer in register pair HL with the
second memory pointer in register pair DE.

Load register A with the value at the location of the second
memory pointer in register pair HL.

Save the value in register B at the location of the second
memory pointer in register pair HL.

Exchange the second memory pointer in register pair HL
with the first memory pointer in register pair DE.

Save the value in register A at the location of the first

157

memory pointer in register pair HL.

3170 - Get the length from the stack and put it in register pair BC.

3180 - Go bump the memory pointers in register pair HL and
register pair DE and check to see if all locations have been
exchanged.

3190 - Loop till all of the locations have been exchanged.

3200 - Go check the input values and return with the length in
register pair HL.

3210 - Save the length in register pair HL on the stack.

3220 - Getthe length from the stack and put it in register pair BC.

3230 - Return.

3240 - Go check the input values and return with the length in
register pair HL.

3250 - Jump.

3260 - Go display the value in register A.

3270 - Go display a carriage return.

3280 - Load register pair HL with the first value that was input.

3290 - Load register pair DE with the third value that was input.

3300 - Return.

3310 - Decrement the value in register pair HL.

3320 - Go display the value in register pair HL.

3330 - Loadregister A with the value at the location of the memory
pointer in register pair HL.

3340 - Go display the value in register A.

3350 - Bump the memory pointer in register pair HL.

3360 - Return.

3370 - Bump the value in register pair HL.

3380 - Go check to see if a key was pressed.

3390 - Jump.

3400 - Bump the value in register pair DE.

3410 - Bump the value in register pair HL.

3420 - Decrement the value in register pair BC.

3430 - Load register A with the value in register B.

3440 - Combine the value in register C with the value in register
A.

3450 - Return if register BC doesn’t equal zero.

3460 - Link with the next part.

3470 - End of the program.

Listing 10-4

4585 00100 N1 EQU 4585H

4587 Q0110 N2 EQu 4587H

158

4589
430F
458D
4347
4383
4387
43EB2
43C4
43D
43DF
44E4
48A7
4872
483D
4813
4808
47EA
47AR
46F0
462F
4783
48EA
48CEH
44A9
46CA
4497
4480
48E9
48E9
48EC
48EF
48F2
48FS
48F8
A48F 9
48FC
48FE
4901
4904
4906
4907
4908
4909
4904
490D
4911
4914
4918
491B
491F
4922
4923
4926
4928
4929
492A
492C
492D
492E
492F
4930
4931
4932
4933
4934
4935
4937
4939

J10043
210000
226545
228745
228945
AF
JI29C40
IE2A
CD2A0Z
CD6103
IQEZ
D7

F3

D7

2B
CDOF43
EDS3EB545
CDOF43
EDS38743
CDOF43
EDS38945
222F4A
F1
216D4A
0617
48

B9
20046
23

SE

23

S6

EB

E9

23

23

23
10F1
18BO
3EO1

QO120
Q0130
QQ140
00150
00160
Q0170
00180
Q010
QO200
Q0210
QO220
00230
Q0240
00230
QOR6Q
0O270
QO2B0

QOI30
QO340
0O350
QOI60
Q0370
QOI8O
OOIQR0
QO400
00410
0042Q
QO43Q
Q0440
QQ450
Q04460
Q0470
00480
0Q490
GOS00
00510
00520
QOSE0
QOS540
00550
Q0360
QOS70
QOS8O
QOE0
QOGE00
QO61Q
00620
00630
Q0640
Q0650
Q04660
00670
Q0680
00690
Q0700
00710
00720
QQ730
00740
00750
00760
Q0770
00780

00790 PRINT

HEX
FL2
DIgF
[=1a]
EDIT
ZERO
INP
Our
MATH
ERE
EXCH
VERF
TEST
SuM
MOVE
HUNT
FIND
FPUNCH
READ
ASC
CH8
CH1Z
L0
DIg2
DISW
CR

L1

L2

EQU
QU
EQU
EQU
EQU
EQuU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU™
EQU
Eau
EQU
EQU
EQU
EQU
EQU
ORG
LD
LD
LD
LD
LD
XOR

LD
CaLL
CALL

RST
FUSH
RST
DEC
CALL
LD
CALL
LD
cAaLL
LD
LD
FOF
LD
LD
LD
CF
JR
INC
LD
INC
LD
EX
JP
INC
INC
INC
DINZ
JR
LD

4589H
430FH
458DH
43Z47H
4383H
4387H
4TB2H
A3CAH
43D3H
4EDFH
44E4H
48A7H
4872
483DH
481 3H
4808H
47EAH
47AEH
46FOH
462FH
4783H
48BAH
48CEH
4409H
46CAH
4497H
4480H
48E9H
SF, 4300H
HL, O
(N1) HL
(N2) , HL
(N3) HL
A
(409CH) ,A
[PRE &
J2AH
361H
C.L1

16

(N , DE
(NS) , HL
AF

HL, TABLE
B, 23

€, (HL)

C

NZ,L3

HL

E, (HL)
HL

D, (HL)
DE, HL
(HL)

HL

HL

HL

L2

L1

Al

159

328D45
18RA9
AF
328D4S
18A3
CD2537
CD2A30
18F6
2A2F4A
CDOFA43
7B

FS
CD1B4A
F1
CD254A
FS
213F4n
CD752R
CDEA48
F1
CDCE48
€DoC3Q
2009
214947
CD752B
18CC
CD1B4A
3IABG4G
CD254A
FS
214F4A
CD752B
F1

&7
CDSF32
FS
E&R7
20B7
CDAFOF
21594A
CD752R
Fi
18D0
CD1B4A
IABS4S
CD254A
FS
21624A
CD7S2R
Fi

&7
2EFF

CD3437
CD4936
C24649
78

B7
28F &6
FAB949
94

AS
20EF
CDOB37
20ED

00800
00810
Q0820
00830
00840
00850
00860
Q0870
00880
00890
0000
00910
00920
00930
00940
Q0950
QP60
00970
00980
00990
01000
01010
01020
01030
01040
01050
Q1060
0107Q
Q1080
Q1090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
Q1200
01210
Q1220
Q1230
01240
01250
Q1260
01270
01280
01290
01300
01310
Q1320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460

CRT
EXIT
ERR2
ERROR

SAVE

SAV1

NEW

LOAD

L2
LO3
ERR3

LD
JR
XOR
LD
JR
CalL
CaLL
JR
LD
CAaLL
LD
PUSH
CALL
POP
CALL
FUSH
LD
CALL
CALL
FOP
cAaLL
CALL
JR
LD
CALL

CALL
LD
CALL
FUSH
LD
CALL
FOP

CALL
PUSH
AND
JR
CALL
LD
cALL
POP
JR
CALL
LD
CALL
PUSH
LD
calbl
POP
LD
LD
ORrR
JR
LD
CaLL
CALL
JP
LD
ORrR
JR
JP
SUB
AND
IR
CALL
JR

(FL2) ,A
L1

A

(FL2) ,A
L1
3725H
3028H
EXIT
HL, (NS)
HEX
ALE

AF

ESF

AF
FILEN
AF

HL, 8A2
2R75H
CH8

AF
CH13
300CH
NZ , ERROR
HL, SA3
2R75H
EXIT
ESF

A, (N1)
FILEN
AF

HL, SA4
2E75H
AF

H,A
3I25FH
AF
OR7H
NZ, ERROR
OFAFH
HL, 8AS
2B75H
AF
sAVL
ESF

a, (N1)
FILEN
AF

HL, S5A6
2R75H
AF

H,A
L,OFFH
A
NZ,L02
L,A
3I734H
3649H
NZ,ERR2
A,D

A
Z,LD3
M,LO3
H

L
NZ,LO3
370EH
NZ, ERRS

49CF
49D0
49D1
49D3
49D6
49D9
49DER
490C
49DD
49DF
49E2
49E5
497
498
49E9Q
49EA
49ED
49F 0
49F2
49FS
49F8
49FR
49FE
49FF
4A00
4A03
4A06
4409
4/0C
4Q0F
4A12
4A1S
4A18
4A1R
4A1E
4A20
4A21
4A24
4A25
4A26
4029
4A2H
4AZE
4A2F
4A31
4A32
4A33
4034
4A3S
4A36
4A37
4A/38
4739
4A3A
4AZH
4A3C
4AZD
4ATE
4A3F
4A/40
4A41
4A42
4A43
4044
4A45
4046
4AQ47

&2

ES
DDE1
228545
CDOB37
20E1
62

ES
FDE1
228945
CDOB37
20D5
&2

ES

D1
228745
CDAS3s
20CA
CD2537
21494A
CD7528
CDA944
1B

19
228745
2ABS45
CDCA4s
2AB745
CDCA4s
208945
CD9744
€nso44
C34449
216C4A
36F0
2R
228140
ce

B7
CA4449
FE&L4
D2444%
c9
QOQQ
46

49

4

45

20

4E

55

4D

42

45

52

3A

20

Q0

57

52

49

54

49

4E

47

2E

2B

01470
01480
01490
Q1500
01510
01520
01530
Q1540
01550
01560
Q1570
Q1580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
Q1700
01710
Q1720
Q1730
01740
01750
Q17460
01770
1780
Q1790
1800 ESF
01810
01820
01830
Q1840
01830 FILEN
01860
01870
01880
01890
01200 NS
01910 SAL

Q1920
01930 SA2

NOP
DEFM

H,D
HL

IX

(N1) HL.
I70BH
NZ, ERR3
H,D

HL

1y

(N3) HL
370BH
NZ,ERR3
H,D

HL

DE

(N2) HL
36ASH
NZ,ERR3
I725H
HL, 843
2B75H
Lo

DE

HL,DE
(N2) , HL
HL, (N1)
pIS2

HL, (N2)
pisz

HL, (N3)
DISW

CR

EXIT

HL, DRIVE
(HL) , OFOH
HL
(A0B1H) ,HL

A
ZLEXIT
100
NC,EXIT

d]
*FILE NUMBER:

TWRITING..”

>

161

4A48
4Q49
4A44
4A4R
4A4C
4/4D
4A4E
4A4F
4A350
4A51
4AS2
4AS3
4AS54
4A55
4A56
4A57
4A58
4A59
4ASA
4ASE
4A5SC
4A5D
4ASE
AASF
4A60
4A61
4062
4A63
4864
4A6S
4A6S
4067
4A68
4A6S
4A6A
4A6R
4A6C
4A6D
4RA6E
4AT70Q
4A71
4A73
4A74
4R7&
4RA77
4A79
4R7A
4A7C
4A7D
4A7F
4A/80
4AB2
4A83
4A8S
4A86
4A88
4A89
4ABE
4A8C
4ABE
4A8F
4A91
4A92
4A94
4A9S
4A97
4A98

162

[ele}
44
4F
4
45
oD
00
45
S2
41
83
49
4E
47
2E
2E
QQ

01940
01950

01960
01970
01980

01990
02000

Q2010
02020

02030
02040
Q2080
02060
02070
02080
02090
02100
02110
02120
02130
02140
02150
02160
Q2170
02180
02190
02200
Q2210
02220
02230
02240
02250
Q2260
Q2270
02280
Q2290
02300
Q2310
02320
Q2330

02340

SA3

SA4

8AS

8Ab6

DRIVE
TARLE

NOP
DEFM > DONE”?

DEFR 13
NOP

DEFM "ERASING..”
NOP

DEFM * BYTES..’
NOF

DEFM "READING. .’
NOP

NOP

DEFE ’D*
DEFW DISP
DEFR 6T
DEFW GO
DEFR TE?
DEFW EDIT
DEFR 2z’
DEFW ZERO
DEFB I
DEFW INP
DEFR ‘0”
DEFW ouP
DEFE ‘BT
DEFW MATH
DEFE e
DEFW BRK
DEFE *RT
DEFW READ
DEFE i
DEFW PUNCH
DEFRE AT
DEFW ASC
DEFB FT
DEFW FIND
DEFE "H?
DEFW HUNT
DEFE M
DEFW MOVE
DEFE et
DEFW Sum

4A%A
4A9E
4A9D
4A%E
4AA0
4AAL
4AAT
4AR4
4AR6
4AAR7
40K/
4AAA
4AAC
4AAD
AAAF
4AR0
4300

56
7248
]
A748
54
3D48
4c
3949
43
4049
21
7849
22
4E49

ey
=3

FE49

Q2350
Q2360
QR2IA70
G2380
Q2390
Q2400
02410
02420
02430
02440
02450
02460
02470
02480
02490
Q2500
a2510

00000 TOTAL ERRORS

sAl
DRIVE
ERRT
LOZ
Loz
SAG
LOAD
SAS
SA4
NEW
SBAS
SAV1
sA2
FILEN
ESF
SAVE
ERROR
ERK2
EXIT
CRT
FRINT
L3
L2
TABLE
NS
L1
CR
DISW
DIS2
LO
TH13
CHg
ASC
READ
PUNCH
FIND
HUNT
MOVE
SUM
TEST
VERF
EXCH
ERK
MATH
ouF
INF
ZERO
EDIT

40421
4A6C
49RC
49R9
4986
4A62
499K
ARGS9
4A4F
4978
4A49
496E
4AZF
4A/25
4A1R
494E
4949
439446
4944
4940
4939
4932
4928
4A6D
4AZF
48BE9?
4480
4497
46CA
44A/9
48CE
48RA
4783
462F
46FQ
47AKR
47EA
4808
4813
483D
4872
48A7
44E4
43DF
43D3
43C4
43R2
4387

DEFE
DEFW
DEFE
DEFW
DEFE
DEFW
DEFE
DEFW
DEFE
DEFW
DEFE
DEFW
DEFE
DEFW
DEFE
DEFW
END

I3VE
VERF
ayr
EXCH
ST
TEST
L
FPRINT
e
CRT
B
NEW
o
SAVE
g
LOAD
4300H

163

GO 4383

DIsSP 4347
FL2 458D
HEX A430F
N3 4589
N2 4587
N1 4585

Listing 10-4 Comments

100 - Value from previous part.

110 - Value from previous part.

120 - Value from previous part.

130 - Value from previous part.

140 - Value from previous part.

150 - Value from previous part.

160 - Value from previous part.

170 - Value from previous part.

180 - Value from previous part.

190 - Value from previous part.

200 - Value from previous part.

210 - Value from previous part.

220 - Value from previous part.

230 - Value from previous part.

240 - Value from previous part.

250 - Value from previous part.

260 - Value from previous part.

270 - Value from previous part.

280 - Value from previous part.

290 - Value from previous part.

300 - Value from previous part.

310 - Value from previous part.

320 - Value from previous part.

330 - Value from previous part.

340 - Value from previous part.

350 - Value from previous part.

360 - Value from previous part.

370 - Value from previous part.

380 - Value from previous part.

390 - Set the starting address to the end of the last part.
400 - Set the stack pointer.

410 - Load register pair HL with zero.

420 - Save the value in register pair HL as the first value inpu
430 - Save the value in register pair HL as the second value inpu
440 - Save the value in register pair HL as the third value input
450 - Zero register A.

164

460 - Set the current output device to the video display.

470 - Load register A with a * character.

480 - Go display the character in register A.

490 - Go get the input from the keyboard.

500 - Jump if the BREAK key was pressed.

510 - Bump the input buffer pointer in register pair HL till it
points to the first character.

520 - Save the character at the location of the input buffer pointer
in register A on the stack.

530 - Bump the input buffer pointer in register pair HL till it
points to the next character.

540 - Decrement the input buffer pointer in register pair HL.

550 - Go evaluate the first input value.

560 - Save the value in register pair DE as the first value input.

570 - Go evaluate the second input value.

580 - Save the value inregister pair DE as the second value input.

590 - Go evaluate the third value input.

600 - Save the value in register pair DE as the third value input.

610 - Save the input buffer pointer in register pair HL.

620 - Get the command from the stack and put it in register A.

630 - Load register pair HL with the starting address of the
command jump table.

640 - Load register B with the number of commands in the jump
table.

650 - Load register C with the character at the location of the
command jump table pointer in register pair HL.

660 - Check to see if the command in register C matches the
command in register A.

670 - Jump if the command in register C doesn’t match the com-
mand in register A.

680 - Bump the command jump table pointer in register pair HL.

690 - Load register E with the LSB of the command’s jump ad-
dress.

700 - Bump the command jump table pointer in register pair HL.

710 - Load register D with the MSB of the command’s jump
address.

720 - Loadregister pair HL with the jump address in register pair
DE.

730 - Jump to the command’s jump address in register pair HL.

740 - Bump the command jump table pointer in register pair HL.

750 - Bump the command jump table pointer in register pair HL.

760 - Bump the command jump table pointer in register pair HL.

165

770 - Loop if all of the commands in the jump table haven’t been
checked.
780 - Jump if the command input isn’t a legal command.
790 - Load register A with the printer device type code.
800 - Save the printer device type code in register A.
810 - Jump.
820 - Load register A with the video device type code.
830 - Save the video device type code in register A.
840 - Jump.
850 - Go turn off the stringy floppy.
860 - Go display the stringy floppy error message, if any.
870 - Jump.
880 - Load register pair HL with the input buffer pointer.
890 - Go evaluate the fourth value input.
900 - Load register A with the file number in register E.
910 - Save the file number in register A on the stack.
920 - Set the current stringy floppy drive number to drive 0.
930 - Get the file number from the stack and put it in register A.
940 - Go check to see if this is a legitimate file number in register
A.
950 - Save the file number in register A on the stack.
960 - Load register pair HL with the starting address of the
message to be displayed.
970 - Go display the message.
980 - Go figure the length of the program to be saved and return
with it in register pair BC.
990 - Get the file number from the stack and put it in register A.
1000 - Go get the starting address for the program in register pair
HL and the execution address for the program in register
pair DE.
1010 - Go save the program.
1020 - Jump if a stringy floppy error occurred.
1030 - Load register pair HL with the starting address for the
message to be displayed.
1040 - Go display the message.
1050 - Jump.
1060 - Go set the current stringy floppy drive number to drive 0.
1070 - Load register A with the file number for the start of the
wafer certification.
1080 - Go check to see if the file number in register A is a legiti-
mate file number.
1090 - Save the file number in register A on the stack.

166

1100 -

1110 -
1120 -
1130 -
1140 -
1150 -
1160 -

Load register pair HL with the starting address of the
message to be displayed.

Go display the message.

Get the file number from the stack and put it in register A.
Load register H with the file number in register A.

Go certify the wafer.

Save the flags on the stack.

Check to see if an error occurred.

1170 - Jump if there was an error.

1180 -
1190 -

Go display the number of bytes certified.
Load register pair HL with the starting address for the
message to be displayed.

1200 - Go display the message.

1210 - Get the flags from the stack.

1220 - Jump.

1230 - Go set the current stringy floppy drive number to drive 0.

1240 -
1250 -

1260 -
1270 -

1280 -
1290 -
1300 -
1310 -
1320 -

Load register A with the file number to be loaded.

Go check to see if the file number in register A is a legiti-
mate file number.

Save the file number in register A on the stack.

Load register pair HL with the starting address of the
message to be displayed.

Go display the message.

Get the file number from the stack and put it in register A.

Load register H with the file number in register A.

Load register L with a —1.

Check to see if the file number in register A is equal to zero.

1330 - Jump if the file number in register A isn't equal to zero.

1340 -
1350 -
1360 -

Zero register L.
Go turn on the stringy floppy.
Go position the wafer to the next file.

1370 - Jump if an error occurred.

1380 -
1390 -

Load register A with the value in register D.
Set the flags.

1400 - Jump if this isn’t the start of a file.
1410 - Jump if this isn’t the start of a file.

1420 -

1430 -

1440 -
1450 -

Subtract the file number in register H from the file number
read from the stringy floppy in register A.

Mask the adjusted file number in register A with the value
in register L.

If this isn’t the correct file number then jump.

Go read the starting address from the stringy floppy and

167

return with the LSB of the starting address in register L and
the MSB of the starting address in register D.

1460 - Jump if a stringy floppy error occurred.

1470 -

1480 -
1490 -

1500 -
1510 -

Load register H with the MSB of the starting address in
register D.

Save the starting address in register pair HL on the stack.
Get the starting address from the stack and put it in register
pair IX.

Save the starting address in register pair HL.

Go read the execution address from the stringy floppy and
return with the LSB of the execution address in register L
and the MSB of the execution address in register D.

1520 - Jump if a stringy floppy error occurred.

1530 -

1540 -
1550 -

1560 -
1570 -

Load register H with the MSB of the execution address in
register D.

Save the execution address in register pair HL on the stack.
Get the execution address from the stack and put it in
register pair IY.

Save the execution address in register pair HL.

Go read the length of the program from the stringy floppy
and return with the LSB of the program’s length in register
L and the MSB of the program’s length in register D.

1580 - Jump if a stringy floppy error occurred.

1590 -

1600 -

1620 -
1630 -

Load register H with the MSB of the program’s length in
register D.

Get the program’s length from the stack and put it in regis-
ter pair DE.

Save the program’s length in register pair HL.

Go read the program from the stringy floppy.

1640 - Jump if a stringy floppy error occurred.

1650 -
1660 -

1670 -
1680 -

1690 -
1700 -

1710 -
1720 -

168

Go turn off the stringy floppy.

Load register pair HL with the starting address of the
message to be displayed.

Go display the message.

Go load register pair HL with the starting address and
register pair DE with the program’s length.

Decrement the program’s length in register pair DE,
Add the program’s length in register pair DE to the pro-
gram’s starting address in register pair HL.

Save the program’s ending address in register pair HL.
Load register pair HL with the program’s starting address.

1730 - Go display the program’s starting address in register pair
HL.

1740 - Load register pair HL with the program’s ending address.

1750 - Go display the program’s ending address in register pair

HL.

1760 - Load register pair HL with the program’s execution ad-
dress.

1770 - Go display the program’s execution address in register pair
HL.

1780 - Go display a carriage return.

1790 - Jump.

1800 - Load register pair HL with the current stringy floppy drive
number storage location.

1810 - Set the current stringy floppy drive number to drive 0.

1820 - Decrement the memory pointer in register pair HL.

1830 - Save the memory pointer in register pair HL as the current
BASIC memory size pointer.

1840 - Return.

1850 - Check to see if the file number in register A is equal to zero.

1860 - Jump if the file number in register A is equal to zero.

1870 - Check to see if the file number in register A is greater than
99,

1880 - Jump if the file number in register A is greater than 99.

1890 - Return.

1900 - The current input buffer pointer is stored here.

1910 - Message storage location.

1920 - Message terminator.

1930 - The WRITING message is stored here.

1940 - The WRITING message terminator is stored here.

1950 - The DONE message is stored here.

1960 - This will display a carriage return as part of the DONE
message.

1970 - The DONE message terminator.

1980 - The ERASING message is stored here.

1990 - The ERASING message terminator is stored here.

2000 - The BYTES message is stored here.

2010 - The BYTES message terminator is stored here.

2020 - The READING message is stored here.

2030 - The READING message terminator is stored here.

2040 - The current stringy floppy drive number is stored here.

2050 - The D command character is stored here.

169

2060 - The D command jump address is stored here.
2070 - The G command character is stored here.
2080 - The G command jump address is stored here.
2090 - The E command character is stored here.
2100 - The E command jump address is stored here.
2110 - The Z command character is stored here.
2120 - The Z command jump address is stored here.
2130 - The I command character is stored here.
2140 - The I command jump address is stored here.
2150 - The O command character is stored here.
2160 - The O command jump address is stored here.
2170 - The B command character is stored here.
2180 - The B command jump address is stored here.
2190 - The @ command character is stored here.
2200 - The @ command jump address is stored here.

2210 - The R command character is stored here.
2220 - The R command jump address is stored here.

2230 - The P command character is stored here.
2240 - The P command jump address is stored here.
2250 - The A command character is stored here.
2260 - The A command jump address is stored here.
2270 - The F command character is stored here.
2280 - The F command jump address is stored here.
2290 - The H command character is stored here.
2300 - The H command jump address is stored here.
2310 - The M command character is stored here.
2320 - The M command jump address is stored here.
2330 - The Q command character is stored here.
2340 - The Q command jump address is stored here.
2350 - The V command character is stored here.
2360 - The V command jump address is stored here.
2370 - The X command character is stored here.
2380 - The X command jump address is stored here.
2390 - The T command character is stored here.
2400 - The T command jump address is stored here.
2410 - The L command character is stored here.
2420 - The L command jump address is stored here.
2430 - The C command character is stored here.
2440 - The C command jump address is stored here.
2450 - The ! command character is stored here.
2460 - The ! command jump address is stored here.
2470 - The “ command character is stored here.

170

2480 - The “ command jump address is stored here.
2490 - The # command character is stored here.
2500 - The # command jump address is stored here.

2510 - End of the program.

Listing 10-5

4AR2 QQ100 ORG 4AB2H
4QB2 0000 00110 MEM DEFW [¢]

4AB4 21444C Q0120 8T 1.D HL, MS1
4AB7 CD752E 00130 CALL 2R73H
44BA CD4R00 Q0140 L1 CALL 49H

4ABD FEA4E 00150 CP ’N?

4ABF CAQO43 QO1460 JP Z,4300H
4AC2 FES9 Q0170 CpP Yy

4AC4 20F4 Q0180 JR NZ, L1
4AC6 21BCAC Q0190 L2 LD HL, M2
4ACY CD7352R QQ200 CALL Z2B735H
4ACC CD6103 00210 CALL I61H
4ACF 38FS QQ220 JR C,L2
4ADL1 D7 00230 RST 16

4AD2 28F2 Q0240 JR Z.L2
4AD4 2B 00250 DEC HL.

4ADS CDOF43 Q260 cAaLL 430FH
4AD8 21B107 Q0270 LD HL, 19469
4ADE 19 Q0280 ADD HL . DE
4ADC 22B24A Q0290 LD (MEM) , HL
4ADF 11H14A QO300 LD DE, 4AER1H
4AEZ AF Q0310 XOR A

4AEZ EDSZ QQ320 SEC HL., DE
4AES 223E4D Q0330 LD (M1) ,HL
4AEB 210043 00340 LD HL , 4T00H
4AEB 7E 00350 R1 D A, (HLD
4AEC FE3F Q0360 cP 3FH

4AEE 3832 00370 JR C,R2
4AFO FECZ2 Q0380 CF QC2H
4AF2 D2774R Q0390 JF NC,R3
4AFE 23 Q0400 R4 INC HL

4AFS6 118545 00410 LD DE, 4585H
4AF9 DF Q0420 RET 18H

4AFA CC174C Q0430 CALL. Z, IN1
A4AFD 11D246 Q0440 LD DE,46D2H
4BOO DF Q0450 RST 18H

4R0Q1 CC1iD4C Q0460 CALL Z,IN2
4804 117D47 Q0470 LD DE,477DH
4R07 DF Q480 RST 18H

4R08 CC214C 00490 CALL Z, IN3
4BOR 113248 QQZ00 LD DE, 4832H
4BOE DF 00OT10 RST 18H

4ROF CC254C 00520 CALL Z,INg
4B12 112F4A QOS30 LD DE, 4A2FH
4815 DF Q0540 F3T 18H

4B146 CC294C 00550 CALL Z, INS
4R19 116D4A QOS540 LD DE, 4A6DH
4B1C DF 00570 RST 18H
4B1D CA2D4C QOS8O JP Z,REND
4B20 18C9 00590 IR R1

4R22 FS QO6O0 R2 FUSH AF

4RB23 E&30 00610 AND 30H
4R25 B7 QQ620 OR A

4B26 2824 QO&30 JR Z,ZERO
4B28 FE10 Q0640 CF 10H
4R2A 2823 00650 JR Z,TEN
4B2C F1 QQb&L0 FOP AF

171

4B2D
4B2F
4B31
4R33
4B35
4p37
4B38
4E3A
4B3C
AR3E
4B40
4B42
4B44
4R46
4848
4B4A
4R4C
4R4D
4B4F
4B50
4p52
4B54
4BS5
4R57
4p58
4B59
4BSA
4BSE
4B5C
4BSD
4B60
4R61
4B62
4B64
4R&5
4E68
4R69
ARGA
4R6C
4R&F
4R70
4R71
4m72
4R73
4B74
4B75
4R77
4R79
4R74
4R7C
4B7D
4B7F
4p81
4B8T
4B8S
4E87
4p88
4E8A
4B8C
ARGE
4B50
4R91
4893
4R95
4897
4E99
4R9A
4B9C

172

E&OF
FEO2
2824
FEOA
2820
R7
281A
FEO8
2816
FEO1
2815
FEQ&
280E
FEQE
280A
18A9
F1
18EF
F1
E&OF
18E3
23
189E
23
ES
SE
23
56
EER
110043
DF
ER
380D
ER
11B24A
DF
EB
IO0S
2A3E4D

FE20
2809
F1

E&OF
FEQD
283F
1823
Fi

E6OF
FEOD
2864
181A
Fi

E&OF
FEOD

00670
00680
004670
Q0700
00710
00720
00730
Q0740
Q0750
Q0760
Q770
Q0780
Q0790
QO8O0
Q0B10O
00820
Q0830
00840
[elel=lale]
QOBLO
Q0870
[alai=1=le]
[elel=3e]
QOO0
Q0910
QQR20
QOITO
Q040
Q080
QOP60
00970
Q0980
00990
Q1LO00
01010
Q1020
OLOFQ
Q1040
01030
QL0660
Q1070
Q1080
01090
Q1100
01110
01120
01130
01140
01150
01160
01170
01180
01190
Q1200
01210
01220
01230
01240
01280
Q1260
01270
01280
01290
Q1300
01310
01320
01330
01340

TEN1

ZERO1

ZERO

TEN

TW
TWi
TR

TRR

TWO

ONE

AND

OR

CF

CF

FOF
AND
CF
JR
JR
FOP
AND
cF
JR
JR
FOP
AND

HL

E, (HL)
HL

D, (HL)
DE, HL
DE, 4300H
18H
DE, HL
C,TRR
DE, HL
DE, 4AR2ZH
168H
DE, HL
NC, TRR
HL, (M1)
HL., DE
DE,HL
HL
(HL) JE
HL.
(HL) D
TW1
QCOH
AF

30H

A
Z,ZER3
10H
Z,0NE
20H
Z,TWO
AF

OFH
ODH
Z,DD
TRE

AF
OFH
ODH
Z,ED
TRE

AF

OFH
ODH

4BFE
4RAQ
4BA2
4EBA4
4RA&
4BA7
4BA9
4BAB
4BAD
4EAF
4BB1
4ERB3
4BBS
4EB7
4BR9
4EER
4BBED
4BRF
4BC1
4RCE
4RCS
4BC7
4BC?
4BCE
4BCD
4EBCE
4BCF
4BD1
48D
4EDS
4BD7
4EBDY
4BDE
4RDD
4EBDF
4BE1
4REZ
4EES
ABET7
4REQ
4BER
4EED
4REF
4EF1
4BF3
4EFS
4BF &
4BF8
4BF9
4RFR
4BFC
4EFD
4BFF
4C0O1
4C03
4C05
4C07
4C09
4COB
4C0D
4COF
4C11
4C13
4C15
4C17
4C19
4CiA

282D
FEO3
28B0
1809
F1

FEOD
2BAC
FEO3
28A8
FEOB
28A1
FEQO2
28A0
FEO4
289C
FEO6
2895
FEOA
2894
FEOC
2890
FEOE
2889
1888
23

7E

FE21
3882
2882
FE22
28FA
FE2A
28F &
FE34
2814
FE3IS
2810
FE3&
280F
FE46
38DE
FECR
3804
2808
18Dé6
23

18D3F
23

18FA
23

7E

FE43
28D2
FE4R
28CE
FES3
28CA
FESE
28C6
FE73
28C2
FE7R
28BE
18E4
068C
23

10FD

01350
01360
01370
01380
C1390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
Q1360
01570
013580
01590
01600
01610
Q1620

01630

01640
01650
1660
01670
01680
01690
Q1700
01710
Q1720
01730
Q1740
Q1730
Q1760
QL1770
a1780
01790
01800
01810
01820
01830
01840
01830
1860
01870
01880
01890
Q1900
01910
Q1920
01930
01940
01950
Q19460
01970
Q1980
01990
Q2000
Q2010

ZERS3

ONEL

TRE

TW2
DD

DD1
DD2

ED

INt
I1

JR
CpP

FOF

CpP

JR

Z,DD
z

Z,TW
ONE1
AF
ODH
Z,TR

-
Z,TR
ORH
Z,TW

Z, TR
4
Z,TR

Z,TwW
OAH
Z,TR
QCH
Z,TR
OEH
Z,TW
TW1
HL

A, (HL)
21H
c, 7wl
Z,TR

el
Ay

Z,TR2
2AH
Z,TR2
F4H
Z,DD1
35H
Z,DD1
S6H
7,DD2
46H
C,TW2
OCEH
C,DbD1
Z,DD2
TW2
HL
TW2
HL
DD1
HL

A, (HL)
43H
Z,TR2
4EH
Z,TR2
53H
Z,TR2
SEH
Z,TR2
73H
Z,TR2
7EH
Z,TR2
TW2
B, 140
HL

It

173

4C1C C9 Q2020 RET

4C1D O&1E 02030 IN2 LD B, 30
4C1IF 18F8 02040 JR I
4C21 0406 02030 IN3 LD EB.6
4C23 18F4 Q2060 IR I
4C25 060B 02070 ING LD B, 11
4C27 18FO 02080 JR It
4C29 063E Q2090 INS LD B, 62
4C2RB 18EC 02100 JR 11
4C2D 2B 02110 REND DEC HL
4C2E 0617 02120° LD B, 23
4C30 23 02130 RE1 INC HL
4C31 23 02140 INC HL
4C32 ES 02150 FUSH HL
4C33 SE 02160 LD E, (HL)
4C34 23 02170 INC HL
4C35 56 02180 LD D, (HL)
4C36 2AZE4AD 02190 LD HL, (M1)
4C39 19 Q2200 ADD HL . DE
4C3A EB 02210 EX DE,HL
4C3E Et Q2220 FOP HL
4C3C 73 02230 LD (HL) LE
4C3D 23 02240 INC HL
4C3E 72 02250 LD (HL) D
4C3IF 10EF 02260 DJINZ RE1
4C41 C3F142 02270 JF 42F 1H
4C44 1C 02280 MS1 DEFR 1CH
4C4AS 1F 02290 DEFB 1FH
4C46 53 02300 DEFM *SWAT V2.0°
4c47 57

4C48 41

4C49 54

4C4A 20

4C4R 56

4c4Cc 32

4can 2E

4C4E 30

4C4F 0D 02310 DEFR 13
4C50 41 02320 DEFM A Z-BO SYSTEM MONITOR®
4C51 20

4052 SA

4C53 2D

4C54 38

4C55 30

4C546 20

4057 53

4C58 59

4059 53

4CSA S4

4CSR 45

4CSC 4D

4C5D 20

4CSE 4D

4CSF 4F

4C60 4E

4C61 49

4C62 54

4C63 4F

4C64 52

4C65 OD QRIZO DEFE 13
4Co6 42 02340 DEFM "BY MARK D. GOODWIN®
4C67 59

4C68 20

4C69 4D

4CoA 41

4C6EB S2

4C6C 4B

4C6D 20

174

4C6E
4C&F
4C70
4c71

4C72
4C73
4C74
4C75
4C76
ac77
4C78
4C79

ac7a
4C7B
ac7c
4c7D
4C7E
4c7F
4c80
4c8e1
4082
4css
4c84
4c8s
4c86
4ce7
4ces
4ce9
4cen
4C8R
4c8c
acap
4CBE
4c8F
4C90
4091

4092
4093
4094
4095
4C96
4c97
4c98
4c99
4c9a
4C9E
4csc
4C9D
4c9E
AC9F
4cA0
4cAtL

4cAz
4cAs
4CA4
4CAS
4chs
4cA7
acas
4cA9
4CAA
4CAB
4cAc
4cAD
4caE
4cAF

44
2E
20
47
4F
4F
44
57
49
4E
oD
4D

4F
4E
49
54
4F
s2
20
52
45
53
49
44
45
s3
20
41
54
3A
20
34
33
30
30
48
20
s4
4F
20
34
41
42
31
48
oD
44
aF
20
59
aF
55
20
57
49
53
48
20
sS4
4F
20
52
45
ac
4F
43

02370
02380

DEFB
DEFM

13
*MONITOR RESIDES AT:
4300H TO 4ABLH’

13
DO YOU WISH TO RELOCATE (Y/N)??

175

4CBO
4cE1

4CE2
4CES
4CB4
4CBS
4CR6
4CR7
4CE8
4cB9
4CEA
4CER
4CBC
4CED
4CRE
4CEF
4cE0
4cet

4ce2
4003
4cca
4ces
4cce
4ce7
4ces
4cC9
4cCh
4cCR
4cee
4cCD
4CCE
4CCF
4CD0
4CD1

4CD2
4CD3
4CD4
4€Ds
4CD6
4CD7

4CD8 3

4CD?
4CDA
4CDE
4CDC
4CDD
4CDE
4CDF
4CEO
4CE1
4CER2
ACEZ
4CE4
4CES
4CE6
4CE7
4CES8
4CES
4CEA
4CER
4CEC
4CED
4CEE
4CEF
4CFO
4CF1
4CF2

176

41
54
45
2

28
59
2

4E
29
3F
oD
(¢]
oD
53
53
47
47
435
53

54

44
20
52
45
4c
4F
43
41
54
49
4F
4E

S0
4F
49
4E
54

53

OD

02390
02400
02410
02420

024730
Q244¢C

Ms2

DEFR
NOP

DEFER
DEFM

DEFR
DEFM

13

13

*SUGBESTED RELOCATION POINTS:”

13
TTOF OF 16K MEMORY - 784EH’

4CF3 OD 02450 DEFR 13
4CF4 54 024460 DEFM *TOP OF 32K MEMORY - EB84EH’
4CFS 4F
4CF&6 S0
4CF7 20
4CF8 4F
4CF9 46
4CFA 20
ACFE 33
4CFC 32
4CFD 4Rk
4CFE 20
4CFF 4D
4DQ0 45
4D0O1 4D
4D02 4F
4DO3 52
4D04 59
4D0OS 20
4D0&6 2D
4Da7 20
4D0O8 42
4D0% 38
4DOA I
4DOR 45
4DOC 48
4DOD QD Q2470 DEFE 13
4DOE T4 02480 DEFM TTOF OF 48K MEMORY — F84EH’
4DOF 4F
4D10 50
4D1t 20
4D12 4F
4D13 46
4D14 20
4D15 34
4D1& 38
4D17 4p
4D18 20
4D19 4D
4D1A 45
4D1ER 4D
4D1C 4F
4D1D 52
4D1E 59
4D1F 20
4p20 2D
4D21 20
4D22 46
4D23 38
4D24 34
4D2S 45
4D26 48
4D27 ODOD Q2490 DEFW QODODH
4D29 S2 Q2500 DEFM "RELOCATION ADDRESS: 7
4D2A 45
4D2R 4C
4D2C 4F
4D2D 43
4D2E 41
4D2F 54
4D30 49
4D31 4F
4D32 4E
4D3E3 20
4D34 41

4D35 44
4D36 44

177

4D37 G2

4D38 45

4D39 G3

4D3A 353

4DEE 3A

4D3IC 20

4D3ED 0O 02510 NOP
4D3E 0000 02520 M1 DEFW Qo
4AR4 Q2830 END 8T
QOO0 TOTAL ERRORS
RE1 4020
I1 4CL9
DD2 4EF8
DD1 4BFS
TR2 4BD3
TW2 4BCH
ONEL 4BAF
ED 4EFB
TRE 4RR3
2)2] 4EBCD
TWO 4R90Q
ONE 4R99
ZER3 4EAL
TRR 4R71
Tl ARSS
ZERO1 4B3E
TW 4ARS4
TEN1L 4RE7
TR 4R37
TEN 4BAF
ZERD 4R4C
REND 4C2D
INS 4029
ING 4C25
IN3 4C21
IN2 4C1D
IN1 4c17
R4 4AFS
R3 4R77
R2 4R22
R1 4AEB
M1 4D3IE
Ms2 4CRC
L2 4ACs
L1 4ABA
MS1 4C44
8T 4AR4
MEM 4AB2

Listing 10-5 Comments
100 - Set the starting address for this part to the end of the
monitor program.

110 - The relocation address will be stored here.

120 - Load register pair HL with the starting address of the
message to be displayed.

130 - Go display the message.

140 - Go wait till a key is pressed.

150 - Check to see if the key pressed was an N.

160 - Jump if the key pressed was an N.

178

170 -
180 -
190 -
200 -
210 -
220 -
230 -
240 -
250 -
260 -
270 -
280 -
290 -
300 -
310 -
320 -
330 -
340 -
350 -
360 -
370 -
380 -
390 -

400 -
410 -

420 -

430 -

Check to see if the key pressed was a Y.

Jump if the key pressed wasn’t a Y.

Load register pair HL with the starting address of the
message to be displayed.

Go display the message.

Go get the keyboard input.

Jump if the BREAK key was pressed.

Bump the input buffer pointer in register pair HL till it
points to the first character.

Jump if there wasn’t any keyboard input.

Decrement the input buffer pointer in register pair HL.
Go convert the hex input to binary and return with the 16-bit
value in register pair DE.

Load register pair HL with the length of the monitor pro-
gram.

Figure the relocation address by adding the value in regis-
ter pair DE to the length of the monitor program in register
pair HL.

Save the relocation address in register pair HL.

Load register pair DE with the ending address of the
monitor program.

Clear the Carry flag

Subtract the ending address of the monitor program in
register pair DE from the relocation address in register pair
HL.

Save the relocation offset in register pair HL.

Load register pair HL with the starting address of the
monitor program.

Load register A with the value at the location of the memory
pointer in register pair HL.

Check to see if the value in register A is less than 3FH.
Jump if the value in register A is less than 3FH.

Check to see if the value in register A is greater than or
equal to C2H.

Jump if the value in register A is greater than or equal to
C2H.

Bump the memory pointer in register pair HL.

Load register pair DE with the location of the first storage
area in the monitor program.

Go compare the memory pointer in register pair HL to the
location of the first storage area in register pair DE.

Go if the memory pointer in register pair HL matches the

179

440 -
450 -
460 -
470 -
480 -
490 -
500 -
510 -
520 -
530 -
540 -
550 -
560 -
570 -
580 -
590 -
600 -
610 -
620 -

630 -
640 -

650 -
660 -

180

location of the first storage area in register pair DE.
Load register pair DE with the location of the second
storage area in the monitor program.

Go compare the memory pointer in register pair HL to the
location of the second storage area in register pair DE.
Go if the memory pointer in register pair HL matches the
location of the second storage area in register pair DE.
Load register pair DE with the location of the third storage
area in the monitor program.

Go compare the memory pointer in register pair HL to the
location of the third storage area in register pair DE.

Go if the memory pointer in register pair HL matches the
location of the third storage area in register pair DE.
Load register pair DE with the location of the fourth storage
area in the monitor program.

Go compare the memory pointer in register pair HL to the
location of the fourth storage area in register pair DE.
Go if the memory pointer in register pair HL matches the
location of the fourth storage area in register pair DE.
Load register pair DE with the location of the fifth storage
area in the monitor program.

Go compare the memory pointer in register pair HL to the
location of the fifth storage area in register pair DE.

Go if the memory pointer in register pair HL matches the
location of the fifth storage area in register pair DE.
Load register pair DE with the location of the sixth storage
area in the monitor program.

Go compare the memory pointer in register pair HL with
the location of the sixth storage area in register pair DE.
Go if the memory pointer in register pair HL matches the
location of the sixth storage area in register pair DE.
Loop till all of the memory locations have been updated.
Save the value in register A on the stack.

Mask the value in register A.

Check to see if the adjusted value in register A is equal to
zZero.

Jump if the adjusted value in register A is equal to zero.
Check to see if the adjusted value in register A is equal to
10H.

Jump if the adjusted value in register A is equal to 10H.
Get the value from the stack and put it in register A.

670 - Mask the value in register A.

680 - Check to see if the adjusted value in register A is equal to
02H.

690 - Jump if the adjusted value in register A is equal to 02H.

700 - Check to see if the adjusted value in register A is equal to
0AH.

710 - Jump if the adjusted value in register A is equal to OAH.

720 - Check to see if the adjusted value in register A is equal to
ZETO.

730 - Jump if the adjusted value in register A is equal to zero.

740 - Check to see if the adjusted value in register A is equal to
08H.

750 - Jump if the adjusted value in register A is equal to 08H.

760 - Check to see if the adjusted value in register A is equal to
01H.

770 - Jump if the adjusted value in register A is equal to 01H.

780 - Check to see if the adjusted value in register A is equal to
06H.

790 - Jump if the adjusted value in register A is equal to 06H.

800 - Check to see if the adjusted value in register A is equal to

OEH.
810 - Jump if the adjusted value in register A is equal to OEH.
820 - Jump.
830 - Get the value from the stack and put it in register A.
840 - Jump.

850 - Get the value from the stack and put it in register A.
860 - Mask the value in register A.

870 - Jump.
380 - Bump the memory pointer in register pair HL.
890 - Jump.

900 - Bump the memory pointer in register pair HL.

910 - Save the memory pointer in register pair HL on the stack.

920 - Load register E with the LSB of the address at the location
of the memory pointer in register pair HL.

930 - Bump the memory pointer in register pair HL.

940 - Load register D with the MSB of the address at the location
of the memory pointer in register pair HL.

950 - Loadregister pair HL with the address in register pair DE.

960 - Load register pair DE with the starting address of the
monitor program.

970 - Go check to see if the address in register pair HL is less

181

980 -
990 -

1000 -
1010 -

1020 -

1030 -
1040 -

1050 -
1060 -

1070 -
1080 -

1090 -

1100 -
1110 -

1120 -
1130 -
1140 -
1150 -
1160 -
1170 -
1180 -

1190 -
1200 -

1210 -
1220 -
1230 -
1240 -

1250 -

182

than the starting address of the monitor program in register
pair DE.

Load register pair DE with the address in register pair HL.
Jump if the address in register pair HL was less than the
starting address of the monitor program in register pair DE.
Load register pair HL with the address in register pair DE.
Load register pair DE with the ending address of the
monitor program.

Go compare the address in register pair HL with the ending
address of the monitor program in register pair DE.
Load register pair DE with the address in register pair HL.
Jump if the address in register pair HL was greater than the
ending address in register pair DE.

Load register pair HL with the relocation offset.

Add the address in register pair DE to the value of the
relocation offset in register pair HL.

Load register pair DE with the updated address.

Get the memory pointer from the stack and put it in register
pair HL.

Save the LSB of the address in register E at the location of
the memory pointer in register pair HL.

Bump the memory pointer in register pair HL.

Save the MSB of the address in register D at the location on
the memory pointer in register pair HL.

Jump.

Adjust the value in register A.

Save the value in register A on the stack.

Mask the value in register A.

Check to see if the value in register A is equal to zero.
Jump if the value in register A is equal to zero.

Check to see if the adjusted value in register A is equal to
10H.

Jump if the adjusted value in register A is equal to 10H.
Check to see if the adjusted value in register A is equal to
20H.

Jump if the adjusted value in register A is equal to 20H.
Get the value from the stack and put it in register A.
Mask the value in register A.

Check to see if the adjusted value in register A is equal to
ODH.

Jump if the adjusted value in register A is equal to 0DH.

1260 - Jump.

1270 - Get the value from the stack and put it in register A.

1280 - Mask the value in register A.

1290 - Check to see if the value in register A is equal to ODH.

1300 - Jump if the adjusted value in register A is equal to ODH.

1310 - Jump.

1320 - Get the value from the stack and put it in register A.

1330 - Mask the value in register A.

1340 - Check to see if the value in register A is equal to ODH.

1350 - Jump if the value in register A is equal to ODH.

1360 - Check to see if the value in register A is equal to 03H.

1370 - Jump if the adjusted value in register A is equal to 03H.

1380 - Jump.

1390 - Get the value from the stack and put it in register A.

1400 - Check to see if the value in register A is equal to ODH.

1410 - Jump if the value in register A is equal to ODH.

1420 - Check to see if the value in register A is equal to 03H.

1430 - Jump if the value in register A is equal to 03H.

1440 - Check to see if the adjusted value in register A is equal to
OBH.

1450 - Jump if the adjusted value in register A is equal to OBH.

1460 - Check to see if the adjusted value in register A is equal to
02H.

1470 - Jump if the adjusted value in register A is equal to 02H.

1480 - Check to see if the adjusted value in register A is equal to
04H.

1490 - Jump if the adjusted value in register A is equal to 04H.

1500 - Check to see if the adjusted value in register A is equal to
06H.

1510 - Jump if the adjusted value in register A is equal to 06H.

1520 - Check to see if the adjusted value in register A is equal to
0AH.

1530 - Jump if the adjusted value in register A is equal to 0AH.

1540 - Check to see if the adjusted value in register A is equal to
O0CH.

1550 - Jump if the adjusted value in register A is equal to OCH.

1560 - Check to see if the adjusted value in register A is equal to
OEH.

1570 - Jump if the adjusted value in register A is equal to OEH.

1580 - Jump.

1590 - Bump the memory pointer in register pair HL.

183

1600 - Load register A with the value at the location of the memory
pointer in register pair HL.

1610 - Check to see if the value in register A is less than 21H.

1620 - Jump if the value in register A is less than 21H.

1630 - Jump if the value in register A is equal to 21H.

1640 - Check to see if the value in register A is equal to 22H.

1650 - Jump if the value in register A is equal to 22H.

1660 - Check to see if the value in register A is equal to 2AH.

1670 - Jump if the value in register A is equal to 2AH.

1680 - Check to see if the value in register A is equal to 34H.

1690 - Jump if the value in register A is equal to 34H.

1700 - Check to see if the value in register A is equal to 35H.

1710 - Jump if the value in register A is equal to 35H.

1720 - Check to see if the value in register A is equal to 36H.

1730 - Jump if the value in register A is equal to 36H.

1740 - Check to see if the value in register A is less than 46H.

1750 - Jump if the value in register A is less than 46H.

1760 - Check to see if the value in register A is less than CBH.

1770 - Jump if the value in register A is less than CBH.

1780 - Jump if the value in register A is equal to CBH.

1790 - Jump.

1800 - Bump the memory pointer in register pair HL.

1810 - Jump.

1820 - Bump the memory pointer in register pair HL.

1830 - Jump.

1840 - Bump the memory pointer in register pair HL.

1850 - Load register A with the value at the location of the memory
pointer in register pair HL.

1860 - Check to see if the value in register A is equal to 43H.

1870 - Jump if the value in register A is equal to 43H.

1880 - Check to see if the value in register A is equal to 4BH.

1890 - Jump if the value in register A is equal to 4BH.

1900 - Check to see if the value in register A is equal to 53H.

1910 - Jump if the value in register A is equal to 53H.

1920 - Check to see if the value in register A is equal to 5BH.

1930 - Jump if the value in register A is equal to 5BH.

1940 - Check to see if the value in register A is equal to 73H.

1950 - Jump if the value in register A is equal to 73H.

1960 - Check to see if the value in register A is equal to 7BH.

1970 - Jump if the value in register A is equal to 7BH.

1980 - Jump.

184

1990 - Load register B with the number of bytes to bump the
memory pointer in register pair HL.

2000 - Bump the memory pointer in register pair HL.

2010 - Looptill the memory pointer in register pair HL is updated.

2020 - Return.

2030 - Load register B with the number of bytes to bump the
memory pointer in register pair HL.

2040 - Jump.

2050 - Load register B with the number of bytes to bump the
memory pointer in register pair HL.

2060 - Jump.

2070 - Load register B with the number of bytes to bump the
memory pointer in register pair HL.

2080 - Jump.

2090 - Load register B with the number of bytes to bump the
memory pointer in register pair HL.

2100 - Jump.

2110 - Decrement the memory pointer in register pair HL.

2120 - Load register B with the number of commands in the
monitor’s jump table.

2130 - Bump the memory pointer in register pair HL.

2140 - Bump the memory pointer in register pair HL.

2150 - Save the memory pointer in register pair HL on the stack.

2160 - Load register E with the LSB of the address at the location
of the memory pointer in register pair HL.

2170 - Bump the memory pointer in register pair HL.

2180 - Loadregister D with the MSB of the address at the location
of the memory pointer in register pair HL.

2190 - Load register pair HL with the relocation offset value.

2200 - Add the address in register pair DE to the offset value in
register pair HL.

2210 - Load register pair DE with the updated address in register
pair HL.

2220 - Get the memory pointer from the stack and put it in register
pair HL.

2230 - Save the LSB of the updated address in register E at the
location of the memory pointer in register pair HL.

2240 - Bump the memory pointer in register pair HL.

2250 - Save the MSB of the updated address in register D at the
location of the memory pointer in register pair HL.

2260 - Loop till the jump table has been completely updated.

185

2270 -
2280 -
2290 -
2300 -
2310 -

2320 -
2330 -

2340 -
2350 -

2360 -
2370 -

2380 -
2390 -

2400 -
2410 -

2420 -
2430 -

2440 -
2450 -

2460 -
2470 -

2480 -
2490 -

2500 -
2510 -
2520 -
2530 -

186

Jump to the block move routine.

This will home the cursor as part of the sign-on message.
This will clear the screen as part of the sign-on message.
Part of the sign-on message is stored here.

This will display a carriage return as part of the sign-on
message.

Part of the sign-on message is stored here.

This will display a carriage return as part of the sign-on
message.

Part of the sign-on message is stored here.

This will display a carriage return as part of the sign-on *
message.

Part of the sign-on message is stored here.

This will display a carriage return as part of the sign-on
message.

Part of the sign-on message is stored here.

This will display a carriage return as part of the sign-on
message.

The sign-on message terminator is stored here.

This will display a carriage return as part of the relocation
message.

Part of the relocation message is stored here.

This will display a carriage return as part of the relocation
message.

Part of the relocation message is stored here.

This will display a carriage return as part of the relocation
message.

Part of the relocation message is stored here.

This will display a carriage return as part of the relocation
message.

Part of the relocation message is stored here.

This will display two carriage returns as part of the reloca-
tion message.

Part of the relocation message is stored here.

The relocation message terminator is stored here.

The relocation offset is stored here.

End of the program.

Level il ROM Memory Map

Appendix

The Level II ROMs are described location by location in this
section. Locations 0043H to 0045H, 0134H, 0137H, 08DSH,
095DH, 0909H, 0AEEH, 0C25H, OE11H, OE6BH, OFA1H, 10FSH,
13E1H, 14B1H, 196BH, 1999H, 199CH, 199FH, 1A17H, 1DBAH,
1E02H, 1EO5H, 1E08H, 1F03H to 1F06H, 1F59H, 2682H, 270EH,
2726H, 2799H, 2887H, 2888H, 28COH, 2A67H, 2D44H, 2D45H,
2D96H, 2E16H, 4018H to 401AH, 4090H to 4092H, 409FH,
412FH, 41E4H to 41E7H are not included here because they are not
used or can be ignored.

0000H
0000H
0001H
0002H
0005H
0008H
0008H
000BH
000BH

0004H

000LH
0007H
000AH
000AH
000CH

POWER UP ROUTINE

Turn off the real time clock and the disk interrupts.
Zero register A.

Go to the Level II BASIC inicalization routine.
Go to RST 0008H code via 4000H.

RST 0008H

Go to the RST 0008H vector at 4000H.

DISK ROUTINE

Get the address from the stack and put it in register
pair HL.

187

00OCH

O0ODH
OO0ODH
0010H

0010H
0013H

0013H
0014H
0016H
0018H
0018H
001BH
001BH
001CH
001EH
00Z20H
0020H
0023H
0023H
0024H

0026H
0028H

0028H
002BH
002BH

O02EH
0030H
0030H

188

000FH
00O0FH
0012H

0012H
0017H

0015H
0017H
001AH

001AH
001FH

001DH
001FH
0022H
0022H
0027H

0025H

0027H
002AH

002AH
002FH
002DH

002FH
0032H
0032H

{}{Jlrflp to the location of the address in register pair

DISK ROUTINE
Jump to the disk load and run sector routine.
RST 0010H

Go to the RST 0010H vector at 4003H.
KEYBOARD ROUTINE

Save the value in register pair BC on the stack.
Load register B with the device type entry code.
Jump to the Level II BASIC driver entry routine.
RST 0018H

Go to the RST 0018H vector at 4006H.
VIDEO AND PRINTER ROUTINE

Save the value in register pair BC on the stack.
Load register B with the device type entry code.
Jump to the Level II BASIC driver entry routine.
RST 0020H

Go to the RST 0020H vector at 4009H.

DISK ROUTINE

Save the value in register pair BC on the stack.
Load register B with the device type entry code.

Jump to the Level II BASIC driver entry routine.
RST 0028H

Go to the RST 0028H vector at 400CH.
KEYBOARD ROUTINE

Load register pair DE with the starting address of
the keyboard device control block.

Jump to the Level II BASIC driver entry routine.
RST 0030H
Go to the RST 0030H vector at 400FH.

0033H
0033H

0036H
0038H

0038H
003BH

003BH

003EH
0040H
0O40H
0046H

0046H
0049H

0049H
OO0L4CH

OO4DH
OO4EH
0050H

0050H
0051H
0052H
0053H
0054H
0055H
0056H
0057H

0037H
0035H

0037H
003AH

003AH
003FH

003DH

003FH
0042H
0042H
O0L8H

O0048H
OOLFH

OO4BH

OOL4FH
005FH

VIDEO ROUTINE

Load register pair DE with the starting address of
the video display device control block.

Jump to the Level II BASIC driver entry routine.
RST 0038H

Go to the RST 0038H vector at 4012H.
PRINTER ROUTINE

Load register pair DE with the starting address of
the printer device control block.

Jump to the Level II BASIC driver entry routine.
INPUT ROUTINE

Jump to the keyboard input routine.

DRIVER ENTRY ROUTINE

Jump to the Level I BASIC driver entry routine.
KEYBOARD ROUTINE

Go scan the keyboard and return with the key
pressed, if any, in register A.

Check the value in register A to see if a key was
pressed.

Return if a key was pressed.

Loop till a key is pressed.

KEYBOARD LOOKUP TABLE
Key(s) Pressed ASCII Value
ENTER ODH
Shift ENTER ODH
CLEAR 1FH
Shift CLEAR 1FH
BREAK 01H
Shift BREAK OlH
Up Arrow 5BH
Shift Up Arrow 1BH

189

0058H
0059H
005AH
005BH
005CH
005DH
005EH
005FH
0060H
0060H
0061H

0062H

0063H

0065H

0066H

0066H
0069H

006CH
006DH

006FH

0072H

0075H
0075H

0078H

007BH

190

0065H

0064H

0074H

0068H
006BH

006EH
0071H

0074H

0104H
0077H

007AH

007DH

Key(s) Pressed ASCII Value

Down Arrow OAH

Shift Down Arrow 1AH

Left Arrow 08H

Shift Left Arrow 18H
Right Arrow O9H
Shift Right Arrow 19H
SPACE 20H
Shift SPACE 20H
DELAY ROUTINE

Decrement the counter in register pair BC.

Iéoad register A with the counter’s MSB in register
Combine the counter’s LSB in register C with the
counter’s MSB in register A.

Loop till the counter in register pair BC is equal to
Z€ero.

Return.

NMI INTERRUPT ROUTINE (RESET)

Set the stack pointer to 0600H.

Load register A with the disk controller status.
Bump the disk controller status in register A.

Check the value in register A to see if a disk is
present.

If a disk is present, go to the Level I BASIC power
up routine.

Jump to the Level II BASIC READY routine.

INITIALIZATION ROUTINE

Load register pair DE with the ROM storage loca-
tion of the Level II BASIC division routine.

Load register pair HL. with the RAM storage loca-
tion of the Level II BASIC division routine.

Load register pair BC with the length of the Level II
BASIC division routine.

007EH
0080H

0083H

0085H
0086H

0087H
0088H

008AH
008BH

008EH
0091H
0093H
0096H
0098H

0099H

009AH
009BH

009CH

007FH
0082H

0084H

0089H

008DH
0090H
0092H
0095H

0097H

009DH - OO09EH

009FH - OOAOH

00A1H - 00AZH

Move the Level II BASIC division routine to RAM.
Load register pair HL with an RAM memory point-
er.

Save a 3AH at the location of the memory pointer in
register pair HL.

Bump the memory pointer in register pair HL.

Zero the location of the memory pointer in register
pair HL.

Bump the memory pointer in register pair HL.

Save a 2CH at the location of the memory pointer in
register pair HL.

Bump the memory pointer in register pair HL.

Save the value in register pair HL as the starting
address of the keyboard input buffer area.

Load register pair DE with the starting address of
the Level II BASIC L3 ERROR routine.

Load register B with the number of times to save the
jump to the Level II BASIC L3 ERROR routine.

Load register pair HL with the starting address of
the Disk Basic links.

Save a C3H at the location of the memory pointer in
register pair HL.

Bump the memory pointer in register pair HL.

Save the LSB of the Level Il BASIC L3 ERROR rou-
tine’s starting address in register E at the location of
the memory pointer in register pair HL.

Bump the memory pointer in register pair HL.
Save the MSB of the Level II BASIC L3 ERROR
routine’s starting address in register D at the loca-
tion of the memory pointer in register pair HL.
Bump the memory pointer in register pair HL.

Loop till all of the Disk Basic links have been set to
jump to the Level II BASIC L3 ERROR routine.

Load register B with the number of DOS links to set
to RETs.

Save a C9H at the location of the memory pointer in
register pair HL.

191

00A3H
OOA4H
00AS5H
00A6H
00A8H

O00ABH

00ACH
OOAFH

00B2H
0O0B5H

00B8H
0OBBH
OOBEH
O00COH

00ClH

00C2H

OOC4H

00C7H
00C8H

00C9H

00CAH

00CCH

192

00A7H
00AAH

O0OAEH
00B1lH

OOB4H
00B7H

00BAH
00BDH
00BFH

00C3H

00C6H

Bump the memory pointer in register pair HL.
Bump the memory pointer in register pair HL.
Bump the memory pointer in register pair HL.
Loop till all of the DOS links have been set to RETs.

Load register pair HL with the starting address of
user RAM.

Zero the location of the memory pointer in register
pair HL.

Set the current stack pointer to 41F8H.

Go initialize the Level Il BASIC variables and point-
ers.

Go clear the screen.

Load register pair HL with the starting address of
the memory size? message.

Go display the memory size? message.
Go get the input from the keyboard.
Go ask again if the BREAK key was pressed.

Bump the input buffer pointer in register pair HL till
it points to the first character of the input.

Check to see if the character at the location of the
input buffer pointer in register A is an end of the
input character (00H).

Jump if there was a response to the memory size?
question.

Load register pair HL with the starting address for
the memory size check.

Bump the memory pointer in register pair HL.

Load register A with the MSB of the current mem-
ory pointer in register H.

Combine the LSB of the current memory pointer in
register L with the MSB of the current memory
pointer in register A.

~ OOCBH Jump if the current memory pointer in register pair

HL is equal to zero.

Load register A with the value at the location of the
current memory pointer in register pair HL.

00CDH

OO0CEH
OOCFH

OODOH

00D1H

00D2H

OOD4H
OOD6H

OOD9H
00DAH

OODDH

O0ODEH

OODFH
O0E1lH

00EZH

00E3H

OOE4H

00E5H
00E7H

O00E8H

O00EBH

- 00D3H
= 0ODSH
- OOD8H

- OODCH

= O0EOH

- OOE6H

- OOEAH

Load register B with the value in register A.
Complement the value in register A.

Save the value in register A at the location of the
current memory pointer in register pair HL.

Check to see if the value at the location of the

memory pointer in register pair HL is the same as
the value in register A.

Save the value in register B at the location of the
memory pointer in register pair HL.

Loop till the end of memory is found.

Jump.

Go evaluate the response to the memory size?
question and return with the memory size? in regis-
ter pair De.

Check to see if register A is equal to zero.

Go to the Level Il BASIC error routine and display a
SN ERROR message if register A is equal to zero.

Load register pair HL with the memory size? in
register pair DE.

Decrement the memory size? in register pair HL.

Load register A with a memory test value.

Load register B with the value at the location of the
memory size? pointer in register pair HL.

Save the value in register A at the location of the
memory size? pointer in register pair HL.

Check to see if the value at the location of the
memory size? pointer in register pair HL is the same
as the value in register A.

Save the value in register B at the location of the
memory size? pointer in register pair HL.

Jump if the memory location doesn’t exist.
Decrement the memory size pointer in register pair
Load register pair DE with the minimum memory
size? response.

Go check to see if the memory size? pointer in

193

OOECH

OOEFH
0O0F2H

OOF5H
OOF6H

OOF9H
OOFCH

OOFFH

0102H
0105H
0105H
0111H
0111H

O012DH
012DH
012FH
0132H

0132H

0133H
0135H

0135H
194

OOEEH

OOF1H
OOF4H

OO0F8H

OOFBH
OOFEH

0101H

0104H
0110H
0110H
012CH
012CH

0131H
012EH
0131H
0134H

0137H

0136H

register pair HL is less than the minimum memory
size? response in register pair DE.

Go to the Level I BASIC error routine and display
an OM ERROR if the memory size? pointer in reg-
ister pair HL is less than the minimum memory size?
response in register pair DE.

Load register pair DE with a negative fifty.

Save the memory size? pointer in register pair
HL.

Add the value in register pair DE to the memory
size? pointer in register pair HL.

?Iave the start of string space pointer in register pair
L.

Goreset the Level Il BASIC variables and pointers.

Load register pair HL with the starting address of
the RADIO SHACK LEVEL II BASIC message.

Go display the RADIO SHACK LEVEL II BASIC
message.

Go to the Level I1 BASIC READY routine.
MESSAGE STORAGE

Memory size? message is stored here.
MESSAGE STORAGE

}l}ADIO SHACK LEVEL II BASIC message is stored
ere.

L3 ERROR ROUTINE
Load register E with the L3 ERROR code.
Go to the Level II BASIC error routine.

LEVEL II BASIC
POINT COMMAND ENTRY POINT

Go bump the current BASIC program pointer till it
points to the next character.

Zero register A.

LEVEL II BASIC SET
COMMAND ENTRY POINT

Load register A with 80H.

0138H -

0138H -

O13AH -
013AH

013BH -

013DH -

O140H -

0142H -

0145H
0146H -

0148H -

O14BH -

O14DH -

0150H -
0152H

0153H -

0155H =

0157H -

0159H
015AH

015BH

0139H

0139H
019CH

013CH

013FH

0141H

O144H

0147H

014AH

O14CH

O14FH

0151H

0154H

0156H
0158H

LEVEL II BASIC RESET
COMMAND ENTRY POINT

Load register A with 01H.

GRAPHICS ROUTINE

Save the graphics mode in register A on the stack.
Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a (character.

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
and return with the 8-bit value in register A.

Check to see if the X value in register A is greater
than 127.

Go to the Level Il BASIC error routine and display a
FC ERROR message if the X value in register A is
greater than 127.

Save the X value in register A on the stack.
Check the syntax. The character at the location of
the current BASIC program pointer in register
pair HL must be a comma.

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
and return with the 8-bit value in register A.

Check to see if the Y value in register A is greater
than 47.

Go to the Level IT BASIC error routine and display a
FC ERROR message if the Y value in register A is
greater than 47.

Load register D with starting quotient.

Bump the quotient in register D.

Subtract 3 from register A.

Loop till register D equals the Y value divided by 3.
Adjust the remainder in register A.

Save the remainder in register C.

get the X value from the stack and put it in register

Multiply the X value in register A by two.
195

015CH
01,5DH
015FH

0160H
0161H
0162H

0163H

0164H
0165H

0167H
0168H

0169H
016AH

016BH
016CH

016DH
016EH

0170H
0171H

0172H

O174H

0175H

196

- O15EH

- 0166H

- Ol6FH

- 0173H

Loa;ix register E with the X value times two in regis-
ter A.

Load register B with the number of times to shift
register pair DE.

Iﬁoad register A with the adjusted Y value in register

Divide the adjusted Y value in register A by two.
Save the new Y value in register A in register D.

and register A with the adjusted X value in register

Divide the adjusted X value in register A by two.
Load register E with the new X value in register A.

Loop till the memory offset in register pair DE has
been figured.

Load register A with the value in register C.

Multiply the value in register A by two and add the
value of the Carry flag to register A.

Bump the value in register A.

Save the bit position in register A in register B.
Zero register A and reset the Carry flag.

Set the Carry flag.

Add the value of the Carry flag to register A.

Loop till the graphic mask has been completed in
register A.

Save the graphic mask in register A in register C,

Load register A with the MSB of the video memory
offset in register D.

Mask the MSB of the video memory offset in regis-
ter A so that it will point to the correct location in
video memory.

Save the MSB of the video memory pointer in reg-
ister A in register D,

Load register A with the character at the location of
the video memory pointer in register pair DE.

0176H
0177H ~ 0179H

017AH - 017BH
017CH

017DH
017EH
017FH

0180H - 0181H
0182H

0183H - 0185H
0186H
0187H
0188H

0189H

018AH

018BH

018CH - 018DH

018EH
018FH

Check to see if the character in register A is a
graphic character.

Jump if the character in register A is a graphic
character,

Load register A with a blank graphic character.
%ave the graphic character in register A in register
Get the graphic mode from the stack and put it in reg-
ister A.

Set the flags according to the graphic mode in regis-
ter A.

Get the graphic character from register B and put it
In register A.

Jump if the graphic mode is POINT.

Save the graphic character in register A at the loca-
tion of the video memory pointer in register pair DE.

Jump if the graphic mode is SET.
Loadregister A with the graphic mask in register C.
Reverse the graphic mask in register A.

Load register C with the adjusted graphic mask in
register A.

Load register A with the character at the location of
the video memory pointer in register pair DE.

RESET the graphic bit by combining the graphic
mask in register C with the graphic character in
register A.

Save the adjusted graphic character in register A at

the location of the video memory pointer in register
pair DE.

Check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a) character.

Return.

SET the graphic bit by combining the graphic mask
i&l register C with the graphic character in register

197

0190H -
0192H

0193H -
0195H
0196H
0197H -
019AH

019BH -~
O19DH -

019DH
019EH

019FH -
01AZ2H
OlA3H -
01A5H -
01A8H

01A9H -

01ABH

01ACH
OlADH -

01BOH
01Bl1H -
O1B4H

O1B5H -

198

0191H

0194H

0199H

019CH
01C8H

01A1lH

O1A4H
01A7H

01AAH

OlAFH

01B3H

01B7H

Jump.

POINT the graphic bit by combining the graphic
mask in register C with the graphic character in
register A.

Subtract one from the value in register A.

Adjust the value in register A so that A will equal
zero if the bit was off in register A.

Save the current BASIC program pointer in register
pair HL on the stack.

Save the value in register A as the current result in
REGI.

Get the current BASIC program pointer from the
stack and put it in register pair HL.

Jump.
LEVEL II BASIC INKEY$ ROUTINE

Go bump the current BASIC program pointer in
register pair HL till it points to the next character.

Save the current BASIC program pointer in register
pair HL on the stack.

Load register A with the last key pressed.
Check to see if a key has been pressed.

Jump if a key has been pressed.

Go scan the keyboard.

Check to see if a key was pressed.

Jump if a key wasn’t pressed.

Save the key pressed in register A on the stack.

Zero register A.
Save the value in register A as the last key pressed.

Bump the value in register A.
Go make an entry in string space.

Get the last key pressed from the stack and put it in
register A.

Load register pair HL with the string’s starting ad-
dress.

01B8H

O01BSH
01BCH

O01BFH

01C2H
O1C4H

O01C7H

01C8H

01C9H
01C9H

01CBH

01CEH

01DOH

O01D3H
01D3H

O01D5H

01D8H

01D9H
O01D9H

O1DCH
01DFH
O1ElH

01BBH
O01BEH

01ClH

01C3H
01C6H

01D2H
01CAH

01CDH

O01CFH

01D2H

01D8H
O1D4H

01D7H

O1F7H
01DBH

O1DEH
O01EOH
01E2H

Save the last key pressed in register A at the loca-
tion of the string pointer in register pair HL.

Go save the string’s VARPTR as the current result.

Load register pair HL with the starting address of
the READY message.

Save the address in register pair HL as the current
result in REG1.

Load register A with a string number type flag.

Save the value in register A as the current number
type.

Get the current BASIC program pointer from the
stack and put it in register pair HL.

Return.

LEVEL II BASIC CLS ROUTINE

Load register A with the ASCII character to home
the cursor.

Go send the character in register A to the video
display.

Load register A with the ASCII character to clear to
the end of the screen.

Go send the character in register A to the video
display.

LEVEL II BASIC RANDOM ROUTINE

Load register A with the current value of the refresh
register.

Save the value in register A as part of the random
number seed.

Return.

CASSETTE ROUTINE

Load register pair HL with the command to send to
the cassette.

Go send the command to the cassette controller.
Load register B with the delay count.

Loop for delay.
199

01E3H

O1E6H
O1E9H
O1EBH
O1EDH

O1FOH
O1F3H
O1F5H
O1F7H

01F8H
01F8H

O1F9H

01FCH
O1FEH

O1FEH

O1FFH

0201H
0203H

0205H

0208H

020AH

020BH
200

O01ESH

01E8H
OlEAH
01ECH
O01EFH

01F2H
O1F4H
01F6H

01FDH

01FBH

O01FDH
0211H

0200H

0202H
0204H

0207H

0209H

Load register pair HL with the command to send to
the cassette.

Go send the command to the cassette controller.
Load register B with the delay count.
Loop for delay.

Load register pair HL with the command to send to
the cassette.

Go send the command to the cassette controller.
Load register B with the delay count.

Loop for delay.

Return.

CASSETTE ROUTINE (TURN OFF CASSETTE)
Save the value in register pair HL on the stack.

Load register pair HL with the command to send to
the cassette.

Jump.

CASSETTE ROUTINE
(EVALUATE DRIVE NUMBER)

Get the character at the location of the current
BASIC program pointer and put it in register A.

Check to see if the character in register A is a #
character.

Zero register A.

Jump if the character at the location of the current
BASIC program pointer in register pair HL isn't a #
character.

Go evaluate the drive number at the location of the
current BASIC program pointer in register pair HL
and return with the drive number in register E.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a comma.

Load register A with the drive number inregister E.

Combine the MSB of the drive number in regiéter D
with the LSB of the drive number in register A.

020CH
020EH

0211H
0212H
0212H

0215H
0216H

0219H
021CH

021DH
021EH

021EH
0221H
0224H
0225H

0226H
0228H

022BH
022CH
022CH

022FH

0231H

020DH
021.0H

021DH
0214H

0218H

021BH

022BH
0220H

0223H

0227H
022AH

0234H
022EH

0230H

0233H

Make the drive number in register A positive.

Go to the Level II BASIC error routine and disp}ay a
FC ERROR message if the drive number in register
A is invalid.

Decrement the drive number in register A.
CASSETTE ROUTINE (TURN ON CASSETTE)

Set the current drive as specified by register A.

Save the current BASIC program pointer in register
pair HL on the stack.

Load register pair HL with the command to send to
the cassette.

Go send the command to the cassette controller.

Get the current BASIC program pointer from the
stack and put it in register pair HL.

Return.
CASSETTE ROUTINE

Load register pair HL with the command to send to
the cassette.

tI]Joad register A with the 32/64 character per line
ag.

Combine the value in register H with the 32/64
character per line flag in register A.

Combine the value to send to the cassette in register
L with the adjusted value in register A.

Send the value in register A to the cassette port.

Save the value in register A as the 32/64 character
per line flag.

Return.
CASSETTE ROUTINE (BLINK **)
Get the character being displayed in the upper right

IAand corner of the video display and put it in register

If the character in register A is a * then make it a
space, else if the character in register A is a space
make it a *.

Display the character in register A in the upper right

201

0234H
0235H
0235H
0236H
0237H
0239H
023CH
023EH

023FH

0240H
0241H
0241H
0242H
0243H
0245H
0246H
0248H
024AH
024CH
02U4FH
0251H
0253H
0255H

0256H
0257H
0259H

202

0240H

0238H
023BH
023DH

0260H

0244H

0247H
0249H
024BH
024EH
0250H
0252H
0254H

0258H

hand comer of the video display.

Return.

CASSETTE ROUTINE (READ A BYTE)

Save the value in register pair BC on the stack.
Save the value in register pair HL on the stack.
Load register B with the number of bits to read.
Go read a bit from the cassette recorder.

Loop till all eight bits have been read.

Get the value from the stack and put it in register
pair HL.

Get the value from the stack and put it in register
pair BC.

Return.

CASSETTE ROUTINE (READ A BIT)

Save the value in register pair BC on the stack.
Save the value in register A on the stack.

Read a bit from the cassette port.

Check to see if this is a start bit.

Loop till start bit is found.

Load register B with the delay count.

Loop for delay.

Go clear the cassette controller.

Load register B with the delay count.

Loop for delay.

Load register A with the value of the cassette port.

Load register B with the value read from the cas-
sette port in register A.

Get the value from the stack and put it in register A.
Shift the bit read in register B into the Carry flag.
Shift the value in the Carry flag into register A.

025AH
025BH
025EH
025FH

0260H
0261H
0261H
0264H
0264H
0265H
0266H
0267H
0268H

026AH

026BH
026EH

026FH
0270H

0271H
0273H
0276H
0277H
0279H
027AH

027BH

025DH

0263H
0263H
027DH

0269H

026DH

0272H
0275H

0278H

Save the value in register A on the stack.
Go clear the cassette controller.
Get the value from the stack and put it in register A.

Get the value from the stack and put it in register
pair BC,)

Return.

CASSETTE ROUTINE

Go write a byte.

CASSETTE ROUTINE (WRITE A BYTE)
Save the value in register pair HL on the stack.
Save the value in register pair BC on the stack.
Save the value in register pair DE on the stack.
Save the value in register A on the stack.

Load register C with the number of bits to be writ-
ten.

Loag register D with the byte to be written in regis-
ter A.

Go write the start bit.

Load register A with the byte to be written in regis-
ter D.

Shift the bit to be written into the Carry flag.

Save the adjusted byte to be written in register A in
register D.

Jump if the bit to be written is equal to zero.

Go make a cassette pulse.

Decrement the counter in register C.

Loop till all eight bits have been written.

Get the value from the stack and put it in register A.

Get the value from the stack and put it in register
pair DE.

Get the value from the stack and put it in register
pair BC.

203

027CH

027DH
027EH
027EH
0280H

0282H
0284H

0284H
0287H

0289H

028AH
028DH
028FH

0291H
0293H

0293H
0296H

0297H
0298H

029BH

029DH
029FH
029FH
02A1H

204

0283H
027FH
0281H

0283H
0292H

0286H

0288H

028CH
028EH
0290H

0292H
029EH

0295H

029AH

029CH

029EH
02A8H
02A0H
02A3H

Get the value from the stack and put it in register
pair HL.

Return.

CASSETTE ROUTINE

Load register B with the delay count.
Loop for the delay.

Jump.

CASSETTE ROUTINE (TURN
ON CASSETTE AND WRITE LEADER)

Go evaluate the drive number and turn on the cas-
sette motor.

Load register B with the number of bytes to be
written.

Zero register A.

Go write the byte in register A.

Loop till leader has been written.

Load register A with the sync byte value.

Go write the sync byte.

CASSETTE ROUTINE (TURN
ON CASSETTE AND READ LEADER)

Go evaluate the drive number and turn on the cas-
sette motor.

Save the current BASIC program pointer in register
pair HL on the stack.

Zero register A.

Go read a byte from the cassette and return with it in
register A.

Check to see if the byte read from the cassette in
register A is a sync byte.

Loop till sync byte found.
CASSETTE ROUTINE (DISPLAY =+ ON VIDEO)
Load register A with a * character.

Display the * character in register A on the video
display.

02A4H
02A7H

02A8H
02A9H

02A9H

02ACH
O0Z2AFH
02B2H
02B5H
02B8H

02BBH
02BDH

02COH
02C3H

02C6H
02C7H
02CAH
0Z2CCH

O02CEH
02D1H

02D4H

02D6H

02A6H

0329H

02ABH

02AEH
02B1H
02B4H
02B7H
02BAH

‘02BCH

02BFH

02CZH
02C5H

02C9H
02CBH

02CDH

02DOH
02D3H

02D5H

02D7H

Display the character in register A on the video
display.

Get the current BASIC program pointer from the
stack and put it in register pair HL.

Return.

LEVEL II SYSTEM
ROUTINE-ENTRY POINT - 02B2H

Go read the execution address from the cassette and
return with it in register pair HL.

Save the execution address in register pair HL.
Go turn off the cassette motor.
Go call the DOS link at 41E2H.
Set the stack pointer to 4288H.

Go display a carriage return on the video display if
necessary.

Load register A with an * character.

Go display the = character in register A on the video
display.

Go get the input from the keyboard.

Go to the Level 11 BASIC READY routine if the
BREAK key was pressed.

Go bump the input buffer pointer in register pair HL
till it points to the first character input.

Go to the Level Il BASIC error routine and display a
SN ERROR message if there wasn’t any input.

Check to see if the character at the location of the
input buffer pointer in register A is a / character.

Jump if the character at the location of the input
buffer pointer in register A is a / character.

Go turn on the cassette motor.

Go read a byte from the cassette and return with it in
register A.

Check to see if the byte read from the cassette in
register A is a header byte.

Loop till the header byte is found.
205

02D8H -
02DAH

02DBH

02DCH -

O2DEH -

02ElH

02EZ2H -

O2E4H
02E5H -

02E7H -
OZEAH -

OZEDH -

O2EFH -

O2F1H -

02F3H -

O2F5H -

02F8H

O2F9H -
206

02D9H

02DDH

OZ2EOH

O02E3H

02E6H

O02E9H

OZ2ECH

02EEH

02FOH

02F2H

O2F4H

02F7H

O2FBH

Load register B with the length of the filename to
read from the cassette.

Load register A with the character at the location of
the current input buffer pointer in register pair HL.

Check to see if the character at the location of the

current input buffer pointer in register A is an end of
input character.

Jump if the character at the location of the current
input buffer pointer in register A is an end of input
character.

Goread a byte from the cassette and return with it in
register A.

Check to see if the character at the location of the
current input buffer pointer in register pair HL is the
same as the character read from the cassette in
register A.

Jump if the character at the location of the current
input buffer pointer in register pair HL isn’t the same
as the character read from the cassette in register A.
Bump the input buffer pointer in register pair HL.
Loop till the whole of the filename has been read
from the cassette and checked against the user re-
sponse.

Go blink the * on the video display.

Go read a byte from the cassette recorder and return
with it in register A

Check to see if the byte read from the cassette in
register A is an execution address header byte.

Jump if the byte read from the cassette in register A
is an execution address header byte.

Check to see if the byte read from the cassette in
register A is a file block header byte.

Loop till either an execution address header byte or
a file block header byte is read from the cassette.

Go read a byte from the cassette and return with the
number of bytes to be loaded in register B.

Load register B with the number of bytes to be
loaded in register A.

Go read the file block’s starting address from the

02FCH

O2FDH
0ZFEH

0301H

0302H
0303H

0304H

0305H
0307H

030AH

030BH

030DH
030FH

0312H
0314H

0317H
0318H
031BH

031CH

- 0300H

- 0306H
- 0309H

cassette and return with it in register pair HL,
Add the LSB of the file block’s starting address in
register L to the MSB of the file block’s starting
address in register A.

Load register C with the file block’s starting
checksum in register A.

Go read a byte from the cassette and return with it in
register A.

Save the byte read from the cassette inregister A at
the location of the memory pointer in register pair
L.

Bump the memory pointer in register pair HL.

Add the value of the current checksum in register C
to the value in register A.

Load register C with the updated checksum in reg-
ister A,

Loop till the whole file block has been read.

Go read the checksum from the cassette and return
with it in register A.

Check to see if the computed checksum in register C
is the same as the checksum read from the cassette
in register A.

=~ 030CH Jump if the computed checksum in register C is the

- 030EH

- 0311H

same as the checksum read from the cassette in
register A.

Load register A with a C character.

Display the C character in register A on the video
display.

- 0313H Jump.

- 0316H

- 031AH

Goread a byte from the cassette and return with it in
register A.

Load register L with the byte read from the cassette
in register A.

Go read a byte from the cassette and return with it in
register A.

Load register H with the byte read from the cassette
in register A.

Return.
207

031DH
031EH
0321H
0322H
0323H
0326H
0328H

0329H
032AH
03Z2AH
032BH

032CH
032FH

0332H
0333H
0334H
0335H
0338H

033AH
033BH

033EH
208

- 0320H

- 0325H

- 0327H

- O0347H

- 032EH
- 0331H

- 0337H

- 0339H

- 033DH

Load register pair DE with the input buffer pointer in
register pair HL.

Load register pair HL with the current execution
address.

Exchange the execution address in register pair HL
with the input buffer pointer in register pair DE.

Go bump the current input buffer pointer in register
pair HL till it points to the next character.

Go evaluate the expression at the location of the
input buffer pointer in register pair HL and return
with the integer result in register pair DE.

Jump if there wasn’t any input.

Exchange the input buffer pointer in register pair HL
with the execution address in register pair DE.

Jump to the execution address in register pair HL.
OUTPUT ROUTINE
Save the value in register pair BC on the stack.

Load register C with the character to be output in
register A.

Go call the DOS link at 41C1H.

Load register A with the current output device
number.

Set the flags according to the current output device
number in register A.

Load register A with the character to be output in
register C.

Get the value from the stack and put it in register
pair BC.

Jump if the character in register A is to be sent to the
cassette.

Jump if the character in register A is to be sent to the
printer.

Save the value in register pair DE on the stack.

Go send the character in register A to the video
display.

Save the character in register A on the stack.

033FH
0342H
0345H

0346H

0347H
0348H

0348H
034BH
034DH

0350H
0352H

0353H
0355H

0357H
0358H

0358H
035BH
035CH
035FH

0360H
0361H
0361H
0362H
0365H

0341H
0344H

0357H
034AH

034CH
O34FH

0351H

0354H

0356H

0360H
035AH

035EH

0383H

0364H
0367H

Go update the current cursor position.

Save the current cursor line position in register A.
get the character from the stack and put it in register
Get the value from the stack and put it in register
pair DE.

Return.
VIDEO ROUTINE

fIioad register A with the 32/64 character per line
ag.

Set the flags according to the status of the 32/64
character per line flag in register A.

Load register A with the LSB of the current cursor
position.

Jump if this is the 64 character per line mode.

Divide the LSB of the current cursor position in
register A by two.

Mask the cursor line position in register A for a 32
character per line.

Mask the cursor line position in register A for 64
characters per line.

Return.
KEYBOARD ROUTINE

Go call the DOS link at 41C4H.
Save the value in register pair DE on the stack.
Go scan the keyboard.

Get the value from the stack and put it in register
pair DE.

Return.

INPUT ROUTINE

Zero register A.

Save the value in register A as the last key pressed.

Save the value in register A as the current cursor
line position.

209

0368H
036BH
036CH

036FH
0371H
0374H
0375H

0376H
0378H

0379H
037BH

037EH
037FH

0380H

0381H
0382H
0383H
0384H
0384H
0387H
0388H
0389H
038BH
038BH

210

036AH

036EH

0370H
0373H

0377H

037AH

037DH

038AH
0386H

038AH
039BH

Go call the DOS link at 41AFH.

Save register pair BC on the stack.

Load register pair HL with the starting address of
the input buffer.

Load register B with the length of the input buffer.
Go get the input.

Save the flags on the stack.

Load register C with the length of the input in reg-
ister B.

Zero register B.

Add the length of the input in register pair BC to the
fitirting address of the input buffer in register pair
Save an end of the input character at the location of

the end of input pointer in register pair HL,

Load register pair HL with the starting address of
the input buffer.

Get the flags from the stack.

Get the value from the stack and put it in register
pair BC.

Decrement the input buffer pointer in register pair
HL.

Return if the BREAK key was pressed.
Zero register A.

Return.

KEYBOARD ROUTINE

Go scan the keyboard.

Check to see if a key was pressed.
Return if a key was pressed.

Loop till a key is pressed.

PRINTER ROUTINE

Zero register A.

038CH
038FH
0392H
0393H

0394H
0396H
0397H

039AH

039BH
039CH
039CH
039DH
039EH
039FH

03AC0H
03AZH

03A4H
03A6H
03A8H

O03AAH
03ACH

03ADH

038EH

0391H

0395H

0399H

03C1H

03A1H
03A3H

Save the value in register A as the current output
device code.

Load register A with the current printer carriage
position.

Check to see if the carriage position in register A is
equal to zero.

Return if the carriage position in register A is equal
to zero.

Load register A with a carriage return character.
Save the value in register pair DE on the stack.

Go send the carriage return character in register A
to the printer.

Get the value from the stack and put it in register
pair DE.

Return.

PRINTER ROUTINE

Save the value in register pair AF on the stack.
Save the value in register pair DE on the stack.
Save the value in register pair BC on the stack.

Load register C with the character to be sent to the
printer in register A.

Zero register E.

Check to see if the character to be sent to the printer
in register A is equal to OCH.

03A5H Jump if the character to be sent to the printer in

03A7H

register A is equal to OCH.

Check to see if the character to be sent to the printer
in register A is a line feed character.

03A9H Jump if the character to be sent to the printer in

03ABH

O3AEH

register A isn't a line feed character,
Load register A with a carriage return character.

Load register C with the character to be sent to
printer in register A.

Check to see if the character to be sent to the printer
in register A is a carriage return character.

21

03AFH

03B1H
03B4H
03B5H

03B6H

03B7H
03BAH

03BBH
03BEH

03BFH
3COH

03C1H
03C2H
03C2H
03C3H
03C5H

03C6H

03C8H
03C9H
03CCH

03CDH

03CEH

212

03BOH

03B3H

03BYH

03BDH

03E2H

03ChH

03C7H

03CBH

Jump if the character to be sent to the printer in
register A is a carriage return character.

Load register A with the current carriage position.
Bump the current carriage position in register A.

Load register E with the current carriage positionin
register A.

Load register A with the current carriage position in
register E.

Save the current carriage position in register A.

Load register A with the character to be sent to the
printer in register C.

Go send the character in register A to the printer.

Get the value from the stack and put it in register
pair BC.

Get the value from the stack and put it in register
pair DE.

Get the value from the stack and put it in register
pair AF.

Return.

DRIVER ENTRY ROUTINE

Save register pair HL on the stack.

Save the value in register pair IX on the stack.

Save the starting address of the device control block
in register pair DE on the stack.

Get the starting address of the device control block
from the stack and put it in register pair IX.

Save the value in register pair DE on the stack.
Load register pair HL with the return address.

Save the return address in register pair HL on the
stack.

Eave the character to output in register A in register
Load register A with the device type code at the

location of the device control block pointer in regis-
ter pair DE.

03CFH

03DOH

03D1H

03D4H
03D6H

03D9H
03DCH
03DDH
03DEH
03EOH
03ElH

03E2H
03E3H

03E3H
03E6H

03E9H
O03EBH

O03ECH

03EDH

03D3H

03D5H
03D8H

03DBH

03DFH

0457H
03E5H

03E8H

O3EAH

Mask the device type code in register A with the
driver entry code in register B.

Check to see if the updated device type code in
register A is the same as the driver entry code in
register B.

Jump to the DOS link at 4033H if the updated device
type code in register A isn't the same as the driver
entry code in register B.

Reset the flags.

Load register L with the LSB of the driver entry
address at the location of the device control block
pointer in register pair IX plus one.

Load register H with the MSB of the driver entry
address at the location of the device control block
pointer in register pair IX plus one.

Jump to the driver entry address in register pair HL.

Get the value from the stack and put it in register
pair DE.

Get the value from the stack and put it in register
pair IX.

Get the value from the stack and put it in register
pair HL.

Get the value from the stack and put it in register
pair BC.

Return.

KEYBOARD DRIVER

Load register pair HL with the keyboard work area’s
starting address.

Load register pair BC with the keyboard memory’s
starting address.

Zero register D.

Load register A with the value at the location of the
keyboard memory pointer in register pair BC.

Load register E with the keyboard memory value in
register A.

Check for inequality by XORing the value at the
location of the keyboard work area pointer in regis-
ter pair HL with the keyboard memory value in
register A.

213

O03EEH

3EFH

03FOH
O03F2H
03F3H

O3F4H
03F6H

03F9H
O3FAH
03FBH
O03FCH
O03FDH
O3FEH
O03FFH
O400H
O0402H

O403H
O404H

OLO6H
O407H
O409H

O40BH

214

Save the keyboard memory value in register E at the
location of the keyboard work area pointer in regis-
ter pair HL.

Mask the adjusted value in register A with the value
at the location of the keyboard work area pointer in
register pair HL.

-~ O3F1H Jump if a new key has been pressed.

O3F5H

Bump the keyboard row counter in register D.

Bump the keyboard work area pointer in register
pair HL.

%c(lg'ust the keyboard memory pointer in register pair

- O03F8H Jump if the whole of keyboard memory hasn’t been

O401H

checked.

Return.

Save the column number in register A in register E.
Load register A with the row counter in register D.
Multiply the row counter in register A by two.
Multiply the row counter in register A by two.
Multiply the row counter in register A by two.
Load register D with the row counter in register A.
Load register C with the starting column counter.
%oad register A with the column counter in register

Check to see if the column counter in register A is
the same as the active column number in register E.

O405H Jump if the column counter in register A is the same

O408H
O40AH

O4ODH

as the active column number in register E.
Bump the value in register D.
Adjust the column counter in register C.

Loop till the value in register D is adjusted for it's
column.

Load register A with the value of the SHIF T memory
location.

O4OEH
O4OFH
O410H
0412H
O414H
O416H
O418H
O41AH
O41CH

O41DH

OL420H
O422H
o241
O425H
O427H
O429H
O42BH

O42DH
Ol2FH

O431H
O433H
O435H

O437H
O439H
O43BH

O411H
O413H
O415H
O417H
O419H
O41BH

O41FH

O421H
0423H

OL426H
0428H
O42AH
O42CH

O42EH
0430H

0432H
0434H
O436H

0L38H
O43AH
043CH

Loadregister B with the SHIFT value in register A.
Load register A with the value in register D.
Adjust the ASCII value in register A.

Check to see if the value in register A is alphabetic.
Jump if the value in register A is nonalphabetic.
Put the SHIFT value in register B in the carry flag.
Jump if the SHIFT key wasn’t pressed.

Adjust the value in register A for lower case.

Load register D with the adjusted character in reg-
ister A.

Load register A with the value at keyboard memory
row six.

Check to see if the down arrow key was pressed.
Jump if down arrow wasn’t pressed.

Load register A with the character in register D.
Adjust the value of the character in register A.
Jump.

Adjust the value of the character in register A.

Jump if the character in register A is for keyboard
TOW SiX.

Readjust the value of character in register A.

Check to see if the character in register A is 0 -,
character.

Jump if the character in register Aisa 0-, character.

Adjust the character in register A.

ffl,m the SHIFT value in register B into the Carry
ag.

Jump if the SHIFT key wasn't pressed.

Adjust the character in register A.

Jump.

215

O43DH
O43EH

O4L0OH
O442H
O443H

O446H
OLh7H
O4L9H

OllAH

O4LBH

O44CH
O4LFH
O452H

O453H
Ok 55H
OL56H
O457H
O458H
0458H

Ol45BH

O45EH
O460H

216

O43FH

O441H

ObLsH

OL48H

OL4EH
O451H

OL54H

058CH
O45AH

O&5DH

Adjust the value in register A.

fP}ut the SHIFT value in register B into the Carry
ag.

Jump if the SHIFT key wasn't pressed.
Bump the value in register A.

Load register pair HL with the starting address of
the keyboard lookup table.

Load register C with the offset in register A.
Zero register B.
Add the offset in register pair BC to the starting

?ffress of the keyboard lookup table in register pair

Load register A with the ASCII value at the location
I(-)If Ifhe keyboard lookup table pointer in register pair

Load register D with the ASCII value for the key
pressed in register A.

Load register pair BC with the delay count.
Go delay.

Load register A with the ASCII value for the key
pressed in register D.

Check to see if the BREAK key was pressed.
Return if the BREAK key wasn't pressed.

Go if the BREAK key was pressed.

Return.

VIDEO DRIVER

Load register L with the LSB of the current cursor
position at the location of the video device control
block pointer in register pair IX plus three.

Load register H with the MSB of the current cursor

position at the location of the video device control
block pointer in register pair IX plus four.

O45FH Jump if get last character.

OL462H

Load register A with the cursor on/off flag at the

O463H
0464H
OL66H

oL67H
O468H

OU6AH

O46DH

O4EFH
O471H
O473H

Ol475H
O477H

O479H
O47BH

O47DH
O480H

O481H
O483H

048 5H

O465H

OL69H
O46CH

OUL6EH

Ol470H
O472H
Ol74H
O476H
O478H
O47AH
O47CH

O47FH

0482H

O484H

location of the video device control block pointer in
register pair IX plus five.

Check to see if the cursor is on or off.
Jump if the cursor is off,

Display the character in register A at the location of
the current cursor position in register pair HL.

Load register A with the character to be displayed in
register C.

Check to see if the character to be displayed in
register A is a control code.

Jump if the character to be displayed in register A is
a control code.

Check to see if the character to be displayed in
register A is a graphic character or space compres-
sion code.

Jump if the character to be displayed in register A is
a graphic character or space compression code.

Check to see if the character to be displayed in
register A is an alphabetic character.

Jump if the character to be displayed in register A is
a nonalphabetic character.

Adjust the alphabetic character in register A so that
it will be in the range of from 0 to 25.

Check to see if the character to be displayed in
register A is a lower case character.

Jump if the character to be displayed in register A
isn’t lower case.

Convert the lower case character in register A to
upper case.

Go display the character in register A.

Load register A with the MSB of the current cursor
position in register H.

Mask the value in register A so that it will be in the
range of video memory.

Make sure that the value in register A will point to
video memory.

Load register H with the updated value in register A.

217

O4B6H

O487H

O4BAH
O48BH
O48DH

0490H

0492H

O495H

O0498H

O0499H
O49AH
O49DH
OA49EH
O49FH

O4AOH
O4AlH

O4A2H

OlALH
O4ASH
O4A6H

218

- O489H

- O48CH
- O48FH

- O491H

- O49LH

- O497H

- O49CH

- O4A3H

- O4A7H

Load register D with the value at the location of the
current cursor position in register pair HL.

Load register A with the cursor on/off flag at the
location of the video device control block pointer in
register pair IX plus five.

Check to see if the cursor is on or off.

Jump if the cursor is off.

Save the character being displayed in register D as
the cursor on/off flag at the location of the video
device control block pointer in register pair IX plus
five.

Display the cursor character at the current location
of the cursor in register pair HL.

Save the LSB of the current cursor position in reg-
ister L at the location of the video device control
block in register pair IX plus three.

Save the MSB of the current cursor position in reg-
ister H at the location of the video device control
block in register pair IX plus four.

Load register A with the character that was dis-
played in register C.

Return.

Load register A with the cursor on/off flag.
Check to see if the cursor is on or off.
Return if the cursor is on.

Load register A with the character at the location of
the current cursor position in register pair HL.

Return.

Load register A with the LSB of the current position
in register L.

Mask the value in register A so that it will point to
the beginning of the line.

Load register L with the updated value in register A.
Return.

Check to see if the character to be displayed in
register A is a space compression character.

OLASH
O4AAH

O4ACH
O4AEH

O4AFH
O4B1H
O4BALH
O4B6H
O4B8H

O4BYH

O4BCH
O4BDH
O4BEH
O4COH

O4C3H
OLC6H
O4C8H

O4CBH
O4CDH
O4CEH

O4CFH

O4D2H .

O4A9H Jump if the character to be displayed in register A

O4ABH

isn't a space compression character.

Adjust the value in register A so that it will hold the
number of spaces to be displayed.

O4ADH Jump if there aren’t any spaces to be displayed.

O4BOH
O4B3H
O4B5H

Load register B with the number of spaces to be
displayed in register A.

Load register A with a space character.
Go display the character in register A.

Loop till all of the spaces have been displayed.

O4B7H Jump.

O4BBH

Load register A with the character being displayed

at the location of the current cursor position in reg-
ister pair HL.

Save the value in register A as the cursor on/off flag
at the location of the video device control block
pointer in register pair IX plus five.

Return.

Zero register A.

O4BFH Jump.

O4C2H
O4C5H
OLC7H
O4CAH

O4CCH

O4D1H

O4D3H

Load register pair HL with the starting address of
video memory.

ﬁoad register A with the 32/64 character per line
ag.

Adjust the value in register A for 64 characters per
line.

Save the value in register A as the 32/64 character
per line flag.

Send the value in register A out the cassette port.
Return.

Decrement the current cursor position in register
pair HL.

Load register A with the 32/64 character per line
flag.

Check to see if it's 32 or 64 characters per line.

219

O4DA4H
O4DEH

O4D7H

O4DYH
O4DAH

O4DDH
O4DFH
O4E2H

O4E3H
O4ESH

OLE6H
O4E7H

O4EAH
O4EBH
O4ECH
O4EDH

OLEEH
O4FOH
O4F1H

O4F4H

O4F5H

220

- O4DS5SH

- O4DBH

- O4DCH

- O4DEH
- O4E1H

- OLEA4H

- O4ESH

- L4EFH

- O4F3H

Jump if it's 64 characters per line.

Decrement the current cursor position in register
pair HL.

Display a space character at the location of current
cursor position in register pair HL.

Return.

t%oad register A with the 32/64 character per line
ag.

Check to see if it's 32 or 64 characters per line.
Go if it’s 32 characters per line.

Load register A with the LSB of the current cursor
position in register L.

Mask the value in register A.

Decrement the current cursor position in register
pair HL.

Return if still on the same line.

Load register pair DE with the length of a line on the
video display.

Add the length of a line on the video display in
register pair DE to the current cursor position in
register pair HL.

Return.

Bump the current cursor position in register pair
HL.

Load register A with the LSB of the current cursor
position in register L.

Check to see if the cursor is still on the same line.

Return if the cursor is still on the same line.

Load register pair DE with a negative length of a line
on the video display.

Add the negative length of a line on the video display

in register pair DE to the current cursor position in
register pair HL.

Return.

OLF6H
O4F9H
O4FBH

O4FEH
0500H

0501H

0502H
0504H
0505H
0506H
0509H

050AH
050CH
050EH
0510H

0511H

0513H

0515H
0517H

0519H

O4F8H

O4FAH

O4FDH

O4FFH

0503H

0508H

050BH
050DH

050FH

0512H

0514H

0516H
0518H

051AH

fIl,oad register A with the 32/64 character per line
ag.

i‘_kdjust the value in register A for 32 characters per
ine.

Save the value in register A as the 32/64 character
per line flag.

Send the value in register A out the cassette port.
}Bllimp the current cursor position in register pair
Load register A with the LSB of the current cursor
position in register L.

Make the value in register A an even value.

Load register L with the updated value in register A.
Return.

Load register pair DE with the return address.

Save the return address in register pair DE on the
stack.

Check to see if the character in register A is a
backspace and erase character.

Jump if the character to be displayed in register A is
a backspace cursor and erase character,

Check to see if the character in register A is less
than a line feed character.

Return if the character to be displayed in register A
is less than a line feed character.

Che_ck to see if the character to be displayed in
register A is less than or equal to a turn on the cursor
character.

Jump if the character to be displayed in register A is
less_than a turn on the cursor character so that a
carriage return will be displayed.

Jump if the character to be displayed in register A is
a turn on the cursor character,

Check to see if the character in register A is a turn off
the cursor character.

Jump if the character to be displayed in register A is
a turn off the cursor character.

221

051BH

051DH
051FH
0521H
0523H
0525H
0527H
0529H
052BH
052DH
052FH
0531H

0533H

0535H

0538H
053AH

053CH

053EH

222

051CH

051EH
0520H
0522H

0524H

Check to see if the character to be displayed in
register A is a turn on the 32 character per line mode
character.

Jump if the character to be displayed in register A is
a turn on the 32 character per line mode character.

Check to see if the character to be displayed in
register A is a left arrow character.

Jump if the character to be displayed in register A is
a left arrow character.

Check to see if the character to be displayed in
register A is a right arrow character.

0526H Jump if the character to be displayed in register A is

0528H

a right arrow character.

Check to see if the character to be displayed in
register A is a down arrow character.

052AH Jump if the character to be displayed in register A is

052CH

a down arrow character.

Check to see if the character to be displayed in
register A is an up arrow character.

052EH Jump if the character to be displayed in register A is

0530H

an up arrow character.

Check to see if the character to be displayed in
register A is a home the cursor character.

0532H Jump if the character to be displayed in register A is

0534H

a home the cursor character.

Check to see if the character to be displayed in
register A is a backspace to the beginning of the line
character.

0537H Jump if the character to be displayed in register A is

0539H

a backspace to the beginning of the line character.

Check to see if the character to be displayed in
register A is an erase to the end of the line character.

053BH Jump if the character to be displayed in register A is

053DH

an erase to the end of the line character.

Check to see if the character to be displayed in
register A is an erase to the end of the screen
character.

053FH Jump if the character to be displayed in register A is

an erase to the end of the screen character.

0540H

0541H

0542H
0543H

0546H
0548H
O54AH

054BH
O54CH
O54EH
O54FH

0552H

0553H
0554H
0557H

055AH
055BH

0553H

0560H

0561H

0545H

0547H
0549H

054DH

0551H

0556H

0559H

055DH

055FH

Return if the character to be displayed isn’t any of
the above control codes.

Display the character in register A at the location of
the current cursor position in register pair HL.

Eﬁl‘mp the current cursor position in register pair

f%oad register A with the 32/64 character per line
ag.

Check to see if it’s 32 or 64 characters per line.
Jump if it’s 64 characters per line.

Bump the current cursor position in register pair
HL.

Load register A with the MSB of the current cursor
position in register H.

Check to see if the end of video memory plus one has
been reached.

Return if the end of video memory plus one hasn'’t
been reached.

Load register pair DE with a negative length of a line
on the video display.

Add the negative length of a line on the video display
in register pair DE to the current cursor position in
register pair HL.

Save the current cursor position in register pair HL
on the stack.

Load register pair DE with the starting address of
video memory.

Load register pair HL with the starting address of
the second line of the video memory.

Save the value in register pair BC on the stack.

Load register pair BC with the length of video mem-
ory to be moved.

Move the last fifteen lines of video memory to the
first fifteen lines of video memory.

Get the value from the stack and put it in register
pair BC.

Load register pair HL with the starting address of
the sixteenth line of video memory.

223

0562H - 0563H
056L4H

0565H - 0566H

0567H
0568H

0569H - 056BH

056CH

056DH
056EH - O056FH
0570H - 0571H
0572H
0573H
0574H
0575H

0576H -~ 0577H
0578H
0579H

057AH - 057BH
057CH

C57DH - 057FH

224

Jump.

Load register A with the LSB of the current cursor
position in register L.

Adjust the value in register A so that it’s the start of
the current line.

Load register L with the updated value inregister A.

Save the current cursor position in register pair HL
on the stack.

Load register pair DE with the length of a line on the
video display.

Add the length of a line on the video display in
register pair DE to the current cursor position in
register pair HL.

Load register A with the MSB of the current cursor
position in register H.

Check to see if the end of video memory plus one has
been reached.

Jump if the end of video memory plus one has been
reached.

Get the cursor position from the stack and put it in
register pair DE.

Save the new cursor position in register pair HL on
the stack.

Load register D with the MSB of the current cursor
position in register H.

Load register A with the LSB of the current cursor
position in register L.

Mask the value in register A.
Save the updated value in register A in register E.

%\}szp the adjusted cursor position in register pair

Jump.

Save the cursor position in register pair HL on the
stack.

Load register pair DE with the end of video memory
plus one.

0580H ~ 0581H Display a space at the video memory pointer in

0582H
0583H

0584H

0585H

0587H

0588H

0589H

058BH

058CH
058DH
058DH

058EH
058FH

0591H

0593H

0595H

0597H

0586H

058AH

05D8H

0590H

0592H

0594H

0596H

0598H

register pair HL.
Bump the video memory pointer in register pair HL.

Load register A with the MSB of the video memory
pointer in register H.

Check to see if the MSB of the video memory pointer
in register A is the same as the MSB of the ending
memory pointer in register D.

Jump if the MSB of the video memory pointer in
register A isn’t the same as the MSB of the ending
memory pointer in register D.

Load register A with the LSB of the video memory
pointer in register L.

Check to see if the LSB of the video memory pointer
In register A is the same as the LSB of the ending
memory pointer in register E.

Jump if the LSB of the video memory pointer in
register A isn't the same as the LSB of the ending
memory pointer in register E.

Get the current cursor position from the stack and
put it in register pair HL.

Return.
PRINTER DRIVER

Load register A with the character to be sent to the
printer in register C.

Check to see if the character to be sent to the printer
1s equal to zero.

Jump if the character to be sent to the printer in
register A is equal to zero.

Check to see if the character to be sent to the printer
in register A is a skip to the top of the form charac-
ter.

Jump if the character to be sent to the printer in
register A is a skip to the top of the form character.

Check to see if the character to be sent to the printer
In register A is a conditional skip to the top of the
form character,

Jump if the character to be sent to the printer in

225

0599H
059AH

059DH

059FH

05A2H

05A5H
05A6H
05A9H
05ABH
05ADH
05BOH
05B2H
05B4H

05B5H
05B8H
05BAH

05BBH
05BEH

0500H

226

059CH

register A isn't a conditional skip to the top of the
form character.

Zero register A.

Check to see if the number of lines per page at the
location of the)Ermter device control block pointer in
register pair IX plus three is the same as the value in
register A.

059EH Jump if the number of lines per page at the location of

05A1H

05A4H

05A8H
05AAH
O05ACH
05AFH
05B1H

the printer device control block pointer in register
[[)\aw IX plus three is the same as the value inregister

Load register A with the number of lines per page at
the location of the printer device control block in
register pair IX plus three.

Subtract the lines printed so far at the location of the
printer device control block pointer in register pair
IX plus four from the number of lines per page in
register A

Load register B with the number of lines to skip.
Go check the printer status.

Loop until the printer is ready.

Load register A with a line feed character.

Send the value in register A to the printer.

Loop until all of the lines have been skipped.

05B3H Jump.

05B7H
05B9H

05BDH
O05BFH

Save the character to be sent to the printer in regis-
ter A on the stack.

Go check the printer status.

Loop until the printer is ready.

Get the character to be sent to the printer from the
stack and put it in register A

Send the character in register A to the printer.

Check to see if the character sent to the printer was a
carriage return.

Return if the character sent to the printer in register
A isn't a carriage return.

05C1H

05C4H

05C7H

05CAH
05CBH

05CCH

05DOH
05D1H

05D4H
05D6H
05D8H
05D9H
05D9H

05DAH
05DCH
O05DFH

05EOH
05E3H

O5E5H

O05E7H

05C3H

05C6H

05C9H

05CFH

05D3H
O5D5H

05D7H

0673H

O05DBH
O05DEH

05E2H
O5E4H

O05E6H

O05E8H

Bump the number of lines printed so far at the loca-
tion of the printer device control block pointer in
register pair IX plus four.

Load register A with the number of lines printed so
far at the location of the printer device control block
pointer in register pair IX plus four.

Check to see if the number of lines printed so far in
register A is the same as the number of lines per
page at the location of the printer device control
block pointer in register pair IX plus three.

Load register A with the character sent to the
printer in register C.

Return if the number of lines printed so far isn’t the
same as the number of lines per page.

Zero the number of lines printed so far at the location
of the printer device control block pointer in register
pair IX plus four.

Return.

Get the value from the printer and put it in register
A.

Mask the value in register A.
Check to see if the printer is ready.
Return.

INPUT ROUTINE

Save the start of the input buffer area pointer in
register pair HL on the stack.

Load register A with a turn on the cursor character.
Go turn on the cursor.

Load register C with the size of the input buffer in
register B.

Go wait till a key is pressed.

Check to see if the key that was pressed in register A
1s greater than a space.

Jump if the key that was pressed in register A is
greater than or equal to a space.

Check to see if the key that was pressed in register A
is a carriage return.

227

05E9H
O5ECH
O5EEH
O5FOH
O5F2H

O5F4H
O5F7H

05F8H
O05FAH
O5FCH
O5FEH
0600H
0602H
0604H
0606H

0608H

060AH
060BH

060CH

228

05EBH
05EDH
O5EFH
05F1H
05F3H

05F6H

05F9H
O05FBH
O5FDH
O5FFH
0601H
0603H
0605H
0607H

0609H

Jump if the key that was pressed in register A is a
carriage return.

Check to see if the key that was pressedin register A
is the CLEAR key.

Jump if the key that was pressed in register A is the
CLEAR key.

Check to see if the key that was pressed in register A
is the BREAK key.

Jump if the key that was pressed in register A is the
BREAK key.

Load register pair DE with the return address.

Save the return address in register pair DE on the
stack.

Check to see if the key that was pressed in register A
is a backspace the cursor and erase character.

Jump if the key was pressed in register A is a
backspace the cursor and erase character.

Check to see if the key that was pressed in register A
is a backspace character.

Jump if the key that was pressed in register A is a
backspace character.

Check to see if the key that was pressed in register A
is a tab character.

Jump if the key that was pressed in register Ais atab
character.

Check to see if the key that was pressed in register A
is a turn on the 32 character per line mode character.

Jump if the key that was pressed in register A is a
turn on the 32 character per line mode character.

Check to see if the key that was pressed in register A
is a line feed character.

Return if the key that was pressed in register A isn’t
a line feed character.

Get the return address from the stack and put it in
register pair DE.

Save the key that was pressed in register A at the
location of the input buffer pointer in register pair

060DH
060EH

060FH
0611H

0612H
0613H
0616H

0617H
0619H
061CH

061DH
061EH

061FH
0622H

0625H
0626H

0627H
0628H

062AH

062BH

062CH

Load register A with the length of the buffer re-
maining in register B.

Check to see if there is anymore of the input buffer
remaining.

0610H Jump if the end of the input buffer has been reached.

0615H

0618H
061BH

0621H
0624H

0629H

Load register A with the value at the location of the
input buffer pointer in register pair HL.

Bump the input buffer pointer in register pair HL.
Go display the character in register A.

Decrement the number of bytes remaining in the
input buffer area in register B.

Jump.
Go clear the screen.

Load register B with the length of the input buffer in
register C.

Get the starting address for the input buffer area
from the stack and put it in register pair HL.

Save the starting address for the input buffer area in
register pair HL on the stack.

Jump.

Go back up the input buffer pointer in register pair
HL if necessary.

Decrement the input buffer pointer in register pair
Load register A with the character at the location of
the input buffer pointer in register pair HL.

Bump the input buffer pointer in register pair HL.

Check to see if the character in register A is a line
feed character.

Return if the character in register A is a line feed
character.

Load register A with the number of bytes remaining
in the input buffer area in register B.

Check to see if the number of characters remaining

in the input buffer area in register A is the same as
the length of the input buffer area in register C.

229

062DH -~ O062EH Jump if there are characters in the buffer.

062FH
0630H

0631H
0632H
0633H

0634H

0635H
0637H
0638H
0639H
063AH

063CH
063FH

0640
0641H

0643H
0646H

0649H
O64BH
064CH
O64DH

230

- 06364

- 063BH

- 063EH

- 0642H

- 0645H
- 0648H

- 064AH

- O64EH

Return if the buffer is empty.

Load register A with the number of bytes remaining
in the input buffer area in register B.

Check to see if the number of characters remaining

in the input buffer area in register A is the same as
the length of the input buffer area in register C.

Return if the input buffer area is empty.

Decrement the input buffer area pointer in register
pair HL.

Load register A with the character at the location of
the input buffer area pointer in register pair HL.

Check to see if the character in register A is a line
feed character.

Elimp the input buffer area pointer in register pair
Return if the character in register A is a line feed

character.

Decrement the input buffer area pointer in register
pair HL.

Load register A with a backspace the cursor and
erase character.

Go backspace the cursor.

Bump the number of characters remaining in the
input buffer area in register B.

Return.

Load register A with the turn on the 32 character per
line mode character.

Go turn on the 32 character per line mode.

Go get the cursor line position and return with it in
register A,

Mask the cursor line position in register A.
Complement the value in register A.
Bump the value in register A.

Adjust the value in register A so that it will hold the
number of spaces to add.

064FH
0650H

0651H

0652H
0653H
0655H

0656H

06574
0658H
065BH

065CH
06 5DH
065EH

065FH

0661H
0662H
0663H
066 5H

0666H

0669H
066BH

066EH

0654H

065AH

0660H

0664H

0668H

066AH
066DH

Load register E with the number of spaces to be
added in register A.

Load register A with the number of bytes remaining
in the input buffer area in register B.

Check to see if there are no more bytes to be added.

Return if the input buffer is full.

Load register A with a space character.

Save the space character in register A at the location
of the input buffer area pointer in register pair HL.

gump the input buffer area pointer in register pair
L.

Save the value in register pair DE on the stack.
Go display the space character in register A.

Get the value from the stack and put it in register
pair DE,

Decrement the number of bytes remaining in the
input buffer area in register B.

Decrement the number of spaces to be added in
register E.

Return if the number of spaces has been added to the
input buffer.

Loop till all the spaces have been added to the input
buffer.

Set the Carry flag.

Save the value in register pair AF on the stack.
Load register A with a carriage return character.
Save the carriage return character in register A at
the location of the input buffer area pointer in regis-
ter pair HL.

Go display the carriage return character in register
A,

Load register A with a turn off the cursor character.

Go %splay the turn off the cursor character in regis-
ter A.

Load register A with the length of the input in reg-
ister C.

231

066FH

0670H

0671H
0672H

0673H
06741
0674H
0676H

0679H
067CH

067FH
0681H
0682H
0683H
0685H

0687H

0688H
0689H

068BH

068EH
0690H
0693H

232

06D1H
0675H
0678H

067BH
067EH

0680H

0684H
0686H

068AH
068DH

068FH
0692H
0695H

Subtract the number of bytes remaining in the input
buffer area in register B from the length of the input
buffer area in register A.

Load register B with the number of characters in the
input buffer area in register A.

Get the value from the stack and put it in register
pair AF.

Get the starting address of the input buffer area from
the stack and put it in register pair HL.

Return.
INITIALIZATION ROUTINE
Send the zero in register A out the cassette port.

Load register pair HL with the starting address of
the ROM area to be moved to RAM.

Load register pair DE with the starting address to
move the data to in RAM.

Load register pair BC with the length of the ROM
area to be moved.

Move the ROM area to RAM.
Decrement the value in register A.
Decrement the value in register A.
Loop till register A is zero.

Load register B with the number of bytes of memory
to be zeroed.

Save the zero in register A at the location of the
memory pointer in register pair DE.

Bump the memory pointer in register pair DE.

Loop till all of the memory locations have been
zeroed.

Load register A with the location of keyboard mem-
ory for the BREAK key.

Check to see if the BREAK key is being pressed.
Jump if the BREAK key is not being pressed.
Set the stack pointer to 407DH.

0696H -

0699H

069AH -
069CH -
069FH -
06A1H -
06A4H -

06A7H -
O6AAH -

06ACH -
O6AFH -
06B2H =

O6B4H -
06B6H

06B7H -
O6BAH =
06BDH -
06BFH

06COH -
06C2H -

06CAH
06C5H

06C6H
06C7H -

0698H

069BH
069EH
06A0H
06A3H
06A6H

06A9H
06ABH

O6AEH
06B1H
06B3H
06B5H

06B9H

06BCH

06BEH

06C1H
06C3H

06C8H

1Load register A with the status of the disk control-
er.

Bump the value in register A.

Check to see if the disk controller is present.
Jump if the disk controller isn’t present.

Load register A with the drive to turn on.
Turn on drive 0.

Load register pair HL with the address of the disk
command/status register.

Load register pair DE with the address of the disk
data register.

Load the disk command register with the command
to position the head to track 0.

Load register pair BC with the delay count.
Go delay.
Check to see if the disk is busy.

Loop till the disk is no longer busy.
Zero register A.

Save the value in register A in the disk sector regis-
ter.

Load register pair BC with the address in memory to
place the sector read.

Load register A with the command to read the sec-
tor.

Put the command in register A in the disk command
register.

Check to see if there is data available.
Loop till there is data available.

Load register A with the byte read from the disk.

Save the value in register A at the location of the
memory pointer in register pair BC.

Bump the LSB of the memory pointer in register C.

Loop till the whole of the sector has been read.

233

06C9H
06CCH

06CFH
06D2H

0708H
070BH
070BH

070EH
0710H

0710H
0713H
0713H
0716H
0716H
0717H
0718H
0719H
071CH
071DH

0720H
234

- 06CBH
- O06CEH

- 06D1H
- 0707H
- 070AH
- O070FH
- O070DH

- 070FH
- 0712H

- O712H
- 0715H
- 0715H

- 0752H

071BH

- 071FH

Jump to the TRSDOS loader routine just loaded.

Load register pair BC with the starting address of
the Level Il BASIC READY routine.

Jump.

ROM STORAGE LOCATION FOR
DATA TO BE MOVED TO RAM
BY THE INITIALIZATION PROCESS.

Load register pair HL with the starting address of a
single precision value stored in ROM.

SINGLE PRECISION
ADDITION, REG1 = (HL) + REG1

Load the single precision value pointed to by regis-
ter pair HL into register pairs BC and DE.

Jump.

SINGLE PRECISION
SUBTRACTION, REG1 = (HL) - REG1

Go load the single precision value pointed to by
register pair HL into register pairs BC and DE.

SINGLE PRECISION
SUBTRACTION, REG1 = BCDE - REG1

Go reverse the sign of the single precision value in
register pairs BC and DE.

SINGLE PRECISION
ADDITION, REG1 = BCDE + REG1

Load register A with the exponent of the single
precision value in register B.

Check to see if the single precision value in register
pairs BC and DE is equal to zero.

Return if the single precision value in register pairs
BC and DE is equal to zero.

Load register A with the exponent of the single
precision value in REG1.

Check to see if the single precision value in REG1 is
equal to zero.

Jump if the single precision value in REG1 is equal to
zero.

Subtract the value of the exponent for the single

precision value in register B from the value of the
exponent for the single precision value in REG1 in
register A.

0721H - 0722H Jump if the single precision value in register pairs

0723H
0724H
0725H
0726H
0729H
072AH
072DH
072EH
072FH

0731H
0732H

0733H
0736H
0737H
0738H

073BH
073CH

0728H

072CH

0730H

0735H

073AH

073EH

BC and DE is smaller than the single precision value
in REGL1.

Adjust the difference in the exponents in register A
so that it is positive.

Bump the difference in the exponents in register A
so that it will be the correct positive number.

Load register pair HL with the 16-bit value in regis-
ter pair DE.

Go put the single precision value in REG1 on the
stack.

Load register pair DE with the 16-bit value in reg-
ister pair HL.

Go put the single precision value in register pairs
BC and DE into REG1.

Get the 16-bit value from the stack and put it in
register pair BC.

Get the 16-bit value from the stack and put it in
register pair DE.

Check to see if the difference in the exponents in
register A is greater than 18H.

Return if the difference in the exponents is too great.

Save the difference in the exponents in register A on
the stack.

Set the sign bits for the single precision values and
return with the equality of the sign bits in register A.

Load register H with the equality of the sign bits in
register A.

Get the difference of the exponents from the stack
and put it in register A.

Go shift the single precision value in register pairs
BC and DE till it lines up with the single precision
value in REG1.

Check to see if the sign bits are equal.

Load register pair HL with the starting address of
REG1.

235

073FH
O742H

0745H
0748H

0749H

O74AH

O74DH
O74FH

0752

0754H
0754H
0755H

0756H
0757H

0758H

07591
075AH
075BH

075CH

075DH
O75EH
075FH

236

O741H Jump if the signs aren’t equal.
O744H Go add the single precision value in BCDE to the

O747H

O74CH

O74EH
0751H

0753H
077CH

single precision value in REG1.
Jump if the exponent remains unchanged.

Bump the memory pointer in register pair HL, so
that it points to the exponent in REG1.

Bump the exponent in REG1 at the location of the
memory pointer in register pair HL.

Go to the Level I BASIC error routine and output an
lOV ERROR message if the exponent in REG1 is too
arge.

Load register L with the number of bits to shift the
single precision result in register pairs BC and DE.

Go shift the single precision result in register pairs
BC and DE.

Jump.
SINGLE PRECISION MATH ROUTINE
Zero register A.

Subtract the 8-bit value in register B from the value
in register A.

Load register B with the result in register A.

Load register A with the value at the memory
pointer in register pair HL.

Subtract the value in register E from the value in
register A.

Load register E with the result in register A.
Bump the memory pointer in register pair HL.

Load register A with the value at the location of the
memory pointer in register pair HL.

Subtract the value in register D from the value in
register A.

Load register D with the result in register A.
Bump the memory pointer in register pair HL.

Load register A with the value at the location of the
memory pointer in register pair HL.

0760H

0761H

0762H - 0764H

076 5H
0766H

0767H
0768H
076 9H

076AH
076BH
076DH
076EH

076FH
0770H
0771H

0772H

0774H

0776H
0778H

0779H
077CH

077DH

- 076CH

0773H

0775H
0777H

- 077BH

- O7A7H

Subtract the value in register C from the value in
register A.

Load register C with the result in register A.

If the Carry flag is set, go convert the single preci-
sion value to a positive number.

Load register L with the exponent of the original
value in register pairs BC and DE.

Load register H with the LSB of the single precision
value in register E.

Zero register A.
Load register B with the new exponent in register A.

Load register A with the MSB of the single precision
value in register C.

Check to see if the value in register A is equal to
zero.

Jump if the MSB of the single precision value is
nonzero.

Shift the NMSB into the MSB by loading register C
with the value in register D.

Shift the LSB into the NMSB by loading register D
with the value in register H.

Load register H with the value in register L.
Load register L with the value in register A.

Load register A with the new exponent counter in
register B.

Subtract the number of bits just shifted from the new
exponent counter in register A.

Check to see if three bytes have been shifted.
Loop till shift is completed.
Zero register A.

Save the value in register A as the exponent of the
single precision result in REG1.

Return with a single precision value of zero in
REGI.

SINGLE PRECISION MATH ROUTINE

237

077DH
077EH
077FH
0780H

0781H

0782H
0783H

0784H
0785H - 0787H
0788H

0789H

078AH
078BH
078CH - 078DH
078EH - 0790H

0791H

0792H

0793H - 0794H
0795H

0796H
0797H - 0799H
079AH

238

Decrement the new exponent counter in register B.
Shift the 16-bit value in register pair HL left one bit.
Load register A with the NMSB in register D.

Shift the NMSB in register A left one bit and shift a
bit from register pair HL if necessary.

iS)ave the adjusted NMSB in register A into register

Load register A with the MSB in register C.

Shift the MSB in register A left one bit and shift a bit
from register D if necessary.

koad register C with the adjusted value in register
Loop till the most significant bit of the single preci-
sion value is equal to one.

Load register A with the new exponent counter in
register B.

Load register E with the LSB of the single precision
value in register H.

Load register B with the value in register L.
Check to see if there were any bits shifted.
Jump if there weren’t any bits shifted.

Load register pair HL with the address of the expo-
nent in REG1.

Add the value of the original exponent at the location
of the memory pointer in register pair HL to the
number of bits shifted in register A.

Save the new exponent in register A at the location
of the memory pointer in register pair HL.

Jump if exponent is too small.
Retum if exponent is equal to zero.

Load register A with the LSB of the single precision
value in register B,

Load register pair HL with the address of the expo-
nent in REG1.

Check to see if the most significant bit of the value in
register A is set.

079BH

079DH

Go check for overflow if the most significant bit in
the value in register A is set.

079EH Load register B with the exponent at the location of
the memory pointer in register pair HL.

079FH Bump the memory pointer in register pair HL.

07AOH Load register A with the value of the sign at the
location of the memory pointer in register pair HL.

O7A1H - O7A2H Mask the sign bit in register A.

07A3H Set the sign bit in register A.

07A4H Load register C with the adjusted MSB of the single
precision value in register A.

07A5H = O7A7H Jump.

07A8H - 07B6H SINGLE PRECISION MATH ROUTINE

07A8H Bump the LSB of the single precision value in reg-
ister E.

O7A9H Return if the adjusted LSB of the single precision
value in register E is nonzero.

O7AAH Bump the NMSB of the single precision value in
register D.

07ABH Return if the adjusted NMSB of the single precision
value in register D is nonzero.

O7ACH Bump the MSB of the single precision value in reg-
ister C,

07ADH Return if the adjusted MSB of the single precision

O7AEH - O07AFH

07BOH

07B1H

07B2H - 07B3H
07B4H - 07B6H

value in register C is nonzero.

Adjust the MSB of the single precision value in
register C.

Bump the exponent of the single precision value at

tPfIze location of the memory pointer in register pair
L.

Return if the adjusted exponent of the single preci-

sion value at the location of the memory pointer in
register pair HL is nonzero.

Load register E with an OV ERROR code.

Go to the Level II BASIC error routine and display
an OV ERROR message if the value has overflowed.

239

07B7H - 07C2H SINGLE PRECISION MATH ROUTINE

07B7H

07B8H

07BY9H
07BAH
07BBH

07BCH

07BDH
O7BEH
07BFH

07COH

07C1H
07C2H
07C3H
07C3H

07C6H

07C7H
07C8H

07C9H
07CAH
07CBH

240

- 07D6H
- 07C5H

Load register A with the LSB of the single precision
value at the location of the memory pointer in regis-
ter pair HL.

Add the LSB of the single precision value in register
E to the LSB of the single precision value in register
Load register E with the result in register A.
Bump the memory pointer in register pair HL.
Load register A with the NMSB of the single preci-
sion value in REG1 at the location of the memory
pointer in register pair HL.

Add the NMSB of the single precision value in reg-
ister D to the NMSB of the single precision value in
register A.

Load register D with the result in register A.
Bump the memory pointer in register pair HL.
Load register A with the MSB of the single precision
value in REGI1 at the location of the memory pointer
in register pair HL.

Add the MSB of the single precision value in register
g to the MSB of the single precision value in register
Load register C with the result in register A.
Return.

SINGLE PRECISION MATH ROUTINE

Load register pair HL with the address of the sign
flag storage location.

Load register A with the value of the sign flag at the
location of the memory pointer in register pair HL.

Complement the sign flag in register A.

Save the adjusted sign flag in register A at the loca-
tion of the memory pointer in register pair HL.

Zero register A.
Load register L. with the value in register A.

Figure the negative value for register B by sub-

07CCH
07CDH
07CEH

07CFH

07DOH
07D1H

07D2H

07D3H
07D4H

07D5H

07D6H

07D7H - O7F7H
07D7H - 07D8H
07D9H - O7DAH

tracting the current value in register B from the
value in register A.

Save the adjusted value in register A in register B.
Load register A with zero.

Figure the negative LSB of the single precision
value in register E by subtracting the current LSB of
the single precision value in register E from the
value in register A.

Load register E with the adjusted LSB of the single
precision value in register A.

Load register A with zero.

Figure the negative NMSB of the single precision
value in register D by subtracting the current NMSB
of the single precision value in register D from the
value in register A.

Load register D with the adjusted NMSB of the
single precision value in register A.

Load register A with zero.
Figure the negative MSB of the single precision
value in register C by subtracting the current MSB

of the single precision value in register C from the
value in register A.

Load register C with the adjusted MSB of the single
precision value in register A.

Return.
SINGLE PRECISION MATH ROUTINE
Load register B with zero.

Check to see if the shift counter in register A still
indicates at least 8 bits have to be shifted.

O7DBH - O7DCH Jump if less than 8 bits are left to be shifted.

07DDH
O07DEH
07DFH

07EOH - O7ELH

Load register B with the LSB of the single precision
value in register E.

Load register E with the NMSB of the single preci-
sion value in register D.

Load register D with the MSB of the single precision
value in register C.

Load register C with zero.

241

O7E2H - O7E3H
07EMH - O7E5H

07E6H
O7E7H
07E8H
O07E9H
O7EAH

O7EBH
O7ECH
O7EDH

O7EEH

07EFH
07FOH

O07F1H

07F2H

07F3H
07F4H

O7F5H

07F6H - O7F7H
07F8H - O07FBH

242

Loop till there is less than 8 bits left to be shifted.

Adjust the shift counter in register A to its correct
value.

Load register L with the shift counter in register A.
Zero register A.

Decrement the shift counter in register L.

Return if there are no more bits to be shifted.

Load register A with the MSB of the single precision
value in register C.

Shift the MSB of the single precision value in regis-
ter A one place to the right.

Load register C with the adjusted MSB of the single
precision value in register A.

Load register A with the NMSB of the single preci-
sion value in register D.

Shift the NMSB of the single precision value in
register A one place to the right and pick up the value
of the Carry flag.

Load register D with the adjusted NMSB of the
single precision value in register A.

Load register A with the LSB of the single precision
value in register E.

Shift the LSB of the single precision value in register
A one place to the right and pick up the value of the
Carry flag.

Load register E with the adjusted LSB of the single
precision value in register A.

Load register A with the value in register B.

Shift the value in register A one place to the right and
pick up the value of the Carry flag.

Al&oad register B with the adjusted value in register

Loop till all of the bits have been shifted.

SINGLE PRECISION
CONSTANT STORAGE LOCATION

07F8H
07FCH
07FCH
07FDH
0801H
0805H

0809H
0809H

080CH

080DH

0810H

0813H

0814H

0817H

081AH
081BH

081CH

07FBH

0808H

0800H
0804H
0808H

0846H
080BH

080FH

0812H

0816H

0819H

}!1\ single precision constant equal to 1.0 is stored
ere.

SINGLE PRECISION
CONSTANTS STORAGE LOCATION

The number of single precision constants which fol-
lows is stored here.

A single precision constant equal to .598978 is
stored here.

A single precision constant equal to .961471 is
stored here.

A single precision constant equal to 2.88539 is
stored here.

LEVEL II BASIC LOG ROUTINE

Go check the sign of the single precision value in
REGL1.

Check to see if the single precision value in REG1 is
negative or positive.

Go the Level II BASIC error routine and display a
FC ERROR message if the current single precision
value in REG1 is negative.

Load register pair HL with the address of the expo-
nent in REG1.

Load register A with the exponent of the single
precision value in REG1 at the location of the mem-
ory pointer in register pair HL.

Load register BC with the exponent and the MSB of
a single precision constant.

Load register DE with the NMSB and the LSB of a
single precision constant. Register pairs BC and DE
are now equal to the single precision constant of
.707107.

Subtract the exponent in register B from the expo-
nent of the x-value in register A.

Save the difference between the two exponents in
register A on the stack.

Save the exponent in register B as the exponent of

the x-value in REG1 at the location of the memory
pointer in register pair HL.

243

081DH
081EH

081FH

0822H

0823H

0824H

0825H

0828H

082BH

082EH

0831H

0834H

0837H

083AH

083DH

083EH

244

- 0831H

- 0827H

- 082AH

- 082DH

- 0830H

- 0833H
- 0836H

- 0839H

- 083CH

- 0840H

Save the NMSB and the LSB of the single precision
value in register pair DE on the stack.

Save the exponent and the MSB of the single value in
register pair BC on the stack.

Go add the x-value to the single precision constant in
register pairs BC and DE and return with the result
in

Get the exponent and the MSB of the single preci-
%ign value from the stack and put it in register pair

Get the NMSB and the LSB of the single precision
value from the stack and put it in register pair DE.

Multiply the single precision value in register pairs
BC and DE by two by bumping the exponent in
register B.

Go divide the single precision value in register pairs
BC and DE by the x-value in REG1 and return with
the result in REG1.

Load register pair HL with the starting address of a
single precision constant.

Go subtract the x-value in REG1 from the single
precision constant of 1.0 at the location of the mem-
ory pointer in register pair HL and return with the
result in REGL.

Load register pair HL with the starting address of a
storage location for single precision constants to be
used for a series of computations.

Go do a series of computations and return with the
result in REG1.

Load register BC with the exponent and the MSB of
a single precision constant.

Load register pair DE with the NMSB and the LSB
of a single precision. Register pairs BC and DE are
now equal to a single precision of —0.5.

Go add the x-value in REGI to the single precision
constant in register pairs BC and DE and return with
the result in REG1.

Get the difference between the two original expo-
nents from the stack and put it in register A.

Go convert the value in register A to a single preci-
sion number and add it to the x-value in REGI.

0841H

0844H

0847H
0847H
084AH

O84BH
O84DH

0850H
0851H
0854H
0855H
0858H
085BH
085CH

085DH
0860H

0861H
0864H

0865H

0843H

0846H

0891H

0849H

084CH
O84FH

0853H

0857H

085AH

085FH

0863H

Return with the result in REG1.

Load register 1pair BC with the exponent and the
MSB of a single precision constant.

Load register pair DE with the NMSB and the LSB
of a single precision constant. Register pairs BC and

DE are now equal to a single precision value of
0.693147.

SINGLE PRECISION
MULTIPLICATION, REG1 = BCDE * REG1

Go check to see if the single precision value in REG1
is equal to zero.

Return if the single precision value in REG1 is equal
to zero.

Load register L with a bit mask.

Go check for possible overflow and the single preci-
sion value in register pairs BC and DE equal to zero.

Load register A with the single precision value’s
MSB in register C.

Save the MSB of the single precision value in regis-
ter A at memory location 414FH.

Load register pair HL with the NMSB and the LSB of
the single precision value in register pair DE.

Save the NMSB and the LSB of the single precision
value in register pair HL at memory locations 4150H
and 4151H.

Load register pair BC with zero.

Load register D with the value in register B.
Load register E with the value in register B.
Load register pair HL with the return address.

Save the return address in register pair HL on the
stack.

Load register pair HL with the return address.

Save the return address in register pair HL on the
stack.

Save the return address in register pair HL on the
stack.

245

0866H -~ 0868H Load register pair HL with the starting address of

0869H
085AH
085BH
086CH
086EH

086FH
0871H

0872H
0873H

0874H
0876H
0877H

087AH

087BH
087CH
087DH
0880H
0881H

0882H

246

the single precision value in REG1.

Load register A with the LSB of the single precision
value in REG1 at the location of the memory pointer
in register pair HL.

Bump the memory pointer in register pair HL.

Check to see if the LSB of the single precision value
in REG1 in register A is equal to zero.

- O086DH Jump if the LSB of the single precision value in

- 0870H

0879H

- 087FH

REG1 is equal to zero.

Save the memory pointer in register HL on the
stack.

Load register L with the bit shift counter.

Shift the LSB of the single precision value in REG1
in register A one place to the right.

Load register H with the adjusted LSB inregister A.

Load register A with the MSB of the single precision
value in register C.

0875H Jump if bit 0 in the LSB just shifted wasn't set.

Save the value in register pair HL on the stack.

Load register pair HL with the NMSB and the LSB of
the original value in register pairs BC and DE.

Add the NMSB and the LSB of the total figured so far
in register pair DE to the NMSB and the LSB of the
original value in register pair HL.

Load register pair DE with the adjusted total in
register pair HL.

Get the value from the stack and put it in register
pair HL.

Load register A with the MSB of the original value in
register pairs BC and DE.

Add the MSB of the original value inregister A to the
MSB of the total figured so far in register C.

Shift the adjusted MSB of the total in register A one
place to the right.

Load register C with the adjusted MSB of the total in
register A.

0883H
0884H
0885H
0886H
0887H
0888H

0889H
088AH
088BH

088CH
088DH

0O88EH - 088FH
0890H

0891H
0892H - 0896H
0892H

0893H
0894H

0895H
0896H
0897H - O08AlH
0897H - 0899H

Load register A with the NMSB of the total in reg-
ister D.

Shift the NMSB of the total in register A one place to
the right.

Load register D with the adjusted NMSB of the total
in register A.

Load register A with the LSB of the total in register
E.

Shift the LSB of the total in register A one place to
the right.

Load register E with the adjusted LSB of the total in
register A.

Load register A with the value in register B.
Shift the value in register A one place to the right.

koad register B with the adjusted value in register

Decrement the bit counter in register L.

Load register A with the LSB of the current value in
register H.

Loop till 8 bits have been shifted.

Get the memory pointer from the stack and put it in
register pair HL.

Return.
SINGLE PRECISION MATH ROUTINE

Load register B with the LSB of the single precision
value in register E,

Load register E with the NMSB of the single preci-
sion value in register D.

Load register D with the MSB of the single precision
value in register C.

Load register C with the value in register A.
Return.
SINGLE PRECISION MATH ROUTINE

Go move the single precision value in REG1 onto
the stack.

247

089AH
089DH
08AOH
0BAlH
08A2H
08A2H
08A5H
08A8H

O8AAH
08ADH

0BAEH

O8AFH

08BOH

08B1H
08B4H

08B5H

08B6H

08B9H

248

- 089CH

- O89FH

- 0Q03H
- 08A4H

- O08A7H

- 08A9H
- O8ACH

- 08B3H

- 08B8H

Load register pair HL with the starting address of a
single precision constant equal to 10.

Go move the single precision value pointed to by
register pair HL into REG1.

Get the exponent and the MSB of the single preci-
sion value on the stack and put it in register pair BC.

Get the NMSB and the LSB of the single precision
value from the stack and put it in register pair DE.

SINGLE PRECISION
DIVISION, REG1 = BCDE / REG1

Go check to see if the single precision value in REG1
is equal to zero.

Go to the Level II BASIC error routine and display
an /0 ERROR message if the single precision value
in REG1 is equal to zero.

Load register L with a bit mask.
Go adjust the exponent in REG1 for division.

Bump the value of the exponent for the single preci-
sion value in REG1 at the location of the memory
pointer in register pair HL.

Bump the value of the exponent for the single preci-
sion value in REG1 at the location of the memory
pointer in register pair HL.

Decrement the value of the memory pointer in reg-
ister pair HL.

Load register A with the MSB of the single precision
value in REG1 at the location of the memory pointer
in register pair HL.

Save the MSB of the single precision value in REG1
in register A at memory location 4089H.

Decrement the value of the memory pointer in reg-
ister pair HL.

Load register A with the NMSB of the single preci-
sion value in REG1 at the location of the memory
pointer in register pair HL.

Save the NMSB of the single precision value in
REG] in register A at memory location 4085H.

Decrement the value of the memory pointer in reg-
ister pair HL.

08BAH

08BBH ~ O08BDH

08BEH
08BFH

08COH
08C1H

08C2H

08C3H

08C4H
08C7H

08C8H
08C9H

08CAH
08CDH
08CFH
08DOH
08D2H

08D5H
08D6H

08D7H
08D9H

- 08C6H

08CCH
- O08CEH

08D1H
- O8D4H

Load register A with the LSB of the single precision
value in REG1 at the location of the memory pointer
in register pair HL.

Save the LSB of the single precision value in REG1
in register A at memory location 4081H.

Load register B with the MSB of the single precision
value in register C.

Load register pair HL with the NMSB and the LSB of
the single precision value in register pair DE.

Zero register A.

Zero the MSB of the total by loading register C with
the value in register A,

Zero the NMSB of the total by loading register D
with the value in register A.

Zero the LSB of the total by loading register E with
the value in register A,

Zero memory location 408CH.

Save the NMSB and LSB of the dividend in register
pair HL on the stack.

Save the MSB of the dividend in register B on the
stack.

Load register A with the LSB of the dividend in
register L,

Go to the Level II BASIC division routine.
Adjust the flags.

Invert the Carry flag.

Jumyp if not done.

Save the value in register A at memory location
408CH.

Get the value from the stack and put it in register
pair AF,

Get the value from the stack and put it in register
pair AF,

Set the Carry flag.

Get the value from the stack and put it in register
pair BC.

249

08DAH

08DBH

08DCH
08DDH

08DEH

Get the value from the stack and put it in register
pair HL.

Load register A with the MSB of the total in register
C.

Bump the MSB of the total in register A.
Decrement the MSB of the total in register A.

Shift the MSB of the total in register A one place to
the right.

08DFH - O8ElH Jump if done.

08EZ2H
O8E3H

O8EU4H
08E5H

O8E6H

08E7H
O8E8H

08E9H

O8EAH
O8EBH

08ECH
O8EDH
O8EEH
O8EFH

08FOH - 08F2H

250

Reset the Carry flag.
}éoad register A with the LSB of the total in register

Multiply the LSB of the total in register A by two.

Load register E with the adjusted LSB of the total in
register A.

Load register A with the NMSB of the total in reg-
ister D.

Multiply the NMSB of the total in register A by two.

Load register D with the adjusted NMSB of the total
in register A.

%oad register A with the MSB of the total in register

Multiply the MSB of the total in register A by two.

Load register C with the adjusted MSB of the total in
register A.

Multiply the NMSB and the LSB of the dividend in
register pair HL by two.

Load register A with the MSB of the dividend in
register B.

Multiply the MSB of the dividend in register A by
two.

Load register B with the adjusted MSB of the div-
idend in register A.

Load register A with the value at memory location
408CH.

08F3H

O8F4H - O8F6H

08F7H
08F8H
08F9H

O08FAH
08FCH

08FDH
0900H
0901H

0902H
0904H
0904H

0907H
0907H
090AH
090BH

090EH

090FH

0910H

08FBH

O8FFH

0903H
0906H
0906H

0913H
0908H

090DH

Multiply the value in register A by two.

Save the adjusted value in register A at memory
location 408CH.

Iéoad register A with the MSB of the total in register
Combine the NMSB of the total in register D with
the value in register A.

Combine the LSB of the total in register E with the
value in register A.

Jump if the total isn't equal to zero.

Save the NMSB and the LSB of the dividend in
register pair HL on the stack.

Load register pair HL with the address of the expo-
nent in REG1.

Decrement the exponent in REG1 at the location of
the memory pointer in register pair HL.

Get the NMSB and the LSB of the dividend from the
stack and put it in register pair HL.

Jump if the exponent in REG1 isn’t equal to zero.

DISPLAY OV ERROR MESSAGE

Go to the Level I BASIC error routine and display
an OV ERROR message.

DOUBLE PRECISION MATH ROUTINE

Load register A with a bit mask.
Load register A with a bit mask.

Load register pair HL with the address of the MSB in
REG2.

Load register C with the MSB of the value in REG2
?f the location of the memory pointer in register pair
L.

Bump the value of the memory pointer in register
pair HL.

Combine the value of the exponent in REG2 at the

location of the memory pointer in register pair HL
with the bit mask in register A.

251

0911H

0912H
0914H
0914H
0915H

0916H
0918H

0919H

091CH
091DH
091EH
091FH
0920H
0921H

0922H
0925H

0927H

0928H

092BH

092EH

252

0913H
0930H

0917H

091BH

0924H
0926H

092AH

092DH

Load register B with the adjusted exponent in reg-
ister A.

Load register L with a bit mask.
SINGLE PRECISION MATH ROUTINE
Load register A with the exponent in register B.

Check to see if the exponent in register A is equal to
zero.

Jump if the exponent in register A is equal to zero.

Load register A with the bit mask in register L.

Load register pair HL with the address of the expo-
nent in REG1.

Combine the value of the exponent at the location of
the memory pointer in register pair HL with the bit
mask in register A.

Add the value of the exponent in register B to the
value of the exponent in register A.

Load register B with the combined exponents in
register A.

Shift the value of the combined exponents in register
A one place to the right.

Check to see if the Carry flag was set by combining
the two exponents.

Load register A with the combined exponents value
in register B.

Jump if overflow has occurred.

Adjust the value of the combined exponents to it's
proper value.

Save the value of the combined exponent in register
A as the exponent in REG1 at the location of the
memory pointer in register pair HL.

Jump if the combined exponent in register A is equal
to zero.

Go turn on the sign bit of the MSB in REGI and
register B and save the sign bits.

Save the value in register A at the location of the
memory pointer in register pair HL.

092FH

0930H
0931H
0931H

0934H
0935H

0936H
0937H

0938H
093BH
093EH
093EH

0941H
0942H
0943H
O9ULH

0946H

0949H

094AH

094DH

- 093DH
- 0933H

- 093AH
- 093DH
- 0954H
- 0940H

- 0945H

- O94BH

- O94CH

- O94FH

Decrement the memory pointer in register pair HL
so that it points to the exponent in REG1.

Return.
SINGLE PRECISION MATH ROUTINE

Go check the value of the sign bit for the value in
REG1.

Reverse the result of the sign bit test in register A.

git the value from the stack and put it in register

Set the flags according to the value of the sign bit
test.

Get the value from the stack and put it in register
pair HL.

Jump if the value in REG1 is negative.
Jump.
SINGLE PRECISION MATH ROUTINE

Go move the single precision value in REG1 to
register pairs BC and DE.

Load register A with the value of the exponent in
register B,

Check to see if the exponent in register A is equal to
Zero.

Return if the single precision value in register pairs
BC and DE is equal to zero.

Multiply the value of the exponent in register A by
four.

Go to the Level II BASIC error routine and display
an OV ERROR routine if the adjusted exponent in
register A is too large.

Load register B with the adjusted exponent in reg-
ister A.

Go add the original value in REGI1 to the adjusted
value in register pairs BC and DE and return with
the original result in REG1. REG1 now holds the
original value times five,

Load register pair HL with the address of the expo-
nent in REG1.

253

0950H

0951H

0952H

0955H
0955H

0958H
0959H
095AH

095EH
095FH

0960H
0961H
0962H
0963H

0964H
0964H

0966H
0969H

096CH
096DH

254

0954H

0963H
0957H

095CH

0976H
0965H

0968H
096BH

Bump the value of the exponent in REG1 at the
location of the memory pointer in register pair HL.
REG1 now holds the original value times ten.

Return if the new value in REG1 is in an acceptable
range.

Go to the Level II BASIC error routine and display
an OV ERROR message if the value of the exponent
at the location of the memory pointer in register pair
HL is too large.

SINGLE PRECISION MATH ROUTINE

Load register A with the value of the exponent in
REGL.

Check to see if the exponent in register A is equal to
zero.

Return if the single precision value in REG1 is equal
to zero.

Load register A with the MSB of the single precision
value in REG1.

Reverse the value in register A.

Put the value of the sign bit in register A into the
Carry flag.

Make register A equal to —1 if the sign bit is nega-
tive or a value of 0 if the sign bit is positive.

Return if the single precision value in REG1 is
negative.

Bump the value in register A so that register A will
be equal to 1 if the single precision value in REGl is
positive.

Return.

SINGLE PRECISION MATH ROUTINE

Load register B with an exponent for an integer
value.

Load register pair DE with zero.

Load register pair HL with the address of the expo-
nent in REG1.

Load register C with the MSB of the integer value.

Save the exponent in register B in REG1 at the

096EH - 096FH

0970H

0971H - 0972H

0973H

0974 - 0976H

0977H
0977H
097AH

097BH
097CH

097FH

0982H

0985H

0986H
0988H

0989H
098AH
098AH
098DH

098EH
098FH

0990H

0989H
09794

O097EH

0981H

0984H

0987H

0993H
098CH

location of the memory pointer in register pair HL.
Load register B with zero.
Bump the memory pointer in register pair HL.

Save the sign value at the location of the memory
pointer in register pair HL.

Shift the value of the sign bit for the MSB in register
A into the Carry flag.

Jump.

LEVEL II BASIC MATH ROUTINE

Go determine the sign of the current value in REG1.
Return if the value in REG1 is positive.

Go check the value of the current number type flag.
Jump if the current value in REG1 is an integer.
Go to the Level Il BASIC error routine and display a
TM ERROR message if the current value in REG1 is
a string.

Load register pair HL with the address of the MSB in
REG1.

Load register A with the MSB in REG1 at the loca-
tion of the memory pointer in register pair HL.
Set the sign bit in the MSB in register A.

Save the adjusted MSB in register A in REG1 at the
location of the memory pointer in register pair HL.

Return.
LEVEL II BASIC MATH ROUTINE
Go test the sign of the current value in REG1.

Load register L with the result of the sign test in
register A.

Shift the sign bit in register A into the Carry flag.
Adjust the value in register A so that it will be equal
to zero if the current value in REG1 is positive and
equal to ~1if the current value in REG1 is negative.

Save the adjusted value in register A in register L.

0991H - 0993H Jump.

255

0994H
0994H
0995H
0998H
099BH
099EH
099FH

09A0H
09A1H

09A2H
09A4H
09A4H

0GA5H

09A8H

09A9H
09AAH

O9ADH

O9AEH
09AFH

09BOH
256

09A3H

0997H

099AH

099DH

09A3H
09BOH

09A7H

09ACH

LEVEL II BASIC MATH ROUTINE

Go check the current value of the number type flag.
Go to the Level I1 BASIC error routine and display a
TM ERROR message if the current value in REG1is
a string.

Jump if the current value in REG1 is single precision
or double precision.

Load register pair HL with the integer value in
REG1

Load register A with the MSB of the integer value in
register H.

Check to see if the integer value in REG1 is equal to
zero.

Return if the integer value in REG1 is equal to zero.

Load register A with the MSB of the integer value in
register H.

Jump.

SINGLE PRECISION MATH ROUTINE

ﬁ(iad register pair DE with the value in register pair
Load register pair HL with the LSB and the NMSB of
the single precision value in REG1.

Exchange the return address on the stack with the
NMSB and the LSB of the single precision value in
register pair HL.

Save the return address in register pair HL on the
stack.

Load register pair HL with the exponent and the
MSB of the single precision value in REG1.

Exchange the return address on the stack with the
exponent and the MSB of the single precision value
in register pair HL.

Save the return address in register pair HL on the
stack.

IIioad register pair HL with the value in register pair
E.

Return.

09B1H
09B1H

O9B4H

09B5H

09B8H
09B9H
09BAH

09BDH

09BEH
09BFH
09BFH

09C2H

09C3H

09C4H

09C5H

09C6H

09C7H

09C8H

09C9H

!

09BEH
09B3H

09B7H

09BCH

09CAH
09C1H

SINGLE PRECISION MATH ROUTINE

Go put the single precision value pointed to by reg-
ister pair HL into register pairs BC and DE.

Load register pair HL with the NMSB and the LSB of
the single precision value in register pair DE.

Save the NMSB and the LSB of the single precision
value in register pair HL in REG1.

Load register H with the exponent of the single
precision value in register B.

Load register L with the MSB of the single precision
value in register C.

Save the exponent and the MSB of the single preci-
sion value in register pair HL in REG1.

Load register pair HL with the value in register pair
DE.

Return.

SINGLE PRECISION MATH ROUTINE

Load register pair HL with the starting address for a
single precision value in REGI.

Load register E with the LSB of the single precision
value in REG1 at the location of the memory pointer
in register pair HL.

Bum{zI the value of the memory pointer in register
pair HL.

Load register D with the NMSB of the single preci-
sion value in REG1 at the location of the memory
pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Load register C with the MSB of the single precision
value in REG1 at the location of the memory pointer
in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Load register B with the exponent of the single
precision value in REG1 at the location of the mem-
ory pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

257

09CAH
09CBH
09CBH

09CEH

09DOH
09DZ2H

O9D2H
O9D3H
O9D6H
09D7H
O9D8H
O9D9H
O9DAH
O9DBH

09DCH
O9DEH
O9DFH
O9DFH

09EZH

09E3H

O9E4H
258

- O09D1H
- O9CDH

- O09CFH

- O09D1H
- O9DEH

- O9D5H

-~ OQ9DDH

- O9F3H
- 09ElH

Return.
SINGLE PRECISION MATH ROUTINE

Load register pair DE with the starting address for a
single precision value in REG1.

Load register B with the number of bytes to be
moved for a single precision value.

Jump.

MOVE VALUE POINTED TO BY
HL TO THE LOCATION POINTED TO BY DE

Exchange the value in register pair HL with the
value in register pair DE.

Load register A with the current value of the number
type flag.

Load register B with the number of bytes to be
moved in register A.

Load register A with the value at the location of the
memory pointer in register pair DE.

Save the value in register A at the location of the
memory pointer in register pair HL.

Bump the value of the memory pointer in register
pair DE,

Bump the value of the memory pointer in register
pair HL.

gecrement the value of the byte counter in register

Loop till all of the bytes have been moved.
Return.
SINGLE PRECISION MATH ROUTINE

Loadregister pair HL with the address of the MSB of
the value in REG1,

Load register A with the MSB of the value in REG1
?_It It.he location of the memory pointer in register pair
Move the value of the sign bit in register A into the
Carry flag.

Set the Carry flag.

09E5H

O09E6H

09E7H
O9E8H

09E9H
09EAH
09EBH
09ECH
09EDH

O09EEH
09EFH

O09FOH
O9F1H

09F2H

O9F3H
O9F4H
O9F4H

09F7H
O9FAH

- O9FBH

09F6H

O9F9H
O9FBH

Turn of the sign bit in register A by moving the value
of the Carry flag into register A and moving the
previous value of the sign bit from bit 0 of register A
into the Carry flag.

Save the adjusted MSB in register A in REG1 at the
10cation of the memory pointer in register pair HL.

Invert the value of the sign bit in the Carry flag.

Move the inverted sign bit from the Carry flag into
register A.

Bump the value of the memory pointer in register
pair HL.

Bump the value of the memory pointer in register
pair HL.

Save the value in register A at the location of the
memory pointer in register pair HL.

Loadregister A with the MSB of the single precision
value in register C.

Move the value of the sign bit in register A into the
Carry flag.

Set the Carry flag.
Turn on the sign bit in register A by moving the
value of the Carry flag into register A and moving the
previous value of the sign bit from bit 0 of register A
into the Carry flag.
Load register C with the adjusted MSB in register A.

Move the value of the sign bit from the Carry flag
into register A.

Combine the value of the sign bit for the single
precision value in register A with the value of the

sign bit for the single precision value at the location
of the memory pointer in register pair HL.

Return.

LEVEL II BASIC MATH ROUTINE

Load register pair HL with the starting address of
REG2.

Load register pair DE with the return address.
Jump.
259

O9FCH -
O9FCH -

O9FFH -
OAO2H

OAO3H -

OAO6H
0AO7H

OAO8H -

OAOBH
OAOCH -

OAOCH
OAODH

OAOEH -
O0AllH -

OAl4H

OAl5H -
0A18H

0A19H

OAlAH -

OA1DH

OA1EH
OA1FH

260

OAOBH
O9FEH

0AO1H

0AO5H

OAOAH

0A25H

0A1OH
0A13H

0Al17H

OA1CH

LEVEL II BASIC MATH ROUTINE
Load register pair HL with the starting address of
REG2.

Load register pair DE with the return address.

Save the return address in register pair DE on the
stack.

Load register pair HL with the starting address for a
single precision value in REG1.

Go check the current value of the number type flag.

Return if the current value in REGI isn’t double
precision.

Load register pair DE with the starting address of
REG1.

Retumn.
SINGLE PRECISION COMPARE

Load register A with the value of the exponent in
register B.

Check to see if the exponent in register A is equal to
zero.

Jump if the exponent in register A is equal to zero.
Load register pair HL with the return address.

Save the return address in register pair HL on the
stack.

Go check the signs of the single precision numbers.

Load register A with the MSB of the single precision
value in register C.

Return if the signs of the single precision values
aren’t equal.

Load register pair HL with the address of the MSB in
REGL.

Combine the MSB in REG1 at the location of the
memory pointer in register pair HL with the MSB in
register A.

Load register A with the MSB in register C.
Return if the MSBs don’t match.

OA20H -~ 0A22H Go compare the single precision values.

OA23H

OA24H

0A25H
0A26H

OA26H

O0A27H

0A28H

0A29H

O0A2AH

0AZ2BH

0AZCH

O0AZDH

OAZEH

OAZFH

0A30H

OA31H

0A32H

- O0A38H

Move the value of the Carry flag from the compari-
son into register A.

Combine the value of the MSB of the single preci-
sion value inregister C with the value in register A.

Return.

SINGLE PRECISION
COMPARISON ROUTINE

Bump the value of the memory pointer in register
pair HL so that it points to the exponent in REGL.

Load register A with the value of the exponent for
the single precision value in register B.

Check to see if the exponent for the single precision
value in REG1 at the location of the memory pointer
in register pair HL is the same as the value of the
exponent for the single precision value in register A.

Return if the value of the exponent in REG1 isn’t the
same as the value of the exponent in register A.

Decrement the value of the memory pointer in reg-
ister pair HL.

Load register A with the MSB for the single preci-
sion value in register C.

Check to see if the MSB for the single precision
value in REG1 at the location of the memory pointer
in register pair HL is the same as the value of the
MSB for the single precision value in register A.

Return if the value of the MSB in REG1 isn't the
same as the value of the MSB in register A.

Decrement the value of the memory pointer in reg-
ister pair HL.

Load register A with the NMSB of the single preci-
sion value in register D.

Check to see if the NMSB for the single precision
value in REG1 at the location of the memory pointer
in register pair HL is the same as the value of the
NMSB for the single precision value in register A.

Return if the value of the NMSB in REG1 isn't the
same as the value of the NMSB in register A.

Decrement the value of the memory pointer in reg-
ister pair HL.

261

OA33H

OA34H

OA35H
OA36H
OA37H

OA38H
OA39H
OA39H

OA3AH

OA3BH

OA3CH

OA3FH

0ALOH

OA43H

OALLH

OA45H

0A48H
OAL49H
262

- OA48H

- OA3EH

- OA42H

- OA47H

- OA77H

Load register A with the LSB of the single precision
value in register E.

Check to see if the LSB for the single precision value
in REG1 at the location of the memory pointer in
register pair HL is the same as the value of the LSB
for the single precision value in register A.

Returnif the value of the LSB in REG1 isn’t the same
as the value of the LSB in register A.

Get the value from the stack and put it in register
pair HL.

Get the value from the stack and put it in register
pair HL.

Retum.
INTEGER COMPARE

Load register A with the MSB of the integer value in
register D,

Check to see if the sign bit for the MSB of the integer
value in register H is the same as the sign bit for the
MSB for the integer value in register A.

Load register A with the MSB of the integer value in
register H.

Jump if the sign bits for the integer values aren’t
equal.

Check to see if the MSB for the integer value in
register D is the same as the MSB for the integer
value in register A.

Jump if the MSB for the integer value in register D
isn’t the same as the MSB for the integer value in
register A.

Load register A with the LSB of the integer value in
register L.

Check to see if the LSB for the integer value in

register E is the same as the LSB for the integer
value in register A.

Jump if the LSB for the integer value in register E
isn't the same as the LSB for the integer value in
register A.

Return.

DOUBLE PRECISION COMPARE

OA49H
OALCH
OA4FH

OA52H

OA53H
OA54H

OA57H
OAS5AH

OAS5BH

OA5EH

OA5FH

OA60H
OA61H

0A62H

OA65H

0A66H
0A67H

OA68H

OA4BH
- OA4EH

0A51H

OA59H

- OASDH

- O0A64H

Load register pair HL with the starting address of
REG2.

Go move the double precision value pointed to by
register pair DE to REG2.

Load register pair DE with the address of the expo-
nent in REG2.

Load register A with the exponent for the double
precision value in REG2 at the location of the mem-
ory pointer in register pair DE.

Check to see if the double precision value in REG2 is
equal to zero.

OA56H Jump if the double precision value in REG2 is equal

to zero.
Load register pair HL with the return address.

Save the return address in register pair HL on the
stack.

Go check to see if the double precision value in
REG1 is equal to zero.

Decrement the value of the memory pointer in reg-
ister pair DE.
Load register A with the MSB of the double preci-

sion value in REG2 at the location of the memory
pointer in register pair DE.

Load register C with the MSB of the double preci-
sion value in REG2 in register A.

Return if the double precision valuein REG1 is equal
to zero.

Load register pair HL with the address of the MSB of
the double precision value in REG1.

Check to see if the sign bit for the MSB of the double
precision value in REG1 at the location of the mem-
ory pointer in register pair HL is the same as the
sign bit for the MSB of the double precision value in
REG2 in register A.

Load register A with the MSB of the double preci-
sion value in REG2 in register C,

Return if the sign bits for the double precision values
in REG1 and REG2 aren't the same.

Bump the value of the memory pointer in register
pair DE.

263

0A69H
OA6AH

OA6CH

OA6DH

OA6EH

OA71H

OA72H
OA73H

OA7HH
OA76H

CA77H

0A78H
OA78H

OA7BH

OA7EH

OA7FH
OA7FH
OA80H

0A83H
0A84H

264

- OA6BH

-~ OA70H

- OA75H

- OA7EH
- OA7AH

- OA7DH

- OABOH

- 0A82H

- OA86H

Bump the value of the memory pointer in register
pair HL.

Load register B with the number of bytes to be
compared.

Load register A with the value at the location of the
memory pointer in register pair DE.

Check to see if the value in register A is the same as
the value at the location of the memory pointer in
register pair HL.

Jump if the value in register A isn’t the same as the
value at the location of the memory pointer in regis-
ter pair HL.

Decrement the value of the memory pointer in reg-
ister pair DE.

Decrement the value of the memory pointer in reg-
ister pair HL.

Decrement the number of bytes remaining to be
compared in register B.

Loop till all of the bytes have been compared.

Get the value from the stack and put it in register
pair BC.

Return.

DOUBLE PRECISION COMPARE

Go compare the double precision value in REG2 to
the double precision value in REG1

Jump if the double precision value in REG1 and the
double precision value in REG2 aren’t the same.

Return.

LEVEL II BASIC CINT ROUTINE
Go check the current value of the number type flag.

Load register pair HL with the integer value in
REG1.

Return if the current value in REG1 is an integer.
Go to the Level I BASIC error routine and display a

TM ERROR message if the current value in REG1is
a string.

OA87H

OA8AH
OA8DH

OA8EH

0A91H

0A93H

0A95H

0A98H
0A99H
0A9AH

OA9DH
OA9FH

O0AAZH
OAA3H

OAA6H

OAA9H

OAACH

OAADH

0A89H

OA8CH

0A90H

0A92H

OA9LH

OA97H

O0A9CH

OA9EH
OAA1H

OAASH

0AA8H

OAABH

Go convert the double precision value in REG1 to
single precision.

Load register pair HL with the return address.

Save the return address in register pair HL on the
stack.

Load register A with the exponent for the single
precision value in REG1.

Check to see if the exponent for the single precision
value in REG1 in register A indicates more than 16
bits of precision.

Jump if the exponent for the single precision value in
REGLI in register A indicates more than 16 bits of
precision.

Go convert the single precision value in REG1 to an
integer and return with the integer value in register
pair DE.

Load register Eair HL with the integer value in
register pair DE.

Get the value from the stack and put it in register
pair DE.

Save the integer value in register pair HL as the
current value in REGL.

Load register A with an integer number type flag.

Save the integer number type flag in register A as
the current value of the number type flag.

Return.

Load register pair BC with the exponent and the
MSB of a single precision value.

Load register pair DE with the NMSB and the LSB
of a single precision value. Register pairs BC and
DE now hold a single precision value equal to
—32768.

Go check to see if the single precision value in REG1
is equal to —32768.

Go to the Level II BASIC error routine and display
an OV ERROR message if the value in REG1 isn't
equal to —32768.

Load register H with the MSB of the single precision
value in register C.

265

OAAEH

OAAFH

OAB1H
OAB1lH

OABZH

OAB3H
OAB6H

OABYH

OABCH

OABFH

OACOH

OAC1H

OACZH

OAC5H

OAC8H

OAC9H
OACCH

OACCH

OACFH

0ADZH

266

OABOH
OACBH

OABSH
OAB8H

OABBH

OABEH

OACA4H

OAC7H

OACBH
OADAH

OACEH

OAD1H

Load register L with the NMSB of the single preci-
sion value in register D,

Jump.

LEVEL II BASIC CSNG ROUTINE

Go check the current value of the number type flag.

Return if the current value in REG1 is single preci-
sion.

Jump if the current value in REG1 is an integer.

Go to the Level II BASIC error routine and display a
TM ERROR message if the current value in REG1is
a string.

Go move the most significant four bytes of the dou-
ble precision value in REG1 into register pairs BC
and DE.

Go set the current number type flag to single preci-
sion.

Load register A with the exponent of the double
precision value in register B.

Check to see if the double precision value in REG1is
equal to zero.

Return if the double precision value in REG1is equal
to zero.

Go turn on the most significant bit of the single
precision value in REGL.

Load register pair HL with the address of the most
significant byte chopped off the double precision
value.

Loaded register B with the most significant byte
chopped off the double precision value at the location
of the memory pointer in register pair HL.

Jump.

LEVEL II BASIC MATH ROUTINE

Load register pair HL with the integer value at the
location of an integer storage in REG1.

Go set the current number type flag to single preci-
sion.

Load register A with the MSB of the integer value in
register H.

OAD3H

OADAH
OAD6H
OAD8H
OADBH
OADBH
OADCH

OADDH

OAEOH
OAE3H
OAE6H

OAE9H

OAECH

OAEEH
OAEFH

OAF1H

OAF4H
OAF4H
OAFSH
OAF6H
OAF8H

OAFBH
OAFBH

OAD5H
OAD7H
OADAH
OAEDH

OADFH

OAE2H
OAESH
OAE8H

OAEBH
OAEDH

OAF3H
OAFOH

OAF3H

OAFAH

OAF7H
OAFAH

OB1EH

Load register D with the LSB of the integer value in
register L.

Zero register E.

Load register B with an exponent.

Jump.

LEVEL II BASIC CDBL ROUTINE

Go check the current value of the number type flag.

Return if the current value in REG1 is double preci-
sion.

Go to the Level Il BASIC error routine and display a
TM ERROR message if the current value in REG1lis
a string.

Go convert an integer to single precision.

Load register pair HL with zero.

Save the value in register pair HL as the first and
second bytes of REG1.

Save the value in register pair HL as the third and
fourth bytes of REG1.

fIioau:l register A with a double precision number type
ag.

LEVEL II BASIC MATH ROUTINE

hoad register A with a single precision number type
ag.

Save the value in register A as the current number
type flag.
LEVEL II BASIC MATH ROUTINE

Go check the current value of the number type flag.
Return if the current value in REG1 is a string.
Load register E with a TM ERROR code.

Go tothe LEVEL II BASIC error routine and display
a TM ERROR message if the current value in REG1
isn't a string.

LEVEL II BASIC MATH ROUTINE

Load register B with the exponent of the single
precision number in register A.

267

OAFCH

OAFDH

OAFEH

OAFFH

OBOOH

OBO1lH

OBOZ2H

OBOSH

OBO8H

0BO9H

OBOAH

OBODH

OBOFH

0B10OH

0B13H

OB14H
0B15H

0B18H
O0B1AH

268

OBO4H

OBO7H

OBOCH

OBOEH

0B12H

OB17H

0B19H
OB1CH

Load register C with the exponent of the single
precision number in register A

Load register D with the exponent of the single
precision number in register A.

Load register E with the exponent of the single
precision number in register A.

Check to see if the single precision number in REG1
is equal to zero.

Return if the single precision value in REG1 is equal
to zero.

Save the value in register pair HL on the stack.

Go move the single precision value in REG1 into
register pairs BC and DE.

Go turn on the sign bit of the single precision value in
register pairs BC and DE

Set the sign bit according to the sign of the value at
the location of the memory pointer in register pair
HL.

koad register H with the value of the sign in register
Go decrement the single precision value in register
pairs BC and DE if the sign of the value is negative.
Load register A with the maximum exponent.
Figure the number of bits to be shifted by subtract-
ing the exponent in register B from the exponent in
register A.

Go shift the single precision value in register pairs
BC and DE.

%Ioad register A with the value of the sign in register

Put the sign bit into the Carry flag.

Go bump the value in register pairs BC and DE if the
original number was negative.

Load register B with an exponent.
Go make the integer negative if the original number

was negative. Return with the integer value in reg-
ister pair DE.

OB1DH

OB1lEH
OB1FH

OB1FH

0B20H

0B21H

0B22H
0B23H

OB24H

OB25H
OB26H
O0B26H
OBZ27H
0B28H
0B2BH
0BZ2EH
O0B31H
OB34H
O0B37H
OB38H

OB39H

OB3BH

OB3DH

- 0B25H

- OB58H

- OB2AH
- OB2DH
- OB30H
- OB33H
- OB36H

- OB3AH

- OB3CH

- OB3FH

Get the value from the stack and put it in register
pair HL.

Return.
LEVEL II BASIC MATH ROUTINE

Decrement the NMSB and the LSB of the single
precision value in register pair DE.

Load register A with the value of the NMSB for the
single precision value in register D.

Combine the LSB of the single precision value in
register E with the NMSB of the single precision

value in register A.
Bump the combined value in register A.

Return if the NMSB and the LSB of the single preci-
sion value in register pair DE isn’t equal to FFFFH.

Decrement the value of the exponent and the MSB of
the single precision value in register pair BC.

Return.
LEVEL II BASIC FIX ROUTINE

Go check the current value of the number type flag.
Return if the current value in REG1 is an integer.
Go check the sign of the current value in REG1.
Jump if the current value in REG1 is positive.

Go convert the current value in REG1 to positive.
Go get the integer part of the current value in REG1.
Jump.

Go check the current value of the number type flag.
Return if the current value in REG1 is an integer.

Jump if the current value in REG1 is double preci-
sion.

Go to the Level I BASIC error routine and display a
TM ERROR message if the current value in REGI is
a string.

Go convert the single precision value in REG1 to an
integer.

269

OB4OH

OB43H

OBA44H
OB46H
OB4SH
OB4AH
OBABH

OB4EH
OB50H

0B51H

0B52H
0B53H
OB54H
OB57H

0B58H
OB59H
OB59H

0B5CH

0B5DH

OB5FH

270

OB42H

OB45H

OB48H

OB4DH

OBA4FH

0B56H

OBSDH
OB5BH

OB5EH

0B61H

Load register pair HL with the address of the expo-
nent in REG1

Load register A with the value of the exponent in
REG1 at the location of the memory pointer in
register pair HL.

Check to see if there is more than 24 bits of precision
used by the current value in REGL.

Load register A with the LSB of the single precision
number in REG1.

Return if more than 24 bits of precision is used by the
single precision value in REGL.

Load register A with the exponent of the single
precision number in REGI1.

Go convert the single precision number in REG1 to
an integer.

Save an exponent in REGL.

Load register A with the LSB of the integer value in
register E.

Save the LSB of the integer value in register A on
the stack.

Load register A with the value in register C.
Move the sign bit in register A into the Carry flag.
Go make the number in REG1 single precision.

Get the LSB of the single precision value from the
stack and put it in register A.

Return.
LEVEL II BASIC MATH ROUTINE

Load register pair HL with the address of the expo-
nent in REG1.

Load register A with the value of the exponent for
the double precision number in REG1 at the location
of the memory pointer in register pair HL.

Check to see if the double precision number in REG1
uses more or less than 16 bits of precision.

Jump if the double precision value in REG1 uses less
than 16 bits of precision.

OB62H - OB63H

OB64H
0B65H
0B66H
OB67H
OB69H
OB6BH
OB6CH

OB6DH
OB6EH
0B70H

0B71H
O0B74H

0B77H
OB78H
OB7AH
OB7BH
OB7CH
OB7FH

OB82H

0B68H
OB6AH

OB6FH

0B73H
OB76H

0B79H

OB7EH

0B81H

Jump if the double precision number in REG1 uses
more than 16 bits of precision.

Load register C with the exponent for the double
precision number in register A.

Decrement the value of the memory pointer in
register pair HL.

Load register A with the MSB of the double preci-
sion value in REG1 at the location of the memory
pointer in register pair HL.

Complement the value of the sign bit in register A.

Load register B with the number of bytes to be
checked.

Decrement the value of the memory pointer in
register pair HL.

Combine the value at the location of the memory
pointer in register HL with the value in register A.

Decrement the byte counter in register B.
Loop till all of the bytes have been checked.

Check to see if the double precision value in REG1 is
equal to a —32768.

Load register pair HL with a negative zero.

Jump if the double precision value in REG1 is a
—-32768.

Load register A with the exponent for the double
precision value in register C.

Check to see if more than 56 bits of precision has
been used for the double precision value in REG1.

Return if more than 56 bits of precision have been
used for the double precision value in REG1.

Save the exponent in register A on the stack.

Go move the most significant four bytes of the dou-
bk(ej pDr%cision value in REG1 into register pairs BC
an .

Go turn on the sign bit and return with the value of
the sign.

Combine the value at the location of the memory

271

0B83H
OB84H
OB86H

OB87H
OB8BAH

0B8BDH

OB8FH

O0B9OH
OB93H

OB94H
OB97H
OB98H
OB9BH

0B9CH

OB9DH
OBAOH

OBAOH
OBA3H
OBA4H

OBASH

272

OB85H

0B89H
OB8GH

OBBEH

0B92Z2H

OB96H

OB9AH

OB9FH
OBAGH

OBAZH

pointer in register pair HL with the result of the sign
test in register A.

Decrement the value of the memory pointer in
register pair HL.

Sayve an exponent at the location of the memory
pointer in register HL.

Save the value of the sign test in register A on the
stack.

Go adjust the number in REG1 if it's negative.

Iﬁ%a(q register pair HL with the address of the MSB in
51,

Load register A with the maximum value of an expo-
nent.

Subtract the value of the exponent at the location of
the memory pointer in register pair HL from the
value in register A.

Go adjust the value in REG1.

Get the value of the sign test from the stack and put it
in register A.

Go adjust the value in REG1 if it’s negative.
Zero register A.
Zero memory location 411CH.

Get the value of the original exponent test from the
stack and put it in register pair AF.

Return if more than 56 bits are used by the double
precision number.

Jump.

LEVEL II BASIC MATH ROUTINE

Load register pair HL with the starting address of
REGI.

Load register A with the value at the location of the
memory pointer in register pair HL.

Decrement the value at the location of the memory
pointer in register pair HL.

Check to see if the value in register A is equal to
Zero.

OBA6H

OBA7H

OBASH
OBAAH

OBAAH
OBABH
OBAEH

OBAFH

OBBOH

0BBZH
OBB4H
OBB5H
OBB8H
OBBY9H
OBBAH
OBBBH
OBBDH
OBBEH
OBClH

OBCZ2H
OBCAH

- OBA8H

- OBC6H

-~ OBADH

- OBB1H

- OBB3H

- OBB7H

- OBBCH

-~ OBCOH

- OBC3H

Decrement the value of the memory pointer in
register pair HL.

Loop till the value at the location of the memory

pointer in register pair HL is equal to a nonzero
value.

Return.

LEVEL II BASIC MATH ROUTINE

Save the value in register pair HL on the stack.
Load register pair HL with zero.

Load register A with the MSB of the integer value in
register B,

Combine the LSB of the integer value in register C
with the MSB of the integer value in register A.

Jump if the integer value in register pair BC is equal
to zero.

Load register A with the counter value.
Multiply the result in register pair HL by two.

Go to the Level II BASIC error routine and displal}rI a
BS ERROR message if the result in register pair HL
has overflowed.

Exchange the integer value in register pair DE with
the result in register pair HL.

Multiply the integer value in register pair HL by
two.

Exchange the result in register pair DE with the
Integer value in register pair HL.

Jump if the most significant bit in the integer value in
register DE wasn't set,

Add the integer value in register pair BC to the
result in register pair HL.

Go to the Level Il BASIC error routine and displa};{f
BS ERROR message if the result in register pair
has overflowed.

a
L
Decrement the counter in register A.

Loop till the multiplication has been completed.

Il-ﬁ,ad register pair DE with the result in register pair

273

OBC5H

OBC6H
OBC7H
0BC7H

OBC8H
0BCY9H

OBCAH
OBCBH
OBCEH
OBCFH
OBDOH

OBDZH
0BD2H

O0BD3H
OBD4H

OBD5SH
OBD6H

OBD7H

OBD8H
OBDSH

OBDAH

OBDBH

274

- OBDI1H

~ OBCDH

~ OBD1H
- OBF1H

Get the value from the stack and put it in register
pair HL.

Return.
INTEGER SUBTRACTION

Load register A with the MSB of the integer value in
register H.

Put the value of the sign bit into the Carry flag.

bA.djust register A according to the value of the sign
1t.

Load register B with the result of the sign test.
Go complement the value in register pair HL.
Load register A with zero.

Adjust the value of the sign test.

Jump.

INTEGER ADDITION

Load register A with the MSB of the integer value in
register pair HL.

Put the value of the sign bit into the Carry flag.

Adjust register A according to the value of the sign
bit.

Load register B with the result of the sign test.

Save the integer value in register pair HL on the
stack.

Load register A with the MSB of the integer value in
register pair DE.

Put the value of the sign bit into the Carry flag.

It-)_djust register A according to the value of the sign
it.

Add the integer value in register pair DE to the
integer value in register pair HL.

Add the Carry flag and the value from the sign test
for the integer value in register pair HL in register B
to the value of the sign test for the integer value in
register pair DE in register A.

0BDCH
OBDDH

OBDEH - OBEOH
OBE1lH

O0BE2H
OBE3H - OBE5SH
OBE6H
OBE7H
OBESH - OBEAH
OBEBH

OBECH - OBEEH

OBEFH - OBF1lH
OBF2H - OClEH
OBF2H
OBF3H

OBF4H - OBF6H
OBF7H
OBF8H

OBF9H - OBFBH

OBFCH

Put the value of the Carry flag in register A.

Combine the value of the sign bit for the result in
register H with the value in register A.

Jump unless overflow has occurred.

Save the value of the sign test in register B on the
stack.

Load register pair HL with the integer value in
register pair DE.

Go convert the register value in register pair HL to
single precision and return with the resultin REG1.

Get the value of the sign test from the stack and put it
in register A.

Get the integer value from the stack and put it in
register pair HL.

Go move the single precision value in REG1 on to
the stack.

Load register pair DE with the integer value in
register pair HL.

Go convert the integer value in register pair DE to
single precision and return with the result in REG1.

Go perform single precision addition.

INTEGER MULTIPLICATION

Load register A with the MSB of the integer value in
register H.

Combine the LSB of the integer value in register L
with the MSB of the integer value in register A.

Jump if the integer value in register pair HL is equal
to zero.

Save the integer value in register pair HL on the
stack.

Save the integer value in register pair DE on the
stack.

Go convert any negative integer values to positive
and return with register B set according to the value
of the sign bits.

Save the value of the sign bit test in register B on the
stack.

275

OBFDH
OBFEH

OBFFH
0CO02H
OCO4H
0CO5H
O0CO7H

0CO8H
OCO9H
OCOAH
OCOCH

OCODH
0C10H
OCl11H
OC13H

OC14H
0C15H
0C16H
O0C17H
0C1AH

OC1BH

276

- 0CO1H
0CO3H

0CO6H

0COBH

- OCOFH

- 0Cl2H

- 0C19H

Load register B with the MSB of the integer value in
register H.

Load register C with the LSB of the integer value in
register L.

Load register pair HL with zero.

Load register A with the counter value.

Multiply the result in register pair HL by two.
Jump if the result in register pair HL has overflowed.

Exchange the integer value in register pair DE with
the integer result in register pair HL.

Multiply the integer value in register pair HL by
two.

Exchange the integer result in register pair DE with
the integer value In register pair HL.

Jump if the most significant bit of the integer register
pair DE wasn't set.

Add the integer value in register pair BC to the
integer result in register pair HL.

Jump if the result in register pair HL has overflowed.
Decrement the value of the counter in register A.
Loop till the multiplication has been completed.

Get the value of the sign test from the stack and put it
in register B.

Get the integer value from the stack and put it in
register pair DE.

Load register A with the MSB of the result in regis-
ter H.

Check to see if the sign bit in the MSB of the integer
result in register A is set.

Jump if the integer result in register pair HL is
negative.

Get the integer value from the stack and put it in
register pair DE.

Load register A with the value of the sign test in
register B.

0C1CH
O0C1FH
OC1FH

0C21H

0C22H
0C24H

0C26H
0C27H
0C28H
O0C2BH
0C2CH
0C2FH

0C32H

OC33H

OC34H
O0C37H
0C37H

0C38H
OC3%9H

OC3AH

OC1lEH
0C34H
0C20H

0C23H

0C2AH

OCZ2EH

0C31H

0C36H
OC44H

0C3CH

Jump.
LEVEL II BASIC MATH ROUTINE

Clear the sign bit for the MSB of the integer value in
register A.

Combine the value of the LSB for the integer value in
register L with the adjusted MSB of the integer
value in register A.

Jump if the result is equal to zero.

Load register pair HL with the integer value in
register pair DE.

Get the value of the sign test from the stack and put it
in register B.

Get the integer value from the stack and put it in
register pair HL.

Go convert the integer value in register pair HL to
single precision and return with the resultin REG1.

Get the integer value from the stack and put it in
register pair HL.

Go move the single precision value from REGL1 to
the stack.

Go convert the integer value in register pair HL to
single precision and return with the result in REG1,

Get the exponent and the MSB of the single preci-
%ign value from the stack and put it in register pair

Get the NMSB and the LSB of the single precision
value from the stack and put it in register pair DE.

Go do single precision multiplication.
LEVEL I1 BASIC MATH ROUTINE

Load register A with the result of the sign test in
register B.

Check to see if the result is supposed to be negative.

Get the value from the stack and put it in register
pair BC,

Jump if the result is supposed to be negative.

277

OC3DH
OC3EH
OC41H

OC42H
OC45H
OCH5H

OC46H
OC47H
OCL48H
OCA4BH
OC4CH
OC4DH
OCLEH

OC51H
0C52H
0C53H

0C54H
0C55H
0C56H

0C57H

- OC40H

Save the integer value in register pair DE on the
stack.

Go convert the integer result in register pair HL to
single precision and return with the result in REG1.

Get the integer value from the stack and put it in
register pair DE.

- OCH44H Jump.

- OC5AH

- OCHAH

- 0C50H

LEVEL II BASIC MATH ROUTINE

Load register A with the MSB of the integer value in
register H.

Combine the MSB of the integer value in register D
with the MSB of the integer value in register A.

Save the result of the combined signs in register A
into register B.

Go convert a negative integer value in register pair
HL to positive.

Exchange the integer value in register pair DE with
the integer value in register pair HL.

Load register A with the MSB of the integer value in
register H.

Check the value of the sign for the MSB of the
integer value in register A.

Jump if the integer value in register pair HL is
positive.

Zero register A.
Load register C with the value in register A.

Subtract the LSB of the integer value in register L
from the value in register A.

Save the adjusted value in register A in register L.
Load register A with the value in register C.

Subtract the MSB of the integer value in register H
from the value in register A.

Save the adjusted value in register A into register H.

0C58H - OC5AH Jump.
OC5BH - OC6FH LEVEL II BASIC MATH ROUTINE

278

0C5BH - OC5DH lIicf‘:a(c;] register pair HL with the integer value in
1.

OCSEH - OC60H

0C61H
0C62H
OC64H
0C65H
0C66H

0C67H
0C6AH
OC6BH
OC6DH
0C70H
0C70H

0C73H

OC74H

0C76H

0C77H
0C77H

O0C7AH

0C7BH

0C63H

0C69H

0C6CH
OC6FH
0C76H
0C72H

0C?75H

OCCEH
0C79H

Go convert the integer value in register pair HL to
positive if it’s negative.

Load register A with the MSB of the integer value in
register H.

Invert the value of the sign bit in register A.
Combine the LSB of the integer value in register L
with the adjusted MSB of the integer value in regis-
ter A.

Return if the integer value in REG1 isn’t equal to
—32768.

Load register pair DE with the integer value in
register pair HL.

Go set the number type flag to single precision.
Zero register A.

Load register B with an exponent.

Jump.

DOUBLE PRECISION SUBTRACTION

Load register pair HL with the address of the MSB in
REG2.

Load register A with the MSB of the double preci-
sion value in REG2 at the location of the memory
pointer in register pair HL.

Invert the value of the sign bit for the MSB of the
double precision value in register A.

Save the adjusted MSB of the double precision value
in register A in REG2 at the location of the memory
pointer in register pair HL.

DOUBLE PRECISION ADDITION

Load register pair HL with the address of the expo-
nent in REG2.

Load register A with the exponent of the double
precision value in REG2 at the location of the mem-
ory pointer in register pair HL.

Check to see if the double precision value in REG2 is
equal to zero.

279

0C7CH
0C7DH
OC7EH

OC7FH

OC80H

0C83H

OC8B4H
0C85H

0C88H

0C89H

0C8BH

0C8CH

0C8DH

OC8EH
0C90H

0C91H

0C92H

280

- 0C82H

Returnif the double precision value in REG2 is equal
to zero.

Load register B with the value of the exponent for
the double precision value in register A.

Decrement the value of the memory pointer in
register pair HL.

Load register C with the value of the MSB of the
double precision value in REG2 at the location of the
memory pointer in register pair HL.

Load register pair DE with the address of the expo-
nent in REG1.

Load register A with the value of the exponent of the
double precision value in REG1 at the location of the
memory pointer in register pair DE.

Check to see if the double precision value in REG1is
equal to zero.

- OC87H Jump if the double precision value in REG1 is equal

to zero.

Subtract the value of the exponent for the double
precision value in REG2 in register B from the value
of the exponent for the double precision value in
REGI in register A.

—~ OCBAH Jump if the double precision value in REG1 is

- OCBFH

greater than or equal to the double precision value in
REG2.

Complement the difference between the two expo-
nents in register A.

Bump the value of the difference for the exponents in
register A so that register A will hold the positive
difference.

Save the difference for the exponents in register A
on the stack.

Load register C with the counter value,

Bump the value of the memory pointer in register
pair HL so that it will be pointing to the exponent of
the double precision value in REG2.

Save the value of the memory pointer in register pair
HL on the stack.

Load register A with the value at the location of the
memory pointer in register pair DE.

0C93H
OC94H

0C95H
0C96H

0C97H
0C98H

0C99H
OC9AH - OC9BH

O0C9CH

OC9DH

OC9EH

OC9FH

OCAOH
OCA1H - OCA2H

OCA3H

OCA4H
OCA5H - OCA7H
OCA8H

OCA9H - OCAAH

Load register B with the value at the location of the
memory pointer in register pair HL.

Save the value in register A at the location of the
memory pointer in register pair HL.

Load register A with the value in register B.

Save the value in register A at the location of the
memory pointer in register pair DE.

Decrement the value of the memory pointer in
register pair DE.

Decrement the value of the memory pointer in
register pair HL.,

Decrement the value of the counter in register C.

Loop till the double precision values in REG1 and
REG2 have been exchanged.

Get the value of the memory pointer from the stack
and put it in register pair HL.

Load register B with the value of the exponent for
the double precision value in REG2 at the location of
the memory pointer in register pair HL.

Decrement the value of the memory pointer in
register pair HL,

Load register C with the value of the MSB for the
double precision value in REG2 at the location of the
memory pointer in register pair HL.

Get the difference for the exponents from the stack
and put it in register A.

Check to see if the difference between the two expo-
nents is greater than 56 bits.

Return if the difference between the two exponents
is greater than 56 bits.

Save the difference for the exponents in register A
on the stack.

Go turn on the sign bits for the double precision
numbers,

Bump the value of the memory pointer in register
pair HL.

Zero the location of the memory pointer in register
pair HL.

281

OCABH

OCACH
OCADH
OCBOH
O0CB3H

OCB6H
0CB9H

OCBAH
OCBBH
OCBEH
0CC1H
OCCHH

0CC5H

0CC6H

O0CCYH
0CCCH
OCCFH
OCCFH
OCD2H

OCD5H

OCD8H
OCD9H
282

OCAFH

OCBZ2H

O0CB5H

OCB8H

OCBDH
0CCOH
0CC3H

0CC8H

OCCBH
OCCEH
OD1FH
OCDlH
OCD4H

OCD7H

Save the result of the sign test in register A in
register B.

Get the difference for the exponents from the stack
and put it in register A.

Load register pair HL with the address of the MSB in
REG2.

Go shift the double precision value in REG2 till it
lines up with the double precision value in REG1.

Get the bits shifted out of the double precision value
in REG2 and put it in register A.

Save the value in register A.

Load register A with the value of the sign test in
register B.

Check to see if the signs are equal.

Go subtract the values if the signs aren’t equal.
Go add the values.

Jump if the Carry flag isn't set.

Load register pair HL with the value of the memory
pointer in register pair DE.

Bump the value of the exponent at the location of the
memory pointer in register pair HL.

Go to the Level II BASIC error routine and display
an OV ERROR message if the exponent for the
double precision result in REG1 is too large.

Go adjust the double precision result in REGL1.
Jump.

DOUBLE PRECISION MATH ROUTINE

Go subtract the double precision values.

Load register pair HL with the address of the sign for
the result.

Go complement the result in REG1 if the Carry flag
is set.

Zero register A.

Load register B with the value in register A.

OCDAH

OCDDH

OCDEH

OCEOH

OCE3H

OCE5H

OCE6H

OCE7H
OCE8H

OCE9H

OCEAH

OCECH

OCEDH

OCEFH

OCF1H

OCF3H

OCF6H

OCF7H

OCFAH
OCFDH

OCDCH

OCDFH

OCEZH

OCE4H

OCEBH

OCEEH

OCFOH

OCF2H

OCF5H

OCF9H

OCFCH

Load register A with the value of the MSB of the
double precision result in REG1.

Check to see if the MSB of the double precision
result is equal to zero.

Jump if the MSB of the double precision value is
nonzero.

Load register pair HL with the starting address of
REG1 minus one.

Load register C with the number of bytes to be
shifted.

Load register D with the value at the location of the
memory pointer in register pair HL.

Save the value in register A at the location of the
memory pointer in register pair HL.

Load register A with the value in register D.

qu% the value of the memory pointer in register
pair HL.

Decrement the number of bytes to be shifted in
register C.

Loop till all of the bytes in the double precision value
have been shifted.

Load register A with the number of bits shifted in
register B.

Subtract the number of bits just shifted from the shift
counter in register A.

Check to see if the whole of the double precision
value has been shifted.

Jump if the whole of the double precision value hasn’t
been shifted.

Go make the double precision value equal to zero if
the whole of the double precision value has been
shifted.

Decrement the shift counter in register B.

Load register pair HL with the starting address of
REG1 minus one.

Go shift the double precision value in REG1 once.

Check to see if the sign bit of the MSB of the double
precision value in register A is set.

283

OCFEH - ODOOH Loop till the sign bit is set.

ODO1H Load register A with the value of the shift counter in
register B.

ODOZH Check to see if the shift counter in register A is equal
to zero.

ODO3H = ODOLH Jump if the value in REG1 wasn't shifted at all.

ODO5H = ODO7H Load register pair HL with the address of the expo-
nent in REG1.

ODOBH Add the value of the exponent for the double preci-
sion value in REG1 at the location of the memory
pointer in register pair HL to the value of the shift
counter in register A.

ODOSH Save the adjusted exponent for the double precision
value in register A at the location of the memory
pointer in register pair HL.

ODOAH = ODOCH Jump if overflow didn't occur.
ODODH Return if the double precision value is equal to zero.

ODOEH - OD1OH Loadregister A with the value of the rounding byte
at the location of the starting address of REG1 minus
one.

OD11H Check to see if there is a bit to be shifted into the
double precision value in REGL.

0D12H - OD14H Go move the bit into the double precision value if

necessary.

OD15H - OD17H Loadregister pair HL with the address of the sign for
the result.

OD18H Load register A with the value of the sign for the

result at the location of the memory pointer in
register pair HL.

OD19H - OD1AH ‘II\\/Iask the value of the sign for the result in register

OD1BH Decrement the value of the memory pointer in
1}‘zeg1§ter pair HL so that it points to the exponent in
EG1.

OD1CH Decrement the value of the memory pointer in
register pair HL so that it points to the MSB inREGL
OD1DH Combine the value of the MSB of the double preci-

sion value in REG1 at the location of the memory
pointer in register pair HL with the value of the sign
for the result in register A.

284

OD1EH

OD1FH
O0DZ20H
0D20H

OD23H
OD25H
OD26H
0D27H
OD28H
OD29H
0D2BH

0D2CH

OD2FH

OD30H

OD32H
O0D33H
OD33H

0D36H
OD39H

OD3BH

~ OD32H
~ OD22H

- OD24H

- OD2AH

- OD2EH

- OD31H

- OD4LH
- OD35H

- OD38H

- OD3AH

Save the adjusted MSB of the double precision value
inregister A at the location of the memory pointer in
register pair HL.

Return.

DOUBLE PRECISION MATH ROUTINE

Load register pair HL with the starting address in
REGI1.

Load register B with the number of bytes to be
bumped for the double precision value in REG1.

Bump the value at the location of the memory
pointer in register pair HL.

Return if the value at the location of the memory
pointer in register pair HL isn’t equal to zero.

Bump the value of the memory pointer in register
pair HL.

gecrement the value of the byte counter in register
Loop till all of the necessary bytes have been
bumped.

Bump the value of the exponent at the location of the
memory pointer in register pair HL.

Go to the Level IT BASIC error routine and display
an OV ERROR message if the exponent for the
double precision value in REG1 is too large.

Decrement the value of the memory pointer in
register pair HL.

Save a new MSB at the location of the memory
pointer in register pair HL.

Return.
DOUBLE PRECISION MATH ROUTINE

Load register pair HL with the starting address of
REG2.

Load register pair DE with the starting address of
REGI.

Load register C with the number of bytes to be
added.

Clear the Carry flag.
285

OD3CH
OD3DH
OD3EH
OD3FH
OD4OH
OD41H
OD42H - OD43H

OD4LH
OD45H - OD56H
OD45H - ODU4TH

OD48H - OD4AH
ODA4BH - OD4CH

OD4DH
ODAEH

OD4FH

OD50H
OD51H
0D52H
0D53H
OD54H - OD55H

286

Load register A with the value in REG1 at the loca-
tion of the memory pointer in register pair DE.

Add the value in REG2 at the location of the memory
value in register A.

Save the result in register A in REGI at the location
of the memory pointer in register pair DE.

Bump the value of the memory pointer in register
pair DE.

Bump the value of the memory pointer in register
pair HL.

Decrement the number of bytes to be added in
register C.

Loop till all of the bytes for the double precision
values have been added.

Return.

DOUBLE PRECISION MATH ROUTINE

Load register pair HL with the starting address of
REG2.

Load register pair DE with the starting address of
REGI.

Load register C with the number of bytes to be
subtracted.

Clear the Carry flag.

Load register A with the value in REG1 at the loca-
tion of the memory pointer in register pair DE.

Subtract the value in REG2 at the location of the
memory pointer in register pair HL from the value in
register A.

Save the result in register A in REG1 at the location
of the memory pointer in register pair DE.

Bump the value of the memory pointer in register
pair DE.

Bump the value of the memory pointer in register
pair HL.

Decrement the number of bytes to be subtracted for
the double precision values in register C.

Loop till all of the bytes for the double precision
values have been subtracted.

OD56H
OD57H
OD57H

OD58H
OD59H

OD5AH
OD5DH

OD5FH
O0D60H
OD61H
OD62H
OD63H
OD64H
O0D65H

OD66H
OD68H
OD69H
OD69H
OD6AH

OD6BH

OD6DH

- OD68H

- OD5CH

- OD5EH

OD67H

OD8FH

OD6CH

OD6EH

Return.
DOUBLE PRECISION MATH ROUTINE

Load register A with the value of the sign at the
location of the memory pointer in register pair HL.

Complement the value of the sign in register A.

Save the value of the signinregister A at the location
of the memory pointer in register pair HL.

Load register pair HL with the starting address of
REG1 minus one.

Load register B with the number of bytes to be
reversed.

Zero register A.

Load register C with the value in register A.
Load register A with the value in register C.
Subtract the value at the location of the memory
pointer in register pair HL from the value in register
A

Save the reversed value in register A at the location
of the memory pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Decrement the number of bytes to be reversed in
register B.

Loop till all of the bytes for the double precision
number in REG1 have been reversed.

Return.

DOUBLE PRECISION MATH ROUTINE

Save the MSB of the double precision value in
register C at the location of the memory pointer in
register pair HL.

Save the value of the memory pointer in register pair
HL on the stack.

Subtract 8 from the number of bits to be shifted from
the number of bits to be shifted in register A.

Jump if there are less than 8 bits to be shifted.

287

OD6FH
OD70H

0D71H

OD74H

OD75H

OD76H
OD77H

OD78H

OD79H

OD7BH = OD7CH

OD7DH
OD7FH

OD80OH
OD81H

OD82H

OD83H
OD84H

OD85H
OD87H

OD88H
OD89H

288

- OD73H

- OD7AH

- OD7EH

- OD86H

Get the value of the memory pointer from the stack
and put it in register pair HL.

Save the value of the memory pointer in register pair
HL on the stack.

Load register pair DE with the number of bytes to be
shifted and the value to be shifted into the double
precision value.

Load register C with the value at the location of the
memory pointer in register pair HL.

Save the value in register E at the location of the
memory pointer in register pair HL.

Load register E with the value in register C.

Decrement the value of the memory pointer in
register pair HL.

Decrement the number of bytes shifted in register
D.

Loop till all of the bytes have been shifted.
Loop till there are less than 8 bits to be shifted.

Adjust the number of bits to be shifted in register A
so that it holds the correct value.

Load register D with the number of bits to be shifted
in register A.

Zero register A.

Get the value of the memory pointer from the stack
and put it in register pair HL.

Decrement the number of bits to be shifted in regis-
ter D.

Return if all of the bits have been shifted.

Save the value of the memory pointer in register pair
HL on the stack.

Load register E with the number of bytes to be
shifted.

Load register A with the value at the location of the
memory pointer in register pair HL.

Shift the value in register A.

Save the adjusted value in register A at the location
of the memory pointer in register pair HL.

OD8AH
OD8BH

OD8CH
OD8EH
OD9OH
OD9OH

0D93H

OD95H
OD97H
0D97H

OD99H

OD9AH
OD9BH

O0D9CH

OD9DH
OD9EH
ODAOH
ODA1H
ODA1H
ODA4H

ODAS5H
ODABH

ODABH

OD8DH
OD8FH
OD96H
0D92H

OD94H

0D96H
ODAOH
OD98H

OD9FH

ODD3H
ODA3H

ODA7H
ODAAH

Decrement the value of the memory pointer in
register pair HL.

Decrement the number of bytes to be shifted in
register E.

Loop till all of the bytes have been shifted.
Loop till all of the bits have been shifted.
DOUBLE PRECISION MATH ROUTINE

Load register pair HL with the address of the MSB of
the double precision value in REG1.

Load register D with the number of bits to be
shifted.

Jump.
DOUBLE PRECISION MATH ROUTINE

Load register C with the number of bytes to be
shifted.

Load register A with the value at the location of the
memory pointer in register pair HL.

Shift the value in register A.

Save the shifted value in register A at the location of
the memory pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Decrement the byte counter in register C.

Loop till all of the bytes have been shifted.
Return.

DOUBLE PRECISION MULTIPLICATION
Go check to see if the value in REG1 is equal to zero.

Return if the double precision value in REG1 is equal
to zero.

Go figure the new exponent.

Go move the double precision value in REG1 to a
temporary work area.

Zero the location at the current value of the memory
pointer in register pair HL.

289

ODACH

ODADH
ODAFH
ODBOH
ODB1H
ODBZH

ODB3H
ODB5H
ODB7H
ODB8H
0DB9H
ODBAH

ODBDH
ODCOH

ODC1H

ODCZH

ODC3H
ODC5H

ODC6H

ODC7H
ODC9H
ODCCH

290

-~ ODAEH

- ODBA4H
- ODB6H

- ODBCH

-~ ODBFH

~ ODC4H

- ODC8H
- ODCBH
- ODCEH

Bump register pair DE so that it points to the LSB of
the double precision value in the temporary work
area.

Load register B with the number of bytes to be
figured.

Load register A with the value at the location of the
memory pointer in register pair DE.

Bump the value of the memory pointer in register
pair DE.

Check to see if the value in register A is equal to
zero.

Save the value of the memory pointer in register pair
DE on the stack.

Jump if the value in register A is equal to zero.
Load register C with the number of bits to be shifted.
Save the value in register pair BC on the stack.
Shift the value in register A one place to the right.
Load register B with the value in register A.

Go add the value in REG2 to the total in REG1 if bit
zero of register A was set.

Go shift the value of the total in REG1.

hoad register A with the adjusted value in register
Get the value from the stack and put it in register
pair BC.

Decrement the number of bits to be shifted in regis-
ter C.

Loop until all of the bits have been shifted.

Get the value from the stack and put it in register
pair DE.

Decrement the number of bytes to be figured in
register B.

Loop until all of the bytes have been figured.
Jump.

Load register pair HL with the address of the MSB in
REG1.

ODCFH -
ODD2H -
ODD4H -

ODD4H -

ODDCH -
ODDCH -

ODDFH -

ODE2H -

ODESH -

ODE5SH -

ODE8BH

ODESH -~

ODECH -~

ODEFH
ODFOH
ODF1H -

ODFAH -

ODF7H

ODF8H

ODF9H -

ODFCH -

ODFFH -

ODD1H
ODD3H
ODDBH

ODDBH

ODEA4H
ODDEH

ODE1H

ODE4H

OE38H
ODE7H

ODEBH

ODEEH

ODF3H

ODF6H

ODFBH

ODFEH

OEO1H

Go shift the double precision total in REG1.
Jump.

DOUBLE PRECISION
CONSTANT STORAGE AREA

ﬁ\ double precision constant equal to 10.0 is stored
ere,

DOUBLE PRECISION MATH ROUTINE

Load register pair DE with the starting address of
the double precision constant stored above.

Load register pair HL with the starting address of
REG2,

Go move the double precision constant into REG2.

DOUBLE PRECISION DIVISION

Load register A with the value of the exponent for
the double precision value in REG2,

Check to see if the double precision value in REG2 s
equal to zero.

Go to the Level I BASIC error routine and display a
/0 ERROR message if the double precision value in
REG2 is equal to zero.

Go figure the value of the new exponent.

Bump the value of the exponent in REG1.

Bump the value of the exponent in REG1.

Go move the double precision value from REG1 into
the temporary work area.

Load register pair HL with the address of the expo-
nent in the temporary work area.

Zero the value of the exponent in the temporary
work area at the location of the memory pointer in
register pair HL.

Zero register B.

Load register pair DE with the starting address of
the double precision value in the temporary work
area.

Load register pair HL. with the starting address of
the double precision value in REG2.

Go subtract the double precision value in REG2 from

291

0EOZH
O0EO3H
OEO4H

OEO5H

OEO7H

OEOAH

OEODH

OE10H
OE12H

OE13H
OE14H

OE17H

OE18H

OE19H

OE1AH
OE1DH
OE1EH

OE21H

OE23H
OE26H
292

OEO6H

OEOSH

OEOCH

OEOFH

OE16H

OE1CH

OE20H

OE22H

OE25H
OE28H

the double precision value in the temporary work
area.

Load register A with the value at the location of the
memory pointer in register pair DE.

Subtract the value in register C from the value in
register A.

Complement the value of the Carry flag.

Jump if the double precision value in REG2 is
greater than the double precision value in the tem-
porary work area.

Load register pair DE with the starting address of
the double precision value in the temporary work
area.

Load register pair HL with the starting address of
the double precision value in REG2.

Go add the double precision value in REG2 to the
double precision value in the temporary work area.

Zero register A.

Save the value of the exponent in register A at the
location of the memory pointer in register pair DE.

Bump the counter in register B.

Load register A with the value of the MSB of the
total in REG1.

Bump the value of the MSB for the double precision
result in register A.

Decrement the value of the MSB for the double
precision result in register A.

Put the value of the Carry flag into register A as the
sign bit.

Jump if the sign bit was set.

Put the sign bit inregister A back into the Carry flag.

Load register pair HL with the starting address of
the double precision result in REGL1.

Load register C with the number of bytes to be
shifted.

Go shift the double precision result in REG1.

Load register pair HL with the starting address of

OE29H -
OE2CH
OE2DH
OE2EH -
OE3GH -
OE33H

OE34H -
OE36H -

OE39H -
OE39H
OE3AH -
OE3DH
OE3EH -
OEM1H -
OE44H
OE45H
OEA6H

OEA7

OEZBH

OEZ2FH

0E32H

OE35H
QE38H

OEACH

OE3CH

OEAOH

OE43H

the double precision value in the temporary work
area.

Go shift the double precision value in the temporary
work area.

Load register A with the value of the counter in
register B.

Check to see if the value of the counter in register A
is equal to zero.

Loop till done if the value of the counter in register A
isn't equal to zero.

Load register pair HL with the address of the expo-
nent for the double precision result in REG1.

Decrement the value of the exponent for the double
precision result in REG1 at the location of the mem-
ory pointer in register pair HL.

Loop till done if overflow didn’t occur.

Go to the Level II BASIC error routine and display
an OV ERROR message if the exponent for the
result in REG1 is too small.

DOUBLE PRECISION MATH ROUTINE

Load register A with the MSB of the double preci-
sion value in REG2 in register C.

Save the MSB of the double precision value in REG2
in register A.

Decrement the value of the memory pointer in
register pair HL.

Load register pair DE with the starting address of
the temporary work area.

Load register B with the number of bytes to be
moved and zero register C.

Load register A with the value at the location of the
memory pointer in register pair HL.

Save the value in register A at the location of the
memory pointer in register pair DE.

Zero the location of the memory pointer in register
pair HL.

Decrement the value of the memory pointer in
register pair DE.

293

OEA8H
OE49H
OEMAH - OEA4BH

OEACH
OEADH - OE64H
OEMDH - OE4FH
OE50H

OE51H
OE52H
OE53H
OE54H

OE55H ~ OES56H
OE57H - OE59H

OE5AH

OE5BH
OE5CH - OE5EH
OE5SFH
OE60H

OE61H
OE62H - OE64H

294

Decrement the value of the memory pointer in
register pair HL.

Decrement the value of the byte counter in register
B.

Loop till the double precision value has been moved
to the temporary work area.

Return.
LEVEL II BASIC MATH ROUTINE
Go move the value in REG1 to REG2.

Load register pair HL with the value of the memory
pointer in register pair DE,

Decrement the value of the memory pointer in
register pair HL.

Load register A with the value of the exponent in
REG]1 at the location of the memory pointer in
register pair HL.

Check to see if the value in REG1 is equal to zero.
Return if the value in REG1 is equal to zero.

Add two to the value of the exponent in register A.
Go to the Level II BASIC error routine and display
an OV ERROR message if the adjusted exponent in
register A is too large.

Save the adjusted exponent in register A in REG1 at
the location of the memory pointer in register pair
Save the value of the memory pointer in register pair
HL on the stack.

Go add the double precision value in REG2 to the
double precision value in REG1.

Get the value of the memory pointer from the stack
and put it in register pair HL,

Bump the value of the exponent for the double preci-
sion value in REG1 at the location of the memory
pointer in register pair HL.

Return if overflow didn't occur.

Go to the Level II BASIC error routine and display
an OV ERROR message if the exponent in REG1 at

OE65H -
OE65H -
OE68H -

OE6CH
OE6DH

OE6EH =

OE71H
OE72H
OE73H -

OE76H
OE?77H
OE78H =
OE?7AH
OE7BH -

OE7EH -

OE8OH -

OE82H
OE83H
OE84H -

OE87H -

OF88H
OE67H
OE6AH

OE70H

OE75H

OE79H

OE7DH

OE7FH

OE81H

OE86H

OE88H

the location of the memory pointer in register pair
HL is too large.

ASCII TO BINARY
Go zero the exponent in REG1.

Go set the current number type flag to double preci-
sion.

Zero register A.

Load register pair DE with the current input buffer
pointer in register pair HL.

Load register pair BC with a zero and a negative one.
Load register H with zero.
Load register L with zero.

Go set the current number type flag to integer if the
routine was entered from OE6CH.

Load register pair HL with the input buffer pointer in
register pair DE.

Load register A with the character at the location of
the current input buffer pointer in register pair HL.

Check to see if the character at the location of the
current input buffer pointer in register A is a minus
sign (=),

Save the value in register pair AF on the stack.

Jump if the character at the location of the current
input buffer pointer in register A is a minus sign (-).

Check to see if the character at the location of the
current input buffer pointer in register A is a plus
sign (+).

Jump if the character at the location of the current
input buffer pointer in register A is a plus sign (+).

Decrement the value of the current input buffer
pointer in register pair HL.

Go bump the current input buffer pointer in register
pair HL till it points to the next character.

Jump if the character at the location of the current
input buffer pointer in register A is numeric.

Check to see if the character at the location of the

295

OE89H

OE8CH

OE8EH
0E9OH
0E92H
OE95H
OE97H
OE9AH
O0E9CH
OE9FH
OEA1H

OEA3H

OEA4H
OEA7H
OEA8H
OEABH
OEACH

OEADH
296

OE8BH

OE8DH
OE8FH
OE91H
OE9L4H
OE96H
OE99H
OE9BH
OE9EH
OEAOH

OEAZH

OEA6H

OEAAH

current input buffer pointer in register A is a decimal
point (.).

Jump if the character at the location of the current
input buffer pointer in register A is a decimal point

Check to see if the character at the location of the
current input buffer pointer in register A is an E.

Jump if the character at the location of the current
input buffer pointer in register A is an E.

Check to see if the character at the location of the
current input buffer pointer in register A is a %.

Jump if the character at the location of the current
input buffer pointer in register A is a %.

Check to see if the character at the location of the
current input buffer pointer in register A is a #.

Jump if the character at the location of the current
input buffer pointer in register A is a #.

Check to see if the character at the location of the
current input buffer pointer in register A is an !.

Jump if the character at the location of the current
input buffer pointer in register A is an !.

Check to see if the character at the location of the
current input buffer pointer in register A is a D.

Jump if the character at the location of the current
input buffer pointer in register A isn’t a D.

Set the flags according to the value of the character
at the location of the current input buffer pointer in
register A.

Go convert the current value in REGI to either
single precision or double precision.

Save the current input buffer pointer in register pair
HL on the stack.

Load register pair HL with the return address.
Exchange the return address in register pair HL
with the value of the current input buffer pointer in
register pair HL.

Go bump the current input buffer pointer in register
pair HL till it points to the next character.

Decrement the value in register D.

OEAEH

OEBOH

OEB1H

OEB3H

OEB4H

OEB5H

OEB7H

OEB8H

OEBBH

OEBAH

OEBCH

OEBDH

OEBEH

OEC1H
OEC2H

OECHH
OEC5H

OEC6H

- OEAFH

- OEBZH

- OEB6H

-~ OEB9H

- OECOH

- OEC3H

Check to see if the character at the location of the

current input buffer pointer in register A is a minus
sign token (CEH).

Return if the character at the location of the current
input buffer pointer in register A is a minus sign
token (CEH).

Check to see if the character at the location of the
current input buffer pointer in register A is a minus
sign (-).

Return if the character at the location of the current
input buffer pointer in register A is aminus sign (—).

Bump the value in register D.

Check to see if the character at the location of the
current input buffer pointer in register A is a plus
sign token (CDH.)

Return if the character at the location of the current
input buffer pointer in register A is a plus sign token
(CDH).

Check to see if the character at the location of the
current input buffer pointer in register A is a plus
sign (+).

Return if the character at the location of the current
input buffer pointer in register A is a plus sign (+).

Decrement the value of the input buffer pointer in
register pair HL.

Get the value from the stack and put it in register
pair AF.

Go bump the current input buffer pointer in register
pair HL till it points to the next character.

Jump if the character at the location of the input
buffer pointer in register A is numeric.

Bump the value in register D.
Jump if the exponent is positive.
Zero register A.

Subtract the value of the exponent in register E from
register A.

Load register E with the value of the exponent in
register A.

297

OEC7H

OEC8H

OEC9H

OECAH
OECDH
OEDOH
OED2H

OED3H

OED4H

OED5H

OED8H

OED9H
OEDAH

OEDBH

OEDCH
OEDFH

OEEOH

OEE3H
OEE4H
OEESH
OEE6H

OEE8H
298

OECCH
OECFH
OED1H

OED7H

OEDEH

OEE2H

OEE7H

OEEAH

Save the current input buffer pointer in register pair
HL on the stack.

Load register A with the value of the exponent in
register E.

Subtract the value in register B from the exponent in
register A.

Go multiply the current value by ten if necessary.
Go divide the current value by ten if necessary.
Loop till the value is adjusted correctly.

Get the value of the current input buffer pointer from
the stack and put it in register pair HL.

Get the value from the stack and put it in register
pair AF.

Save the value of the current input buffer pointer in
register pair HL on the stack.

Go convert the current value to negative if neces-
sary.

Get the value of the current input buffer pointer from
the stack and put it in register pair HL.

Go check the current value of the number type flag.

Return if the current value of the number type flag
isn't single precision.

Save the current value of the input buffer pointer in
register pair HL on the stack.

Load register pair HL with the return address.

Save the value of the return address in register pair
HL on the stack.

Go convert the current value in REG1toaninteger if
possible.

Return.
Go check the current value of the number type flag.
Bump the value in register C.

Jum(g if no need to convert the current value in
REGL.

Go convert the current value in REG1 to single

OEEBH
OEEEH

OEEFH

OEFZ2H

OEF3H
OEFS5H

OEF6H

OEF9H
OEFBH

OEFCH
OEFDH
OEFEH
OEFFH

OF02H
OFO3H

OF06H

OFO7H
OFO08H

OFO9H
OFOAH
OFOBH
OFOCH

OEEDH

OErFlH

OEFAH

OEF8H

OEFAH

OFOl1H

OFO5H

precision if the current value isn't double precision.
Jump.

Go check the current value of the number type flag.

Go to the Level Il BASIC error routine and display a
SN ERROR message if the current value in REG1 is
a single precision value or a double precision value.

Bump the value of the current input buffer pointer in
register pair HL.

Jump.

Set the flags according to the character at the loca-
tion of the current input buffer pointer in register
pair HL.

Go convert the current value in REGI to either
single precision or double precision.

Jump.

Save the value in register pair HL on the stack.
Save the value in register pair DE on the stack.
Save the value in register pair BC on the stack.
Save the value in register pair AF on the stack.

Go convert the current value in REG1 to single
precision if necessary.

Get the value from the stack and put it in register
pair AF.

Go convert the current value in REG1 to double
precision if necessary.

Get the value from the stack and put it in register
pair BC.

Get the value from the stack and put it in register
pair DE.

Get the value from the stack and put it in register
pair HL.

Return.
Return if the current value is an integer.
Save the value in register pair AF on the stack.

Go check the current value of the number type flag.

299

OFODH
OFOEH

OF11H

OF12H

OF15H

OF16H
OF17H
OF18H
OF19H
OF1lAH
OF1BH
OF1CH
OF1DH

OF20H

OFZ21H

OF24H

OF25H

OF26H

OF27H
OF28H
OF29H
OF2AH
OF2BH

300

-~ OF10H

- OFl4H

- OF1FH

- OF23H

Save the value in register pair AF on the stack.

Go multiply the current value in REG1 by ten if it’s
single precision.

Get the value from the stack and put it in register
pair AF.

Go multiply the current value in REG1 by ten if it’s
double precision.

Get the value from the stack and put it in register
pair AF,

Decrement the value in register A.
Return.

Save the value in register pair DE on the stack.

Save the value in register pair HL on the stack.
Save the value in register pair AF on the stack.
Go check the current value of the number type flag.
Save the value in register pair AF on the stack.

Go divide the current value in REG1 by 10 if the
current number type is single precision.

Get the value from the stack and put it in register
pair AF.

Go divide the current value in REG1 by 10 if the
current number type is double precision.

Get the value from the stack and put it in register
pair AF,

Get the value from the stack and put it in register
pair HL.

Get the value from the stack and put it in register
pair DE.

Bump the value in register A.

Return.

Save the value in register pair DE on the stack.
Load register A with the value in register B.

Add the value in register C to the value inregister A.

OF2CH

OF2DH
OF2EH
OF2FH

OF30H

OF32H
OF33H
OF34H
OF37H

OF3AH
OF3DH

OF3EH

OF40H
OF41H
OF42H

OF43H

OF44H

OF45H

OF46H

OF47H

OF31H

koad register B with the adjusted value in register

Save the value in register pair BC on the stack.
Save the value in register pair HL on the stack.

Load register A with the character at the location of
the current input buffer pointer in register pair HL.

Subtract 30H from the ASCII value in register A so
that it will be binary,

Save the adjusted value in register A on the stack.

Go check the current value of the number type flag.

OF36H Jump if the current value in REG1 isn’t an integer.

OF39H

OF3CH

Load register pair HL with the integer value in
REG1.

Load register pair DE with 3277.

Go check to see if the integer value in register pair
HL is greater than or equal to 3277,

OF3FH Jump if the integer value in register pair HL is

greater than or equal to 3277.

Load register D with the MSB of the integer value in
register H.

Load register E with the LSB of the integer value in
register L.

Multiply the integer value in register pair HL by
two.

Multiply the integer value in register pair HL by
two. Register pair HL now holds the original integer
value times four.

Add the original integer value in register pair DE to
the integer value in register pair HL. Register pair
HL now holds the original integer value times five.

Multiply the integer value in register pair HL by
two. Register pair HL now holds the original integer
value times ten.

Get the binary value for the next character from the
stack and put it in register A.

Load register C with the value of the character in
register A.

301

OF48H
OF49H

OF4AH
OF4BH

OF4EH
OF51H
OF52H
OF53H

OF54H
OF57H

OF58H
OF59H

OF5CH
OF5DH

OF5FH

OF62H

OF65H
OF68H
OF6BH

OF6EH

302

- OF4DH

= OF50H

- OF56H

= OF5BH

- OF5EH
- OF61H

- OF64H

- OF67H

- OF6AH

- OF6DH

Add the value of the character in register pair BC to
the integer value in register pair HL.

Load register A with the MSB of the integer value in
register H.

Check to see if the sign bit is set.

Jump if the sign bit is set in the integer value in
register pair HL.

Save the integer value in register pair HL as the
current integer value in REGI.

Get the value from the stack and put it in register
pair HL.

Get the value from the stack and put it in register
pair BC.

Get the value from the stack and put it in register
pair DE.

Jump.

Load register A with the binary value of the charac-
ter in register C.

Save the value in register A on the stack.

Go convert the current value in REG1 to single
precision.

Set the Carry flag.

Jump if the current value in REG1 is double preci-
sion.

Load register pair BC with the exponent and the
MSB of a single precision constant.

Load register pair DE with the NMSB and the LSB
of a single precision constant. Register pairs BC and
Déi now hold a single precision constant equal to
1E6.

Check to see if the single precision value in REG1 is
greater than or equal to 1E6.

Jump if the single precision value in REG1 is greater
than or equal to 1E6.

Go multiply the single precision value in REG1 by
10.

Get the binary value of the character from the stack
and put it in register A.

OF6FH

OF72H
OF74H

OF7?7H
OF7AH
OF7DH
OF7EH
OF81H
OF84H

OF87H
OF89H
O0F89H

OF8CH

OF8FH

OF90H
OF91H

OF94H
OF94H

OF95H

O0F97H

OF71H

OF73H
OF76H

OF79H

OF7CH

OF80H
OF83H
OF86H

OF88H
OF93H
OF8BH

OF8EH

OF93H

OFA6H

OF96H

OF98H

Go add the value in register A to the single precision
value in REG1.

Jump.

Go convert the single precision value in REG1 to
double precision.

Go multiply the double precision value in REG1 by
ten.

Go move the double precision value in REG1 to
REG2,

Get the binary value for the character from the stack
and put it in register A.

Go convert the binary value in register A to single
precision.

Go convert the single precision value in REG1 to
double precision.

Go add the double precision value in REG2 to the
double precision value in REGL.

Jump.
SINGLE PRECISION MATH ROUTINE

Go move the current single precision value in REG1
to the stack.

Go convert the value in register A to single precision
and return with the result in REG1.

Get the exponent and the MSB for the single preci-
lsgign value from the stack and put it in register pair
Get the NMSB and the LSB of the single precision

value from the stack and put it in register pair DE.

Go add the single precision value in REG1 to the
single precision value in register pairs BC and DE.

LEVEL Il BASIC MATH ROUTINE

Load register A with the value of the exponent in
register E.

Check to see if the value of the exponent in register
A is greater than or equal to 10.

Jump if the value of the exponent in register A is
greater than or equal to 10.

303

OF99H

OF9AH

OF9BH

OF9CH

OF9DH

OF9QEH -

OFAQH

OFAZH -
OFA4H -
OFA7H -
OFA7H

OFA8H -

OFABH =~

OFAEH

OFAFH -

OFAFH -

OFB2H
OFB3H -

OFB6H
OFB7H -

304

OF9FH

OFA3H
OFA6H
OFAEH

OFAAH

OFADH

OFBCH

OFB1H

OFBS5SH

OFBY9H

Multiply the value in register A by two.

Multiply the value in register A by two. Register A
now holds the original value of the exponent times
four.

Add the original value of the exponent in register E
to the adjusted value of the exponent in register A.

Multiply the value in register A by two. Register A
now holds the original value of the exponent times
ten.

Add the value of the current character at the location
of the input buffer pointer in register pair HL to the
adjusted value in register A.

Convert the adjusted value in register A to it’s binary
equivalent.

koad register E with the adjusted value in register

Load register E with the maximum exponent.
Jump.

DISPLAY MESSAGE ROUTINE

Save the value in register pair HL on the stack.

Load register pair HL with the starting address of
the IN message.

go display the message pointed to by register pair
L.
Get the value from the stack and put it in register

pair HL.

CONVERT BINARY TO
ASCII AND DISPLAY RESULT

Go save the value in register pair HL as the current
value in REG1.

Zero register A.

Go initialize the input buffer for the ASCII conver-
sion.

Set the flags.
Go convert the integer value in REG1 to an ASCII

string. Return with register pair HL pointing to the
result.

OFBAH

OFBDH
OFBDH
OFBEH

OFC1H
OFC3H
OFC5H
OFC7H
OFC8H
OFCBH

OFCCH
OFCFH

OFD1H
OFD2H
OFD3H

OFD6H
OFD7H

OFD8H
OFD9H
OFDAH

OFDCH
OFDFH

OFBCH

1363H

OFCOH
OFC2H
OFC4H

OFC6H

OFCAH

OFCEH
OFDOH

OFD5H

-~ OFDBH

- OFDEH

go display the message pointed to by register pair
L.

BINARY TO ASCII CONVERSION ROUTINE
Zero register A.

Go initialize the input buffer for the ASCII conver-
sion.

Check the value of the edit flag in register A to see if
the sign is to be included.

Jump if the sign isn’t to be included in the ASCII
string.

Save aplus sign (+) at the location of the input buffer
pointer in register pair HL.

Load register pair DE with the value of the input
buffer pointer 1n register pair HL.

Go determine the value of the sign for the current
value in REG1.

Load register Bair HL with the input buffer pointer in
register pair DE.

Jump if the current value in REGI1 is positive.

Save a minus sign (-) at the location of the input
buffer pointer in register pair HL.

Save the value in register pair BC on the stack.
Save the value in register pair HL on the stack.

Go convert the negative value in REG1 to it’s posi-
tive equivalent.

Get the value from the stack and put it in register
pair HL.

Get the value from the stack and put it in register
pair HL.

Set the flags.
Bump the input buffer pointer in register pair HL.

Save an ASCII zero (0) at the location of the input
buffer pointer in register pair HL.

Load register A with the value of the edit flag.

Load register D with the value of the edit flag in
register A.

305

OFEOH

OFE1lH

OFEAH
OFE7H
OFEAH

OFECH

OFEFH
OFF2H

OFF5H

OFF8H

OFF9H
OFFBH
OFFEH

OFFFH

1001H

1003H

1004H

1005H
1007H

1009H
100AH

306

OFE3H

OFE6H
OFESQH
OFEBH

OFEEH

OFF1H
OFF4H

OFF7H

OFFAH
OFFDH

1000H

1002H

1006H
1008H

fI\I/Iove the edit on/off bit in register A into the Carry
ag.

Load register A with the value of the current number
type flag.

Jump if value is to be edited.

Jump if no edit.

Check to see if the current value in REG1 is single or
double precision.

Jump if the current value in REG1is single or double
precision.

Load register pair BC with zero.

Go convert the integer value in REG1 to an ASCII
string.

Load register pair HL with the starting address of
the input buffer.

Load register B with the character at the location of
the input buffer pointer in register pair HL.

Load register C with a space character.
Load register A with the value of the edit flag.

Load register E with the value of the edit flag in
register A.

Check the value of the edit flag in register A to see if
leading * are to be printed.

Jump if leading * aren’t to be included in the ASCII
string.

Load register A with the character at the location of
the input buffer pointer in register B.

Check to see if the character at the location of the
input buffer pointer in register A is a space.

Load register C with an character.

Jump if the character at the location of the input
buffer pointer in register A isn’t a space.

Load register B with the = character in register C.

Save the * character in register C at the location of
the input buffer pointer in register pair HL.

100BH

100CH

100EH

1010H

1012H

1014H

1016H

1018H

101AH

101CH

101EH

1020H

1022H

1023H

1025H

1026H

1028H
102AH

102BH

100DH

100FH

1011H

1013H

1015H

1017H

1019H

101BH

101DH

101FH

1021H

1024H

1027H

1029H

102CH

Go bump the input buffer pointer in register pair HL
till it points to the next character.

Jump if the character at the location of the input
buffer pointer in register ﬁair HL is the end of the
input buffer character (00H).

Check to see if the character at the location of the
input buffer pointer in register A is an E.

Jump if the character at the location of the input
buffer pointer in register A is an E.

Check to see if the character at the location of the
input buffer pointer in register A is a D.

Jump if the character at the location of the input
buffer pointer in register A is a D.

Check to see if the character at the location of the
input buffer pointer in register A is a D.

Jump if the character at the location of the input
buffer pointer in register A is a 0.

Check to see if the character at the location of the
input buffer pointer in register A is a comma.

Jump if the character at the location of the input
buffer pointer in register A is a comma.

Check to see if the character at the location of the
input buffer pointer in register A is a decimal point.

Jump if the character at the location of the input
buffer pointer in register A isn’t a decimal point.

Decrement the value of the input buffer pointer in
register pair HL.

Save a zero character (0) at the location of the input
buffer pointer in register pair HL.

Load register A with the value of the edit flag in
register E.

Check to see if a $ is to be included in the ASCII
string.

Jump if a $ isn’t to be included in the ASCII string.

Decrement the value of the input buffer pointer in
register pair HL.

Save a § character at the location of the input buffer
pointer in register pair HL.

307

102DH

102EH
1030H
1031H

1032H

1033H
1034H
1037H

103AH

103CH
103DH

103FH
1040H
1042H

1043H

1044H
1045H
1048H
104BH
104CH
104FH
1050H

1051H

308

- 102FH

- 1036H
- 1039H

- 103BH

- 103EH

- 1041H

- 1047H
- 104AH

- 104EH

= 1052H

Load register A with the value of the input flag in
register E,

Check to see if the sign is to follow the ASCII string.
Return if the sign isn't to follow the ASCII string.

Decrement the value of the input buffer pointer in
register pair HL.

Save the character in register B at the location of the
input buffer pointer in register pair HL.

Return.
Save the value of the edit flag in register A,

Load register pair HL. with the starting address of
the input buffer.

Save a space at the location of the input buffer
pointer in register pair HL,

Return.

Set the Carry flag according to whether the current
value in REG1 is single precision or double preci-
sion.

Save the value in register pair HL on the stack.

Adjust the value of the number type in register A.

Multiply the value of the number type in register A
by two.

Load register D with the adjusted value of the
number type in register A.

Bump the value of the number type in register D.
Go adjust the current value in REG1.

Load register pair BC with a default value,

Add the value in register D to the value in register A.
Jump if the number of digits in register A is too large.
Bump the value in register D.

Check to see if the number of digits in register A is
equal to the value in register D.

Jump if the number of digits in register A is greater
than or equal to the value in register D

1053H
1054H

1055H
1057H
1059H

105AH
105BH

105EH
1060H

1063H
1066H

1067H
1068H

106AH

106CH

106EH

1071H

1072H
10744
1075H
1076H

- 1056H
- 1058H

- 105DH
- 105FH
- 1062H

- 1065H

- 1069H

- 106BH

- 106DH

- 1070H

- 10731

- 1077H

Bump the number of digits in register A.

koad register B with the number of digits in register

Load register A with a two.
Make register A equal to zero.

Get the value from the stack and put it in register
pair HL.,

Save the value in register pair AF on the stack.

Go put a comma or decimal point in the input buffer if
necessary,

Save a zero (0) character at the location of the input
buffer pointer in register pair HL.

Go bump the value of the input buffer pointer in
register pair HL if necessary.

Go convert the binary value in REG1 to ASCIIL

Decrement the value of the input buffer pointer in
register pair HL,

Load register A with the value at the location of the
input buffer pointer in register pair HL.

Check to see if the value in register A is a zero
character,

Loop till the character at the location of the input
buffer pointer in register pair HL is not a zero
character,

Check to see if the character at the location of the
input buffer pointer in register A is a decimal point.

Go bump the value of the input buffer pointer in
register pair HL if the character in register A isn't a
decimal point.

Get the value from the stack and put it in register
pair HL.

Jump if done.
Save the value in register pair AF on the stack.
Go check the current value of the number type flag.

Load register A with the starting value for a D or E
character,

309

1078H

1079H
107AH
107BH
107CH

107EH
1081H

1083H
1084H

1085H
1087H
1088H

108AH
108CH
108EH
108FH
1090H

1091H

1092H

310

107DH

1080H
1082H

1086H

1089H

108BH

108DH

Multiply the value of the character in register A by
two and add in the value of the Carry flag from the
number type flag test. Register A will now be equal
to a D or an E depending on the current value of the
number type flag.

Save the character in register A at the location of the
input buffer pointer in register pair HL.

Bump the value of the input buffer pointer in register
pair HL.

Get the value of the exponent from the stack and put
it in register A.

Save a plus sign at the location of the input buffer
pointer in register pair HL.

Jump if the exponent is positive.

Save a minus sign at the location of the input buffer
pointer in register pair HL.

Reverse the value of the exponent in register A.

Bump the value of the exponent in register A so that
it will be positive.

Load register B with an ASCII zero minus one.
Bump the value of the ASCII character in register B.

Subtract ten from the value of the exponent in
register A.

Loop till the value of the exponent in register A is
less than ten.

Adjust the value of the remainder in register A so
that it will be an ASCII character.

Bump the value of the input buffer pointer in register
pair HL.

Save the ASCII character in register B at the loca-
tion of the input buffer pointer in register pair HL.

Bump the value of the input buffer pointer in register
pair HL.

Save the value of the ASCII character in register A at
the location of the input buffer pointer in register
pair HL.

Bump the value of the input buffer pointer in register
pair HL.

1093H

1095H
1096H

1099H
109AH

109BH
109CH

109EH

109FH

10A2H

10A3H
10A6H
10A9H
10ACH

10ADH

10AEH

10BOH

10B3H

10B6H

1094H

1098H

109DH

10A1H

10A5H
10A8H
10ABH

10AFH

10B2H

10B5H

Save an end of the ASCII string character at the
gﬁation of the input buffer pointer in register pair

Load register pair DE with the value of the input
buffer pointer in register pair HL.

Load register pair HL with the starting address of
the ASCII string.

Return.

Bump the value of the input buffer pointer in register
pair HL.

Save the value in register pair BC on the stack.

Check to see if the current number type in REG1 is
single or double precision.

Load register A with the value of the edit flag in
register D.

Jump if the current value in REGI is either single
precision or double precision.

Put the value of the exponential notation flag into the
Carry flag.

Jump if exponential notation is requested.
Load register pair BC with a default value.
Go check to see if commas are requested.

Get the value from the stack and put it in register
pair DE.

Load register A with the number of digits requested
to the left of the decimal point in register D.

Subtract the maximum number of digits to the left of
the decimal point from the number of digits to the
left of the decimal point requested.

Go put leading zeros into the input buffer if the
number of digits to the left of the decimal point
requested is greater than the number of digits to the
left of the decimal point for the maximum length of an
integer value.

Go convert the integer value in REG1 to an ASCII
string.

Load register A with the number of digits to the right
of the decimal point requested in register E.

311

10B7H

10B8H - 10BAH

10BBH
10BCH - 10BEH

10BFH
10CO0H - 10Cz2H
10C3H

10C4H - 10C5H
10C6H

10C7H

10C8H - 10C9H

10CAH -~ 10CCH
10CDH
10CEH - 10DOH
10D1H

10D2H

10D3H
10D4H

10D5H - 10D6H

312

Check to see if there are any digits to the right of the
decimal point requested.

Go decrement the value of the input buffer pointer in
register pair HL if there are no digits to the right of
the decimal point requested.

Decrement the number of digits to the right of the
decimal point in register A.

Go add trailing zeros to the ASCII string if neces-
sary.

Save the value in register pair HL on the stack.
Go edit the ASCII string in the input buffer.

Get the value from the stack and put it in register
pair HL.

Jump if the sign follows the ASCII string.

Save the character in register B at the location of the
input buffer pointer in register pair HL.

Bump the value of the input buffer pointer in register
pair HL.

Save an end of the ASCII string character at the
location of the input buffer pointer in register pair

Load register pair HL with the starting address of
the input buffer pointer.

Bump the value of the input buffer pointer in register
pair HL.

Load register A with the LSB of the address of the
decimal point for the ASCII string.

Subtract the LSB of the input buffer pointer address
in register L from the value in register A.

Subtract the number of digits to the left of the deci-
mal point in register D from the adjusted value in
register A.

Return if the input buffer pointer in register pair HL
points to the start of the ASCII string.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Check to see if the character at the location of the
input buffer pointer in register A is a space.

10D7H
10D9H
10DBH
10DDH
10DEH

10DFH
10EOH
10E3H

10E4H

10E5H

10E7H

10E8H

10EAH

10EBH

10EDH

10EEH

10EFH

10F1H

10F3H

10F4H

10D8H

10DAH

10DCH

10E2H

10E6H

10E9H

10ECH

10FOH

10F2H

Jump if the character at the location of the input
buffer pointer in register pair HL is a space.

Check to see if the character at the location of the
input buffer pointer in register A is a *.

Jump if the character at the location of the input
buffer pointer in register A is a =.

Decrement the value of the input buffer pointer in
register pair HL.

Save the value of the input buffer pointer in register
pair HL on the stack.

Save the value in register pair AF on the stack.
Load register pair BC with the return address.

Save the return address in register pair BC on the
stack.

Go bump the value of the input buffer pointer in
register pair HL till it points to the next character.

Check to see if the character at the location of the
input buffer pointer in register A is a minus sign.

Return if the character at the location of the input
buffer pointer in register A is a minus sign.

Check to see if the character at the location of the
input buffer pointer in register A is a plus sign,

Return if the character at the location of the input
buffer pointer in register A is a plus sign.

Check to see if the character at the location of the
Input buffer pointer in register A is a dollar sign.

Return if the character at the location of the input
buffer pointer in register A is a dollar sign.

Get the return address from the stack and put it in
register pair BC.

Check to see if the character at the location of the
input buffer pointer in register A is an ASCII zero.

Jump if the character at the location of the input
buffer pointer in register A isn’t an ASCII zero.

qu%the value of the input buffer pointer in register
pair HL.

Go bump the value of the input buffer pointer in
register pair HL till it points to the next character.

313

10F5H - 10F6H

10F7H
10F9H

10FAH

10FBH

10FCH
10FEH

10FFH
1102H

1103H
1105H

1106H

1108H
1109H
110AH

110BH

110EH

1110H

1113H

1116H

314

10FDH

1101H

1104H

1107H

110DH

110FH

1112H

1115H

1117H

Jump if the character at the location of the input
buffer pointer inregister A isn’t a numeric character.

Decrement the value of the input buffer pointer in
register pair HL.

Decrement the value of the input buffer pointer in
register pair HL.

Save the character in register A at the location of the
input buffer pointer in register pair HL.

Get the value from the stack and put it in register
pair AF.

Loop till done.

Get the value from the stack and put it in register
pair BC.

Jump.

Get the value from the stack and put it in register
pair AF.

Loop till done.

Get the value from the stack and put it in register
pair HL.

Save a % character at the location of the input buffer
pointer in register pair HL.

Return.
Save the value in register pair HL on the stack.

Check to see if exponential notation is requested by
the edit flag in register A.

Jump if exponential notation is requested by the edit
flag in register A.

Jump if the current value in REG1 is single preci-
sion.

Load register pair DE with the address of the double
precision value to be compared to the current value
in REG1. Register pair DE points to a double preci-
sion constant equal to 1E16.

Go compare the double precision constant pointed to
%}ii léegister pair DE to the double precision value in
1.

Load register D with the maximum length of a dou-
ble precision value.

1118H
111BH

111CH

111DH
1120H
1121H

1123H
1124H

1127H

112AH

112DH
1130H

1132H

1135H
1138H

1139H

113AH

113DH
113EH

111AH Jump if the double precision value in REG1 is less

111FH

1122H

1126H

1129H

112CH

112FH
1131H

1134H
1137H

113CH

than or equal to 1E16H.

Get the value from the stack and put it in register
pair HL.

Get the value from the stack and put it in register
pair BC.

Go convert the double precision value in REG1 to an
ASCII string.

gicrement the input buffer pointer in register pair
Save a % character at the location of the input buffer
pointer in register pair HL.

Return.

Load register pair BC with the exponent and the
MSB of a single precision constant.

Load register pair DE with the NMSB and the LSB
of a single precision constant. Register pairs BC and
Déi now hold a single precision constant equal to
1E16.

Go compare the single precision constant in register

Y&ilé BC and DE to the single precision value in
1

Jump if the single precision value in REG1 is greater
than 1E16.

Load register D with the maximum length of a single
precision value.

Go check the sign of the value in REG1.

Go adjust the current value of REG1.

Get the value from the stack and put it in register
pair HL.

Get the value from the stack and put it in register
pair BC.

Jump if the value in REG1 had to be multiplied to get
it in range.

Save the value in register pair BC on the stack.

Loadregister E with the number of times the current
value in REG1 was divided.

315

113FH

1140H

1141H

1142H
1145H
1148H

114BH
114CH

114FH
1150H
1153H

1154H
11574

1158H
1159H
115AH

115DH

115EH
1161H
316

1144H
1147H

114AH

114EH

1152H

1156H

115CH

1160H

Load register A with the number of digits to the left
of the decimal point requested.

Subtract the maximum length for the current number
type in register D from the number of digits re-
quested in register A.

Subtract the number of times the current value in
REG] was divided in register E from the adjusted
value in register A.

Go put leading zeros into the input buffer if neces-
sary.

Go figure the comma count and the position of the
decimal point.

Go convert the integer portion of the current value in
REG1 to an ASCII string.

Check to see if there are any trailing zeros needed.

Go put trailing zeros into the input buffer if neces-
sary.

Check to see if commas or the decimal point is
needed.

Go put commas and the decimal point into the input
buffer if necessary.

Get the value from the stack and put it in register
pair DE.

Jump.

Load register E with the number of times the current
value in REG1 was multiplied.

Load register A with the number of digits requested
to the right of the decimal point.

Check to see if any digits to the right of the decimal
point was requested.

Go decrement the number of digits requested to the
right of the decimal point if necessary.

Add the number of times the current value was mul-
tiplied in register E to the number of digits to the
right of the decimal point requested in register A.

Jump if the value in REG1 must be adjusted.

Zero register A.

1162H
1163H
11641
1167H
116AH

116BH

116CH
116DH

116EH

116FH

1170H

1171H
1174H
1175H
1176H

1179H
117AH

117DH
117FH

1182H

1183H

- 1166H
- 1169H

- 1173H

1178H

- 117CH

117EH
1181H

- 1185H

Save the value in register pair BC on the stack.
Save the value in register pair AF on the stack.
Go divide the value in REG1 by ten if necessary.
Loop till the value in REG1 is properly adjusted.

Get the value from the stack and put it in register
pair BC.

Load register A with the number of times the value
in REGI was multiplied in register E.

Add the value in register B to the value in register A.

Get the value from the stack and put it in register
pair BC.

koad register E with the adjusted value in register

Add the length of the maximum size for the current
Xalue in register D to the adjusted value in register

Add the number of digits requested for the left of the
decimal point in register B to the adjusted value in
register A.

Jump if there are no digits to the left of the decimal
point.

Subtract the maximum length for the current value in
register D from the adjusted value in register A.

Subtract the value in register E from the adjusted
value in register A.

Go put leading zeros into the input buffer if neces-
sary.

Save the value in register pair BC on the stack.

Go determine the position of the decimal point and
the comma count.

Jump.

Go put leading zeros into the input buffer if neces-
sary.

Load register A with the number of bytes requested
to the right of the decimal point in register C.

Go put a decimal point into the input buffer.

317

1186H

1187H
1188H

1189H

118AH
118DH
118EH
118FH
1190H

1193H
1194H
1195H
1197H

119AH
119BH
119CH
119FH

11A0H

11A3H
11A4H

11A5H
11A8H

11A9H
318

118CH

1192H

1196H

1199H

119EH

11A2H

11A7H

Load register C with the number of digits requested
to the right of the decimal point in register A.

Zero register A.

Subtract the maximum length for the current value in
register D from the value in register A.

Subtract the value in register E from the adjusted
value in register A.

Go put zeros into the input buffer if necessary.
Save the value in register pair BC on the stack.
Load register B with the value in register A.
Load register C with the value in register A.

Go convert the current value in REG1 to an ASCII
string.

Get the value from the stack and put it in register
pair BC.

Check to see if there are any digits to the right of the
decimal point requested.

Jump if there are digits to the right of the decimal
point requested.

Load register pair HL with the position of the deci-
mal point.

Add the value in register E to the value inregister A.
Decrement the adjusted value in register A.
Go put zeros into the input buffer if necessary.

Load register D with the number of digits to the left
of the decimal point requested in register B.

Jump.
Save the value in register pair HL on the stack.
Save the value in register pair BC on the stack.

Go convert the integer value in REG1 to a single
precision value.

Get the value from the stack and put it in register
pair DE.

Zero register A.

11AAH

11ADH

11BOH

11B2H
11B5H
11B6H
11B9H

11BAH

11BBH
11BCH

11BDH

11BEH
11BFH

11C2H

11C3H

11CA4H

11C5H
11C7H

11C9H

11CAH
11CBH

- 11ACH

~ 11AEH

- 11B1H

-~ 11BA4H

11B8H

= 11Cl1H

- 11C6H
- 11C8H

Jump if the current value in REG1 is single preci-
sion,

Load register E with the maximum length of a double
precision value.

Load register E with the maximum length of a single
precision value.

Go check the sign for the current value in REG1,
Set the Carry flag.
Go adjust the current value in REG1 if it’s nonzero.

Get the value from the stack and put it in register
pair HL.

Get the value from the stack and put it in register
pair BC.

Save the value in register pair AF on the stack.

Load register A with the number of digits to the right
of the decimal point requested in register C,

Check to see if there are any digits to the right of the
decimal point requested.

Save the value in register pair AF on the stack.

Go decrement the number of digits requested to the
right of the decimal point in register A if necessary.

Add the number of digits requested for the left of the

decimal point in register B to the number of digits
Kequested to the right of the decimal point in register

Load register C with the adjusted value in register
A

Load register A with the value of the edit flag in
register D,

Check to see if the sign s to follow the ASCII string.

Set the Carry flag according to the sign following the
ASCII string test.

Adjust register A so that it will reflect the sign
following the ASCII string test.

Load register D with the value in register A.

Add the value in register C to the value in register A.

319

11CCH

11CDH

11CEH
11CFH
11DOH

11D3H

11D6H

11D7H

11D8H
11D9H
11DAH
11DDH

11DEH
11DFH

11EOH

11E1lH
11E3H

11EAH
11E6H

11E9H

11EAH
11EDH

320

- 11D2H

- 11D5H

-~ 11DCH

- 11E5H
- 11EBH

- 11ECH

Load register C with the adjusted value in register
A.

Subtract the value in register E from the adjusted
value in register A.

Save the value in register pair AF on the stack.
Save the value in register pair BC on the stack.

Go divide the current value in REG1 by ten if neces-
sary.

Loop till the current value in REG1 is properly
adjusted.

Get the value from the stack and put it in register
pair BC.

Get the value from the stack and put it in register
pair AF.

Save the value in register pair BC on the stack.
Save the value in register pair AF on the stack.
Jump if the value in register A is negative.
Zero register A.

Invert the value in register A.

Bump the value in register A so that it will be
positive.

Add the number of digits requested to the left of the
decimal point in register B to the adjusted value in
register A.

Bump the adjusted value in register A.

Add the value of the maximum length for the current
number type in register D to the adjusted value in
register A.

Load register C with zero.

Go convert the current value in REG1 to an ASCII
string.

Get the value from the stack and put it in register
pair AF.

Go put zeros into the input buffer if necessary.

Get the value from the stack and put it in register
pair BC.

11EEH

11EFH

11F2H

11F3H

11F5H
11F6H

11F7H

11F8H
11F9H

11FCH

11FDH

11FEH
1201H
1202H
1203H
1204H
1205H

1208H

120BH

120DH

1210H

- 11F1H

- 11F4H

- 11FBH

- 1200H

- 1207H

- 120AH

~ 120CH

- 120FH

- 1212H

Get the value from the stack and put it in register
pair AF.

Go decrement the input buffer pointer in register
pair HL if necessary.

Get the value from the stack and put it in register
pair AF.

Jump if the Carry flag was set during the first pass.
Add the value in register E to the value in register A.
Subtract the number of digits to the left of the deci-
mal point requested in register B from the adjusted
value in register A.

Subtract the value in register D from the value in
register A.

Save the value in register pair BC on the stack.

Go figure the value of the exponent for the current
value in REG1.

Load register pair HL with the value of the input
buffer pointer in register pair DE.

Get the value from the stack and put it in register
pair DE.

Jump.

Save the value in register pair DE on the stack.
Zero register A.

Save the value in register pair AF on the stack.
Go check the current value of the number type flag.

Jump if the current value in REGI is single preci-
sion.

Load register A with the value of the exponent for
the double precision value in REG1.

Check to see if the double precision value in REG1
uses more than 16 bits of precision for the integer
portion of the double precision value.

Jump if the double precision value in REG1 uses
more than 16 bits of precision for it’s integer portion.

Load register pair DE with the starting address for
the double precision constant equal to 1E10.

321

1213H

1216H
1219H

121CH

121DH
121FH
1220H
1222H
1225H
1226H

1229H

122CH

122FH
1232H
1234H

1237H

123AH
123DH

123EH
1241H
1242H

322

1215H

1218H

121BH

1Z1EH

1221H
1224H

1228H

122BH

122EH

1231H

1233H
1236H

1239H

123CH

1240H

1243H

Load register pair HL with the starting address for
REG2.

Go move the double precision constant into REG2,

Go multiply the double precision value in REG1 by
the double precision constant in REG2.

Get the value from the stack and put it in register
pair AF.

Subtract ten from the value in register A.

Save the value in register pair AF on the stack.
Jump.

Go compare the current value in REG1 to 999999.5,
Go check the current value of the number type flag.

Jump if the current value in REG1 is double preci-
sion.

Load register pair BC with the exponent and the
MSB of a single precision constant.

Load register pair DE with the NMSB and the L.SB
of a single precision constant. Register pairs BC and
DE are now equal to a single precision constant of
99,999.945.

Go compare the single precision value in REG1 to
the single precision constant in register pairs BC
and DE.

Jump.

Load register pair DE with the starting address of a
double precision constant equal to 9.9921E14.

Go compare the double precision constant pointed to
by register pair DE to the double precision value in
REGI.

Jump if the current value in REG1 is greater than the

constant compared to it.

Get the value from the stack and put it in register
pair AF.

Go multiply the current value in REG1 by ten.
Save the value in register pair AF on the stack.

Jump.

1244H

1245H
1248H
1249H

124CH

124DH

124EH
124FH
1250H

1253H

1256H

1259H
125CH
125EH

1261H

1264H

1265H
1268H
1269H

126AH
126BH

- 1247H

- 124BH

- 1252H
- 1255H

~ 1258H

~ 125BH

- 125DH
- 1260H

- 1263H

- 1267H

Ge;t the value from the stack and put it in register
pair AF,

Go divide the current value in REG1 by ten.
Save the value in register pair AF on the stack.

Go check to see if the current value in REG1 is in
range,

Get the value from the stack and put it in register
pair AF,

Get the value from the stack and put it in register
pair DE.,

Return.
Go check the current value of the number type flag.

Jump if the current value in REG1 is double preci-
sion.

Load register pair BC with the exponent and the
MSB of a single precision constant.

Load register pair DE with the NMSB and the LSB
of a single precision constant. Register pairs BC and
DE are now equal to a single precision constant of
999,999.5.

Go compare the single precision constant in register
pairs BC and DE to the single precision value in
REG1.

Jump.

Load register pair DE with the starting address of a
double precision constant equal to 1E16H.

Go compare the double precision constant pointed to
by register pair DE to the double precision value in
REGI.

Get the return address from the stack and put it in
register pair HL.

Jump if the current value in REG1 isn't in range.
Jump.

Check to see if the value in register A is equal to
zero,

Return if the value in register A is equal to zero.

Decrement the value in register A.

323

126CH

126EH
126FH
1271H
1273H
1274H

1277H

1279H
127AH
127BH
127DH
127EH

127FH
1280H

1281H
1282H
1284H
1286H
1288H
1289H
128CH
128EH
128FH
1290H
1291H
1292H

324

126DH

1270H
1272H

1276H

1278H

127CH

1283H

1285H
1287H

128BH
128DH

1293H

Save a zero character at the location of the input
buffer pointer in register pair HL.

Bump the input buffer pointer in register pair HL.
Jump.

Jump if not done.

Return if done.

Go put decimal point and commas into the input
buffer.

Save a zero character at the location of the input
buffer pointer in register pair HL.

Bump the input buffer pointer in register pair HL.
Decrement the counter in register A.

Jump.

Load register A with the value in register E.

Add the number of digits in register D to the value in
register A.

Bump the adjusted value in register A.

Load register B with the adjusted value in register
A.

Bump the value in register A.
Subtract three from the adjusted value in register A.
Loop till the value in register A is divided by three.

Adjust the value in register A for the comma count.

Load register C with the comma count in register A.
Load register A with the value of the edit flag.
Check to see if commas are requested.

Return if commas are requested.

Zero the comma counter in register C.

Return.

Decrement the decimal point counter in register B.

Jump if the decimal point position hasn't been
reached.

1294H
1296H

1299H
129AH
129BH
129CH
129DH
129EH

12A0H
12A1H
12A3H
12A4H
12A5H

12A6H

12A9H
12AAH
12ABH

12AEH
12B1H

12B4H

12B7H

12B8H
12BBH

- 1295H

- 1298H

- 129FH

- 12A2H

- 12A8H

- 12ADH

- 12BOH

- 12B3H

- 12B6H

- 12BAH

Save a decimal point at the location of the input
buffer pointer in register pair HL.

Save the address of the decimal point position in
register pair HL.

Bump the input buffer pointer in register pair HL.
Zero the comma counter in register C.

Return.

Decrement the comma counter in register C.
Return if this location doesn’t need a comma.

Save a comma at the location of the input buffer
pointer in register pair HL.

Bump the input buffer pointer in register pair HL.
Set the comma counter in register C to three.
Return.

Save the value in register pair DE on the stack.

Go check the current value of the number type flag.

Jump if the current value in REG1 is single preci-
sion.

Save the value in register pair BC on the stack.
Save the value in register pair HL on the stack.

Go move the double precision value in REG1 to
REG2.

Load register pair HL with the starting address of a
double precision constant equal to 0.5.

Go move the double precision value pointed to by
register pair HL to REG1.

Go add the double precision value in REG2 to the
double precision value in REG1. Return with the
double precision result in REG1.

Zero register A.

Go adjust the double precision result in REG1.

Get the value from the stack and put it in register
pair HL.

325

12BCH

12BDH

12COH

12C2H

12C5H
12C6H
12C7H
12C8H
12C9H

12CBH
12CCH

12CDH
12CEH
12D1H

12D3H

12D4H

12D7H

12D8H

12D9H

12DAH

326

- 12BFH

- 12C1H

- 12C4H

- 12CAH

- 12DOH

- 12D2H

- 12D6H

Get the value from the stack and put it in register
pair BC.

Load register pair DE with the starting address of a
series of double precision constants for the binary to
ASCII conversion.

Load register A with the number of times to divide
the double precision value in REG1.

Go put a comma or a decimal point into the input
buffer if necessary.

Save the value in register pair BC on the stack.
Save the value in register pair AF on the stack.
Save the value in register pair HL on the stack.
Save the value in register pair DE on the stack.

Load register B with the ASCII value for a zero
character minus one.

Bump the ASCII value for the digit in register B.

Get the value from the stack and put it in register
pair HL.

Save the value in register pair HL on the stack.

Go subtract the double precision value pointed to by
register pair HL from the double precision value in
REGL1.

Loop till the value of the digit is found.

Get the value from the stack and put it in register
pair HL.

Go add the double precision value pointed to by
reglster pair HL to the double precision remainder

n REG1. Return with the correct remainder in
REGl

Load register pair DE with the starting address for
the next double precision value in register pair HL.

Get the value from the stack and put it in register
pair HL.

Save the ASCII value for the digit in register B at

the location of the input buffer pointer in register
pair HL.

Bump the input buffer pointer in register pair HL.

12DBH

12DCH

12DDH
12DEH
12EOH
12E1H
12EZ2H

12E5H

12E8H
12EAH
12EBH
12ECH

12EFH
12F0H

12F3H

12F6H

12F7H

12F8H
12F9H

12FCH
12FDH

1300H
1301H

12DFH

12E4H

12E7H

12E9H

12EEH

12F2H

12F5H

12FBH

12FFH

Get the value from the stack and put it in register
pair AF.

Get the value from the stack and put it in register
pair BC.

Decrement the counter value in register A.
Loop till the ASCII string has been figured.
Save the value in register pair BC on the stack.
Save the value in register pair HL on the stack.

Load register pair HL with the starting address for
REG1.

Go move the value pointed to by register pair HL
into REG1 as a single precision value.

Jump.
Save the value in register pair BC on the stack.
Save the value in register pair HL on the stack.

Go add a single precision value of 0.5 to the single
precision value in REG1.

Bump the value in register A.

Go convert the single precision value in REG1 to an
integer.

Go move the single precision value in register pairs
BC and DE into REGL.

Get the value from the stack and put it in register
pair HL.

Get the value from the stack and put it in register
pair BC.

Zero register A.

Load register pair DE with the starting address for a
series of integer values.

Complement the Carry flag.

Go put a decimal point or a comma into the input
buffer if necessary.

Save the value in register pair BC on the stack.

Save the value in register pair AF on the stack.

327

1302H
1303H
1304H - 1306H

1307H
1308H - 1309H

130AH
130BH

130CH

130DH
130EH
130FH

1310H

1311H
1312H
1313H

1314H

1315H
1316H

1317H

328

Save the value in register pair HL on the stack.
Save the value in register pair DE on the stack.

Go move the single precision value in REG1 into
register pairs BC and DE.

Get the value from the stack and put it in register
pair HL.

Load register B with the ASCII value for a zero
character minus one.

Bump the ASCII value from the digit in register B.

Load register A with the LSB of the single precision
value in register E.

Subtract the value at the location of the memory
pointer in register pair HL from the value of the LSB
of the single precision value in register A.

Load register E with the adjusted LSB of the single
precision value in register A.

Bump the value of the memory pointer in register
pair HL.

Load register A with the NMSB of the single preci-
sion value in register D,

Subtract the value at the location of the memory
pointer in register pair HL from the value of the
NMSB of the single precision value in register A.

Load register D with the adjusted NMSB of the
single precision value in register A.

Bump the value of the memory pointer in register
pair HL.

Load register A with the MSB of the single precision
value in register C.

Subtract the value at the location of the memory
ointer in register pair HL from the value of the
SB of the single precision value in register A.

Load register C with the adjusted MSB of the single
precision value in register A,

Decrement the value of the memory pointer in
register pair HL.

Decrement the value of the memory pointer in
register pair HL.

1318H - 1319H Loop until the ASCII value for the digit has been fig-

131AH - 131CH

131DH

131EH
1321H
1322H

1323H

1324H
1325H
1326H

1327H
1329H

132AH
132BH

132DH
132FH
1330H

1333H
1335H

1338H

- 1320H

~ 1328H

- 132CH

- 132EH

- 1332H
- 1334H

- 1337H

ured.

Go add the value at the location of the memory
pointer in register pair HL to the value in register
pairs BC and DE.

Bump the value of the memory pointer in register
pair HL.

Go save the sinl%le precision remainder in register
pairs BC and DE.

Load register pair DE with the address of the next
value to divide the current value in REG1 by.

Get the value from the stack and put it in register
pair HL.

Save the ASCII value for the digit in register B at the
lf(fiation of the input buffer pointer in register pair
quﬁthe value of the input buffer pointer in register
pair HL.

Get the value from the stack and put it in register
pair AF.

Get the value from the stack and put it in register
pair BC.

Loop till the integer portion is found.

Bump the value of the memory pointer in register
pair DE.

Bump the value of the memory pointer in register
pair DE.

Load register A with the number of digits for the
ASCII string to be figured.

Jump.
Save the value in register pair DE on the stack.

Load register pair DE with the starting address of
the integer value for figuring the ASCII string.

Load register A with the number of digits for the
ASCII string to be figured.

Go put a decimal point or a comma into the input
buffer if necessary.

Save the value in register pair BC on the stack.

329

1339H
133AH
133BH

133CH

133DH

133EH

133FH
1340H
1341H
1342H
1343H
1346H

1348H
1349H

134AH

134BH
134CH

134DH

134EH

330

- 1345H
- 1347H

Save the value in register pair AF on the stack.
Save the value in register pair HL on the stack.

Load register pair HL with the value of the memory
pointer in register pair DE.

Load register C with the LSB for the integer value at
gllf location of the memory pointer in register pair

Bump the value of the memory pointer in register
pair HL.

Load register B with the MSB for the integer value
at the location of the memory pointer in register pair
HL.

Save the integer value in register pair BC on the
stack.

Bump the value of the memory pointer in register
pair HL.

Exchange the integer value on the stack with the
value of the memory pointer in register pair HL.

Load register Eair DE with the integer value in
register pair HL.

Load register pair HL with the integer value in
REGI1.

Load register B with the ASCII value for a zero
character minus one.

Bump the ASCII value for the digit in register B.

Load register A with the LSB of the integer value in
register L.

Subtract the value of the LSB of the integer value in
register E from the value of the LSB of the integer
value in register A.

Load register L with the adjusted value of the LSB of
the integer value in register A.

Load register A with the value of the MSB of the
integer value in register H.

Subtract the MSB of the integer value in register D
from the value of the MSB of the integer value in
register A.

Load register H with the adjusted value of the MSB
of the integer value in register A.

134FH - 1350H Loop till the ASCII value for the digit has been

1351H
1352H

1355H
1356H

1357H

1358H
1359H
135AH

135BH
135CH
135EH

1361H
1362H

1363H
1364H

1364H
136CH
136CH

1374H

- 1354H

- 135DH
- 1360H

- 136BH
- 136BH
- 1373H
- 1373H

- 137BH

figured.

Add the integer value in register pair DE to the
integer value in register pair HL.

Save the integer remainder in register pair HL in
REGL.

Get the value from the stack and put it in register
pair DE.

Get the value from the stack and put it in register
pair HL.

Save the ASCII value for the digit in register B at the
?ﬁation of the input buffer pointer in register pair
Bump the value of the input buffer pointer in register

pair HL.

Get the value from the stack and put it in register
pair AF.

Get the value from the stack and put it in register
pair BC.

Decrement the value of the counter in register A.
Loop till all of the digits have been figured.

Go put a decimal point or comma into the input buffer
if necessary.

Save the value in register A at the location of the
input buffer pointer in register pair HL.

Get the value from the stack and put it in register
pair DE.

Return.

DOUBLE PRECISION
CONSTANT STORAGE LOCATION

}11\ double precision constant equal to 1E10 is stored
ere.

DOUBLE PRECISION
CONSTANT STORAGE LOCATION

A double precision constant equal to 9.9921E14 is
stored here.

DOUBLE PRECISION
CONSTANT STORAGE LOCATION

331

1374H
137CH
137CH
1384H
1384H
138CH
13D2H

13DAH
13E1H
13E2H
13E5H

13E6H
13E7H
13E7H
13EAH

13EDH

13FOH
13F2H
13F2H
13F5H

13F6H

332

137BH
1383H
1383H
138BH
138BH
13D1H
13D9H

13EOH
13E6H
13E4H

13F1H
13E9H
13ECH

13EFH

13F1H
1478H
13F4H

}/} double precision constant equal to 1E16 is stored
ere.

DOUBLE PRECISION
CONSTANT STORAGE LOCATION

A double precision constant equal to 0.5 is stored
here.

DOUBLE PRECISION
CONSTANT STORAGE LOCATION

A double precision constant equal to 1E16 is stored
here.

DOUBLE PRECISION
INTEGER CONSTANT STORAGE LOCATION

SINGLE PRECISION
INTEGER CONSTANT STORAGE LOCATION

INTEGER CONSTANT STORAGE LOCATION
LEVEL II BASIC MATH ROUTINE

Load register pair HL with the return address.
Exchange the value of the jump address on the stack
glﬁh the value of the return address in register pair
Jump to the address in register pair HL.

LEVEL II BASIC SQUARE ROOT ROUTINE
Go move the current value in REG1 on to the stack.

Load register pair HL with the starting address of a
single precision constant equal to 0.5.

Go move the single precision constant pointed to by
register pair HL into REG1.

Jump.

LEVEL II BASIC X1 Y ROUTINE

Go convert the value in REG1 to single precision.
Get the exponent and the MSB of the single preci-
sélgn value from the stack and put it in register pair

Get the NMSB and the LSB of the single precision
value from the stack and put it in register pair DE.

13F7H
13FAH
13FBH
13FDH
1400H

1401H

1404H
1405H
1408H
1409H
140AH
140BH
140DH
1410H
1413H
1414H

1415H

1418H

13F9H

13FCH

13FFH

14034

1407H

140CH
140FH

1412H

1417H

Go check the sign for the single precision value in
REG1.

Load register A with the value of the exponent of the
single precision value in register B.

Jump if the single precision value in REG1 is equal to
Zero.

Jump if the single precision value in REG1 is posi-
tive.

Check to see if the single precision value in register
pairs BC and DE is equal to zero.

Go to the Level Il BASIC error routine and display a
/0 ERROR message if the single precision value in
REG1 is negative and the single precision value in
register pairs BC and DE is equal to zero.

Check to see if the single precision value in register
pairs BC and DE is equal to zero.

Jump if the single precision value in register pairs
BC and DE is equal to zero,

Save the NMSB and the LSB of the single precision
value in register pair DE on the stack.

Save the exponent and the MSB of the single preci-
sion value in register pair BC on the stack.

Load register A with the value of the MSB of the
single precision value in register C.

Mask the MSB of the single precision value in
register A,

Go move the single precision value in REG1 into
register pairs BC and DE.

Jump if the single precision value on the stack is
positive.

Save the NMSB and the LSB of the single precision
value in register pair DE on the stack.

Save the exponent and the LSB of the single preci-
sion value in register pair BC on the stack.

Go figure the integer portion of the single precision
value in REG1.

Get the exponent and the MSB of the single preci-

333

1419H
141AH
141BH
141EH
141FH
1420H
1421H
1422H
1425H
1426H

1429H
142CH
142FH

1430H
1431H
1434H
1435H

1436H

334

- 141DH

1424H

1428H

142BH
142EH

1433H

1438H

sion value from the stack and put it in register pair

Get the NMSB and the LSB of the single precision
value from the stack and put it in register pair DE.

Save the value in register pair AF on the stack.
Go compare the single precision value in register
pairs BC and DE to the single precision value in
REGI1.

Get the value from the stack and put it in register
pair HL.

Load register A with the value of the exponent in
register H

Put bit zero of the exponent in register A into the
Carry flag.

Get the value from the stack and put it in register
pair HL.

Save the value in register pair HL as the exponent
and the MSB of the single precision value in REG1.

Get the value from the stack and put it in register
pair HL.

Save the value in register pair HL as the NMSB and
the LSB of the single precision value in REG1.

Jump if the exponent is an odd number.
Go invert the value of the exponent.

Save the NMSB and the LSB of the single precision
value in register pair DE on the stack.

Save the exponent and the MSB of the single preci-
sion value in register pair BC on the stack.

Go figure the LOG for the current value in REG1.

Get the exponent and the MSB of the single preci-

sion value from the stack and put it in register pair
BC.

Get the NMSB and the LSB of the single precision
from the stack and put it in register pair DE.

Go multiply the single precision value in register
pairs BC and DE by the current single precision
value in REGL.

1439H
143CH

143FH

1442y

14454

1448H

144AH
144DH

1450H
1452H
1454H

1457H
1458H

145BH
1458H
1461H

1462H

1463H

143BH
143EH

1441H

14400

14471

1449H

144CH
144FH

1451H
1453H
1456H

145AH
145DH

1460H

Go move the single precision value in REG1 on to
the stack.

Load register pair BC with the exponent and MSB of
a single precision constant.

Load register pair DE with the NMSB and the LSB
of a single precision constant. Register pairs BC and
DE are now equal to a single precision constant of
1.442695.

Go multiply the single precision value in REGI by
the single precision constant in register pairs BC
and DE.

Load register A with the value of the exponent for
the single precision value in REG1.

Check to see if the integer portion of the single
precision value in REG1 uses more than 7 bits of
precision.

Jump if the single precision value in REGI uses
more than 7 bits of precision for it's integer portion.

Go get the integer portion of the value in REG1 and
return with it in register A.

Adjust the value in register A.
Adjust the value in register A.

Go check the exponent for the single precision value
in REG1 if the value in register A has overflowed.

Save the value in register pair AF on the stack.

Load register pair HL with the starting address for a
single precision constant equal to 1.0.

Go add the single precision constant pointed to by
register pair HL to the current value in REG1.

Go multiply the single precision value in REG1 by
0.693147.

Get the value from the stack and put it in register
pair AF.

Get the exponent and the MSB of the single preci-
ggn value from the stack and put it in register pair

Get the NMSB and the LSB of the single precision
value from the stack and put it in register pair DE.

335

1464H
1465H
1468H
146BH

146EH
1471H

1474H

14754
1476H
1479H

1479H
147AH
147EH
1482H
1486H
148AH
148EH

1492H

1496H

149AH
149AH

336

- 1467H

- 146AH

146DH

1470H
~ 1473H

- 1478H
- 1499H

- 147DH

- 1481H

- 1485H

1489H

148DH

Save the value in register pair AF on the stack,

Go subtract the single precision value in REG1 from
the single precision value in register pairs BC and
DE. Return with the result in REGI.

Go make the current single precision value in REG1
positive.

Load register pair HL with the starting address for a
series of computations.

Go do the series of computations.

Load register pair DE with zero.

Get the value from the stack and put it in register
pair BC.

Load register C with zero.
Jump.

SINGLE PRECISION
CONSTANT STORAGE LOCATION

The number of single precision constants which fol-
low is stored here,

A single precision constant equal to
—0.00014171607 is stored here.

A single precision constant equal to 0.00132988204
is stored here.

A single precision constant equal to
—0.00830136052 is stored here.

A single precision constant equal to 0.04165735095
is stored here,

A single precision constant equal to
—0.16666531543 is stored here.

~ 1491H A single precision constant equal to 0.49999996981

- 1495H
- 1499H

- 14C8H
- 149CH

is stored here.

A single precision constant equal to — 1.0 is stored
here.

A single precision constant equal to 1.0 is stored
here.

LEVEL II BASIC MATH ROUTINE

Go move the single precision value in REG1 on to
the stack.

149DH
14A0H

14A1H
14A2H
14A5H
14A8H

14A9H

14ACH

14ADH
14AFEH

14B2H

14B3H

14BL4H
14B5H
14B6H
14B7H
14B8H

14B9H

14BAH

- 149FH

- lhAlH

- 14A7H

- 14ABH

- 14BOH

Load register pair DE with the return address.

Save the return address in register pair DE on the
stack,

Save the memory pointer in register pair HL on the
stack.

Go move the single precision value in REG1 into
register pairs BC and DE.

Go square the single precision value in REG1 into
register pairs BC and DE.

Get the value of the memory pointer from the stack
and put it in register pair HL,

Go move the single precision value in REG1 on to
the stack.

Load register A with the number of values to be
figured at the location of the memory pointer in
register pair HL.

Bump the value of the memory pointer in register
pair HL.

Go move the single precision value at the location of
the memory pointer in register pair HL into REG1.

Get the number of values to be figured from the stack
and put it in register A.

Get the exponent and the MSB of the single preci-
sBign value from the stack and put it in register pair

Get the NMSB and the LSB of the single precision
value from the stack and put it in register pair DE.

Decrement the value of the counter for the value to
be figured in register A.

Return if the series of computations has been com-
pleted.

Save the NMSB and the LSB of the single precision
value in register pair DE on the stack.

Save the exponent and the MSB of the single preci-
sion value in register pair BC on the stack.

Save the value of the counter in register A on the
stack.

Save the value of the memory pointer in register pair
HL on the stack.

337

14BBH

14BEH

14BFH

14C2H

14C3H

14C6H
14C7H
14C9H
14COH
14CCH

14CDH

14CEH

14D1H
14D2H
14D5H
14D6H
14D9H

14DCH

338

14BDH

14C1H

14C5H

14C8H
1540H
14CBH

14DOH

14D4H

14D8H

14DBH

Go multiply the single precision value in register
;I){ai% BC and DE by the single precision value in
EGLl.

Get the value of the memory pointer from the stack
and put it in register pair HL.

Go put the single precision value at the location of
the memory pointer in register pair HL in register
pairs BC and DE.

Save the value of the memory pointer in register pair
HL on the stack.

Go add the single precision value in REG1 to the
single precision value in register pairs BC and DE.
Return with the result in REG1.

Get the value of the memory pointer from the stack
and put it in register pair HL.

Jump.
LEVEL II BASIC RND ROUTINE

Go convert the current value in REG1 to an integer

and return with the integer result in register pair
HL.

Load register A with the value of the MSB for the
integer value in register H.

Check to see if the integer value in register pair HL
is negative.

Got to the Level Il BASIC error routine and display a
FC ERROR message if the integer value in register
pair HL is negative.

Check to see if the integer value in register pair HL
is equal to zero.

Jump if the integer value in register pair HL is equal
to zero.

Save the integer value in register pair HL on the
stack.

Go get a RND(0) value and return with the single
precision result in REG1.

Go move the single precision value in REG1 into
register pairs BC and DE.

Load register pair HL with the NMSB and the LSB of
the single precision value in register pair DE.

14DDH

14DEH
14DFH

14E2H

14E3H

14ELH

14E7H

14EAH

14EDH
14FOH

14F3H

14F4H
14F7H
14F8H

14FAH
14FCH

14FDH

14FEH

14E1H

14E6H

14E9H

14ECH

14EFH
14F2H

14F6H

14F9H
14FBH

Exchange the integer value on the stack with NMSB
and the LSB of the single precision value in register
pair HL.

Save the exponent and the MSB of the single preci-
sion value in register pair BC on the stack.

Go convert the integer value in register pair HL to
single precision and return with the result in REG1.

Get the exponent and the MSB of the single preci-
sBi?:n value from the stack and put it in register pair

Get the NMSB and the LSB of the single precision
value from the stack and put it in register pair DE.

Go multiply the single precision value in register

pairs BC and DE by the single precision value in

EE%L Return with the single precision result in
EGI.

Load register pair HL with the starting address of a
single precision constant equal to 1.0.

Go add the single precision constant pointed to by
register pair HL to the single precision value in
REG1. Return with the single precision result in

REG1.
Jump.

Load register pair HL with the starting address for a
table used for figuring random numbers.

Save the value of the memory pointer in register pair
HL on the stack.

Load register pair DE with zero.

Load register C with zero.

Load register H with the counter value.

Load register L with a counter value.

Exchange the counters in register pair HL with the
NMSB and the LSB of the random number in regis-
ter pair DE.

Multiply the NMSB and the LSB of the random
number in register pair HL by two.

Exchange the NMSB and the LSB of the random
number in register pair HL with the counters in
register pair DE.

339

14FFH
1500H
1501H
1502H
1503H

1504H
1505H

1506H

1507H
150AH

150BH

150EH

150FH
1510H
1513H
1514H
1515H

1516H
1517H
151AH

340

Load register A with the MSB of the random number
in register C.

Multiply the MSB of the random number in register
A by two.

Load register C with the adjusted MSB of the ran-
dom number in register A.

Exchange the counter values in register pair HL
with the value of the memory pointer on the stack.

Load register A with the value at the location of the
memory pointer in register pair HL.

Multiply the value in register A by two.

Save the adjusted value in register A at the location
of the memory pointer in register pair HL.

Exchange the memory pointer in register pair HL
with the counter values on the stack.

-~ 1509H Jump if the table value hasn’t overflowed.

- 150DH

- 1512H

- 15194

Save the counter values in register pair HL on the
stack.

Load register pair HL with the NMSB and the LSB of
the random number seed.

Add the NMSB and the LSB of the random number in
register pair DE to the NMSB and the LSB of the
random number seed in register pair HL.

Load register pair DE with the adjusted NMSB and
LSB of the random number in register pair HL.

Loaéi register A with the MSB of the random number
seed.

Add the MSB of the random number in register C to
the MSB of the random number seed in register A.

Load register C with the adjusted MSB of the ran-
dom number in register A.

Get the counter values from the stack and put it in
register pair HL.

Decrement the counter in register L.
Loop till the above has been done eight times.

Exchange the counter values in register pair HL
with the memory pointer on the stack.

151BH
151CH

151DH

151EH
1521H

1522H
1525H
1526H

1529H
152CH

152EH
152FH
1532H
1533H
1535H
1538H

1539H

153AH

153BH

1520H

1524H

1528H

152BH
152DH

1531H

1534H

1537H

Bump the value of the memory pointer in register
pair HL.

Exchange the value of the memory pointer in regis-
ter pair HL with the counter value on the stack.

Decrement the counter value in register H.

Loop till the random number has been figured.

Get the value from the stack and put it in register
pair HL.

Load register pair HL with the value to reseed the
random number seed.

Add the value in register pair HL to the NMSB and
the LSB of the random number in register pair DE.

Save the adjusted value in register pair HL as the
NMSB and the LSB of the random number seed.

Go set the current number type to single precision.

Load register A with a value to reseed the random
number seed.

Add the MSB of the random number in register C to
the value in register A.

Save the adjusted value in register A as the MSB of
the random number seed.

Load register pair DE with the NMSB and the LSB
of the random number in register pair HL.

Load register B with a value for the sign and the
exponent.

Load register pair HL with the address for the sign
value storage location.

Save the sign result in register B at the location of
the memory pointer in register pair HL.

Decrement the value of the memory pointer in
register pair HL.

Save the value of the exponent in register B at the
location of the memory pointer in register pair HL.

Load register C with the value of the MSB for the
single precision random number in register A.

153CH ~ 153DH Zero the value of the exponent in register B.
153EH - 1540H Jump.

341

1541H
1541H

1544H

1547H
1547H

154AH

154DH

1550H

1553H

1554H

15551

1558H
155BH

155EH

155FH

1560H

1563H

1566H
342

1546H
1543H

1546H

158AH
1549H

154CH

154FH

1552H

15574

155AH

155DH

1562H

1565H

1568H

LEVEL HII BASIC COS ROUTINE

Load register pair HL with the starting address of a
single precision constant equal to 1.57079637029.

Go add the single precision constant pointed to by
register pair HL to the single precision value in
REGL.

LEVEL II BASIC SIN ROUTINE

Go move the current single precision value in REG1
on to the stack.

Load register pair BC with the exponent and the
MSB of a single precision constant.

Load register pair DE with the NMSB and the LSB
of a single precision constant. Register pairs BC and
DE now hold a single precision constant equal to
6.2831855.

Go move the single precision value in register pairs
BC and DE into REG1.

Get the exponent and the MSB of the single preci-
sion value from the stack and put it in register pair
BC.

Get the NMSB and the LSB of the single precision
value from the stack and put it in register pair DE.

Go divide the single precision value in register pairs
BC and DE by the single precision value in REG1.
Return with the single precision result in REG1.

Go move the single precision result in REG1 onto
the stack.

Go figure the integer portion for the single precision
value in REG1.

Get the exponent and the MSB of the single preci-
sion value from the stack and put it in register pair
BC.

Get the NMSB and the LSB of the single precision
value from the stack and put it in register pair DE.

Go subtract the single precision value in REG1 from
the single precision value in register pairs BC and
DE. Return with the result in REG1.

Load register pair HL with the starting address of a
single precision constant equal to 0.25.

Go subtract the single precision value in REG1 from

1569H

156CH
156DH

1570H

1573H

1576H

15774
1578H

157BH

157EH

1581H
1582H
1585H
1588H
158BH
158BH
158FH

158FH

1593H

156BH

156FH
1572H

1575H

157AH
157DH

1580H

1584H
1587H

158AH
158EH
158EH
1592H
1592H

15A7H

the single precision constant pointed to by register
pair HL. Return with the result in REGI.

Go check the sign for the single precision value in
REG1.

Set the Carry flag.

Jump if the single precision value in REG1 is posi-
tive.

Go add .5 to the single precision value in REG1.
Return with the result in REG1.

Go check the sign for the single precision value in
REGI1.

Test the value of the sign test in register A.
Save the value in register pair AF on the stack.

Go adjust the sign for the single precision value in
REGI if necessary.

Load register pair HL with the starting address of a
single precision constant equal to 0.25.

Go add the single precision constant pointed to by
register pair HL to the single precision value in
REGI. Return with the result in REG1.

Get the value from the stack and put it in register
pair AF.

Jump if the Carry flag wasn't set from above.
Load register pair HL with the starting address for a
series of single precision values for a set of compu-
tations.

Go do the computations.

SINGLE PRECISION
CONSTANT STORAGE LOCATION

A single precision constant equal to 1.57079637029
is stored here.

SINGLE PRECISION
CONSTANT STORAGE LOCATION

A single precision constant equal to 0.25 is stored
ere.

SINGLE PRECISION
CONSTANTS STORAGE LOCATION

343

1593H
1594H
1598H
159CH
15A0H
15A4H

15A8H
15A8H

15ABH
15AEH
15AFH
15BOH
15B3H
15B4H
15B7H

15BAH
15BDH
15BDH

15C0H

15C3H

344

1597H
159BH
159FH
15A3H
15A7H

15BCH
15AAH

15ADH

15B2H

15B6H
15B9H

15BCH
15E2H
15BFH

15C2H

15C5H

The number of single precision constants which fol-
lows is stored here.

A single precision constant equal to 39.7106704708
is stored here.

A single precision constant equal to
—~76.5749816893 is stored here.

A single precision constant equal to 81.6022338865
is stored here.

A single precision constant equal to
—41.3416748045 is stored here.

A single precision constant equal to 6.28318500497
is stored here.

LEVEL II BASIC TAN ROUTINE

Go move the single precision value in REG1 on to
the stack.

Go figure the SIN for the single precision value in
REGI. Return with the result in REG1.

Get the exponent and the MSB for the single preci-
sion value on the stack and put it in register pair BC.

Get the NMSB and the LSB of the single precision
value on the stack and put it in register pair HL.

Go move the single precision value in REG1 on to
the stack.

Load register pair DE with the NMSB and the LSB
of the single precision value in register pair HL.

Go move the single precision value in register pairs
BC and DE into REG1.

Go figure the COS for the single precision value in
REGI. Return with the result in REGL.

Jump.
LEVEL II BASIC ATN ROUTINE

Go check the sign of the single precision value in
REGI.

If the single precision value in REG1 is negative
then put a return address on the stack.

Go convert the negative number in REG1 to positive
if necessary.

15C6H
15C9H
15CBH
15CDH
15DOH
15D1H
15D2H

15D5H
15D8H

15D9H
15DCH
15DFH

15E2H
15E3H

15E3H
15E4H
15E8H
15ECH

15FOH

15C8H

15CAH

15CCH

15CFH

15D4H

15D7H

15DBH

15DEH
15E1H

1607H

15E7H
15EBH
15EFH

15F3H

Load register A with the exponent of the single
precision value in REG1.

Check to see if the single precision value in REG1 is
less than one.

Jump if the single precision value in REG1 is less
than one.

Load register pair BC with an exponent and a MSB
for a single precision value.

Zero the NMSB of the single precision value in
register D.

%ero the LSB of the single precision value in register

Go divide the single precision value in REG1 into
the single precision constant in register pairs BC
and DE.

Load register pair HL with the return address.

Save the value of the return address in register pair
HL on the stack.

Load register pair HL with the starting address for a
series of single precision numbers for a set of com-
putations.

Go do the set of computations.

Load register pair HL with the starting address of a
single precision constant equal to 1.57079637029.

Return.

SINGLE PRECISION
CONSTANTS STORAGE LOCATION

The number of single precision constants which fol-
lows is stored here.

A single precision constant equal to 0.00286622549
is stored here.

A single precision constant equal to
—0.01616573699 is stored here.

A single precision constant equal to 0.04290961441
is stored here.

A single precision constant equal to 0.07528963666
is stored here.

345

15F4H
15F8H
15FCH
1600H
1604H

1608H

346

15F7H
15FBH
15FFH
1603H
1607H

18C8H

ABS
ASC

A single precision constant equal to 0.10656264407
is stored here.

A single precision constant equal to
—0.14208900905 is stored here.

A single precision constant equal to 0.19993549561
is stored here.

A single precision constant equal to
—0.33333146561 is stored here.

A single precision constant equal to 1.0 is stored
here.

LIST OF BASIC RESERVED WORDS, TO-
KENS, AND ENTRY LOCATIONS AS FOL-
LOWS:

Reserved words, and their tokens, and their entry
points.

D9 0977 AND D2 25FD
F6 2A0F ATN E4 15BD

AUTO B7 2008 CDBL F1 OADB
CHR$(F7 2AlF CINT EF 0A7F
CLEAR B8 1E7A CLOAD B9 2CIF

CLOSE A6 4185 CLS 84 01C9
CMD 85 4173 CONT B3 1DE4
COS E1 1541 CSAVE BA 2BF5
CSNG FO 0AB1 CvD E8 415E
Cvl E6 4152 CVS E7 4158

DATA 88 1F05 DEF DD 415B

DEFDBL 9B 1E09 DEFINT 99 1E03
DEFSNG 9A 1E06 DEFSTR 98 1E00

DELETE B6 2BC6 DIM 8A 2608
EDIT 9D 2E60 ELSE 95 1F07
END 80 1DAE EOF E9 4161
ERL C2 24DD ERR C3 24CF
ERROR 9E 1FF4 EXP EO 1439
FIELD A3 417C FIX F2 0B26
FN BE 4155 FOR 81 1CAl
FRE DA 27D4 GET A4 4174
GOSUB 91 1EB1 GOTO 8D 1EC2

IF 8F 2039
INKEY$ C9 019D INP DB 2AEF
INPUT 89 219A INSTR C5 419D
INT D8 0B37 KILL AA 4191
LEFT$ F8 2A61 LEN F3 2A03
LET 8C 1F21 LINE 9C 41A3
LIST B4 2B2E LLIST B5 2B29
LOAD A7 4188 LOC EA 4164
LOF EB 4167 LOG DF 0809

LPRINT AF 2067 LSET AB 4197
MEM C8 27C9 MERGE A8 418B
MID$ FA 2A9A MKD$ EE 4170

18C9H
18F7H
1095H

191DH
191DH

1924H
1924H
1929H
1929H

1930H
1930H

MKI$ EC 416A MKS$ ED 416D
NAME A9 418E NEW BB 1B49

NEXT 87 22B6 NOT CB 25C4
ON Al 1FC6 OPEN A2 4179
OR D3 25F7 OouT A0 2AFB
PEEK E5 2CAA POINT C6 0132
POKE Bl 2CB1 POS DC 27F5
PRINT B2 206F PUT A5 4182
RANDOM 86 01D3 READ 8B 21EF
REM 93 1F07 RESET 82 0138

RESTORE 90 1D91 RESUME 9F 1FAF
RETURN 92 1EDE RIGHT$ F9 2A91

RND DE 14C9 RSET AC 419A
RUN 8E 1EA3 SAVE AD 41A0
SET 83 0135 SGN D7 098A
SIN E2 1547 SQR CD 13E7

STEP CC 2B01 STOP 94 1DA9
STR$ F4 2836 STRING$ C4 2A2F
SYSTEM AE 02B2 TAB(BC 2137

TAN E3 158 THEN CA -
TIME$ C7 4176 TO BD -
TROFF 97 1DF8 TRON 96 1DF8
USING BF 2CBD USR Cl 27FE
VAL FF 2AC5 VARPTR C0 24EB
+ CD 249F - CE 2532
* CF - / D0 -
{ DI - > D4 -
= D5 - < o —
& 26 4194 ‘3A93 FB -

1923H
1923H

1928H
1928H
192FH
192FH

1935H
1935H

STORAGE LOCATION FOR
LEVEL II BASIC ERROR MESSAGES

STORAGE LOCATION FOR
THE DIVISION ROUTINE

STORAGE LOCATION FOR VALUES
PLACED IN RAM UPON INITIALIZATION.

MESSAGE STORAGE LOCATION

The Level II BASIC ERROR message is stored
here.

MESSAGE STORAGE LOCATION
The Level II BASIC IN message is stored here.
MESSAGE STORAGE LOCATION

The Level II BASIC READY message is stored
here.

MESSAGE STORAGE LOCATION

The Level II BASIC BREAK message is stored
here.

347

1936H - 1954H SCAN STACK ROUTINE
1936H - 1938H Load register pair HL with 4.

1939H Add the current value of the stack pointer to the
value in register pair HL.

193AH Load register A with the value at the location of the
memory pointer in register pair HL.

193BH Bump the value of the memory pointer in register
pair HL.

193CH = 193DH Check to see if the value in register A is a FOR
token.

193EH Return if the value in register A isn’t a FOR token.

193FH Load register C with the LSB of the FOR’s variable
address.

1940H Bum% the value of the memory pointer in register
pair HL.

1941H Load register B with the MSB of the FOR’s variable
address.

1942H BumgI the value of the memory pointer in register
pair HL.

1943H Save the value in register pair HL on the stack.

1944H Load register L with the LSB of the FOR variable’s
address in register C.

1945H Load register H with the MSB of the FOR variable’s
address in register B.

1946H Load register A with the MSB of the variable ad-

dress in register D.

1947H Check to see if the variable address in register pair
DE is equal to zero.

1948H Exchange the variable address in register pair HL
with the variable address in register pair DE.

1949H = 19U4AH Jump if the variable address in register pair DE was
equal to zero.

194BH Exchange the variable address in register pair HL
with the variable address in register pair DE.

194CH Go check to see if the variable address in register
pair HL is the same as the variable address in regis-
ter pair DE.

348

194DH
1950H

1951H
1952H

1953H

1955H
1955H

1958H

1959H

195AH

195BH

195CH
195DH

195EH

195FH
1960H

1961H
1963H
1963H
1964H

1967H

194FH

1954H
1962H
1957H

1962H
197DH

1966H

1968H

Load register pair BC with the value to increment
the memory pointer.

Get the memory pointer from the stack and put it in
register pair HL.

Return if the FOR block has been found.

Add the value in register pair BC to the value of the
memory pointer in register pair HL.

Loop till the FOR block has been located.
DATA MOVEMENT ROUTINE
Go make sure there’s enough room in memory.

Save the value of the memory pointer in register pair
BC on the stack.

Exchange the value of the memory pointer in regis-
ter pair HL with the value of the memory pointer on
the stack.

Get the value of the memory pointer from the stack
and put it in register pair BC.

Check to see if the memory pointer in register pair
HL is the same as the memory pointer in register
pair DE.

Load register A with the value at the location of the
memory pointer in register pair HL.

Save the value in register A at the location of the
memory pointer in register pair BC.

Return if the memory pointer in register pair HL is
the same as the value of the memory pointer in
register pair DE.

Decrement the value of the memory pointer in
register pair BC.

Decrement the value of the memory pointer in
register pair HL.

Loop till done.
MEMORY CHECK ROUTINE
Save the value in register pair HL on the stack.

Load register pair HL with the starting address of
free memory.

Load register B with zero.

349

1969H
196AH

196CH

196DH
196FH

1970H

1971H
1973H

1974H
1976H

19771

1978H

19791
197AH
197CH

197EH
197EH

1981H

1982H

1983H

- 196EH

- 1972H

- 1975H

-~ 197BH
- 197DH

- 1AF7H
- 1980H

Add the value in register pair BC to the value in
register pair HL.

Add the value in register pair BC to the value in
register pair HL.

Save the value in register pair HL on the stack.

Load register A with the LSB of the top of memory.

Subtract the LSB of the value of the new memory
pointer in register L from the value in register A.

Load register L with the adjusted value in register
A.

Load register A with the MSB of the top of memory.

Subtract the MSB of the new memory pointer in
register H from the value in register A.

Jump if out of memory.

Load register H with the adjusted value in register
Add the value of the stack pointer to the adjusted
value in register pair HL.

Get the value from the stack and put it in register
pair HL.

Return if overflow didn't occur.
Load register E with the OM ERROR code.

Go to the Level I BASIC error routine and display
an OM ERROR message.

LEVEL II BASIC COMMAND MODE

Load register pair HL with the value of the current
BASIC line number,

Load register A with the MSB of the current BASIC
line number in register H,

Combine the LSB of the current BASIC line number
in register L with the MSB of the current line
number in register A.

Bump the value of the combined BASIC line number
in register A.

1984H - 1985H JumpifLevel Il BASIC is still in the command mode.
1986H - 1988H Load register A with the error flag.

350

1989H
198AH
198CH
198EH
1991H
1994H
1997H
199AH

199DH
19A0H
19A2H

19A5H
19A8H

19ABH
19AEH

19B1H
19B4H

19B5H
19B6H

19B7H
19BAH

19BDH

19COH

198BH
198DH
1990H
1993H
1996H
1998H
199BH
199EH
19A1H
19A4H

19A7H
19AAH

19ADH
19BOH

19B3H

19B9H
19BCH

19BFH

Check to see if the error flag is set.

Load register E with 2a NR ERROR code.

Jump if the error flag is set.

Jump.

Load register pair HL with the DATA line number.
Save the DATA line number in register pair HL.
Load register E with a SN ERROR code.

Load register E with a /0 ERROR code.

Load register E with a NF ERROR code.
Load register E with a RW ERROR code.

Load register pair HL with the value of the current
BASIC line number.

Save the value of the current BASIC line number in
register pair HL.

Save the value of the current BASIC line number in
register pair HL.

Load register pair BC with the return address.

Load register pair HL with the value of the stack
pointer.

Jump.

Get the value from the stack and put it in register
pair BC.

Load register A with the value of the error code in
register E.

Load register C with the value of the error code in
register E.

Save the value of the error code in register A.

Load register pair HL with the value of the current
BASIC program pointer.

Save the value of the current BASIC program
pointer in register pair HL.

Load register pair DE with the value of the current
BASIC program pointer in register pair HL.

351

19C1H - 19C3H

19C4H

19C5H

19C6H

19C7H
19C9H

19CCH
19CDH
19DOH
19D3H

19D4H

19D5H
19D6H

19D9H
19DBH

19DCH
19DEH

19DFH

19EOH
352

19C8H
19CBH

19CFH

19D2H

19D8H

19DAH

19DDH

19E2H

Load register pair HL with the value of the current
BASIC line number.

Load register A with the MSB of the current BASIC
line number in register H.

Combine the LSB of the current BASIC line number
in register L with the MSB of the current BASIC line
number in register A.

Bump the value of the combined current BASIC line
number.

Jump if Level II BASIC is in the command mode.

Save the value of the current BASIC line number in
register pair HL.

Load register pair HL with the value of the current
BASIC program pointer in register pair DE.

Save the value of the current BASIC program point-
er in register pair HL.

Load register pair HL with the current ONERROR
address.

Load register A with the MSB of the ONERROR
address in register H.

Combine the LSB of the ONERROR address in
register L with the MSB of the ONERROR address
in register A.

Load register pair DE with the ONERROR address
in register pair HL.

%Joad register pair HL with the address of the error
lag.

Jump if there isn’t an ONERROR address.
Combine the value of the error flag at the location of
the memory pointer in register pair HL with the
combined value of the ONERROR address in regis-
ter A.

Jump if register A is nonzero.

Decrement the value of the error flag at the location
of the memory pointer in register pair HL.

Load register pair HL with the ONERROR address
in register pair DE.

Jump.

19E3H
19E4H
19E5H
19E6H
19E9H

19ECH
19EFH
19FOH
19F2H
19F5H

19F6H

19F7H
19FAH
19FBH
19FEH

1A01H
1A02H

1A05H

1A06H
1A09H

19E8H
19EBH

19EEH

19F1H

19F4H

19F9H

19FDH

1AO00H

1A04H

1A08H

Zero register A.

Save the value in register A as the current error flag
?{t [Ehe location of the memory pointer in register pair
Load register E with the value of the error code in

register C.

Go display a carriage return on the video display if
necessary.

Load register pair HL with the starting address for
the table of error messages.

Go to the DOS link at 41A6H.

Load register D with zero.

Load register A with a question mark.

Go display the question mark in register A.

Add the value of the error code in register pair DE to
the starting address of the table of error messages in
register pair HL.

Load register A with the first character of the error
message at the location of the table pointer in regis-
ter pair HL.

Go display the first character of the error message in
register A.

Go set the second character of the error in register
Go display the second character of the error mes-
sage in register A.

Load register pair HL with the starting address of
the READY message.

Save the value in register pair HL on the stack.

Load register pair HL with the value of the current
BASIC line number.

Exchange the value of the current BASIC line
number in register pair HL with the starting address
of the Level Il BASIC ERROR message on the stack.
Go display the Level II BASIC ERROR message.

Get the value of the current BASIC line number from
the stack and put it in register pair HL.

353

1A0AH = 1AOCH Load register pair DE with 65534.

1AODH

1AOEH
1A11H

1A12H

1A13H

1A14H

1A18H
1A19H

1A1CH
1A1FH
1A22H
1A25H

1A28H
1AZ2BH

1A2EH
1A30H
1A33H
1A36H

1A39H
354

Go compare the value of the current BASIC line
number in register pair HL with the line number in
register pair DE.

1A10H Jump if the line numbers in register pairs HL and DE

1A16H

1A1BH

1A1EH
1A21H
1A28H
1A27H

1AZAH
1A2DH

1A2FH

1A32H

1A35H

1A38H

1A3BH

are the same.

Load register A with the MSB of the current BASIC
line number in register H.

Combine the LSB of the current BASIC line number

in register L with the MSB of the current BASIC line
number in register A.

Bump the combined value of the current BASIC line
number in register A.

Go display the current BASIC line number in regis-
ter pair HL if Level II BASIC isn't in the command
mode.

Get the value from the stack and put it in register
pair BC.

Go set the current output device to the video dis-
play.

Go call the DOS link at 41ACH.
Go turn off the cassette recorder.
Go display a carriage return if necessary.

Load register pair HL. with the starting address of
the Level I1 BASIC READY message.

Go display the Level II BASIC READY message.

Load register A with the value of the current error
code.

Check to see if the current error code is a SN
ERROR code.

Go to the EDIT mode if the current error code is a
SN ERROR code.

Load register pair HL with the command mode line
number.

Save the line number in register pair HL as the
current BASIC line number.

Load register A with the value of the AUTO flag.

1A3CH
1A3DH
1A3FH

1A42H
1A43H
1A46H
1A47H
1A48H

1A4BH
1A4DH

1A4FH
1A51H

1A54H
1A57H

1A58H
1A5AH
1A5BH

1ASEH
1A60H

1A63H

1A64H
1A66H

1A3EH
1AK1H

1A45H

1A4AH

1A4CH
1A4EH

1A50H
1A53H

1A56H

Check to see if in the AUTO mode.
Jump if not in the AUTO mode.

Load register pair HL with the current AUTO line
number.

Save the current AUTO line number in register pair
HL on the stack.

Go display the current AUTO line number in regis-
ter pair HL on the video display.

Get the current AUTO line number from the stack
and put it in register pair DE.

Save the current AUTO line number in register pair
DE on the stack.

Go check to see if there is a matching line number in
the BASIC program.

Load register A with an .

Jump if there is a matching line number in the BASIC
program.

Load register A with a space.

Go display the character in register A on the video
display.

Go get the input.

Get the current line number from the stack and put it
in register pair DE.

1A59H Jump if the BREAK key wasn’t pressed.

1A5DH

1A5FH
1A62H

1A65H

Zero register A.

Save the value in register A as the current AUTO
flag.

Jump to the normal command mode.

Load register pair HL with the value of the AUTO
increment.

Add the value of the AUTO line number in register
pair DE with the AUTO increment value in register
pair HL.

Jump if AUTO line number has overflowed.

Save the current AUTO line number in register pair
DE on the stack.

355

1A67H

1A6AH

1A6BH

1A6CH
1A6EH

1A71H
1A73H

1A76H
1A78H

1A7BH
1A7EH
1A81H

1A82H
1A83H
1A84H
1A87H
1A88H

1A8BH

1A8CH

1A8DH

1A8FH

356

1A69H

1A6DH

1A70H

1A72H
1A75H

1A77H
1A7AH

1A7DH
1A80H

1A86H

1A8AH

1A8EH

1A90H

Load register pair DE with the maximum BASIC line
number.

Go compare the adjusted AUTO line number in
register pair HL with the value of the maximum
BASIC line number in register pair DE.

Get the current AUTO line number from the stack
and put it in register pair DE.

Jump if the adjusted AUTO line number in register
pair HL is too large.

Save the adjusted AUTO line number in register pair
HL as the current AUTO line number.

Load register A with the AUTO flag value.

Jump to the EDIT routine to save the current BASIC
line.

Load register A with a >,

Go display the Level II BASIC prompt in register A
on the video display.

Go get the input.
Jump if the BREAK key was pressed.

Go bump the current input buffer pointer in register
pair HL till it points to the first character.

Bump the value of the character in register A.
Decrement the value of the character in register A.
Jump if there wasn't any input.

Save the value in register pair AF on the stack.
Go evaluate the line number at the location of the
input buffer pointer in register pair HL and return
with it’s binary value in register pair DE.

Decrement the value of the input buffer pointer in
register pair HL.

Load register A with the value of the character at the
l}(ffation of the input buffer pointer in register pair
Check to see if the character at the location of the

input buffer pointer in register A is a space.

Jump if the character at the location of the input
buffer pointer in register A is a space.

1A91H
1A92H
1A93H
1A95H
1A98H

1A9%9H
1A9CH

1A9DH

1A9EH
1AA1H
1AALH

1AA7H
1AA8H

1AA9H

1AAAH
1AADH

1AAEH
1AAFH

1ABOH
1AB1H

1AB4H

1A94H

1A97H

!

1A9BH

-~ 1AAOH
1AA3H
1AA6H

1AACH

- 1AB3H

Bump the value of the input buffer pointer in register
pair HL.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Check to see if the character at the location of the
input buffer pointer in register A is a space.

Go bump the value of the input buffer pointer in
register pair HL if necessary.

Save the BASIC line number in register pair DE on
the stack.

Go tokenize the input.

Get the value of the BASIC line number from the
stack.

Get the value from the stack and put it in register
pair AF.

Save the input buffer pointer in register pair HL.
Go call the DOS line at 41B2H.

Jump if there wasn’t a line number with the input.

Save the BASIC line number in register pair DE on
the stack.

Save the length of the tokenized input in register
pair BC on the stack.

Zero register A.

Save the value in register A as the input flag.

Go bump the value of the input buffer pointer in
register pair HL till it points to the next character.

Set the flags.
Save the value in register pair AF on the stack.

Load register pair HL with the value of the BASIC
iine number in register pair DE.

fﬁ‘je the value of the line number in register pair
Exchange the value of the input buffer pointer in

register pair DE with the value of the BASIC line
number in register pair HL.

357

1AB5H = 1AB7H Go check to see if there is a matching line number in

1AB8H

1ABY9H

1ABCH

1ABDH

1ABEH

1ABFH

1AC1H

1ACZH

1AC5H

1AC6H

1AC7H

1AC8H

JACOH

1ACCH

1ACDH

1ADOH

1AD1H

358

- 1ABBH

- 1ACOH

- 1ACHH

- 1ACBH

- 1ACFH

the BASIC program.

Save the address of the line number in the BASIC
program in register pair BC on the stack.

If there wasn’t a matching line number in the BASIC
program, go move the closest line number up in
memory.

Get the address of the BASIC line number from the
stack and put it in register pair DE.

Get the value from the stack and put it in register
pair AF.

Save the address of the BASIC line number on the
stack.

Jump if there was a matching line number in the
BASIC program.

Get the address of the BASIC line number from the
stack and put it in register pair DE.

Load register pair HL with the end of the BASIC
program pointer.

Exchange the length of the tokenized input on the
stack with the end of the BASIC program pointer in
register pair HL.

Get the end of the BASIC program pointer from the
stack and put it in register pair BC

Add the end of the BASIC program pointer in regis-
ter pair BC to the value of the length of the tokenized
input in register pair HL.

Save the adjusted end of the BASIC program pointer
in register pair HL on the stack.

Go check to see if there is enough room in memory
for the new BASIC line.

Get the new end of the BASIC program I;j()lnter from
the stack and put it in register pair H

Save the new end of the BASIC program pointer in
register pair HL.

1I_‘oad register pair HL with the address of the BASIC
ine.

Save the MSB of the address of the BASIC line in
register H.

1ADZ2H
1AD3H
1ADAH
1AD5H

1AD6H

1AD7H

1AD8H

1AD9H
1ADAH
1ADBH

1ADEH

1ADFH
1AEOH
1AE1H
1AEZH
1AE3H
1AE4H

1AE5SH

- 1ADDH

Get the value of the BASIC line number from the
stack and put it in register pair DE.

Save the value of the memory pointer in register pair
HL on the stack.

Bump the value of the memory pointer in register
pair HL.

Bump the value of the memory pointer in register
pair HL.

Save the LSB of the BASIC line number in register E
?; 1t’he location of the memory pointer in register pair

Bump the value of the memory pointer in register
pair HL.

Save the MSB of the BASIC line number in register
D at the location of the memory pointer in register
pair HL.

Bump the value of the BASIC line number in register
pair HL.

Load register pair DE with the value of the memory
pointer in register pair HL.

Load register pair HL with the value of the tokenized
input pointer.

Exchange the value of the memory pointer in regis-
ter pair DE with the value of the tokenized input
pointer in register pair HL.

Decrement the value of the tokenized input buffer
pointer in register pair DE.

Decrement the value of the tokenized input buffer
pointer in register pair DE.

Load register A with the value at the location of the
tokenized input buffer pointer in register pair DE.

Save the value in register A at the location of the
memory pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Bump the value of the tokenized input buffer pointer
in register pair DE.

Check to see if the character in register A is an end of
the line character.

359

1AE6H
1AE8H

1AE9H
1AECH

1AEFH
1AF2H
1AF5H
1AF8H
1AF8H

1AFBH

1AFCH

1AFDH

1AFEH

1AFFH

1BOOH

1BO1H
1BOZH

1BO3H
1BO4H
1BOSH

1BO6H

360

1AE7H

1AEBH
1AEEH
1AF1H
1AF4H
1AF7H
1BOFH
1AFAH

Loop till the whole of the new BASIC line has been
stored in memory.

Get the value from the stack and put it in register
pair DE.

Go reset the BASIC line pointers.
Go call the DOS link at 41B5H.

Go reset the current BASIC program pointers.
Go call the DOS link at 41B8H.

Go get the input again.

LINE POINTERS ROUTINE

Load register pair HL with the start of the BASIC
program pointer.

Load register pair DE with the start of the BASIC
program pointer in register pair HL.

Load register H with the MSB of the memory
pointer in register D.

Load register L with the LSB of the memory pointer
in register E.

Load register A with the value at the location of the
memory pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Check to see if the character at the location of the
memory pointer in register pair HL is an end of the
BASIC program character.

Return if done.

Bump the value of the memory pointer in register
pair HL.

Bump the value of the memory pointer in register
pair HL.

Bump the value of the memory pointer in register
pair HL.

Zero register A.
Check to see if the character at the location of the

memory pointer in register HL is an end of the
BASIC line character.

1BO7H

1BO8H

1BOAH

1BOBH

1BOCH
1BODH
1BOEH
1B10H
1B10OH

1B13H
1B14H

1B16H

1B17H

1B1AH

1B1BH

1B1DH

1B1EH

1B1FH

1B22H

- 1BOSH

- 1BOFH
- 1BA48H
- 1B12H

- 1B15H

~ 1B19H

- 1B1CH

- 1B21H

~ 1B24H

Bump the value of the memory pointer in register
pair HL.

Loop till the end of the BASIC line character is
found.

Exchange the starting address of the current BASIC
line in register pair DE with the starting address of
the next BASIC line in register pair HL.

Save the LSB of the next BASIC line's starting ad-
dress in register E at the location of the memory
pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Save the MSB of the next BASIC line’s starting
address in register D at the location of the memory
pointer in register pair HL.

Loop till done.

EVALUATE LINE NUMBERS

Load register pair DE with zero.

Save the value in register pair DE on the stack.

Jump if there aren’t any line numbers to be eval-
uated.

Get the value from the stack and put it in register
pair DE.

Go evaluate the line number at the location of the
current BASIC program pointer in register pair HL
and return with the line number’s binary value in
register pair DE.

Save the first line number’s value in register pair DE
on the stack.

Jump if there isn't a second line number to be
evaluated.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a — token.

The character to be checked for is stored here.

Load register pair DE with the default second line
number.

Go evaluate the second line number at the location of

361

1B25H -~ 1B27H

1B28H

1B29%H
1B2AH
1B2BH
1B2CH -~ 1B2EH
1B2FH
1B30H
1B31H

1B32H

1B33H

1B34H

1B35H
1B36H

1B37H

1B38H

362

the current BASIC program pointer in register pair
HL and return with the line number’s binary value in
register pair DE.

Go to the Level I BASIC error routine and display a
SN ERROR message if the data which followed the
— token wasn't a line number.

Load register pair HL with the value of the second
line number in register pair DE and load register
pair DE with the value of the current BASIC pro-
gram pointer in register pair HL.

Get the value of the first line number from the stack
and put it in register pair DE.

Exchange the return address on the stack with the
value of the second line number in register pair HL.

Save the value of the return address in register pair
HL on the stack.

Load register pair HL with the value of the start of
the BASIC program pointer.

Load register B with the value of the MSB of the
memory pointer in register H.

Load register C with the LSB of the memory pointer
in register L.

Load register A with the value at the location of the
memory pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Combine the value at the location of the memory
pAomter in register pair HL with the value in register

Decrement the value of the memory pointer in
register pair HL.

Return if this is the end of the BASIC program.

Bump the value of the memory pointer in register
pair HL.

qu%the value of the memory pointer in register
pair HL.

Load register A with the LSB of the current BASIC
line number at the location of the memory pointer in
register pair HL.

1B39H

1B3AH

1B3BH

1B3CH

1B3DH
1B3EH
1B3FH
1B4OH

1B41H

1B42H

1B43H
1B44H

1B45H
1B46H

1B47H
1B49H

1B49H

1B4AH
1B4DH

1B4BH

1B5CH

1BA4CH
1B4FH

quﬁ the value of the memory pointer in register
pair HL.

Load register H with the MSB of the current BASIC
line number at the location of the memory pointer in
register pair HL.

Load register L with the LSB of the current BASIC
line number in register A.

Go compare the value of the first line number in
register pair DE with the value of the current BASIC
line number in register pair HL.

Load register H with the MSB of the memory
pointer in register B.

Load register L with the LSB of the memory pointer
in register C.

Load register A with the value at the location of the
memory pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Load register H with the MSB of the next BASIC
line pointer at the location of the memory pointer in
register pair HL.

Load register L with the LSB of the next BASIC line
pointer in register A.

Complement the value of the Carry flag.

Return if the first line number in register pair DE is
the same as the current BASIC line number.

Complement the value of the Carry flag.

Return if the first line number in register pair DE is
less than the current BASIC line number.

Loop till the location of the line number has been
found in the BASIC program.

LEVEL II BASIC NEW ROUTINE

Go to the Level I BASIC error routine and display a
SN ERROR message if there is any input following
the NEW token.

Go clear the screen.

Load register pair HL with the start of the BASIC
program.

363

1B50H - 1B52H

1B53H - 1B55H

1B56H
1B57H
1B58H
1B59H
1B5AH

1B5DH
1B5DH

1B60H
1B61H
1B64H

1B66H

1B69H

1B6BH
1B6CH

1B6EH
1B6FH

1B72H
1B73H
1B74H

364

1B5CH

1BB2H

1BSFH

1B63H

1B65H

1B68H

1B6AH

1B6DH

1B71H

1B76H

Go TROFF.
Reset the AUTO flag.

Save a zero at the location of the memory pointer in
register pair HL.

BumEI the value of the memory pointer in register
pair HL.

Save a zero at the location of the memory pointer in
register pair HL.

Bump the value of the memory pointer in register
pair HL.

Save the value in register pair HL as the new simple
variables pointer.

LEVEL II BASIC RUN ROUTINE

Load register pair HL with the start of the BASIC
program pointer.

Decrement the value in register pair HL.
Save the adjusted value in register pair HL.

Load register B with the number of variable names
to be initialized.

Load register pair HL with the starting address of
the variable declaration table,

Set the variable at the location of the memory
pointer in register pair HL to a single precision
variable.

Bump the value of the memory pointer in register
pair HL.

Loop till all 26 variables have been set to single
precision.

Zero register A.

Save the value in register A as the current value of
the RESUME flag.

Zero register L.
Zero register H.

Save the value in register pair HL as the current
ONERROR address.

1B77H
1B7AH
1B7DH

1B8OH
1B83H

1B86H
1B89H

1B8CH
1B8FH
1B9OH

1B93H
1B94H
1B95H
1B98H
1B99H
1B9AH
1B9BH
1B9EH
1BA1lH

1BA4H

1B79H
1B7CH
1B7FH

1B82H
1B85H

1B88H
1B8BH

1B8EH

1B92H

1B97H

1B9DH
1BAOH
1BA3H

1BA6H

Save the value in register pair HL as the current
BREAK address.

Load register pair HL with the top of the memory
pointer.

Save the value in register pair HL as the next avail-
able address in the string space pointer.

Go do a RESTORE.

Load register pair HL with the end of the BASIC
program pointer.

Save the value in register pair HL as the new simple
variables pointer.

Save the value in register pair HL as the new array
variables pointer.

Go call the DOS line at 41BBH.
Get the return address from the stack.

Load register pair HL with the start of string space
pointer.

Decrement the value of the memory pointer in
register pair HL.

Decrement the value of the memory pointer in
register pair HL.

Save the value in register pair HL as the stack
pointer.,

Bump the value of the memory pointer in register
pair HL,

quEI the value of the memory pointer in register
pair HL.

Load the stack pointer with the value of the memory
pointer in register pair HL.

Load register pair HL with the start of the string
work area.

Save the value in register pair HL as the next avail-
able location in the string work area pointer.

Go set the current output device to the video dis-
play.

Go turn off the cassette recorder.

365

1BA7H
1BA8H
1BAGH
1BAAH

1BADH
1BAEH

1BAFH

1BBZ2H
1BB3H

1BB3H
1BB5H
1BB8H
1BBAH

1BBDH

1BCOH
1BCOH

1BC1lH

1BCAH
1BC5H

1BCEH

1BCOH

1BCAH

1BCBH

1BCCH

366

1BACH

1BB1H

1BBFH
1BB4H
1BB7H
1BBSH
1BBCH

1BBFH
1C8FH

1BC3H

1BC8H

Zero register A.

Zero register H.

Zero register L.

Save the value in register A as the current FOR flag.
Save the value in register pair HL on the stack.
Save the value in register pair BC on the stack.

Load register pair HL with the current value of the
BASIC program pointer.

Return.
KEYBOARD INPUT ROUTINE

Load register A with a ?.
Go display the ? in register A on the video display.
Load register A with a space.

Go display the space in register A on the video
display.

Jump to the keyboard input routine.
TOKENIZE INPUT ROUTINE

Zero register A.

Save the value in register A as the current value of
the tokenization flag.

Zero register C.

Load register pair DE with the start of the input
address in register pair HL.

Load register pair HL with the starting address of
the input buffer.

Decrement the value of the input buffer pointer in
register pair HL.

Decrement the value of the input buffer pointer in
register pair HL.

Exchange the value of the input buffer pointer in
register pair HL with the value of the input pointer in
register pair DE.

Load register A with the character at the location of
the input pointer in register pair HL.

1BCDH
1BCFH
1BD2H

1BD3H
1BD5H
1BD8H

1BDYH
1BDCH
1BDFH
1BEOH
1BE1H
1BE4H

1BE6H
1BE8H

1BEBH

1BECH

1BEEH

1BFOH

1BF2H

1BF5H

1BF6H

1BCEH
1BD1H

1BDA4H
1BD7H

1BDBH

1BDEH

1BE3H
1BE5SH
1BE7H
1BEAH

1BEDH

1BEFH

1BF1H

1BF4H

1BF8H

Check to see if the character in register A is a space.
Jump if the character in register A is a space.

Load register B with the value of the character in
register A.

Check to see if the character inregister A is a quote.
Jump if the character in register A is a quote.

Check to see if the character in register A is an end of
the input character.

Jump if the character in register A is an end of the
input character.

f[l,oad register A with the value of the tokenization
ag.

Check to see if a DATA statement is being pro-
cessed.

Load register A with the value of the character at the
%gﬁation of the input buffer pointer in register pair
Jump if a DATA statement is being processed.
Check to see if the character in register A is a ?.
Load register A with a PRINT token.

Jump if the character at the location of the input
buffer pointer in register pair HL is a ?.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Check to see if the character in register A is less
than a zero character.

Jump if the character in register A is less than a zero
character.

Check to see if the character in register A is less
than < character.

Jump if the character in register A is less than <
character.

Save the value of the input buffer pointer in register
pair DE on the stack.

Load register pair DE with the starting address of
the reserved words list.

367

1BF9H
1BFAH - 1BFCH
1BFDH

1BFEH - 1BFFH
1BOOH
1CO1H 1CO1H

1CO3H - 1CO4H
1CO5H - 1CO6H

1CO07H - 1CO8H
1CO9H - 1COAH

1COBH

1COCH

1CODH

1COEH

1COFH

1C10H - 1C12H

1C13H
1C14H

1C15H - 1Cl6H

368

Save the value in register pair BC on the stack.
Load register pair BC with the return address.

Save the return address in register pair BC on the
stack.

Load register B with the initial reserved words
counter.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Check to see if the character in register A is lower-
case.

Jump if the character in register A isn't lowercase.

Check to see if the character in register A is lower-
case.

Jump if the character in register A isn’t lowercase.

Make the lowercase character in register A upper-
case.

Save the adjusted character in register A at the
location of the input buffer pointer in register pair

Load register C with the character at the location of
the input buffer pointer in register pair HL.

Exchange the input buffer pointer in register pair HL
vlgith the reserved words list pointer in register pair
E.

Bump the value of the reserved words list pointer in
register pair HL.

Check to see if bit 7 of the character at the location of
the reserved words list pointer in register pair HL is
set.

Jump if the character at the location of the reserved
words list pointer in register pair HL doesn’t have
bit 7 set.

Bump the value of the reserved words counter in
register B.

Load register A with the character at the location of
the reserved words list pointer in register pair HL.

Reset bit 7 of the character in register A.

1C17H
1C18H

1C19H - 1ClAH
1C1BH
1C1CH
1C1DH
1C1lEH
1C1FH

1C20H -~ 1C22H
1C23H
1C24H

1C25H - 1C26H
1027H - 1C28H
1C29H
1C2AH
1C2BH
1C2CH
1C2DH -~ 1C2EH

1C2FH - 1C30H
1C31H - 1C32H

Return if this is the end of the reserved words list.
Check to see if the character in register C is the
same as the character at the location of the reserved
words list pointer in register A.

Jump if the characters don’t match.

Exchange the value of the reserved words list point-
er in register pair HL with the value of the input
buffer pointer in register pair DE.

Saye the value of the input buffer pointer in register
pair HL on the stack.

Bump the value of the reserved words list pointer in
register pair DE.

Load register A with the character at the location of
the reserved words list pointer in register pair DE.

Check to see if bit 7 of the character in register A is
set.

Jump if bit 7 of the character in register A is set.
Load register C with the character in register A.

Load register A with the value of the reserved words
counter in register B.

Check to see if the current reserved word being
checked is GOTO.

Jump if the current reserved word being checked
isn't GOTO.

Go bump the input buffer pointer in register pair HL
till it points to the next character.

Decrement the value of the input buffer pointer in
register pair HL.

Bump the value of the input buffer pointer in register
pair HL.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Check to see if the character in register A is lower-
case.

Jump if the character in register A isn't lowercase.

Make the character in register A uppercase.

369

1C33H
1C34H
1C36H

1C37H
1C39H

1C3AH
1C3BH
1C3CH
1C3DH
1C3EH
1C3FH
1C4OH
1C41H
1C42H
1C44H

1C46H
1C48H
1C49H

1ckAH

1CACH
370

- 1C35H

1C38H

1C43H
1C45H

1CA47H

1C4BH

1CADH

Check to see if the character in register A matches
the character in register C

Jump if the character in the input matches the re-
served words character,

Get the current input buffer {)omter from the stack
and put it in register pair H

Jump.

Load register C with the value of the reserved words
counter in register B

Get the value from the stack and put it in register
pair AF

Exchange the input buffer pointer in register pair HL
with the reserved words list pointer in register pair
DE.

Return.

Exchange the reserved words list pointer in register
pair HL with the input buffer pointer in register pair
DE.

Load register A with the value of the reserved words
counter 1n register C

Get the value from the stack and put it in register
pair BC.

Get the input buffer pointer from the stack and put it
in register pair DE

Exchange the input buffer pointer in register pair HL
with the input buffer pointer in register pair DE.

Check to see if the token in register A is an ELSE
token.

Save a colon at the location of the input buffer pointer
in register pair HL.

Jump if the token in register A isn't an ELSE token.
Bump the value of the counter in register C.

Bump the value of the input buffer pointer in register
pair HL.

Check to see if the token in register A is a REM
token.

Jump if the token in register A isn’'t a REM token.

1C4EH - 1CHFH Saveacolonat the location of the input buffer pointer

1C50H

1C51H
1C53H

1C54H
1C55H
1C56H
1C57H
1C58H
1C5AH
1C5BH

1C5CH

1C5DH

1C5EH
1C5FH
1C61H
1C63H

1C65H
1C67H

1C6AH

1C6CH

- 1C52H

~ 1C59H

- 1C60H
- 1C62H
- 1C64H

- 1C66H
- 1C69H

~ 1C6BH

- 1C6EH

in register pair HL.

Bump the value of the input buffer pointer in register
pair HL.

Load register B with a REM token.

Save the REM token in register B at the location of
the input buffer pointer in register pair HL.

Buml}){the value of the input buffer pointer in register
pair HL.

Exchange the value of the input buffer pointer in
register pair HL with the value of the input buffer
pointer in register pair DE.

Bump the value of the counter in register C.
Bump the value of the counter in register C.
Jump.

Exchange the value of the input buffer pointer in
register pair HL with the value of the input buffer
pointer in register pair DE.

Bump the value of the input buffer pointer in register
pair HL.

Save the value of the token in register A at the
location of the input buffer pointer in register pair
DE.

Bump the value of the input buffer pointer in register
pair DE.

Bump the value of the counter in register C.
Check to see if the character in register A is a colon.

Jump if the character in register A is a colon.

Check to see if the token in register A is a DATA
token.

Jump if the token in register A isn’t a DATA token.

Save the value in register A as the current tokeniza-
tion flag.

Check to see if the token in register A is a REM
token.

Jump if the token in register A isn’t a REM token.

371

1C6FH
1C70H

1C71H

1C72H

1C74H
1C75H
1C77H
1C78H

1C79H
1C7AH

1C7BH
1C7DH
1C80H
1C81H

1C82H

1C83H
1C84H
1C87H
1C88H
1C89H

1C8AH

372

Load register B with a zero.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Check to see if the character in register A is an end of
the input character.

- 1C73H Jump if the character in register A is an end of the

- 1C76H

- 1C7CH
- 1C7FH

- 1C86H

input character.

Check to see if the character in register B matches
the character in register A.

Jump if the character in register B matches the
character in register A.

Bump the value of the input buffer pointer in register
pair HL.

Save the character in register A at the location of the
input buffer pointer in register pair DE.

Bump the value of the counter in register C.

qu%the value of the input buffer pointer in register
pair DE.

Loop till a match is found.
Load register pair HL with a five.
Load register B with zero.

Add the length of the input in register pair BC to the
value in register pair HL.

Load register B with the MSB of the value in regis-
ter H.

II:oad register C with the LSB of the value in register
Load register pair HL with the address of the input
buffer.

Decrement the value of the input buffer pointer in
register pair HL.

Decrement the value of the input buffer pointer in
register pair HL.

Decrement the value of the input buffer pointer in
register pair HL.

Zero the location of the input buffer pointer in
register pair DE.

1C8BH
1C8CH
1C8DH
1C8EH

1C8FH
1C90H - 1C95H
1C90H

1C91H
1C92H
1C93H
1CO4H
1C95H
1C96H - 1CAOH
1C96H
1C97H

1C98H

1C99H

1C9AH

1C9BH -~ 1C9DH

Bump the value of the input buffer pointer in register
pair DE.

Zero the location of the input buffer pointer in
register pair DE.

Bump the value of the input buffer pointer in register
pair DE.

Zero the location of the input buffer pointer in
register pair DE.

Return.
RST 0018H CODE

Loaii{ register A with the MSB of the value in regis-
ter H.

Subtract the value of the MSB of the value in register
D from the MSB of the value in register A.

Return if the MSB of the value in register D doesn’t
equal the MSB of the value in register H.

koad register A with the LSB of the value in register

Subtract the LSB of the value in register E from the
LSB of the value in register A.

Return.

RST 0008H CODE

Load register A with the character at the location of
ﬂ]ﬁ current BASIC program pointer in register pair

Exchange the value of the current BASIC program
pointer in register pair HL with the value of the
return address on the stack.

Check to see if the character at the location of the

return address in register pair HL is the same as the
character in register A.

ﬁlf,mp the value of the return address in register pair

Exchange the value of the return address in register
pair HL with the value of the current BASIC program
pointer on the stack.

Jump to the RST 0010H code if the characters match.

373

1C93 -

1CAlH
1CAlH
1CA3H

1CA6H

1CA%H

1CAAH

1CADH

1CAEH

1CBOH

1CB1H

1CBZ2H

1CB5H

1CB6H

1CB8H
1CBBH

1CBCH

1CBFH

1CCOH

374

1C90H

1D1DH
1CAZ2H

1CASH

1CA8H

1CACH

1CAFH

1CB4H

1CB7H

1CBAH

1CBEH

Jump to the Level Il BASIC error routine and display
a SN ERROR message if the characters don’t match.

Level II BASIC FOR ROUTINE
Load register A with the value for the FOR flag.

Save the value in register A as the current value of
the FOR flag.

Go evaluate the N=M portion of the expression.

Exchange the value of the current BASIC program
pointer in register pair HL with the value on the
stack.

Go check to see if there is a FOR statement on the
stack already using the same variable name.

Get the current BASIC program pointer from the
stack and put it in register pair DE.

Jump if there isn’t a matching FOR statement on the
stack.

Add the value in register pair BC to the value in
register pair HL.

Load register pair SP with the value in register pair
HL.

Save the value in register pair HL as the stack
pointer.

Exchange the value of the current BASIC program
pointer in register pair DE with the value of the
stack pointer address in register pair HL.

Load register C with the number of words of mem-
ory to check for.

Go check to see if there is enough memory left.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Go bump the current BASIC program pointer in
register pair HL till it points to the end of the BASIC
statement.

Exchange the adjusted value of the current BASIC
program pointer in register pair HL with the value of
the current BASIC program pointer on the stack.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

1CC1H ~ 1CC3H

1CCHH

1CC5H

1CC6H

1CC7H
1CC8H - 1CCAH

1CCBH -~ 1CCDH

1CCEH
1CCFH - 1CD1H

1CD2H

1CD3H

1CD4H - 1CD6H
1CD7H - 1CD9H
1CDAH

1CDBH - 1CCDH
1CDEH

1CDFH -~ 1CEOH

1CE1H - 1CE3H

Load register pair HL with the value of the current
BASIC line number.

Exchange the value of the current BASIC line num-
ber in register pair HL with the value of the current
BASIC program pointer on the stack.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be TO token(BD).

The value to be checked for by the syntax check is
stored here.

Go check the current value of the number type flag.

Go to the Level I BASIC error routine and display a
TM ERROR message if the current value of the
number type flag is a string.

Go to the Level II BASIC error routine and display a
TM ERROR message if the current value of the
number type flag is double precision.

Save the value in register pair AF on the stack.

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
and return with the result in REGI.

Get the value from the stack and put it in register
pair AF,

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Jump if the current number type is single precision.
Go convert the current value in REG1 to an integer.
Exchange the integer value in register pair HL with
the value of the current BASIC program pointer on
the stack.
Load register pair DE with the default STEP value.
Load register A with the character at the location of
il{le current BASIC program pointer in register pair
L.
Check to see if the character in register A is a STEP
token.
Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
and return with the integer value in register pair DE
if the character in register A is a STEP token.

375

1CE4H

1CE5H

1CE6H

1CE7H

1CEAH
1CECH

1CEFH
1CF2H
1CF3H
1CF4H

1CF5H

1CF8H

1CF9H

1CFAH

1CFBH

1CFDH

1CFFH

1DO1H

376

- 1CE9H

- 1CEBH
- 1CEEH

- 1CFlH

- 1CF7H

- 1CFCH

- 1CFEH

- 1DOOH

- 1DO3H

Savele(the integer value in register pair DE on the
stack.

Save the current BASIC program pointer in register
pair HL on the stack.

Exchange the integer value in register pair DE with
the value of the current BASIC program pointer in
register pair HL.

Go load register A with the value of the sign for the
STEP value in register pair HL.

Jump.

Go convert the current value in REGI to single
precision.

Go move the single precision value in REG1 into
register pairs BC and DE.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Save the exponent and the MSB for the single preci-
sion value in register pair BC on the stack.

Save the NMSB and the LSB for the single precision
value in register pair DE on the stack.

Load register pair BC with the exponent and the
MSB for a single precision constant.

Zero the NMSB for the single precision constant in
register D.

Zero the LSB for the single precision constant in
register E. Register pairs BC and DE now hold a
single precision constant equal to one.

Load register A with the character at the location of
'illlf current BASIC program pointer in register pair

Check to see if the character in register A is a STEP
token.

Load register A with the default sign for the STEP
value.

Jump if the character at the location of the current
BASIC program pointer in register A isn’t a STEP
token.

Go evaluate the expression at the location of the
current BASIC program pointer and return with the
result in REGL.

1DO4H

1DO5H

1D0O8H

1DOBH

1DOEH

1DOFH

1D10H

1D11H
1D12H
1D13H

1D1A4H
1D15H

1D16H
1D19H

1D1AH
1D1CH

1D1DH
1D1EH

1D1EH
1D21H
1D22H
1D25H

1D28H

1DO7H

1DOAH

1DODH

1D18H

1D1BH

1D77H
1D20H

1D24H
1D27H

1D2BH

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Go convert the current value in REGI to single
precision and return with the result in REG1.

Go move the single precision value in REG1 into
register pairs BC and DE.

go get the sign for the value in REG1 into register
Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Save the exponent and the NMSB for the single
precision value in register pair BC on the stack.

Save the NMSB and the LSB for the single precision
value in register pair DE on the stack.

Load register C with the sign value in register A.
Go check the current value of the number type flag.

Load register B with the value of the number type
flag test in register A.

Save the value in register pair BC on the stack.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Load register B with a FOR token.

Exchange the value of the variable address in regis-
ter pair HL with the value of the current BASIC
program pointer on the stack.

Load register B with the FOR token.

Save the value in register pair BC on the stack.

Bump the value of the stack pointer.
LEVEL II BASIC INTERPRETER

Go check to see if a key has been pressed.
Set the flags.
Go check to see if the key pressed was a shift@.

Save the value of the current BASIC program point-
er.

Save the value of the stack pointer.

377

1D2CH

1D2DH - 1DZEH

Load register A with the value at the location of the
current BASIC program pointer in register pair HL.

Check to see if the character inregister A is a colon.

1D2FH - 1D30H Jump if the character in register A is a colon.

1D31H

1D32H - 1D34H

1D35H

1D36H

1D37H
1D38H

1D3%H - 1D3BH
1D3CH

1D3DH

1D3EH

1D3FH

1D4OH

1D41H - 1DA3H

1D44H - 1D46H
1DA47H
1D48H - 1D49H

378

Check to see if the character in register A is an end of
the BASIC line character.

Go to the Level I BASIC error routine and display a
SN ERROR message if the character in register A
isn't an end of the BASIC line character.

Bump the value of the current BASIC program point-
er in register pair HL.

Load register A with the LSB of the next BASIC line
pointer at the location of the current BASIC program
pointer in register pair HL.

Bump the value of the current BASIC program
pointer in register pair HL.

Check to see if the next BASIC line pointer is equal
to zero.

Jump if this is the end of the BASIC program.

Bump the value of the current BASIC program
pointer in register pair HL.

Load register E with the LSB of the BASIC line
number at the location of the current BASIC pro-
gram pointer in register pair HL.

Bump the value of the current BASIC program
pointer in register pair HL.

Load register D with the MSB of the BASIC line
number at the location of the current BASIC pro-
gram pointer in register pair HL.

Exchange the value of the BASIC line number in
register pair DE with the value of the current BASIC
program pointer in register pair HL.

Save the value of the BASIC line number in register
pair HL.

Load register A with the value of the TRON flag.
Check for TRON.
Jump if TROFF.

1D4AH

1D4BH
1DADH

1D50H

1D53H
1D55H

1D58H
1D59H
1D5AH
1D5BH
1D5EH

1D5FH

1D60H

1D62H
1D65H

1D67H

1D6AH
1D6BH

1D6CH

1D4CH
1D4FH

1D52H

1D54H
1D57H

1D5DH

1D61H

1D64H
1D66H

1D69H

1D6DH

Save the value of the current BASIC program
pointer in register pair DE on the stack.

Load register A with a <,

Go display the character in register A on the video
display.

Go display the current BASIC line number in regis-
ter pair HL on the video display.

Load register A with a >.

Go display the character in register A on the video
display.

Get the value of the current BASIC program pointer
from the stack and put it in register pair DE.

Load register pair HL with the value of the current
BASIC program pointer in register pair DE.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Load register pair DE with the return address.

Save the return address in register pair DE on the
stack.

Return if the character at the location of the current
BASIC program pointer in register pair HL is an end
of the BASIC line character.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
token.

Jump if the character in register A isn’t a BASIC
token.

Check to see if the token in register A is less than a
TAB(token.

Jump if the token in register A is greater than or
equal to a TAB(token.

Multiply the token value in register A by two.

Load the adjusted token value in register C from
register A.

Load register B with zero.

379

1D6EH

1D6FH

1D72H

1D73H

1D74H

1D75H

1D76H
1D77H

1D78H
1D78H

1D79H

1D7AH

1D7CH

1D7DH

1D7FH

1D82H

1D84H
380

1D71H

1D9OH

1D7BH

1D7EH

1D81H

1D83H

1D85H

Load register pair DE with the value of the current
BASIC program pointer in register pair HL.

Load register pair HL with the list of BASIC execu-
tion addresses.

Add the value of the token offset in register pair BC
to the starting address of the list of BASIC execution
addresses in register pair HL.

Load register C with the LSB of the execution ad-

dress at the location of the memory pointer in reg-
ister pair HL.

Bump the value of the memory pointer in register
pair HL.

Load register B with the MSB of the execution
address at the location of the memory pointer in
register pair HL.

Save the value of the execution address in register
pair BC on the stack.

Load register pair HL with the value of the current
BASIC program pointer in register pair DE.

RST 0010H CODE

Bump the value of the current BASIC program
pointer in register pair HL.

Load register A with the value of the character at the
location of the current BASIC program pointer in
register pair HL.

Check to see if the character at the location of the
current BASIC program pointer in register A is
greater than or equal to a colon.

Return if the character at the location of the current
BASIC program pointer in register A is greater than
or equal to a colon.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
space.

Loop if the character at the location of the current
BASIC program pointer in register A is a space.

Check to see if the character at the location of the
current BASIC program pointer in register A is
greater than or equal to OBH.

Jump if the character at the location of the current

1D86H - 1D87H

1D88H -~ 1D8AH

1D8BH - 1D8CH

1D8DH
1D8EH

1D8FH

1D90H
1D91H

1D91H
1D92H
1D95H
1D96H
1D99H

1D9AH
1D9BH

1D9BH
1D9EH

1D9FH
1DACH

1DAZH

1D9AH

1D94H

1D98H

1DADH
1D9DH

1DA1H

1DAKH

BASIC program pointer in register A if greater than
or equal to OBH.

Check to see if the character at the location of the
current BASIC program pointer in register A is
greater than or equal to 09H.

Loop if the character at the location of the current
BASIC program pointer in register A is greater than
or equal to 09H.

Check to see if the character at the location of the
current BASIC program pointer in register A is
greater than or equal to a zero character.
Complement the value of the Carry flag.

Bump the value of the character at the location of the
current BASIC program pointer in register A.

Decrement the value of the character at the location
of the current BASIC program pointer in register A.

Return.
LEVEL II BASIC RESTORE ROUTINE

Load register pair DE with the value of the current
BASIC program pointer in register pair HL.

Load register pair HL with the start of the BASIC
program pointer.

Decrement the start of the BASIC program pointer
in register pair HL.

Save the adjusted value in register pair HL as the
current DATA pointer.

Load register pair HL with the value of the current
BASIC program pointer in register pair DE.

Return.
SCAN KEYBOARD ROUTINE

Go scan the keyboard.
Check to see if a key was pressed.
Return if a key wasn’t pressed.

Check to see if the key pressed in register A is a
shift @ key.

Go wait for another key to be pressed if the key
pressed in register A was a shift @ key.

381

1DAS5H

1DA8BH
1DAGH
1DAAH
1DABH
1DAEH
1DAEH

1DAFH
1DBOH
1DB3H

1DB4H

1DB7H

1DBAH

1DBEH
1DCOH

1DC1H

1DC4H

1DC5H
1DC6H

1DC7H

1DC8H

1DA7H

Save the key pressed in register A as the value of the
last key pressed.

Check to see if the BREAK key was pressed.
Return if the BREAK key wasn't pressed.

Readjust the value of the key pressed in register A.

1DADH Jump.

1DE3H

1DBZH

1DB6H

1DB9H

1DBCH

1DBFH

1DC3H

LEVEL II BASIC END ROUTINE

Return and display a SN ERROR message if there is
anything following the END token.

Save the value in register pair AF on the stack.
Go call the DOS link at 41BBH.

Get the value from the stack and put it in register
pair AF.

Save the value of the current BASIC program
pointer in register pair HL.

Load register pair HL with the starting address of
the temporary string work area.

Save the value in register pair HL as the new tem-
porary string work area pointer.

Set the flags.

Get the value from the stack and put it in register
pair BC.

Load register pair HL with the value of the current
BASIC line number.

Save the value of the current BASIC line number in
register pair HL on the stack.

Save the value in register pair AF on the stack.

Load register A with the LSB of the current BASIC
line number in register L.

Combine the MSB of the current BASIC line number
in register H with the LSB of the current BASIC line
number in register A.

Bump the combined value of the current BASIC line
number in register A.

1DC9H - 1DCAH Jump if Level II BASIC is in the command mode.

382

1DCBH

1DCEH

1DD1H

1DD4H

1DD7H
1DDAH

1DDBH

1DDEH

1DE1H
1DE4H

1DEAH

1DE7H

1DE8SH

1DE9H
1DEBH

1DEEH

1DEFH

1DF2H

1DF5H

1DF6H
1DF7H

- 1DCDH

- 1DDOH

-~ 1DD3H

- 1DD6H

- 1DDSH

- 1DDDH

- 1DECH

- 1DE3H
- 1DF6H

- 1DE6H

-~ 1DEAH
~ 1DEDH

- 1DF1H

- 1DF4H

- 1DF8H

Save the value of the current BASIC line number in
register pair HL.

Load register pair HL with the value of the current
BASIC program pointer.

Save the value of the current BASIC program
pointer in register pair HL.

Go set the current output device to the video dis-
play.

Go display a carriage return if necessary.

Get the value from the stack and put it in register
pair AF.

Load register pair HL with the starting address of
the BREAK message.

Jump if it was a BREAK or a STOP that halted
program execution.

Jump.
LEVEL II BASIC CONT ROUTINE

Load register pair HL with the value of the continu-
ation address.

Load register A with the MSB of the continuation
address in register H.

Combine the LSB of the continuation address in
register L with the MSB of the continuation address
in register A.

Load register E with a CN ERROR code.

Go to the Level I BASIC error routine and display a
CN ERROR message if CONT isn't possible.

Load register pair DE with the value of the continu-
ation address in register pair HL.

Load register pair HL with the value of the last
BASIC line number executed.

Save the last line number executed in register pair
HL as the current BASIC line number.

Load register pair HL with the value of the continu-
ation address in register pair DE.

Return.
TRON ENTRY POINT
383

1DF7H
1DF8H
1DF8H

1DF9H

1DF9H

1DFCH
1DFDH

1EOOH
1EOOH

1EO3H
1EO3H

1EO06H
1EO06H

1EOQ9H
1EO9H

1EOBH

1EOBH

1EQCEH

1E11H

1E12H

1E13H

384

1DF8H

1DFCH

1DFBH

1DFFH

1EOZH
1EO1H

Load register A with a nonzero value.
TROFF ENTRY POINT
Zero register A.

COMMON CODE SHARED
BY TRON AND TROFF

Save the value in register A as the current value of
the TRON/TROFF flag.

Return.

DISK ROUTINE NOT
USED BY LEVEL II BASIC.

DEFSTR ENTRY POINT

Load register E with the string number type flag
(03H).

1EO5H DEFINT ENTRY POINT

1EO4H

1EO8H
1EO7H

1EOAH
1EOAH

1E3CH

1EODH

1E10H

1E14H

Load register E with the integer number type flag
(02H).

DEFSNG ENTRY POINT

Load register E with the single precision number
type flag (04H).

DEFDBL ENTRY POINT

Load register E with the double precision number
type flag (08H).

COMMON CODE SHARED BY
DEFSTR, DEFINT, DEFSNG, AND DEFDBL

Go check to see if the character at the location of the
current BASIC program pointer in register A is
alphabetic.

Load register pair BC with a return address which
will return to the SN ERROR routine.

Save the value of the return address in register pair
BC on the stack.

Return if the character at the location of the current
BASIC program pointer in register A isn’t alpha-
betic.,

Subtract 41H from the letter’s value in register A so
that it will be in the range of 0-25.

1E15H
1E16H

1E17H

1E18H

1E1AH

1E1CH
1E1DH

1E20H

1E21H

1E23H

1E24H

1E25H

1E26H

1E27H
1E28H

1E29H

1EZ2AH

1E2DH
1E2FH

- 1E19H

- 1E1BH

- 1E1FH

1E22H

- 1E2CH

- 1E2EH

koad register C with the adjusted value in register
koad register B with the adjusted value in register

Gq bump the value of the current BASIC program
pointer in register pair HL until it points to the next
character.

Check to see if the character at the location of the
current BASIC program pointer in register Ais a-.

Jump if the character at the location of the current
BASIC program pointer in register A isn't a -.

Go bump the current BASIC program pointer in
register pair HL until it points to the next character.

Go check to see if the character in register A is
alphabetic.

Return if the character at the location of the current
bBA.SIC program pointer in register A isn't alpha-
etic.

Subtract 41H from the letter’s value in register A so
that it will be in the range of 0-25.

koad register B with the adjusted value in register
Go bump the value of the current BASIC program
pointer in register pair HL until it points to the next

character.

Load register A with the value of the second letter in
register B.

Subtract the value of the first letter in register C
from the value of the second letter in register A.

Return if the letter values are in descending order.

Bump the value in register A so that it holds the
number of variable names to be changed.

Exchange the value of the return address on the
stack with the value of the current BASIC program
pointer in register pair HL.

Load register pair HL with the starting address of
the variable declaration table.

Load register B with zero.
Add the value of the first letter in register pair BC to
385

1E30H
1E31H
1E32H

1E33H
1E35H

1E36H

1E37H

1E39H
1E3AH
1E3BH
1E3DH
1E3DH
1E3EH
1E40H

1E41H

1E43H

386

1E34H

1E38H

1E3CH
1E44H

1E3FH

1E42H

the value of the starting address of the variable
declaration table in register pair HL.

Save the number type flag in register E at the loca-
tion of the memory pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Decrement the count of the number of variables to
be changed in register A.

Loop until all of the variables have been changed.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Load A with the character at the location of the
current BASIC program pointer in register pair HL.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
comma.

Return if the character at the location of the current
BASIC program pointer in register A isn’t a comma.

Go bump the current BASIC program pointer in
register pair HL until it points to the next character.

Loop until done.
EXAMINE VARIABLE

Load register A with the character at the location of
?Ile current BASIC program pointer in register pair
L.

Check to see if the character at the location of the
current BASIC program pointer in register A is less
than an A.

Return if the character at the location of the current
RASIC program pointer in register A is less than an

Check to see if the character at the location of the
current BASIC program pointer in register A is
greater than a Z.

Complement the value of the Carry flag. On exit this
routine will have the Carry flag set if the character at
the location of the current BASIC program pointer in
register A isn’t alphabetic and will have the Carry
flag cleared if the character at the location of the
current BASIC program pointer in register A is
alphabetic.

1E44H
1E45H
1E45H

1E46H

1EA49H

1E4AH
1EA4CH

1E4FH
1E4FH

1E50H

1E52H
1E53H

1E56H

1E57H
1E5AH
1E5BH
1E5EH
1E5FH

1E60H

1E4EH

1E48H

1E4BH
1E4EH

1E79H

1E51H

1E55H

Return.
EXAMINE VARIABLE

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Go evaluate the expression at the current location of
the BASIC program pointer in register pair HL and
return with the integer result in register pair DE.

Retumn if the integer result in register pair DE is
positive.

Load register E with an FC ERROR code.

Go to the Level II BASIC error routine and display a
FC ERROR message if the integer result in register
pair DE is negative.

ASCII TO BINARY

Load register A with the character at the location of
%1](3 current BASIC program pointer in register pair

Check to see if the character at the location of the
current BASIC program pointer in register A is a
period.

Load register pair DE with the value of the current
BASIC program pointer in register pair HL.

Load register pair HL with the current BASIC line
number.

Exchange the value of the current BASIC program
pointer in register pair DE with the current BASIC
line number in register pair HL.

1E59H Jump if the character at the location of the current

1E5DH

BASIC program pointer in register A is a period.

Decrement the value of the current BASIC program
pointer in register pair HL.

Load register pair DE with zero.

Go bump the value of the current BASIC program
pointer in register pair HL until it points to the next
character.

Return if the character at the location of the current
BASIC program pointer in register A isn’t numeric.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

387

1E61H
1E62H - 1E64H
1E65H

1E66H - 1E68H

1E69H
1E6AH
1E6BH

1E6CH

1E6DH

1E6EH

1E6FH

1E70H - 1E71H
1E72H

1E73H - 1E74H
1E75H

1E76H
1E77H

1E78H - 1lE79H

388

Save the value in register pair AF on the stack.
Load register pair HL with 6552.

Check to see if the integer value in register pair DE
is greater than 6552.

Go to the Level I1 BASIC error routine and display a
SN ERROR message if the value in register pair DE
is greater than 6552.

Load register H with the MSB of the integer total in
register D.

Load register L with the LSB of the integer total in
register E.

Multiply the integer value in register pair HL by
two.

Multiply the integer value in register pair HL by
two. The integer result in register pair HL is now
?qual to the integer value in register pair DE times
our.

Add the integer value in register pair DE to the
integer value in register pair HL. The integer result
in register pair HL is now equal to the integer value
in register pair DE times five.

Multiply the integer value in register pair HL by
two. The integer result in register pair HL is now
equal to the integer value in register pair DE times
ten.

Get the value from the stack and put it in register
pair AF,

Convert the ASCII digit in register A to binary.

Load register E with the binary value of the charac-
ter in register A.

Load register D with zero.

Add the binary value of the character in register pair
DE to the integer value in register pair HL.

Load register pair DE with the integer result in
register pair HL.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Loop till the ASCII to binary conversion has been
completed.

1E7AH
1E7AH

1E7DH

1D80H

1E81H

1E82H

1E83H
1E84H
1E87H

1E88H

1E89H
1E8AH

1E8BH

1E8CH

1E8DH

1E90H
1E93H

1E96H

- 1EACH

LEVEL II BASIC CLEAR ROUTINE

-~ 1E7CH Jump if there isn't a number of bytes specified to

- 1D7FH

- 1E86H

- 1E8FH

- 1E92H

- 1E95H

clear for string space.

Go evaluate the number of bytes to be reserved for
string space and return with the integer result in
register pair DE.

Decrement the current BASIC program pointer in
register pair HL.

Go bump the value of the current BASIC program
pointer in register pair HL until it points to the next
character.

Return if the character at the location of the current
BASIC program pointer isn’t an end of the BASIC
statement character.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Load register pair HL with the top of memory
pointer,

Load register A with the LSB of the top of memory
pointer in register L.

Subtract the LSB of the number of bytes for string
space in register E from the LSB of the top of
memory pointer in register A.

Load register E with the LSB of the start of string
space in register A.

Load register A with the MSB of the top of memory
pointer in register H.

Subtract the MSB of the number of bytes for string
space in register D from the MSB of the top of
memory pointer in register A.

Load register D with the MSB of the start of string
space pointer in register A.

Go to the Level 11 BASIC error routine and display
an OM ERROR message if there isn’t enough mem-
ory for the amount of string space specified.

Load register pair HL with the end of the BASIC
program pointer.

Load register pair BC with the least amount of space
needed for BASIC program variables.

Add the value in register pair BC to the end of

389

1E97H

1E98H -

1E9BH
1E9CH -
1E9FH

1EAOH -
1EA3H -
1EA3H -

1EA6H -
1EAG9H -
1EACH -
1EAFH -
1EBI1H -~
1EBlH -

1EB3H -
1EB6H
1EB7H
1EB8H

1EBY9H -

390

1E9AH

1E9EH

1EAZH
1EBOH
1EA5H

1EA8H
1EABH
1EAEH
1EBCH
1EC1H
1EB2H

1EB5H

1EBBH

BASIC program pointer in register pair HL.

Go compare the adjusted end of the BASIC program
pointer in register pair HL to the start of string space
pointer in register pair DE.

Go to the Level I BASIC error routine and display
an OM ERROR message if the start of string space
pointer in register pair DE is less than the adjusted
%rid of the BASIC program pointer in register pair

Load register pair HL with the start of string space
pointer in register pair DE.

IS{ave the start of string space pointer in register pair
L.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.
Jump.

LEVEL II BASIC RUN ROUTINE

Jump if there isn’t a line number specified after the
RUN token.

Call the DOS line at 41C7H.

Go initialize the BASIC variables and pointers.
Load register pair BC with the return address.
Jump.

LEVEL II BASIC GOSUB ROUTINE

Load register B with the number of bytes needed for
the GOSUB push.

Go make sure that there’s enough memory for the
GOSUB push.

Get the return address from the stack and put it in
register pair BC.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Save the value of the current BASIC program
pointer on the stack.

Load register pair HL with the value of the current
BASIC line number.

1EBCH

1EBDH
1EBFH
1ECOH
1EC1H

1EC2H

1ECZ2H

1EC5H

1EC8H

1EC9H

1ECCH

1ECDH

1ECEH

1ECFH

1ED2H

1ED5H
1ED6H

1ED7H

1EBEH

1EDDH
- 1ECHH

1EC7H

- 1ECBH

- 1ED1

- 1ED4H

Exchange the value of the current BASIC program
pointer on the stack with the value of the current
BASIC line number in register pair HL.

Load register A with a GOSUB token.
Save the value in register pair AF on the stack.
Bump the value of the stack pointer.

Save the return address in register pair BC on the
stack.

LEVEL II BASIC GOTO ROUTINE

Go evaluate the line number at the location of the
current BASIC program pointer in register pair HL
and return with the result in register pair DE.

Go bump the current BASIC program pointer in
register pair HL till it points to the end of the current
BASIC line.

Save the value of the current BASIC program point-
er in register pair HL on the stack.

Load register pair HL with the value of the current
BASIC line number.

Go compare the value of the current BASIC line
number in register pair HL with the value of the line
number to branch to in register pair DE.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Bump the value of the current BASIC program
pointer in register pair HL.

If the line number to branch to in register pair DE is
greater than the current BASIC line number then go
find where the line number is located.

If the line number to branch to in register pair DE is
less than the current BASIC line number, then go
find where the line number is located.

Load register H with the MSB of the new BASIC
program pointer in register B.

Load register L with the LSB of the new BASIC
program pointer in register C.

Decrement the value of the current BASIC program
pointer in register pair HL.

391

1ED8H
1EDGH
1EDBH

1EDEH
1EDEH

1EDFH
1EElH
1EE4H

1EE5H
1EE8H

1EEAH
1EECH

1EEFH
1EFOH
1EF3H
1EF4H

1EF5H

1EDAH
1EDDH

1EOLH

1EEOH
1EE3H

Jump if the new line number was found.
Load register E with an UL ERROR code.

Go to the Level Il BASIC error routine and display
?n UL ERROR message if the line number wasn't
ound.

LEVEL II BASIC RETURN ROUTINE

Go to the Level II BASIC error routine and display a
SN ERROR message if there is anything following
the RETURN token.

Load register D with FFH

Go backspace the stack pointer by four and return
with the value at the location of the stack pointer in
register A.

Load the stack pointer with the new value in register
pair HL.

- 1EE7HS Save the stack pointer position in register pair HL.

1EE9H

1EEBH
1EEEH

1EF2H

Check to see if the value in register A is a GOSUB
token.

Load register E with a RG ERROR code.

Go to the Level I BASIC error routine and display a
RG ERROR message if there isn't a GOSUB push on
the stack.

Get the value of the GOBUS line number from the
stack and put it in register pair HL.

Save the GOSUB line number in register pair HL as
the current BASIC line number.

Bump the value of the current BASIC line number in
register pair HL.

Load register A with the MSB of the adjusted cur-
rent BASIC line number in register pair HL.

Combine the LSB of the adjusted current BASIC line
number in register L with the adjusted MSB of the
current BASIC line number in register A.

1EF6H = 1EF7H Jump if Level II BASIC is in the command mode.
1EF8H - 1EFAH

1EFBH

392

Load register A with the command mode flag.

Check for the command mode.

1EFCH
1EFFH
1F02H

1FO5H
1FO7H
1FO9H
1FOBH

1FOCH

1FODH

1FOEH

1FOFH

1F10H

1F11H

1F12H

1F13H

-~ 1EFEH Jump if Level Il BASIC is in the command mode.

1FO01H

1F20H
1F08H
1FO0AH

1F14H - 1F15H

1F16H - 1F17H

1F18H -~ 1F19H

Load register pair HL with the return address.

Exchange the value of the current BASIC program
pointer on the stack with the return address in reg-
ister pair HL.

SCAN ROUTINE
Load register C with zero.
Load register B with zero.

Load register A with the stop scan character in
register C,

Load register C with the stop scan character in
register B,

Load register B with the stop scan character in
register A.

Load register A with the character at the location of
i-}llf current BASIC program pointer in register pair

Check to see if the character at the location of the
current BASIC program pointer in register A is an
end of the BASIC line character.

Return if the character at the location of the current
BASIC program pointer in register A is an end of the
BASIC line character.,

Check to see if the character at the location of the
current BASIC program pointer in register A is the
same as the stop scan character in register B.

Return if the character at the location of the current
BASIC program pointer in register A is the same as
the stop scan character in register B.

Bump the value of the current BASIC program
pointer in register pair HL.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
quote.

Loop if the character at the location of the current
BASIC program pointer in register A is a quote.

Check to see if the character at the location of the

current BASIC program pointer in register A is an IF
token.

393

1F1AH - 1F1BH

1F1CH

1F1DH
1F1EH

1F1FH - 1F20H
1F21H - 1F6BH

1F21H - 1F23H

1F24H

1F25H
1F26H

1F27H - 1F29H
1FZAH

1F2BH

1F2CH
1F2DH
1F2EH - 1F30H

1F31H

1F32H

1F33H - 1F34H

394

Loop if the character at the location of the current
BASIC program pointer in register A isn't an IF
token.

Check to see if the character at the location of the
current BASIC program pointer in register A is the
same as the character in register B.

Add the value in register D to the value in register A.
Load register D with the value in register A.

Loop until scan is completed.
LEVEL II BASIC LET ROUTINE

Go examine the variable at the location of the cur-
rent BASIC program pointer in register pair HL and
return with the variable’s address in register pair
DE.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be an equal token (D5).

The character to be checked for is stored here.

Exchange the address of the variable in register pair
DE with the value of the current BASIC program
pointer in register pair HL.

Save the address of the variable in register pair HL.

Exchange the value of the current BASIC program
pointer in register pair DE with the address of the
variable in register pair HL.

Save the address of the variable in register pair DE
on the stack.

Go check the current value of the number type flag.
Save the value in register pair AF on the stack.
Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
and return with the result in REGL.

Get the value from the stack and put it in register
pair AF.

Exchange the address of the variable on the stack
with the value of the current BASIC program pointer
in register pair HL.

Adjust the value in register A so that it will hold the
correct number type flag.

1F35H

1F38H
1F3BH

1F3CH
1F3EH

1F41H
1F42H

1F43H

1F44H

1F45H

1F46H

1F49H

1F4AH

1F4CH

1F4FH

1F50H

1F51H

1F53H

1F37H

1F3AH

1F3DH
1F4OH

1P48H

1F4BH

1FA4EH

1F52H

1F55H

Go convert the result in REG1 to the same number
type for the variable.

Go save the result of the expression.

Save the address of the variable in register pair DE
on the stack.

Jump if the result of the expression wasn't a string.

Load register pair HL. with the starting address of
the string’s VARPTR in REGI.

Save the VARPTR for the string result in register
pair HL on the stack.

Bump the value of the VARPTR for the string result
in register pair HL.

Load register E with the LSB of the address for the
string at the location of the VARPTR for the string in
register pair HL.

Bump the value of the VARPTR for the string result
in register pair HL.

Load register D with the MSB of the address for the
string at the location of the VARPTR for the string in
register pair HL.

Load register pair HL with the start of the BASIC
program.

Go compare the start of the BASIC program area in
register pair HL with the address of the string result
in register pair DE.

Jump if the address of the string result in register
pair DE is less than the start of the BASIC program
area in register pair HL.

Load register pair HL with the start of the string
space pointer.

Go compare the start of the string spacer pointer in
register pair HL with the address of the string result
in register pair DE.

Get the VARPTR for the string result from the stack
and put it in register pair DE.

Jump if the address of the string result in register
pair DE was less than the start of the string space
pointer in register pair HL.

Load register pair HL with the simple variables
pointer.

395

1F56H

1F57H

1F5AH

1F5BH
1F5EH

1F5FH
1F62H
1F65H

1F58H

1F5DH

1F61H
1F64H

1F66 - 1F68H

1F69H
1F6AH

1F6BH
1F6CH
1F6CH
1F6EH
1F70H

1F71H

1F73H

396

1FAEH
1F6DH

1F6FH

1F72H

1F75H

Go compare the address of the VARPTR for the
string result in register pair DE with the simple
variables pointer in register pair HL.

Jump if the address of the VARPTR for the string
result in register pair DE is less than the simple
variables pointer in register pair HL.

Get the VARPTR for the string result from the stack
and put it in register pair DE.

Go adjust the temporary string work area pointers.

Exchange the VARPTR for the string in register pair
DE with the string’s address in register pair HL.

Go move the string into string space.
Go adjust the temporary string work area pointers.

Exchange the address of the variable in register pair
HL with the address of the variable on the stack.

Go move the result to it’s proper location in mem-
ory.

Get the address of the variable from the stack and
put it in register pair DE.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Return.
LEVEL II BASIC ON ROUTINE

Check to see if the character at the location of the
current BASIC program pointer in register A is an
ERROR token.

Jump if the character at the location of the current
BASIC program pointer in register A isn’'t an
ERROR token.

Bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a GOTO token.

Go evaluate the line number to branch to at the
location of the current BASIC program pointer in
register pair HL and return with the result in regis-
ter pair DE.

1F76H
1F77H
1F78H

1F7AH

1F7DH
1F7EH
1F7FH

1F80H

1F83H

1F84H

1F87H

1F88H
1F89H
1F8CH
1F8DH
1F8EH
1F91H

1F92H

1F95H

Load register A with the MSB of the line number in
register D.

Combine the LSB of the line number in register E
with the MSB of the line number in register A.

= 1F79H Jump if the line number in register pair DE is equal

1F7CH

1F82H

1F86H

1F8BH

1F90H

1F94H

1F97H

to zero.

Go find the location of the line number in register
pair DE and return with the location of the line
number in register pair BC.

Load register D with the MSB of the location of the
BASIC line in register B.

Load register E with the LSB of the location of the
BASIC line in register C.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Go to the Level II BASIC error routine and display
an UL ERROR message if the BASIC line doesn't
exist.

Exchange the location of the BASIC line in register
pair DE with the value of the current BASIC pro-
gram pointer in register pair HL.

a;}j/e the location of the BASIC line in register pair
Exchange the value of the current BASIC program
pointer in register pair DE with the location of the
BASIC line in register pair HL.

Return.

Load register A with the value of the error flag.
Check to see if the error flag is set.

Return if the error flag is set.

Load register A with the error code.

Load register E with the value of the error code in
register A.

Go to the Level I error routine and display the error
message for the error code in register E.

Go evaluate the expression at the location of the

current BASIC program pointer and return with the
result in register pair DE.

397

1F98H

1F9%H

1F9AH

1F9CH

1F9EH

1FAOH
1FA1H

1FAZH
1FA3H
1FALH
1FA7H

1FAAH

1FACH

1FADH
1FAFH
1FAFH

1FB2H

1FB3H
1FB4H

398

Load register A with the character at the location of
the current BASIC program pointer in register pair
HL.

Load register B with the character at the location of
the current BASIC program pointer in register A.

- 1F9BH Check to see if the character at the location of the

current BASIC program pointer in register A is a
GOSUB token.

- 1FODH Jump if the character at the location of current

- 1F9FH

BASIC program pointer in register A is a GOSUB
token.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a GOTO token.

Decrement the value of the current BASIC program
pointer in register pair HL.

Load register C with the LSB of the expression after
the ON token in register E.

Decrement the line number counter in register C.

Load register A with the token in register B.

1FA6H Jump if the line number has been found.

1FAQH

1FABH

1FAEH
1FF3H
1FB1H

1FB6H

Evaluate the line number at the location of the cur-
rent BASIC program pointer and return with the
result in register pair DE.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
comma.

Return if the character at the location of the current
BASIC program pointer in register A isn’t a comma.

Loop until the line number has been located.
LEVEL II BASIC RESUME ROUTINE

Load register pair DE with the address of the Level
II BASIC error flag.

Load register A with the error flag at the location of
the memory pointer in register pair DE.

Check for an error,

Go to the Level II BASIC error routine and display
an RW ERROR message if an error hasn’t occurred.

1FB7H
1FB8H
1FBBH

1FBCH

1FBDH

1FBFH

1FClH

1FC4H
1FC5H
1FC6H
1FC7H
1FCAH
1FCBH
1FCDH
1FCEH
1FCFH
1FDZ2H
1FD3H

1FD6H

1FBAH

1FBEH

1FCOH

1FC3H

1FC9H

1FCCH

1FD1H

1FD5H

1FD8H

Clear the error flag in register A.
Save the new error flag in register A.

Save the new error flag in register A at the location
of the memory pointer in register pair DE.

Load register A with the character at the location of
t}l{]ﬁ current BASIC program pointer in register pair

Check to see if the character at the location of the
current BASIC program pointer in register A is a
NEXT token.

Jump if the character at the location of the current
BASIC program pointer in register A is a NEXT
token.

Go evaluate the line number at the location of the
current BASIC program %ointer and return with the
result in register pair DE.

Return if there wasn’t a line number at the location of
the current BASIC program pointer.

Load register A with the MSB of the line number in
register D.

Combine the LSB of the line number in register E
with the MSB of the line number in register A.

Jump if the line number in register pair DE isn't
equal to zero.

Bump the value in register A so that it will indicate
RESUMEQ.

Jump to the RESUMEO code.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Return if this is the end of the BASIC statement.

Get the value of the current BASIC program pointer
and put it in register pair HL.

Load register pair DE with the value of the current
BASIC program pointer in register pair HL.

Load register pair HL with the current BASIC line
number.

Save the value of the current BASIC line number in
register pair HL.

399

1FDSH

1FDAH

1FDBH

1FDCH

1FDDH

1FDFH

1FEOH

1FElH

1FE2H

1FE3H

1FE4H

1FE5H

1FE6H

1FE7H
1FEAH
1FEDH

1FEEH
1FF1H
1FF4H
1FF4H

400

Load register pair HL with the value of the current
BASIC program pointer in register pair DE.

Return if this is RESUMEO.

Get the character at the location of the current
BASIC program pointer in register pair HL and put it
in register A.

Check the character at the location of the current
BASIC program pointer in register A to see if it's an
end of the BASIC line character.

-~ 1FDEH Jump if the character at the location of the current

BASIC program pointer in register A isn't an end of
the BASIC line character.

Bump the value of the current BASIC program
pointer in register pair HL.

Bump the value of the current BASIC program
pointer in register pair HL.

Bump the value of the current BASIC program
pointer in register pair HL.

Bump the value of the current BASIC program
pointer in register HL.

Bump the value of the current BASIC program
pointer in register pair HL.

Load register A with the MSB of the line number
with the error in register D.

Combine the LSB of the line number with the error
in register E with the MSB of the line number with
the error in register A.

Bump the combined value of the line number with
the error in register A.

1FE9H Jump if Level Il BASIC isn't in the command mode.
1FECH Load register A with the command mode flag.

Check to see if the command mode flag in register A
is set.

1FFOH Jump if Level II Basic is in the command mode.
1FF3H Return.
2007H LEVEL II BASIC ERROR ROUTINE

1FF6H Go evaluate the expression at the location of the

1FF7H
1FF8H

1FFOH -

1FFCH
1FFDH
1FFEH

1FFFH -

2001H -~
2003H -
2005H -

2008H -
2008H -

200BH

200CH -

200EH =~

2011H

2012H

2013H -
2015H

2016H -

1FFBH

2000H

2002H
2004H
2007H

2038H
200AH

200DH
2010H

2014H

2017H

current BASIC program pointer in register pair HL
and return with the result in A.

Return if this isn’t the end of the BASIC statement.

Check to see if the error number in register A is
equal to zero.

Go to the Level II BASIC error routine and display
an FC ERROR message if the error code in register
A is equal to zero.

Subtract one from the error code in register A.
Multiply the error code in register A by two.

Load register E with the value of the error code in
register A.

Check to see if the error code in register A is less
than 45.

Jump if the error code in register A is less than 45.
Load register E with an UE ERROR code.

Go to the Level I BASIC error routine and display
the appropriate error message.

LEVEL II BASIC AUTO ROUTINE

Load register pair DE with a default line number of
ten.

Save the default line number in register pair DE on
the stack.

Jump if this is the end of the BASIC statement.
Go evaluate the line number at the current location
of the BASIC program pointer in register pair HL
and return with the result in register pair DE.
Exchange the value of the line number in register
pair DE with the value of the current BASIC pro-
gram pointer in register pair HL.

Exchange the default line number on the stack with
the line number in register pair HL.

Jump if this is the end of the BASIC statement.

Load register pair HL with the value of the current
BASIC program pointer in register pair DE.

Go check the syntax. The character at the location of

401

2018H
2019H

201CH

201DH
201FH

2022H

2025H

2026H

2027H

2028H

202BH

202EH
2031H

2032H

2035H
2036H
2039H
2039H

402

201BH

201EH
2021H

2024H

202AH

202DH

2030H

2034H

the current BASIC program pointer in register pair
HL must be a comma.

Load register pair DE with the value of the current
BASIC program pointer in register pair HL.

Load register pair HL with the last AUTO increment
value.

Exchange the value of the current BASIC program
pointer in register pair DE with the last AUTO
increment value in register pair HL.

Jump if this is the end of the BASIC statement.

Go evaluate the AUTO increment number at the
location of the current BASIC program pointer in
register pair HL and return with the result in regis-
ter pair DE.

Go to the Level Il BASIC error routine and display a
SN ERROR message if this isn’t the end of the
BASIC statement.

Exchange the AUTO increment number in register
pair DE with the value of the current BASIC pro-
gram pointer in register pair HL.

Load register A with the MSB of the AUTO incre-
ment number in register H.

Combine the LSB of the AUTO increment number in
register L with the MSB of the AUTO increment
number in register A.

Go to the Level Il BASIC error routine and display a
FC ERROR message if the AUTO increment
number in register pair HL is equal to zero.

Save the value of the AUTO increment number in
register pair HL.

Set the AUTO flag.

Get the line number from the stack and put it in
register pair HL.

Save the line number in register pair HL as the next
AUTO line number.

Clean up the stack.

2038H Jump to the Level II BASIC command mode.

2066H
203BH

LEVEL II BASIC IF ROUTINE

Go evaluate the expression at the location of the

203CH

203DH

203FH

2042H

2044H

2047H
2048H
2049H
204CH
204DH
204FH

2050H

2053H
2056H
2058H
205BH

203EH

2041H

2043H

2046H

204BH

current BASIC program pointer and return with the
result in REG1.

Load register A with the character at the location of
;-}Ilf current BASIC program pointer in register pair

Check to see if the character at the location of the
current BASIC program pointer in register A is a
comma.

If the character at the location of the current BASIC
program pointer in register A is a comma then go
bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character,

Check to see if the character at the location of the
current BASIC program pointer in register A is a
THEN token.

If the character at the location of the current BASIC
program pointer in register A isa THEN token, then
go bump the value of the current BASIC program
pointer till it points to the next character,

Decrement the value of the current BASIC program
pointer in register pair HL.

Save the value of the current BASIC program point-
er on the stack.

Check to see if the expression after the IF token was
true or false.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

204EH Jump if the expression was false.

2052H

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Jump to the GOTO routine if the character at the
location of the current BASIC program pointer in
register pair HL is numeric.

2055H Jump.

2057H

Load register D with the scan counter.

205AH Go scan the BASIC statement.

Check to see if this is the end of the BASIC instruc-
tion.

403

205CH
205DH

205EH

2060H
2062H
2063H
2065H
2067H
2067H

2069H

206CH
206FH
206FH
2072H

2074H

2076H

2079H

207AH

207EH

207FH

404

205FH

2061H

2064H
2066H
206EH
2068H

206BH

206EH
2177H
2071H
2073H

2075H

2078H

207AH

207DH

2081H

Return if this is the end of the BASIC statement.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Check to see if the character at the location of the
current BASIC program pointer in register A is an
ELSE token.

Loop till an ELSE token is found.

Decrement the value of the scan counter.

Loop till all of the ELSE tokens have been found.
Jump.

LEVEL II BASIC LPRINT ROUTINE

Load register A with the output device code for the
printer.

Save the value in register A as the current output
device type number.

Jump.

LEVEL II BASIC PRINT ROUTINE

Call the DOS link at 41CAH.

Check the character at the location of the current
BASIC program pointer in register A to see if it's an
@.

Jump if the character at the location of the current
BASIC program pointer in register A isn't an @.
Go evaluate the expression at the location of the

current BASIC program pointer in register pair HL
and return with the result in register pair DE.

Check to see if the location in register pair DE is
greater than 1023H.

Go to the Level Il BASIC error routine and display a
FC ERROR message if the location in register pair
DE is greater than 1023.

Save the value of the current BASIC program point-
er in register pair HL on the stack.

Load register pair HL with the starting address of
video memory.

2082H
2083H
2086H
2087H

2089H
208CH

208DH

208FH
2091H
2093H
2096H
2098H
209BH
209CH

209DH

20A0H

20A3H

2085H

2088H

208BH

208EH

2090H

2092H

2095H

2097H

209AH

209FH

20A2H

20A4H

Add the location in register pair DE to the starting
address of video memory in register pair HL.

Save the adjusted value in register pair HL as the
current cursor position.

Load register A with the LSB of the new cursor
position in register L.

Mask the LSB of the cursor position in register A to
determine the cursor’s line position.

Save the new cursor line position in register A.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a comma.

Check to see if the character at the location of the
current BASIC program pointer in register A is a #.

Jump if the character at the location of the current
BASIC pointer in register A isn't a #.

Go set the specified cassette drive number as the
current cassette drive.

Load register A with the output device type code for
the cassette recorder.

Save the value in register A as the current output
device type code.

Decrement the value of the current BASIC program
pointer in register pair HL.

Go bump the value of the current BASIC program
pointer till it points to the next character.

If the character at the location of the current BASIC
program pointer in register A is an end of the BASIC
statement character then go print a carriage return
on the video display if necessary.

Jump if the character at the location of the current
BASIC program pointer in register A is an end of the
BASIC statement character.

Check to see if the character at the location of the

current BASIC program pointer in register A is a
USING token.

405

20A5H

20A8H

20AAH

20ADH

20AEH

20BOH

20B3H

20B5H

20B8H

20B9H

20BCH

20BDH
20BEH
20C0H

20C3H
20C6H
20C9H

20CCH

406

20A7H

20A9H

20ACH

20AFH

20B2H

20B4H

20B7H

20BBH

20BFH
20C2H

20C5H
20C8H
20CBH

20CEH

Jump if the character at the location of the current
BASIC program pointer in register A is a USING
token.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
TAB(token.

Jump if the character at the location of the current
BASIC program pointer in register A is a TAB(
token.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
comma.

Jump if the character at the location of the current
BASIC program pointer in register A is a comma.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
semicolon.

Jump if the character at the location of the current
BASIC program pointer in register A is a semicolon.

Get the value of the current BASIC program point-
er from the stack and put it in register pair BC.

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
and return with the result in REG1.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Go check the current value of the number type flag.
Jump if the result in REG] is a string.

Go convert the numeric value in REG1 to an ASCII
string.

Go set up pointers in the temporary string area.
Call the DOS link at location 41CDH.

Load register pair HL with the VARPTR for the
string to be sent to the current output device.

Load register A with the current value of the output
device flag.

20CFH

20DOH =~
20D3H -
20D5H =
20D8H

20D9H =~

20DBH -
20DDH -
20EOH

20E1H -
20E4H

20E5H

20E6H -

20E9H -
20ECH -
20EEH -

20F1H
20F2H =~

20F6H -
20F9H -

20FCH

Test the value of the current output device code in
register A.

20D2H Jump if the current output device is the cassette re-

20D4H

20D7H

20DAH

20DCH
20DFH

20E3H

20E8H

20EBH
20EDH
20FOH

20F4H

20F8H
20FBH

corder,

Jump if the current output device is the video dis-
play.

Load register A with the current carriage position.
Add the length of the string to be sent to the printer
at the location of the memory pointer in register pair
HL to the current carriage position in register A.

Check to see if the adiusted length in register A is
greater than 132,

Jump.
Load register A with the video line size.

Load register B with the video line size in register
A.

Load register A with the current video line position.
Add the length of the string to be sent to the video
display at the location of the memory pointer in
register pair HL to the value of the current video line
position in register A.

Check to see if the length in register A is greater
than the video line length.

Go send a carriage return to the current output
device if necessary.

Go send the string to the current output device.
Load register A with a space.

Go send the space in register A to the current output
device.

Check to see if register A is equal to zero.

If necessary go send the string to the current output
device.

Loop till done.

Load register A with the number of characters
printed on the current line.

Check to see if any characters have been printed on
the current line.

407

20FDH

20FEH
21COH

2103H
2106H
2107H
2108H
210BH

210EH

210FH

2112H
2114H

2117H
2119H

211BH
211EH

2120H
2123H
2126H

2127H
212AH

212BH

408

Return if no characters have been printed on the
current line.

20FFH Load register A with a carriage return.

2102H Go send the carriage return in register A to the
current output device.

2105H Call the DOS link at 41DOH.
Zero register A.
Return.

210AH Call the DOS link at 41D3H.

210DH Load register A with the value of the current output
device flag.

Test the value of the current output device flag in
register A.

2111H Jump if the printer or the video display is the current
output device.

2113H Load register A with a comma.

2116H Send the comma in register A to the cassette re-
corder.

2118H Loop till done.

211AH Jump if the video display is the current output de-
vice.

211DH Load register A with the current carriage position.

211FH Check to see if the current carriage position in
register A is greater than 112.

2122H Jump.
2125H Load register A with the video line length.

Load register B with the video line length in register

2129H Loadregister A with the current video line position.
Check to see if the current video line position in
xgzgister Ais equal to the video line length in register

212DH Go print a carriage return on the current output
device if necessary.

212EH
2130H
2132H
2134H

2135H
21374

213AH
213CH

213DH

213FH
2140H

2141H
2144H

2147H

2148H

214BH

214EH
2151H

2154H
2156H

212FH
2131H

2133H

2136H
2139H

213BH

213EH

2143H
2146H

214AH

214DH

2150H
2152H

2155H

Jump if this is the end of the line on the current
output device.

Check to see if there is at least 16 spaces left on the
current line for the current output device.

Loop till there are at least 16 spaces left on the
current line.

Figure the number of spaces to be sent to the current
output device.

Jump.

Go evaluate the tab number at the location of the
current BASIC program pointer in register pair HL
and return with the result in register A.

Mask the tab number in register A so that it doesn’t
exceed 63.

Load register B with the value of the tab number in
register A.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a).

Decrement the value of the current BASIC program
pointer in register pair HL.

Save the value of the current BASIC program point-
er in register pair HL on the stack.

Call the DOS link at 41DCH.

Load register A with the value of the current output
device flag.

Test the value of the current output device flag in
register A.

Go to the Level IT BASIC error routine and display a
FC ERROR message if the current output device is
the cassette recorder.

Jump if the current output device is the video dis-
play.

Load register A with the current carriage position.
Jump.
Load register A with the current video line position.

Complement the current line position in register A.

409

2157H
2158H
215AH
215BH

215CH
215EH

2161H

2162H
2164H

2165H

2166H
2169H
216CH

216DH
2170H
2171H

2174H
2177H
2178H

2178H
217FH

217FH
410

Add the tab number in register B to the adjusted line
position in register A.

2159H Jump if the tab number in register B is less than the

215DH
2160H

2163H

2168H
216BH

line position in register A.

Bump the number of spaces to be printed in register
A.

Load register B with the number of spaces to be
printed in register A.

Load register A with a space.

Send the space in register A to the current output
device.

Decrement the value of the space counter in register

Loop until all of the spaces have been printed.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Loop until done.

Load register A with the current output device flag.

Test the value of the current output device flag in
register A.

216FH If the current output device flag is the cassette re-

2173H

2176H

217EH

217EH
2285H

2181H

corder, then go turn it off.

Loczlld register A with the video display output device
code.

Save the value in register A as the current value of
the output device flag.

Call the DOS link at 41BEH.
Return.

MESSAGE STORAGE LOCATION

The REDO message is stored here.

LEVEL II BASIC
INPUT AND READ ROUTINES

Load register A with the read flag.

2182H
2183H

2186H
2189H

218AH
218CH
218FH

2190H

2193H
2196H

21994
219AH

219DH
219EH
21A1H
21A3H
21A6H
21A7H

21A9H
21ACH

21ADH

2185H

2188H

218BH
218EH

2192H

2195H
2198H

219CH

21A0H
21A2H

21A5H

21A8H
21ABH

21AEH

Check to see if the read flag is set.

Jump to the Level II BASIC error routine if the read
flag is set.

Load register A with the input type flag.

Check to see if the cassette recorder is the current
input device.

Load register E with the FD ERROR code.

Go to the Level I BASIC error routine and display a
FD ERROR message if the current input device is
the cassette recorder.

Clean up the stack.

Load register pair HL with the starting address of
the REDO message.

Go display the REDO message.

Get the value of the current BASIC program pointer
in register pair HL.

Return.

Check to see if there is an illegal direct in the input
statement.

Load register A with the character at the location of
glf current BASIC program pointer in register pair
Call the DOS link at 41D6H.

Check to see if the character at the location of the
current BASIC program pointer in register A is a #.

Set the current input device flag for the cassette re-
corder.

Load register A with the character at the location of
the current BASIC program pointer in register pair
HL.

Jump if there is keyboard input.

Go read the cassette leader and find the sync byte.

Save the current BASIC program pointer in register
pair HL on the stack.

Load register B with the size of the input buffer.
411

21AFH -
21B2H -

21B5H

21B6H

21B7H -~

21B9H =

21BBH -
21BDH

21BEH -

21COH -
21C3H -

21C6H

21C7H -
21C9H -~
21CCH

21CDH -

21CFH
21D0OH -

21D3H =~

412

21B1H

21B4H

21B8H

21BAH

21BCH

21BFH

21C2H
21C5H

21C8H
21CBH

21CEH

21D2H

21D4H

Load register pair HL with the starting address of
the input buffer.

Go read a byte from the cassette recorder and return
with it in register A.

Save the byte read from the cassette recorder in
register A at the location of the input buffer pointer
in register pair HL.

Bump the value of the input buffer pointer in register
pair HL.

Check to see if the character read from the cassette
recorder in register A is a carriage return.

Jump if the character read from the cassette recorder
in register A is a carriage return.

Loop till the input buffer is full.

Decrement the value of the input buffer pointer in
register pair HL.

Save a zero at the location of the input buffer pointer
in register pair HL.

Go turn the cassette recorder off.

Load register pair HL with the starting address of
the input buffer.

Decrement the value of the input buffer pointer in
register pair HL.

Jump.
Load register pair BC with the return address.

Save the value of the return address in register pair
BC on the stack.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
quote.

Return if the character at the location of the current
BASIC program pointer in register A isn’t a quote.

Go set up pointers for the prompting message in the
temporary string work area.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a semicolon.

21D5H

21D6H
21D9H

21DAH
21DBH

21DCH
21DFH

21EOH
21E3H

21E4H

21E5H

21E6H

21E7H

21E8H

21EBH

21EDH
21EFH

21F0H
21F3H

21F4H

- 21D8H

- 21DEH

- 21E2H

- 21EAH

-~ 21ECH

- 21EEH

- 21F2H

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Go display the prompting message.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Return.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Go get the input from the keyhoard.

Get the value of the current BASIC program pointer
from the stack and put it in register pair BC.

Jump if the BREAK key was pressed.

Bump the value of the input buffer pointer in register
pair HL.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Test the value of the character at the location of the
input buffer pointer in register A.

Decrement the value of the input buffer pointer in
register pair HL.

Save the value of the current BASIC program
pointer in register pair BC on the stack.

Jump if the character at the location of the input
buffer pointer in register A is an end of the input
character.

Save a comma at the location of the current input
buffer pointer in register pair HL.

Jump.

Save the current BASIC program pointer in register
pair HL.

Load register pair HL with the location of the last
DATA statement read.

Set register A to a nonzero value if entered from the
READ routine.

This sets register A to zero if entered from the
INPUT routine.

413

21F5H
21F8H

21F9H
21FBH

21FDH

2200H

2201H

2202H

2203H

2205H

2207H
220AH
220BH

220EH

2211H

2212H
2214H

2217H
2219H
221CH

414

21F7H

21FAH
21FCH

21FFH

2204H

2206H

2209H

220DH

2210H

2213H
2216H

2218H
221BH
221EH

Save the value of the input type flag in register A.
Exchange the start of the 1n§Jut pointer in register

pair HL with the current BASIC program pointer on
the stack.

Jump.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a comma.

Go get the address of the variable at the location of
the current BASIC program pointer in register pair
HL and return with it in register pair DE.
Exchange the value of the current BASIC program
pointer in register pair HL with the start of the input
buffer pointer on the stack.

Save the variable’s address in register pair DE on
the stack.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Check to see if the character at the location of the
input buffer pointer register A is a comma.

Jump if the character at the location of the input
buffer pointer in register A is a comma.

Load register A with the input type flag.
Check for READ or INPUT.

Jump if the input type flag in register A indicates
READ.

Load register A with the value of the cassette input
flag.

Check to see if the input is from the cassette re-
corder.

Load register E with an OD ERROR code.

Go to the Level II BASIC error routine and display
an OD ERROR message if the input is from the
cassette recorder.

Load register A with a ?.

Go display the ? in register A.
Go get the keyboard input.

221FH
2220H

2221H
2224H

2225H

2226H

2227H
2228H

2229H

222CH

222DH
2230H
2231H
2232H
2234H

2235H
2236H
2237H
223AH

223DH

- 2223H

- 222FH

- 2238H

223CH

223EH

Get the address of the variable to be set from the
stack and put it in register pair DE.

Get the value of the current BASIC program pointer
from the stack and put it in register pair BC.

Jump if the BREAK key was pressed.

Bump the value of the input buffer pointer in register
pair HL.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Check to see if the character at the location of the
input buffer pointer in register A is an end of the
input character.

Decrement the value of the input buffer pointer in
register pair HL.

Save the value of the current BASIC program point-
er in register pair BC on the stack.

222BH Jump if the character at the location of the input

buffer pointer in register A is an end of the input
character.

Save the variable’s address in register pair DE on
the stack.

Call the DOS link at 41DCH.
Go check the current value of the number type flag.

Save the number type of the variable on the stack.

2233H Jump if the variable to be set is numeric.

Bump the value of the input buffer pointer in register
pair HL.

Load register D with the character at the location of
the input buffer pointer in register A.

Load register B with the character at the location of
the input buffer pointer in register A.

Check to see if the character at the location of the
input buffer pointer in register A is a quote.

Jump if the character at the location of the input
buffer pointer in register A is a quote.

Load register B with the scan character.

415

223FH

2240H
2243H
2244H
2245H

2248H

2249H
224AH
224DH
22LEH

224FH
2250H

2253H

2254H

2257H

225AH
225BH

225CH

416

2242H

22474

224CH

2252H

2256H

2259H

Decrement the value of the input buffer pointer in
register pair HL.

Go set up the pointers for the temporary string work
area.

Get the number type for the variable from the stack
and put it in register A.

Load register pair DE with the value of the input
buffer pointer in register pair HL.

Load register pair HL with the value of the return
address.

Exchange the value of the return address in register
pair HL with the value of the current BASIC program
pointer on the stack.

Save the value of the input buffer pointer in register
pair DE on the stack.

Go set the variable to the value of the string.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Load register A with the number type for the vari-
able to be set.

Save the value in register pair AF on the stack.

Load register pair BC with the value of the return
address.

Save the return address in register pair BC on the
stack.

Go convert the ASCII string at the location of the
input buffer pointer in register pair HL if the current
number type is integer or single precision.

Go convert the ASCII string at the location of the
input buffer pointer in register pair HL to binary if
the current number type is double precision.

Decrement the value of the input buffer pointer in
register pair HL.

Go bump the value of the input buffer pointer in
register pair HL till it points to the next character.

225DH Jump if the character at the location of the input

buffer pointer in register pair HL is an end of the
input character.

225EH - 225FH Check to see if the character at the location of the

2260H - 2262H

2263H

2264H

2265H

2266H

2269H
226AH
226DH

2263H

226FH
2272H
2273H

2274H
2277H

2278H
227BH
2277CH

227FH
2282H

2283H

2268H

226CH

2271H

2276H

227AH

227EH

2281H

2285H

input buffer pointer in register A is a comma.

Jump if the character at the location of the input
buffer pointer in register A isn’t a comma.

Exchange the value of the input buffer pointer in
register pair HL with the value of the current BASIC
program pointer on the stack.

Decrement the value of the current BASIC program
pointer in register pair HL.

Bump the value of the current BASIC program
pointer in register pair HL.

Go examine the next variable if the character at the
location of the current BASIC program pointer in

register pair HL isn’t an end of the BASIC state-
ment character.

Clean up the stack.
Load register A with the error flag.

Check to see if the error flag in register A indicates
an error.

Return to the BASIC interpreter if the error flag in
register A doesn’t indicate an error.

Load register A with the value of the input type flag.
Check to see if the input type is READ or INPUT.

Load register pair DE with the value of the current
BASIC program pointer in register pair HL.

Jump if the input type flag is set for READ.

Save the current BASIC program pointer in register
pair DE on the stack.

Call the DOS link at 41DFH.
Check to see if this is the end of the input.

Load register pair HL with the starting address of
the EXTRA IGNORED message.

Go display the EXTRA IGNORED message.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Go turn off the cassette recorder and return to the
BASIC interpreter.

417

2286H - 2295H
2286H - 2295H
2296H = 22BSH

2296H - 2298H
2299H
229AH - 229BH
229CH

229DH

229EH

229FH

22A0H - 22A1H

MESSAGE STORAGE LOCATION
The EXTRA IGNORED message is stored here.

FIND THE NEXT
DATA STATEMENT ROUTINE

Go find the next DATA statement.
Check to see if this is the end of the BASIC line.
Jump if the BASIC statement is terminated with a:.

Bump the value of the current BASIC program point-
er in register pair HL.

Load register A with the LSB of the line address at
the location of the current BASIC program pointer in
register pair HL.

Bump the value of the current BASIC program
pointer in register pair HL.

Combine the MSB of the line address at the location
of the current BASIC program in register pair HL
with the LSB of the line address in register A.

Load register E with an OD ERROR code.

22A2H - 22A4H Go to the Level Il BASIC error routine and display

22A5H

22A6H

22A7H

22A8H

22AGH

22AAH - 22ACH
22ADH

418

an OD ERROR message if this is the end of the
BASIC program.

Bump the value of the current BASIC program
pointer in register pair HL.

Load register E with the LSB of the BASIC line
number at the location of the current BASIC pro-
gram pointer in register pair HL.

Bump the value of the current BASIC program
pointer in register pair HL.

Load register D with the MSB of the BASIC line
number at the location of the current BASIC pro-
gram pointer in register pair HL.

Exchange the value of the current BASIC program
pointer in register pair HL with the value of the
BASIC line number in register pair DE.

Save the BASIC line number in register pair HL.
Exchange the value of the current BASIC program

pointer in register pair DE with the value of the
BASIC line number in register pair HL.

22AEH

22AFH

22B1H

22B3H
22B6H
22B6H

22BY9H

22BCH

22BFH

22C2H

22C5H

22C6H
22C9H

22CAH

22CBH

22CCH

22CDH

22CEH

22CFH

22BOH

22B2H

22B5H
2336H
22B8BH

22BBH
22BEH

22Cl1H
22CHH

22C8H

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
DATA token.

Jump if the character at the location of the current
BASIC program pointer in register A isn’'t a DATA
token.

Jump.

LEVEL II BASIC NEXT ROUTINE

Load register pair DE with the default variable ad-
dress.

Go examine the variable if one follows the NEXT
token.

Save the value of the current BASIC program point-
er in register pair HL.

Go search the stack for the appropriate FOR push.
Go to the Level Il BASIC error routine and display a
NF ERROR message if the appropriate FOR push
wasn't found.

Load the stack pointer with the value of the memory
pointer in register pair HL.

Save the value in register pair HL.

Save the variable’s address in register pair DE on
the stack.

Load register A with the value of the sign for the
STEP value.

Bump the value of the memory pointer in register
pair HL.

Save the value of the sign for the STEP value in
register A on the stack.

Save the variable's address in register pair DE on
the stack.

Load register A with the number type flag for the
STEP value.

Bump the value of the memory pointer in register
pair HL.

419

22DOH
22D1H
22DL4H

22D7H

22D8H

22D9H

22DCH
22DDH
22EOH

22ElH

22E4H
22E5H
22E8H
22EAH
22EBH
22ECH
22EDH

22EEH
420

- 22D3H
- 22D6H

Check the value of the number type flag for the
STEP flag in register A.

Jump if the STEP value is an integer.

Go move the single precision value at the location of
the memory pointer in register pair HL into register
pairs BC and DE.

Exchange the value of the variable’s address on the
stack with the value of the memory pointer in regis-
ter pair HL.

Save the value of the variable’s address in register
pair HL on the stack.

- 22DBH Go add the single precision value at the location of

the memory pointer in register pair HL to the single
precision STEP value in register pairs BC and DE.
Return with the result in REG1.

Get the value of the variable’s address from the stack
and put it in register pair HL.

-~ 22DFH Go move the single precision result from REG1 to

the variable’s address in register pair HL.

Get the value of the memory pointer from the stack
and put it in register pair HL.

- 22E3H Go move the single precision TO value at the loca-

tion of the memory pointer in register pair HL into
register pairs BC and DE.

Save the value of the memory pointer in register pair
HL on the stack.

~ 22E7H Go compare the single precision result in REG1 to

the single precision TO value in register pairs BC
and DE.

22E9H Jump.

Bump the value of the memory pointer in register
pair HL.

Bump the value of the memory pointer in register
pair HL.

Bump the value of the memory pointer in register
pair HL.

Bump the value of the memory pointer in register
pair HL.

Load register C with the LSB of the STEP value at

22EFH

22F0H

22F1H

22F2H

22F3H

22F4H

22F5H

22F6H

22F7H

22F8H

glf location of the memory pointer in register pair

Bump the value of the memory pointer in register
pair HL.

Load register B with the MSB of the STEP value at
Fff location of the memory pointer in register pair

Bump the value of the memory pointer in register
pair HL.

Exchange the value of the variable’s address on the
stack with the value of the memory pointer in regis-
ter pair HL.

Load register E with the LSB of the integer variable
?{t IEhe location of the memory pointer in register pair
Bump the value of the memory pointer in register
pair HL.

Load register D with the MSB of the integer variable
:Ii{t IEhe location of the memory pointer in register pair
Save the value of the memory pointer in register pair

HL on the stack.

Load register L with the LSB of the STEP value in
register C.

Load register H with the MSB of the STEP value in
register B.

22F9H - 22FBH Go add the STEP value in register pair HL to the

integer value in register pair DE.

22FCH - 22FEH Load register A with the current value of the number

22FFH

type flag.

Check to see if the current value in REG1 is single
precision.

2301H - 2303H Go to the Level II BASIC error routine and display

2304H

2305H

an OV ERROR message if the current value in REG1
is single precision.

Load register pair DE with the integer result in
register pair HL.

Get the value of the memory pointer from the stack
and put it in register pair HL.

421

2306H
2307H
2308H
2309H
230AH
230BH
230CH
230DH
230EH
230FH
2310H
2313H
2314H
2315H
2316H

2319H
231BH

231CH

231FH

422

- 2312H

- 2318H

Save the MSB of the result in register D at the
location of the memory pointer in register pair HL.

Decrement the value of the memory pointer in reg-
ister pair HL.

Save the LSB of the result in register E at the
location of the memory pointer in register pair HL.

Get the value of the memory pointer from the stack
and put it in register pair HL.

Save the integer value in register pair DE on the
stack.

Load register E with the LSB of the TO value at the
location of the memory pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Load register D with the MSB of the TO value at the
location of the memory pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Exchange the integer value on the stack with the
value of the memory pointer in register pair HL.

Go compare the integer result in register pair HL
with the TO value in register pair DE.

Get the value of the memory pointer from the stack
and put it in register pair HL.

Get the value of the sign from the stack and put it in
register pair BC.

Subtract the value of the sign in register B from the
value in register A.

Go load register pair BC with the FOR statement’s
BASIC program pointer.

= 231AH Jump if the FOR. .NEXT loop has been completed.

- 231EH

Load register pair HL with the BASIC line number in
register pair DE.

Save the BASIC line number in register pair HL as
the current BASIC line number.

Load register L with the LSB of the current BASIC
program pointer in register C.

2320H

2321H
2324H

2325H
2328H

232BH

232CH

232EH

2331H

2332H
2335H

2337H
2337H

2338H
233AH
233BH

233DH
2340H

2343H

Load register H with the MSB of the current BASIC
program pointer in register B.

2323H Jump.

2327H

232AH

232DH

and the stack pointer with the value of the memory
pointer in register pair HL.

Load register pair HL with the value of the current
BASIC program pointer.

Save the value of the current BASIC program point-
er in register pair HL.

Load register A with the character at the location of
the current BASIC program pointer in register pair
HL.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
comma.

2330H Jump if the character at the location of the current

2334H
2336H

27C8H

2339H

233CH

233FH
2342H

2345H

BASIC program pointer in register A isn’t a comma.
Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Go do NEXT.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a left parenthesis.

EVALUATE EXPRESSION

Decrement the value of the current BASIC program
pointer in register pair HL.

Load register D with zero.
Save the value in register pair DE on the stack.

Load register C with the number of bytes of memory
required.

Go do a memory check.

Go get the value of the next part of the expression at
the location of the current BASIC program pointer in
register pair HL.

Save the value of the current BASIC program point-
er in register pair HL.

423

2346H
2349H

234AH

234BH
234DH

234FH

2351H

2353H

2355H

2357H
2358H
2359H
235AH
235BH
235EH

2361H

- 2348H

- 234CH
- 234EH

- 2350H

- 2352H

- 2354H

- 2356H

- 235DH

- 2360H

Load register pair HL with the value of the current
BASIC program pointer.

Get the last precedence value from the stack and put
it in register pair BC.

Load register A with the character at the location of
glf current BASIC program pointer in register pair

Load register D with zero.

Check to see if the character at the location of the
current BASIC program pointer in register A is an
arithmetic or logical token.

Jump if the character at the location of the current
BASIC program pointer in register A is an arithme-
tic or logical token.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
greater than, less than, or equal to token.

Jump if the character at the location of the current
BASIC program pointer in register A isn't a greater
than, less than, or equal to token.

Set the Carry flag according to the token at the
location of the current BASIC program pointer in
register A.

Adjust the value in register A to indicate greater
than, less than, or equal to.

Combine the current value in register A with the
value of the last token examined to see if this is an
illegal combination of operators.

Check for an illegal combination of operators.
Load register D with the value in register A.
Go to the Level II BASIC error routine and display a
SN ERROR message if this is an illegal combination

of operators.

Save the value of the current BASIC program
pointer in register pair HL.

Bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

2362H = 2363H Jump.

424

2364H

2365H
2366H

2369H

236AH

236DH

236FH

2370H

2372H

2373H
23741

2377H
2379H

237AH

237DH

2380H

2381H

2368H

236CH

236EH

2371H

2376H

2378H

237CH

237FH

Load register A with the value of the operator in
register D.

Test the value of the operator in register A.

Jump if the operator in register A is a greater than,
less than, or equal to.

Load register A with the character at the location of
}_flllei current BASIC program pointer in register pair

Save the address of the current BASIC program
pointer in register pair HL.

Check to see if the operator at the location of the
current BASIC program pointer in register A is an
arithmetic token.

Return if the character at the location of the current
BASIC program pointer in register A isn’t an arith-
metic token.

Check to see if the character at the location of the
current BASIC program pointer in register A is a +
to OR token.

Return if the character at the location of the current
BASIC program pointer in register A isn't a + to OR
token.

llioad register E with the operator value in register

Load register A with the current value of the number
type flag.

Adjust the value of the number type flag.

Combine the operator value in register E with the
adjusted number type flag in register A.

Jump if the combination of the adjusted number type
flag in register A and the operator value in register E
indicates string addition.

Load register pair HL with the starting address of
the table of precedence values.

Add the value of the operator in register pair DE to
the table of precedence values pointer in register
pair HL.

Load register A with the precedence value for the
last operator in register B.

425

2382H

2383H

2384H

2385H

2386H
2389H

238AH

238BH

238DH

2390H
2392H

2395H
2398H
239%H

239CH
239DH
239EH
239FH

23AZH

426

2388H

238CH

238FH

2391H
23944

2397H

239BH

23A1H

Load register D with the precedence value for the
current operator.

Compare the precedence value for the current op-
erator in register D with the precedence value for
the last operator in register A.

Return if the precedence value for the current oper-
ator in register D is greater than the precedence
value for the last operator in register A.

Save the precedence value and the token for the last
operator in register pair BC on the stack.

Load register pair BC with the return address.

Save the return address in register pair BC on the
stack.

Load register A with the precedence value for the
current operator in register D.

Check to see if the precedence value for the current
operator in register A indicates an exponential
operator.

Jump if the precedence value for the current op-

erator in register A indicates an exponential
operator.

Check to see if the precedence value for the current
operator in register A indicates a logical operator.

Jump if the precedence value for the current op-
erator in register A indicates a logical operator.

Load register pair HL with the address of REG1.
Clear the flags.

Load register A with the current value of the number
type flag.

Adjust the current number type flag in register A.
Adjust the current number type flag in register A.
Adjust the current number type flag in register A.
Go to the Level I1 BASIC error routine and display a
TM ERROR message if the current value in REG1 is

a string.

Get the value at the location of the memory pointer
in register pair HL and put it in register C.

23A3H
23A4H

23A5H

23A6H
23A9H

23AAH
23ABH
23ACH

23ADH

23AEH
23AFH

23BOH
23B3H

23B4H

23B5H
23B7H

23BAH
23BBH
23BCH
23BDH

23BEH

- 23A8H

- 23B2H

- 23B6H
- 23B%H

Bump the value of the memory pointer in register
pair HL.

Load register B with the value at the location of the
memory pointer in register pair HL.

Save the value in register pair BC on the stack.
Jump if the current number type is an integer.

Bump the value of the memory pointer in register
pair HL.

Load register C with the value at the location of the
memory pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Load register B with the value at the location of the
memory pointer in register pair HL.

Save the value in register pair BC on the stack.
Save the value in register pair AF on the stack.

Check to see if the current number type is double
precision.

Jump if the current number type is single precision.

Get the value from the stack and put it in register
pair AF.

Bump the value of the memory pointer in register
pair HL.

Jump if the current number type is single precision.
Load register pair HL with the starting address of
REG1.

Load register C with the value at the location of the
memory pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Load register B with the value at the location of the
memory pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Save the value in register pair BC on the stack.

427

23BFH
23COH
23ClH

23C2H
23C4H

23C5H
23C7H

23C8H

23C9H
23CAH
23CDH

23CEH

23D1H
23D4H

23D7H
23DAH
23DDH

23DFH
23E1lH

23E2H
23E5H

428

23C6H

23CCH

23D0H

23D3H
23D6H

23D9H
23DCH
23DEH

23EOH

23E4H

Load register C with the value at the location of the
memory pointer in register pair HL.

Bump the value of the memory pointer in register
pair HL.

Load register B with the value at the location of the
memory pointer in register pair HL.

Save the value in register pair BC on the stack.

Get the value from the stack and put it in register
pair AF.

Adjust the number type in register A.

Load register C with the value of the current op-
erator token in register E.

koad register B with the number type flagin register

Save the value in register pair BC on the stack.
Load register pair BC with the return address.

Save the return address in register pair BC on the
stack.

Load register pair HL with the value of the current
BASIC program pointer.

Jump.

Go convert the integer result in REG1 to single
precision.

Go move the single precision result in REG1 onto
the stack.

Load register pair BC with the address of the expo-
nential routine.

Load register D with the precedence value for an
exponential operator.

Jump.

Save the precedence value and the operator token in
register pair DE on the stack.

Go convert the current result in REG1 to an integer.

Get the precedence value and the operator token
from the stack and put it in register pair DE.

23E6H

23E7H
23EAH
23ECH

23EDH

23EFH
23FO0H

23F1H
23F2H
23F5H

23F8H

23F9H
23FAH
23FDH

2400H
2401H
2L0oLH
2406H
2407H

2408H
240BH

23E9H
23EBH

23EEH

23F4H

23F7H

23FCH
23FFH

2303H

2405H

240AH

Save the integer value in register pair HL on the
stack.

Load register pair BC with the return address.
Jump.

Load register A with the precedence value for the
last operator in register B.

Check to see if the last operator was a logical
operator.

Jump if the last operator was a logical operator.

Save the precedence value and the operator token
for the last operator in register pair BC on the stack.

Save the precedence value and the token for the
current operator in register pair DE on the stack.

Load register pair DE with the precedence value and
the token for the new operator.

Load register pair HL with the address to perform
the current operation.

Save the value of the address in register pair HL on
the stack.

Go check the value of the current number type flag.
Jump if the current value in REGI is numeric.
Load register pair HL with the string address in
REGL.

Save the string’s address in register pair HL on the
stack.

Load register pair BC with the address of the string
comparison routine.

Jump.

Get the precedence value and the token for the last
operator from the stack and put it in register pair
BC.

Iéoad register A with the operator token in register
Save the operator token in register A.

Loa% register A with the precedence value in regis-
ter B.

429

240CH
240EH
2410H
2413H
2415H
2418H
2419H
231AH
241CH
241FH
2420H
2422H
2325H
2428H
242BH
242DH
242EH

242FH

430

240DH
240FH
2412H
2414H

24174

241BH

241EH

2421H
2424H
2427H
242AH

242CH

Check the number type for the precedence value in
register A.

Jump if the number type in register A is double
precision.

Loadregister A with the number type for the current
result in REG1.

Check to see if the current result in REG1 is double
precision.

Jump if the current value in REG1 is double preci-
sion.

Load register D with the current number type flagin
register A.

Load register A with the precedence value for the
last operator in register B.

Check to see if the number type for the precedence
value in register A is single precision.

Jump if the number type for the precedence value in
register A is single precision.

Load register A with the number type flag for the
value in REG1.

Check to see if the current value in REG1 is a string.

Go to the Level I BASIC error routine and display a
TM ERROR message if the current value in REG1 is
a string.

Jump if the current value in REG1 is single preci-
sion.

Load register pair HL with the starting address of
the arithmetic jump table.

Load register B with zero.

Add the operator’s token in register pair BC to the
value of the arithmetic jump table pointer in register
pair HL.

Add the operator’s token in register pair BC to the
value of the arithmetic jump table pointer in register
pair HL.

Load register C with the LSB of the jump address at
the location of the arithmetic jump table pointer in
register pair HL.

2430H

2431H

2L432H
2433H

2436H

2L37H
2438H
243BH

243EH

243FH
2442H

2443H
2446H

24h7H
2448H

244BH
244EH

2451H
2454H

24554
2L 56H

2435H

243AH
243DH

2441 H

2445H

244AH

244DH
24 50H

2453H

Bump the value of the arithmetic jump table pointer
in register pair HL.

Load register B with the MSB of the jump address at
the location of the arithmetic jump table pointer in
register pair HL.

Get the value for the previous result from the stack
and put it in register pair DE.

Get the value for the current result from REG1 and
put it in register pair HL.

Save the arithmetic routine’s jump address in regis-
ter pair BC on the stack.

Return.
Go convert the result in REG1 to double precision.

Go convert the current result in REG1 to single
precision.

Get the value from the stack and put it in register
pair HL.

Save the value in register pair HL in REG1,

Get the value from the stack and put it in register
pair HL.

Save the value in register pair HL in REG1,

Get the value from the stack and put it in register
pair BC.

Get the value from the stack and put it in register
pair DE,

Go move the 32-bit value in register pairs BC and
DE into REGI1.

Go convert the previous value to double precision.

Load register pair HL with the double precision
arithmetic jump table’s starting address.

koad register A with the operator token in register
Multiply the value of the operator token in register A
by two.

Save the value in register pair BC on the stack.

Load register C with the adjusted value of the
operator token in register A.

431

2457H - 2458H Load register B with zero.

24 59H

245AH

245BH

245CH

245DH

245EH
245FH
2460H

2461H
2U64H

2465H
2468H
246AH
246CH

246DH
2470H
2472H

2475H

432

2463H

2467H
2469H

2U46BH

2h6FH
2471H
2474H

Add the value of the adjusted operator token in
register pair BC to the value of the double precision
arithmetic jump table pointer in register pair HL.

Get the value from the stack and put it in register
pair BC.

Load register A with the LSB of the jump address at
the location of the arithmetic jump table pointer in
register pair HL.

Bump the value of the arithmetic jump table pointer
in register pair HL.

Load register H with the MSB of the jump address at
the location of the arithmetic jump table pointer in
register pair HL.

Load register L with the LSB of the jump address in
register A.

Jump to the arithmetic routine whose address is in
register pair HL.

Save the precedence value and the operator token in
register pair BC on the stack.

Move the current result to the a storage area.

Load register A with the value of the current number
type flag.

Save the value of the current number type flag in
register A.

Check to see if the current result in REG1 is single
precision.

Jump if the current result in REG1 is single preci-
sion.

Get the integer value from the stack and put it in
register pair HL.

Save the integer value in register pair HL in REG1.
Jump.

Go convert the current result in REG1 to single
precision.

Get the value from the stack and put it in register
pair BC.

24761
2477H

247aH
247CH

247DH
2480H
2483H
2486H

24874
248AH

248BH
248EH
2490H

2491H
2492H
2495H
2496H
2499H

249CH
249FH

2479H

247BH

247FH
2482H

2485H

2489

248DH

248FH

2494H

2L498H
249BH

249EH

Get the value from the stack and put it in register
pair DE.

Load register pair HL with the starting address of
the single precision arithmetic jump table.

Jump.

Get the integer value from the stack and put it in
register pair HL.

Save the current single precision result in REG1 on
the stack.

Go convert the integer value in register pair HL to
single precision.

Save the single precision value in REG1 in register
pairs BC and DE.

Get the value from the stack and put it in register
pair HL.

Save the value in register pair HL in REGL.

Get the value from the stack and put it in register
pair HL.

Save the value in register pair HL in REG1.
Jump.

Save the integer value in register pair HL on the
stack.

Load register pair HL with the integer value in
register pair DE.

Go convert the integer value in register pair HL to
single precision and return with the result in REG1.

Get the integer value from the stack and put it in
register pair HL.

Go move the single precision value in REG1 on to
the stack.

Go convert the integer value in register pair HL to
single precision and return with the result in REGL.

Go do a single precision divide.
Go bump the value of the current BASIC program

pointer in register pair HL till it points to the next
character.

433

2LACH
24A2H

24A5H

2LA8H

24ABH

24AEH

24BOH

24B2H

24BUH

24B7H

24B9H

24BCH

24BEH

24C1H

24C3H

24C6H

434

24A1H
24ANH

24A7H

24AAH

24ADH

24AFH

24B1H

24B3H

24B6H

24B8H

24BBH

24BDH

24COH

24Cc2H

24C5H

24C7H

Load register E with a MO ERROR code.

Go to the Level II BASIC error routine and display a
MO ERROR message if this is the end of the expres-
sion.

Jump if the character at the location of the current
BASIC program pointer in register pair HL is
numeric.

Check to see if the character at the location of the
current BASIC program pointer in register pair HL
is alphabetic.

Jump if the character at the location of the current
l1)3A'SIC program pointer in register pair HL is alpha-
etic.

Check to see if the character at the location of the
current BASIC program pointer in register Ais a +
token.

Jump if the character at the location of the current
BASIC program pointer in register A is a + token.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
decimal point.

Jump if the character at the location of the current
BASIC program pointer in register A is a decimal
point.

Check to see if the character at the location of the
current BASIC program pointer in register A isa —
token.

Jump if the character at the location of the current
BASIC program pointer in register A is a — token.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
quote.

Jump if the character at the location of the current
BASIC program pointer in register A is a quote.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
NOT token.

Jump if the character at the location of the current
BASIC program pointer in register A is a NOT
token.

Check to see if the character at the location of the
current BASIC program pointer inregister Ais a &.

24C8H

24CBH -

24CDH -

24CFH

24D0H -
24D3H
24DLH -

24D7H

24D8H
24D9H -

24DBH -

24DDH

24DEH
2L4DFH -
2UE2H -
24E5H

24E6H
24E7H -

24CcAH

24CCH

24CEH

24D2H

24D6H

24DAH

24DCH

24E1H

24E3H

24E8H

Jump if the character at the location of the current
BASIC program pointer in register A is a &.

Check to see if the character at the location of the
current BASIC program pointer in register A is an
ERR token.

Jump if the character at the location of the current
BASIC program pointer in register A isn't an ERR
token.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Load register A with the value of the current error
number,

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Go save the value of the current error number in
register A as the current result in REG1.

Get the value of the current BASIC program Eointer
from the stack and put it in register pair HL.

Return.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
ERL token.

Jump if the character at the location of the current
BASIC program pointer in register A isn’t an ERL
token.

Go bump the value of the current BASIC program

pointer in register pair HL till it points to the next
character.

Save the value of the current BASIC program point-
er in register pair HL on the stack.

Load register pair HL with the current error line
number,

Go save the error line number in register pair HL as
the current result in REG1.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Return.

Check to see if the character at the location of the

435

24E9H

24EBH

24ECH

24EEH

24F1H

24F3H
24FUH
24F5H

24F6H

24F7H

24FAH

24FDH

24FEH
24FFH

2501H

2504H
436

24EAH

24EDH

24FOH

24F2H

24F9H

24FCH

2500H

2503H

2505H

current BASIC program pointer in register A is a
VARPTR token.

Jump if the character at the location of the current

BASIC program pointer in register A isn't a VAR-
PTR token.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a (.

Go evaluate the variable name at the location of the
current BASIC program pointer in register pair HL.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a).

Save the value of the current BASIC program point-
er in register pair HL on the stack.

Load register pair HL with the variable’s address in
register pair DE.

Load register A with MSB of the variable’s address
in register H.

Combine the LSB of the variable’s address in regis-
ter L with the MSB of the variable’s address in
register A.

Go to the Level II BASIC error routine and display a
FC ERROR message if the variable’s address in
register pair HL is equal to zero.

Save the variable’s address in register pair HL as the
current result in REG1.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL

Return.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
USR token.

Jump if the character at the location of the current
BASIC program pointer in register A is a USR
token.

Check to see if the character at the location of the

2506H

2509H

250BH

250EH

2510H

2513H

2515H

2518H

251AH

251DH

241FH

2522H

2524H

2527H

2508H

250AH

250DH

250FH

2512H

2514H

2517H

2519H

251CH

251EH

current BASIC program pointer in register A is a
INSTR token.

Jump if the character at the location of the current
B/ESIC program pointer in register A is an INSTR
token.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
MEM token.

Jump if the character at the location of the current
BASIC program pointer in register A is a MEM
token.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
TIMES$ token.

Jump if the character at the location of the current
BASIC program pointer in register A is a TIME$
token.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
POINT token.

Jump if the character at the location of the current
BASIC program pointer in register A is a POINT
token.

Check to see if the character at the location of the
current BASIC program pointer in register A is an
INKEY$ token.

Jump if the character at the location of the current
BASIC program pointer in register A is an INKEY$
token.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
STRINGS token.

2421H Jump if the character at the location of the current

2523H

B%SIC program pointer in register A is a STRING$
token.

Check to see if the character at the location of the
current BASIC program pointer in register AisaFN
token.

2526H Jump if the character at the location of the current

2528H

BASIC program pointer in register A is a FN token.
Check to see if the character at the location of the
current BASIC program pointer in register A is a
SGN to MID$ token.

437

2529H

252CH
242FH
2431H

2532H
2534H

2537H
253AH

253BH
253EH

253FH
2540H
2543H
2544H
2545H

2548H
2549H

254CH

254DH
254EH

438

252BH

252EH

2530H

2536H

2539H

253DH

2542H

2547H

254BH

254FH

Jump if the character at the location of the current
BASIC program pointer in register A is a SGN to
MID$ token.

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL.

Check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a).

Return.

Load register D with the precedence value.

Go evaluate the variable at the location of the cur-
rent BASIC program pointer in register pair HL.

Load register pair HL with the value of the current
BASIC program pointer.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Invert the sign of the current value in REG1.

Get the value of the current BASIC program Eointer
from the stack and put it in register pair HL.

Return.

Get the address of the variable at the location of the
current BASIC program pointer in register pair HL
and return with it in register pair DE.

Save the value of the current BASIC program point-
er in register pair HL on the stack.

Load register pair HL with the variable’s address in
register pair DE.

Save the variable’s address in register pair HL in
REGL.

Go check the current value of the number type flag.

Go move data if the current number type flag indi-
cates a numeric value in REG1.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Return.

Load register B with zero.

2550H
2551H
2552H

2553H

2554H

2555H
2557H

2559H
255CH
255EH

2561H

2562H

256 5H

2566H
2567H

2568H

256BH

256CH

256DH

2556H
2558H

255BH
255DH

2560H

2564H

256AH

Multiply the value of the operator token in register A
by two.

Load register C with the adjusted value of the
operator token in register A.

Save the value of the token in register pair BC on the
stack.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character,

Load register A with the value of the operator token
in register C.

Check the value of the operator token in register C.

Jump if the value of the operator token in register A
is SGN to CHRS.

Go evaluate the expression.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a comma.

Go display an error message if the current result
isn't a string.

Exchange the address of the string in register pair
DE with the value of the current BASIC program
pointer in register pair HL.

Load register pair HL with the VARPTR for the
string.

Exchange the string’s VARPTR in register pair HL
with the value on the stack.
Save the value in register pair HL on the stack.

Load register pair HL with the value of the current
BASIC program pointer in register pair DE.

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL.

Exchange the integer value in register pair DE with
the value of the current BASIC program pointer in
register pair HL.

Exchange the integer value in register pair HL with
the value on the stack.

256EH Jump.

439

256FH - 2571H

2572H

2573H
2574H - 2575H
2576H - 2577H

2578H - 2579H
257AH

257BH - 257DH
257EH
257FH - 2581H
2582H
2583H - 2585H

2586H

2587H

2588H

2589H

258AH

258BH
258CH - 258EH

440

Evaluate the expression at the location of the cur-
rent BASIC program pointer in register pair HL.

Exchange the value of the current BASIC program

pointer in register pair HL with the operator value
on the stack.

Iioad register A with the operator token in register

Check to see if the operator token in register A is
SGN to SQR.

JSuCIlnfl{) if the operator token in register A is SGN to

Check the value of the operator token in register A.

Save the operator value in register pair HL on the
stack.

Go convert the result in REGI to single precision if
the operator token in register A is SQR to ATN.

Get the operator value from the stack and put it in
register pair HL.

Load register pair DE with the value of the return
address.

Save the value of the return address in register pair
DE on the stack.

Load register pair BC with the SGN to MID$ jump
table address.

Add the jump table pointer in register pair BC with
the value of the operator token in register pair HL.

Load register C with the LSB of the jump address at
gllf location of the jump table pointer in register pair

Bump the value of the jump table pointer in register
pair HL.

Load register H with the MSB of the jump address at
the location of the jump table pointer in register pair
HL.

Load register L with the LSB of the jump address in
register C.

Jump to the address in register pair HL.

Go check to see if there is enough memory for the
string.

258FH
2590H

2591H

2592H

2594H

2595H

2596H
2597H

259AH

259BH

259CH

259DH

259EH

259FH

25A0H
25A1H
25A2H

25A3H

Load register A with the length of the string at the
location of the string’s VARPTR in register pair HL.

Bump the value of the string’s VARPTR in register
pair HL.

Load register C with the LSB of the string’s address
at 'thf{ iocation of the string’s VARPTR in register
pair HL,

Bump the value of the string’s VARPTR in register
pair HL.

Load register B with the MSB of the string’s address
at 'thfi location of the string’s VARPTR in register
pair HL.

Save the value of the string’s address in register pair
BC on the stack.

Save the string’s length in register A on the stack.
%oad register pair HL with the second string’s VAR-
TR.

Get the length of the first string from the stack and
put it in register D.

Load register E with the second string’s length at
the location of the second string’s VARPTR in
register pair HL.

Bump the value of the second string’s VARPTR in
register pair HL.

Load register C with the LSB of the second string’s
address at the location of the second string’s
VARPTR in register pair HL.

Bump the value of the second string’s VARPTR in
register pair HL.

Load register B with the MSB of the second string’s

address at the location of the second string’s
VARPTR in register pair HL.

Get the first string’s address from the stack and put
1t in register pair HL.

Load register A with the length of the second string
in register E.

Combine the first string's length in register D with
the second string’s length in register A.

Return if there aren’t any characters left in either
string to be compared.

441

25A4H
25A5H
25A7H

25A8H
25A9H

25AAH
25ABH

25ACH
25ADH
25AEH

25AFH

25BOH
25B1H

25B2H
25B4H
25B5H
25B8H

25B9H
25BAH
25BBH

442

- 25A6H

Load register A with the first string’s length in
register D.

Check to see if the first string’s length in register A
is equal to zero.

Return if there are no more characters in the first
string to be compared.

Load register A with zero.

Check to see if the second string’s length in register
E is equal to zero.

Bump the value in register A.

Return if there aren’t anymore characters in the
second string to be compared.

Decrement the value of the first string’s length in
register D.

Decrement the value of the second string’s length in
register E.

Load register A with the character at the location of
the second string pointer in register pair BC.

Compare the character at the location of the second
string pointer in register A with the character at the
l}({)iation of the first string pointer in register pair

Bump the value of the first string pointer in register
pair HL.

Bump the value of the second string pointer in
register pair BC.

-~ 25B3H Jump if the characters match.

Compliment the value of the Carry flag.

~ 25B7H Jump.

Bump the value of the current precedence value in
register A.

Adjust the value of the current precedence value in
register A.

Get the last operator value from the stack and put it
in register pair BC.

Combine the precedence value in register B with the
precedence value in register A.

25BCH =
25BEH

25BFH -

25C2H -
25C4H -
25C6H -
25C9H -

25CCH
25CDH

25CEH
25CFH
25DOH
25D1H
25D2H -

25D5H
25D6H -

25D9H -

25DCH -
25DEH -
25E0H -
25EZ2H

24E3H

25BDH

Adjust the value in register A,

Check to see if the precedence values in registers A
and B match,

25C1H If the values match, set the current result in zero. If
they do not match, set the current result to —1.

25C3H Jump.

25C5H Load register D with the precedence value.

25C8H
25CBH

25DhH

Go evaluate the expression.

Go convert the current result in REG1 to aninteger.
Load register A with the LSB of the integer value.
/(;ompliment the LSB of the integer value in register
Load register L with the adjusted LSB of the integer
value in register A.

Load register A with the MSB of the integer value in
register H.

gompliment the MSB of the integer value in register
Load register H with the adjusted MSB of the in-
teger value in register A.

Save the complimented integer value in register pair
HL as the current result in REG1.

Clean up the stack.

25D8H Jump.

25DBH

25DDH

Load register A with the current value of the number
type flag.

Check to see if the current value in REG1 is double
precision.

25DFH Jump if the current value in REG1 is double preci-

25E1H

sion.

Adjust the value of the current number type flag in
register A.

Check the value of the adjusted number type flag in
register A.

Set the Carry flag.
443

25E4H
25E5H

25E7H

25E8H
25E9H

25EAH
25EDH

25EEH

25EFH
25F2H

25F3H
25F5H
25F7H
25F8H

25F9H
25FAH

25FBH

25FCH
25FDH

25FEH

25FFH
444

25E6H

25ECH

25F1H

25F4H

25F6H

Return.

Adjust the value of the current number type flag in
register A.

Test the value of the current number type flag in
register A.

Return.

Save the operator value in register pair BC on the
stack.

Go convert the current result in REG1 to an integer.

Get the operator value from the stack and put it in
register A.

Get the return address from the stack and put it in
register pair DE.

Load register pair BC with the return address.

Save the value of the return address in register pair
BC on the stack.

Check to see if the operator value in register A is an
OR token.

Jump if the operator value in register A isn't an OR
token.

Load register A with the LSB of the first value in
register E.

Combine the LSB of the first value in register A with
the LSB of the second value in register L.

Load register L with the ORed value in register A.

Load register A with the MSB of the second value in
register H.

Combine the MSB of the first value in register D
with the MSB of the second value in register A.

Return.

Load register A with the LSB of the first value in
register E.

Combine the LSB of the first value in register A with
the LSB of the second value in register L.

Load register L with the ANDed value inregister A.

2600H
2601H

2602H
2603H

2604H

2605H
2606H ~ 2607H

2608H - 260AH
260BH

260CH - 260DH
260EH - 2610H

2611H

2612H - 2614H

2615H - 2617H

2618H
2619H
261AH
261BH - 261CH

261DH - 261FH

2620H - 2621H

Load register A with the MSB of the second value in
register H.

Combine the MSB of the first value in register D
with the MSB of the second value in register A.

Return.

Decrement the value of the BASIC program pointer
in register pair HL.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Return if this is the end of the BASIC statement.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a comma.

Load register pair BC with the return address.

Save the value of the return address in register pair
BC on the stack.

Reset the value in register A.

Save the value in register A as the current variable
location/creation flag.

Load register B with the first character of the vari-
able name.

Make sure the first character of the variable name is
a letter.

Go to the Level Il BASIC error routine and display a
SN ERROR message if the first character of the
variable name isn’t a letter.

Zero register A.

Zero register C.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Jump if the character at the location of the current
BASIC program pointer in register A is numeric.

Go check to see if the character at the location of the
current BASIC program pointer is a letter.

Jump if the character at the location of the current
BASIC program pointer in register A isn't a letter.

445

2622H

2623H

2624H
2626H

2629H

262BH

262EH

262FH
2631H

2633H
2634H
2635H
2637H
2638H
2639H
263BH
263CH
263EH

2640H

446

2625H
2628H

Load register C with the second character of the
variable name in register A.

Go bump the value of the current BASIC program
pointer 1n register pair HL till it points to the next
character.

Loop till a nonnumeric character is found.
Go check to see if the character at the location of the

current BASIC program pointer in register pair HL
is alphabetic.

262AH Jump if the character at the location of the current

262DH

2630H
2632H

2636H

263AH

263DH

263FH

BASIC program pointer in register pair HL is alpha-
betic.

Load register pair DE with the return address.

Save the value of the return address in register pair
DE on the stack.

Load register D with an integer number type flag.

Check to see if the character at the location of the
current BASIC program pointer in register Ais a %.

Return if the character at the location of the current
BASIC program pointer in register A is a %.

Bump register D so that it will be equal to a string
number type flag.

Check to see if the character at the location of the
current BASIC program pointer in register Ais a $.

Return if the character at the location of current
BASIC program pointer in register A is a §.

Bump register D so that it will be equal to a single
precision number type flag.

Check to see if the character at the location of the
current BASIC program pointer in register Aisa!.

Return if the character at the location of the current
BASIC program pointer in register A is a .

Load register D with a double precision number type
flag.

Check to see if the character at the location of the
current BASIC program pointer in register Aisa #.

Return if the character at the location of the current
BASIC program pointer in register A is a #.

2641H
2642H

26441
2646H

2647H
2649H

264AH

264DH

264EH

264 FH
2650H

2651H
2652H

2653H

26 56H

2657H
265AH
265BH
265EH

265FH

2643H

26451

2648H

264CH

2655H

2659H

Load register A with the first character of the vari-
able name in register B.

Adjust the value of the first character of the variable
name in register A so that it is in the range of 0 to 25.

Make sure the sign bit in register A isn't set.

Load register E with the adjusted first character of
the variable name in register A.

Load register D with zero.

Save the value of the current BASIC program point-
er in register pair HL on the stack.

Load register pair HL with the starting address of
the variable declaration table.

Add the value of the first character of the variable
name in register pair DE to the starting address of
the variable declaration table in register pair HL.

Load register D with the number type value at the
location of the variable declaration table pointer in
register pair HL.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Decrement the value of the current BASIC program
pointer in register pair HL.

Return.

Load register A with the value of the number type
flag in register D.

Save the number type flag for the current variable
name in register A.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Load register A with the FOR flag.
Test the value of the FOR flag in register A.

265DH Jump if a FOR statement is being processed.

26604

Load register A with the character at the location of
the current BASIC program pointer in register pair
HL.

Check to see if the character at the location of the
current BASIC program pointer in register A is a (.

447

2661H

2664H
2665H
2668H

2669H
266AH
266DH
266EH

2671H

2672H

2673H

2675H

26761

2677H
2678H

2679H
267BH

267CH

448

2663H Jump if the character at the location of the current

BASIC program pointer in register A is a (.

Zero register A.

2667H Set the array flag.

Save the value of the current BASIC program point-
er in register pair HL on the stack.

Save the number type flag for the variable in register
pair DE on the stack.

266CH Load register pair HL with the value of the simple

2670H

variables pointer.

Load register pair DE with the simple variables
pointer in register pair HL.

Load register pair HL with the array variables
pointer.

Go compare the value of the simple variables pointer
in register pair DE with the array variables pointer
in register pair HL.

Get the number type flag for the variable from stack
and put it in register pair HL.

-~ 2674H Jump if the simple variables pointer in register pair

DE is greater than or equal to the array variables
pointer.

Load register A with the number type flag for the
variable at the location of the simple variables
pointer in register pair DE.

koad register L with the number type flag inregister
Compare the number type flag for the variable in
register H to the number type flag in register A.

Bump the value of the current simple variables
pointer in register pair DE.

- 267AH Jump if the number type flags don’t match.

Load register A with the first character of variable
name at the location of the simple variables pointer
in register pair DE.

Compare the character at the location of the simple
variables pointer in register A with the first charac-
ter of the variable name in register C.

267DH
267FH

2680H

2681H

2682H

2686H
2687H
2688H
2689H
268BH
268CH
268EH

268FH

2690H

2691H
2692H

2693H
2696H

- 267EH

~ 2684H

- 268AH

Jump if the first characters of the variable names
don’t match.

Bump the value of the current simple variables
pointer in register pair DE.

Load register A with the second character of the
variable name at the location of the simple variables
pointer in register pair DE.

Compare the character at the location of the simple
variables pointer in register A with the first charac-
ter of the variable name in register B.

Jump if the character at the location of the simple
variables pointer in register A matches the first
character of the variable name in register B,

qup the value of the current simple variables
pointer in register pair DE.

Bump the value of the simple variables pointer in
register pair DE,

Save the number type flag for the variable in register
pair HL on the stack.

Load register H with zero.
Add the value of the simple variables pointer in

register pair DE to the value of the number type flag
in register pair HL.

- 268DH Jump.

- 2695H

Load register A with the number type flag for the
variable in register H.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Exchange the value of the current BASIC program
pointer in register pair HL with the value on the
stack.

Save the number type flag for the variable in register
A on the stack.

Save the start of the array variables pointer in
register pair DE on the stack.

Load register pair DE with the return address.

Compare the return address in register pair DE with
the return address in register pair HL.

449

2697H - 2698H Jump if this routine is called from the VARPTR

routine.

2699H = 269BH Load register pair DE with the return address.

269CH
269DH
269EH
26A0H

26A1H

26A2H
26A3H
26A4H

26A5H
26A7H

26A8H
26A9H
26AAH
26ABH
26AEH

26AFH

26BOH

450

Compare the return address in register pair DE with
the return address in register pair HL.

Get the value of the array variables pointer from the
stack and put it in register pair DE.

-~ 269FH Jump if this routine is called to locate the variable’s

- 26A6H

address.

Get the value of the number type flag for the variable
from the stack and put it in register A.

Exchange the value of the current BASIC program
pointer on the stack with the value of the return
address in register pair HL.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Save the variable’s name in register pair BC on the
stack.

Load register C with the value of the number type
flag for the variable in register A.

Load register B with zero.

Save the variable’s number type flag in register pair
BC on the stack.

Bump the value of the variable’s number type flag in
register pair BC.

Bump the value of the variable’s number type flag in
register pair BC.

Bump the value of the variable’s number type flag in
register pair BC.

—~ 26ADH Load register pair HL with the value of the free

memory pointer.

Save the value of the free memory pointer in register
pair HL on the stack.

Add the value of the variable’s number type flag in
register pair BC to the value of the free memory
pointer in register pair HL.

Get the value of the free memory pointer from the
stack and put it in register pair BC.

26BlH

26B2H
26B5SH

26B6H

26B9H

26BAH
26BBH
26BEH
26BFH
26C1H

26C2H
26CHH

26C5H

26C6H
26C7H

26C8H

26C9H

26CAH

26CBH

26B4H

26B8H

26BDH

26COH

26C3H

Save the value of the new free memory pointer in
register pair HL on the stack.

Move the array variables up in memory.

Get the value of the new free memory pointer from
the stack and put it in register pair HL.

Save the value of the new free memory pointer in
register pair HL.

Load register H with the MSB of the new array
variables pointer in register B.

Load register L with the LSB of the new array
variables pointer in register C.

Save the value of the new array variables pointer in
register pair HL.

Decrement the value of the array variables pointer in
register pair HL.

Zero the location of the memory pointer in register
pair HL.

Check to see if the variable has been completely
zeroed.

Loop till the variable has been cleared.

Get the value of the variable’s number type flag from
the stack and put it in register pair DE.

Save the value of the number type flag in register E
at the location of the memory pointer in register pair
HL.

Bump the value of the memory pointer in register
pair HL.

Get the variable’s name from the stack and put it in
register pair DE.

Save the first character of the variable’s name in
register E at the location of the memory pointer in
register pair HL.

Bump the value of the memory pointer in register
pair HL.

Save the second character of the variable’s name in
register D at the location of the memory pointer in
register pair HL.

Load register pair DE with the value of the variable
pointer in register pair HL.

451

26CCH
26CDH

26CEH
26CFH

26DOH

26D1H
26D2H
26D3H

26D4H
26D5H

26D8H
26D9H
26DAH

26DBH
26DEH

26DFH
26E1H

26E4H
26E7H

26E8H
26E9H

26EAH

26EDH
452

26D7H

26DDH

26ECH
26E3H

26E6H

26ECH

Bump the value of the variable pointer in register
pair DE.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Return.

Load register D with the value of the current number
type flag in register A.

Load register E with the value of the current number
type flag in register A.

Clean up the stack.

Clean up the stack.

Exchange the value of the return address in register
pair HL with the value of the current BASIC program
pointer on the stack.

Return.

Zero REGI1.

Clean up the stack.

Zero register H.

Zero register L.

Zero the string pointer location in REG1.

Check the current value of the number type flag.
Jump if the current number type isn’t a string.

Load register pair HL with the starting address of
the Level II BASIC READY message.

Save the value in register pair HL as the current
string pointer.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Return.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Load register pair HL with the value of the locate/
create flag.

Exchange the value of the locate/create flag in

26EEH
26EFH

26FOH

26F1H - 26F9H

26F4H
26F5H

26F6H

26F7H

26F8H

26F9H

26F4H
26FBH

26FCH

26FDH - 26FEH

26FFH - 2700H

2701H - 27C2H

register pair HL with the value of the current BASIC
program pointer on the stack.

Zero register D.

Save the variable’s number type flag in register pair
DE on the stack.

Save the variable's name in register pair BC on the
stack.

Go evaluate the array subscript at the location of the
current BASIC program pointer in register pair HL
and return with the binary value in register pair DE.

Get the variable’s name from the stack and put it in
register pair BC.

Get the variable’s number type flag from the stack
and put it in register A.

Exchange the value of the array subscript in register
pair DE with the value of the current BASIC pro-
gram pointer in register pair HL.

Exchange the value of the array subscript in register
pair HL with the value of the locate/create flag on
the stack.

Save the value of the locate/create flag in register
pair HL on the stack.

Exchange the value of the locate/create flag in
register pair HL with the value of the current BASIC
program pointer in register pair DE.

Eump the number of subscripts evaluated in register
Load register D with the number of subscripts
evaluated in register A.

Load register A with the character at the location of

glf current BASIC program pointer in register pair

Check to see if the character at the location of the
current BASIC program pointer in register A is a
comma.

Jump if the character at the location of the current
BASIC program pointer in register A is a comma.

Go check the syntax. The character at the location of

the current BASIC program pointer in register pair
HL must be a).

453

2703H
2706H
2707H
270AH
270BH

270FH
2710H

2711H

2714H

2715H

2716H

2719H

271BH

271CH

271DH
271FH

2720H

454

- 2705H

- 2709H

- 270DH

- 2713H

2718H

- 271AH

- 271EH

Save the value of the current BASIC program point-
er in register pair HL,

Get the value of the locate/create flag from the stack
and put it in register pair HL.

Save the value of the locate/create flag in register
pair HL.

Save the number of subscripts evaluated in register
pair DE.

Load register pair HL with the value of the array
variables pointer.

Figure the end of the array.

Load register pair DE with the value of the array
variables pointer in register pair HL.

Load register pair HL with the value of the free
memory pointer.

Exchange the value of the free memory pointer in
register pair HL with the value of the array vari-
ables pointer in register pair DE.

Compare the value of the free memory pointer in
register pair DE to the value of the array vari-
ables pointer in register pair HL.

Load register A with the value of the current number
type flag.

Jump if the array variables pointer in register pair
HL is greater than or equal to the value of the free
memory pointer in register pair DE.

Compare the value of the variable’s number type flag
in register A with the value of the number type flag at
the location of the array variables pointer in register
pair HL.

Bump the value of the array variables pointer in
register pair HL.

Jump if the number type flags don’t match.

Load register A with the first character of the vari-
able name at the location of the array variables
pointer in register pair HL.

Check to see if the first character of the variable at
the location of the array variable pointer in register
A matches the first character of the variable name in
register C.

2721H
27224

2724H

2725H

2727H
2728H

2729H

272AH

272BH

272CH

272DH
272FH

2732H

2733H
2735H

2738H

2739H

Bump the value of the array variables pointer in
register pair HL.

- 2723H Jump if the first characters of the variable names

1

don’t match.

Load register A with the second character of the
variable name at the location of the array variables
pointer in register pair HL.

Compare the second character of the variable name
at the location of the array variables pointer in
register A matches the second character of the
variable name in register B.

Bump the value of the array variables pointer in
register pair HL.

Bump the value of the array variables pointer in
register pair HL.

Loadregister E with the LSB of the offset to the next
array at the location of the array variables pointer in
register pair HL.

Bump the value of the array variables pointer in
register pair HL.

Load register D with the MSB of the offset to the
next array at the location of the array variables
pointer in register pair HL.

Bump the value of the array variables pointer in
register pair HL.

272EH Jump if the variables’ names don’t match.

2731H

2734H
27374

tlioad register A with the value of the locate/create
ag.

gheck the status of the locate/create flag in register

Load register E with the DD ERROR code.

Go to the Level I BASIC error routine and display a
DD ERROR message if the locate/create flag in
register A indicates the create mode.

Get the number of subscripts evaluated from the
stack and put it in register A.

Compare the number of subscripts evaluated in
register A with the number of subscripts for the
array at the location of the array variables pointer in
register pair HL.

455

273AH - 273CH

273DH
273FH

2742H

2743H
2744H

2745H
2747H

2748H

2749H

274AH

274BH

274CH

274DH
2750H

2751H
2752H

2755H
456

- 273EH
- 2741H

- 2746H

- 274FH

- 2754H

Jump if the number of subscripts evaluated in regis-
ter A matches the number of subscripts for the array
at the location of the array variables pointer in reg-
ister pair HL.

Load register E with a BS ERROR code.

Go to the Level II BASIC error routine and display a
BS ERROR message if the number of subscripts
evaluated in register A doesn’t match the number of
subscripts for the array at the location of the array
variable pointer in register pair HL.

Save the number of subscripts for the array in reg-
ister A at the location of the array variables pointer
in register pair HL.

Bump the value of the array variables pointer in
register pair HL.

Load register E with the number type flag for the
current variable.

Zero register D.

Get the number of subscripts evaluated from the
stack and put it in register A.

Save the first character of the variable’s name in
register C at the location of the array variables
pointer in register pair HL.

Bump the value of the array variables pointer in
register pair HL.

Save the second character of the variable’s name in
register B at the location of the array variables
pointer in register pair HL.

Bump the value of the array variables pointer in
register pair HL.

Load register C with the number of subscripts eval-
uated in register A.

Figure the amount of memory needed.

Bump the value of the array variables pointer in
register pair HL.

Bump the value of the array variables pointer in
register pair HL.

Save the value of the array variables pointer in
register pair HL.

Save the number of subscripts evaluated in register

2756H
2757H
275AH
275BH
275CH

275FH
2761H

2762H
2763H
2764H

2765H

2766H

2767H

2768H

276BH
276CH
276DH

276FH

- 275%9H

- 275EH

- 2760H

- 276AH

- 276EH

C at the location of the array variables pointer in
register pair HL.

Bump the value of the array variables pointer in
register pair HL.

flfoad register A with the value of the locate/create
ag.

Set the flags according the status of the locate/
create flag in register A.

Load register A with the number of subscripts
evaluated in register C.

Load register pair BC with the default number to be
created.

Jump if the array is being created.

Get a subscript from the stack and put it in register
pair BC.

Bump the value of the subscript in register pair BC.

Save the LSB of the subscript’s value in register C at
the location of the array variables pointer in register
pair HL.

Bump the value of the array variables pointer in
register pair HL.

Save the MSB of the subscript’s value in register B
at the location of the array variables pointer in reg-
ister pair HL.

Bump the value of the array variables pointer in
register pair HL.

Save the number of subscripts evaluated in register
A on the stack.

Go multiply the size of the subscript by the value of
the number type flag to determine the amount of
memory necessary for the subscript.

Get the number of subscripts evaluated from the
stack and put it in register A.

Check to see if there are anymore subscripts to be
evaluated.

Jump if there are anymore subscripts to be eval-
uated.

Save the number of subscripts to be evaluated in
register A on the stack.

457

2770H
2771H
2772H
2773H
2774H
2776H
2779H
277CH
277DH
277FH

2780H
2782H

2783H
2784H

2787H

2788H

2789H

278AH

278BH

458

27751
2778H

277BH

277EH

2781H

2786H

Load register B with the MSB of the array’s length in
register D,

Load register C with the LSB of the array’s length in
register E.

Load register pair DE with the value of the array
variables pointer in register pair HL.

Add the length of the array in register pair HL to the
value of the array variable pointer in register pair
DE.

Jump if overflow occurred.

Go check to see if there is enough memory for the
array.

get the end of the array and put it in register pair
L.

Decrement the value of the array pointer in register
pair HL.

IZ{ero the location of the array pointer in register pair
Compare the array pointer in register pair HL with
the array variables pointer in register pair DE.
Loop till the array has been cleared.

Load register pair BC with the array’s length plus
one.

Zero register D,

Load register pair HL with the array variables
pointer.

Load register E with the number of subscripts for
the array at the location of the array variables
pointer in register pair HL.

Exchange the value of the array variables pointer in
register pair HL with the number of subscripts for
the array in register pair DE.

Multiply the number of subscripts for the array in
register pair HL by two.

Add the length of the array in register pair BC to the
number of subscripts times two in register pair HL.

Exchange the array’s length in register pair HL with
the array variables pointer in register pair DE.

278CH

278DH

278EH

278FH

2790H

2791H
2792H

2793H
2795H
2796H

2797H

2798H
279AH

279BH

279CH

279DH

279EH
279FH

27A0H

- 2794H

Decrement the value of the array variables pointer in
register pair HL.

Decrement the value of the array variables pointer in
register pair HL.
Save the LSB of the offset to the next array in reg-

ister E at the location of the array variables pointer
in register pair HL.

Bump the value of the array variables pointer in
register pair HL.

Save the MSB of the offset to the next array in
register D at the location of the array variables
pointer in register pair HL.

Bump the value of the array variables pointer in
register pair HL.

Get the value of the locate/create flag from the stack
and put it in register A.

Jump if the array is being created.
Zero register B.
Zero register C.

Load register A with the number of subscripts for
the array at the location of the array variables
pointer in register pair HL.

Bump the value of the array variables pointer in
register pair HL.

Get the array variables pointer from the stack and
put it in register pair HL.

Load register E with the LSB of the subscript limit at
the location of the array variables pointer in register
pair HL.

Bump the value of the array variables pointer in
register pair HL.

Load register D with the MSB of the subscript limit
at the location of the array variables pointer in
register pair HL.

Bump the value of the array variables pointer in
register pair HL.

Exchange the value of the array variables pointer in
register pair HL with the subscript on the stack.

Save the number of subscripts for the array in reg-
ister A on the stack.

459

27A1H

27A2H

27A5H
27A8H
27A9H
27AAH
27ABH
27ACH

27ADH
27AFH
27B2H

27B3H
27B4H
27B5H
27B7H
27B9H

27BAH
27BCH

27BDH
27BEH
27C1H
460

Compare the subscript limit in register pair DE with
the subscript for the array in register pair HL.

- 27A4H Jumpif the subscript for the array in register pair HL

27A7H

27AEH
27BlH

27B6H

27B8H

27BBH

27C0H

is greater than the subscript limit in register pair
Multiply the previous subscript by the subscript
limit.

Add the subscript limit for the array in register pair
DE to the array pointer in register pair HL.

Get the number of subscripts for the array from the
stack and put it in register A.

Check to see if there are anymore subscripts to be
evaluated.

Load register B with the MSB of the subscript
pointer in register H.

Load register C with the LSB of the subscript
pointer in register L.

Loop till all of the subscripts have been evaluated.
Get the number type flag for the current array.

Load register B with the MSB of the subscript
pointer in register H.

Load register C with the LSB of the subscript
pointer in register L.

Multiply the subscript pointer in register pair HL by
two.

g:heck the value of the number type flag in register
Jump if the current number type is an integer or
string.

Multiply the subscript pointer in register pair HL by
two.

Jump if the current number type is single precision.

Multiply the subscript pointer in register pair HL by
two.

Set the flags.
Jump if the current number type isn’t a string.

Add the value of the original subscript pointer in

27C2H

27C3H

27ChH

27C5H

27C8H
27C9H
27C9H
27CAH

27CBH
27CEH
27D1H

27D2H
27D3H

27D4H
27D4H

27D7H

27D8H
27DBH

27DCH
27DDH
27DFH

27C7H

27D3H

27CDH
27DOH

27FU4H
27D6H

27DAH

27DEH
27E1H

register pair BC to the subscript pointer in register
pair HL.

Get the value of the array variables pointer from the
stack and put it in register pair BC.

Add the value of the array variables pointer in
register pair BC to the subscript pointer in register
pair HL.

Load register pair DE with the variable pointer in
register pair HL.

Get the value of the current BASIC program pointer
and put it in register pair HL.

Return.
LEVEL II BASIC MEM ROUTINE
Zero register A.

Save the value of the current BASIC program point-
er in register pair HL on the stack.

Zero the number type flag.
Call the Level II BASIC FRE routine.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Return.

LEVEL II BASIC FRE ROUTINE

Load register pair HL with the start of free memory
pointer.

Load register pair DE with the value of the free
memory pointer in register pair HL.

Zero register pair HL.

Add the value in register pair HL to the current value
of the stack pointer.

Check the value of the current number type flag.
Jump if this routine is called from the MEM routine.

Go update the string pointers.

461

27E2H - 27E4H Go check to see how much string space remains.
27E5H - 27E7H Load register pair HL with the start of string space

27E8H
27E9H
27ECH

27EDH

27EEH
27EFH

27F0H

27F1H

27F2H
27F5H
27F5H

27F8H

27F9H
27FAH
27FBH
27FEH
27FEH
2801H

2802H
462

-~ 27EBH

- 27F4H
- 27FDH
- 27F7H

- Z27FDH
- 2818H
- 2800H

- 2804H

pointer,

Load register pair DE with the start of string space
pointer in register pair HL.

Load register pair HL with the next available loca-
tion in string space pointer.

Load register A with the LSB of the next available
location in string space pointer in register L.

Subtract the LSB of the start of string space pointer
in register E from the LSB of the next available
location in string space pointer in register A.

Load register L with the LSB of the amount of string
space remaining in register A.

Load register A with the MSB of the next available
location in string space pointer in register H.

Subtract the MSB of the string space pointer in
register D from the MSB of the next available loca-
tion of string space pointer in register A.

Load register H with the MSB of the amount of
string space remaining in register A.

Jump.
LEVEL II BASIC POS ROUTINE

Load register A with the current cursor line posi-
tion.

Load register L with the value of the current cursor
line position in register A.

Zero register A.

Load register H with zero.

Jump.

LEVEL II BASIC USR ROUTINE

Go call the DOS link at 41A9H.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next

character.

Go evaluate the expression at the location of the

2805H

2806H
2809H

280AH

280DH

280EH
2810H

2813H
2814H
2815H

2818H
2819H

2819H
281AH

281CH
281FH

2820H
2823H

2826H

2827H
2828H

2808H

280CH

280FH
2812H

2817H

2827H

281BH

281EH

2821H
2825H

2835H

current BASIC program pointer in register pair HL
and return with the result in REG1.

Save the value of the current BASIC program point-
€r In register pair HL on the stack.

Load register pair HL with the return address.

Save the value of the return address in register pair
HL on the stack.

Load register A with the value of the current number
type flag.

Save the value of the current number type flag in
register A,

Check to see if the current value in REG1 is a string.

If the current result in REG1 is a string then go get
the string address in register pair HL.

Get the value of the current number type flag from
the stack and put it in register A.

Load register pair DE with the value of the string
address in register pair HL.

Load register pair HL with the starting address of
the machine language subroutine.

Jump to the address in register pair HL.
CONVERSION ROUTINE

Save the value in register pair HL on the stack.

Mask the value of the current number type flag in
register A,

Load register pair HL with the address of the arith-
metic conversion routines.

Load register C with the value of the number type
flag in register A.

Zero register B.

Go convert the current result in REG1 to it’s proper
number type.

Get the value from the stack and put it in register
pair HL,

Return.
INPUT ROUTINE

463

2828H
2829H
282CH
282DH

282EH

282FH

2830H
2831H
2833H

2836H
2836H

2839H
283CH
283FH
2842H

2843H
2844H
284 5H
2846H
2849H

28LAH
464

- 282BH

- 2832H
- 2835H

-~ 2856H

- 2838H

- 283BH
-~ 283EH
- 2841H

- 2848H

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Load register pair HL with the value of the current
BASIC line number.

Bump the value of the current BASIC line number in
register pair HL.

Load register A with the MSB of the current BASIC
line number in register H.

Combine the LSB of the current BASIC line number
in register L with the MSB of the current BASIC line
number in register A.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Return if this isn’t the command mode.
Load register E with the ID ERROR code.

Go to the Level II BASIC error routine and display
anID ERROR message if this is the command mode.

STRING ROUTINE

Go convert the current result in REG1 to an ASCII
string.

Go make a temporary string work area entry.
Load register pair HL with the string’s VARPTR.
Load register pair BC with the return address.

Save the value of the return address in register pair
BC on the stack.

Load register A with the string’s length at the loca-
tion of the string’s VARPTR in register pair HL.

Bump the value of the string’s VARPTR in register
pair HL.

Save the value of the string’s VARPTR in register
pair HL on the stack.

Go make sure there is enough string space for the
string.

Get the value of the string’s VARPTR from the stack
and put it in register pair HL.

Load register C with the LSB of the string’s address

284BH
284CH
284DH

2850H
2851H

2852H
2855H

2856H
2857H

2857H
285AH
285DH

285EH

285FH

2860H

2861H

2862H

2863H

- 284FH

- 2854H

- 28644
- 2859H

- 285CH

at the location of the string’s VARPTR in register
pair HL.

Bump the value of the string’s VARPTR in register
pair HL.

Load register B with the MSB of the string’s address
at the location of the string’s VARPTR in register
pair HL.

Go save the string’s length and the string’s address.
Save the value in register pair HL on the stack.

Load register L with the value of the string’s length
In register A.

Go move thé string from it’s temporary location to
string space.

Get the value from the stack and put it in register
pair DE.

Return.
STRING ROUTINE

Go make sure that there is enough string space
remaining for the string.

Load register pair HL with the address of the tem-
porary string parameter storage area.

Save the address of the temporary string parameter
area in register pair HL on the stack.

Save the string’s length in register A at the location
of the temporary string parameter storage pointer in

register pair HL.

Bump the value of the temporary string parameter
storage pointer in register pair HL.

Save the LSB of the string’s address in register E at
the location of the temporary string parameter stor-
age pointer in register pair HL.

Bump the value of the temporary string parameter
storage pointer in register pair HL

Save the MSB of the string’s address in register D at
the location of the temporary string parameter stor-
age pointer in register pair HL.

Get the address of the temporary string parameter
stﬁrage area from the stack and put it in register pair
HL.

465

2864H
2865H
2865H

2866H
2868H
2869H

286AH
286CH

286DH

286EH
286FH

2870H

2872H

2873H

2875H

2876H

2878H

287AH

466

28AS5H

2867H

286BH

- 2871H

2874H

2877H

2879H

287CH

Return.
STRING ROUTINE

Decrement the value of the current BASIC program
pointer in register pair HL.

Load register B with a quote.
Load register D with a quote.

Save the address of the current BASIC program
pointer in register pair HL on the stack.

Load register C with a —1.

Bump the value of the current BASIC program
pointer in register pair HL.

Load register A with the character at the location of
ﬂlﬁ current BASIC program pointer in register pair

Bump the value of the counter in register C.

Check to see if the character at the location of the
current BASIC program pointer in register A is an
end of the BASIC line character.

Jump if the character at the location of the current
BASIC program pointer in register A is an end of the
BASIC line character.

Check to see if the character at the location of the
current BASIC program pointer in register A is the
same as the terminating character in register D.

Jump if the character at the location of the current
BASIC program pointer in register A is the same as
the terminating character in register D.

Check to see if the character at the location of the
current BASIC program pointer in register A is the
same at the terminating character in register B.

Loop if the character at the location of the current
BASIC program pointer in register A isn’t the same
as the terminating character in register B.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
quote.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character if the character at the location of the cur-

287DH

287EH
287FH
2880H

2881H
2884H

2889H

288CH

288FH
2891H

2894H

2897H

289AH

289BH

289EH

289FH

2883H
2886H

288BH

288EH

2890H
2893H

2896H

289%9H

289DH

rent BASIC program pointer in register A was a
quote.

Exchange the value of the current BASIC program
pointer in register pair HL with the string’s address
on the stack.

Bump the string’s address in register pair HL till it
points to the first character of the string.

Load register pair DE with the string’s address in
register pair HL.

and register A with the string’s length in register

Go save the string’s length and the string’s address.

Load register pair DE with the address of the string
parameter storage area.

Load register pair HL with the next available loca-
tion in the temporary string work area in register
pair HL as the string’s VARPTR in REG1.

Save the value of the next available location in the
temporary string work area in register pair HL as
the string’s VARPTR in REG1.

Load register A with the string number type flag.

Save the value in register A as the current number
type flag.

Add the length of the string to the next available
location in the temporary string work area in regis-
ter pair HL.

Load register pair DE with the ending address of the
temporary string work area.

Check to see if the updated temporary string work
area location in register pair HL isn’t greater than
the ending address of the temporary string work
area in register pair DE.

Save the updated string work area location in reg-
ister pair HL as the next available location in the
temporary string work area.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Load register A with the character at the location of
%’f current BASIC program pointer in register pair

467

28A0H

28A1H
28A3H

28A6H

28A6H

28A7H

28AAH

28ADH

28BOH
28B1H

28B2H

28B3H

28B4H

28B7H

28B9H

28BCH

28BDH

28BFH
28BFH
28C1H

468

28A2H
28A5H

28BEH

28A9H

28ACH
28AFH

28B6H
28B8H

28BBH

28BEH

28D9H

Return if the updated temporary string work area
location wasn't beyond the end of the temporary
string work area.

Load register E with a ST ERROR code.

Go to the Level II BASIC error routine and display a
ST ERROR message if the temporary string work
area has overflowed.

DISPLAY MESSAGE ROUTINE

Bump the value of the current BASIC program point-
er in register pair HL.

Go build a temporary string work area entry for the
message at the location of the current BASIC pro-
gram pointer in register pair HL.

Load register pair HL with the string’s VARPTR.

Go get the string’s length in register D and the
string’s address in register pair BC.

Bump the value of the string’s length in register D.

Decrement the value of the string's length in regis-
ter D.

Return if all of the characters in the string have been
sent to the current output device.

Load register A with the character at the location of
the string pointer in register pair BC.

Go send the character in register A to the current
output device.

Check to see if the character in register A is a
carriage return.

Jump if the character in register A is a carriage
return.

gt(l:mp the value of the string pointer in register pair

Loop till all of the characters in the string have been
sent to the current output device.

STRING ROUTINE
Set the flags.

Get the string’s length from the stack and put it in
register A.

28C2H
28C3H - 28C5H
28C6H
28C7H -~ 28C9H

28CAH
28CBH

28CCH - 28CDH
28CEH
28CFH

28DOH

28D1H - 28D2H

28D3H - 28D5H
28D6H
28D7H
28D8H

28D9H
28DAH - 298EH
28DAH

28DBH - 28DCH
28DDH - 28DFH

Save the length of the string in register A on the
stack.

Load register pair HL with the start of the string
space pointer.

Load register pair DE with the start of the string
space pointer in register pair HL.

Load register pair HL with the next available loca-
tion in string space pointer.

Complement the string’s length in register A.

Load register C with the negative string’s length in
register A.

Load register B with a —1,

Add the negative string’s length in register pair BC
to the next available location in string space pointer
in register pair HL.

Bump the value of the adjusted next available loca-
tion in string space pointer in register pair HL.

Check to see if the adjusted next available location in
string space pointer in register pair HL is less than
the start of string space pointer in register pair DE.
Jump if the adjusted next available location in string
space pointer in register pair HL is less than the
start of string space pointer in register pair DE.

Save the value in register pair HL as the next availa-
ble location in string space pointer.

Bump the value of the next available location in
string space pointer in register pair HL.

Load register pair DE with the next available loca-
tion in string space pointer in register pair HL.

Get the string’s length from the stack and put it in
register A.

Return.
STRING ROUTINE

Get the length of the string from the stack and put it
In register A.

Load register E with an OS ERROR code.
Go to the Level II BASIC error routine and display

469

28EOH
28E1H
28E2H
28E5H

28E6H

28E9H

28ECH
28EFH
28F0H

28F3H
28F4H
28F7H
28F8H

28FBH

28FCH

28FDH
2900H
2903H

2906H

470

- 28E4H

- 28EBH

- 28EBH

- 28EEH

- 28F2H

- 28F6H

- 28FAH

- 28FFH
- 2902H

an OS ERROR message if there isn’t enough string
space available for the string.

Set the flags.
Save the string’s length in register A on the stack.
Load register pair BC with the return address.

Save the value of the return address in register pair
BC on the stack.

Load register pair HL with the top of memory
pointer.

Save the top of BASIC memory pointer in register
pair HL as the next available location in string space
pointer.

Zero register pair HL.
Save the value in register pair HL on the stack.

Load register pair HL with the start of string space
pointer.

Save the start of string space pointer in register pair
HL on the stack.

Load register pair HL with the start of the temporary
string work area pointer.

Load register pair DE with the start of the tempor-
ary string work area pointer in register pair HL.

Load register pair HL with the next available loca-
tion in the temporary string work area pointer.

Exchange the start of the temporary string work
area pointer in register pair DE with the next availa-
ble location in the temporary string work area
pointer in register pair HL.

Check to see if the start of the temporary string work
area pointer in register pair HL is the same as the
next available location in the temporary string work
area pointer.

Load register pair BC with the return address.
Jump if the temporary string work area isn’t empty.

Load register pair HL with the start of the simple
variables pointer.

Load register pair DE with the simple variables
pointer in register pair HL.

2907H = 2909H Load register pair HL with the start of the array

290AH

290BH

290CH

290EH

290FH
2910H
2911H
2912H
2914H

2916H
2919H
291AH
291BH
291DH

291EH

2920H
2921H

2922H

- 290DH

= 2913H

= 2915H

- 2918H

- 291CH

- 291FH

- 2924H

variables pointer.

Exchange the value of the simple variables pointer in

register pair DE with the value of the array variables

pointer in register pair HL.

Check to see if the simple variables pointer in reg-

ister pair HL is the same as the array variables

pointer in register pair DE.

Jump if the simple variables pointer in register pair
L is the same as the array variables pointer in

register pair DE.

Load register A with the number type flag at the

location of the simple variables pointer in register

pair HL.

Bump the value of the simple variables pointer in
register pair HL.

Bump the simple variables pointer in register pair
HL.

Bump the value of the simple variables pointer in
register pair HL.

Check to see if the variable at the location of the
simple variables pointer is a string.

Jump if the variable at the location of the simple
variables pointer in register pair HL isn't a string.

Go do string check.

Zero register A.

Zero register E.

Zero register D.

Add the value of the number type flag in register pair
gE to the simple variables pointer in register pair
Loop till all of the simple variables have been
checked.

Clean up the stack.

Load register pair DE with the value of the array
variables pointer in register pair HL.

Load register pair HL with the start of free memory
pointer.

471

2925H

2926H

2927H

292AH

292BH
292CH
292FH
2930H
2931H

2933H
2935H

2938H

2939H

293AH
293CH

293DH

293EH

472

2929H

292EH

2932H
2934H
2937H

293BH

Exchange the value of the array variables pointer in
register pair DE with the value of the free memory
pointer in register pair HL.

Check to see if the array variables pointer in register
pair HL is the same as the free memory pointer in
register pair DE.

Jump if the array variables pointer in register HL is
the same as the start of the free memory pointer in
register pair DE.

Load register A with the number type flag at the
}_clxﬁation of the array variables pointer inregister pair
Bump the value of the array variables pointer in

register pair HL.

Go get the offset to the next array and return with it
in register pair BC.

Save the value of the array variables pointer in reg-
ister pair HL on the stack.

Add the value of the offset to the next array in
register pair BC to the value of the array variables
pointer in register pair HL.

Check to see if the array being examined is a string.
Jump if the array being examined isn't a string.
ISﬁzze the address of the next array in register pair
Get the value of the array variables pointer from the
stack and put it in register pair HL.

Load register C with the number of subscripts for
the array at the location of the array variables
pointer in register pair HL.

Zero register B.

Add the number of subscripts in the array in register
pair BC to the value of the array variables pointer in
register pair HL.

Add the number of subscripts in the array in register
pair BC to the value of the array variables pointer in
register pair HL.

Bump the value of the array variables pointer in
register pair HL.

293FH
2940H - 2942H

2943H

2944H

2945H - 2946H

2047H - 2948H
294AH

294BH
294CH

294DH

294EH

294 FH

2950H

2951H

2952H
2953H
2954H

2955H = 2957H

Load register pair DE with the value of the array
variables pointer in register pair HL.

Load register pair HL with the address of the next
array.

Exchange the value of the array variables pointer in
register pair DE with the address of the array in
register pair HL.

Check to see if the array variables pointer in register
pair HL is the same as the address of the next array
in register pair DE.

Jump if the array variables pointer in register pair
HL.xs the same as the address of the next array in
register pair DE.

Load register pair BC with the return address.

Save the value in register pair BC on the stack.
Zero register A.

Load register A with the length of the string at the
igcation of the array variables pointer in register pair
L.

Bump the value of the array variables pointer in
register pair HL.

Load register E with the LSB of the string’s address
at the location of the array variables pointer in
register pair HL.

Bump the value of the array variables pointer in
register pair HL.

Load register D with the MSB of the string’s address
at the location of the array variables pointer in
register pair HL.

Bump the value of the array variables pointer in
register pair HL.

Return if the string’s length in register A is equal to
zero.

Load register B with the MSB of the array variables
pointer in register H,

Load register C with the LSB of the array variables
pointer in register L.

Load register pair HL with the location of the next
available location in string space pointer.

473

2958H
295%9H
295AH
295BH
295CH

295DH

295EH

295FH

2960H
2961H
2962H
2963H
2964H

296 5H
2966H
2967H

2968H
2969H

296AH
474

Check to see if the string’s address in register pair
DE is in string space.

Load register H with the MSB of the array variables
pointer in register B.

Load register L with the LSB of the array variables
pointer in register C.

Return if the string’s address in register pair DE is in
string space.

Get the return address from the stack and put it in
register pair HL.

Exchange the value of the return address in register
pair HL with the start of string space pointer on the
stack.

Check to see if the string’s address in register pair
DE is below the start of string space pointer in
register pair HL.

Exchange the start of string space pointer in register
pair HL with the value of the return address on the
stack.

Save the value of the return address in register pair
HL on the stack.

Load register H with the MSB of the array variables
pointer in register B.

Load register L with the LSB of the array variables
pointer in register C.

Return if the string’s address in register pair DE is
below the string space pointer.

Get the return address from the stack and put it in
register pair BC.

Clean up the stack.
Clean up the stack.

Save the value of the array variables pointer in
register pair HL on the stack.

Save the string’s address in register pair DE on the
stack.

Save the value of the return address in register pair
BC on the stack.

Return.

296BH
296CH
296DH

296EH

296FH
2970H

2971H

2972H

2973H

2974H

2975H
2976H
2977H
2979H
297AH
297BH
297CH

297DH

- 2978H

Load register pair DE with the address of the last
string put into the temporary string work area.

Get the temporary string work area pointer from the
stack and put it in register pair HL.

Load register A with the LSB of the temporary
string work area pointer in register L.

Combine the MSB of the temporary string work area
pointer in register H with the LSB of the temporary
string work area pointer in register A.

Return if the temporary string work area is empty.

Decrement the value of the temporary string work
area pointer in register pair HL.

Load register B with the MSB of the string’s address
at the location of the temporary string work area
pointer in register pair HL.

Decrement the value of the temporary string work
area pointer in register pair HL.

Load register C with the LSB of the string’s address
at the location of the temporary string work area
pointer in register pair HL.

Save the value of the temporary string work area
pointer in register pair HL on the stack.

Decrement the value of the temporary string work
area pointer in register pair HL.

Load register L with the string’s length at the loca-
tion of the temporary string work area pointer in
register pair HL.
Zero register H.

Add the length of the string in register pair HL to the
string’s address in register pair BC.

Load register D with the MSB of the string’s address
in register B.

Load register E with the LSB of the string’s address
in register C.

Decrement the value of the string’s ending address
in register pair HL.

Load register B with the MSB of the string’s ending
address in register H.

475

297EH
297FH
2982H
2985H

2986H

2987H

2988H

2989H
298AH

298BH

298CH
298FH

298FH
2990H
2991H

2994H

2995H

2998H

2999H
476

2981H

2984H

298EH
29C5H

2993H

2997H

299BH

Load register C with the LSB of the string’s ending
address in register L.

Load register pair HL with the next available loca-
tion in string space pointer.

Move the string from the temporary storage location
to string space.

Get the temporary string work area pointer from the
stack and put it in register pair HL.

Save the LSB of the string’s address in register C at
the location of the temporary string work area
pointer in register pair HL.

Bump the value of the temporary string work area
pointer in register pair HL.

Save the MSB of the string’s address in register B at
the location of the temporary string work area
pointer in register pair HL.

Load register L with the LSB of the string’s address
in register C.

Load register H with the MSB of the string’s address
in register B.

Decrement the string’s address in register pair HL.
Jump.
STRING ADDITION ROUTINE

Save the operator value in register pair BC on the
stack.

Save the value of the current BASIC program point-
er in register pair HL on the stack.

Load register pair HL with the first string’s
VARPTR in REG1.

Exchange the value of the first string’s VARPTR in
register pair HL with the value of the current BASIC
program on the stack.

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL.

Exchange the value of the current BASIC program
pointer in register pair HL with the value of the first
string’'s VARPTR on the stack.

Go make sure the current result in REG1 s a string.

299CH

299DH
299EH
29A1H
29A2H
29A3H
29A5H
29A8H

29ABH

29ACH
29AFH

29BOH
29B3H

29B4H
29B7H
29B8H
29BBH

29BEH
29ClH

i

29A0H

29AKH
29A7H

29AAH

29AEH

29B2H

29B6H

29BAH
29BDH

29COH

Load register A with the first strin}g’§ length at the
igfation of the first string’s VARPTR in register pair

Save the value of the first string’s VARPTR in reg-
ister pair HL on the stack.

Load register pair HL with the second string’s VAR-
PTR in REGL.

Save the second string’s VARPTR in register pair
HL on the stack.

Add the length of the second string at the location of
the second string’s VARPTR in register pair HL to
the length of the first string in register A,

Load register E with a LS ERROR code.

Go to the Level Il BASIC error routine and display a
LS ERROR message if the combined lengths of the
strings is greater than 255.

Go make sure that there is enough string space for
the new string.

Get the second string’s VARPTR from the stack and
put it in register pair DE.

Go update the temporary string work area,

Exchange the second string’s VARPTR in register
pair HL with the first string’s VARPTR on the stack.

Go update the temporary string work area.

Save the value of the first string’s VARPTR in reg-
1ster pair HL on the stack.

Load register pair HL with the second string’s ad-
dress.

Load register pair DE with the second string’s ad-
dress in register pair HL.

Go move the first string to it’s temporary storage
location.

Go move the second string to it’s temporary storage
location.

Load register pair HL with the return address.
Exchange the value of the return address in register

pair HL with the value of the current BASIC program
pointer on the stack.

477

29C2H

Save the value of the current BASIC program
pointer in register pair HL on the stack.

29C3H = 29C5H Jump.

29C6H -~ 29D6H
29C6H

29C7H
29C8H
29C9H

29CAH

29CBH

29CCH

29CDH

29CEH
29CFH

29DOH
29D1H
29D2H
29D3H
29D4H

29D5H - 29D6H
29D7H - 29F4H
478

STRING ROUTINE

Load register pair HL with the value of the return
address on the stack.

Exchange the value of the return address in register
pair HL with the string’'s VARPTR on the stack.

Load register A with the string’s length at the loca-
tion of the string’s VARPTR in register pair HL.

Bump the value of the string’s VARPTR in register
pair HL.

Load register C with the LSB of the string’s address
at the location of the string’s VARPTR in register
pair HL.

Bump the value of the string’s VARPTR in register
pair HL.

Load register B with the MSB of the string’s address
at the location of the string’s VARPTR in register
pair HL.

koad register L with the string’s length in register

Bump the value of the string’s length in register L.

Decrement the value of the string’s length in regis-
ter L.

Return if all of the characters in the string have been
moved.

Load register A with the character at the location of
the string pointer in register pair BC.

Save the character in register A at the location of the
string storage pointer in register pair DE.

Bump the value of the string pointer in register pair
BC.

Bump the value of the string storage pointer in
register pair DE.

Loop till the string has been completely moved.

STRING ROUTINE

29D7H = 29D9H Go make sure that the current result in REG1 is a

29DAH
29DDH
29DEH
29E1H
29E2H
29E3H
29EUH
29E5H
29E6H
29E7H
29E8H

29EBH

29ECH

29EEH
29EFH
29ECH
29F3H

29FAH

- 29DCH

- 29EOH

- 29EAH

- 29EDH

- 29F2H

string.

Ili%a((}i register pair HL with the string’'s VARPTR in
1.

Load register pair DE with the value of the string’s
VARPTR in register pair HL.

Check to see if the string is the last entry in the
temporary string work area.

Load register pair HL with the value of the string’s
VARPTR in register pair DE.

Return if the string isn’t the last entry in the tempor-
ary string work area.

Save the value of the string’s VARPTR in register
pair DE on the stack.

Load register D with the MSB of the string’s address
In register B.

Load register E with the LSB of the string’s address
in register C.

Decrement the value of the string’s address in
register pair DE.

Load register C with the string’s length at the loca-
tion of the string's VARPTR in register pair HL.

Load register pair HL with the next available loca-
tion in string space pointer.

Check to see if the string’s address in register pair
DE is the same as the next available location in
string space pointer in register pair HL.

Jump if the string’s address in register pair DE isn’t
the same as the next available location in string
space pointer in register pair HL.

Load register B with the value in register A.

Add the length of the string in register pair BC to the
next available location in string space pointer in
register pair HL.

Save the adjusted next available location in string
space pointer in register pair HL.

Get the string’s VARPTR from the stack and put it in
register pair HL.

Return.

479

29F5H -« 2A02H STRING ROUTINE
29F5H - 29F7H Load register pair HL with the temporary string

29F8H

29F9H

29FAH

29FBH

29FCH

29FDH

29FEH

29FFH

2A02H
2A03H
2A03H
2A06H

2A07H

2A0AH
2A0BH
2A0CH

2A0DH

2A0EH
480

2A01H

2A0EH
2A05H

ZA09H

work area pointer.

Decrement the value of the temporary string work
area pointer in register pair HL.

Load register B with the MSB of the string’s address
at the location of the temporary string work area
pointer in register pair HL.

Decrement the value of the temporary string work
area pointer in register pair HL.

Load register C with the LSB of the string’s address
at the location of the temporary string work area
pointer in register pair HL.

Decrement the value of the temporary string work
area pointer in register pair HL.

Check to see if the string’s VARPTR in register pair
DE matches the temporary string work area pointer

in register pair HL.

Return if the string’s VARPTR in register pair DE
doesn’t match the temporary string work area
pointer in register pair HL.

Save the value of the temporary string work area
pointer in register pair HL.

Return.
LEVEL II BASIC LEN ROUTINE
Load register pair BC with the return address.

Save the value of the return address in register pair
BC on the stack.

Go get the string’s VARPTR and put it in register
pair HL.

Zero register A.
Zero register D.

Load register A with the string’s length at the loca-
tion of the string’s VARPTR in register pair HL.

Set the flags according to the string’s length in
register A.

Return.

2A0FH
2A0FH
2A12H

2A13H

2A16H

2A19H

2A1AH

2A1BH

2A1CH

2A1DH

2A1EH
2A1FH

2A1FH
2A21H

2A24H

2A27H
2AZ2AH

2A2BH
2A2CH
2AZFH
2A2FH

2A1EH
2A11H

2A15H

2A18H

2AZEH

2A20H
2A23H

2A26H

2A29H

2A2EH
2A60H

LEVEL II BASIC ASC ROUTINE
Load register pair BC with the return address.

Save the value of the return address in register pair
BC on the stack.

Go get string’s VARPTR into register pair HL and
the string’s length into register A.

Go to the Level I BASIC error routine and display a
FC ERROR message if the string’s length in register
A is equal to zero.

Bump the value of the string’s VARPTR in register
pair HL.

Load register E with the LSB of the string’s address
at the location of the string’'s VARPTR in register
pair HL.

Bump the value of the string’s VARPTR in register
pair HL.

Load register D with the MSB of the string's address
at the location of the string’s VARPTR in register
pair HL.

Load register A with the character at the location of
the string pointer in register pair DE.

Return.
LEVEL II BASIC CHRS$ ROUTINE

Load register A with the string’s length.

Go save the string’s length in register A and set up
the string’s address.

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
%néi return with the integer result in register pair

Load register pair HL with the string’s address.

Save the character in register E at the location of the
string pointer in register pair HL.

Clean up the stack.
Jump.
LEVEL II BASIC STRING$ ROUTINE

Go bump the value of the current BASIC program
481

2A30H

2A32H

2A35H

2A36H

2A38H

2A3BH

2A3DH

2A3EH

2A3FH

2A40H
2A42H

2AL45H
2A47H

2ALAH
2A4BH
2AL4CH
2A4DH

482

2A31H

2A34H

2A37H

2A3AH

2A3CH

2A41H
2A44LH

2A46H
2A4GH

pointer in register HL till it points to the next
character.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HI. must be a (.

Go evaluate the expression at the location of the

current BASIC program pointer in register pair HL

aDnd return with the integer result in register pair
E.

Save the string’s length in register pair DE on the
stack.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a comma.

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
and return with the result in REGL.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a).

Exchange the value of the current BASIC program
pointer in register pair HL with the string’s length
on the stack.

Save the string’s length in register pair HL on the
stack.

Go check the current value of the number type flag.

Jump if the current result in REG1 is a string.

Convert the current result in REG1 to an integer and
return with the 8-bit result in register A.

Jump.

Go get the first character in the string and return
with it in register A.

Get the string’s length from the stack and put it in
register pair DE,

Save the character for the string in register A on the
stack.

Save the character for the string in register A on the
stack.

Iéoad register A with the string’s length in register

2AUEH - 2A4FH Go update the temporary string work area.

2A51H
2A52H

2A53H
2A54H
2A55H

2A57H
2A5AH

2A5BH

2A5CH
2A5DH

2ASFH
2A61H

2A61H

2A64H
2A65H

2A66H
2A68H

2A69H
2A6AH

2A6BH

2A6CH

2A6EH

- 2A56H
- 2A59H

- 2A5EH

- 2A60H
- 2A90H

- 2A63H

~ 2A6DH

[I{oad register E with the string’s length in register

Get the character for the string from the stack and
put it in register A.

Bump the value of the string’s length in register E.
Decrement the string’s length in register E.
Jump if the string has been completed.

Load register pair HL with the string’s address.

Save the character in register A at the location of the
string pointer in register pair HL.

Bump the value of the string pointer in register pair

Decrement the string’s length in register E.
Loop till the string has been completed.

Jump.
LEVEL II BASIC C LEFT$ ROUTINE
Go check the syntax. The character at the location of

the current BASIC program pointer in register pair
HL must be a).

Zero register A.

Exchange the value of the current BASIC pro-
gram pointer in register pair HL with the string's
VARPTR on the stack.

Zero register C.

Load register H with the value in register A.

Save the value of the string’s VARPTR in register
pair HL on the stack.

Load register A with the string's length at the loca-
tion of the string’s VARPTR in register pair HL.

Check to see if the new string’s length in register B
is greater than the string’s length in register A.

Jump if the new string’s length in register B is
greater than the string’s length in register A.

Load register A with the new string’s length in
register B.

483

2A70H = 2A71H Zero register C.

2A72H

2A73H - 2A75H

2A76H
2A77H
2A78H
2A79H

2A7AH

2A7BH

2A7CH

2A7DH

2A7EH
2A80H

2A81H
2A82H

2A83H
2A86H

2A87H
2ABAH
2A8BH
2A8EH
484

2A7FH

2A85H

2A89H

2A8DH
2A90H

Save the string’s length in register pair BC on the
stack.

Go see if there is enough string space for the new
string.

Get the new string’s length from the stack and put it
in register pair BC.

Get the string’s VARPTR from the stack and put it in
register pair HL.

Save the string’s VARPTR in register pair HL on the
stack.

Bump the value of the string’s VARPTR in register
pair HL.

Load register B with the LSB of the string’s address
at the location of the string’s VARPTR in register
pair HL.

Bump the value of the string’s VARPTR in register
pair HL.

Load register H with the MSB of the string’s address
at the location of the string’'s VARPTR in register
pair HL.

Load register L with the LSB of the string’s address
in register B.

Zero register B.

Add the string’s length in register pair BC to the
string’s address in register pair HL.

Load register B with the MSB of the string’s ending
address in register H.

Load register C with the LSB of the string’s ending
address in register L.

Go save the string’s length and the string’s address.

IAoad register L with the string’s length in register

Go move the string into string space.
Clean up the stack.
Go update the temporary string work area.

Jump.

2A91H

2A91H - 2A93H

2A94H
2A95H
2A96H
2A97H

2A98H
2A9AH

2A9AH

2A9BH

2A9CH

2A9FH
2AAOH

2AA1H

2AANH

2AA5H
2AA7H

2AAQ9H

2AABH

2AADH

- 2A99H

- 2A99H
- 2ACH4H

- 2A9EH

- 2AA3H

- 2AA6H
- 2AA8H

- Z2AAAH

2AACH

- 2AAFH

LEVEL II BASIC RIGHT$ ROUTINE

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a).

Get the string’s VARPTR from the stack and put it in
register pair DE.

Save the string’s VARPTR inregister pair DE onthe
stack.

Load register A with the string’s length at the loca-
tion of the string’s VARPTR in register pair DE.

Subtract the new string’s length in register B from
the string’s length in register A.

Jump.
LEVEL II BASIC MID$ ROUTINE

Load register pair HL with the value of the current
BASIC program pointer in register pair DE.

Load register A with the character at the location of
t}llle current BASIC program pointer in register pair
L.

Go get the string’s position in register B and the
string’s VARPTR in register pair DE.

Bump the value of the string’s position in register B.

Decrement the value of the string’s position in reg-
ister B.

Go to the Level I BASIC error routine and display a
FC ERROR message if the string’s position in
register B is equal to zero.

Save the value of the string’s position in register B
on the stack.

Load register E with the default string’s length.

Check to see if the character at the location of the
current BASIC program pointer in register Ais a).

Jump if the character at the location of the current
BASIC program pointer in register A is a).

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a comma.

Go evaluate the expression at the location of the

485

2ABOH - 2ABl1H

2AB2H

2AB3H

2AB4H - 2AB6H

2AB7H

2AB8BH

2AB9H

2ABAH - 2ABBH

2ABCH

2ABDH

Z2ABEH

2ABFH

2ACOH

2AC1H

2AC2H

2AC3H

2ACHH
486

current BASIC program pointer in register pair HL
and return with the integer result in register pair

VN

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a).

Get the value of the string’s position from the stack
and put it in register A.

Exchange the value of the current BASIC program
pointer In register pair HL with the value of the
string’s VARPTR on the stack.

Load register pair BC with the return address.

Save the return address in register pair BC on the
stack.

Decrement the value of the string’s position in reg-
ister A.

Compare the string’s length at the location of the
string’s VARPTR in register pair HL with the value
of the string’s position in register A.

Zero register B.

Return if the string’s position in register A is greater
than the string’s length at the location of the string’s
VARPTR in register pair HL.

koad register C with the string’s position in register
Load register A with the string’s length at the loca-
tion of the string’s VARPTR in register pair HL.

Subtract the value of the string’s position in register
C from the string’s length in register A.

Compare the new string’s length in register E with
the adjusted string’s length in register A.

Load register B with the adjusted string’s length in
register A.

Return if the new string’s length in register E is
greater than the string’s length in register A.

Load register B with the new string’s length in
register E.

Return.

2AC5H -~ 2ADEH LEVEL II BASIC VAL ROUTINE
2ACSH = 2AC7H Go get the string’s length in register A and the

2AC8H - 2ACAH

2ACBH

2ACCH

2ACDH

2ACEH

2ACFH

Z2ADOH

2AD1H

2ADZH

2AD3H

2AD4H

2ADS5H

2AD6H

2AD7H

2AD8BH
2ADBH

2ADCH

- 2ADAH

string’s VARPTR in register pair HL.

Jump if the string’s length in register A is equal to
zero.

Load register E with the string’s length at the loca-
tion of the string’s VARPTR in register pair HL.

Bum%the value of the string’s VARPTR in register
pair HL.

Load register A with the LSB of the string’s address
at the location of the string’s VARPTR in register
pair HL.

Bump the value of the string’s VARPTR in register
pair HL.

Load register H with the MSB of the string’s address
at the location of the string’s VARPTR in register
pair HL.

Load register L with the LSB of the string’s address
in register A.

Save the value of the string’s address in register pair
HL on the stack.

Add the string’s length in register pair DE to the
string’s address in register pair HL.

Load register B with the last character of the string
?; the location of the string pointer in register pair
L.

Save the zero in register D at the location of the
string pointer in register pair HL.

Exchange the string’s ending address in register pair
HL with the string’s address on the stack.

Save the last character of the string in register B on
the stack.

Load register A with the character at the location of
the string pointer in register pair HL.

Go convert the string from ASCII to binary.

Get the last character of the string from the stack and
put it in register B.

Get the string’s ending address from the stack and
put it in register pair HL.

487

2ADDH

2ADEH
2ADFH
2ADFH

2AEOQH

2AEZ2H
2AE3H
2AEM4H
2AE5H

2AE6H
2AE7H
2AE7H

2AESH

2AECH
2AEFH
2AEFH

2AFz2H
2AF5H
2AF8H
2AF8H

488

- 2AE6H

- ZAElH

- 2AEEH

- 2AE8H

= 2AEBH

- 2AEEH

= ZAF7H

- ZAFlH

-~ 2AF4H

- 2AF7H
- ZBOOH
= 2AFAH

Save the character in register B at the location of the
string pointer in register pair HL.

Return.
STRING ROUTINE

Load register pair HL with the value of the current
BASIC program pointer in register pair DE.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a).

Get the return address from the stack and put it in
register pair BC.

Get the number of bytes from the stack and put it in
register pair DE.

Save the return address in register pair BC on the
stack.

Iéoad register B with the number of bytes in register

Return.
DISK ROUTINE

Check to see if the character at the location of the
current BASIC program pointer in register A is
equal to 7AH.

Go to the Level I BASIC error routine and display a
SN ERROR message if the character at the location
of the current BASIC program pointer in register A
isn't equal to 7AH.

Jump to the DOS link at 41D9H.

LEVEL II BASIC INP ROUTINE

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
and return with the port number in register A.

Save the value of the port number in register A.
Go get the value from the port and return.
LEVEL II BASIC OUT ROUTINE

Go evaluate the expression at the location of the

current BASIC program pointer in register pair HL
and return with the port number saved in memory.

2AFBH

2AFEH

2BO1H
2BO1H

2B02H

2BO5SH

2BO6H
2BO9H

2BOAH
2BOBH

2BOCH

2BODH
2BOEH

2BOEH

2B11H
2B14H
2B17H
2B17H

2B19H
2B1BH
2B1BH

2AFDH

2BOOH

2BODH

2BO4H

2BO8H

2B16H
2B10H

2B13H
2B16H
2B1AH
2B18H

2B1AH
2B28H

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
and return with value to send to the port in register
A.

Go send the value in register A to the port and
return.

EVALUATE EXPRESSION ROUTINE

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Go evaluate the expression at the location of the

current BASIC program pointer in register pair HL
and return with the result in REG1.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Go convert the result in REG1 to an integer.

Load register pair DE with the integer result in
register pair HL.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Load register A with the MSB of the integer result in
register D.

Test the value of the MSB in register A.

Return.

EVALUATE EXPRESSION ROUTINE

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
and return with the 8-bit value in register A.

Save the 8-bit value in register A.

Save the 8-bit value in register A.

CHECK SYNTAX ROUTINE

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a comma.

Jump.

EVALUATE EXPRESSION ROUTINE

Go bump the value of the current BASIC program

489

2B1CH - 2BlEH

2B1FH - 2B21H

2B22H - 2B24H

2B25H
2B26H
2B27H
2B28H
2B29H

2B29H
2BZ2BH

2B2EH
2B2EH

2B2FH

2B32H

2B33H
2B36H

2B39H

2B3AH

2B3BH
490

2B2DH
2BZAH
2B2DH

2B74H

2B31H

2B35H
2B38H

pointer in register pair HL till it points to the next
character.

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
and return with the result in REG1.

Go convert the result in REG1 to an integer and
return with the integer result in register pair DE.

Go to the Level II BASIC error routine and display
;n FC ERROR message if the result is greater than
55.

Decrement the value of the current BASIC program
pointer in register pair HL.

Go bump the value of the current BASIC program
pointer in register pair HL until it points to the next
character.

Load register A with the 8-bit result in register E,
Return.

LEVEL II BASIC LLIST ROUTINE

Load register A with the printer output device code.

Save the value in register A as the current output
device flag.

LEVEL II BASIC LIST ROUTINE

Get the return address from the stack and put it in
register pair BC.

Go evaluate the range of line numbers given at the
location of the current BASIC program pointer in
register pair HL.

Save the address of the first BASIC line in register
pair BC on the stack.

Load register pair HL with a —1.

Save the value in register pair HL as the current
BASIC line number.

Get the address of the first BASIC line from the
stack and put it in register pair HL.

Get the value of the last BASIC line number from the
stack and put it in register pair DE.

Load register C with the LSB of the next BASIC line

2B3CH

2B3DH

2B3EH

2B3FH

2BL4OH

2B41H
2B4LH
2B47H

2BU4AH

2B4BH

2B4CH

2B4DH

2B4EH
2B4FH

2B50H

2B51H

2B52H

pointer at the location of the memory pointer in
register pair HL.

Bump the value of the memory pointer in register
pair HL.

Load register B with the MSB of the next BASIC line
pointer at the location of the memory pointer in
register pair HL.

Bump the value of the memory pointer in register
pair HL.

Load register A with the MSB of the next BASIC line
pointer in register B.

Combine the LSB of the next BASIC line pointer in
register C with the MSB of the next BASIC line
pointer in register A,

- 2BA43H Jump if this is the end of the BASIC program.

~ 2B46H
~ 2B49H

Go call the DOS link at 41DFH.

Go scan the keyboard to see if the BREAK key or the
shift @ key was pressed.

Save the address of the next BASIC line in register
pair BC on the stack.

Load register C with the LSB of the BASIC line
number at the location of the memory pointer in
register pair HL.

Bump the value of the memory pointer in register
pair HL.

Load register B with the MSB of the BASIC line
number at the location of the memory pointer in
register pair HL.

Bump the value of the memory pointer in register
pair HL.

Save the BASIC line number in register pair BC on
the stack.

Exchange the value of the memory pointer in regis-
ter pair HL with the value of the BASIC line number
on the stack.

Exchange the value of the BASIC line number in
register pair HL with the value of the last BASIC line
number in register pair DE.

Compare the BASIC line number in register pair DE
with the last BASIC line number in register pair HL.

491

2B53H

2BS4H

2B57H

2B58H
2B59H
2B5AH
2B5BH
2B5EH
2B61H
2B63H
2B64H

2B67H

2B6AH
2B6DH
2B70H

2B73H
2B75H
2B75H

2B76H

492

- 2B56H

- 2BSDH
- 2B60OH

- 2B62H

- 2B66H

- 2B69H

- 2B6CH
- 2B6FH
- 2B72H

- 2B74H
- 2B7DH

Get the value of the memory pointer from the stack
and put it in register pair BC.

Jump if the BASIC line number in register pair DE is

greater than the last BASIC line number in register
pair HL.

Exchange the value of the last BASIC line number in
register pair HL with the address of the next BASIC
line on the stack.

Save the address of the next BASIC line in register
pair HL on the stack.

Save the memory pointer in register pair BC on the
stack.

Load register pair HL with the BASIC line number in
register pair DE.

Save the BASIC line number in register pair HL.
Go convert the BASIC line number in register pair
HL to an ASCII string and send the string to the
current output device.

Load register A with a space.

Get the value of the memory pointer from the stack
and put it in register pair HL.

Go send the space in register A to the current output
device.

Go move the BASIC line at the location of the mem-
ory pointer in register pair HL into the input buffer
and untokenize the BASIC line.

Load register pair HL with the starting address of
the input buffer.

Go send the BASIC line in the input buffer to the
current output device.

Go send a carriage return to the current output
device.

Loop till the listing is complete.
DISPLAY MESSAGE ROUTINE

Load register A with the character at the location of
the memory pointer in register pair HL.

Check to see if the character in register Ais anend of
the string character.

2B77H
2B78H
2B7BH
2B7CH

2B7EH
2B7EH

2B7FH
2B82H
2B83H
2BBLH
2B85H

2B87H
2B89H

2B8AH
2B8BH

2B8CH

2B8DH
2B8EH
2B8FH

2B90OH

2B7AH

2B7DH

- 2BC5H

2B81H

- 2B8B6H

Return if the character in register A is an end of the
string character.

Go send the character in register A to the current
output device.

Bump the value of the memory pointer in register
pair HL.

Loop till all of the characters have been sent to the
current output device.

UNTOKENIZE ROUTINE

Save the BASIC line pointer in register pair HL on
the stack.

Load register pair HL with the starting address of
the input buffer.

Load register B with the MSB of the input buffer
pointer in register H.

Load register C with the LSB of the input buffer
pointer 1n register L.

Get the value of the BASIC line pointer from the
stack and put it in register pair HL.

Load register D with the maximum length of an
untokenized line.

- 2B88H Jump.

Bump the value of the input buffer pointer in register
pair BC.

Decrement the character count in register D.

Return if 255 characters have been moved into the
input buffer.

Load register A with the character at the location of
the BASIC line pointer in register pair HL.

Check to see if the character in register A is an end of
the BASIC line character.

Bump the value of the BASIC line pointer in register
pair HL.

Save the cheracter in register A at the location of the
input buffer pointer in register pair BC.

Return if the character in register A is an end of the
BASIC line character.

493

2B91H - 2B93H Jump if the character in register A isn’t a BASIC

2BO4H - 2B95H

2B96H - 2B97H

2B98H
2B99H
2B9AH
2B9BH
2B9CH
2B9DH
2B9EH
2B9FH
2BAOH
2BAZH
2BASH

2BA8H
2BA9H

2BACH

2BADH
2BAEH

2BAFH

494

2BAlH

2BA4H

2BA7H

2BABH

2BB1H

token.

Check to see if the character in register A is a
token.

Jump if the character in register A isn't a * token.

Decrement the value of the input buffer pointer in
register pair BC.

Decrement the value of the input buffer pointer in
register pair BC.

Decrement the value of the input buffer pointer in
register pair BC.

Decrement the value of the input buffer pointer in
register pair BC.

gump the value of the character counter in register
1]%ump the value of the character counter in register
II§ump the value of the character counter in register
I}?Sump the value of the character counter in register
Check to see if the character in register A is an

ELSE token.

Go decrement the value of the input buffer pointer if
the character in register A is an ELSE token.

Save the value of the BASIC line pointer in register
pair HL on the stack.

Load register E with the character in register A.

Load register pair HL with the starting address of
the reserved words list.

Load register A with the character at the location of
the reserved words list pointer in register pair HL.

Test the value of the character in register A.

Bump the value of the reserved words list pointer in
register pair HL.

Jump if the character at the location of the reserved
words pointer in register A doesn’t have bit 7 set.

2BB2H
2BB3H
2BB5SH
2BB7H

2BB8H

2BBYH

2BBAH

2BBDH

2BBEH

2BBFH
2BCOH
2BC3H

2BCU4H
2BC6H
2BC6H

2BC9H

2BCAH
2BCBH

2BCCH
2BCFH

2BD1H

2BD2H

2BB4H
2BB6H

2BBCH

2BC2H

2BCSH
2BF4H
2BC8H

2BCEH
2BDOH

Decrement the value of the token in register E.
Jump if this isn't the reserved word for the token.
Reset bit 7 of the character in register A.

Save the character in register A at the location of the
input buffer pointer in register pair BC.

Bump the value of the input buffer pointer in register
pair BC.

Decrement the value of the character counter in
register D.

Jump if the maximum number of characters have
been put into the input buffer.

Load register A with the character at the location of
the reserved words pointer in register pair HL.

Bump the reserved words pointer in register pair
HL.

Test the value of the character in register A.
Jump if bit 7 of the character in register A isn't set.

Get the value of the BASIC line pointer from the
stack and put it in register pair HL.

Jump.
LEVEL II BASIC DELETE ROUTINE

Go evaluate the line numbers at the location of the
current BASIC program pointer in register pair HL.

Get the value of the last BASIC line number to be
deleted from the stack and put it in register pair DE.

Save the address of the first BASIC line to be de-
leted in register pair BC on the stack.

Save the address of the first BASIC line to be de-
leted in register pair BC on the stack.

Go get the address of the last line to be deleted.

Jump if the last line to be deleted can’t be found in the
BASIC program.

Load register D with the MSB of the last BASIC
line’s address in register H.

Load register E with the LSB of the last BASIC
line’s address in register L.

495

2BD3H

2BD4H

2BD5H

2BD6H - 2BD8H

2BD9H - 2ZBDBH

2BDCH - 2BDEH

2BDFH

2BEOH
2BE3H

2BEZH

2BE4H

2BESH - Z2BE7H
2BEBH
2BEGH
2BEAH

2BEBH

2BECH

2BEDH - 2BEEH

496

Exchange the last BASIC line’s address in register
pair HL with the first BASIC line’s address on the
stack.

Save the first BASIC line’s address in register pair
HL on the stack.

Check to see if the first BASIC line’s address in
register pair HL is greater than or equal to the last
BASIC line'’s address in register pair DE.

Jump to the Level I BASIC error routine and display
a FC ERROR message if the first BASIC lines ad-
dress in register pair HL is greater than or equal to
the last Basic line’s address in register pairqDE.

Load register pair HL with the starting address of
the BASIC READY message.

Go display the BASIC READY message.

Get the first BASIC line’s address from the stack and
put it in register pair BC.

Load register pair HL with the return address.

Exchange the value of the return address in register
pair HL with the value of the last BASIC line's
address on the stack.

Load register pair DE with the last BASIC line’s
address in register pair HL.

Load register pair HL with the end of the BASIC
program pointer.

Load register A with the character at the location of
the memory pointer in register pair DE.

Save the character in register A at the location of the
memory pointer in register pair BC.

Bump the value of the memory pointer in register
pair BC,

Bump the value of the memory pointer in register
pair DE.

Check to see if the memory pointer in register pair
DE equals the end of the BASIC program pointer in
register pair HL.

Loop till the memory pointer in register pair DE
equals the end of the BASIC program pointer in
register pair HL.

2BEFH
2BFOH
2BF1H

2BF4H
2BF5H
2BF5H

2BF8H

2BFBH

2BFCH

2BFFH
2CO1H

2C04H

2CO7H

2C08H
2COBH
2COEH
2COFH
2C12H

2C13H

2BF3H

2C1lEH
2BF7H

2BFAH

2BFEH

2CO00H
2C03H

2C06H

2C0AH

2CODH

2Cl1H

Load register H with the MSB of the memory
pointer in register B.

Load register L with the LSB of the memory pointer
in register C.

Save the value in register pair HL as the new end of
the BASIC program pointer.

Return.
LEVEL II BASIC CSAVE ROUTINE

Go write the leader and the sync byte on the cassette
recorder.

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
and return with the result in REG1.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Go get the starting address of the filename in regis-
ter pair DE.

Load register A with the filename header byte.

Go write the filename header byte in register A on
the cassette recorder.

Go write the filename header byte in register A
twice more.

Load register A with the first character of the
filename at the location of the filename pointer in
register pair DE.

Go write the filename in register A on the cassette
recorder.

Load register pair HL with the start of the BASIC
program pointer.

Load register pair DE with the start of the BASIC
program pointer in register pair HL.

Load register pair HL with the end of the BASIC
program pointer.

Load register A with the character at the location of
the memory pointer in register pair DE.

Bump the value of the memory pointer in register
pair DE.

497

2C14H

2C17H

2C18H

2ClAH
2C1DH

2ClEH
2C1FH
2C1FH
2C22H
2C23H

2C25H

2C27H
2C29H
2C2AH
2C2BH

2C2CH

2C2DH

2C2EH = 2C2FH

2C16H

2C19H

2C1CH

2CA4H
2C21H

2C24H

2C26H

2C30H - 2C31H

498

Go write the character in register A on the cassette
recorder.

Check to see if the memory pointer in register pair
DE is equal to the end of the BASIC program pointer
in register pair HL.

Loop till the memory pointer in register pair DE is
equal to the end of the BASIC program pointer in
register pair HL.

Go turn the cassette recorder off.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Return.

LEVEL II BASIC CLOAD ROUTINE

Go turn on the cassette recorder.

Load register A with the character at the location of
;_lllﬁcurrent BASIC program pointer in register pair

Check to see if the character at the location of the
current BASIC program pointer in register Aisa?.

Jump if the character at the location of the current
BASIC program pointer in register A is a 2.

Zero register A.

Load register A with a —1 for CLOAD?.

Bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character if CLOAD?.

Savek the CLOAD/CLOAD? flag in register A on the
stack.

Decrement the value of the current BASIC program
pointer in register pair HL.

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Zero register A.
Jump if the character at the location of the current

BASIC program pointer in register pair HL is an end
of the BASIC statement character.

2C32H = 2C34H Go evaluate the expression at the location of the

2C35H = 2C37H

2C38H
2C39H
2C3AH
2C3BH
2C3CH
2C3DH

2C4OH
2C43H

2C46H

2C47H
2C49H
2C4CH
2CHEH
2C50H
2C52H

2C55H
2C56H
2C57H

2C3FH

2C42H
2C45H

2C48H
2CH4BH
2C4DH
2C4FH
2C51H

2C54H

2C58H

current BASIC program pointer in register pair HL
and return with the result in REG1.

Go get the filename’s address in register pair DE.
Load register A with the first character of the
filename at the location of the filename pointer in
register pair DE.

Load register L with the filename in register A.

Get the value of the CLOAD/CLOAD? flag from the
stack and put it in register A.

Test the value of the CLOAD/CLOAD? flag in
register A.

Load register H with the value of the CLOAD/
CLOAD? flag in register A.

Save the value of the CLOAD/CLOADS? flag and the
filename in register pair HL in REG1.

Go reinitialize the BASIC pointers if CLOAD.

Load register pair HL with the CLOAD/CLOAD?
flag and the filename in REG1.

Load register pair DE with the CLOAD/CLOAD?
flag and the filename in register pair HL.

Load register B with the number of bytes for the
filename header.

Go read a byte from the cassette recorder and return
with it in register A.

Check to see if the character in register A is a
filename header byte.

Loop if the character in register A isn’t a filename
header byte.

Lo%p till three filename header bytes have been
read.

Gp read a byte from the cassette recorder and return
with it in register A.

Bump the value of the filename in register E.
Decrement the value of the filename in register E.

Jump if no filename was specified.

499

2C5%H
2C5AH
2C5CH
2C5FH
2C61H
2C64H
2C65H
2C66H

2C67H
2C69H

2C6AH
2C6DH

2C6EH
2C6FH

2C70H
2C72H
2C75H

2C77H
2C7AH

2C7DH
2C80H

500

2CS5BH
2C5EH
2C60H

2C63H

2C68H

2C6CH

2C71H
2C74H
2C76H

2C79H
2C7CH

2C7FH
2C82H

Compare the filename specified in register E with
the character in register A.

Jump if the filename specified in register E doesn’t
match the character in register A.

Load register pair HL with the start of the BASIC
program pointer.

Load register B with the number of zeros to look for
to stop the load.

Go read a byte from the cassette recorder and return
with it in register A,

Load register E with the character in register A.
Compare the character in register A with the
character at the location of the memory pointer in
register pair HL.

Combine the result in register A with the value of
the CLOAD/CLOAD? flag in register D.

Jump if CLOAD? and the bytes don't match.

Save the character in register E at the location of the
memory pointer in register pair HL.

Go check for an OM ERROR.

Load register A with the character at the location of
the memory pointer in register pair HL.

Check to see if the byte just read in register A is
equal to zero.

Bump the value of the memory pointer in register
pair HL.

Loop if the byte in register A isn't equal to zero.
Go blink the asterisk on the video display.

Loop till three zeros in a row have been read from
the cassette recorder.

Save the value of the memory pointer in register pair
HL as the new end of the BASIC program pointer.

Load register pair HL with the starting address of
the BASIC READY message.

Go display the BASIC READY message.

Go turn off the cassette recorder.

2C83H
2C86H

2C87H
2C8AH

2C8DH
2C90H
2C93H
2C96H

2C98H

2C9BH
2C9CH
2C9EH
2CAOH
2CA3H
2CAS5H
2CA5H

2CAAH
2CAAH

2CADH

2CAEH

2CB1H
2CB1lH

2C85H

2C89H
2C8CH

2C8FH

Load register pair HL with the start of the BASIC
program pointer,

Save the start of the BASIC program pointer in
register pair HL on the stack.

Jump.

Load register pair HL with the starting address of
the BAD message,

Go display the BAD message.

2C92H Jump.

2C95H
2C97H

2C9AH

Go display the filename on the video display.

Load register B with the number of zeros to be found
to stop the search.

Go read a byte from the cassette recorder and return
with it in register A.

Check to see if the character in register A is equal to
zero,

2C9DH Loop if the character in register A isn’t equal to zero.

2C9FH

2CAZH

2CALH
2CA9H
2CAGH
2CBOH
2CACH

2CBOH

2CBCH
2CB3H

Loop till three zeros in a row have been read from
the cassette recorder.

Go read the leader and the sync byte on the cassette
recorder,

Jump.

MESSAGE STORAGE LOCATION
The BAD message is stored here.
LEVEL II BASIC PEEK ROUTINE

Go convert the current result in REGI to an integer
and return with it in register pair HL.

Load register A with the value at the location of the
memory pointer in register pair HL.

Go save the 8-bit value in register A as the current
result in REG1.

LEVEL II BASIC POKE ROUTINE
Go evaluate the expression at the location of the

current BASIC program pointer in register pair HL
zli)nd return with the integer result in register pair
E.

501

2CBU4H

2CB5H

2CB7H

2CBAH

2CBBH
2CBCH
2CBDH
2CBDH

2CCOH

2CC3H

2CC5H

2CC6H

2CC9H
2CCBH

2CCEH

2CCFH

2CD1H

2CD2H

2CD3H

502

- 2CB6H

- 2CBYH

- 2E52H
- 2CBFH

- 2CC2H

- 2CCh4H

- 2CC8H

- 2CCAH
- 2CCDH

- 2CDOH

Save the value of the memory pointer in register pair
DE on the stack.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a comma.

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
and return with the 8-bit value in register A.

Get the value of the memory pointer from the stack
and put it in register pair DE.

Save the value in register A at the location of the
memory pointer in register pair DE.

Return.
LEVEL II BASIC USING ROUTINE

Go evaluate the string expression at the location of
the current BASIC program pointer in register pair

Go make sure the expression that was just evaluated
was a string.

Go check the syntax. The character at the location of
the current BASIC program pointer in register pair
HL must be a semicolon.

Load register pair DE with the value of the current
BASIC program pointer in register pair HL.

Il;%zig register pair HL with the USING string’s VAR-

Jump.
;l,oad register A with the value of the READ/INPUT
ag.

Check to see if the READ/INPUT flag in register A
indicates INPUT.

Jump if the READ/INPUT flag in register A indi-
cates INPUT.

Get the value of the current BASIC program l;‘Sointer
from the stack and put it in register pair DE.

Load register pair HL with the value of the current
BASIC program pointer in register pair DE.

Save the USING string’s VARPTR in register pair
HL on the stack.

2CD4H

2CD5H - 2CD7H

2CD8H

2CDYH
2CDAH
2CDBH

2CDCH

2CDDH

2CEOH

2CE1H

2CE2H

2CE3H

2CE4H

2CE5H
2CE7H

2CE8H

2CE9H

2CEBH

2CECH

- 2CDFH

- 2CE6H

- 2CEAH

Zero register A.

fSave the value in register A as the READ/INPUT
lag.

Check to see if the value in register pair DE is equal
to zero.

Save the value in register pair AF on the stack.
Save the value in register pair DE on the stack.

Load register B with the USING string’s length at
the location of the USING string’s VARPTR in reg-
ister pair HL.

Check to see if the USING string’s length in register
B is equal to zero.

Go to the Level II BASIC error routine and display a
FC ERROR message if the USING string’s length in
register B is equal to zero.

Bump the value of the USING string’s VARPTR in
register pair HL.

Load register C with the LSB of the USING string’s
address at the location of the USING string’s
VARPTR in register pair HL.

Bump the value of the USING string’s VARPTR in
register pair HL.

Load register H with the MSB of the USING string’s
address at the location of the USING string’s
VARPTR in register pair HL.

Load register L with the LSB of the USING string’s
address in register C.

Jump.

Load register E with the USING string’s length in
register B.

Save the value of the current USING string pointer
in register pair HL.

Load register C with the number of %'s substring
length.

Load register A with the character at the location of
the USING string pointer in register pair HL.

Bump the value of the USING string pointer in
register pair HL.

503

2CEDH
2CEFH
2CF2H
2CF4H
2CF6H
2CF7H
2CF9H

2CFAH

2CFBH
2CFDH

2DOOH
2DO3H
2DO4H
2DOSH
2DO6H
2DO9H
2DOAH

2DOBH

2DOCH
2DOEH

2D11H
2D13H
2D15H

2D16H
2D19H
2D1BH
2D1DH

504

2CEEH
2CF1H
2CF3H
2CF5H

2CF8H

2CFCH
2CFFH

2D0ZH

2DO8H

2DODH
2D10H

2D1ZzH
2D14H

2D18H
2D1AH
2D1CH
2D1EH

Check to see if the character in register A is a %.
Jump if the character in register A is a %.

Check to see if the character in register A is a space.
Jump if the character in register A isn’t a space.
Bump the % substring length in register C.
Decrement the USING string's length in register B,

Get the value of the USING strinﬁ fointer from the
stack and put it in register pair HL.

Load register B with the USING string’s length.

Load register A with a %.
Go print a + if necessary.

Go print the character in register A.

Zero register A.

Load register E with the value in register A,
Load register D with the value in register A,
Go print a + if necessary.

Load register D with the value in register A.

Load register A with the character at the location of
the USING string pointer in register pair HL.

Bump the value of the USING string pointer in
register pair HL.

Check to see if the character in register A is a!.
Jump if the character in register Ais a!.

Check to see if the character in register A is a #.
Jump if the character in register A is a #.

Decrement the value of the string’s length in regis-
ter B.

Jump if this is the end of the USING string.
Check to see if the character in register A is a +.
Set the leading + flag in register A.

Jump if the character in register A was a +.

2D1FH

2D20H

2D21H
2D22H

2D24H
2D26H

2D28H
2D2AH

2D2BH

2D2DH
2D2FH
2D31H
2D33H
2D35H

2D36H
2D38H
2D39H
2D3BH

2D3CH
2D3EH
2D40H
2D42H

2D23H

2D25H
2D27H
2D29H

2D2CH
2D2EH
2D30H

2D32H
2D34H

2D37H

2D3AH

Decrement the value of the USING string pointer in
register pair HL.

Load register A with the character at the location of
the USING string pointer in register pair HL.

Bump the value of the USING string pointer in reg-
ister pair HL.

Check to see if the character in register A is a
decimal point,

Jump if the character in register A is a decimal point.
Check to see if the character in register A is a %.

Jump if the character in register A is a %.

Compare the character in register A with the
character at the location of the USING string pointer
In register pair HL.

Jump if the character in register A isn’t equal to the
character at the location of the USING string pointer
i register pair HL,

Check to see if the character in register A is a $.
Jump if the character in register A is a $.

Check to see if the character in register A is a =,

Jump if the character in register A isn’t a =.

Load register A with the USING string’s length in
register B.

Check to see if the USING string’s length in register
A is at least two.

Bump the value of the USING string pointer in
register pair HL.

Jump if the USING string’s length in register A isn’t
at least two.

Load register A with the character at the location of
the USING string pointer in register pair HL.

2D3DH Check to see if the character in register Ais a $.
2D3FH Set the #+ edit flag in register A.

2D41H Jump if the character in register A isn't a $.

Decrement the value of the USING string’s length in
register B,

505

2D43H
2D46H
2D48H
2D49H
2D4AH
2D4BH
2DU4CH
2D4DH
2DUFH

2D50H
2D52H

2D53H
2D54H

2D56H
2D58H
2D5AH
2D5CH

2D5EH
2D60H

2D61H
2D63H

506

~ 2DMT7H

~ Z2DM4EH

- 2D51H

- 2D55H

- 2D57H
- 2D59H

- 2D5BH

- 2D5DH

- 2D5FH

- 2D62H

Bump the number of characters to the left of the
decimal point in register E.

Mask the value of the edit flag in register A for
leading §'s.

Bump the value of the USING string pointer in reg-
ister pair HL.

Bump the number of characters to the left of the
decimal point in register E.

Combine the value of the edit flag in register D with
the value of the edit flag in register A.

Load register D with the value of the edit flag in
register A.

Bump the number of characters to the left of the
decimal point in register E.

Zero the number of characters to the right of the
decimal point in register C.

Decrement the value of the string’s length in regis-
ter B.

Jump if this is the end of the string.

Load register A with the character at the location of
the USING string pointer in register pair HL.

Bump the value of the USING string pointer in reg-
ister pair HL.

Check to see if the character in register A is a
decimal point.

Jump if the character in register A is adecimal point.
Check to see if the character in register A is a #.
Jump if the character in register A is a #.

Check to see if the character in register A is a
comma.

Jump if the character in register A isn’t a comma.

Load register A with the value of the edit flag in
register D.

Mask the edit flag in register A for commas.

Load register D with the value of the edit flag in
register A.

2D64H
2D66H

2D67H
2D69H
2D6BH
2D6DH

2D6FH

2D70H
2D71H

2D72H
2D74H

2D75H

2D76H
2D78H
2D7AH

2D7BH
2D7EH
2D7FH
2D80H
2D81H
2D83H

2D84H

2D65H

2D68H
2D6AH
2D6CH
2D6EH

2D73H

2D77H

2D79H

2D7DH

2D82H

Jump.

Load register A with the character at the location of
the USING string pointer in register pair HL.

Check to see if the character in register A is a #.
Load register A with a decimal point.
Jump if the character in register A wasn’t a #.

Load register C with the number of characters to the
right of the decimal point.

Bump the value of the USING string pointer in reg-
ister pair HL.

Bump the number of characters to the right of the
decimal point in register C.

Decrement the value of the string’s length in regis-
ter B.

Jump if this is the end of the string.

Load register A with the character at the location of
the USING string pointer in register pair HL.

Bump the value of the USING string pointer in reg-
ister pair HL.

Check to see if the character in register A is a #.
Jump if the character in register A is a #.

Save the value of the edit flag and the count of the
characters to the left of the decimal point in register
pair DE on the stack.

Load register pair DE with the return address.

Save the value of the return address in register pair
DE on the stack.

Load register D with the MSB of the USING string
pointer in register H.

Load register E with the LSB of the USING string
pointer in register L.

Check to see if the character in register A is an up
arrow.

Return if the character in register A isn’t an up
arrow.

Check to see if the character at the location of the
507

2D85H

2D86H

2D87H

2D88H

2D89H

2D8AH

2D8BH
2D8CH
2D8DH

2D8EH
2D90H

2D91H
2D92H
2D93H

2D94H
2D95H

2D97H

2D98H

508

- 2D8FH

USING string pointer in register pair HL is an up
arrow.

Return if the character at the location of the USING
string pointer in register pair HL isn’t an up arrow.

Bump the value of the USING string pointer in reg-
ister pair HL.

Check to see if there is a third up arrow at the
location of the USING string pointer in register pair

Return if the character at the location of the USING
string pointer in register pair HL isn’t an up arrow.

Bump the value of the USING string pointer in reg-
ister pair HL.

Check to see if the character at the location of the
USING string pointer in register pair HL is a fourth
up arrow. :

Return if the character at the location of the USING
string pointer in register pair HL isn’t an up arrow.

Bump the value of the USING string pointer in reg-
ister pair HL.

Load register A with the value of the USING string’s
length in register B.

Check to see if this is the end of the USING string.

Returnif there isn't at least four characters left in the
USING string.

Clean up the stack.

Get the edit flag and the count of the characters to
the left of the decimal point from the stack and put it
in register pair DE.

Load register B with the USING string’s length in
register A

Set the exponential notation flag in register D.

Bump the value of the USING string pointer in reg-
ister pair HL.

Load register pair HL with the value of the USING
string pointer in register pair DE.

Get the edit flag and the count of the characters to
the left of the decimal point from the stack and put it
in register pair DE.

2D99H

2D9AH

2D9BH

2D9CH
2D9EH
2DAOH

2DA1H

2DAZH
2DA3H
2DASH

2DA6H
2DABH
2DAAH
2DACH

2DAEH
2DBOH

2DBZ2H

2DB3H

2DB4H

2DB5SH

2DB6H

2DB7H
2DB9H

= 2D9DH
- 2D9FH

- 2DA4H

- 2ZDA7H

- 2DA9H
- 2DABH
- 2Z2DADH

- 2DAFH

- 2DB1lH

- 2DB8H

Load register A with the value of the edit flag in
register D.

Decrement the value of the USING string pointer in
register pair HL.

Bump the number of characters to the left of the
decimal point in register E.

Check to see if the sign flag is set in register A.

Jump if the sign flag has already been processed.

Decrement the number of characters to the left of
the decimal point in register E.

Load register A with the USING string’s length in
register B.

Check to see if this is the end of the string.
Jump if this is the end of the string.

Load register A with the character at the location of
the USING string pointer in register pair HL.

Check to see if the character in register A is a —.
Jump if the character in register A is a .

Check to see if the character in register A is a +.
Jump if the character in register A isn't a +.

Set the edit flag for a + character.
Set the edit flag for a — character.

Combine the value of the edit flag in register D with
the value of the edit flag in register A.

Load register D with the value of the edit flag in
register A.

Decrement the value of the USING string’s length in
register B.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Load register A with the character at the location of
glf current BASIC program pointer in register pair
Jump if this is the end of the BASIC statement.

Save the count of the characters to the right of the
509

ZDBAH

2DBBH

2DBEH

2DBFH

2DCOH

2DC1lH

2DCZH

2DC3H

2DC4H

2DC5H

2DC7H

2DCAH

2DCBH
2DCDH
2DDOH
2DD3H

2DD4H

510

-~ 2DBDH

- 2DC6H

- 2DCY9H

- 2DCCH
- 2DCFH
- 2DDZH

decimal point and the USING string’s length in reg-
ister pair BC on the stack.

Save the edit flag and the number of characters to the
left of the decimal point in register pair DE on the
stack.

Go evaluate the expression at the location of the
current BASIC program pointer and return with the
result in REGL.

Get the edit flag and the number of characters to the
left of the decimal point from the stack and put it in
register pair DE.

Get the number of characters to the right of the
decimal point and the USING string’s length from
the stack and put it in register pair BC.

Save the number of characters to the right of the
decimal point and the USING string’s length 1n reg-
ister pair BC on the stack.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Load register B with the number of characters to the
left of the decimal point in register E.

Load register A with the number of characters to the
left of the decimal point in register B.

Add the number of characters to the right of the

decimal point in register C to the number of charac-
ters to the left of the decimal point in register A.

Check to see if the total number of characters in
register A is greater than 24.

Go to the Level I1 BASIC error routine and display a
FC ERROR message if the total number of charac-
ters in register A is greater than 24.

Load register A with the value of the edit flag in
register D.

Set the edit flag in register A.
Go convert the result in REG1 to an ASCII string.
Go display the ASCII string.

Get the value of the current BASIC program Eointer
from the stack and put it in register pair HL.

Decrement the value of the current BASIC program
pointer in register pair HL.

2DD5H

2DD6H
2DD7H

2DD9H

2DDCH

2DDEH

2DEOH

2DEZH

2DESH

2DE6H

2DE7H

2DESH

2DEGH

2DEAH
2DEBH

2DECH

2DEDH

2DD8H

2DDBH

2DDDH

2DDFH

2DE1H

2DE4H

Go bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Set the Carry flag.

Jump if the character at the location of the current
BASIC program pointer in register A is an end of the
BASIC statement character.

Save the character at the location of the current
BASIC program pointer in register A.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
semicolon.

Jump if the character at the location of the current
BASIC program pointer in register A is a semicolon.

Check to see if the character at the location of the
current BASIC program pointer in register A is a
comma.

Go to the Level II BASIC error routine and display
an SN ERROR message if the character at the loca-
tion of the current BASIC program pointer in regis-
ter A isn’t a comma.

Bump the value of the current BASIC program
pointer in register pair HL till it points to the next
character.

Get the USING string’s length from the stack and put
it in register B.

Load register pair DE with the value of the current
BASIC program pointer in register pair HL.

Get the USING string’s VARPTR from the stack and
put it in register pair HL.

Save the USING string’s VARPTR in register pair
HL on the stack.

Save the character at the location of the current
BASIC program pointer in register A on the stack.

Save the value of the current BASIC program
pointer in register pair DE on the stack.

Load register A with the USING string’s length at

the location of the USING string's VARPTR in
register pair HL.

Compare the USING string’s length in register B
with the USING string’s length in register A.

511

2DEEH

2DEFH

2DFOH

2DF1H

2DF2H

2DF3H
2DF5H

2DF6H

2DF7H

2DF8H
2DF9H
2DFCH
2DFEH
2EO1H

2EO4H

2EO5H

2E06H

2EO09H

2EOCH

2EODH

512

- 2DF4H

= 2DFBH
- 2DFDH
- 2EOOQH
- 2EO3H

- 2EO8H
-~ 2EOBH

- 2EOFH

Bump the value of the USING string’s VARPTR in
register pair HL.

Load register C with the LSB of the USING string’s
address at the location of the USING string's
VARPTR in register pair HL.

Bump the value of the USING string's VARPTR in
register pair HL.

Load register H with the MSB of the USING string’s
address at the location of the USING string’s
VARPTR in register pair HL.

Load register L with the LSB of the USING string’s
address in register C.

Zero register D.

Load register E with the USING string’s offset in
register A.

Add the USING string’s offset in register pair DE to
the USING string’s address in register pair HL.

Load register A with the USING string’s length in
register B.

Check to see if this is the end of the USING string.
Jump if this isn’t the end of the USING string.
Jump if this is the end of the USING string.

Go print a + if necessary.

Go send the character in register A to the current
output device.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Get the character at the location of the current
BASIC program pointer from the stack and put it in
register A.

Jump if this isn’t the end of the BASIC statement.

Go send a carriage return to the current output
device if necessary.

Exchange the value of the current BASIC program
pointer in register pair HL with the value of the
USING string’s VARPTR on the stack.

SOE get the USING string’s address in register pair

2E10H

2E11H
2E14H

2E17H
2E18H

2E19H
2E1CH

2E1DH

2E1EH

2E20H

2E21H

2E24H
2E27H

2E28H

2E29H

2E2AH

2EZ2DH

2E2EH
2E30H

-~ 2E13H
2E15H

- 2E1BH

2E1FH

2E23H

- 2E26H

- 2E2CH

- 2E2FH

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Return.

Load register C with the number of characters to be
printed.

Clean up the stack.

Decrement the value of the string’s length in regis-
ter B.

Go print a + if necessary.

Get the value of the current BASIC program pointer
from the stack and put it in register pair HL.

Get the character at the location of the current
BASIC program pointer from the stack and put it in
register A.

Jump if the character at the location of the current
BASIC program pointer in register A is an end of the
BASIC statement character.

Save the USING string’s length and the number of
characters to be printed in register pair BC on the
stack.

Go evaluate the expression at the location of the
current BASIC program pointer in register pair HL
and return with the result in REG1.

Go make sure the current result in REG1 is a string.

Get the USING string’s length and the number of
characters to be printed from the stack and put it in
register pair BC.

Save the USING string’s length and the number of
characters to be printed in register pair BC on the
stack.

Save the value of the current BASIC program
pointer in register pair HL on the stack.

Load register pair HL with the string’'s VARPTR in
REGI.

Load register B with the number of characters to be
printed in register C.

Zero register C.

Save the length of the string to be printed in register
B on the stack.

513

2E31H ~ 2E33H Go evaluate the string to be printed.

2E34H - 2E36H Go send the string to the current output device.
2E37H - 2E39H Iﬁoag register pair HL with the string’s VARPTR in
EGI.

2E3AH

2E3BH

2E3CH

2E3DH
2E3FH
2E40H
2E41H
2E44H
2E47H
2E49H
2E4AH
2E4BH
2E4CH
2E4EH

2ES51H
2E52H
2E53H
2E53H
2E56H
2E59H

2E5AH

514

2E3EH

2E46H

Get the length of the string to be printed from the
stack and put it in register A.

Subtract the string’s length at the location of the
string’s VARPTR in register pair HL from the length
of the string to be printed in register A.

Load register B with the number of spaces to be
printed in register A.

Load register A with a space.
Bump the number of spaces in register B.

Decrement the number of spaces in register B.

2E43H Jump if all of the spaces have been printed.

Go send a space to the current output device.

- 2E48H Jump.

2E4DH
2E50H

- 2FFAH

Save the value in register A on the stack.
Load register A with the value in register D.
Check to see if register A is equal to zero.
Load register A with a +.

Go send a + to the current output device if register
D is equal to zero.

Get the value from the stack and put it inregister A.
Retumn.
LEVEL II BASIC EDIT ROUTINE

-~ 2E55H Reset the error flag.

- 2E58H

Load register pair HL with the error line number.

Load register A with the MSB of the error line
number in register H,

Combine the LSB of the error line number in regis-
ter L with the MSB of the error line number in
register A.

2BSBH
2E5CH

2E5DH
2ESEH
2E60H

2E63H

2E64H
2E65H

2E66H
2E69H

2E6AH

2E6DH

2E70H
2E71H
2E72H
2E73H

2E74H

2E75H

2E76H

2ES5FH
2E62H

2E68H

2E6CH

2E6FH

Bump the combined value of the error line number in
register A.

Load register pair DE with the error line number in
register pair HL.

Return if Level II BASIC is in the command mode.

Jump.

Go evaluate the line number at the location of the
current BASIC program pointer in register pair HL
and return with it in register pair DE.

Return if there wasn’t a line number.

Clean up the stack.

Load register pair HL with the line number to be
edited in register pair DE.

Save the value of the line number to be edited in
register pair HL.

Load register pair DE with the line number to be
edited in register pair HL.

Go find the address of the BASIC line number in
gegister pair DE and return with it in register pair

Go to the Level II BASIC error routine and display
an UL ERROR message if the BASIC line number
doesn’t exist.

Load register H with the MSB of the memory
pointer in register B.

Load register L with the LSB of the memory pointer
in register C,

Bump the value of the memory pointer in register
pair HL.

Bump the value of the memory pointer in register
pair HL.

Load register C with the LSB of the BASIC line
number at the location of the memory pointer in
register pair HL.

Bump the value of the memory pointer in register
pair HL.

Load register B with the MSB of the BASIC line
number at the location of the memory pointer in
register pair HL.

515

2E77H
2E78H
2E79H

2E7CH

2E7DH
2E7EH
2E81H

2E83H
2E86H

2EB9H

2E8BH
2E8EH

2E8FH

2E91H

2E9ZH
2E93H
2E94H

2E95H
2E97H

2E98H
2E99H
516

- 2E7BH

- 2E80H
- 2E82H

- 2E85H
- 2E88H

- 2E8AH

- 2E8DH

- 2E9OH

- 2E96H

- 2E9AH

Bump the value of the memory pointer in register
pair HL.

Save the value of the BASIC line number in register
pair BC on the stack.

Go move the BASIC line into the input buffer and
expand it.

Get the value of the BASIC line number from the
stack and put it in register pair HL.

Save the value of the BASIC line number in register
pair HL on the stack.

Go convert the BASIC line number in register pair
HL to an ASCII string and display it on the video
display.

Load register A with a space.

Go display the space in register A.

Load register pair HL with the starting address of
the input buffer.

Load register A with the turn on the cursor charac-
ter.

Go turn on the cursor.

Save the value of the input buffer pointer in register
pair HL on the stack.

Load register C with the number of characters ex-
amined so far.

Bump the number of characters examined so far in
register C.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Check to see if the character in register A is an end of
the BASIC line character.

Bump the value of the input buffer pointer in register
pair HL.

Loop till the end of the BASIC line has been found.

Get the value of the input buffer pointer from the
stack and put it in register pair HL.

Zero register B.

Zero register D.

2E9BH
2D9EH

2EAOH
2EAZH

2EA4H
2EA6H

2EA7H
2EA8H
2EA9H
2EAAH
2EABH
2EACH
2EADH
2EAEH
2EBOH

2EB1H
2EBU4H

2EB5H
2EB6H
2EB7H

2EBAH
2EBBH

2EBDH

' 2ECOH

2E9DH
2E9FH

2EA1H
2EA3H

2EAS5H

- Z2EAFH

- 2EB3H

- 2EB9H

- Z2EBCH

- Z2EBFH

- 2EC1lH

Go scan the keyboard.

Adjust the value in register A for a numeric charac-
ter.

Jump if the character in register A is alphabetic.

Check to see if the character is register A is nu-
meric.

Jump if the character in register A isn’t numeric.

Load register E with the binary value of the charac-
ter in register A.

Load register A with the value in register D.
Multiply the value in register A by two.

Multiply the value in register A by two.

Add the value in register D to the value in register A.
Multiply the value in register A by two.

Add the value in register E to the value in register A.
Load register D with the value in register A.
Loop till a nonnumeric character is pressed.

Save the value of the input buffer pointer in register
pair HL on the stack.

Load register pair HL with the return address.
Exchange the value of the return address in register

pair HL with the value of the input buffer pointer on
the stack.

Decrement the numeric value in register D.
Bump the numeric value in register D.

Jump if the numeric value in register D isn’t equal to
Zero.

Load register D with a one.

Check to see if the character in register A is a
backspace character.

Jump if the character in register A is a backspace
character.

Check to see if the character in register A is a
carriage return.

517

2EC2H

2EC5H
2ECT7H
2EC9H

2ECBH
2ECDH

2ECFH
2ED1H
2ED4H
2ED6H
2ED9H
2EDBH
2EDDH
2EDFH
2EEZH
2EE4H

2EE7H
2EE9H
2EECH
2EEEH
2EF1H
2EF3H
2EF6H
2EF8H
2EFAH
2EFCH
2EFFH

518

2ECHH

2EC6H
2EC8H
2ECAH

2ECCH
2ECEH

2EDOH
2ED3H
2ED5H
2ED7H
2EDAH
2EDCH
2EDEH

2EE1H
2EE3H

2EE6H

2EEBH
2EEBH
2EEDH
2EFOH
2EFZH
2EF5H
2EF7H
2EF9H
2EFBH
2EFEH
2FOOH

Jump if the character in register A is a carriage
return.

Check to see if the character in register A is a space.
Jump if the character in register A is a space.

Check to see if the character in register A is lower-
case.

Jump if the character in register A isn't lowercase.

Convert the lowercase character in register A to
uppercase.

Check to see if the character in register A is a Q.
Jump if the character in register A is a Q.

Check to see if the character in register A is an L.
Jump if the character in register A is an L.

Check to see if the character in register A is an S,
Jump if the character in register A is an S.

Check to see if the character in register A is an L.
Jump if the character in register A is an I,

Check to see if the character in register A is a D.
Jump if the character in register A is a D.

Check to see if the character in register A is a C,
Jump if the character in register A is a C.

Check to see if the character in register A is an E.
Jump if the character in register A is an E.

Check to see if the character in register A is an X.
Jump if the character in register A is an X.
Check to see if the character in register A is a K.
Jump if the character in register A is a K.

Check to see if the character in register A is an H.
Jump if the character in register A is an H.

Check to see if the character in register A is an A.

2F01H
2F0ZH
2FO3H

2F04H

2FO07H
2FO0AH

2FO0BH

2FO0CH

2F0DH
2FOEH
2F11H

2F12H

2F13H
2F15H
2F16H

2F17H
2F1AH

2F1BH
2F1CH
2F1DH
2F20H

2F21H
2F22H

-~ 2F06H

Return if the character in register A isn’t an A.
Clean up the stack.

Get the BASIC line number from the stack and put it
in register pair DE.

Go print a carriage return on the video display if
necessary,

= 2F09H Jump.

- 2F10H

- 2F14H

- 2F19H

- 2F1FH

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Check to see if the character in register A is an end of
the BASIC line character.

Return if the character in register A is an end of the
BASIC line character.

Bump the character position in register B.
Go display the character in register A.

Bump the value of the input buffer pointer in register
pair HL.

Decrement the number of times to perform the op-
eration in register D.

Loop until done.
Return.

Save the value of the input buffer pointer in register
pair HL on the stack.

Load register pair HL with the return address.
Exchange the value of the return address in register
pair HL with the value of the input buffer pointer on
the stack.

Set the KILL/SEARCH flag for KILL.

Save the KILL/SEARCH flag on the stack.

Go scan the keyboard for the character to locate.

Load register E with the character to locate in reg-
ister A.

Get the KILL/SEARCH flag from the stack.
Save the KILL/SEARCH flag on the stack.

519

2F23H
2F26H

2F27H
2F28H

2F2BH
2F2EH

2F2FH
2F30H

2F33H
2F35H

2F36H
2F37H
2F38H

2F39H
2F3BH

2F3CH
2F3EH
2F3FH
2Fl4OH
2F43H
2FU46H

2F47H
2F4AH

520

2F25H

2F2AH

2F2DH

2F32H

2F34H

2F3AH

2F3DH

2FU42H
2F45H

2FL49H

If KILL then go print a !.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Check to see if the character inregister A is an end of
the BASIC line character.

Jump if the character in register A is an end of the
BASIC line character.

Go display the character in register A.
Get the KILL/SEARCH flag from the stack.
Save the KILL/SEARCH flag on the stack.

Go delete the character from the input buffer if
KILL.

Jump if KILL.

Bump the value of the current input buffer pointer in
register pair HL.

Bump the value of the character position counter in
register B.

Load register A with the character at the location of
the current input buffer pointer in register pair HL.

Check to see if the character in register A is the
same as the character to be located in register E.

Loop till the character to be located is found.

Decrement the number of times to perform the op-
eration in register D.

Loop until done.

Get the KILL/SEARCH flag from the stack.
Return.

Go display the line being edited.

Go display a carriage return if necessary.

Get the BASIC line number from the stack and put it
in register pair BC.

Jump.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

2F4BH
2F5CH

2F4DH
2F4FH
2F52H

2F53H
2F54H

2F56H
2F59H
2F5CH

2FS5DH
2F5FH
2F61H

2F64H
2F65H

2F66H
2F67H
2F68H
2F6BH

2F6CH
2F6FH

2F70H

- 2F4EH
- 2F51H

- 2F55H

- 2F58H
- 2F5BH

- 2FSEH

- 2F60H

- 2F63H

- 2F6AH

- 2F6EH

Check to see if the character in register A is an end of
the BASIC line character.

Return if the character in register A is an end of the
BASIC line character.

Load register A with an !.
Go display the ! in register A.

Loat_:l register A with the character at the location of
the input buffer pointer in register pair HL.

Check to see if the character in register A is an end of
the BASIC line character.

Jump if the character in register A is an end of the
BASIC line character.

Go display the character in register A.

Go delete the character from the input buffer.

Decrement the number of times to perform the op-
eration in register D.

Loop until done.

Load register A with an !.

Go display the ! in register A.
Return.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Check to see if the character in register A is an end of
the BASIC line character.

Return if the character in register A is an end of the
BASIC line character.

Go get the character to put in the input buffer from
the keyboard.

Save the character in register A at the location of the
input buffer pointer in register pair HL.

Go display the character in register A.

Bump the value of the input buffer pointer in register
pair HL.

Bump the character position in register B.

521

2F71H

2F72H
2F74H
2F75H

2F77H
2F78H

2F7AH
2F7DH

2F80H
2F81H
2F84H

2F86H
2F88H
2F8AH
2F8DH
2F8FH

2F90H
2F92H

2F94H
2F95H
2F96H
2F98H

522

2F73H

2F76H

2F79H

2F7CH
2F7FH

2F83H
2F85H

2F87H
2F89H
2F8CH

2F8EH

2F91H
2F93H

2F97H
2FOAH

Decrement the number of times to perform the op-
eration in register D.

Loop until done.
Return.

Zero the location of the input buffer pointer in reg-
ister pair HL.

Load register C with the character position in reg-
ister B.

Load register D with the number of times to perform
the operation.

Go display the register BASIC line if necessary.

Go get the character to be inserted from the key-
board.

Check to see if a key was pressed.
Loop until a key is pressed.

Check to see if the character in register A is a
backspace character.

Jump if the character in register A is a backspace
character.

Check to see if the character in register A is a
carriage return.

Jump if the character in register A is a carriage
return.

Check to see if the character in register A is a shift
up arrow.

Return if the character in register A is shift up
arrow.

Jump.

Load register A with a backspace the cursor charac-
ter.

Decrement the character position in register B.
Bump the character position in register B.
Jump if this is the first character of the BASIC line.

Go backspace the cursor on the video display.

2F9BH

2F9CH
2F9DH - 2F9FH
2FAOH

2FAlH

2FAZH
2FA3H

2FALH

2FAS5H
2FA6H ~ 2FA8H

2FA9H

2FAAH

2FABH

2FACH
2FADH

2FAEH -~ 2FAFH
2FBOH

2FB1H

2FB2H ~ 2FB3H

2FB4H - 2FBSH

Descrement the value of the input buffer pointer in
register pair HL.

Decrement the character position in register B.
Load register pair DE with the return address.

Save the value of the return address in register pair
DE on the stack.

Save the value of the input buffer pointer in register
pair HL on the stack.

Decrement the character position in register C.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Check to see if the character in register A is an end of
the BASIC line character.

Set the Carry flag.

Jump if the character in register A is an end of the
BASIC line character.

Bump the value of the input buffer pointer in register
pair HL.

Load register A with the character at the location of
the input buffer pointer in register pair HL.

Decrement the value of the input buffer pointer in
register pair HL.

Save the character in register A at the location of the
current input buffer pointer in register pair HL.

Bump the value of the input buffer pointer in register
pair HL.

Loop until the line has been moved down.

Save the character to be inserted in register A on the
stack.

Load register A with the number of characters in the
input buffer in register C.

Check for the maximum BASIC line length.

Jump if the maximum BASIC line length hasn’t been
reached,

523

2FB6H

Get the character to be inserted from the stack and
put it in register A.

2FB7H - 2FB8H Jump.

2FBY9H

2FBAH

2FBBH

2FBCH

2FBDH

2FBEH

2FBFH - 2FCOH
2FC1H

2FC2H

2FC3H

2FCU4H

2FC5H - 2FC7H

2FC8H

2FCOH

2FCAH

2FCBH - 2FCDH
2FCEH

2FCFH - 2FD1H

524

Subtract the character position in register B from

the number of characters in the input buffer in reg-
ister A.

Bump the number of characters in the input buffer in
register C.

Bump the character position in register B.

Save the character position and the number of
characters in the input buffer in register pair BC on
the stack.

Load register pair DE with the input buffer pointer in
register pair HL.

Load register L with the character count in register

Zero register H.

Add the value of the input buffer pointer in register
pair DE to the character count in register pair HL.

Load register B with the MSB of the end of the
BASIC line pointer in register H.

Load register C with the LSB of the end of the
BASIC line pointer in register L.

Bump the value of the end of the BASIC line pointer
in register pair HL.

Go move the BASIC line up one character.

Get the character position and the number of char-
acters in the input buffer from the stack and put it in
register pair BC.

Get the character to be inserted from the stack and
put it in register A.

Save the character in register A at the location of the
current input buffer pointer in register pair HL.

Go display the character in register A.

Bump the value of the input buffer pointer in register
pair HL.

Jump.

2FD2H

2FD3H
2FDM4H
2FD5H
2FD6H

2FD7H

2FD9H
2FDCH

2FDDH
2FDFH
ZFEOH
2FE3H
2FE6H
2FE7H

2FE8H

2FEQH

2FEAH

2FEBH

2FEEH

2FEFH
2FFOH
2FF1H

- 2FD8H

2FDBH

27DEH

- ZFEZH
2FESH

- 2FEDH

Load register A with the number of times to
backspace in register B.

Check to see if this is the start of the BASIC line.
Return if this is the start of the BASIC line.
Decrement the character position in register B.

Decrement the value of the input buffer pointer in
register pair HL.

Load register A with a backspace the cursor charac-
ter.

Go backspace the cursor on the video display.

Decrement the number of times to perform the op-
eration in register D.

Loop until done.

Return.

Go display the rest of the BASIC line,
Go display a carriage retarn if necessary.
Clean up the stack.

Get the BASIC line number from the stack and put it
in register pair DE.

Load register A with the MSB of the BASIC line
number in register D.

Combine the LSB of the BASIC line number in reg-
ister E with the MSB of the BASIC line number in
register A.

Bump the combined BASIC line number in register
A.

Load register pair HL with the starting address of
the input buffer,

Decrement the value of the input buffer pointer in
register pair HL.

Returnif this is the Level Il BASIC command mode.
Set the Carry flag.

Bump the value of the input buffer pointer in register
pair HL.

525

2FF2H

2FF3H
2FF6H
2FF7H

2FF8H
2FFBH
2FFBH
3000H

37DEH

37DEH
37DFH
37EOH
37E1H
37E4H
37E8H
37ECH
3800H

3801H
3802H
3804H
3808H
3810H
3820H
38404
3880H

526

- 2FF5H

Z2FFAH
- 2FFFH
2FFFH
37DDH

]

- 37ECH

- 3BFFH

Save the command mode flag in register pair AF on
the stack.

Jump to the Level II BASIC READY routine.
Clean up the stack.

Get the BASIC line number from the stack and put it
in register pair DE.

Jump to the Level II BASIC READY routine.
THE END OF THE LEVEL II BASIC ROMS
Nothing here.

THIS SPACE IS RESERVED. HOWEVER,
THE EXATRON STRINGY FLOPPY ROMS
RESIDE HERE AND THERE ARE CUR-
RENTLY A FEW ROM ADD ON DEVICES
WHICH USE THIS AREA OF MEMORY.

MEMORY MAPPED
INPUT/OUTPUT LOCATIONS

DOS communication status address.
DOS communication data address.
Interrupt latch address.

Disk drive select latch address.
Cassette drive select latch address.
Line printer port address.

Floppy disk controller address.
KEYBOARD MEMORY

The following bits will be set for each key that is
pressed:

0 1 2 3 4 5 6 7
@ A B C D E F G
H I J K L MN O
P Q R S T U V W
X Y Z

0 1 2 3 4 5 6 7
8 9 : 5 , -~ . /[
CR CL BR UA DA LA RA SP
SH

Where

CR = CARRIAGE UA
RETURN

CL = CLEAR DA = DOWN ARROW SP

BR = BREAK LA = LEFT ARROW SH

3CO0H = 3FFFH VIDEO MEMORY
4OOOH - 4014H RST VECTORS

4000H - 4002H RST 0008H
4003H = 4005H RST 0010H
4006H - 4008H RST 0018H
4009H = 400BH RST 0020H
400CH - 400EH RST 0028H
4O0OFH - 4011H RST 0030H
4012H = 4014H RST 0038H

4015H = 401CH KEYBOARD DEVICE CONTROL BLOCK
L4015H Device type.

4016H - 4017H Driver address.
LO1BH = 401CH RAM buffer address.

LO1DH - 4024H VIDEO DEVICE CONTROL BLOCK
L01DH Device type.

401EH - 401FH Driver address.

4020H - 4021H Cursor location.

4022H Cursor on/off flag.

4023H - 4024H RAM buffer address.

4025H = 402CH PRINTER DEVICE CONTROL BLOCK

UP ARROW RA = RIGHT ARROW

I
I

SPACE
SHIFT

L025H Device type.
4026H - 4027H Driver address.
4028H Lines per page.
4029H Lines printed so far.

402BH - 402CH RAM buffer address.

402DH - 4035H LEVEL II SYSTEM VARIABLES
402DH - 4035H Used by DOS.

4036H - 403CH Keyboard work area.
403DH - 4040H Used by DOS.

527

LOU1H
LOo42H
LOU3H
BOUUH
Lok45H
LOoL46H
LOU7H
4080H
408EH
L093H
L096H
4099H
LO9AH
409BH
409CH

409DH
L4O9EH
LOAOH
LOAZH
LoAbH
LOA6H
LOA7H
LOA9H
LOAAH
LOAEH
LOAFH
4LOBOH
4L0B1H

528

LO7FH
408DH
408FH
4095H
4098H

LOAlH
LOA3H
LOASH

LOABH

LOADH

40B2H

Seconds - Real Time Clock.
Minutes - Real Time Clock.
Hours - Real Time Clock.
Year - Real Time Clock.
Day - Real Time Clock.
Month - Real Time Clock.
Used by DOS.

Division support routine.
Starting address for USR call.
INP routine.

OUT routine.

Last key pressed.
RESUME flag.

Printer carriage position.

Current output device flag: —1 - cassette, 0 - video,
& 1 - printer,

Size of line on the video display.
Size of line on the printer.

Start of string space pointer.
Current BASIC line number.
Start of BASIC program pointer.
Current cursor line position.
Input Buffer pointer.

Cassette input flag.

Random number seed.
LOCATE/CREATE variable flag.
Current number type flag.
Temporary storage location.

MEMORY SIZE? pointer.

40B3H

40OB5H
40D3H
4LOD6H
LOoD8H
LODAH
LODCH
LODDH
4ODEH
40DFH
4LOE1H
LOE2H
LOE4H
4OE6H
LOE8H
LOEAH
LOECH
4OEEH
4OFOH
LOF2H
40F3H
40FSH
LoF?7H
L4OF9H
4OFBH
4LOFDH

40B4H

40D2H
40D5H

Next available location in the temporary string work
area pointer,

Temporary string work area.

Used for temporary string VARPTR’s.

L4OD7H Next available location in string space pointer.

LOD9H
40DBH

= 40EOH

4OE3H
LOES5H
LOE7H
LOE9H
LOEBH
40EDH
LOEFH
LOF1H

LOF4H
LOF6H
4LOF8H
4OFAH
40FCH
LOFEH

LOFFH - 4100H
4101H - 411AH

Temporary storage location.
DATA line number.

FOR flag.

INPUT flag.

READ flag.

Used by DOS.

AUTO flag.

Current BASIC line number,
AUTO increment.
Temporary storage location.
Stack pointer pointer.

Line number with error.
EDIT line number.

Used by RESUME.

Used by ONERROR.

Error flag.

Temporary storage location.
Last line number executed.
Last byte executed.

Simple variables pointer.
Array variables pointer.
Free memory pointer.
READ pointer.

Variable Declaration Table.

529

411BH
411CH
411DH
4125H
4127H
4130H
414AH
4152H
41A6H
L1E8H
42E8H
42E9H

530

L124H
L4126H
L12EH
L14gH
4151H
L1A3H
L1E4H
L2E7H

TRON/TROFF flag.

Used by floating point routines.
REGL.

Used by floating point routines.
REG2.

Internal print buffer.

Used by floating pointer routines.
Disk Basic links.

DOS links.

Input Buffer area.

Always zero.

Start of user RAM.

Absolute value, 9

Addition, double precision, 7
Addition, integer, 3, 274
Addition, single precision 5, 234
Arc tangent, 9

Array packing, 36

ASCI| conversion routines, 14
ASCiIl to binary, 387

ASC routine, 481

ATN routine, 344

AUTO routine, 401

D
BASIC interpreter, 377
BASIC program area, 51
BASIC program area, moving, 51
Binary to ASCII, 304

c
Calculator, four function, 16
Cassette, 195, 200, 201, 202, 203,

204

Cassette interfacing, 34
Cassette routines, 12
CDBL routine, 267
Check syntax, 62
Check syntax routine, 489
CHRS$ routine, 481
CINT routine, 264
CLEAR routine, 389
Clear screen, 12

CLOAD routine, 498

CLS routine, 195

Command mode, 350

Compare, double precision, 9, 262,
264

Compare, integer, 4, 262

Compare, single precision, 260, 261

Constant storage, 242, 243

Constant storage, double precision,
291, 331, 332

Constant storage, double precision
integer, 332

Constant storage, single precision,
336, 343, 345

Constant storage, single precision in-
teger, 332

CONT routine, 383

Conversion routine, 463

Conversion routines, ASCII, 14

Conversions, ASCII to binary, 295

Conversions, binary to ASCH, 304,
305

Convert to double precision, 9

Convert to integer, 10

Convert to single precision, 10

Cosine, 10

COS routine, 342

CSAVE routine, 497

CSNG routine, 266

D
Data movement routines, 13, 258, 349

533

DEFINT entry point, 384

DEFSNG entry point, 384

DEFSTR, DEFUNT, DEFSNG,
DEFDBL common code, 384

DEFSTR entry pointer, 384

Delay routine, 190

Delete routine, 495

Device contro! blocks, 73, 93

Disk BASIC links, 43, 44, 60

Disk routine, 187, 188, 488

Display character, 12

Display memory, 119

Display message routine, 304, 468,
492

Display string, 12

Division, double precision, 8, 291

Division, integer, 4

Division, single precision, 6, 248

Division routine storage, 347

DOS links, 43, 45, 55

Double precision addition, 7

Double precision compare 9, 262, 264

Double precision division, 8, 291

Double precision math routine, 251,
282, 285, 286, 287, 289, 291,
293, 303

Double precision multiplication, 8, 279

Double precision routines, 7

Double precision subtraction, 7

Driver entry routine, 189, 212

DSET and DRESET program, 64

E

Edit memory, 120
EDIT routine, 514
End routine, 382
Enhanced USR program, 47
Epson MX-80 printer, 106
Error message, OV 251
Error messages, spelled-out, 107
Error messages, storage location for,

347
Error routines, 60, 400
Error routines, L3, 194
Evaluate expression, 62, 76, 423
Evaluate expression routine, 489
Evaluate line numbers routine, 361
Exchange memory, 121
Examine variable, 386, 387

F
FC error routine, 63
Find data routine, 418
FIX, 10
FOR routine, 374
FRE routine, 461

534

G
GOSUB routine, 390
GOTO routine, 391
Graphics, 62, 63
Graphics, double width, 62
Graphics codes, 31
Graphics reversal, 33
Graphics reversal program, 32
Graphics routine, 195
Graphics subroutine, 30

!
Initialization routine, 190, 232, 234
Initialization storage location, 347
Inkey$ routine, 195
INP routine, 488
Input and read routines, 410
Input routine, 189, 209, 463
Input routines, keyboard, 11
INT, 10
Integer addition, 3, 274
Integer compare, 4, 262
Integer division, 4
Integer multiplication, 3, 275
Integer routines, 3
Integer subtraction, 3, 274
Intercepting errors, 60
Invert sign, 10

J
JKL keys, 101
JKL-to-printer program, 101, 102

K
Keyboard, scan, 11
Keyboard device control blocks, 73,
527
Keyboard driver, 89, 213
Keyboard input routines, 11, 366
Keyboard lookup table, 189
Keyboard memory, 526
Keyboard routine, 188, 189, 209, 210

L
LEFT$ routine, 483
LEN routine, 480
LET routine, 394
Line pointers routine, 360
Listing 3-1, 47
LIST routine, 490
LLIST routine, 490
Log routine, 243
LPRINT routine, 404
L3 error routine, 194

M

Machine language interfacing, 29, 34

Machine language monitor, 119

Math routine, 255, 256, 259, 260, 266,
267, 269, 270, 272, 273, 277,
278, 294, 336

Math routine, double precision, 251,
282, 285, 286, 287, 289, 291,
293, 303

Math routine, single precision, 236,
237, 239, 240, 241, 247, 252,
253, 254, 256, 257, 258, 303

Memory check routine, 349

Memory map, disk BASIC, 52

Memory map, level I, 52

Memory mapped I/0 locations, 526

MEM routine, 461

Message storage, 194

Message storage location, 347, 410,
418, 501

MID$ routine, 485

Monitor program, 122, 123, 141, 158,
171

Movement routines, data, 13

Multiplication, double precision, 8

Muitiplication, integer, 3, 275

Multiplication, single precision, 5, 245

N
Natural logarithm, 10
New BASIC commands, 60
NEW routine, 363
NEXT routine, 419
NMI interrupt routine, 190
Number type flag, 1

0
Output routine, 12, 208
OUT routine, 488
OV error mesage, 251

P
PEEK routine, 501
Pixels, 31
Point command entry point, 194
POKE interfacing, 35
POKE routine, 501
POS routine, 462
Power up routines, 187
Print character, 12
Printer device control block, 527
Printer device control block, 93
Printer driver, 225
Printer routine, 189, 210, 211
Printers, 106
Printers, non-graphic, 106

Printer spooler, 91
PRINT routine, 404
Print string, 12

R
RAM spooler, 91
Random, 10
Random routine, 195
REG1,1, 2
REG2, 1, 2
Reserved space, 526
Reserved word entry locations, 346
Reserved word list, 346
Reserved word tokens, 346
Reset command entry point, 195
Restart routines, 14
Restore routine, 381
Resume routine, 398
Return routine, 392
RIGHT$ routine, 485
RND, 10
RND routine, 338
RST 0008, 187, 373
RST 0010, 188
RST 0018, 188, 373
RST 0020, 188
RST 0028, 188
RST 0030, 188
RST 0038, 189
RST vectors, 527
RUN routine, 364, 390

S

Scan keyboard, 11

Scan keyboard routine, 381

Scan routine, 393

Scan stack routine, 348

Set command entry point, 194

Shift key program, 75, 76

Sine, 10

Single precision addition, 5, 234

Single precision compare 8, 260-261

Single precision division 6, 248

Single precision math routine, 236,
237, 239, 240, 247, 252, 253,
254, 256, 257, 258, 303

Single precision muitiplication, 5, 245

Single precision routines, 4

Single precision subtraction, 5, 234

SIN routine, 342

Spelled-out error message program,
107

Spooler, purpose of a, 91

Spooler program, 92, 93

Square root, 11

Square root routine, 332

535

Stack, 10

String addition routine, 476

String packing, 39

String routine, 464, 465, 466, 468,
469, 478, 480, 488

String space pointer, 53

STRINGS routine, 481

Subtraction, double precision, 7, 275

Subtraction, integer, 3, 274

Subtraction, single precision, 5, 234

System routine, 205

System variables, 527

T

Tabbing beyond, 54, 63
TAB enhancer program, 56
Tangent, 11
TAN routine, 344
Test memory, 121
Test the number type flag, 76
Tokenize input routine, 366
TRON AND TROFF common code,

384
TRON entry point, 383-384

536

Untokenize routine, 493
USR, 29, 30, 44

USR, enhanced, 44, 48
USR routine, 462n 02

v
VAL routine, 487
VARPTR, 38, 39, 40
Verify memory, 121
Video and printer routine, 188
Video device control block, 527
Video driver, 216
Video memory, 527
Video routine, 189, 209

w
Wait till key pressed, 11

X
X**y routine, 332

z
Zero memory, 120

Level Il ROMs

It you are intrigued with the possibilities of the programs included
in Level Il ROMs (TAB book no. 1575), you should definitely
consider having the ready-to-run tape containing the software
applications. This software is guaranteed free of manufacturer's
defects. (If you have any problems, return the tape within 30
days, and we'll send you a new one.) Not only will you save the
time and effort of typing the programs, the tape eliminates the
possibility of errors that can prevent the programs from func-
tioning. Interested?

Available on tape for TRS-80, Model I, 16K and up at $29.95 plus
$1.00 shipping and handling.

Requires Radio Shack Editor-Assembler program (EDTASM).
0 B) S o S PR O ISR A B B [T e]

eady-to-run tapes for Level || ROMSs.]

ierest din t
9Send me:

tape for TRS-80, Model I, 16K (6038s)
TAB BOOKS catalog

—— Check/Money Order enclosed for $29.95 plus
$1.00 shipping and handling.

VISA — MasterCard
Account No. Expires
Name
Address E
City State Zip g
Signature
Mail To: TAB BOOKS INC. |

P.0. Box 40

Blue Ridge Summit, PA 17214 B
(Pa. add 6% sales tax. Orders outside U.S. must be prepaid with 5
international money orders in U.S. dollars.) B

TAB 1575

Level || ROMs

by Mark D. Goodwin

Includes an enhanced USR command that allows easy interfacing
of assembly language and BASIC programs!

How-to's for adding new commands to Level || BASIC . . . and for
enhancing existing commands by using Disk BASIC and DOS links!
Shows how to enjoy features like a printer spooler, programmable
shift key entries, and more without adding new hardware!
Provides a location-by-location map and description of the Level |
ROMs!

Why limit yourself to the usual slow, cumbersome methods for
interfacing assembly language and basic programs . . . when this
unique and exceptionally useful handbook-can show you how to use
an enhanced USR command to produce exactly the programming
results you need, more easily than you'd have ever thought possible!

And that's just the b :ginning of the time- and effort-saving infor-
mation you'll find here. Each chapter includes a different and ex-
tremely useful applicatiop to enhance and add 0 your micros
capabilities . . . every page reveals a new programming tip or shortcut
developed by the author over his many years of programming prac-
tice: machine language subroutines, how to enhance existing com-
mands using Disk BASIC and DOS links, how to write machine lan-
guage subroutines that reside below the BASIC program area, how to
add new commands for error interception and double width graphics.

Programmable shift key entries, a RAM printer spooler, a JKL-
to-printer programmer, a relocatable machine language monitor, and
other functions become possible without addition of expensive new
hardware when you follow the expert instructions included here.

In fact, if you've mastered assembly language, but still want more
practical performance from your micro, this handbook is a must!

Mark Goodwin is an experienced microcomputerist who has pub-
lished many articles on machine language programming and other
personal computer topics.

OTHER POPULAR TAB BOOKS OF INTEREST -

TRS-80 Model 100—A User's Guide (No. 1651— The Art of Computer Programming (No. 1455 —
$14.95 paper; $21.95 hard) $10.95 paper; $15.95 hard)

Machine and Assembly Language Programming How to Build a Program (No. 1622—%21.95 hard
(No. 1389—89.95 paper; $15.95 hard) only)

TAB| TAB BOOKS Inc.

Blue Ridge Summit, Pa. 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

FPT > s1/7.50 ISBN 0-8630bk-0L¢5~9

PRICES HIGHER IN CANADA 1695-1283

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	310.pdf
	311.pdf
	312.pdf
	313.pdf
	314.pdf
	315.pdf
	316.pdf
	317.pdf
	318.pdf
	319.pdf
	320.pdf
	321.pdf
	322.pdf
	323.pdf
	324.pdf
	325.pdf
	326.pdf
	327.pdf
	328.pdf
	329.pdf
	330.pdf
	331.pdf
	332.pdf
	333.pdf
	334.pdf
	335.pdf
	336.pdf
	337.pdf
	338.pdf
	339.pdf
	340.pdf
	341.pdf
	342.pdf
	343.pdf
	344.pdf
	345.pdf
	346.pdf
	347.pdf
	348.pdf
	349.pdf
	350.pdf
	351.pdf
	352.pdf
	353.pdf
	354.pdf
	355.pdf
	356.pdf
	357.pdf
	358.pdf
	359.pdf
	360.pdf
	361.pdf
	362.pdf
	363.pdf
	364.pdf
	365.pdf
	366.pdf
	367.pdf
	368.pdf
	369.pdf
	370.pdf
	371.pdf
	372.pdf
	373.pdf
	374.pdf
	375.pdf
	376.pdf
	377.pdf
	378.pdf
	379.pdf
	380.pdf
	381.pdf
	382.pdf
	383.pdf
	384.pdf
	385.pdf
	386.pdf
	387.pdf
	388.pdf
	389.pdf
	390.pdf
	391.pdf
	392.pdf
	393.pdf
	394.pdf
	395.pdf
	396.pdf
	397.pdf
	398.pdf
	399.pdf
	400.pdf
	401.pdf
	402.pdf
	403.pdf
	404.pdf
	405.pdf
	406.pdf
	407.pdf
	408.pdf
	409.pdf
	410.pdf
	411.pdf
	412.pdf
	413.pdf
	414.pdf
	415.pdf
	416.pdf
	417.pdf
	418.pdf
	419.pdf
	420.pdf
	421.pdf
	422.pdf
	423.pdf
	424.pdf
	425.pdf
	426.pdf
	427.pdf
	428.pdf
	429.pdf
	430.pdf
	431.pdf
	432.pdf
	433.pdf
	434.pdf
	435.pdf
	436.pdf
	437.pdf
	438.pdf
	439.pdf
	440.pdf
	441.pdf
	442.pdf
	443.pdf
	444.pdf
	445.pdf
	446.pdf
	447.pdf
	448.pdf
	449.pdf
	450.pdf
	451.pdf
	452.pdf
	453.pdf
	454.pdf
	455.pdf
	456.pdf
	457.pdf
	458.pdf
	459.pdf
	460.pdf
	461.pdf
	462.pdf
	463.pdf
	464.pdf
	465.pdf
	466.pdf
	467.pdf
	468.pdf
	469.pdf
	470.pdf
	471.pdf
	472.pdf
	473.pdf
	474.pdf
	475.pdf
	476.pdf
	477.pdf
	478.pdf
	479.pdf
	480.pdf
	481.pdf
	482.pdf
	483.pdf
	484.pdf
	485.pdf
	486.pdf
	487.pdf
	488.pdf
	489.pdf
	490.pdf
	491.pdf
	492.pdf
	493.pdf
	494.pdf
	495.pdf
	496.pdf
	497.pdf
	498.pdf
	499.pdf
	500.pdf
	501.pdf
	502.pdf
	503.pdf
	504.pdf
	505.pdf
	506.pdf
	507.pdf
	508.pdf
	509.pdf
	510.pdf
	511.pdf
	512.pdf
	513.pdf
	514.pdf
	515.pdf
	516.pdf
	517.pdf
	518.pdf
	519.pdf
	520.pdf
	521.pdf
	522.pdf
	523.pdf
	524.pdf
	525.pdf
	526.pdf
	527.pdf
	528.pdf
	529.pdf
	530.pdf
	531.pdf
	532.pdf
	533.pdf
	534.pdf
	535.pdf
	536.pdf
	537.pdf
	538.pdf
	539.pdf
	540.pdf
	541.pdf
	542.pdf
	543.pdf
	544.pdf
	545.pdf
	546.pdf

