by David A. Lien
The Author of the Original
Radio Shack Level | User's Manual

LEARNING
TRS-80 BASIC

by
David A. Lien

COMPUSOFT PUBLISHING®

A Division of CompuSoft® Inc.
Box 19669 ¢ San Diego, California 92119 U.S.A.

Copyright © 1982 by Compusoft Publishinge
A Division of CompuSofte , Inc.
San Diego, CA. 92119

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording or
otherwise, without the prior written permission of
the publisher. No patent liability is assumed with
respect to the use of the information contained
herein. While every precaution has been taken in
the preparation of this book, the publisher assumes
no responsibility for errors or ommissions.
Neither is any liability assumed for damages
resulting from the use of the information contained
herein.

Compusoft is a registered trademark of
CompuSoft, Inc.

*TRS-80 is the registered trade.mark of Radio
Shack, a Division of Tandy Corporation.

“Portions of the material contained herein were
originally created by the author for Radio Shack in
support of the TRS-80 computer.”

International Standard Book Number: #0-932760-08-2
Library of Congress Catalog Card Number: #81-70768

10987654321

Printed in the United States of America

A Personal Note from the Author...

In 1977, 1 wrote the original TRS-80 Level I Users Manual. It was
supplied with each Level I computer (both Models I & III) and helped
make the TRS-80 the world’s best selling computer. That book was
translated into French, Spanish and German and received critical
acclaim around the world. Also distributed through Radio Shack stores
and computer centers, it is probably the world’s best selling full length
computer book.

The Model I TRS-80 with Level I BASIC opened the frontier, guiding
untold thousands into computing. When it was upgraded to Level II
BASIC, 1 wrote Learning Level II to teach BASIC’s advanced
features. CompuSoft® Publishing distributed Learning Level II
around the world and it too became a best seller.

Learning TRS-80 BASIC combines the best of both earlier books — plus
much more, updated to included Models I, II, III and 16. It is written
for the average person who has no experience with a Computer. The
style is light and non-threatening since we have no insecurities to pass
along. Learning should be fun, not intimidating...

And why shouldn’t learning be fun?...

Sit back, relax, read slowly as though savoring a good novel, and above
all, let your imagination wander. I'll supply all the routine facts and
techniques we need. The real enjoyment begins when YOUR
imagination starts the creative juices flowing and the computer becomes
a tool in YOUR OWN hands. YOU become its master — not the other
way around. At that point it evolves from just a box of parts into an
extension of your personality!

Enjoy your TRS-80!

Dr. David A. Lien
San Diego — 1982

ACKNOWLEDGEMENTS

This comprehensive book is the result of work by many people over a
number of years. At the risk of missing a few, my thanks go to the
following who made major contributions:

Dave Waterman, Technical Director, CompuSoft Publishing

Dave Kater, Writer, CompuSoft Publishing

Dave Lunsford, Writer, CompuSoft Publishing

Mike Hunter, Researcher, CompuSoft Publishing

Rich Barnes, Cartoonist, The Printers, Inc.

Dave Gunzel, Editor, Radio Shack

Lance Leventhal, Author
And last but not least, to Radio Shack for their kind permission to

quote freely from my original best-selling Level I book published by
them.

— INTRODUCTION —

Learning TRS-80 BASIC is organized into five major sections:

A. Fifty chapters which teach how to use the many capabilities of
your TRS-80.. in small enough bites so you won't
choke. Many Chapters include check points and examples.

At the end of most Chapters are Exercises. If youre
studying alone, use them to test yourself and exercise your
creativity. If you're studying with a class, your instructor
may use them to supplement his own.

B. A section with the Answers to the Exercises.

C. A section with some User's Programs — examples of
interesting and practical programs ready to type right in and
use. (Some are for fun, some for business, some for education,
ete.)

D. A section with Appendices which provide specialized
information about Models I, II, III and 16.

E. An index, for easy reference after you've learned it all, but
forgotten where you learned it.

The computer assists you to learn... a sort of “Computer Assisted
Instruction”.

Although it doesn’t matter which of the four Models of TRS-80 you use,
we had to pick one on which to center this book. For a number of
reasons we chose the Model III. Fear not! The manuscript has been
repeatedly tested on the other Models. This book doesn’t know
which Model you have.

We hope you have as much fun Learning TRS-80 BASIC as we did
preparing it.

Table of Contents

For

LEARNING TRS-80 BASIC

SECTION A 11
TRS-80 BASIC Tutorial

PARTI
Getting Started

Chapter 1 Computer Etiquette 13
Chapter 2 Expanded Program 19
Chapter 3 The Editor — First Semester 27
Chapter 4 AUTOmatic Line Numbering 37

PART II 41
Speak To Me, Oh Great Computer

Chapter 5 Math Operators 43
Chapter 6 Scientific Notation 53
Chapter 7 () And The Order of Operations 57
Chapter 8 Relational Operators 63
Chapter 9 It Also Talks and Listens 69

Chapter 10 Calculator or Immediate Mode 75
Chapter 11 Using Cassette Tape and Disk 81

Chapter 12 FOR-NEXT Looping 89
Chapter 13 Son of FOR-NEXT 101
Chapter 14 Formatting With TAB 113
Chapter 15 Grandson of FOR-NEXT 121
Chapter 16 The INTEGER Function 127
Chapter 17 More Branching Statements 139
Chapter 18 Random Numbers 147
Chapter 19 READing DATA 155
PART III 161

Strings

Chapter 20 Intermediate BASIC 163
Chapter 21 The Editor — Second Semester 175
Chapter 22 The ASCII Set 183
Chapter 23 Strings In General 195
Chapter 24 Measuring Strings 201
Chapter 25 VAL ($) and STR$ (N) 211

Chapter 26 Having A Ball With String 217

PART IV 231
Variable Precision And Math

Chapter 27 What Price Precision? 232
Chapter 28 Intrinsic Math Functions 243
Chapter 29 The Trigonometric Functions 251
PARTV _ _ 255
Graphics and Display Formatting
Chapter 30 Video Display Graphics 257
Chapter 31 Intermediate Graphics 267
Chapter 32 Display Formatting With
PRINT@ 275
Chapter 33 Graphing TRIG Functions 281
Chapter 34 Point 287
Chapter 35 INKEY$ 293
Chapter 36 PRINT USING 299
Chapter 37 PRINT USING — Round 2 311
PART VI 317
Arrays
Chapter 38 Arrays 319
Chapter 39 Search & Sort 331
Chapter 40 Multi-Dimension Arrays 339
Chapter 41 Advanced Graphics 351
Chapter 42 Graphics INKEY$ 361
PART VII 365
Miscellaneous
Chapter 43 PEEK and POKE 367

Chapter 44 Model I1I POKE Features 377
Chapter 45 Logical Operators —

AND, OR, & NOT 381

Chapter 46 A Study of Obscurities 389
PART VIII 397

Program Control

Chapter 47 Flowcharting 399

Chapter 48 Debugging Programs 407

Chapter 49 Chasing Bugs 417

Chapter 50 Chasing The Errors 423
SECTIONB 431

Sample Answers For Exercises

SECTION C

Prepared User Programs

SECTION D

Appendices

Appendix A

Appendix B

Appendix C

Appendix D
Appendix E
Appendix F

Appendix G

Appendix H

SECTION E
Index

Disk BASIC Systems
Model I (In 2 parts) 473
ModelII (In 2 parts) 478
Model ITI (In2 parts) 483

ASCII Code Tables
Model I and Model IIT 489

Model I1 491
Model 1
The Expansion Interface 497
Time Qut 505

Dual Cassette Operation 515

Model IT Special Features 521
Model I1I Special Features 525
Mode I & 111 Reserved Words 527

Storing DATA Files on

Cassette 528
Error Messages 532
Model I and Model I11
Model II

457

472

542

10

A Glance at History

“Level II BASIC” is used on all four TRS-80 systems covered here (as well as several
work-alike systems), but each “dialect” of BASIC is slightly different.

Historically, here’s how we got to where we are:

The Model I was first introduced with Level I BASIC, a so-called “tiny” BASIC
which did a fine job for it's time and price. We will not address Level I BASIC here
since it is completely covered in my original Radio Shack Manual published under
these names:

User’s Manual for Level I
BASIC Computer Language
User’s Manual, Level I, for Model I1I

The Model I was then upgraded with the so-called “Level II” BASIC, very similar to
our current “TRS-80 BASIC”. Besides encompassing numerous additional standard
BASIC features, it added provisions for using floppy disks.

The Model II TRS-80 followed with it’s BASIC, a somewhat diminished version of
Level II BASIC. Until this book, there has been no comprehensive tutorial
available for Model II users.

The Model III TRS-80 is a redesign and repackaging of the original Model I, and is
available with either the original Level I BASIC or a somewhat improved version of
Level II BASIC.

The Model 16 is a substantial upgrade of the Model II. As of this printing, a special
BASIC has not been written specifically for the Model 16, so it uses the same ver-
sion of BASIC as the Model II.

The four Models have far more in common than they have as differences. TRS-80 BASIC
today is essentially the same on Models I and III, and very similar on the Model II/16.

The physical difference between the systems and variations in features require us to in-
sert special notes and comments throughout the book. We address BASIC here as it is
implemented on the Model III, and include notes and remarks as necessary for Model I, I1
and 16 users. BASIC on all three machines is called “TRS-80 BASIC”.

In order to help the maximum number of users, this book is written to simple non-disk
systems. If you are learning on a disk system, skip immediately to Appendix A for
special instructions and meet the rest of us at Chapter 1 in a few minutes.

Everyone else move straight ahead to Chapter 1.

SECTION A:

TRS-80 BASIC Tutorial

Part 1

Getting Started

1

12

“NOW WHEN \T GINES You
THE RIGHT ANSWER, DADDY
BE SURE To SAY “THANK You!”

CHAPTER 1

Computer Etiquette

From the moment we turn it on, our TRS-80 follows a well-
defined set of rules for coping with us, the “master.” This
makes it an easy computer to use. To a large extent, all we
have to do is say the right thing (via the keyboard) at the right
time. Of course, there are lots of “right things” to say;
putting them together for a purpose is called programming.

In this chapter we’'ll start a conversation with our TRS-80 and
teach it some simple social graces. At the same time, you'll
learn the fundamentals of computer etiquette. You'll even

write, wonder of wonders, your first TRS-80 computer
program!

Getting READY

Hook up the Computer as shown in its reference manual, and
turn it ON. Allow the video tube a few seconds to warm up.

The word:
Cass!
will appear in the upper left-hand corner.
Press and watch it say:
Memory Size?
Press again and, after some propaganda we are finally:

READY
> M (flashing cursor)

on the screen.

The rules are permanently
stored in the Computer in
two programs, called the
monitor and the interpreter.

(Disk users only)

Cass? does not appear on
Models I or 1I/16.

READY
> on Model I — cursor
doesn'’t flash.

READY
on Model II.

13

PART

Press the key several times to produce a column of
“Greater Than” signs. The Computer is trying to tell us
something:

“I'm ready—it’s your turn to do something!”

To make sure you start off with a clean slate —erasing all
traces of prior programs or tests—type NEW and press
EIZ¥. The Computer will respond by erasing the screen
and printing

READY
> B

at the top of the screen.

Now type in PRINT MEM and [@J{ZJ. This is a test to see
that the Computer “powered up” properly. The display
should read:

READY
PRINT MEM

15314

READY

>@

Just What Is a Computer Program?

A program is a sequence of instructions that the Computer
stores until we command it to follow (or “execute”)
them. Most programs for the TRS-80 are written in a
language called BASIC —and that very name tells us how easy
it is to learn!

Let's write a simple one-line program to let the TRS-80
introduce itself. First, be sure the last line on the screen
shows a > which we call the “prompt.” This is the

Computer’s way of saying, “Go ahead—do something!”
Now type the following line, exactly as shown:

10 PRINT "HELLO THERE.
Do not hit key yet!

14

(Disk users only)

is a MONITOR
command. It tells the
Computer to look at
whatever is typed on the
screen. We haven't typed
in anything yet, so the
Computer just responds with
another: >

Don’t use the shift key —
letters are always CAPITAL
unless we change them.

If your TRS—80 has 4K of
memory, the number should
be about 3026. Ifit'sa
Disk System the numbers
may vary widely. Model II
64K will be 33608, and Model
III 48K (disk system) will be
38,200. It will always be
some value less than the full
48K, 32K, 16K or 4K.

If the number is not 15314
(or whatever is reasonable
for your system), turn the
Computer OFF, Wait for
about 10 seconds and turn it
ON again. Repeat the test
and verify that the number
is in the ball park. If not,
it’s off to the repair center.

I AM YOUR NEW TRS-80 MICROCOMPUTER!"

Chapfter

We don’t have to use the SHIFT key to get a capital
letter. However, some of the keys DO have two characters
printed on them. Use the SHIFT key to get the upper
characters - like the * marks and the exclamation point (!).

If you made a typing error, don’t worry - it's much easier to
correct on the TRS-80 than on a regular typewriter. No
rubber erasers or white paint to fuss with! Just use the
backspace key (left-arrow). Each time you press this key, the
rightmost character will be erased. If your error was at the
beginning of the line, you'll have to erase your way back to that
point and then retype the rest of the line. (If you hold the
backspace key down longer than a second it will erase many
letters very quickly. Not available on Model 1.

Now go back and examine VERY CAREFULLY what you have
typed:

1. Did you enclose everything after the word PRINT in
quotation marks?

2. Are there any extra quotation marks?

If everything's okay, press [l[I#. The > prompt will
reappear.

The Computer is telling us “Fine - what’s next?”

If It’s Too Late

If you find an error after you've typed a line and pressed
, the backspace key (arrow) cannot correct it. Instead,
retype the ENTIRE line correctly. As soon as you ENTER
the line, it will replace the incorrect one. This is because they
both share the same starting number (in this case, 10), and the
last one typed takes over. (In several Chapters we'll learn
how to “EDIT” out errors instead of retyping entire lines.)

“Allow Me to Introduce Myself”

Now we’ll tell the Computer to execute our program. The
BASIC command for this is simple: RUN. So type:

RUN
and press [EIEH -

Pressing and @ at the
same time throws a “switch”
inside the Model III and
modified Model I's so they
can print both upper and
lower case letters. Leave
it alone for now as we have
more important things to get
tangled up with.

Just wanted you to know
now in case you hit it by
accident!

Model II Use the BACK
SPACE and REPEAT keys

instead of back--arrow.

See the flashing block([0) or
the dash (—) that moves
across the screen as you
type in a letter? This is the
“cursor”. It tells us where
the next character we type
will appear on the screen.
Pushing the space bar moves
the cursor along one space
without printing anything.

If we press again, the
screen will read:

>

15

PART [

If you made no mistakes, the display will read:
HELLO THERE, | AM YOUR NEW TRS—80 MICROCOMPUTER!

If it doesn’t work, try typing RUN again. If RUN still doesn't
produce the greeting, there's something wrong in your
program. Type NEW to clear it out and type in the one-line
program again.

If it did work - let out a yell!
“HEY MA, IT WORKS!”

This is very important, because now that you have tasted
success with a computer, it may be the last you are heard from
in some time.

Note that the word PRINT was not displayed, nor were the
quotation marks. They are part of the program’s
Instructions and we didn't intend for them to be printed.

Type the word RUN again and hit

Type RUN to your heart’s content, watching the magic
machine do as it’s told, over and over. When you feel you've
got the hang of all this, get up and stretch, walk around the
room, look out the window — the whole act. You’ll soon get
hooked on computers and won’t have time for such things.

Whether typing in a program, or giving direct commands like
RUN, we have to hit [I{I{IJ to tell the Computer to look at what
we typed, and act accordingly.

Learned in Chapter 1

PRINT > prompt

& cursor

NEW < backspace key
RUN “ " quotation marks

16

COMMANDS are executed as soon as we type them in and
press I -

STATEMENTS are put into programs and are executed only
after we type the RUN command.

We'll put a review list like this at the end of each
chapter. Use it as a checkpoint to make sure you didn’t miss
anything.

Ak A A A A A A A A A A A A A A Ak kA hh A hA Ak

SPECIAL MESSAGE FOR PEOPLE WHO CAN'T RESIST
THE URGE TO PLAY AROUND WITH THE COMPUTER
AND SKIP AROUND IN THIS BOOK. (There always are a
few!) It is possible to “lose control” of the Computer so it
won’t give a READY message when you press [QI{ZJ. To
regain control, just press then . If that doesn’t
work, push the RESET button or switch. If that doesn’t
work, turn the computer OFF for 10 seconds, then turn it back
ON again.

Ho Fe Jo e vk e F de Rk o o ok ok ok ok ok K ok ok R o ok

Chapter 1

17

"Wow! Now THAT'S
AN EXPANDED PROGRAM!’

Fl "IeTER WE HAME
A LSTING, SH,ALL
We Run 77"

18

CHAPTER 2

Expanded Program

We have a program in the Computer. (If you turned it off
between chapters, fire it up again and type in linel0 from
Chapter 1) It’s only a one-liner, but let’s expand it by adding
a second line. In BASIC, every line in the program MUST
have a number, and the program is executed in order from the
smallest number to the largest. Type:

20 PRINT "YOU CALLED, MASTER. DO YOU HAVE A COMMAND?"

Check it carefully — especially the quote marks, then

Have you noticed that we
use @ for the number zero --

RUN ENiTE so we can distinguish

between the letter 0 and
number 0. The Video

If all was correct, the screen will read: Display does it this way —
and it's standard throughout
computerdom.

HELLO THERE. | AM YOUR NEW TRS—80 MICROCOMPUTER!
YOU CALLED, MASTER. DO YOU HAVE A COMMAND?

If it ran OK, answer the question by typing

YES

Oops — sorry about that! It “bombed”, didn't it? The
screen said

SN Error (or ?SN ERROR or SYNTAX ERROR or Syntax Error)

We deliberately “set you up” to demonstrate the Computer’s
ERROR troubleshooter. The Computer is smart enough to
know when we’ve made a mistake in telling it what to do, and it
prints a clue as to the nature of the error. In this case, the
? tells that it doesn’t understand what we are saying. SN
stands for the word “syntax” (an obscure word that refers to

19

PART [

the pattern of words in a language). ERROR means we made
one. The Computer is expecting a new program line or a
BASIC command. Later we'll learn how to make the
Computer accept a “YES” or “NO” and respond accordingly.

There are dozens of possible errors we can make, and in good
time we will learn the built in “ERROR CODES.” Meanwhile,
there is just one other important ERROR situation which we
should be able to recognize to pry ourselves out of accidental
trouble. Let’s retype line 20 and deliberately make a spelling
error:

2@ PRIMT "YOU CALLED, MASTER. DO YOU

and RUN
Again we get an ERROR message
?SN Error in 20 (or it’s equivalent)
but after READY instead of a prompt we get
20 m

This tells us that the error is in line 2. By pressing the
K03 key, line 20 will be printed in full so we can look for the
error. (Shhh!If you know what else it will let us do don’t say
anything yet. We don’'t want to confuse anyone with too
much too soon.)

Retype line 20 to correct the misspelling in PRIMT before
continuing on.

And the Program Grows

It is customary, traditional (and all that) to space the lines in a
program 10 numbers apart. Note that our two—line program
has the numbers 10 and 29. The reason...it’s much easier to
modify a program if we leave room to insert new lines in—
between the old ones. There is no benefit to numbering the
lines more closely (like 1,2,3,4). Don’t do it.

20

HAVE A COMMAND?"

Chapfer 2

Look at the Video Display. Let’s decide we’d rather not have
the two lines so close together, but would like to have space
between them. Type in the new line:

15 PRINT EIE3

Then

RUN

It should now read:

HELLO THERE, | AM YOUR NEW TRS—80 MICROCOM{EJTER!

YOU CALLED, MASTER. DO YOU HAVE A COMMAND?

Looks neater, doesn’t it? But what about line 15??? It says
PRINT. PRINT what???? Well — print nothing. That’s
what followed PRINT, and that’s just what it printed. But in
the process of printing nothing it automatically inserted a

space between the printing ordered in lines 10 and 20. Didn't that room between
lines 1¢ and 20 come in

Another important statement is REM, which stands for handy?

REMARK. It is often convenient to insert REMarks into a
program. Why? So you or someone else can refer to them
later, to help you remember complicated programming details,
or even what the program’s for and how to use it. It’s like
having a scratch—pad or notebook built into our
program. When we tell the Computer to execute the
program by typing RUN and [}, it will skip right over
any numbered line which begins with REM. A REM
statement has no effect on the program. Insert the following:

5 REM * THIS IS MY FIRST COMPUTER PROGRAM *
then

RUN 40y You might be wondering

why the asterisks(*) in line
#5? The answer is...they're

The run should read just like the last run, totally unaffected by just for decoration: let's give

. PR this operation some class!
the presence of line 5. Did it? Remember, anything that is

typed on a line following
REM is ignored by the
Computer.

21

PART 0

Well, this programming business is getting complicated and
I've already forgotten what is in our “big” program. How can
we get a listing of what our program now contains? Easy. A
new BASIC command. Type

LiST

The screen should read:

5 REM * THIS IS MY FIRST COMPUTER PROGRAM *
10 PRINT "HELLO THERE. I AM YOUR NEW TRS-80

15 PRINT

20 PRINT "YOU CALLED, MASTER. DO YOU HAVE A

You can call for a LIST any time the prompt appears on
the screen.

Where is the END of the program?

The end of a program is, quite naturally, the last statement we
want the Computer to execute. Many computers require us
to place an END statement at this point, so the computer will
know it’s finished. But with our TRS-80, an END statement
is optional — we can put it in or leave it out. Remember
though, if we want to run our BASIC programs on fussier
computers, we may need the END statement.

Let’s take a closer look at END. By the rules governing its
use, most dialects of BASIC which require END insist that it be
the last statement in a program, telling the computer “That’s
all, folks.” By tradition, it is given line number 99, or 999, or
9999 (or larger), limited by the largest number a specific
computer will accept. Our TRS-80 accepts Line numbers up
to 65529,

Let’s add an END statement to our program.

Type in:

99 END HIE¥
then

RUN

22

MICROCOMPUTERI"

COMMAND?"

When we get into more
complex programs, you'll
want to use END statements
to force the Computer to
stop at specified points —so
actually, END comes in very
handy even with the

TRS —80.

Chapter

Th(; sample run should read:

HELLO THERE. | AM YOUR NEW TRS—80 MICROCOMPUTER!

YOU CALLED, MASTER. DO YOU HAVE A COMMAND?

“Why didn’'t the word END print?” Answer: Because
nothing is printed unless it is the “object” of a PRINT
statement. So how could we get the Computer to print THE
END at the end of the program execution? Think for a
minute before reading on.

98 PRINT "THE END"

Erasing Without Replacing

Just for fun, let’s move the END statement from line 99 to the
largest usable line number, 65529. This requires two steps.

The first is to erase line 99. Note that we're not just making a
change or correcting an error in line 99 — we want to
completely eliminate it from the program. Easier done than
said: Type:

99
Then

The line is erased. How can we be sure? Think about this
now. Gotit??? Sure — “pull” a LIST of the entire program by

typing
LIST

The screen should show the program with lines 5, 19, 15, 20 and
98. 99 should be gone. Any entire line can be erased the
same way.

The second step is just as easy. Type

65529 END [ELEY

For example we're assuming
that line #98 is the last
PRINT statement in your
program.

2

23

PART D

...and the new line is entered. Pull a listing of the program
to see if it was. Was it??? Now RUN the program to see if
moving the END statement changed anything. Did it??? It
shouldn’t have.

Other Uses for END

Move END from #65529 to line #17, then RUN. What
happened? It ENDed the RUN after printing line 10 and a
space. RUN it several times.

Now ::ove END to line 13 and RUN. Then to line 8 and
RUN. Do you see the effect END has, depending where it is
placed (even temporarily) in a program? Feel like you are
gaining control over the machine? Youain't seen nothing yet!

Learned in Chapter 2

LIST PRINT (Space) Error Messages

REM
END

Line Numbering

24

NOTES

25

26

“VES, I'D LIKE. To SEE. ONE OF YOUR.

COMPUTERS WITH THE EDIT FEATURE..,

UH... \TS FOR. A FRIEND OF MINE WHO
MAKES A LOT OF PROGRAM ERRORS..

IT's OKAN... W& BROUGHT
HiS FRIEND'S CRETIT CARD...

2=

Chapter 3

The Editor — First Semester

An extraordinarily valuable feature of our BASIC is called the
EDITOR . Its purpose is as simple as its name. It lets us
“EDIT”, or make changes in a program. The TRS-80 uses a
so-called “line editor” since it edits letters and numbers in only
one line at a time. It is so easy to use but so powerful you'll
never again want to use a computer without one. We'll get
into more advanced EDITing in later chapters.

Clear out the current program with NEW. Then type in this
line (errors and all):

10 PRINT "THIS HEAR ARE SHORE A FLOXY CONFUSER."

and RUN
It should RUN just fine, and if that’s the way you usually talk
you probably don’§'see anything wrong. If, on the other hand,
you wish to change the sentence to something like

THIS IS SURE A FOXY COMPUTER.
then we need to do some EDITing in line 10.
In the first 2 Chapters we would just retype the entire line,
hoping we didn’t make more mistakes than we
eliminated. This particular example has so much to change it
might be just as easy to retype it, but our purpose is to
“exercise” the editor, so type:

EDIT 10

and see what happens.
Hokay ...we get

10 oy

a good (but not perfect) sign it’s in the EDITOR mode.

27

PART

To get out of this situation we could just hit . Beingin
EDITOR isn’t like being in BASIC. We only use when
we are done EDITing and want to return to BASIC. The
EDITOR is not part of BASIC. It's a special feature we call
up from BASIC using the word EDIT.

Hit the L Key.

The sereen now shows:

10 PRINT "THIS HEAR ARE SHORE A FLOXY
10 B

By Typing L we LISTed the line being edited. Then the
cursor returned back where we started — still in EDITOR.

Since we want line 10 to read THIS IS SURE A FOXY
COMPUTER, let’s first get rid of the word HEAR. Tap the
space bar slowly and watch it print one new character each
time. When you get to

16 PRINT "THIS

press the letter D (which stands for DELETE) 5
times. It will add to the screen:

P ITHITETTATIR

Between each pair of exclamation marks is the letter or space
which was DELETED. Press L again and let’s list the line to
see what it looks like now. But pressing L once just LISTs
the rest of the line. Pressing it a second time lists the entire
line as it now exists after EDITing. Shore enuf, the word
“HEAR” and the space which preceeded it are gone.

By the way, here are 2 additional ways to space forward and
backward — while in the EDIT mode.

1. To space forward 5 spaces (or other number), we can
type 5 and then press the space bar.

2. To BACKspace 5 spaces (or other number), we can type
5@

28

CONFUSER."

L

D

“loN DOYOU REMOVE A SPACE
If T ISNT THERE
To BE@N WTH 7"

SNRLE! USE
A ERPSER!
G2 ¢

!E on Model II.

Chapier 3

EDITing trick in the process. The EDIT letter S stands for
SEARCH. Instead of using the space bar and tapping over to
the A in ARE, let’s let the Computer SEARCH for the letter A.
As we look at line 10 from left to right, we see that the A in
ARE is the first A in the line, so type:

Let’s now change the word ARE to IS, and learn another S

SA (meaning, search for the first A)

and

10 PRINT "THIS &

is displayed.
Now we just learned that we can get rid of ARE by typing D
(for DELETE) 3 times in a row, but it’s quicker and easier to

just type

4D (do it) means “delete the next 4 characters”. (ARE
and the space following it)

The line now reads

19 PRINT "THIS !ARE ! \ARE \on Model IL.

Let’s type a couple of L’s to see what we have now:
10 PRINT "THIS SHORE A FLOXY CONFUSER."

We know we have to insert the word IS between THIS and
SHORE. Worded another way, we have to insert a new word
between the first two S's. Any ideas? How about
SEARCHing for the 2nd S? We won't print it — just search
for it.

Type
2SS (search for the 2nd S)
and the screen reads
19 PRINT "THIS! I

Now we can use the INSERT feature. Very carefully, and
only once (since nothing will show on the screen), type I.

29

PART [

You have activated INSERT. Type the letters
IS
and press the space bar once

The screen now reads
19 PRINT "THIS IS B

We've inserted the IS and a space following it, but must now
leave the INSERT mode. We can always completely bail out
of the EDITOR at any time by hitting [{[J[{}, but since we
have a lot more work to do on this line, we instead press
and the up—arrow key at the same time. As with pressing
I, nothing shows on the screen. Now press L to see what
we've got left.

19 PRINT "THIS IS SHORE A FLOXY CONFUSER."

10 g

If it seems like we're going slowly, you're right! The
EDITOR is so important but so simple we may as well learn it
right the first time. You know the old story, “there’s never
time to do it right the first time, but always time to do it over.”
Forging onward ...let's use the next feature called C (for
CHANGE, or exchange). We can change the word SHORE to
SURE if we DELETE the H and CHANGE the O toa U. So,
let’s type

2SH to SEARCH for the 2nd H

1¢ PRINT "THIS 1S S B

and D to DELETE it.
Very carefully, type a single

C (it will not show on the screen)

30

Model II use the key
instead of shift up-arrow.

C

Ghapfer $

This permits us to change the next letter to some other letter
or character. Type

U
and then

L twice to get a fresh new line to see what's left.

1@ PRINT "THIS IS SURE A FLOXY CONFUSER."
Think for a moment. How can we change FLOXY to FOXY?
How about

SL to SEARCH for the first L, then

D to DELETE it, then

L twice to see what the line now looks like.

180 PRINT "THIS IS SURE A FOXY CONFUSER."

19
[]

Only one more word to change. Should we go into the word
CONFUSER and DELETE the N & F and INSERT M & P?
Would it be easier to just CHANGE those letters instead?
What about the S? Think about it.

Of course! It takes fewer steps to CHANGE than to
DELETE and then INSERT, so we always CHANGE when
possible. Perform this sequence:

2SN Search for the second N (the first one is in
PRINT)

2C prepare to CHANGE the next 2 letters
MP the 2 new letters

SS SEARCH for the next S

C prepare to CHANGE one letter

T the new letter

L finish listing the line so we can look at it.

31

PART 1

Whew! Finally done. But wait — we're still in
EDITOR. Press , see the prompt, and know that we're
back in BASIC. RUN to be sure.

Despite our taking each editing task one step at a time, it is
possible to make all these EDITing changes in only one pass
through the line. The purpose of an editor is to save time.

Since you're now the “ace of the base” when it comes to flying
this EDITOR, let’s type

NEW
and type in old line 19 again, the EDIT it in one pass.
1¢ PRINT "THIS HEAR ARE SHORE A FLOXY CONFUSER."

Follow with me now, step by step. If you blow it, start all
over by retyping line 10.

>EDIT 18

32

Chapler 3

L to LIST it

2SH SEARCH for 2nd H

8D DELETE next 8 characters
I prepare for INSERT

IS the new letters

SHIFT f terminate INSERT 54 on Model II.

SH SEARCH for next H

D DELETE the H

C CHANGE next character

U the new character

SL SEARCH for the next L

D DELETE it

SN SEARCH for the next N

2C CHANGE next 2 characters

MP the new characters

SS SEARCH for the next S

C CHANGE next character

T the new character

LL to LIST the edited program for inspection

to leave the EDITor mode
Pretty slick, huh? With some practice it will take you less
than 30 seconds. From here on, you should always use the
EDITOR for changes, especially in long lines. Compare the
time it would take to change only one letter or number in a

very long line by retyping that line, with the speed of doing it
with the EDITOR.

33

PART [

o e e]
EXERCISE 3-1: Use the editor to change:

16 PAINT "WE CAN TAKE CREDIT FOR CONSUMER PROGRESS."

to:

10 PRINT "WE CAN EDIT COMPUTER PROGRAMS.™

You'll find sample answers in Section B, along with further
comments.

Learned in Chapter 3

EDIT Editing features

34

NOTES

35

36

"HEY MAN! LET ME GET LERON OVER HERE]
HE WAS ALWAYS @ooD AT BREAKING INTO AUTOS,
LETS SEE (F HE CAN BREAK ouT oF T/’

INFORMATION PLEASE

. FoR.
et SAN QUENTIN...

CHAPTER 4

AUTOmatic Line
Numbering

They Laughed When I Sat Down At The Computer To Play

As the artist approaches a blank canvass with only a gleam in
his eye, so you approach your empty Computer and type:

AUTO

the screen returns

l@.

Are we in EDITOR??? It looks like it! But we're not. We
are in an AUTOmatic line numbering mode. Type:

PRINT “WHAT IS GOING ON HERE?"

and

0
2 B

pops up on the screen.
Type:
PRINT ““THIS IS RIDICULOUS."
and

0
3]

appears.

Well, it’s obvious at this point that we’re being fed the new line
numbers as fast as we need them. Hit the [I{I{I# key a few
more times and watch them jump. Okay — how do we get
OUT of AUTO? Hit the key.

Type NEW if your Computer
isn’t empty.

The Model II shows a ?UL
ERROR when you hit
ENTER. But no harm done.

37

PART
Type LIST and see that only those line numbers you actually
used (10 and 20) contain anything.
Type NEW, then

AUTO 1000,200
Hit the key a half dozen times or so and the pattern
becomes immediately clear. The “1009” established the

beginning line number, and the “200” determined the spacing
between lines.

Hit and type NEW again, then
AUTO 1000

and

a few times.

(1ZYE out of AUTO and start again with

AUTO 30000, |

and a few [{{{¥s. Very handy with very big
numbers. Press .

How about

AUTO 17,4
You get the idea. It is even possible to use AUTO as a
statement in a program, tho I can’t think of any reasonable

excuse for putting it there. Can you?

Unless you specify otherwise, AUTO will always begin on line
1¢ and always space the lines 10 numbers apart.

38

One important caution. Whenever you get fooling with
something that’s automatic, a degree of personal control is
lost. Enter this quickie:

10 PRINT "NOW WHAT ARE WE UP TO?"

20 PRINT "BEATS ME!"

99 END
Then type

AUTO

... oh, oh! What does the

10* mean?
The asterisk means that there is already a line number 10, and
if we hit it will erase the existing line 1. That’s fine if
it’s what we want. Otherwise, we MUST in order to
escape.
The AUTO command is not just for the lazy, it can be a real
time saver (and save mental energy as well). For the touch

typist who doesn’t have to look at the screen when typing fast,
it’s a real delight.

AUTO.

Starts the automatic line numbering with the current line
number. Similar to the EDIT. Feature.

Learned in Chapter 4

AUTO Automatic Line
Numbering

AUTO.

Ghepler 4

39

40

NOTES

Part 11

Speak to Me, Oh Great Computer

41

I
WELL | DON'T KNow ABOUT THE COMPUTER,
BUT HAVING ONE IN THE HOUSE SURE

HAS MADE THE KkiDs MucTipLy!”

/) 60
@\/}’} Lﬁj\
)
I

42

CHAPTER 5

Math Operators

“But Can It Do Math?”

Yes, it can. Basic arithmetic is a snap for the TRS-80. So are
highly complex math calculations — when you write special
programs to perform them. (More on this later.)

BASIC uses the four fundamental arithmetic operations, plus a
fifth which is just a modification of two of the others.

1. Addition, using the symbol +

2. Subtraction, using the symbol —
(See — nothing to this. Just like grade school. I
wonder whatever happened to old Miss ... Well, ahem
— anywayl

3. Multiplication, using the special symbol *
(Oh drat, I knew this was too easy to be true!)

4. Division, using the symbol /
(Well, at least it’s simpler than the old + symbol)

5. Negation (meaning “multiply-times-minus-one”), using
the symbol -

Now that wasn’t too bad, was it? Be careful. We cannot use
an “X” for multiplication. Unfortunately, a long time ago a
mathematician decided to use “X”, which is a letter, to mean
multiply. We use letters for other things, so it’s much less

confusing to use a “*” for multiplication. Confusion is one
thing a computer can’t tolerate.

So, to computers, “*#” is the only symbol which means
multiply. After using it a while, you, too, may feel we should
do away with X as a symbol for multiplication.

Putting all this together in a program is not difficult, so let’s do
it. First, we have to erase the “resident program” from the
Computer’s memory.

Type the command

NEW Hihi1{s

Of course, we also need that
old favorite, the equals sign
(=). But wait - - the BASIC
language is particular about
how we use this sign! Math
expressions (like 1 +2*5) can
only go on the right-hand
side of the equals sign; the
left-hand side is reserved for
the “variable name”. This is
the name we give to the
result of the math expres-
sion. {This all may seem a
little strange, but it's really
quite simple, as you'll dis-
cover in the next few pages.)

“Resident program” is com-
puter talk for “what's
already in there”.

43

PART 00

Then type

LIST S

to check that there’s nothing left in memory. The Computer
should come back with a simple

READY
>

Putting the Beast to Work

We will now use the Computer for some very simple problem-
solving. That means using equations —(oh — panic). But
then, an equation is just a little statement that says what’s on
one side of the equals sign amounts to the same as what’s on
the other side.

That can’t get too bad (it says here).
We're going to use that old standby equation,

“Distance traveled equals Rate of travel times
Time spent traveling.”

If it’s been a few years, you might want to sit on the end of a
log and contemplate that for awhile.

To shorten the equation, let’s choose letters (called variables)
to stand for the three quantities. Then we can rewrite the
equation as a BASIC statement acceptable to the TRS-80:

40 D =R * T

What’s that 40 doing there? That's the program line
number. Remember, every step in a program has to have
one. We chose 40, but another number would have done just
as well. The extra spaces in the line are there just to make
the equation easier for us to read; the TRS-80 ignores
them. Later, when you write very long programs, you'll
probably want to eliminate extra spaces, because they take up
memory space. For now, they may be helpful, so leave them
in.

44

Model II: Ready

Remember, we have to use
the * for multiplication.

Here’s what line 40 means to
the Computer: “Take the val-
ues of R and T, multiply
them together, and assign
the resulting value to the
variable D. So until further
notice, D is equal to the
result of R times T.”

Chapter &

We can use any of the 26 letters from A through Z to identify
the values we know as well as those we want to figure
out. Whenever you can, it’s a good idea to choose letters that
remind you of the things they stand for — like the D, R, and T
of the Distance, Rate, Time equation.

To further complicate this very simple example, we will point
out that there’s an optional way of writing the equation, using
the BASIC statement LET:

40 LET D = R * T

This use of LET reminds us that making D equal R times T was
our choice, rather than an eternal truth like1 + 1 = 2. Some
computers are fussy, and always require the use of LET with
programmed equations. Our TRS-80 says, “Have it your
way”.

Okay — let’s complete the program.

Assume:
Distance (in miles) = Rate (in miles per hour) multiplied
by Time (in hours). How far is it from San Diego to

London if a jet plane traveling at an average speed of 500
miles per hour makes the trip in 12 hours?

Type in the following:

We could not reverse the
equation and write, R*T =D.
This would have no meaning
for the Computer. Remem-
ber, the left hand side of the
equation is reserved for
variable names (whichever
letter we choose). The right
hand side is the place to put
math expressions involving
numbers, operators, and
known variables.

Ask your accountant “How
much is 1 + 1"? If he says
“what would you like it to
equal?” he's a good choice.

(Yes, I know you can do that
one in your head but that’s
not the point!)

1¢ REM * DISTANCE, RATE, TIME PROBLEM * N

20 R = 500 EIE
39 T = 12 CEIEE
40 D = R * T I

Check the program carefully, then
RUN

Hum de dum...... ho-hum...... (this sure is a slow computer).

READY

Remember AUTO?

45

PART 00

All it says is READY. The Computer doesn’t work!

Yes it does. It worked just fine. The Computer multiplied
500 times 12 just like we told it, and came up with the answer
of 6000 miles. But we forgot to tell it to give us the
answer. Sorry about that.

EXERCISE 5-1: Can you finish this program without
help? It only takes one more line. Give it a good try before
reading on for the answer. That way, the answer will mean
more to you. (Hint: We've already used PRINT to print
messages in quotes. What would happen if we said 50 PRINT
“D”? ... No, we want the value of D, not “D”
itself. Hmmmm, what happens when we get rid of the
quotes?)

DON'T READ BEYOND THIS POINT UNTIL YOU'VE
WORKED ON THE ABOVE EXERCISE!

Well, the answer of 6000 is correct, but its “presentation” was
no more inspiring than the printout from a hand calculator.
This inevitably leads us back to where we first started this
foray into the unknown — the PRINT statement.

Note that we said in line 50 PRINT D. There were no quotes
around the letter D like we had used before. The reason is
simple but fairly profound. If we want it to print the value of
a variable, in this case D, we leave the quotes off. That simple
message is worth serious thought before continuing on.

Now suppose we want to include both the value of something
and some exact words on the same line. Pay attention, as you
will be doing more and more program design yourself, and
PRINT statements give beginners more trouble than any
other single part of computer programming. Type in the
following:

Did you think seriously
about it?!. .. Then on you go!

50 PRINT "THE DISTANCE (IN MILES) IS",D

Then

46

(REMEMBER: Typing in a
statement with a line num-
ber that already is in use
erases the original statement
entirely —and that's what we
want to do here.)

Chapler &

The display should appear:
THE DISTANCE (IN MILES) IS 6000

How about that! The message enclosed in quotes is printed
exactly as we specified, and the letter gave us the value of D.
The comma told the Computer that we wanted it to print two Model II - 5 items per line.
separate items on the same line. We can tell it to print up to
four items on the same line, simply by inserting commas
between them.

With this in mind, see if you can change line 50 so the
Computer finishes the program with the following message:

THE DISTANCE IS 6000 MILES.

Break up the quoted message into two parts, and put the
variable in between them on the PRINT line. (Use the
EDITOR).

5¢ PRINT "THE DISTANCE IS", D, "MILES."

Now what about all that extra space on the printout
line? The reason for it is that the computer divides up the
screen width into four zones of 16 characters each. When a
PRINT statement contains two or more items separated by
commas, the computer automatically prints the items in
different print zones. Automatic zoning is a very convenient
method of outputting tabular information, and we’ll explore
the subject further later on.

Model II has five zones of 16
characters each.

It’s possible to eliminate all that extra space in the output from
our Distance, Rate, Time program. EDIT the last version of
line 50, substituting semi-colons (;) for commas throughout the
line.

(Careful --don’t replace the
period with a semicolon.)

RUN

The display should appear:
THE DISTANCE IS 6000 MILES.

Look carefully at line 59. There’s no unused space between
the S in IS, the D, and the M in MILES. But in the printout on
the display, there is a space between IS and 800, and another
space beteen 6009 and MILES. How come?

47

PART 00

Reason: Numbers are always printed with leading and
trailing blank spaces. As we do more programming, this
point will become important.

WHEW!

Well, we have already covered more than enough commands,
statements and math operators to solve myriads of problems.

Now let’s spend some time actually writing programs to solve
problems. There is no better way to learn than by doing, and
everything covered so far is fundamental to our success in later
Chapters. So don't jump over these exercises — it’s the best
way to get into the thick of programming.

Lol o e e T e

EXERCISE 5-2: Write a program which will find the time
required to travel by jet plane from London to San Diego, if the
distance is 6000 miles and the plane travels at 500 MPH.

48

Math operators? — they're
the=, +, -, * and / symbols
we talked about earlier.

R L

EXERCISE 5-3: If the circumference of a circle is found by
multiplying its diameter times7, (3.14) write a program which
will find the circumference of a circle with a diameter of 35

feet.

R R R

EXERCISE 5-4: If the area of a circle is found by multiplying 7
times the square of its radius, write a program to find the area
of a circle with a radius of 5 inches.

Chapter ©

49

PART 11

Lo e B e e e

EXERCISE 5-5: Your checkbook balance was $225. You've
written three checks (for $17, $35 and $225) and made two
deposits ($40 and $200). Write a program to adjust your old
balance based on checks written and deposits made, and print
out your new balance.

Learned in Chapter 5-1

LET (Optional)

+ H

- A-Z variables Remember, we can use any
of the 26 letters, not just D,
R and T (they were just con-

- venient for our problem).

50

NOTES

51

]

NO. IT'S JUST THAT | SHY AWAY
FROM PRICE TAGS THAT HAPPEN To Be
WRITTEN N SCIENTIFIC NOTATION!

b=

]

52

CHAPTER 6
Scientific Notation

Are There More Stars or Grains of Sand?

In this mathematical world we are blessed with very large and
very small numbers. Millions of these and billionths of those.
To cope with all this, our Computer uses “exponential
notation”, or “standard scientific notation” when the number
sizes start to get out of hand. The number 5 million
(5,000,000), for example, can be written “5Ef06”. This means,
“the number 5 followed by six zeros”.

If an answer comes out “5E-06”, that means we must shift the
decimal point, which is after the 5, six places to the left,
inserting zeroes as necessary. Technically, it means 5 X 107,
5 millionths, (.000,005). It’s really pretty simple once you get
the hang of it, and a lot easier to keep track of numbers
without losing the decimal point. Since the Computer insists on
using it with very large and very small numbers, we can just as
well get in the good habit, too.

Type NEW before performing the following exercises.

EXERCISE 6-1: If one million cars drove ten thousand miles in
a certain year, how many miles did they drive altogether that
year? Write and run a simple program which will give the
answer.

Or technically, 5*106, which is

5 times ten to the sixth

power:
5%10*10*10*10*10*10

In our BASIC, that's
5/10/10/10/10/10/10

Didn't forget the did
you? Up till now we've been
reminding you that you have
to enter each line or
command — but from now
on, we'll assume you've got
that little routine matter
down pat.

53

PART (0

EXERCISE 6-2: Change lines 20 and 80 in the Car Miles
Solution program (from Exercise 6-1) to express the numbers
written there in exponential notation, or SSN (Standard
Scientific Notation). Then RUN it.

Learned in Chapter 6

E —notation

54

(E stands for “exponent” and
in our case it refers to the
exponent of 10 — i.e. the
number of zeros to the right
or left of the main number.)

NOTES

55

CHAPTER 7

() And The Order of
Operations

Parentheses play an important role in computer programming,
just as in ordinary math. They are used here in the same
general way, but there are important exceptions.

1. In BASIC, parentheses can enclose operations to be
performed. Those operations which are within
parentheses are performed before those not in
parentheses.

2. Operations buried deepest within parentheses (that is,

parentheses inside parentheses) are performed first. If you want to be sure your
problems are calculated
. o . . correctly, use () around
3. When there is a “tie” as to which operations the operations you want
Computer should perform first after it has removed all performed first.

parentheses, it works its way along the program line
from left to right doing the multiplication and division.

It then starts at the left again and performs the Recall the old memory aid,
dditi d bt ti My Dear Aunt Sally"? In
addition and subtraction. math we are supposed to do
Multiplication and Division
NOTE: INT, RND and ABS functions are performed before first (from left to right), then
. qs . . e e y come back for Addition and
multiplication and division. (We haven’t talked about these Subtraction (left to right).
yet, but just to be complete...) The TRS-80 uses the same
sequence.

4. A problem listed as (X) (Y) will NOT tell the Computer
to multiply. X*Y is for multiplication.

Example: To convert temperature in Fahrenheit to Celsius
(Centigrade), the following relationship is used:

The Fahrenheit temperature equals 32 degrees plus nine-
fifths of the Celsius temperature.

Or, maybe you're more used to the simple formula —

Fo - %Xco +32

PARYT 00

Assume we have a Celsius temperature of 25°. Type in this
NEW program and RUN it.
10 REM * CELSIUS TO FAHRENHEIT CONVERSION *

20 C = 25
3 F=(9/5) *C+ 32
40 PRINT C ; "DEGREES CELSIUS ="; F ;"DEGREES FAHRENHEIT."

Sample Run:
25 DEGREES CELSIUS = 77 DEGREES FAHRENHEIT.

First notice that line 40 consists of a PRINT statement

followed by four separate expressions — two variables and)
. e ”» “ . ” Remember what the semi-

two groups of words in quotes called “literals” or “strings”. colons are for?

Next, note how the parentheses are placed in line 30. With
the 9/5 secure inside, we can multiply its quotient times C, then
add 32.

Now, remove the parenthese in line 30 and RUN again. The
answer comes out the same. Why?

1. On the first pass, the Computer started by solving all
problems within parentheses, in this case just one
(9/5). It came up with (but did not print) 1.8. It then
multiplied the 1.8 times the value of C and added 32.

2. On our next try, without parentheses, the Computer
simply moved from left to right performing first the
division problem (9 divided by 5), then the
multiplication problem (1.8 times C), then the addition
problem (adding 32). The parentheses really made no
difference in our first example.

Next, change +32 to 32+ and move it to the front of the
equation in line 30. Run it again, without parentheses.

Did it make a difference in the answer? Why not?

Answer: Execution proceeds from left to right, multiplication
and division first, then returns and performs addition and
subtraction. This is why the 32 was not added to the 9 before
being divided by 5. Very important! If they had been added,
we would of course have gotten the wrong answer.

58

EXERCISE 7-1: Write and run a program which converts 65°
Fahrenheit to Celsius. The rule tells us that “Celsius
temperature is equal to five-ninths times what's left after 32°
is subtracted from the Fahrenheit temperature.”

5

Co=(F°-32X [—g}

EXERCISE 7-2: Remove the first set of parentheses in the
#7-1 answer and run again.

EXERCISE 7-3: Replace the first set of parentheses in
program line 30 and remove the second pair of parentheses,
then RUN. Note how the answer comes out — correctly!

Ghapter 7

59

PART 00

EXERCISE 7-4: Insert brackets in the following equation to
make it correct. Write a program to check it out on the

TRS-80.

30 —-—9—8—7—6=28

Learned in Chapter 7

()

Order of
Operations

60

NOTES

61

62

"WHY WouLD You HAVE TO CALL
YOUR RELATIONS EVERY TIME VoU

WANT TO MAKE A DECISION?”

CHAPTER 8

Relational Operators

If you liked the preceeding Chapters, Then you're going to
love the rest of this book!

Because we're really just getting into the good stuff. Like IF-
THEN and GOTO statements that let your Computer make
decisions and take ...er, executive action. But first, a few
more operators ...

Relational operators allow the Computer to compare one
value with another. There are only three:

1. Equals, using the symbol =
(How'd you guess?)

2. Is greater than, using the symbol >

3. Is less than, using the symbol <
Combining these three, we come up with three more operators:

4. Is not equal to, using the symbol < >

5. Is less than or equal to, using the symbol< =

6. Is greater than or equal to, using the symbol > =
By adding these six relational operators to the four math
operators we already know, plus new statements, called IF-
THEN & GOTO, we create a powerful system of comparing
and calculating that becomes the central core of everything

else that follows.

The IF-THEN statement, combined with the six relational
operators above, gives us the action part of a system of logic.

Example: A < B means A is
less than B. To help you

distinguish between < and >,

just remember that the
smaller part of the < symbol
points to the smaller of the
two qualities being
compared.

63

PART 11

Enter and RUN this program:

16 A =5
20 IF A = 5 THEN 50
3¢9 PRINT "A DOES NOT EQUAL 5."

40 END
56 PRINT " A EQUALS 5."

The screen should display:
A EQUALS 5.

Now let’s examine the program line by line.
Line 10 establishes the fact that A has a value of 5.
Line 20 is an IF-THEN statement which directs the Computer
to go to line 50 IF the value of A is exactly 5, skipping over
whatever might be inbetween lines 20 and 50. Since A does
equal 5, the Computer jumps to line 50 and does as it says,
printing A EQUALS 5. Line 30 and 40 are not used at all in this
case.
Now, change line 10 to read:

16 A = 6
and RUN

The run should say:

A DOES NOT EQUAL 5.

Taking it a line at a time:

Line 10 establishes the value of A to be 6.

Line 20 tests the value of A. If A equals 5, THEN the Computer
is directed to go to line 50. But “the test fails”, that is, A does

NOT equal 5, so the Computer proceeds as usual to the next
line, line 30.

64

Chapfer

Line 30 directs the Computer to print the fact that A DOES
NOT EQUAL 5. It does not tell us what the value of A is, only
that it does not equal 5. The Computer then proceeds on to the
next line.

Line 40 ENDs the program’s execution. Without this
statement separating lines 30 and 50, the Computer would
charge right on to line 50 and print its contents, which
obviously are in conflict with the contents of line 30. Thisis an
example of using an IF-THEN statement with only the most
fundamental relational operator, the equals sign.

Optional THEN

Both THEN and GOTO are optional in expressions which do
not require GOing to a line number if the test passes. This can
be useful in long PRINT lines, where PRINTing is the result if
the test passes.

20 IF X = @ PRINT "X = g" (works)
but

20 IF X = 0 100 (does not work)

99 END

100 PRINT "100 HERE"

Line 20 must read either:

20 IF X = @ THEN 100
or
20 IF X = 0 GOTO 100

Now let’s see if you can accomplish the same thing by using the
“does not equal” sign:

Not optional on Model II.

Note: A comma can replace
THEN as in

20IF X = 0,100

but

it s highly NOT
recommended. We've got
enuf problems without
adding that kind of non-
standard notation.

65

PART 10

EXERCISE 8-1: Rewrite the resident program using a “does
not equal” sign in line 20 instead of the equals sign, changing
other lines as necessary, so the same results are achieved with
your program as with the one in the Example.

EXERCISE 8-2: Change line 10 to give A the value of 6. Leave
the other four lines from #8-1 as shown. Add more program
lines as necessary so the program will tell us whether A is
larger or smaller than 5 and RUN.

No sample answers are
given since you are choosing

EXERCISE 8-3: Change the value of A in line 10 at least three your own values of A. It
more times, running after each change to ensure that your new will be obvious whether or

not you are getting the right
program works correctly.

answer.

66

The IF-THEN statement is what is known as a
CONDITIONAL branching statement. The program will
“branch” to another part of the program on the condition that it
passes the test it contains. If it fails the test, the program
simply continues to the next line.

A statement called GOTO is known as an UNCONDITIONAL
branching statement. If we were to replace lines 40 and 80
with GOTO 99, and add line 99:

99 END

...whenever the Computer hit line 40 or 80 it would
unconditionally follow orders and go to 99, ENDing the run.
While your TRS-80 is rather broad-minded when it comes to
accepting these various BASIC dialects, many computers are
not. For practice, change lines 49, 80 and 99 as discussed
above and RUN.

Did the program work OK as changed? Did you try it with
several values of A? Be sure you do so! We will find many uses
for the GOTO statement in the future.

Learned in Chapter 8 -

IF-THEN = Conditional
branching
GOTO >
Unconditional
< branching
< > Optional THEN
< =
> =

Chapler

67

68

W AND THIS MY WIFE, MARY SVE, SHE LIKES

COMPUTERS WHEN THEY USTEN To HER
BUT NOT IHEN THEY TALK BACK/

Chapter 9

It Also Talks and Listens

Begin this chapter by typing in the sample answer program to
Exercise #8-2:

By now you have probably gotten tired of having to retype line
10 over each time you wish to change the value of A. The
INPUT statement is a simple, faster and more convenient way
to accomplish the same thing. It’s a biggie, so don’t miss any
points.

Add the following lines to the resident program:

5 PRINT "THE VALUE I WISH TO GIVE A IS"
19 INPUT A

Now RUN
The Computer should print:

THE VALUE | WISH TO GIVE A IS

?

N
See the question mark on the screen. It means, “It’s your
turn — and I'm waiting ...”

Enter a number and see what happens. It should be identical
to what happened when you typed in the same number earlier
by changing line 10. RUN the program several more times to
get the feel of the INPUT statement.

Pretty powerful, isn’t it?

Let’s add a touch of class to the INPUT process by changing
line 5 as follows:

5 PRINT "THE VALUE I WISH TO GIVE A IS";

Resident — remember, that’s
the program that is now
residng in the Computer.

Did you use the EDITOR to
add the semicolon?

69

PART 00

Look at that line very carefully. Do you see how it differs
from the earlier line 5??? It is different
semicolon has been added at the end of the line.

Think back a bit now. We used semicolons before in PRINT
statements, but only in the middle to hook several of them
together so they would print close together on the same line.
In this case, we put a semicolon at the end, so the question mark
from the next line will print on the same line, rather than down
there by itself. After changing line 5 as above, RUN it. It
should read:

THE VALUE | WISH TO GIVE A IS? B
Please note that you cannot use a semicolon indiscriminately
at the end of a PRINT statement. It is only meant to hook
two lines together, both of which have printing to be
done. The INPUT line prints the question mark. We shall
see later where two long lines starting with PRINT can be
connected together by the trailing semicolon so as to print on
the same line.

Your TRS-80 Interpreter is, as has been mentioned, able to
speak “The King’s BASIC” as well as a variety of
dialects. The first of the many “short-cut” dialects we will be
exploring throughout these chapters involves combining
PRINT and INPUT into one statement. Change line 5 to
read:

5 INPUT "THE VALUE I WISH TO GIVE A IS";

then delete line 19 by typing
10

then RUN.

The results come out exactly the same, don’t they? Here is
what we have changed:

1. PRINT to INPUT

2. Both statements on the same line
3. Eliminated the extra line

70

Interpreter — is the internal
program that allows us to
“rap” with the TRS-80 in
English (BASIC).

A

Sometimes the word dialect
is used when talking about
the different forms of a
computer language. Just as
with dialects in “human”
languages, there are
differences in word uses in
BASIC.

That's why I wrote The
BASIC Handbook, available
at better Computer and
Bookstores everywhere, and
in English, French, German,
Swedish, and Italian.

Chapler

In the long programs which you will be writing, running and
converting, this shortcut will be valuable.

Up to now, all our programs have been strictly one-shot affairs.

You type RUN, the Computer executes the program, prints N, _ gon't enlarge the
the results (if any) and comes back with a READY. Torepeat program by repeating its
the program, you have to type in RUN again. Can you think Stf;?::f{::f over t‘:g::n -
of another way to get the Computer to execute a program two Y)
or more times?

We'll answer that question by upgrading our Celsius-to-
Fahrenheit conversion program (Chapter 7). If you think
GOTO is a powerful statement in everyday life, wait till you
see what it does for a computer program!

Type NEW and the following:

10 REM * IMPROVED CELSIUS TO FAHRENHEIT CONVERSION PROGRAM *
2@ INPUT "WHAT IS THE TEMPERATURE IN DEGREES CELSIUS"; C

3 F=(9/5) *C+ 32

40 PRINT C ; "DEGREES CELSIUS = "; F ;"DEGREES FAHRENHEIT."

50 GOTO 20 You'll have to hit
to get out of the program
loop.

and RUN.

The Computer will keep on asking for more until you get tired
or the power goes off (or some other event beyond its control).
This is the kind of thing a Computer is best at — doing
something over and over again. Modify some of the other
programs to make them self-repeating. You'll find they're
much more useful that way.

These have been 5 long and “meaty” lessons, so go back and
review them all again, repeating those assignments where you
feel weak. We are moving out into progressively deeper
water, and it is complete mastery of these fundamentals that is
your life preserver.

71

PART 10

Learned in Chapter 9

INPUT ; Trailing
and semicolon
INPUT with built-

in PRINT

72

NOTES

73

74

"2PWS2 1547 say.
PO YoU SUPPOSE | COULD
SEE THAT AGAIN?"

"Do You THINK He'p
BW IT IF THe)
ANSWER. WAS 3 7

CHAPTER 10

Calculator or Immediate
Mode

Two Easy Features

Before continuing our exploration of the nooks and crannies of
our Computer — acting as a computer, we should be aware that
it also works well as a calculator. If we omit the line number
before certain commands, the Computer will execute them,
print the answer on the screen, then erase the command you
entered. What's more, it will work as a calculator even when
a computer program is loaded, without disturbing that program.
All we need, to be in the calculator mode, is the prompt >.

Example: How much is 3 times 4? Type in

PRINT 3 * 4
...the answer comes back

12
Example: How much is 345 divided by 123?

PRINT 345/ 123
...the answer is

2.80488
Spend a few minutes making up routine arithmetic problems of
your own, using the calculator mode to solve them. Any
arithmetic expression you might use in a program can also be
evaluated in the calculator mode. This includes parentheses
and chain calculations like A*B*C.

Try the following problem:

PRINT (2/3)*3/2)

75

PART 00

The answer comes back:

1

Calculator Mode for Troubleshooting

Suppose a program isn’t giving the answers we expect. How
can we troubleshoot it? One way is to ask the Computer to
tell what it knows about the variables used in the resident
program.

Example: PRINT X. The Computer will PRINT the present
value of X.

Another thought: Something is stored in every memory cell
(even if YOU have not put anything there). Enter and RUN
this instruction in the calculator mode:

Keep this handy tip in mind
as you get into more
complex programs.

PRINTA.B.C, D, E,F,GHLKLMNOPQRSTUV,WXYZ

The answers depend on the values last given those
variables. If you turn the Computer off, then on again, all
variables will be set to §. Typing RUN also “initializes” the
variables to 0.

The Memory Command

Since programs do occupy space in the Computer’s memory,
and program size is limited to how much memory we have
purchased, it may be important to know how much memory we
are using for a given program. That’s what the Memory
Command is for.

The least amount of memory available for TRS-80 is 4K. This
means there are about 4,000 different memory locations to
store and process your programs. (4K = 4096.) (If you have
16K of memory, the number is 16384.)

The computer uses some of the free memory for program
control. To see the actual amount of memory available for
use, type:

NEW

PRINT MEM

76

We will probably get all
Zeros.

This manual is meant to be
for the computer operator
and programmer, so we are
studiously avoiding
computer electronics theory
— when possible.

Chapter

...and the answer will be

15314

With no program loaded, there are 15314 memory locations
available for use. The difference in memory space between
15314 and 16384 is set aside for processing programs and
overall management and “monitoring” of what the Computer is
doing.

Type in this simple program:

10 A = 25

then measure the memory remaining by typing
PRINT MEM

...the answer will be
15303

The program you entered took 15814 — 15303 = 11 bytes of
space. Here is how we account for it:

1. Each line number and the space following it (regardless
of how small or large that line number is) occupies 4
memory cells. The “carriage return” at the end of the
line takes 1 more byte, even though it does not print on
the screen. Thus, memory “overhead” for each line,
short or long is 5 bytes.

9. Each letter, number and space takes 1 byte. In the
above program 5 bytes for overhead + 6 bytes for the
characters = 11 bytes.

Now, type RUN, then check the memory again with PRINT
MEM. It changed to 15296 — 7 more bytes! When RUN, a
simple variable like the A takes up 3 bytes and the numerical
value takes another 4 — totaling 7.

NOTE: If you don't get this
answer (for example a very
large number or one with a
— in it), turn the Computer’s
POWER off for at least 10
seconds and then turn it on
again. Try PRINT MEM
once more. (If your TRS-80
has 4K of RAM, expect 3026.
Numbers for Model I and II
Computers will vary widely
with factory changes and
upgrades.)

Byte — is the basic unit of
storage for most computers;
normally it is considered as
a string of eight binary
digits (bits). Thus a byte =
8 bits.

In the Model 16 it is 16 bits.

10

77

PART 00

We will be studying memory requirements in more detail
later.

Obviously, the short learning programs we have been writing
so far are not taking a lot of memory space. This changes
quickly, however, as we move to more sophisticated
programming. Make a habit of typing PRINT MEM when
completing a program to develop a sense of its size and
memory requirements.

Learned in Chapter 10

PRINT MEM Calculator Mode

Memory

Byte

78

NOTES

79

80

'S 7 HE Tiene | (2

| "My SISTER CANT STAND

THE ROLLING STONES! WHAT ABOUT

STICKING THIS COMPUTER. CASSETTE
ON HER STEREO TAPE Deck.?”

PR\ <N
I e”G, 0 7)\\
, a%/

FROM STAR WARS 7
)

Qr Qf I

CHAPTER 11

Using Cassette Tape
And Disk

We will soon write and run long and powerful programs. It
becomes tedious to type them in accurately just once, let alone
each time we want to use them. Impressing your friends with
this super-whazzoo Computer is somewhat more difficult if
they sit watching TV reruns of Star-Trek while you take an
hour to type in a program. There has to be a better way.

The TRS-80 has a built-in “Cassette Tape Interface” which
allows us to record and store any program on high quality
cassette tape. A full “4K” of memory can be dumped onto
tape, or loaded from tape, in under 3 minutes. Most programs
are shorter and take even less time. That isn’t even enough
time to get through the deodorant ads. Besides building up
your own tape library of computer programs, you can
exchange favorite programs with other TRS-80 owners by
exchanging tapes.

Recording

Only a little practice is required. Follow the yellow brick
road:

1. Obtain a Recorder (CTR-80A), interconnecting Cable
and cassette tape.

2. Connect the cable between the TAPE jack on the back
of the TRS-80 and the Cassette Tape Recorder:

A. The small gray plug goes into the REM jack on the
Recorder.

B. The large gray plug goes into the AUX jack.

C. The black plug goes into the EAR jack.

3. Type any program into the Computer, preferably one
that is at least several lines long. RUN it to be sure it
is entered correctly.

4. Press the PLAY and RECORD buttons at the same time
until they lock.

5. “Dump” the program onto tape by typing the command:

CSAVE "A"

Model II Users go directly to
“SAVEing and LOADing On
Disk”, found later in this
chapter.

Dumped and loaded are
everyday terms used by
computer people for storing
and “playing back” computer
programs.

CSAVE stands for “Save on
Cassette”. “A” is the name
assigned to the program.

81

PART 00

The motor on the Recorder will start and you'll be
recording the Computer’s program onto tape.

Watch the Video screen. When
READY
>

returns and the motor stops, the program is recorded
on tape. It is also still in the Computer’s memory. It
has only been “copied” out.

6. Rewind the tape. Disconnect the plug from the EAR
jack and PLAY the tape so you hear what digital data
sounds like. Sounds terrible, doesn’t it? You were
expecting maybe Lawerence Welk?

CLOAD?

We can compare a program on tape against the one in memory.
That way we are sure of getting a good “load” before erasing
the memory.

After doing a CSAVE"A”, rewind the tape. Set it up to play,
and type:

CLOAD? A"
and RUN.

Watch the blinking asterisks. It looks like we are loading in a
program, but are actually just comparing program “A”,
character for character, against what’s already there. We are
not erasing or changing the memory. If they don’t match up
for any reason, the test will stop and the screen will read

BAD

“BAD” means we'd better CSAVE the program again, maybe
on a different tape.

If we type just
CLOAD?
without specifying the name of the program, it will check the

first program on the tape against memory, and that’s normally
all we want to do.

82

Ghapfer

LOADing

Reversing the process and loading (copying) the program from
tape into the Computer is just as easy.

1. Be sure the tape is fully rewound and the plugs are all
in place.

2. Push down the PLAY button until it locks.
Volume control to about 6.

3. Type NEW (to clear out any existing program).

4. Type the command

Set the

CLOAD

The tape Recorder’s motor will start and data will flow from
the tape into the computer’s memory.

As soon as the Computer senses the data, it will flash a * on the
screen; then as it accepts each line of data, a second * will flash
on and off.

Watch the Video Display. The program is entered when

READY
> @

returns and the recorder motor stops.

5. RUN the program to see that the data transfer was
successful. In the event that it was not, repeat the
above steps, being sure that all cables are properly
connected, the Volume is set to 6 and the tape recorder
heads are clean. (Listen to the tape to be sure there is
a program on it.)

Miscellaneous Tape Palaver

To minimize the chance of hitting a “soft spot” on a tape, where
the oxide may be thin or have flaked off, experienced operators
routinely do a “double dump” when copying from computer to
tape. This simply means copying the program twice on the
same tape — one recording right after the other. On long
dumps, one is made in one direction, the cassette flipped over
and recorded again in the other direction. For extra safety,
very important programs are recorded on more than one tape.
Your own experience should be your guide.

IMPORTANT: Too little
volume will cause a bad
“data load": teo much
volume may resuit in
distortion in the Tape
Recorder and also goof-up
the “load”.

CLOAD stands for “Load
from Cassette”

The **display (second one
flashing) is the indication
that data is being loaded
into the Computer.

NOTE: If the recorder does
not stop, press (Model
III only) or the RESET
button. This will take the
Computer out of the CLOAD
or CSAVE mode and return
control to the keyboard.

11

83

PART 00

You may have noticed that especially wound Computer Tape
has no plastic leader on the ends. This is because when you
begin “dumping” data from memory onto tape there must be
real live tape there to record it.

If one little bit of data is lost the entire program can be lost.
Computer Tape is wound in shorter than usual lengths, with
the C-10 being standard. It will record 5 minutes in each
direction — far more than enough for most programs.

Experienced “computerists” have found from experience that
it is better to use a separate cassette (or at least a separate
side) for each program rather than try to search through long
tapes for a desired program. Since computer data on tape is
not readable by the human ear, separate cassettes solve the
problem.

When you are not using the Recorder for loading or recording,
do not leave the RECORD or PLAY keys down (press STOP).

Do not expose recorded tapes to magnetic fields.

Do not attempt to re-record on a pre-recorded Computer data
tape. Even though the new recording process erases the old
recording, just enough information may be left to confuse the
new recording. If you want to use the same tape a second or
third time, use a bulk tape eraser to be sure all old data is
erased.

If you want to save a taped program permanently, break off
the Erase Protect tab on the Cassette (see the Tape Recorder’s
Manual). When the tab(s) has been broken off, you can not
press down the RECORD key (to keep from accidentally
erasing that tape).

Non-Disk Users GOTO the next Chapter.

84

Normal audio tape has lead-
ins on both ends (typically
non-magnetic mylar material)
—~ YOU CANNOT RECORD
ON THE LEADER
PORTION OF TAPES.
Advance the tape past the
leader before recording a
program.

If you record programs on
long, audio cassettes, use the
Tape Recorder’s Counter to
aid in locating programs.

Chapier

SAVEing and LOADing on Disk

A big advantage of DISK BASIC over ordinary TRS-80 Level
II BASIC is that programs can be SAVEd on or LOADed from
disk much quicker and reliably than with cassette. Type in
this short BASIC program:

10 REM * DISK BASIC PROGRAM *

20 PRINT "HELLO THERE, DISK USER"

99 END
and type:

SAVE"'PROGRAM| "

Well, something seemed to happen. Our little program is now
saved on the floppy disk under the name PROGRAM1.

1Al

On a one drive system, the program is automatically saved on Model II/16 users be sure

the diskette in drive 0, unless it has a write-protect tab on there is a WRITE-ENABLE

. tab on the diskette before

it. In multi-drive systems, the lowest numbered drive which SAVEing a program. Yes

is unprotected will receive the program. it's just reversed from the
Models I & IIL

Diskettes in drives 1 through 3 must be formatted before they
are used. The master disk in drive 0 is of course already

formatted. See your DOS Manual for use of the FORMAT
command.

Let’s recall the program from the disk. Type:
NEW

to clear the program out of memory and check the situation
with a:

LIST
to see that no trace remains. Good thing we SAVEd it on
diskette. Hope it's really there. To copy the program from
the diskette back into memory let’s type:

LOAD" "PROGRAMI"

and in it comes. How can we test to be sure it is really
LOADed?

85

PART 00

LIST
Yup, there it is.
Refer to the appropriate Appendix A, Part 2 at your leisure for
additional information on determining what programs are on a

diskette, and switching back and forth between DOS and
BASIC.

Learned in Chapter 11

CLOAD

CSAVE
“loading”
“dumping”

**(program
loading indicator)

SAVE

LOAD

86

NOTES

87

) THE USE OF FOR-NEXT LooPs
ALWANS SEPARATES Tu/\g NMEN
FROM THE BoOVS/

N

J

"AND THE COMPUTERS
FROM THe ,
CRLCULATORS/

/

(=D

88

CHAPTER 12

For — Next Looping

From >to FOR—NEXT ... Or SMART Loops

A major difference between the computer and a calculator is
the computer’s ability to de the same thing over and over an
outrageous number of times, faster than a speeding bullet (to
coin a phrase)! This one capability more than any other,
separates the two.

The FOR-NEXT loop is of such overwhelming importance in
putting our Computer to work, that few of the programming
areas we will explore from this point on will exclude it. Its
simplicity and variations are the heart of its effectiveness, but
its power is truly staggering.

Type in NEW and then the following program; and RUN it:

10 PRINT "HELP --- MY COMPUTER HAS GONE BERSERK!"

20 GOTO 19

You have noticed by now that the Computer is continuously
witing the line

HELP --- MY COMPUTER HAS GONE BERSERK!

It will continue to do so indefinitely until we tell it to stop.
When you have seen enough, hit the key.

What we created is called an “endless loop”. (Remember our
earlier programs which kept coming back for more INPUT?)
Line 20 is in unconditional GOTO statement which causes the
Computer to cycle back and forth (“loop”) between lines 10 and
20 forever if not halted. This idea has great potential if we
can harness it.

89

PART 00

Let’s modify the program to read:

8 FOR N =1 TO 5

10 PRINT "HELP --- MY COMPUTER HAS GONE BERSERK! "
20 NEXT N

38 PRINT "NO --- IT'S UNDER CONTROL.,"

and RUN it.
The line
HELP --- MY COMPUTER HAS GONE BERSERK!
was printed 5 times, then
NO --- IT'S UNDER CONTROL.

The FOR-NEXT loop created in lines 8 and 20 caused the
Computer to cycle through lines 8, 10 and 20 exactly 5 times,
then continue through the rest of the program. Each time the
Computer hit line 20 it saw “NEXT N.” The word NEXT
caused the value of N to be increased (or STEPped) by exactly
1, and the Computer “unconditionally” sent back to the FOR N
= statement that began the loop. The NEXT statement is
conditional on N being less than 5, because line 8 says FOR
N = 1TO5. After the 5th pass through the loop, the built-in
test fails, the loop is broken and the program execution moves
on. The FOR-NEXT statement harnessed the endless loop!

The STEP function

There are times when it is desirable to increment the FOR-
NEXT loop by some value other than one. The STEP
function allows that. Change line 8 to read

8 FOR N =1 TO 5 STEP 2
...and RUN.
Line 10 was printed only 3 times (when N=1, N =3 and N = 5).
On the first pass through the program, when NEXT N was hit,
it incremented (or STEPped) the value of N by 2 instead of 1.

On the second pass through the loop N equalled 3. On the
third pass through N equalled 5.

90

FOR-NEXT loops can be stepped by any decimal number, even
negative numbers. Why one would want to step with
negative numbers might seem rather vague at this time, but
that too will be understood with time. In the meantime,
change the following line

8 FORN =5 TO 1 STEP -1
...and RUN.

Five passes through the loop stepping down from 5 to 1 is
exactly the same as stepping up from 1to 5. Line 10 was still
printed 5 times. Change the STEP from —1 to —2.5 and
RUN again. Amazing! It printed exactly twice. Smart
Computer. Change the STEP back to —1.

Modifying the FOR-NEXT loop

Suppose we wanted to print both lines 10 and 3¢ five times,
alternating between them. How would you change the
program to accomplish it? Go ahead and make the change.

HINT: If you can’t figure it out, try moving the NEXT N line
to some other position.

Right — you moved line 20 to line 40 and the screen reads:
HELP --- MY COMPUTER HAS GONE BERSERK!
NO - IT'S UNDER CONTROL.
HELP --- MY COMPUTER HAS GONE BERSERK!
NO --- IT'S UNDER CONTROL

...ete. — 3 more times.

Chapter

12

91

PART 00

How would you modify the program so line 1¢ is printed 5
times, then line 30 is printed 3 times? Make the changes and
RUN.

The new program might read:

8 FOR N=1 TO 5
16 PRINT "HELP --- MY COMPUTER HAS GONE BERSERK!"

20 NEXT N

25 FOR M =1 TO 3

36 PRINT "NO --- IT'S UNDER CONTROL."
40 NEXT M

We now have a program with two controlled loops, sometimes
called DO loops. The first do-loop DOES something five
times; the second one does something three times. We used
the letter N for the first loop and M for the second, but any
letters can be used. In fact, since the two loops are totally
separate we could have used the letter N for both of them —
not an uncommon practice in large programs where most of the
letters are needed as variables.

RUN the program, being sure you understand the fundamental
principles and the variations we have introduced.

92

Chapter

From > to Incrementing

There is nothing magic about the FOR-NEXT loop, in fact, you
may have already thought of another (longer) way to
accomplish the same thing by using features we learned
earlier. Stop now, and see if you can figure out a way to
construct a workable do-loop substituting something else in
place of FOR and NEXT.

Answer:

8 N=1

10 PRINT "HELP --- MY COMPUTER HAS GONE BERSERK! "

15 N= N+ 1
20 IF N < 6 THEN 10
36 PRINT "NO -—- IT'S UNDER CONTROL."

We say that line 8 inttializes the value of N, giving it an initial
or beginning value of 1. Before initializing to the value we
want, N could have been any number from previous program
lines. Note that typing RUN automatically resets all the
variables back to ¢ before the program executes.

Line 15 then increments it by 1, making N one more than
whatever it was before. Line 1¢ uses one of our relational
operators,<, to see that the new value of N is within the
bounds we have established. If not, the test fails and the
program continues.

Note that in this system of incrementing and testing we do not
send the program back to line 8 as was the case with FOR-
NEXT. What would happen if we did?

Initializes — initially, or at
the beginning, sets the value
of one of our variables (or
starts a program back at the
beginning).

Increments — steps
(increases or decreases
values in specific steps: by
1’s, 3's, §'s, or whatever).

12

93

PART 10

Answer: We would keep re-initializing the value of N to equal
1, and would again form an endless loop.

The opposite of incrementing is decrementing. Change the
program so line 15 reads

15 N=N-1

...then make other changes as needed to make the program
work.

Answer: The changed lines read:

8 N=26
15 N=N-1
20 IF N > 1 THEN 10

94

To decrement is to make
smaller.

Ghapter
Putting FOR-NEXT to work
It isn’t very exciting just seeing or doing the same thing over
and over, so there has to be a more noble purpose for the FOR-
NEXT loop. There are — many of them, and we will be
learning new uses for a long, long time.
Let’s suppose we want to print out a chart showing how the
time it takes to fly from London to San Diego varies with the
speed at which we fly. Remember, the formula is D = R*T.
Let’s print out the flight time required for each speed between
200 mph and 1000 mph, in increments of 100 mph. The
program might look like this:
10 REM * TIME VS RATE FLIGHT CHART *
20 CLS
30 D = 6000
40 PRINT " LONDON TO SAN DIEGO
50 PRINT
60 PRINT "RATE(MPH)", "TIME(HOURS)", "DISTANCE(MILES)"
78 PRINT
80 FOR R = 200 TO 10008 STEP 100
99 T=D/R
100 PRINT R, T, D
116 NEXT R

Enter the program and RUN.

How about that ...? Try
doing that on the old slide
rule or hand calculator!

2

95

PART 00

It is really solving the problem from Chapter 5 nine times in a
row, for different values, and printing out the result. Your
screen should look like this:

LONDON TO SAN DIEGDO

Analyzing the Program

Look through the program and observe these many features
before we do some exercises to change it:

96

1. The REM statement identifies the program for future

use.

. Line 20 uses the CLS (Clear Screen) statement to erase

the screen so we have a nice clean place to write on. It
allows us to write in a ftop down manner. Run the
program later leaving out this line and see what is meant
by the scroll mode. CLS is a very unfussy statement
which you will want to use often just to make your
printouts neat and impressive.

. Line 30 initializes the value of D. D will remain at its

initialized value.

RATE (MPH) TIME (HOURS) DISTANCE (MILES)
200. 30 6000

300 20 6000

400 15 6000

500 12 6000

600 10 6000

700 8.57143 6000

800 7.5 6000

900 6.66667 6000

1000 6 6000

CLS in a program does the
same thing as the CLEAR
Key on the keyboard (but we
can't use the CLEAR Key
as part of a program).

Model II does not have a
CLEAR Key.

Ghapter

10.

. Line 40 prints a chart heading which is indented and

double spaced for appearance.

. Lines 50 and 70 use blank PRINTS to insert spaces in the

chart.

. Line 60 prints the chart column headings, and uses

automatic zone spacing to place those headings (the
comma).

. Line 80 establishes the FOR-NEXT loop complete with a

STEP. It says — initialize the rate (R) at 200 mph, and
make passes through the “do-loop” with values of R
incremented by values of 100 mph until a final value of
1000 mph is reached. Line 110 is the other half of the
loop.

. Line 90 contains the actual formula which calculates the

answer.

. Line 1090 prints the three values. They are positioned

under their headings by automatic zone spacing (the
commas).

Lines 90 and 109 are indented from the rest of the
program text. This is a simple programming technique
highlighting a do-loop which makes reading and
troubleshooting easier. You will see it used increasingly
as we move on. Try to adopt good programming practices
like this as you do the exercises. Indenting does take up
a little memory space, and on long programs in their final
form it is sometimes omitted.

Take a deep breath and go back over any points you might
have missed in this lesson. Copy the program onto Cassette
Tape or Disk because we will use it in the next Chapter,
continuing our study of FOR-NEXT loops.

Remember zone spacing ... ?
The comma (,) in a PRINT
statement automatically
starts the printing in the
next 16-space print zone.

2

97

PART 00

FOR-NEXT

CLS

STEP

Learned in Chapter 12

Increment
Decrement
Initialize
Key
Key

“Top down”
Display

“Scroll” Display

“Do-Loop”

98

NOTES

99

100

CHAPTER 13

Son of FOR-NEXT

This is heady stuff. If you turned the Computer off between
Chapters, load in the program which you saved at the end of
the previous Chapter.

Modify the program so the rate and time are calculated and
printed for every 50 mph increment instead of the 100
increment presently in the program. RUN.

Answer: 80 FOR R = 200 to 1000 STEP 50

Trouble in the Old Corral

What a revolting development! The printout goes so fast we
can’t read it, and by the time it stops, the top part is cut
off. Awught’a known you can’t trust these computers!

Solutions For Sale
Several solutions are available:

1. Pressing a SHIFT key and the @ key at the same time will
stop program execution or a LISTing. Pressing almost
any key will start it running again. RUN the program a
number of times, practicing stopping and starting it using
“shift-at”.

2. If you want a classy display you can build a “pause” into
the program. The screen will fill, halt a moment, and
automatically go on if you don’t interrupt execution.

The entire printout fits on
the Model II screen.

Model II, use
instead of SHIFT@.

There’s another one you can
try — press the

[LI8key. (To restart after
a [[IJIX], either type RUN
to start the program all over
again or CONT to continue
execution at the “break-
point.”)

101

PART 01

The Timing Loop

In order to learn about the timer loop, let’s employ another sly
trick. We're going to leave our “Flight time” program in the
Computer, and put in a second program.

Start by typing
9 END

We are going to use the space in lines 1 through 8 to write and
experiment with a second little program, but want it to END
without plowing ahead into the “Flight” program.

The Egg Timer

It takes time to do everything. Even this foxy box takes time
to do its thing, though you may be awed by its speed. Type
this:

1 PRINT "DON'T GO AWAY"
2 FOR X =1 TO 40060

3 NEXT X
5 PRINT "TIMER PROGRAM ENDED,"

...and RUN

How long did it take? Well, it did take time, didn't
it? About 10 seconds? The Computer can de approximately
400 FOR-NEXT loops per second. That means, by specifying
the number of loops, you can build in as long a time-delay as
you wish.

Change the program to create a 30-second delay. Time it
against your watch or clock to see how accurate it is.

102

When listing a program that
has more than 16 lines and
the lines you want to see
scroll off the top of the
screen, you can use the

key to stop the
LISTing where you want

it. (24 lines on the Model II
(16).)

Remember back when we
told you not to do this
(number lines directly in
sequence)? Well... if we
hadn’t followed that rule we
wouldn't have this nice space
to demonstrate the point.

Execution rates of the Egg
Timer program computer to
computer. Approximate
rates are:
Model I - 370 Loops Per
Second

Model II - 670 Loops Per
Second

Model III - 400 Loops
Per Second

Answer:

2 FOR X =1 TO 12000 For Model III

EXERCISE 13-1: Using the space in lines 1 through 8, design
a program which asks you how many seconds delay you wish,
allows you to enter a number, then executes the delay and
reports back at the end that the delay is over, and how many
seconds it took. A sample answer is in Part B.

Ghapler

13

103

PART 10

How to Handle Long Program Listings
We now have two programs in the Computer. Let’s pull a
LIST to look at them. My, my - they are so long it won’t all fit
on the screen. Now what do we do?
Rather than wring our hands about the problem, type each of
the following variations of LIST, and watch the screen very
carefully as each does its thing:

LIST 50 (Lists only line 50)

LIST — 50 (Lists all lines up thru 50)

LIST 50 — (Lists all lines from 50 to end)

LIST 30—70 (Lists all lines from 30 thru 70)

LIST 4—85 (Note that these numbers are not even in the program)

LIST . (Lists the current line number)

“How’s that for something to write home about?”

Questions: How would you look at the resident program
through line 9?2 ANSWER: type LIST —9 (Talk about a

give away!)

Is There No End to This Magic?

We now have 2 separate programs resident in the
computer. Torun the first one — we just type RUN. Torun
the second one we have a foxy variation on RUN called
The ### s represent the

RUN £ £ # number of the line you want
the RUN to start with.

...and, as you might suspect, it is similar to LIST###. To
RUN the program starting with line 10, type -

RUN 10

...and that’s just what happens.

104

Chapter 13

Will wonders never cease? If there are 20 or 30 programs in
the computer at the same time, we can RUN just the one
wanted, provided we know its starting line number. What's
more, we can start any program in the middle (or elsewhere)
for purposes of troubleshooting — a matter we will become
more involved in as our programs get longer and more
complicated.

Meanwhile, Back at the Ranch

We got into this whole messy business trying to find a way to
slow down our run on the flight times from London to San
Diego. In the process we found out a lot more about the
Computer and learned to build up a timer loop. Now let’s see
if we can build a timer loop into our big program. First, let’s
erase the test program by typing- DELETE 1-9[{{liiJ]. Then
type LIST:-to see what happened. Wow! How’s that for power?

The variations of DELETE somewhat resemble LIST # # #, but
~only DELETE ###, DELETE—###, and DELETE
— 244 will work.

One way to stop the fast parade of information in our chart is to
put in a STOP. Type in
85 IF R = 600 THEN STOP

...and RUN.

We know R is going to increment to 600, and that’s about half
way through the chart, so 600 is a good choice. See how the
chart ran out to 550 mph then hit the stop as 600 came racing
down to line 85. Your screen should display the first part of
the chart and

Break in 85

This means the program is stopped, or broken in line 85. We
can now gaze at the top half of the chart to our heart’s
content. To restart the program merely type

CONT

..and it will automatically pick up and print the rest of the
chart, or until it hits another stop you may have placed.

Try starting the program(s) at
different numbers. As you do,
different (but very
predictable) results occur.
Don’t worry about the strange
error messages. We'll be
studying them in great detail
as we need them.

CONT stands for CONTINUE

105

PARBT 00

At Last

Our ultimate plan is to build a timer into the program so as not
to completely STOP execution, but merely delay it so we can
study the display.

Type

85 IF R <> 600 THEN 90
87 FOR X = 1 TO 4000

88 NEXT X ;

...and RUN

Hey! It really works! As long as R does not equal 600 the
program skips over the delay loop in lines 87 and 88. When R
does equal 600, the test “falls through” and lines 87 and 88
“play catch” 4000 times, delaying the program’s execution for
about ten seconds.

It’s been a long and tortuous route with numerous scenic side
trips, but we finally made it. Now that you have picked up so
many smarts in these two lessons on FOR-NEXT, it’s your turn
to put them to work.

EXERCISE 13-2: Modify the resident program so that (MPH)
appears below RATE, (HOURS) appears below TIME and
(MILES) appears below DISTANCE. This one should be a
breeze for you.

106

Chapter

EXERCISE 13-3: Design, write and run a program which will
calculate and print income at a yearly, monthly, weekly and
daily rate, based on a 40-hour week, a 1/12th-year month, and a
52-week year. Do this for yearly incomes between $5,000 and
$25,000 in $1,000 increments. Document your program with
REM statements as necessary to explain the equations you
create.

EXERCISE 13-4: Here's an old chestnut that the Computer
really eats up: Design, write and run a program which tells
how many days you have to work, starting at a penny a day, so
if your salary doubles each day you know which day you earn
at least a million dollars. Include columns which show each
day number, its daily rate, and the total income
to-date. Make the program stop after printing the first day
your daily rate is a million dollars or more.

Some of our programs are
becoming a little too long for
us to leave space in the
manual for you to write in
your ideas. From now on,
use a pad of paper for
working up your answers.

18

107

PART 11

The ‘“Brute Force”
(Subtitled: Get a Bigger Hammer)

Much to the consternation of some teachers, a great value of
the Computer is its ability to do the tedious work involved in
the “cut and try”, “hunt and peck” or other less respectable
methods of finding an answer (or attempting to prove the
correctness of a theory, theorem or principle). This method
involves trying a mess of possible solutions to see if one fits, or
find the closest one, or establish a trend. Beyond that, it can
be a powerful learning tool by providing gobs of data in chart
or graph form (later) which would simply take too long to

generate by hand.

EXERCISE 13-5: You have a 1000 foot roll of fencing wire and
want to create a rectangular pasture.

Using all of the wire, determine what length and width
dimensions will allow you to enclose the maximum number of
square feet? Use the brute force method; let the Computer
try different values for L and W and print out the Area fenced
by each pair of L, and W.

Length times Width
I*W

The formula for area is Area
or A

EXERCISE 13-6: EXTRA CREDIT PROBLEM FOR
“ELECTRONICS TYPES”

As a further example (more complex and tends to prove the
point better) try this final (optional) assignment. It involves a
problem confronted by every electricity student who has
studied sources (batteries, generators) and loads (lights,
resistors). It is the MAXIMUM D.C. POWER TRANSFER
THEOREM which states, “Maximum DC power is delivered to
an electrical load when the resistance of that load is equal in
value to the internal resistance of the source.” And then the
arguments begin ... “Use a high resistance load because it
will drop more voltage and accept more power.” “No, use a
low resistance load so it will draw more current and accept
more power.” “Use a load value somewhere in between.”

108

Don't necessarily shy away from this one if electricity doesn’t
happen to be your bag. Enough informaton is given to write
the program, and the principle, the optimizing of a value, is
applicable to many fields of endeavor and is little short of
profound.

With the values given in the schematic, design, write and run a
program which will try out values of load resistance ranging
from 1 to 20 ohms, in 1 ohm increments, and print the answers
to the following:

1.
2.

3.

Value of Load Resistance (from 1 to 20 ohms)

Total circuit power (circuit current squared, times circuit
resistance) = I+ * (10 + R)

Power lost in source (circuit current squared, times
source resistance) = I? * 10

. Power delivered to load (circuit current squared, times

load resistance) = I * R

Note: Circuit current is found by dividing source voltage
(120 volts) by total circuit resistance (load resistance + 10
ohms source resistance). Everything follows Ohms Law
(V = I*R) and Watts Law (P = I*V)

GOOD LUCK !!!! Don’t look at the answer until you've got it
whipped.

120 VOLTS

A B

:

Ghapter

Load
Resistance

R

18

109

PART 00

Learned in Chapter 13

LIST### STOP

RUN### Timer Loop
DELETE ## #
CONT

“Brute force” or
optimizing method

110

NOTES

111

"IF NoU WANT To FIT IN ANYWHERE, MA'AM,
MAY | SUGGEST A TAR?”

STATS TopAy | —
The Brue oF

A || Kive
;@ Wowe (@

J

L
oy —

’%\ 7

\ Je
.

112

CHAPTER 14

Formatting with TAB

From >to TAB to LPRINT

After those last few chapters, time out for an easy one.
We already know 3 ways to set up our output PRINT format.

We can:

1. Enclose what we want to say in quotes, inserting blank
spaces as necessary.

2. Separate the objects of the PRINT statement with
semicolons so as to print them tightly together on the
same line.

3. Separate the objects of the PRINT statement with
commas to print them on the same line in the four
different print “zones.”

A fourth way is to use the TAB function, which is similar to the

TAB on a regular typewriter. It is especially useful when the

output is columns of numbers with headings. Type in the

following program and RUN:

1¢ PRINT TAB(5);"THE";TAB(20) ; "TOTAL"; TAB(35) ; "SPENT"

2@ PRINT TAB(5) ; "BUDGET"; TAB(20) ; "YEAR'S" ; TAB(35) ; "THIS"

30 PRINT TAB(5) ; "CATEGORY"; TAB(20) ; "BUDGET" ; TAB(35) ; "MONTH"

The RUN should appear:

THE TOTAL SPENT
BUDGET YEAR'S THIS
CATEGORY BUDGET MONTH

113

PART 00

EXERCISE 14-1: Write a program using the three PRINT
forms below:

1. PRINT“ "’ “ ”’ “ 13
2. PRINT* "

and
3. PRINT TAB()* ", TAB()*“ ™", TAB()* »

to set up the headings given in the prior example. Use form 1
for the first line of the heading, form 2 for the second line and
form 3 (the TAB form) for the third line.

Hint: Since form #1 uses automatic zone formatting and is
not adjustable, the other forms have to be keyed to it.

/ A i

Whether you follow TAB (# #) with a semicolon or not makes
no difference. In either case, the Computer will start printing
spaces to the right of the left margin. However, it is
important to remember that whenever numbers or number
variables are printed out, the Computer inserts one space to
the left of the number to allow for the — or + sign. Type and
RUN the following:

10 A = 3
20 B 5
30 C=A+ B

[}

A semicolon is traditionally
used following TAB, as
shown. Most later BASIC
interpreters allow a blank, or
even nothing at all instead.

Experiment to see which you
like best.

40 PRINT TAB(10); "A"; TAB(20); "B"; TAB(30); "C"
50 PRINT TAB(10); A; TAB(20); B; TAB(38); C

It should appear:

A B c
3 5 8

Note that the numbers are ivdented one space beyond the TAB
(#). Keep it in mind when lining up (or indenting) headings
and answers.

114

Change line 20 to read
20 B = -5

...and RUN. See why the indenting is necessary?

The Long Lines Division

Have you ever wondered what would happen if you wanted to
PRINT a great number of headings or answers on the same
line — but didn’t have enough room on the program line to
neatly type in all the TAB statements? You have? Really?
You're in luck because it's easy. Type and RUN the following
program:

10
20
30
40
50
60
70
80
90
100 J = 19

H oD W E O O W
"
W 0 N & U e W N

206 PRINT "A"; TAB(5); "B"; TAB(10); "C"; TAB(1l5):
2106 PRINT TAB(28); "E"; TAB(25); "F"; TAB(39);
220 PRINT TAB(35); "H"; TAB(40); "I"; TAB(45);
TAB(5); B; TAB(10); C; TAB(1l5); D; TAB(20);

3080 PRINT

=

Chapfer

“Gll ;

llJll

nDn

14

310 PRINT E; TAB(25); F; TAB(30); G; TAB(35); H; TAB(480);

320 PRINT I; TAB(45); J

115

PART 10

It’s the trailing semicolon (;) that does the trick. It makes
the end of one PRINT line continue right on to the next PRINT
line without activating a carriage return. The combination of
TAB and trailing semicolon allows you almost infinite
flexibility in formatting the output.

EXERCISE 14-2: Rework the answer to Exercise 13-3 to
include the Hourly rate of pay in the printout. Use the TAB
function to have the chart display all 5 columns side by side.

EXERCISE 14-3: (Optional) Rework the special problem 13-6
answer using the TAB function so the printout includes the
internal resistance in a fifth column.

116

Chapler

Printing it all on the Line Printer
Ready to learn something else easy?

You have learned a lot of ways to print, but they have all been
on the video screen. Now we’ll show you how to print-out on a
Line Printer. If you don’t have a Line Printer, at least read
over the rest of this chapter before going on.

Turn on your Printer and type this new one-line program:

1¢ LPRINT "THE LINE PRINTER WORKS!!!"

Notice that the first word is LPRINT — not PRINT. RUN
the program.

Does it work? If your Printer did nothing, press to
regain control of the Computer. Check the connections
again. Make sure the Printer is ON and ON—LINE. Try
running the one-line program again.

Now, let’s see how to print with a nice format. Erase your
one —line program and type:

16 FOR X =1 TO 100

20 LPRINT X,
30 NEXT X

RUN it.

See how the Printer will format the printing into neat little
columns. The comma with LPRINT works the same as it does
with PRINT, except there may be a different number of
columns on your Printer. (The number of columns depends on
which printer you have.) The Epson MX —Series printers are
highly recommended.

TABbing

The TAB function can handle numbers up through 255. This
has little value in displays printed on the tube, but on big
printers it is common to PRINT lines up to 132 characters long.

The Model 11/16 and Model
III computers have built in
printer interfaces. Model I
users need an external
interface to use a Line
printer.

14

117

PART 00

The TAB function on early Model I's works only in the range of
numbers from § —63. Larger numbers just start over with 0.

Late Model I's and all Model III's cover) — 128, then start over
with 0.

The Model 1I/16 TABs the full range from ¢ — 255.

Try wusing a semi—colon in line 20 rather than a
comma. Type:

20 LPRINT X;

and RUN. The semi-colon works the same on the printer as it
does on the video screen. Let's see how TAB works. Type
NEW and then type in this program:

10 LPRINT TAB(25) "TELEPHONE LIST"
20 LPRINT

30 LPRINT TAB(15) "NAME"; TAB(45) "TELEPHONE NUMBER"

40 LPRINT

50 INPUT "TYPE A FRIEND'S NAME"; AS$
60 INPUT "PHONE NUMBER"; BS

70 PRINT "THANK YOU"

80 LPRINT TAB(15) AS$; TAB(45) BS$

Yes, we know there are
some new goodies in

there. Just wanted to show
off. We'll get to the $s
later.

99 INPUT "IS THERE ANOTHER FRIEND (Y/N)"; QS

106 IF Q$ = "Y" THEN 50

RUN it.

If the paper size is larger or smaller than 82 x 11 inches, you'll
need to use different TAB settings.

One more thing we want to learn. Type this command:

> LLIST

and press [l . Now you have a permanent “hard copy”
of this program. It's a great feature, especially as our
programs get longer.

118

Learned in Chapter 14

TAB Trailing semicolon

LPRINT

LLIST

Ghapter

14

119

120

CHAPTER 15

Grandson of FOR—NEXT

The FOR—NEXT loop didn’t go away for long. It returns

more powerful than ever. Type this program:

16 FORA =1 TO 3
20 PRINT "A LOOP"
30 FOR B =1 TO 2

40 PRINT " ", "B LOOP"
50 NEXT B
60 NEXT A

...and RUN.

The result is:

A LOOP
B LOOP
B LOOP
A LOOP
B LOOP
B LOOP
A LOOP
B LOOP
B LOOP

This display vividly demonstrates operation of the nested
FOR—NEXT loop. “Nesting” is used in the same sense that
drinking glasses are ‘nested” when stored to save
space. Certain types of portable chairs, empty cardboard
boxes, etc. can be nested. They fit one inside the other for
easy stacking.

For legibility, add two blank
spaces in line 20 before
PRINT; three in line 30
before FOR; four in 40
before PRINT; and three in
50 before NEXT.

When you write programs,
be sure to indent lines to
highlight nesting (or other
lines you want to
emphasize). This helps
when reading programs -and
is a great aid when
debugging (troubleshooting)
program problems.

121

PART 00

Let’s analyze the program a line at a time:

Line 1¢ establishes the first FOR—NEXT loop, called A,
and directs that it be executed 3 times.

Line 20 prints “A Loop” so we will know where it came
from in the program. See how this program line is
indented several spaces to make it stand out as being
nested in the “A” loop?

Line 30 establishes the second loop, called B, and directs
that it be executed twice. It is indented even more so
you can instantly see that it is buried even deeper in the
“A” loop.

Line 40 prints two items: first the blank shown between
the two quote marks, then the comma kicks us into the
next print zone where “B Loop” is printed. Makes for
clear distinction on the screen between the A loop and B
loop, eh?

Line 50 completes the “B” loop and returns control to line
30 for as many executions of the “B” loop as line 30
directs. So far we have printed one “A” and one “B”.

Line 60 ends the first pass through the “A” loop and
sends control back to line 10, the beginning of the A
loop. The A loop has to be executed 3 times before the
program run is complete, printing “A” 3 times and “B” 6
times (3 times 2).

Okay, to get a better “feel” for this nested loop (or loop within
a loop) business, let’s play with the program. Change line 10
to read:

16 FOR A =1 TO 5
...and RUN.
Right! A was printed 5 times, meaning the “A” loop was

executed 5 times, and B was printed 10 times — twice for each
pass of the “A” loop. Now change line 30 to read:

30 FOR B = 1 TO 4

...and RUN.

122

Chapter

Nothing to it! A was printed 5 times and B printed 20
times. If you are having trouble counting A’s and B’s as they
whiz by, you remember what to do. Just press the Shift and
@ keys at the same time to stop execution and temporarily
freeze the display. and CONT does the same thing,
allowing hands-off freezing, but inserts a note and
otherwise messes up the display.

How to goof-up nested FOR-NEXT loops

The most common error beginning programmers make with
nested loops is improper nesting. Change these lines:

50 NEXT A
60 NEXT B
...and RUN.

The Computer says:
{ NF Error in 60

Looking at the program we quickly see that the B loop is not
nested within the A loop. We have the FOR part of the B loop
inside the A loop, but the NEXT part is outside it. This does
not work. A later chapter deals with something called “flow
charting”, a means of helping us plan programs and avoid this
type of problem. Meanwhile we just have to be careful.

Breaking out of Loops

Improper nesting is illegal, but breaking out of a loop when a
desired condition has been met is OK. Add these lines:

50 NEXT B

55 IF A = 2 GOTO 1690
60 NEXT A

99 END

190 PRINT "A EQUALLED 2. RUN ENDED.,"
...and RUN.

Model II use HOLD key to
freeze the display.

As disk BASIC users have

already seen, their ERROR
MESSAGES are the same

but more elaborate:

NEXT without FOR in 60

18

123

PART 00

As the screen shows, we “bailed out” of the A loop when A
equalled 2 and hit the test line at 55. The END in line 99 is
just a precautionary roadblock set up to stop the Computer
from running into line 100 unless specifically directed to go
there. That would never happen in this simple program, but
we will use protective ENDs from time to time to remind us
that lines which should be reached only by specific GOTO or
IF-THEN statements must be protected against accidental
“hits”.

We'll be seeing a lot of the nested FOR-NEXT loop now that
we know what it is and can put it to use.

EXERCISE 15-1: Enter the original program found at the
beginning of this Chapter. It contains a B loop nested within
the A loop. Make the necessary additions to this program so
a new loop called “C” will be nested within the B loop, and will
print “C LOOP” 4 times for each pass of the B loop.

EXERCISE 15-2: Alter the resident program so that it is the
same as that found in the answer to Exercise 15-1.

Make the necessary additions to this program so a new loop
called “D” will be nested within the C loop, and will print “D
LOOP” 5 times for each pass of the C loop.

124

Learned in Chapter 15

Nested FOR-
NEXT loops

Protective END
blocks

Ghepler 18

125

126

"I THNK L CALL 1T
AN INTEGER!"

//(\‘fﬂ
/:‘\ﬁ\,}» [\)]'\
(T
& } /) :VI
\ ’ : J '{tl
“Not A very |7
CREATINE oNE/ \ P~/ LK\
-]

Q)

CHAPTER 16

The INTEGER function

“I can’t even pronounce it, let alone understand
it.” Oh, come, come. Don’t let old nightmares of being
trapped in Algebra class stop you now. It's pronounced
(in-teh-jur) and simply means a whole number like -5, 0, or 3,
ete. How difficult can that be? Come to think of it, some
folks make a whole career of complicating simple
ideas. We're here to do just the opposite.

Integger???

The INTEGER funection, INT (X), allows us to “round off” any
number, large or small, positive or negative, into an integer, or
whole number.

Type NEW to clear out any old programs, then type:

30 X = 3.14159
40 Y = INT(X)

70 PRINT "Y = "; Y

...and RUN.
T};e display reads
Y =3

Oh — success is so sweet! It rounded 3.14159 off to

3. Change line 30 to read:

30 X = -3.14159

...and RUN.
Good Grief! It rounded the answer down to read

Y = —4

Careful — we're not talking
about ordinary rounding.
Ordinary rounding gives us
the closest whole number,
whether it's larger or
smaller than X. INT(X),
on the other hand, gives us
the largest whole number
which is less than or equal to
X. As you'll see in this
chapter, this is a very
versatile form of rounding —
in fact, we can use it to
produce the other,
“ordinary” kind of rounding.

PART 00

What kind of rounding is this? Easy. The INT function
always rounds DOWN to the next lowest WHOLE
number. Pretty hard to get that confused! It makes a
positive number less positive, and makes a negative number
more negative (same thing as less positive). At least it’s
consistent.

Taking it a line at a time:

Line 30 sets the value of X (or any of our other
alphabet-soup variables) equal to the value we selected,
in this case 7.

Line 40 finds the INTEGER value of the above number
and assigns it a variable name. We chose Y.

Line 70 prints a little identification (Y =) followed by the
value of Y.

Not Content to Leave Well Enough Alone

We can do some foxy things you probably never thought of by
combining a FOR-NEXT loop with the INTEGER function.

Change the program to read:

3 X = 3.14159
40 Y = INT(X)
50 7 = X - Y
66 PRINT "X = "
76 PRINT "Y = "
8¢ PRINT "z = "

i

N K

e

...and RUN.

128

Ghapier

AHA! I don’t know what we've discovered but it must be
good for something. It reads:

X = 3.14159

Y=3

Z = .14159

We've split the value of X into its Integer (whole number)
value and called it Y, and its decimal value and called it Z.

Line 6@, 70 and 80 merely printed the results.

There is a way to control the accuracy of our results. It
involves artificially rounding the fraction to the desired
number of decimal places, and then forcing the Computer to
print out only those digits which are “properly rounded”.

For example, suppose we need § to only three places. (Of
course, we can enter it as 3.142, but that’s not the
point.) Type NEW, then enter and RUN the following
program:

19 X = 3.14159

20 X = X + .0005

30 X = INT(X * 1608) / 1000
49 PRINT X

Try using other values for X (just make sure X*1000 isn’t too
large for the INT function to handle).

It’s easy to change the program to accomplish rounding at a
different point. For example, to round X off at the
hundredths-place (2 digits to the right of the decimal point),
change lines 20 and 30 to read:

16 X = 3.14159

20 X = X + .p085

39 X = INT(X * 1000) / 1000
46 PRINT X

and RUN, using several values for X.

Adding .0005 gives our
fraction a “push in the right
direction”. If this fraction
has a digit greater than 4 in
its 10-thousandths-place,
then adding .0005 will
effectively increase the
thousandths-place digit by
1. Otherwise, the added
0005 will have no effect on
the final result. This
results in what’s called “4/5
rounding.”

This is useful when you're
printing out dollars-and-cents
— it prevents $39.995-type
prices.

129

PART (]

Hmmmm !!!

Do you suppose there is any way to separate each of the digits
in 3.14159, or in any other number? Do you suppose we would
have brought it up if there wasn't? After all ... (mumble,
mumble ...).

It's really your turn to do some creative thinking, but we’ll get
it started and see if you can finish this idea. First, wipe out
the resident program and retype this program that splits X
into an integer and fractional part.

30 X 3.14159

A0 Y INT(X) S e .
2 % 4 L
70 PRINT "Y = "; Y

T . 5 [

We clearly can just go on taking the INT value of X over and
over to try and split out the digits. Let’s try it with Z.

99 L = INT(Z)
168 PRINT "I = "; I,

...and RUN.

Nope — that’s a sure loser. We got . The integer value of
.14159 was that value rounded down to the next number, and
the next number down was zero. Hmmm ! Erase out lines
90 and 190 and let’s try again. Got any better
ideas? No? Well, think some more.
thinking!

OA 0/5 (...brief interlude of recorded music...) i J Time out for creative

130

Chapter 16

Right! If we multiply the value of Z by 10 then Z will become
a whole number plus a decimal part: 1.4159. We can then take
its integer value and strip off the decimal part, leaving the left
hand digit standing alone. Let’s label the left-hand digit L and
see what happens. Enter:

90 M = 2 * 10

100 L = INT(M)

119 PRINT "L = ";L

...and RUN.

Now, that’s more like it. It reads:

X = 3.14159
Y =3
Z = 14159
L=

We peeled off the leftmost digit in the decimal. Can you think
of any way we might use a FOR-NEXT loop in order to strip off

some more?
ome € After all, these digits might

not be just a more accurate

J (...More recorded music...) Q’ value of pi, but a coded
message from a cereal
‘/s) box. If you don't have the
decoder ring it’s tough luck,

Charlie — unless you have a
computer!

Enough thinking there on company time! Enter these lines:

95 FOR A =1 TO 5
120 M M- L
130 M M * 10
140 NEXT A

...and RUN.

131

PART 00

Voila! (I never did figure out what that means, but I think it’s
positive.) The “printout” reads:

X = 3.14159
Y =3
Z = 14159
L=
L =4
L=1
L=>5
L=28

They are all there, but what gives with the last value of
L. L = 8??? It’s supposed to be 9!

Well, let’s analyze the program first, then worry about that
little detail.

Line 95 began a FOR-NEXT loop with 5 passes, one for
each of the 5 digits right of the decimal.

Line 120 creates a new decimal value of M (just a
temporary storage location) by stripping off the integer
part. (Plugging in the values,M = 1.4159 — 1= .4159)

Line 139 does the same as line 90 did, multiplying the new
decimal value times 10 so as to make the left-hand digit an
integer and vulnerable to being snatched away by the
INT function. (M = .4159 * 10 = 4.159)

Line 140 moves the control back to line 95 for another
pass through the clipping program ...and the rest is
history.

Now about that little detail ...the wrong value of the last
digit. So what gives? You have discovered the Computer’s
limit of accuracy. Just like a calculator (or a person), a
computer can never be perfectly accurate all the time. For
short arithmetic expressions, the TRS-80 is accurate to the
fifth or sixth decimal place. In longer, more complex
expressions, a minute error in the sixth place can be magnified
to where it becomes significant. All programmers have to
cope with this kind of built-in error.

132

We now plow head on into that problem. To understand it
better change line 95 to read:

95 FOR A =1 TO 18
...and RUN.

Where did all those other numbers come from? (Beats
me.) Again the last digit or 2 at the end of a number is not to
be trusted.

But there is a solution. Change line 95 back as it was, then
change line 30 to read:

30 X = -3.14159
...and RUN.

Whew! Had us a little nervous there for a while. By our
declaring that the accuracy of X is to be a few decimal places
greater than we really need, we are assured that those digits
we do need are reliable. There are other ways to do this and
we will learn them in later chapters.

But let’s not get diverted from the main theme of this Chapter.

Is This Too Hard to Follow?

No — it isn’t hard to follow, and you could go through and
indicate every value just like I did and it would be perfectly
clear (to coin a phrase). Let’s instead learn a way to let the
Computer help us understand what it is doing.

We can insert temporary print lines anywhere in any program
to follow every step in its execution. The Computer can
actually overwhelm us with data, but by carefully indicating
what we want to know, we can observe the inner details of the
calculations. Start by adding this line:

92 PRINT "#92 M = "; M
...and RUN.

Chapter

16

133

PART 00

The essentials of this “test” or “debugging” or “flag” line are:

1. It PRINTSs something.

2. The print tells the line number, for analysis and easy
location for later erasure.

3. It tells the name of the variable you are watching at that
point in the program.

4. It gives the value of that variable at that poeint.

It is most helpful of all when inserted in FOR-NEXT loops —
so:

97 PRINT "#97 A = "; A
...and RUN.

Wow! The data really comes thick and fast! Hard to keep
track of so much information, and we've barely begun. This
tells what is happening during each pass of the loop. Is there
some way to make it more readable? Sure. Can you think of
a way?

Yes, there are lots of ways. Indenting is just one simple way
to keep the answers separated from the troubleshooting
data. Change lines 92 and 97 as follows:

92 PRINT ,"#92 M = "; M
97 PRINT ,"#97 A = ": A
...and RUN.

Ahh. How sweet it is. That is so easy to read, let’'s monitor
some more points in the program. Type in:

125 PRINT , ,"#125 M s M
135 PRINT , ,"#135 M ", M

i

L]

...and RUN.

134

This “flagging” is such a
wonderful troubleshooting
tool in stubborn programs
that you will want to make a
habit of never forgetting to
use it when the going gets
tough.

Chapter

Egad, Igor! We've created a monster!

There it is. All the data we can handle (and then some). By
using the SHIFT and @ keys to temporarily halt execution, we
can study the data at every step to understand how the
program works (or doesn’'t work). Do it. Understand this
program and all its little lessons completely. When you are
satisfied, go back and erase out the “flags”. You have learned
quite enough for this Chapter.

EXERCISE 16-1: Enter this straightforward little program
for finding the area of a circle.

(First type NEW.)

10 P = 3.14159

2¢ PRINT "RADIUS", "AREA"
38 PRINT

49 FOR R = 1 TO 10

50 A =P *R *R

60 PRINT R, A

70 NEXT R

Area equals 7 times the radius squared (that is, the radius
times itself). Then RUN it to make sure it works.

Pretty routine stuff — huh? Problem is, who needs all those
little numbers to the far right of the decimal point. Ok, you
do? Well, there’s one in every crowd. The rest of us can do
without them. Without giving any big hints, modify the
resident program to suppress all the numbers to the right of
the decimal point.

16

(HOLD for Model II)

135

PART 00

EXERCISE 16-2: Now, knowing just enough to be dangerous,

place. For example:

RADIUS AREA
| 3.1
ete.
Ummm — yaas. Hang in there. It’s super-simple.

EXERCISE 16-3: Carrying the above assignment one step
further, modify the program line 55 to round (down) the value

of area to be accurate to 2 decimal places.

Learned in Chapter 16

INT (X)) Flags

136

NOTES

137

138

“YOUNG MAN YOU GET ouT Hege
T0 THE TABLE THIS INSTANT, OR)
[LL SHOW YOU A BRANCHING STATEMENT/

e

THE SWITCH 7

Quick! WHepes k«q@.ﬂ

CHAPTER 17
More Branching Statements

It Went That-A-Way

Enter this program:

1¢ INPUT "TYPE A NUMBER BETWEEN 1 AND 5"; N
28 IF N =1 GOTO 110
39 IF N = 2 GOTO 130
4¢ 1IF N = 3 GOTO 150
56 IF N = 4 GOTO 1749
60 IF N = 5 GOTO 196

79 PRINT "THE NUMBER YOU TYPED WAS NOT BETWEEN 1 AND 5 --- DUMMY
| Notice anything funny about
line 70? It takes up two
99 END lines on the Display! (Not

on model II, of course.)

1196 PRINT "N =1 " That’s because it contains
more than 64 characters
126 END (including line number and
blank spaces). This is
138 PRINT "N = 2 n perfectly all right, as you
may already have discovered
in your own programming
140 END efforts. In fact, a program
n —_ n line can contain up to 256
15¢ PRINT N =3 characters (including line
number and spaces). To
160 END enter or LIST such a long
line takes up four Display
176 PRINT "N = 4 " lines; but it's still just one
180 numbered program line!
80 END
196 PRINT "N = 5
RUN it a few times to feel comfortable with it and be sure it is Debugged is an old Latin
“debugged”. word which, freely

translated, means “getting
all the errors out of your
computer program.”

139

PART 00

Anyway, this program works fine for examining the value of a
variable, N, and sending the Computer off to a certain line
number to do what it says there. If there are lots of possible
directions in which to branch, however, we will want to use a
greatly improved test called ON-GOTO which cuts out lots of
lines of programming. Let’s examine an ON-GOTO after you
do the following:

Erase lines 20, 30, 40, 50 and 60
Enter this new line:
20 ON N GOTO 116,136,156,176,198
...and RUN the program a few times, as before.
Works just the same, doesn’t it?
The ON-GOTO statement is really pretty simple, though it
looks hard. Line 29 says,
if the INTEGER value of N is 1 then GOTO line 110.) L
if the INTEGER value of N is 2 then GOTO line 130. Remember, an ineger is just
if the INTEGER value of N is 3 then GOTO line 150.
if the INTEGER value of N is 4 then GOTO line 179.
if the INTEGER value of N is 5 then GOTO line 190.
if the INTEGER value of N is not one of the numbers

listed above, then move on to the next line.

The ON-GOTO statement has its own built-in INT
statement. It really acts like this:

20 ON INT(N) GOTO ... ETC.
Type in the following values of N to prove the point:
I.5
3.99999
0.999
5.999
6.000!

Get the picture?

140

Variations on a Theme

Teere are lots of tricks that can be played to milk the most
from ON-GOTO. For example, if we want to branch out to 15
different locations but don’t want to type that many different
numbers on an ON-GOTO line, we can use several lines, like
this:

20 ON N GOTO 116,130,156,170,190
25 ON N - 5 GOTO 210,230,250,270,299
39 ON N - 16 GOTO 316,336,350,370,390

...and fill in the proper responses at those line numbers.

In line 25, it was necessary to subtract 5 from the number
being input as N, since each new ON-GOTO line starts counting
again from the number 1. In line 30, since we had already
provided for inputs between 1 and 10, we subtract 10 from the
input N to cover the range from 11 through 15. By using the
ON-GOTO statement, we have programmed into 3 lines what
would otherwise have taken 15 lines. By packing more
branching options into each ON-GOTO line, we could have done
it in 2 lines or less, depending on the number of digits in the
line numbers of the branch locations.

As in most of our examples, we could have used any letter
after “ON”, not just N. As we just saw, N can be the value of
a letter variable, or a complete expression, either calculated in
place (as here) or in a previous line.

Trade Secret

Due to the vagaries of rounding error and the chance the error
might just round a number like “N” a tad below the integer
value expected, it is common to see something like this:

50 ON N+.2 GOTO 160,200,300

The effect of this shifty move is to add just a “pinch” to the
incoming value of N, knowing full well that the ON-GOTO
statement contains its own INT function. If N happens to
have been rounded down to say 1.98 (instead of the 2.000
expected), 0.2 will be added to it making N 1.98 + .2 = 2.18
which the built-in INT will round down to the desired
2. Pretty sneaky. Values between .1 and .5 are often added
to the N for this purpose in well-written programs.

bhapter

17

141

PART 00

Give Me a SGN (X)

Using the ON-GOTO along with a new function called SGN (it’s
pronounced sign), plus a modest amount of imagination,
produces a most useful little routine. But first, let’s learn
about SGN.

The SGN function examines any number to see whether it is
negative, zero, or positive. It tells us the number is negative
by giving us a (—1). If the number is zero it gives us a
(0). If positive, we get a (+1). It’s a very simple funetion.

In order to sneak into the next concept, we will simulate the
built-in SGN function with a SUBROUTINE.

So What Is a Subroutine?

Funny you should ask. A sub-routine is a short but very
specialized program (or routine) which you build into a large
program to meet a specialized need. BASIC stores many of
them in a special place in memory and they can be called up by
a simple set of letters.

As an example of how to create functions that are not included
in our BASIC, we are going to use a five-line subroutine
instead of the “SGN” function to accomplish the same
thing. Even though TRS-80 BASIC supports the “SGN”
function, you should complete this Chapter to be sure you
learn about subroutines. We don’t want to turn out dummies,
you know.

“Scratch” the program now in the computer by typing NEW,
then — very carefully, so you don’t make any mistakes, type in
the SGN subroutine:

30000 END

30800 REM * SGN(X) * INPUT X, OUTPUT T = -1,0, OR +1
30810 IF X < @ THEN T = -1

30820 IF X = 0 THEN T = @

36830 IF X > 0 THEN T = +1

30840 RETURN

142

Chepter 17

“Calling” a Subroutine — (Sort of like calling hogs.)
To use a subroutine, use the GOSUB # # # # # statement.

This directs the Computer to go to that line number, execute
what it says there and in the lines following, and when done
RETURN back to the line containing the GOSUB
statement. We will use line 20 here.

20 GOSUB 30800

A RETURN is always built into a subroutine, and you'll find
ours at line 30840. We have reserved line number 3000 to
hold a protective END block for all of our subroutines, so the
Computer doesn’t come crashing into them when it is done
with the main program.

Getting Down to Business

Okay, now let’s combine GOSUB and SGN (using a subroutine)
to see what all this fuss is about. Add:

1¢ INPUT "TYPE ANY NUMBER"; X

20 GOSUB 30800

3g ON T + 2 GOTO 50,60,70

45 END

5¢ PRINT "THE NUMBER IS NEGATIVE."
55 END

60 PRINT "THE NUMBER IS ZERO."

65 END

76 PRINT "THE NUMBER IS POSITIVE."

...etc. (the subroutine is already typed in) ...and RUN.

Try entering negative, zero and positive numbers to be sure it
works. Most of the program workings is obvious, but here is
an analysis:

“#####" represents the
line number.

Try this same program using
ON-GOSUB. Remember,
change Lines 55 and 65 to
RETURN and add Line 75
RETURN.

143

PART 1

Line 10 inputs any number.

Line 20 sends the Computer to line 30800 by a GOSUB
statement. This is different from an ordinary GOTO,
since a GOSUB will return control to the originating line
like a boomerang when the Computer hits a
RETURN. The call to GOSUB is not complete and will
not move on to the next program line until a RETURN is
found.

Lines 30800 through 30840 contain this rather simple
subroutine.

Line 30840 contains the RETURN which sends control
back to line 20, which silently acknowledges the return
and allows movement to the next line.

Line 30 is an ordinary ON —GOTO statement, but adds 2
to the value of its variable, in this case “T”. Line 30 is
really saying, “If T is —1 then GOTO line 50. If it is zero
then GOTO line 60, and if it is +1 GOTO line 70. By
adding 2 to each of those values we have “matched” them
up with the 1, 2, and 3 which are built into the
ON-GOTO.

Line 45, 55, and 65 are routine protective blocks.

Preview of Coming Attractions?

Like so much of what we are learning, this is just the top of the
iceberg. The ON-GOTO and SGN functions have many more
clever applications, and they will evolve as we need them. As
a hint for restless minds, note that the value of X (which we
input) was not used, but it didn’t go away. All we did was find
its SGN. Hmmm ...

Routines vs SUBroutines

We studied a special-purpose routine used as a subroutine. It
is one of the few that we can both use and really
understand. All the routines, understandable or not, can be
built directly into any program instead of being set aside and
“called” repeatedly from different parts of a program, which is
often desirable. As ordinary routines they are usually only
used once, and lines containing GOSUB and RETURN are not
needed.

One value of using special routines as SUBroutines is that
some are exceedingly complex to type without error, and if
each is typed once and saved on tape or disk, it can be quickly
and accurately loaded into the Computer as the first step in
creating a new program.

Now it’s your turn.

144

By the way, most
subroutines are not this
simple — as a matter of fact,
they get into rather hairy
mathematical derivations.
We won't bother trying to
explain any of them — if
you're one of those Math
nuts, you go right ahead and
play with the numbers ...

We’'ll have more to say in a
later Chapter. When you
see just how powerful
subroutines are, you'll feel
like your TRS-80 is even
smarter than it thinks it is.

Chapter 17

EXERCISE 17-1: Remove all traces of the subroutine from
the resident program. Use the SGN function that is already
built into TRS-80 BASIC to accomplish the same thing we have
been doing using a subroutine. Hint: T = SGN (X))

Learned in Chapter 17

SGN (X)) ON-GOTO Debugging
GOSUB Calling a
subroutine
ON-GOSUB
Routines
RETURN

145

146

"RANDOM NUMBERS? THATS EASY/

WHEN YOU'RE TAKING A NATH TeST
AND You DON'T KNOW THE ANSWER,
ou PUT DOWN A RANDOM NUMBER! "

CHAPTER 18

Random Numbers

At Random

A RANDOM number is one with a value that is
unpredictable. A Random Number Generator pulls random
numbers out of a hat. We have a Random Number Generator
and we set it up this way:

N = RND (X)

Where N is the random number
RND is the abbreviation and symbol for randem
X is a control number which can be either typed between
the parentheses or brought in as a variable from
elsewhere in the program.

Type:

49 FOR N = 1 TO 10
5¢ PRINT RND(@)
60 NEXT N

...and RUN.

Did you observe:

1. A different number appeared each time?

2. All numbers were between 0 and 1?

3. Very small numbers were expressed in exponential
notation. RUN some more until you are satisfied that
these statements are true.

147

PART (0

Let’s put a semi-colon behind our PRINT statement so we can
get more numbers on the screen at one time, and increase our
FOR-NEXT loop to 90 passes. Change the program
accordingly:

46 FOR N = 1 TO 99
50 PRINT RND(®);
60 NEXT N

...and RUN.

You get the idea.

This is fairly exciting!

Well, maybe so, but we ain’t seen nothing yet! Virtually all
computer games are based on the RND (0) function, and you'll
soon be playing some and designing your own.

RND (X)) with racing stripes

The RND (0) we just experimented with is the traditional
Random Number Generator. In other BASIC dialects you
may see it written as just plain RND. TRS-80 BASIC also has
a non-traditional version of RND which permits us to generate
numbers larger than 1 without having to resort to
mathematical chicanery. We just insert a number larger than
0 between the parenthesis.

Change line 50 to read:

50 PRINT RND(15);
...and RUN.

Wow! That’s more like it — real live random integers. And
they all are values that fall between 1 and 15. Figured it out
already? Pretty simple, isn’t it?

1. If the number in parentheses (or its INT value) is @, the
numbers generated are between ¢ and 1.

2. If the number in parentheses is 1 or larger, the numbers
generated are from 1 to the INT value of that number
(inclusive).

3. The largest permissible value of § is 32767.

148

Skeptical? You don't ieve the numbers are really
random? You want proof? A natural reaction. OK — how
about pretending to repeatedly flip a coin and see how many
heads come up compared to the number of tails?

The Old Coin Toss Gambit

Remember now, you could toss a thousand heads in a row and
the odds on the next toss are exactly 50/50 that a head will
come up again. Every toss is totally independent of what
happened before it. IT IS TOO!!!!!

In the long run however, the number of heads and tails should
be exactly the same. (Casinos live off people who go broke
waiting for their particular scheme to pay off ... “in the long
run”.) Your Computer will give you a complete education in
“odds” and various games of chance, and allow you to prove or
disprove many ideas involving probability. This is known as
computer “modeling” or “simulation.”

Type in this coin toss simulation carefully to avoid errors:

Chepter 18

19 INPUT "HOW MANY TIMES SHALL WE FLIP THE COIN"; F

20 CLS

39 PRINT "YOU STAND BY WHILE I DO THE FLIPPING

40 FOR N =1 TO F
50 X = RND(2)
60 ON X GOTO 90,1180

780 PRINT "IT BOMBED! WAS NEITHER A 1 NOR A 2.7

80 END

9¢ H = H + 1
186 GOTO 120
11T =T + 1
120 NEXT N

136 PRINT "HEADS", "TAILS", "TOTAL FLIPS"

14¢ PRINT H, T, F

15¢ PRINT 160 * H / F; "%", 168 * T / F; "&"

...and RUN. “Flip the coin” 100 times on the first RUN to
get a feel for the program and the run time. RUN as many
times as it takes to convinee you that the random number
generator produces really random numbers. When it’s time
for lunch or you can wait quite awhile for the answer, try
25,000 flips or more.

149

PART [l LN

N

Program analysis: S

Line 10 inputs the number of flips desired

Line 20 clears the screen to start the next print line at the
top of the screen.

Line 30 Prints a “Standby” statement.

Line 40 begins a FOR-NEXT loop that runs “F” times.

Line 50 is the RND (X) generator. We have told it to
generate integers between 1 and 2, and of course that
restricts it to just the numbers 1 and 2. Heads is “1’ and
Tails is “2”.

Line 60 has an ON-GOTO test sending X =1 to line 90
where the “Heads” are counted, and X =2, to line 110
where the “Tails” are counted.

Line 70 and 80 are used as default lines. If X = other than
1 or 2, the error message will be printed and execution
will END. It will never happen, but you are insisting on
proof.

Line 90 sets up H as a counter. Each time the ON-GOTO
tests sends control to this line because X =1, H is
incremented by one and keeps count of the “Heads”.

Line 100 sends control to line 120 where only the first
statement, NEXT N, is executed. When the N Loop has
gone through all “F” number of passes, control moves on
toline 130. Until then, the NEXT N sends it back to line

40.
Line 50 generates another random number (1 or 2). If the
next X = 2.

Line 60 sends control to line 119.

Line 110 keeps track of the “Tails”.

Line 120 passes control to line 139 when the last “N” is
“used up”.

Line 130 prints the Headings.

Line 140 prints the values of H, T and F.

Line 150 calculates and prints the percentage of heads, and
percentage of tails.

More Than One Generator at a Time

It is possible to generate more than one random number by
using more than one generator in a program. This has special
value when the ranges of the generators are different, but is
helpful even if their ranges are the same.

150

It could also be done with a
single generator, but that
wouldn’t make our point
... would it!

//2 ,/J
S

To make the point, we vsfl/ll create a computer game of “Craps”
— where 2 dice are “rolled”. Each “die” has six sides, each
side having 1, 2, 3, 4, 5 or 6 dots, respectively. When the 2
dice are rolled, the number of dots showing on their top sides
are added. That sum is important to the game. Obviously,
the lowest number that can be rolled is 2, and the highest
number is 12. We will set up a separate Random Number
Generator for each die, give each a range from 1 to 6, and call
them die “A” and die “B”.

Type NEW, then the following:

50 A = RND(6)
60 B = RND(6)
76 N = A + B
80 PRINT N

...RUN a few times to get the idea.

As you can see, each number printed falls between 2 and
12. We are able to put both of our generators and the adder
on the same line since the dice are always both thrown at the
same time, and only the total is of interest here.

Why would the following be wrong?

50 PRINT RND(11) + 1

Answer: Adding random numbers created by two generators,
each picking numbers between 1 and 6 will create many more
sums which equal 3, 4, 5, 6, 7, 8, 9, 10 and 11 than a single
generator which picks an equal amount of numbers 1 through
11 (to which we add 1, to make the range 2 through 12).

Rules of the Game

In its simplest form, the game goes like this:

Chapfer

18

151

PART 00

1. The player rolls the two dice. If he rolls a sum of 2
(called “snake eyes”), a 3 (“cock-eyes”) or a 12 (“boxcars”)
on the first roll, he loses and the game is over. That’s
“craps”.

2. If the player rolls 7 or 11 on the first throw, (called “a
natural”), he wins and the game is over.

3. If any other number is rolled, it becomes the player’s
“point”. He must keep rolling until he either “makes his
point” by getting the same number again to win, or rolls a
7, and loses.

EXERCISE 18-1: You already know far more than enough to
complete this program. Do it. Put in all the tests, print
lines, etc. to meet the rules of the game and tell the player
what is going on. It will take you awhile to finish, but give it
your best before you turn over to Section C (User’s Programs)
under CRAPS for a sample solution. Good luck!

Random numbers are unpredictable; properly functioning
computers are not. So how do we get random numbers out of
our Computer? We don’'t: we get pseudo-random
numbers. Each time we use the RND function, the Computer
uses an internal “seed number” to produce the desired random
number.

This is neither the time nor the place to get technical, so we'll
give the following tip without further explanation:

When you're running game programs using RND, it’s a good
idea to set the seed to an unpredictable value. This will
ensure that you don’t get the same pseudo-random number
sequence each time you turn on the Computer and play the
game. Put the following line at the beginning of your
program where it will be executed only once:

1 RANDOM

152

RANDOM

Learned in Chapter 18

RND (0) Random vs

for random Rseudo-random
numbers

greater than 0 Seed numbers
and less

than 1

RND (N)
for random
numbers
from 1 to N

Ghapter

18

153

154

You CAN COME To THE LIBRARY To ReAD,
OR NOU CAN COME TO READ AND Look.
FoR A DrTe

@
7 / phadios
LW Tl Qs P

-

g
EEEE———

CHAPTER 19

READing DATA

So far, we have learned how to enter numbers into our
programs by two different methods. The first is by building
the value into the program:

16 A =5

The second is by using an INPUT statement to enter a number
through the keyboard:

19 INPUT A

The third principal way is through the DATA statement.

Enter this NEW program:
10 paTA 1,2,3,4,5
20 READ A,B,C,D,E

390 PRINT A;B;C;D;E
...and RUN.

The DATA statement is in some ways similar to the first
method in that a DATA line is part of the program. It's
different, however, since each DATA line can contain many
numbers, or pieces of data, each separated by a comma. Each
piece of DATA must be read by a READ statement. Each
READ statement can read a number of pieces of DATA if each
variable letter is separated by a comma.

The display shows that all 5 pieces of data in line 1@, the
numbers 1, 2, 3, 4 and 5 were READ by line 20, assigned the
letters A through E, and printed by line 30.

Keep in mind this important distinction: DATA lines can be
read only by READ statements. If more than one piece of
data is placed on a DATA line, they must be separated by
commas. INPUT statements are used to enter data from the
keyboard.

155

PART 00

DATA lines are always read from left to right by READ
statements; the first DATA line first (when there is more than
one), and IT DOES NOT MATTER WHERE THEY ARE IN
THE PROGRAM. This may seem startling, but do the
following and you will see:

1. Move the DATA line from line 1 to line 25 and run. No
change in the printout, right?
2. Move the DATA line from line 25 to line 10000. Same
thing — no change in the printout.
Data line(s) can be placed anywhere in the program.

This fact leads different programmers to use different
styles. Some place all DATA lines at the beginning of a
program so they can be read first in a LIST and found quickly
so data may be changed.

Others place all DATA lines at a program’s end where they are
out of the way and there are more line numbers available to
keep adding DATA lines as the need arises. Still others
scatter the DATA lines throughout the program next to the
READ lines which bring that data into use. The style you use
is of little consequence — but consistency is comfortable.

The Plot Thickens

Since you now know all about FOR-NEXT loops, let us see
what happens when a DATA line is placed in the middle of a
loop. Erase the old program with NEW and type in this
program:

19 paTA 1,2,3,4,5
20 FOR N =1 TO 5
30 READ A

40 PRINT A;
56 NEXT N

...then RUN.

That DATA line started outside the loop. Now move it to line
25 and RUN. What happened?

156

Nothing different! It is important to note this fact or we
wouldn’t have gone to the trouble to do it. Note that as we
went through the N loop 5 times, we read the letter A, and the
PRINT statement only printed A, but A’s value was different
each time. Its value was the same as the value it last READ
in the DATA line. The reason — each piece of data in a
DATA line can only be read once each time the program is
run. The next time a READ statement requests a piece of
data, it will read the next piece of data in the DATA line, or, if
that line is all used up, go on to the next DATA line and start
reading it.

Change line 20 in the program to read:

20 FOR N =1 TO 6
...and RUN.

We, of course, told the READ statement to read a total of 6
pieces of DATA but there was only 5. An error statement
caught us, as the screen shows.

I 2 3 4 5
0D Error In 30 (OD = OQut of Data)

Now change line 20 so the number of READs is less than the
DATA available

20 FOR N =1 TO 4
...and RUN.

The program ran just fine as long as we didn’t use all the
available data. The point is, each piece of data in a DATA
statement can only be read once during each RUN.

Exceptions, Exceptions!

Because it is sometimes necessary to read the same DATA
more than once without having to RUN the complete program
over, a statement called RESTORE is available. Whenever
the program comes across a RESTORE, all DATA lines are
restored to their original “unread” condition, both those that
have been read and those that have not, and all are available
for reading again, starting with the first piece in the first
DATA line. Change line 20 of the program back to

20 FOR N =1 TO 5

Ghapter

19

157

PART 11

and insert
35 RESTORE
and RUN.

Oh-oh! The screen prints five 1's instead of 1 23 4 5. Can
you figure out why?

Line 30 READ A as 1, but line 35 immediately RESTOREJ the
DATA LINE TO ITS ORIGINAL UNREAD CONDITION. When
the FOR-NEXT loop brought the READ line around for the
next pass it again read the first piece of data, which was that
same 1. Same thing with all successive passes.

READ and DATA statements are extremely common. The
RESTORE statement is used less often.

String Variables

Who knows where some of these seemingly unrelated words
come from? If they weren’'t so important we could ignore
them. We have been using the letters A through Z to indicate
numbers. They are called NUMERIC VARIABLES. We
can use the same 26 letters to indicate STRING VARIABLES
by just adding a “$”. A$, for example is called “A
String”. String variables can be assigned to indicate Letters,
Words and/or Combinations of letters, numbers and
spaces. Type NEW then type in:

10 INPUT "WHAT IS YOIl“éiNAME"; AS

20 PRINT "HELLO THERE, ™: AS
...and RUN.

Hey-hey! How's that for a grabber? If that, along with what
you have learned in earlier chapters doesn’t make the creative
juices flow, nothing will.

That’s Two

Two ways we now know to print words. The first, learned
long ago, is to imbed words in PRINT statements (and is called
“printing a string”). The second is to bring in a word(s)
through an INPUT statement (called “inputting a string”). If
you can’t think of the third way, go back and check the title
heading at the first of this chapter.

Ah yes, brilliant student. Ahem ... (Reading a string.)

158

Chapter

Change the program to read:

10 READ AS
20 DATA RADIO SHACK TRS-80
390 PRINT "SEE MY FOXY "; AS

...and RUN.
SEE MY FOXY RADIO SHACK TRS-80

Let’s use 2 string variables to accomplish the same thing,
seeing how they work with each other. Rework the program
to read

19 READ AS
15 READ BS
20 DATA RADIO SHACK, TRS-80
3¢ PRINT "SEE MY FOXY "; AS; " "; BS
Analyzing the program.
Line 20 contains two Data items, separated by a comma.
Line 10 READs the first one.

Line 15 READs the second one.
Line 30 contains 4 print expressions. The first one prints

19

In other words, a semi-colon

SEE MY FOXY, leaving a space behind the “Y” since between STRING variables
string variables always run letters together, allowing us does NOT cause a space to

the option of inserting our own space. The second print be PRINTed between

is A$, RADIO SHACK. The third print is the space space using * " marks.
enclosed in quotes. The last print is TRS-80.

Learned in Chapter 19

READ String Variables
AS$, BS, ...

DATA v

RESTORE Numeric Variables

them. We have to insert a

159

NOTES

160

Part 111

Strings

i

THIS NEXT PART IS VERY IMPORTANT

[T CAN CHANGE YOUR COMPUTER INTO AN
OBEDIENT GIANT OR. A MALEVOLENT MONSTER..”

“Do Yoo SVPPOSE T
coulD Rdwe A copy

162

CHAPTER 20

Intermediate BASIC

Now that we've learned “Elementary” BASIC we can get
serious about “Intermediate” BASIC. The next Chapter is
sort of a “catch up” and “catch all”, showing a lot of little
features that didn’t find a convenient home in the previous
chapters. Study each of them, do the sample programs and
think about them. Each one is brief but important.

Multiple Statement Lines: (Now he tells us!)

BASIC allows us to put more than one statement on each
numbered line, separating them by a colon (:). For example,
a timer loop such as:

108 FOR N = 1 TO 5080
116 NEXT N

becomes ...

1686 FOR N = 1 TO 500 : NEXT N

CAVEAT EMPTOR (Don’t buy a used computer from a
stranger.)

Control yourself! It's easy to get carried away. While we
will be using multiple statement lines often from here on, you
will quickly see that it’s possible to pack the information so
tightly it becomes hard to read, and also very hard to modify.

MORE CAVEAT (or is it more Emptor?)

Multiple statement lines require careful understanding.
Especially critical are statements of the IF-THEN variety.

163

PART 100

Enter the following program:

10 INPUT "TYPE IN A NUMBER"; X

20 IF X = 3 THEN 50 : GOTO 70

30 PRINT "HOW DID YOU GET HERE?"

40 END

50 PRINT "X=3"

60 END

70 PRINT "CAN'T GET FROM THERE TO HERE."

...and RUN it a number of times with different input values.

Line 20 has an error in logic. If the test in the first statement
in the line passes, control branches off to line 50. That's
OK. Ifthe test fails, however, control drops to the next line in
the program — line 30. There is no way the second statement
in line 20 (GOTO 70) can ever be executed.

THE MESSAGE — if you put an IF-THEN (or ON-GOTO) type-
test in a multiple statement line, it must be the last statement
in that line.

NEXT MESSAGE — We cannot send control to any point in a
multiple statement line except to its first statement. Look at
Line 20. There is no way to address the GOTO 70 portion. It
shares the same line number as the first statement in the
line. Only the first statement is addressable by a GOTO or
IF-THEN. Others in the line are accessed in sequence, if the
prior tests are passed.

Variable Names

We know we can use the 26 letters of the alphabet as names for
variables. We can also use the numbers 0 through 9 in
conjunction with these letters:

A3 = 65

F9 = 37

164

Chapter 20

Altho the 26 letter variables are usually enough, the numbers
give us an additional 26 * 10 = 260. They can be very handy,
particularly if we want to label a number of “sub” variables
(D1,D2,D3, etc.) which combine to make a grand total which
we can just call D.

In addition, we can use almost any two-letter combination for a
name. For example:

PI = 3.14159

C =PI*D Circumference = 3.14159 *
Diameter
(Now that really looks valuable.)

This feature gives us another 26 * 26 variables, and if that isn’t
enough to solve all your problems, nothing will. Nearly a
thousand possible variable names so far, and we’ll discover
several times that many before we're through.

Enter this program and RUN, watching for an error message:

1 CLS : PRINT

16 RATE = 55

20 TIME = 3

3¢ DISTANCE = RATE * TIME

40 PRINT RATE, TIME, DISTANCE
586 PRINT : LIST

?SN got us in line 30. Is the word DISTANCE too
long? Let’s cut it back to DISTA and RUN again.)

OK, that got us past line 30, but the same problem exists in
490. Cut DISTANCE back to DISTA and try again.

That’s more like it. Looks pretty good doesn’t it. We can
actually use words to name our variables. Add this line and
RUN:

35 DIME = 10

Another SN error? What’s wrong with DIME???

"BUT WHEN You SAID | CouLD
HAE SOME PIE, | THOUGHT You
MEANT 81459 Peces/..”

Did you see how cleverly we
can use LIST in the program
so after the RUN it LISTs
itself?

165

PART 000

It just so happens that the word DIM (dimension) is only one of
a mess of “reserved” words, and we can’t use them in variable
names for obvious reasons. DIM is the first 3 letters of
DIME. The problem with DISTANCE in line 30 wasn’t
length, as we suspected (words can be hundreds of characters
long). It contained TAN, another reserved word. Ah, so!

Many of the reserved words in Appendix F are not reserved
for regular TRS-80 BASIC, but for “Advanced” BASIC as used
with the DISK system. The result is the same — we can't use
them. (Better take a look now at Appendix F ... there’s big
trouble ahead if you don’t.)

Okay, how about just cutting back to 2 letters. We know we
can use ALMOST any 2 letter combination for a name. Try:
ON TO IF and OR (won't work).

Now try:

35 DI = 10
and RUN.

It ran, but look at the answer! Our variable DISTA was
printed with a value of 10 instead of 165. What
happened? DISTA surely can’t be the same as DI. Well, it
might look different, but the Computer only sees the first 2
letters of any variable, and they ARE the same. The DI in
line 35 gave the DI in DISTA a new value.

The Lesson here should be pretty clear. It’s very easy to get
all carried away with fancy variable names, and in the process
find lots of trouble. Remember KISS? (Keep It Simple,
Stupid !)

166

Chapter 20

New String Variables

So far we've used A$ and B$ as string variables. We actually
have ALL the letters of the alphabet available for
strings. And the numbers 0 through 9 too, plus any 2 letter
combination. These are valid string names:

-3 3
s " NoTICE
THE FoLLOWING STUDENTS
D8$ HAE MADE THE TEAM:!
PIS B$(R)
DL$(X)
ete. RUL$ (k)
B44 (G)
Almost another thousand variable names. T TR$W) J
MUST BE The Conthu
THE FIRST STRING! L2 °lrg
Shorthand !

v7 (&
There are several little “shorthand” tricks we can use. Q? C’%

The first is the use of ? in place of the very common word,
PRINT. Type NEW, then this line:

16 ?"QUESTION MARK"®
and LIST it.

Awwk! The pumpkin turned into a coach. The Computer
rewrote it to read:

18 PRINT"QUESTION MARK"

It also works at the command level. Try:
3*4 and we get
12

If you have the numeric keypad you'll especially appreciate
this feature since the same upper-case characters are available
above the pad numbers as above the keyboard ones. They
just aren’t marked. Try it.

The value of this is, a touch typist can type ? for PRINT and ”
with the right hand by hitting the number 2, while the left
hand holds down the left SHIFT key, considerably speeding up
the typing of PRINT lines.

167

PART 100

The ' is shorthand for REM, and is especially nice when
documenting the purpose of a line. It makes program lines
into multiple statement lines. ’ = :REM.

50 X = Z*C/4 + 33 ' THE SECRET EQUATION

The only place ’ can’t be used unaided is in a DATA line, and
that problem can be overcome by actually adding a : to the
DATA line. See lines 1009 and 1010 in this program.

19 REM * SEVERE WEATHER ALERT SYMBOL AS SEEN ON KTIV-TV *

20 ' H = HORIZONTAL STARTING POSITION

30 ' V = VERTICAL STARTING POSITION

49 CLS ' N = NUMBER OF VERTICAL BLOCKS TO BE SET

50 READ H, V, N : V1 =V ' READ DATA & STORE V FOR RECALL
60 IF N = 8 GOTO 60 ' LOCKING LOOP WHEN OUT OF DATA
70 FOR H=H TOH + 2 ' 3 PASSES FOR TRIPLE BLOCK WIDTH
80 FORV =V TOV + N~ 1 " COUNTS PRINTING OF N BLOCKS

90 SET(H,V) : NEXT V ' SETS LIGHT BLOCKS & CLOSES LOOP

160 V = V1 : NEXT H : GOTO50 ' RESETS V TO DATA LINE VALUE
1006 DATA 162,3,9,105,16,1,108,7,3,111,6,1 ' DATA IS IN-
16106 DATA 114,7,3,117,10,1,126,3,9,6,0,0 ' H, V, N ORDER

The Period . is of minimal value as a BASIC shorthand feature,
but if you've just typed a new line, listed one, or Edited one,
you can repeat it without typing its number:

90 REM TEST LINE [{Uid
then type

LIST.
and line 90 will be LISTed. This works even if the program
has been RUN, which can be an aid in troubleshooting a line

without writing down its number. It also works with a line
that keeps popping up due to an error message.

168

Chapter

The ENTER Key

If you're the very observant type you will have noticed that
program execution begins when the [I[}{IJ key is pressed, not
when it's released. Try it on the resident program. This
becomes important later on when we’re doing such precision
things as setting the Real Time Clock.

Special Keys

The keyboard is pretty self-explanatory, but there are several
keys:

RIGHT ARROW is used as a preset TAB. Go ahead and press
it a few times. It TABs over in increments of 8 spaces,
starting with 0, following a 0, 8, 16, etc. sequence. It is
helpful when typing a program containing nested FOR-
NEXT loops.

A SHIFT RIGHT ARROW converts the screen display from 64
characters to 32 characters. Try it. The CLEAR key
clears the screen and returns the screen to 64 characters
per line.

LEFT ARROW is for people who change their mind a
lot. You've already used it for correcting errors, one at
a time. By pressing the shift key at the same time, you
can wipe out the entire line just typed.

UP ARROW is used with SHIFT in EDITing to end the
INSERT mode.

DOWN ARROW is also called the “linefeed”. It moves the
cursor down to the next line.
Use of Quotes & Semicolons

Technically, it is not necessary to use quotes to close off many
PRINT statements.

1¢ PRINT "WHERE IS THE END QUOTE?

RUNSs just fine. Leave it off at your own peril.

20

BACKSPACE on Model II.

ESC on Model II.

Note lack of second ”

169

PART 100

Also, semicolons are not absolutely necessary to separate a
TAB number and the opening quote marks:

16 PRINT TAB(16) "OOPS, WE MISSED A SEMICOLON"
RUNSs just fine. Leave it out at your own peril.

A BASIC interpreter that is “too forgiving” is like an airplane
that is “too forgiving”. It allows you to become sloppy, and
when you really need all the skill you can muster, it is gone
from the lack of practice imposed by its discipline. You are
strongly encouraged not to take these and other “cheap” short-
cuts.

INPUT??

When INPUTing several variables in a single INPUT line, if
we fail to input them all, separated by commas, the special
prompt, ?? alerts us to the fact that more DATA must be
INPUT. Type this program and enter only one number at a
time, followed by [IfliZE. Watch for the ??2:

16 INPUT A,B,C
and RUN

RUN again, this time typing all 3 numbers separated by
commas. It should “swallow” them all in one gulp.

RUN again and try to INPUT a letter instead of a number. It
responds with

{ REDO
There is extensive information in Appendix H dealing with

Error Messages. REDO reminds us that we can’t INPUT a
string variable into a request for a numeric one.

Optional NEXT

FOR-NEXT loops don’t always have to specify which FOR we
are NEXTing. This can be useful when the loops are nested.

170

Chapter

Type this NEW program:

18 FOR N =1 TO 5 : PRINT N

20 FOR Q 1 TO 3 : PRINT ,0
30 FOR R =1 TO 4 : PRINT ,,R
40 NEXT : NEXT : NEXT

]

RUN it several times to get the flavor. Note how commas
were used to place PRINTing in the zones we want.

This method of NEXTing should not be used if the program
contains tests which might allow a loop to be broken out

of. Better then to be specific, as we've already learned, or use
this little short-cut.

40 NEXT R,Q,N

IF-THEN-ELSE

ELSE is an interesting addition to our stable of conditional
branching statements. It allows us an option other than
dropping to the next line if a test fails. Try this one:

1 CLS : PRINT
16 INPUT "ENTER A NUMBER"; N

20 IF N = @ PRINT "ZERO" ELSE PRINT "NOT ZERO"

30 PRINT : LIST
and RUN.

POS(N)
A new and sometimes useful statement allows the Computer to
report back the position of the cursor. This simple program
tells all:

1 CLS : PRINT

190 INPUT "ENTER A NUMBER BETWEEN -1 AND 53%; A
20 PRINT TAB(16 + A)
3¢ PRINT POS(N)
4¢ PRINT "WAS THE NUMBER OF THE NEXT PRINT POSITION"
99 PRINT : LIST
and RUN.

20

171

PART 100

Line 30 is the key one, containing POS. The N inside brackets
is just a “dummy”. Most any other variable would work as
well — but something has to be placed there. POS reports
back any cursor position up thru 63. Numbers beyond that
start over again with zero, as you will see if you INPUT a
number larger than 53.

255 Characters per line
TRS-80 BASIC permits up to 255 characters in a single

program line — 4 screen widths of 64 characters each. (Don’t
ask me to debug such a line!)

Learned in Chapter 20

IF-THEN-ELSE POS(N) Multiple
statement lines

Variable Names
Some shorthand
Special keys
TABing

Quotes and
Semicolons

Multiple
INPUTing

Optional NEXT

172

NOTES

173

l‘I CAN APPRECIATE YOUR. ABLITY To EDIT
COMPUTER_ PROGRAMS BUT cAN Yoo LEAVE

TRE NEWSPAPER. ALONE UNTIL AFTER.
| READ (T2

174

CHAPTER 21

The Editor — Second
Semester.

You could probably live happily ever after thinking it was fat
city with what we learned in the first chapter on the EDITor,
but it has a number of other features which are handy to use
when the occasion arises. One which will certainly arise is
typified by the following lines. Erase the memory and type:

10 PRIMT "THAT ISN'T HOW YOU SPELL PRINT"

and RUN (NOTE: PRIMT is
deliberately misspelled)

7SN Error in 10
READY
10 B

means there is a syntax error in line 1. The Computer is
telling us WHAT? — I don’t understand what you are saying
and automatically putting us in the EDITOR mode at the line
which contains the error. This always happens when there is
a syntax error. (More on Syntax and other errors in later
chapters.) Meanwhile, proceed normally by typing:

L to list the line

SM to find the first M

CN to CHANGE it to an N
L to list for final look

to return to BASIC

While we’re at it, let’s examine another simple but sometimes
troublesome point. Let’s go back into EDIT and find the first
P in the program.

175

PART 000

EDIT 10

I(DE

SP
what happened ...?

Isn’t the first P in the word PRINT? Yes, but when the
Computer starts out in the EDIT mode, the cursor positions
itself in place of the first letter of the first word, so it was
already at the first P. OQur SP searched out the NEXT P,
which was in SPELL. Now you know. Hit IE to get out
of the EDITOR.

There is a third and often convenient way to enter the EDIT
mode, particularly when experimenting — — — switching back
and forth from BASIC to EDIT, then back to BASIC again to
test some programming change.

For example, we just EDITed line 10. To enter EDIT10
again, simply type:

EDIT. (note the period)
Try it.

EDIT followed by a period is just an abbreviation for EDIT
followed by the line number OF THE LINE LAST
EDITED. Obviously, if we didn’t recently EDIT a line, this
feature has no meaning.

On some early TRS-80’s the EDIT (.) feature is a bit squirrelly.

Q is for Quit (without changes)

We know that whenever we type RUN, all values are
initialized to zero, but hold their last value after the RUN. It
turns out that whenever we do an EDIT, the values are also
reset to zero. This can be a disadvantage if we are in the
process of troubleshooting and are automatically thrown into
EDIT by a syntax error. Let's enter this short program to
demonstrate the point:

10 T=T+ 1
20 PRIMT T

RUN the program and let it crash.

176

Chapter 21

? SN Error in 20

Don’t make any changes in Line 20 at this time, but just exit
the EDITOR by hitting [

Check the value of T in memory by typing
PRINT T

at the command level.

0 is the value indicating T has been reset to §.

RUN the program again, crashing it again, but this time exit
the EDITOR by typing a simple:

Q which stands for “quit without changes.”
Then

PRINT T shows its value to be

1
This may not really be all that profound, but if you're chasing a
real ornery bug and want to check the values of the variables
before doing any EDITing, Q is the way to do it. A fast

EDIT.
will bring back the EDITOR at the offending line without our
even having to write down its number or having to remember
it.

Q also lets us escape from EDIT if we change our mind and
don’t really want to make those changes we already did.

E is for END and EXIT E

E is the opposite of Q. When we are satisfied with the
changes, type E and we're back in BASIC. E does the same
thing as hitting , but without printing the remainder of
the line.

177

PART 000

A is for ABORT

If, after making some changes via the EDITOR and looking at
them with an L you decide you don’t want to make them, type
an A. The changes, regardless how drastic, are not final until
we exit the EDITOR, and A will kick them all out and let us
start over again. Type L, following the A, to see what the
original line looks like again. Now type:

EDIT 20
and change the M to an N. Type an A and then L to get the

feel for it. If you enter INSERT as part of an EDIT, be sure
to exit it first with a [f{I[FE or the A won't work.

K is for KILL

K is a combination of SEARCH and DELETE, starting with
the beginning of the line. Type:

EDIT 20 then
KT then
LL to see what happened

It KILLED everything up to (but not including) the first T.
“Take it all back” by typing an A, then L, then try:

2KT then

LL and see that everything up to the 2nd T was
KILLED.

AL to “take it all back”

H is for HACK

HACK is sort of the minor image of KILL in that it
DELETEs everything from the cursor to the end of the
line. It just “hacks” off the end of the line, without showing it
on the screen, and goes into the INSERT mode. Nice if you
need it, and great for “hackers.”

178

If you don't need to go into the INSERT mode, the old
traditional “99D”, meaning DELETE the next 99 characters
(which is usually more than enough to erase the rest of the
line), is the best approach.

To implement HACK, SEARCH for the starting point, then
H off the end of the line, and type the new ending in its place.

X is to eXtend

Suppose we wanted to go to the end of a line and add some
more to it — to extend it. We can type X which also throws
the EDITOR into INSERT. X is a one-step replacement for:

S @38 Searches for the carriage return
I Puts EDITOR into INSERT

Give it a try on one of the program lines.

That’s —30—

With steady but persistent practice, you will become very
skillful at using the EDITOR. It will in turn reward you
handsomely with great savings in time and frustration.

Model II users can use the EDITing feature in the immediate
mode when entering a command or new line. While entering
any line, press:

F1
The screen will show:
!

indicating that we are now in EDIT mode. Modify the line by
using any of the previously covered EDITing commands.

Chapfer

21

179

PART 000

L e TR e R e

EXERCISE 21-1: Use the editor to change:
10 PRINT I : FOR I =1 TO 10 ¢ PRINT

to:
106 FOR I =1 TO 10 - PRINT I *# I : NEXT I

Learned in Chapter 21

EDIT More Editing
features

180

W

IT SANS SOMETHING HERE ABOUT A SYNTAX..

WHEN YoU COME To THINK ABOUT IT, THEY'VE
TAXED JUST ABOUT ENERVTHING ELSE!”

—::: 'y 7 .

" TweE ARE TNES O
TRET WILL ReALLY
WL You!*

P U

181

182

I///IA //1/////, 'I///II/ 14 04
I,
4 {/ ////// ////I///

TODANS SPECIALS

19| oy 98% /)
|84 st 119 //
B You WANT TO KNOW
WHAT NUMBERS MEAN
ASk kee

Ry,
Syl

AR tasstas

2, I AT
/// i s sresrist, G
21, UIIIIII Y

11

1717 1// r//// 01 HLLIILF AN ////1///1//M
'//”/m A LI, Y11V
JL2L: (LTI, UL A

4
/// II/; ’/////// ////

114 17 I/I// 111114, 114

SaeTtLtL. SIrIEItr,
oot ety

Nb

NN

N

AN

D

LIV 10,
A I I,
//////////M///////;I///IZI/ il ////////,////,///

oY

CHAPTER 22

The ASCII Set

The purpose of this chapter is to learn how to use ASC and
CHR$. Before doing so however, we must learn about
something called “the ASCII set”. (No, they're not like the
“horsey set”.) ASCII is pronounced (ASK’-EE) and it stands
for American Standard Code for Information
Interchange. Since a computer stores and processes only
numbers, not letters or punctuation, it’s important that there
be some sort of uniform system to specify which numbers
represent which letters and symbols. The ASCII Chart in
Appendix B shows the relationship between the number
system and symbols as used in your TRS-80. Look at
Appendix B.

Type this program into your Computer:

10 FOR N = 32 TO 255

20 PRINT "ASCII NUMBER"; N ;
30 PRINT "STANDS FOR", CHRS$(N)
490 FOR T = 1 TO 560 : NEXT T

50 NEXT N

As you RUN it, observe that the characters between ASCII
code numbers 32 and 191 are printed on the screen. Those
numbers from 97 to 122 are just lower-case duplicates of
numbers 65 to 90, but the unmodified Model I TRS-80 prints
only upper case. Numbers 129 to 191 are special Graphics
characters.

If you end up in the Big House serving time for computer
fraud, the following little program will make up your license
plate combinations, putting CHR$ to good use.

183

PART 000

Enter:

1 CLs
10 REM * LICENSE PLATE NUMBER GENERATOR *

20 FOR N =1 TO 3 PRINT RND(18) - 1;

30 NEXT N : PRINT " ";

40 FOR N = 1 TO 3 : PRINT CHRS$(RND(26) + 64);
50 PRINT " "; : NEXT N : PRINT, : GOTO 20

*®

and RUN

The RND generator in line 40 spits out numbers between 1 and
26. We add 64 to each number to make the sum fall in the
range between 65 and 99. What do we see on the ASCII
conversion chart between 65 and 99. Hmmmm ? ? ?

184

Ghapter 22

ASCII code numbers between ¢ and 31 are used for special
control purposes in the TRS-80:

MODELS I & III

Code Function

0-7 None

8 Backspaces and erases current character

9 Tab (0, 8, 16, 24,...)

10-13 Carriage returns

14 Turns on cursor

15 Turns off cursor

16-20 None

21 Swap space compression/special characters

22 Swap special/alternate characters

23 Converts to 32 character mode

24 Backspace Cursor

25 Advance==Cursor

26 Downward § linefeed

27 Upward f linefeed

28 Home, return cursor to display position
(0,0)

29 Move cursor to beginning of line

30 Erases to the end of the line

31 Clear to the end of the frame

185

PART 000

MODEL II/16

Code Function

00

01 Turns on blinking cursor

02 Turns off cursor

03

04 Turns on steady cursor

05

06

07

08 Backspaces cursor and erases
character

09 Advances cursor to next
8-character boundary

10 Line feed

11

12

13 Carriage return

14

15

16

17

18

19

20

21

22

23 Erases to end of line

24 Erases to end of screen

25 Sets white-on-black mode

26 Sets black-on-white mode

27 Clears screen, homes cursor

28 Moves cursor back

29 Moves cursor forward

30 Sets 80-character mode and
clears Display

31 Sets 4d-character mode and

clears Display

186

Chapter

The Code numbers between 128 and 191 are for graphics
characters, nearly all of which are irrelevant for the ordinary
computer user. SET, RESET and POINT serve most
everyday graphic needs, and will be learned in Part 5.

The ASCII numbers between 192 and 255 are so-called “space
compression codes”. We can use them to insert from to 63
blank spaces in a printed line. Code 192 stands for 0 spaces
and 255 stands for 63 spaces. The in-between numbers
correspond. Erase the memory and RUN this program:

10 PRINT "HELLO OUT"; CHRS$(222); "THERE"

and RUN

CHRS$ (222) inserted 30 blanks, or “TABbed over” 30 spaces
between OUT and THERE. To see the difference between
using these ASCII code numbers and using TAB, add this line:

20 PRINT "HELLO OUT"; TAB(30); "THERE"

and RUN.

TAB spaces from the beginning of the line, while this series of
ASCII numbers inserts spaces from the last PRINT position in
the line.

There is in practice little uniformity internationally (or even
inside the U.S.) in the use of ASCII code numbers, other than
those used for just letters and numbers. Fortunately, that is
sufficient for most of our everyday needs. If you contemplate
the problems faced by the Japanese, Europeans and others
who need special letters and characters, you will get some idea
of how these numbers between 127 and 255 can be put to good
use.

22

Model II users skip to ‘So
What is CHR$ (N)??’

187

PART 000

EXERCISE 22-1: Write a program using a FOR-NEXT loop
that will print the words “SPACE” and “COMPRESSION” 64
times. Each time the words are printed, insert an additional
space between the two.

Yup. We are in full control of these higher order ASCII
codes.

TODAY THE TRS-80, TOMORROW THE WORLD!

So What is CHR$(N)??

We have used CHR$ freely so far without describing it, but
you undoubtedly figured it out anyway. CHR$(N) produces
the ASCII character (or control action) specified by the code
number N. It is a one-way converter from the ASCII code to
the ASCII character, and allows us to throw characters around
with the ease of throwing around numbers.

188

Chapfer

Enter this simple program:

190 INPUT "TYPE ANY NUMBER BETWEEN 33 AND 127"; N

20 PRINT CHRS$(N)
38 RUN

and RUN

Almost all of our activity with ASCII numbers will be confined
to this range. However, these “quickie” programs show how
to use several ASCII numbers that stand for actions instead of
numbers, letters or characters. Give them a try:

For Model I users only:

10
20
30
40
50
60

REM * CURSOR BLINKER *
PRINT CHRS$(14);
FOR N = 1 TO 5600 : NEXT N

PRINT CHRS(15);
FOR N = 1 TO 560 : NEXT N

GOTO 20

For everyone:

1 REM * DOUBLE WIDTH DEMO *

10

20
30
40
50
60
70

CLS

PRINT CHRS$ (23) [Model 11 use CHR$(31) |
PRINT "HELLO OUT THERE"

FOR X = 1 TO 508 : NEXT X

PRINT CHRS(28) [IMode 11 use CHR$(30) |

FOR X = 1 TO 500 : NEXT X

‘"GOTO 20

22

189

PART 000

EXERCISE 22-2: Use the ASCII chart (Appendix B) and the
CHRS$ function to print TRS-80.

What then is ASC($)?

ASC is the exact opposite of CHR$(N). ASC is a one-way
converter from the ASCII character to its corresponding
ASCII number.

Type:

19 INPUT "TYPE ALMOST ANY LETTER, NUMBER OR CHARACTER"; AS
20 PRINT "ITS ASCII NUMBER IS"; ASC(AS)

30 PRINT

40 GOTO 10

and RUN.

It will print the ASCII number of almost all characters. (I
don’'t have any idea why some TRS-80’s don’t work with ,”:
and some others, but then strings can be a real mystery at
times as we will see.)

The second way to use ASC is to imbed the character within
quotes, thus:

16 PRINT ASC("A")
This latter method isn’t always convenient.
Before we can really understand what we are doing, we must
learn a lot more about strings. Before we could learn about

strings we had to learn something about ASCII. It's like
“catch TRS-80".

190

Chapter

Model III Special Character Sets

Both the Model I and Model III computers use ASCII codes 192
— 255 as space compression codes. Since these characters
are used rather infrequently, Tandy incorporated two
alternate sets of characters that can be used in place of the
space compression characters. This can be a bit confusing
since the ASCII number 255, for example, can represent any of
three different characters.

The controls can be mastered if we keep a level head.

When the computer is first turned on, ASCII codes 192 — 255
give us space compression codes. By printing ASCII code 21,
we change the space compression codes into a set of special
characters.
Enter this program:

10 PRINT CHRS(21)

280 FOR N = 192 TO 255

30 PRINT "ASCII NUMBER®"; N ¢

40 PRINT "STANDS FOR", CHRS(N)

56 FOR T = 1 TO 5006 : NEXT T

69 NEXT N

and RUN.

How bout that. The last time we looked at ASCII codes 192
and 255 we saw space. (Can one really see space?)

RUN the program again and notice we are switched back in the
space compression mode again. The computer stays in the
last mode until it receives another CHR$(21).

RUN the program a few times until you are convinced, then
stop with the special character set displayed on the
screen. Pay attention, we don’t want anyone getting lost.

22

Model I users should skip to

the next chapter.

Reduce 500 in the FOR-

NEXT loop if you want to

speed things up.

191

PART 000

Now, try this program:
NEW
16 CLS : PRINT CHRS(23)
30 FOR I = 192 TO 255
49 PRINT I; CHRS(I);
58 NEXT I

Look out PAC-MAN! Just imagine all the special
applications for these characters. We have playing card
suits, Greek letters, a few math symbols, faces, and even a
rocket ship.

CHR$(23) in line 10 set the screen to double width so that we
can get a better look at them.

Add this line:

20 PRINT CHRS$(22)
and RUN

Does this madness ever end? Not only does the computer
have special characters, it also has an alternate set of special
characters. This time we're looking at Japanese Kana
characters.

What do you suppose would happen if we ran the program
again? Try it.

Oh, each time it sees CHR$(22), it switches between these
special characters. CHR$(22) can also switch characters in
the immediate mode.

Type:
PRINT CHR$(22) | ENTER |

As long as the characters are displayed on the screen,
CHR$(22) will change character modes. “Toggle” back and
forth until you have the special characters displayed.

192

Ghapier 22

Let’s finish with this last message:

NEW
16 CLS : PRINT CHRS$(23)

20 PRINT "TIME TO MOVE ON"
3¢9 PRINT CHRS$(196); ™ "; CHRS$(244); CHRS$(245); CHRS (246)
and RUN ...

If the message didn’t make sense, type:

PRINT CHR$(22)

EXERCISE 22-3: Input a single character from the keyboard
and test its ASCII value to determine if it is a number. If not,
return program control to the INPUT statement. Hint: use
two IF statements and ASC.

Learned in Chapter 22

CHR$ ASCII codes

ASC Model III special
characters and
Kana characters

193

TS NOT 0 CONFUSING AS LONG
AS YOU KEEP YOUR STRINGS
STRAIGHT /"

THE INSIDE OF A COMPUTER!”

P

\ “HE MUST HANE SeeN

194

CHAPTER 23

Strings in General

It was not our intention to “string you along” in the previous
Chapter, but we really can’t understand how strings work
without first understanding the ASCII concept of numbers
standing for letters, numbers and other characters and
controls.

Comparing Strings

One of the most powerful string handling capabilities we need
is the abilty to compare them. We compare the numbers
betweeen NUMERIC variables all the time. How can we
compare strings of letters or words? Well, why do you
suppose we put the ASCII Chapter just before this
one? Right! The Computer can compare the ASCII code
numbers of letters and other characters. The effective result
is a comparison of what’s in the corresponding strings.

Type in this new program:
1 CLS
19 INPUT "WHAT IS YOUR NAME"; AS
20 IF AS = "ISHKIBIBBLE" THEN 50
3¢ PRINT "SORRY. YOUR NAME ISN'T ISHKIBIBBLE!"

49 END
5¢ PRINT "IT'S ABOUT TIME. FORGET HOW TO SPELL YOUR NAME?"
and RUN.

If the Computer can compare that name it should be able to
compare anything!

During the process of comparing what you enter as A$ in line
10 to what's already in quotes in line 20, the ASCII code
numbers of each letter found in one string are compared, letter
for letter, from left to right with those in the other. Every
one must match, or the test fails.

195

PART 000

Strings and “quotes” go together like beer and chocolate cake.
(Beer and chocolate cake..?) You know this from earlier
chapters where every PRINT “XXX"” has its string enclosed in
quotes. (PRINT “XXX"” is called a string constant, compared
with A$, a string variable) RUN the above program again,

this time answering the question with “ISHKIBIBBLE”, but
enclosed in quotes. - L ﬁ:—h*“
LT ="

Sure — it ran OK. Worked either with or without
quotes. BASIC has become increasingly lenient about this
matter, but every once in a while the rules come up from
behind and bite you if you play fast and loose with them.

If we READ a string, and it has no commas, semicolons, leading
or trailing spaces in it, we don’t need to enclose it in
quotes. We will never go wrong by ALWAYS enclosing
strings in quotes, but that can be a nuisance.

EXERCISE 23-1: Write a program that will compare two
strings entered from the keyboard. PRINT them in
alphabetical order.

Erase the resident program and type in this next one, which
READs string data from a DATA line.

1 CLS

16 READ AS$, BS$, CS$

20 PRINT AS

30 PRINT BS$

40 PRINT C$

100 DATA COMPUSOFT PUBLISHING, SAN DIEGO, CA, 92119

and RUN

196

Look carefully at the results. The screen shows:
COMPUSOFT PUBLISHING
SAN DIEGO
CA

That’s fine, but where is the ZIP CODE??? And why didn’t
SAN DIEGO and CA get printed on the same line? The
answer, my friend, is blowing in the...er, in the
commas. Ahem.

Because of the commas in the DATA line, the READ statement
sees 4 pieces of DATA, but only READs 3 of them. What do
we have to do in order to PRINT a comma as part of a
string? Right — enclose it, or the string containing it, in
quotes.

EDIT 100
and change line 100 to read

100 DATA COMPUSOFT PUBLISHING, "SAN DIEGO, CA",

and RUN.

Aaah! That's more like it. Notice that we didn’t have to
enclose all pices of string DATA in separate quotes, but we
could have.

What would happen if we enclosed the entire DATA line in
quotes, leaving the existing quotes in there? (Think about it,
then try it. Every question raised has a specific purpose.)

Our editor is so easy to use, let’s make it read:

1906 DATA "COMPUSOFT PUBLISHING, "SAN DIEGO, CA",

and RUN.

Awwk! Disaster... A syntax error? Yes, there is no
straight-forward way to print quotes as part of a string
constant, even by enclosing them inside another pair of
quotes. The Computer just isn’t smart enough to figure out
which quote mark is which. The usual way to overcome this
BASIC language deficiency is to substitute ’ for ”, inside
other quotes. Let’s try it.

Chapfer

28

92119

92119"

197

PART 000

100 DATA "COMPUSOFT PUBLISHING, 'SAN DIEGO, CAf®, 92119"
and RUN.

Ooops, 20D (OUT OF DATA) error in 10? Of course. With
quotes surrounding the whole works there is now just one
piece of DATA and we are trying to read 3 pieces. Let’s
change line 10 to just read one piece:

10 READ AS
and RUN again.

There we go. Might look a little strange, but it proves the
point and warns us a little about the “touchiness” of strings.

When it comes to strings, that classic old ballad from the hills
is so appropriate: 3

“Ah-cigareets, and whuisky, and wild computers, they'll

: kY AND
drive you crazy, they’ll drive you insane!” “gf WHUS v

"
& qup COMPUTERS.!

=
—_

But, undaunted by this high class philosophy, we steer our ﬂ

vessel towards the next chapter. \
As the sun sinks slowly in the west, tropical breezes fill the @;?
sails and water laps against the bow. Stars appear, and from oo
the beach fires plaintive native chants are heard, calling ...
WK BE WAS OV

__HeN We couO
oy WM OFF.

@7%9,

Learned in Chapter 23

String comparison

INPUTing strings

READing strings

198

NOTES

199

AND M INTO STRINGS,

200

CHAPTER 24

Measuring Strings

One of the most frequently needed pieces of string information
is its length. Fortunately, the LEN function makes it easy to

find. Type:
1 CLS : PRINT

19 INPUT "ENTER A STRING OF CHARACTERS"; AS

20 L = LEN(AS)
3¢ PRINT AS$; " HAS"; L ; "CHARACTERS"
90 PRINT : LIST

RUN several times, entering your name and other
combinations of letters and numbers. Try entering your
name, last name first, with a comma after your last name.

AHA! Can’t input a comma. How about if we put it all in
quotes? Try again.

Yep. Just like it said in the last Chapter.

LEN has only one significant variation, and it’s not all that
useful — unless you really need it. Change lines 10-30 to
read:

19 INPUT "ENTER A NUMBER"; A

20 L = LEN(A)

3¢ PRINT A; " HAS"; L ; "CHARACTERS"
and RUN.

Crash time again! TM ERROR means we tried to input a
number into LEN — but it requires a string input. OK, let’s
change LEN to make it a string:

20 L = LEN("A")

and RUN, entering a number.

201

PARY 100 j

/

Hmmm. Doesn’t seem to matter what number we INPUT, it
always comes back saying that we have only 1 character. I)

4
The answer is, LEN evaluates the length of what is actually
between its parentheses (or quotes). At first we brought in a
string from the “outside” and measured its length. That
worked fine. We are now measuring the length of what'’s
between the quotes, and that length doesn’t change with the
value of A.

Like we said, this second way to use LEN has its limitations,
but does tell us the length of what’s there. (Change the
resident program back to the way it appears at the beginning
of the Chapter.)

DEFSTR — For Thrill Seekers Only

Those among us who attract trouble will love this next
one. As if handling strings isn’t complex enough, this very
powerful Statement looks nice and clean but can be the
greatest source of heartburn since the horseradish pizza.

DEFSTR allows us to define which variables are to be string
variables, so we don’t have to use $ any more. (Hmmm...
Uncle Sam could put some of this DEFSTR business to good
use.) Add this line:

5 DEFSTR A

and use the Editor to remove the $ in lines 10, 20, and
3¢. Then RUN.

Works great, doesn’t it. A was declared by line 5 to be a
string variable. So what'’s all the fuss about?

Well, this is a very simple program, but let’s change 5 to read:
5 DEFSTR A-7Z
which makes all letters string variables
and RUN.
Crasho again! The L in line 2 is now also a string. Since
LEN gives us the length of a string, as a number it doesn’t set

at all well with L (really L string). Imagine the fun this can
create in a long program.

202

Good thing we can learn by
our errors!

Chapter 24

DEFSTR can be used to "'defihe individual variables. For
example: &\ ;

DEFSTR A, N, Z

It Came Upon a Midnight CLEAR
(Is that like a midnight requisition?)

When the Computer is first turned on, 50 bytes of memory
space are automatically set aside for use by strings — all
strings combined. Not very much space if we're into a
biggie. At the command level, type NEW, then:

>PRINT FRE (A$)
The Computer should respond with
50 (160 on Model II)

FRE asks the Computer “how much space is left for
strings?”. Not only A$, but all strings. The “A$” is just a
“dummy” we have to use with FRE. B$, C$, or anything
similar would work as well. PRINT FRE(X) (using most any
character, but without the $ sign) tells us the same thing as
PRINT MEM — how much total memory space is available.

The CLEAR command/statement allows us to change the
amount of reserved string space to anything we want, up to
almost the total available memory. Going the other way, we
can eliminate all reserved space, leaving all memory for non-
string use. Let’s play around with some combinations and see
what happens:

> CLEAR 0

> PRINT FRE (A$)

0

Is that what you got? CLEARed zero and got zero? Good.

100 bytes on Model II.

"IT CAME UPON A MIDNIGHT
CLEAR.!”

203

PART 000 i ;

Type NEW and measure again.
> NEW /
> PRINT FRE (A$)
0
What? Still zero? That's right. The CLEAR command is a
high level one and is not affected by NEW. “Power-up”
automatically sets aside 50 bytes, and wherever we reset it,

there it stays until it's reset again.

Try:

> PRINT MEM
33708 on Model II

15364

You might get a little different number — but it should be in
the ballpark. Model I users should get about 15570.

> CLEAR MEM/4

> PRINT FRE (A$) 8426 — Model 11

3840

We just arbitrarily said, “Let’s set aside a fourth of the
memory for use by strings.” CLEAR MEM/4 did it. If it
turns out to be too much (wasteful) or too little (Computer will
say ?70S) (Out of String Space) it's easily changed. A very
adept programmer could even come up with an error-trapping
routine that would CLEAR additional memory as needed if an
?0S message came through, and the operator wouldn’t even
know that something happened.

Be careful with CLEAR. It
erases all program variables.

PRINT FRE (A$) can also be used as a program
statement. Try it in any program using strings to watch what
happens.

Type: CLEAR 100 — Model IL.

> CLEAR 50

and get us back to “normal.”

204

Chapter 24

CONCATENATION : |

Concatenation? Concatenation??? Now what is that
supposed to mean? Isn’t even in the dictionary. Did you
ever wonder who pays who to sit around and think up such
nondescriptive words? Must have been done on a
government grant. Wait till Senator Proxmire hears about it.

Concatenation (pronounced cox‘l‘-cat:}lh-na tion) is a national “ gee somgone amour o casT
debt-sized word which means “add”. In our case it means A concaTENATION on You!.."
“add strings together”. It’s easier to do than to pronounce.

Type this new program:
1 CLS : PRINT

19 FOR N = 1 TO 16
20 READ AS

TURT MERIS SHES
JustT ADDED 10,
To fER. FEE

G

25 BS = BS + AS
3¢ PRINT BS
40 NEXT N

990 PRINT : LIST
106 DATA ALPHA,BRAVO,CHARLIE,DELTA,ECHO,FOXTROT,GOLF,HOTEL

119 DATA INDIA,JULIETE,KILO,LIMA,MIKE,NOVEMBER,OSCAR,PAPA

100 bytes — Model II.

Check it carefully but don’t RUN it yet. The key line is 25,

which simply says B$ (a new variable) equals the old B$ (which

starts out as nothing) plus whatever is in A$. It then cycles “{|! I'm |01 ool lio,
around and keeps adding what is in B$ to what is READ from ool , {|oo. lol lllo
DATA as A$. Now RUN. oolo ?”

Gotcha! We ran out of string space, says the 20S. B$ just i 7/\
keeps growing and growing until the 50 byte set-aside isn’t c /{%

enough.

How much is enough? Easy question, tough answer. The { \
VARPTR statement will give us the answer, but its use on/
requires a PhD from the funny farm where they only talk in

ones and zeros. q\f 7?

205

PART 000

The easiest way is to stay within the noblest engineering

tradition — add some more string space and see what
happens. It’s “cut and try” time.
5 CLEAR 100
and
RUN
Getting closer. Let’s try again. (This warms the cockles of
any true experimenter’'s heart — and drives any true
theoretical scientist right up the wall. Chuckle.)
5 CLEAR 1580
RUN

Still not enough. Looks close though, doesn’t it?

5 CLEAR 175
RUN

Sweet success. All due to our extensive planning, no doubt.
Better do a quick
>PRINT MEM

to see that there’s plenty of space left — and there is.

The purist will keep experimenting and find out that we need
exactly ...(.. message garbled in transmission..) ... bytes of
string space to make the program RUN, yet not waste
any. (Hint: If you add the number of characters in the last
line printed to those in the next-to-last line, you'll be so close to
the answer it may bite you. We could even figure that one
out in advance.)

Anyhow, the point of all this is concatenation. Line 25 just did
it, and that’s about all there is to it. We added strings
together.

206

Chapler

Not done playing you say? OK, you non-believers, have some
fun with this simple program:

1 CLEAR 35
19 REM * CLEAR DEMO *
26 AS = "g" : BS = "/"
3¢ PRINT A$; LEN(AS)
49 AS$ = AS + BS$
56 GOTO 30
We'll soon learn how to tear strings into little pieces. We've

just learned how to put them back together. (Somebody got
something backwards here . ..)

EXERCISE 24-1: Use the LEN function to check the length of
a string INPUTed from the keyboard. Print a message
telling us if the string exceeded 10 characters.

EXERCISE 24-2: Input a word from the keyboard and
compare it to a secret password. If there is a match, print
“CORRECT PASSWORD, YOU MAY ENTER". If not, print
“WRONG PASSWORD, GET LOST MAXWELL
SMART”. Store the ASCII number for each letter of the
password in a DATA line. READ each value and use CHR$ to
build (concatenate) the password string.

28

207

PARY 000

Learned in Chapter 24

DEFSTR LEN Concatenation (+)
CLEAR FRE
MEM

208

NOTES

209

210

. '
A %% £ - 2 A %
Z Z 7 Z %

| VAIS STEAK House

7

7 MNETRS

;///Z A Numeep,

/////x///,y//}z/// 777777777
% % 4 7

|
s A Y,
Wi i 3

Reck Bavner

CHAPTER 25

VAL($) and STRS$(N)

The “hassle factor” is unusually high when converting back
and forth between strings and numerics.

By definition, if we convert a numeric variable (can hold only a
number) to a string variable (can hold most anything), the
CONTENT of that new string is still the original number. No
letters or other characters were converted (except for a
leading space) since they weren’t in the numeric variable to
start with.

Conversely, if we change a string variable to a numeric
variable, we can't change any letters or other characters to
numbers. Only the NUMBERS in a string can be converted
to a numeric variable. (Don't get this confused with ASCII
conversions.)

If you'll keep the 2 previous paragraphs in mind, it'll save an
awful lot of grief in dealing with strings.

VAL

Let’s give string-to-numeric conversion a shot. The VAL
function converts a STRING variable holding a number into a
number, if the number is at the beginning of the string. Try
this VAL program:
1l CLS : PRINT
19 INPUT "WHAT STRING SHOULD I CONVERT TO A NUMBER"; AS
20 A = VAL(AS)
30 PRINT "THE NUMERIC VALUE OF "; A$; " IS ": A
9@ PRINT : GOTO 10

and RUN.

211

PART 100

Try lots of different inputs, such as:
12345
ASDF
23ASD
ASDI23
1,2,3
A B C
and the same ones over again, but enclosed in quotes.

The tube tells all.

Using the EDITor, take the $ out of lines 10, 20 and 39 and
RUN, INPUTting both numbers and letters.

What you're seeing is typical of the frustrations that bedevil
string users who don’t follow the rules. VAL only evaluates
STRINGs, and we’ve put A, a numeric value, in where a string
belongs.

Let’s put that A in quotes and see what happens.

20 A = VAL("A")
and RUN.

No help at all! The rule remains unchanged. VAL converts
a STRING holding a number into that number. Looking at the
screen, we see it’s just not in the cards. Remember this
frustration when you get in the thick of debugging a nasty
string-loaded program.

212

Trying to mix numbers with
strings is called a TYPE
MISMATCH.

STR$

Now let's try the opposite, converting a numeric variable to a
string variable. Change the program to read:

1 CLS : PRINT

Ghapter

28

19 INPUT "WHAT NUMERIC SHOULD I CONVERT TO A STRING"; A

20 AS$ = STRS(A)

3¢ PRINT "THE STRING VALUE OF "; A ; "IS"; AS

99 PRINT : GOTO 16

and RUN, using the same INPUTs we used when
wringing out VAL.

There it is. A short but very important Chapter. You
should spend as much time on this one as any other
chapter. If you really learn the pitfalls in using these 2
powerful functions, the time spent will come back manyfold in
future debugging time.

EXERCISE 25-1: Input your street address (e.g. 2423 LA
PALMA). Use VAL to extract the street number. Add the
number 4 to the street number and report this new number as
your neighbor’s street number.

EXERCISE 25-2: Write a program using STR$ to print the
following 20 store item stock numbers: 101WT, 102WT,
103WT,...120WT. Hint: Looks like a natural for a FOR-
NEXT loop.

213

PART 000

Learned in Chapter 25

VAL

STR$

214

NOTES

215

"ROBIN, | THOUGHT DADDY ToLD You
TO LEANE THE COMPUTER ALONE!”

==

1
THIS KD IS LP
To chapTer 27

— 7

n

Rk Lavvg %, Wﬁﬁ@* ' ‘

216

CHAPTER 26

Having a Ball With STRING

Three different but very similar functions are used for playing
powerful games with strings. They are LEFT$, RIGHTS$ and
MIDS$. Let’s start our exercise of them with this program:

1 CLS : PRINT

30 S$ = "KILROY WAS HERE"
60 PRINT LEFTS$(S$,6),

76 PRINT MIDS$(SS$,8,3),

80 PRINT RIGHTS(SS,4)

9¢ PRINT : LIST

and RUN.
The screen shows:
KILROY WAS HERE
(How about that one, nostalgia buffs?)
Learning to use these functions is exceedingly simple. Study
the program slowly and carefully as we explain what

happened.

LEFTS$ printed the leftmost 6 characters in the string named
S$.

MID$ printed 3 characters in the string named S$, starting
with the 8th character from the left. (Count 'em.)

RIGHTS printed the 4 rightmost characters in the string
named S§.

We added commas after lines 60 and 70 in order to print
everything on one line.

217

PART 000

Let’'s move some lines around to exercise our new-found
power. Move line 70 to line 50:

50 PRINT MIDS(SS,8,3),

and we get
WAS KILROY HERE

Now move line 80 to line 40 and add a trailing comma

490 PRINT RIGHTS(SS,4),

and we get
HERE WAS KILROY

These 3 functions can really do wonders with strings. Let’s
type in a NEW program and examine each in more detail:

1 CLS : PRINT

16 FOR N =1 TO 15

20 PRINT "N = "; N,

30 S$ = "KILROY WAS HERE"

40 PRINT LEFTS$(SS$,N)

50 FOR T = 1 TO 508 : NEXT T

60 NEXT N

98 PRINT : LIST

and RUN

The “slow motion” picture tells it faster than we can in
words. LEFT$ picks off “N” letters from the left side of
string, and we PRINT them. See how this could be used to
strip off only the first 3 digits of a phone number, or the first
letter of a name, when searching and sorting?
Change line 10 to read:

16 FOR N = 1 TO 20

and RUN

218

Chapfer

As we see, even though there are only 15 characters in the
string, the overrun is ignored. (Change line 10 back to N=1
TO 15.)
RIGHT$ works the same way, but from the right:
Change line 49 to read:

49 PRINT RIGHTS(SS$,N)

and RUN.

It’s the mirror image of LEFTS.

Now let’s exercise MID$ and see where it goes. Change line
40 to:

40 PRINT MIDS(SS$,N,1)
and RUN.
It very methodically scanned the string, from left to right,
picking out one letter at a time. Again we slowed it down
with the delay loop in line 50 to better understand what'’s
happening.

With only a slight change we can make MID$ act like
LEFT$. Change line 40 to:

40 PRINT MIDS(SS$,1,N)
and RUN.
It printed N characters, counting from number 1 on the left.
MIDS$ can also simulate RIGHT$. Change line 40:
40 PRINT MID$(S$,16-N,N)
and RUN.
Would you believe RIGHT$ backwards, one at a time?
40 PRINT MIDS(SS$,16-N,1)

and RUN.

26

219

PART 000

How about a sort of “histogram” type graph:
49 PRINT MIDS(SS,N,N)
and RUN.

(Make your notes in the right hand column for future
reference. If all these examples don’t spark some ideas for
your future use, I give up.)

Let’s select a specific position in the string and print its
character. Make the program read:

1 CLS : PRINT
16 INPUT "WHICH CHARACTER # DO YOU WANT TO PRINT"; N

3¢ S$ = "KILROY WAS HERE"
40 PRINT MIDS(SS,N,1)

50 FOR T = 1 TO 500 : NEXT T
90 PRINT : LIST
and RUN.

Just to make the point, we can assign any of these statements
to a variable. That variable can in turn be used in tests
against other variables. Change:

40 V$ = MIDS(SS,N,1)
45 PRINT VS$

and RUN.

A short book could be written about these 3 functions, but I
think we've made the point. They are used frequently in
complex sort and select routines. If we remember to dissect
them into their simple components, they can be
understood. The next section is a good example.

220

EXERCISE 26-1: Write a program that asks the question
“ISN'T THIS A SMART COMPUTER”. Input a YES or NO
answer. If the first character in the answer is a Y, print
“AFFIRMATIVE”. If the first character is an N, print
“NEGATIVE”. Otherwise print “THIS IS A YES OR NO
QUESTION” and send control back to the INPUT statement.

EXERCISE 26-2: READ in the following part
numbers: N106WT, A208FM, and Z154DX. Use MID$ to
find the numbers and store them in a string (characters
2-4). Report the part number with the largest numeric value.

Chapier

26

221

PART 100

INSTRING Routine

INSTRING is not an intrinsic function. It is a routine made
up of LEN and MIDS$, and can be of value when searching for a
needle in a haystack. It compares one string against another
to see if they have anything in common.

Let’s suppose we have a list of names and want to see if
another name (or part of that name) is in our list. It’s the
“part of” which makes this operation very different from a
straight comparison of name-against-name, which we already
know how to do with ordinary string-against-string
comparisons. Here we learn how to locate a name (and
similar names) by asking for just a small part of it.

Let’s start our program by entering the list of Names:

190000 DATA SMITH, JONES, FAHRQUART, BROWN, JOHNSON
10010 DATA SCHWARTZ, FINKELSTEIN, BAILEY, SNOOPY, JOE BFTSPLK,*

That was the easy part.

Now we have to provide a means of READing these names, one
at a time and comparing them, or parts of them, with the name
or part of a name which we INPUT. Add these lines:

16 CLEAR 108 : CLS

20 INPUT "ENTER THE NAME YOU ARE SEEKING "; N$: PRINT
3¢ READ D$

4 IF D$ = "*" THEN PRINT "END OF SEARCH" : END

50 GOSUB 1000

66 IF T = 6 GOTO 30

7@ PRINT N$; "IS PART OF "; D$

86 GOTO 30

222

Chapter 26

Now this takes a bit of explaining:

Line 10 CLEARs 100 bytes for strings, and CLEARs the
Screen

Line 20 INPUTSs the name, or part of the name we are
trying to locate, and prints a blank space for easier
reading to give this book some class.

Line 30 READs a single name from our DATA file

Line 40 checks to see if we're at the end of the DATA
file. If so, it says so and ENDs execution.

Line 50 shoots us to the INSTRING subroutine (covered next)
which does all the sorting.

Line 60 checks the value of T, a number sent back from
the subroutine. If its value is 0 it means no such name
(or part) was found, and we should READ the next
one. If it was found, we drop to

Line 70 which PRINTSs both what we're looking for and
what we found.

Line 80 sends us back to READ another name from
DATA.

That last part of the program isn’t nearly as shaggy as the sort
routine itself. Enter these final 3 lines:

1660 FOR T 1 TO LEN(DS) - LEN(NS) + 1
1616 IF NS MIDS(DS,T,LEN(NS$)) THEN RETURN
1920 NEXT T ¢ T = @ : RETURN

RUN it a few times to get the hang of what’s going
on, then we’ll take it apart.

Line 1000 starts off by setting up a FOR-NEXT
loop. How far that loop continues depends on what
number comes out of the difference between the length of
D$ (from the DATA line) and the length of N$ (the name
or part we entered). Even if that number comes out
zero or negative, we'll still go through the next 2 lines at
least once.

223

PART 000

Line 1010 is of the IF-THEN variety. If the characters
we INPUT in N$ are the same as the characters taken
from D$, we RETURN to line 60. LEN(N$) counts the
number of characters we INPUT, so MID$ can take the
same quantity from D$. T gives MIDS$ the starting point
to count from.

At line 60, we know T will not equal @ since we just said it
equalled 1 in line 1009. Execution will therefore fall
through to line 70 which prints the good news that we
have a “match”. Line 30 starts the search process over
again in another DATA name, looking for other possible
matches.

If, on the other hand, we did not get a match in line 1010 (by far
the most frequent event), execution falls through to line 1020.

Line 1020 increments T by one digit, and execution
returns to line 1099, dropping to line 1010. 1010 again
tests our INPUT against the same name READ from
DATA, but this time the starting point, T, moves over by
one place, and a different set of characters is
selected. The same scenario as before repeats.

Eventually the FOR-NEXT loop runs out of T’s, and line
1020 moves to its next statement, T=0. T =0 sets up a
signal for line 60 that the FOR-NEXT loop has run its
course and it’'s time to READ a new name from
DATA. The RETURN in 1020 returns execution back to
line 59, then 60.

Now that wasn’t too bad, was it? ('Twarnt nothin’,
really.) A little time beside the pool reflecting on the logic
will do wonders.

For those with only a silver fingerbowl, but no pool, this extra
line will show the inner machinations of line 1000.

1665 PRINT "T=";T,"LEN(DS$)=";LEN(DS) ,"LEN(NS)=";LEN(NS) ,"DIFF=";
LEN(DS) - LEN(NS)

Run it through a number of times, halting executing as
necessary. It really does make sense!

When you've got that one under control, take out line 1045 to
cut down the clutter. Better yet, go into Editor and place a
single ’ at the beginning of 1095, making it a REM line which
can be converted back to a working program line without
having to retype it.

224

Chapter 26

Now add line 1007 to show what 1010 is doing.
1987 PRINT "T=";T,"NS$=";N$,"THE MIDS$=";MIDS(DS,T,LEN(NS)),"DS$=";:D$

and RUN.

This one really tells a story! Step right up and see for
yourself!

Does the string you INPUT really match up with what MIDS$ is
pulling out?

It doesn’t matter how hard a program seems, when broken
down to its individual parts it isn’t very hard. Like we've
pointed out before, “The BASICs Are Everything”.

EXERCISE 26-3: Change the DATA in lines 1000 and 1010 of
the INSTRING program to:

190098 DATA P-RUTH, C-~-CAMPANELLA, SS-LEOTHELIP, P-KOUFAX
19919 DATA SB-MORGAN, OF-MANTLE, P-FELLER,*

What string would you enter to list the pitchers only?
A. P

B. PITCHER

C. P-—

D. None of the above

Snarled String?

In the last chapter we learned about STR$, which lets us
convert a numeric variable to a string variable. For the
purpose of confusion (no doubt), there is another “string-
string” that does something completely different. Fortu-
nately, it is written differently.

STRING$(P,A) is a specialized PRINT modifier which allows
us to PRINT a single ASCII character, represented by A, a
total of P times. Quite simple, really.

Type:

5 CLEAR 50
19 PRINT STRINGS(23,42);
20 PRINT "STRINGS$ FUNCTION";

30 PRINT STRINGS(23,42);
and RUN.

225

PART 00

Wow! That really moves. It printed ASCII character #42,
which is a *, 23 times, then printed the phrase STRING$
FUNCTION, then printed * 23 more times. This just has to
have some good applications.

Suppose we need to type a “header” across the top of a report
— let’s say the first line of it is to be solid dashes. What is the
ASCII code for a dash? Forgot? (Me too.) Everybody back
to Appendix B to find the code.

45 it is. We want to print, 64 times, the character
represented by ASCII code 45. That’s the full width of a line
on our screen. The NEW program should look something
like:

19 PRINT STRINGS(64,45)

Let’s RUN it and see what happens:
!OS Error inl@
Suckered in again! Tho STRINGS is really a sort of PRINT

statement, it’s also a STRING function, so is subject to the
string space restriction. Now what do we do?

Change:
5 CLEAR 64
and RUN.
That’s more like it.

An even easier way to use STRINGS is by replacing the ASCII
code of the character we wish to PRINT with the actual
character itself. (It must be enclosed in quotes.) This works
fine with characters that really PRINT, such as letters,
numbers and punctuation marks. Change line 10 so the
program reads:

5 CLEAR 64
10 PRINT STRINGS(64,"-")
and RUN.

Works nice doesn’t it, and we didn’t have to look up an ASCII
code.

226

Elhialplifel

As with most string functions, we can bring in the string via a

string variable. This simple program shows a variation on

the theme, and may trigger some ideas:
16 INPUT "ENTER ANY LETTER, NUMBER OR SYMBOL"; AS
20 PRINT STRINGS(40,AS)
30 PRINT : GOTO 190

Play around with STRINGS$ a while. It's really very helpful
when we need it, particularly for giving our printouts some
class. An obvious advantage is its ability to do a lot of
PRINTing with very little programming.

EXERCISE 26-4: Print a string of 30 asterisks centered at the
top of the screen.

26

227

PART 100

On The Lighter Side

The specialized string functions allow us to do all sorts of
exotic things. Here is the beginning of a simple but fun
program which uses LEN and MID$. You can easily figure it
out, especially after you've seen it RUN.

Enter:

1 REM * TIMES SQUARE BILLOARD *

10 CLEAR 400

20 CLS : N = @ : PRINT : READ AS

30 L = LEN(AS) : F =1

80 IF L > N THEN L = N + 2

9¢ BS = MIDS(AS,F,L)

100 PRINT TAB(62 - N); BS

116 FOR T = 1 TO 28 : NEXT T

199 IF N = 55 GOTO 220

200 N = N + 1 : IF N < 55 GOTO 290

220 L =L -1 :F =F+1 :IFL<®Q THEN L = 0

239 IF L = 15 GOTO 20

290 CLS : GOTO 88

500 DATA ". . . LUCKY LINDY HAS LANDED IN PARIS . . .
516 DATA ". . . MET BY LARGE CROWD AT LEBOURGET AIRPORT . . .

]

and RUN.

Your assignment, if you choose to accept it, is to complete the
program so it repeats, ends, or otherwise does not

crash. Good luck!

et eeeaeaeaa F'sssss!

228

Learned in Chapter 26

LEFTS$ Instring
routine

MID$

RIGHT$

STRINGS$

Ghapier

26

229

NOTES

230

Part 1V

Variable Precision and Math

231

“IN SINGLE OR DOULBLE PReciSioN 7"

232

CHAPTER 27

What Price Precision?

Unless told otherwise, TRS-80 BASIC stores variables to an
accuracy of 7 digits, and prints them out accurate to 6. This is
called “single precision” and is more than adequate for most
applications.

For large businesses or special scientific applications however,
greater accuracy is needed and we have a capability called
“double precision”. By telling the Computer to go “double
precision”, it will store numbers accurate to 17 digits, and print
them out accurate to 16. We pay a price for this precision
however, both in the additional memory it takes to store and
process big numbers, and the extra time required to do so.

Enter this program:
1 CLS : PRINT

20 X = 1234567890987654321
30 Y = .000000000123456789
40 Z = X * Y

5¢ PRINT X; "TIMES"; Y ,"EQUALS"; Z
90 PRINT : LIST

and RUN.

Ummm-hmmm. A very large number times a very small
number, and the answer — all expressed in Exponential
notation. Accuracy clipped to 6 places.

DOUBLE PRECISION

We can easily convert storage, processing and printing of X, Y
and Z to double precision. This is almost too easy:

19 DEFDBL A-Z

The old slide rule was
accurate to only 3 digits.

233

PART IV

DEFDBL stands for “DEFine as DouBLe precision”, and A-Z
means, “make every variable starting with A through Z double
precision”.

Add the line and RUN.

Quite a difference, eh? We did lose a few digits out in the
hinterland, but it expanded our accuracy from 6 places to
16. (Did you see the E for exponential change to D for double
precision exponential?)

Such a line is terribly wasteful of memory space and time,
except in short programs; but fortunately only a few variables
really need to be so precise.

Since the letters X, Y and Z are in sequence, we could tell the
Computer to handle only those 3 as double precision, and leave
all other variables (of which there are none, right now) as
single precision. Change line 10 to:

10 DEFDBL X-1Z

and RUN.

Same results.

There is a way to override the DEFDBL declaration.
Suppose we wanted Z to be printed as just single
precision. We can override line 10 by changing those lines
which contain Z, as follows:

40 21 = X * Y
50 PRINT X; "TIMES"; Y ;"EQUALS"; 2

and RUN.

Our “raw” data and the calculating was held at high precision,
but our final answer is printed out with single-precision
accuracy — just what we asked for. A very specific
declaration (like the !, which stands for “single precision”),
always takes precedence over a global declaration like in line
10. (Global means “valid for the entire program”, not just one
character or one line.)

234

Double Precision — Simplified

There's another way to calculate with high precision but print
the answer in single precision. We change only the one line
which DEFines the variables.

Change Lines 10, 40 and 50 and RUN.
10 DEFDBL X, Y
40 72 = X * Y

56 PRINT X "TIMES"; Y ;"EQUALS"; 2

=0

Global Override

It is possible to override the “global” DEFDBL declaration
with another. DEFSNG will change everything back to
single precision. Let’s try it by adding:

60 DEFSNG X-Z
78 PRINT X; "TIMES"; Y ;"EQUALS"; Z

and RUN.
Good Grief — our “single-precision” numbers turned to zeros!

Well, it turns out that X DOUBLE PRECISION is a completely
separate variable from X SINGLE PRECISION: it's as
different from X as is Y, or any other variable. If we want to
use X and Y again as SINGLE-PRECISION numbers, we have
to go back and assign their values AFTER declaring them to be
SINGLE PRECISION: Hmmmm.

A cheap and dirty way to show the point is to change line 70 to
78 GOTO 28

and RUN — hitting the key after both
double and single precision versions are
printed. (Fortunately, there is rarely reason to
redefine a variable within a program. If
necessary, we can do so with conventional string
techniques.)

Chepter

27

235

PART IV

Double Precision, Another Way

Instead of a “global” declaration of accuracy, we can do it one
variable at a time. Change the resident program to read:

1 CLS : PRINT

20 X# = 1234567890987654321
30 Y& = .000000000123456789
40 Z# = X# * Y#

50 PRINT X#; "TIMES"; Y# ,"EQUALS"; Zz#
9@ PRINT : LIST
and RUN.

Same results as before. The # sign declares that the variable
letter preceding it is to be handled as double precision,
overriding the normal presumption that it is single precision.

Remember, X# is not the same as X — it is an entirely
different variable. Same with Y# and Z#. To nail this point
down, add:

10 X = 4,321
60 PRINT "X ="; X

and RUN. X# and X stayed completely separate,
didn’t they?

Integer Precision

In a few cases, where the numbers at issue are integers (and in
the range between —32768 and + 82767) execution can be
speeded up by declaring them to be integers using the % sign
or the DEFINT statement. Enter this NEW program:

20 FOR N = 1 TO 4000
30 NEXT N

9@ PRINT : LIST
and RUN.

Using a stopwatch or clock with a second hand, measure the
time it takes for the 4000 passes thru the FOR-NEXT-LOOP.
Should be around 10 seconds.

236

Now, let’s declare N to be an Integer, (which is all the accuracy
we need) and time it again. Add:

19 DEFINT N
and RUN.

Aha! It took only about 7 seconds. That’s an increase from
about 400 passes per second to about 570. A very significant
difference.

We can accomplish the same thing using specific
declarations. Delete Line 19 and change the program to read:

20 FOR N% = 1 TO 4000
30 NEXT N%
90 PRINT : LIST

and RUN.

One More Way

The conversion functions CSNG (#), CDBL (#) and CINT (#)
provide 3 additional ways to declare numbers as Single,
Double or Integer precision. Enter this NEW test program:

1 CLS : PRINT

20 X = 12345.67898
30 PRINT X

40 PRINT CSNG(X)
56 PRINT CDBL (X)
60 PRINT CINT (X)
90 PRINT : LIST

and RUN

Ghapter

27

Times will vary with the

Model

237

PART IV

we got
12345.7

12345.7
12345.6787109375

12345

Line 3¢ printed the value of X, the same as we specified
in line 20, accurate to 6 digits.

Line 40 printed the single precision value of X — — —
same as line*30.

Line 50 printed the double precision value of X, but it sure
isn’t a duplicate of what we said X was to be in line
20! Same old precision problem — — — don’t try to be
more accurate than what we begin with, single
precision. (It’s the programmer who’s supposed to be
creative, not the computer!)

Line 60 printed the integer value of X. No surprises
here. It behaved in the same manner as the INT
statement itself.

Let’s make the value of X negative and see what
happens. Change line 20 to

20 X = -12345.67890

and RUN.

Again, no big surprises. CINT acted just like INT does,
rounding downward to get the —12346.

Double The Trouble — Double The Fun

Now let’s go back and declare the value of X to be double
precision, change it to a positive number, and do all our
printing in double precision. The new program should read:

238

1 CLS : PRINT
20 X# = 12345.67898
30 PRINT X#
4@ PRINT CSNG (X#)
5¢ PRINT CDBL (X#)
60 PRINT CINT (X#)
9¢ PRINT : LIST

then RUN

and the display reads:

12345.6789
12345.7
12345.6789

12345

All makes sense, and all quite predictable, isn’t it?

What do you think will happen if we again change the value of
X to a negative number? Think it through; then change and
RUN it.

Some Caveats

The Computer makes assumptions. If a constant is written
with 8 or more digits, or written in exponential with a “D”, it is
automatically stored as double precision. When that or any
other double-precision number is used in a calculation, the
entire calculation will be performed as though all numbers
involved are double precision. This isn’t necessarily bad, but
an answer with lots of digits is no more precise than its least
accurate ancestors.

Division follows suit. If we declare the numerator or the
denominator (or both) to be double precision, the division is
done with double precision. All other division is done in
single precision. If an INTEGER answer is needed, massage
the ANSWER with INT or CINT, or name it with a plain old
integer variable.

Ghapfer

27

239

PART IV

If a plain old number falls outside the range of —32768 to
+ 32767, or, if it contains a decimal point, or, if it is written in
exponential with an “E”, it will be stored with single
precision. Otherwise, it is stored as an integer.

Finally, LOGICAL operations can be performed only after the
numbers involved are converted to integers.

Degrees of precision may not be the most inspiring subject,
nor seem to be the most consistent. But, if we're at least
aware of them we’ll not be caught off guard and be deceived by
numbers that never were.

Learned in Chapter 27

DEFDBL CDBL Double precision (#)
DEFSNG CSNG Single precision (!)
DEFINT CINT Integer precision (%)

240

NOTES

241

YOUVE DONE AN AMAZING JOB On YoUR.

A

n

SQUARE ROOTS ASSIONMENT , JONATHAN,

TS ALRIGHT,

He's INTRINSICALLY

HONEST
pigh?

BUT How Do You DoCUMENT IT?

ﬁ_}%

NN

242

CHAPTER 28

Intrinsic Math Functions

BASIC includes a number of mathematical functions,
sometimes referred to as “Library Functions”. These math
functions are all very straightforward and easy to use, but if
your math skills are a bit rusty, you will want to refresh them
to fully understand what we're doing. We'll keep everything
here at the 9th grade Algebra level so there’s no need to panic
(unless maybe you're in the 6th grade ...but even so, just
hang on and you'll be OK).

INT(N)
We studied the INTeger function in some detail in an earlier

Chapter so won’t cover that ground again. INT stores and
executes numbers with single precision.

FIX(N)
FIX is just like INT, but instead of rounding negative numbers
downward, it simply chops off everything to the right of the
decimal point.
Try this simple test at the command level:

> PRINT INT (—12345.67)

produces —| 2346

> PRINT FIX (—12345.67)

produces —!2345

Which we use depends on what we want.

243

PART 0V

SQR(N)
The square root function is simple to use.

Type this:
19 INPUT "THE SQUARE ROOT OF"; N

20 PRINT "IS "; SQR(N)

30 PRINT
40 GOTO 10
and RUN.
Another way to take the square (or any) root of a number is by Model I prints Aand Model
using the f up-arrow. It of course means ‘“raised to the III prints [instead of’.

power”. Finding the square root of a number is the same as
raising it to the 1/2 power. Change line 20 to:

20 PRINT "IS "; N[(1/2)
and RUN some familiar numbers.

The same logic which allows us to find the square root with the
up-arrow will let us find any other root. (Even the thought of
doing that in pre-computer days drove men mad.) Out of the
sheer arrogance of power, let’s find the 21st root of any
number. Change the first two lines:

10 INPUT "THE TWENTY-FIRST ROOT OF"; N
20 PRINT "IS "; N[(1/21)
and RUN.

Now there is real horsepower! Problem is, how are we sure
that the answers are right. Well, it’s easy enough to add a
few lines that take the root back to its 21st power to find
out. Let’s clean up the program a bit and make it read:

19 INPUT "THE TWENTY-FIRST ROOT OF"; N
15 R = N[(1/21)
20 PRINT "IS "; R

30 PRINT
33 PRINT R; "TO THE 21ST POWER = "; R[21

36 PRINT
40 GOTO 19
and RUN.

244

They come out pretty close, don’t they? This “proof”’ process
might not stand up under rigorous scrutiny, but the answers
are correct.

EXERCISE 28-1: Pythagorus discovered that the sides of a
right triangle always obey the rule: C[2 = A[2 + B[2 where C
is the longest side (hypotenuse). Another way to state this is
the length of side C equals the square root of the sum of the
squares of sides A and B (C =VA[2 + B[2). Ifside A = 5and
side B = 12, writé a program to calculate the length of side C.

ABS(N)

Absolute value has a lot to do with signs, or without
them. The absolute value of any number is the number
without a sign. If you've forgotten, this program will quickly
refresh the memory:

19 INPUT "ENTER ANY NUMBER "; N
20 A = ABS(N)

30 PRINT A

49 PRINT

50 GOTO 190

and RUN. Try various large and small numbers,
positive and negative, and zero.

They all come out as they went in didn’t they, except the sign
is missing.

LOG(N)

No, a log isn’t what you build log cabins out of. But even the

swiftest among us have to refresh our memory from time to
time to keep all the details straight.

Chapter

28

245

PART IV

A log (logarithm) is an exponent. Exponent of what? The
exponent of a BASE. What's a base? A base is the number
that a given number SYSTEM is built on. Aren’t all number
systems built on 10? ’'Fraid not.

10* = 1000
10 is the BASE. 3 is the log(exponent) and 1000 is the answer.

(Think it has something to do with “new math”, but I was too
old to take it, too young to teach it, and grateful for having
missed learning it from those who didn’t understand it.)

As if life wasn’t complicated enough, the LOG system is
centered around what are called natural logs. What that
means is the subject of another discussion, but we're stuck
with it anyway. Natural logs use the number 2.718282 as
their base. (Really makes your day, doesn’t it!) Some
BASICs provide a second LOG option using 10 as a base, as in
our decimal system, but making the conversion isn’t too bad —

and we still do have to live with it.

The LOG function is not
valid for negative numbers

Enter this program: or zero.

16 INPUT "ENTER ANY POSITIVE NUMBER"; N

20 L = LOG(N)

30 PRINT "THE LOG OF"; N ;"TO THE NATURAL BASE =" L
40 PRINT

56 GOTO 19
and RUN.

Ummm Hmmm. Can’t relate to the answers? Enter the
number 100 and we should get the answer 4.60517. What it
means is, 2.718282 to the 4.60517 power = 100. Lay that one
on them at the next meeting of the Audubon Society and
they’ll think you're weird for sure.

Let’s jack this thing around to where the vast majority of us
who have to work with LOGs can use it ...into the decimal
system.

Decimal-based Logs are called “common” logs. Add this line:

35 PRINT "THE LOG OF"; N ;"TO THE BASE 10 = "; L * ,4342945
and RUN, using 100 as the number.

246

Chapter

Ahhh! That’s more like it. We can all see that 10 to the 2nd
power equals 100. It’s good to be back on relatively solid

ground.

The magic conversion rules are:

To convert a natural log to a common log, multiply the
natural log times .4342945.

To convert a common log to a natural log, multiply the
common log times 2.3026.

And that's the name of that tune.

This final program clears it up and lays it out:
1 REM * LOGARITHM DEMO *

10
20
30
40
50
60

70
EXP(N)

CLS : PRINT
INPUT "ENTER A POSITIVE NUMBER"; N

PRINT
PRINT "THE NUMBER", "NATURAL LOG", "COMMON LOG"

PRINT N, LOG(N), LOG(N) * .4342945
PRINT
GOTO 20

EXP is sort of the opposite of LOG, EXP computes the value of
the answer, given the EXPonent of a natural log. (Another

winner.)

2.718282 raised to the EXP power = the answer

Type in this program:

10
20
30
40
50

INPUT "ENTER A NUMBER"; N

A = EXP(N)

PRINT "2.718282 RAISED TO THE"; N ;"POWER = "; A
PRINT

GOTO 10

and RUN. You're entering the EXPonent now, so
it's easy to get the answers that are too big for
the Computer and cause it to overflow.

28

247

PART 1V

As a benchmark against which to test your program, enter this
number:

4.60517

The BASE of the natural log system raised to this power
should equal 100.

If you're this far into logs, you can create your own advanced
test programs from here, checking the results against a LOG
table. And if you're not too comfortable with all this . .. try
making a log cabin with the remainders!

EXERCISE: 28-2: (FOR MATH FANS ONLY) Convince
yourself that LOG and EXP functions are inverses of each
other. (Hint: LOG(EXP(N) = N). Try composing the two
functions in the opposite order using both positive and
negative values for N. Why do the negative values create
havoc?

Learned in Chapter 28

INT NATURAL LOGS

FIX COMMON LOGS
SQR
ABS
LOG

EXP

248

NOTES

249

250

"ALLON ME To INTRODUCE MMSELF...

COMPUTER. CLUB NEWS

MY FRIENDS CALL ME TRIG..

n
ALL OF THE ANGLES!

CHAPTER 29

The Trigonometric
Functions

Since this is about as deep as we’ll get into mathematics, we'll
have to assume you know something about elementary trig.

Trigonometry of course deals with triangles, their angles, and
the ratios between the lengths of their sides. In the triangle
below, the Sine (abbreviated SIN) of angle A is defined as the
ratio (what we get after dividing) of the length of side a to the
length of side c. COSine and TANgent are defined similarly:

SIN A = a/c
COS A = ble
TAN A = a/b

A

From these relationships, we can find any ratio if we know the
corresponding angle. Let’s try this simple program:

19 INPUT "ENTER AN ANGLE BETWEEN @ AND 90 DEGREES"; A

20 S = SIN(A * .0174533)

3¢ PRINT "THE SIN OF A"; A ;"DEGREE ANGLE IS";

40 PRINT : GOTO 10
and RUN.

It really works! Try the old “standard” angles like 45°, 30°,
60°, 90°, 0°, etc.

Unless you're right up to snuff on trig, line 20 undoubtedly
looks strange. Well, it turns out that most computers think in
radians, not degrees falways has to be some masty twist
doesn’t there...!) Aradianis a unit of measurement equal to
approximately 57° (heard some of you cringe at that one). In
order to convert to degrees — which most of us use, we

251

PART 1V

changed the degrees we INPUT to radians. The SIN function
will not work correctly without this conversion.

To convert angles from degrees to radians, multiply the
degrees times 0.0174533.

To convert angles from radians to degrees, multiply the
radians times 57.29578.

Failure to make these conversions correctly is BY FAR the
greatest source of computer users’ problems with the trig
functions.

COSine and TANgent work the same way. Change the
resident program to:

19 INPUT "ENTER AN ANGLE BETWEEN # AND 98 DEGREES"; A
20 C = COS(A * .,P174533)
3¢ PRINT "THE COS OF A"; A ;"DEGREE ANGLE IS"; C

40 PRINT : GOTO 190

We know that COS(90) should be zero. Unfortunately, the
Computer is slightly off because it calculates these functions
by approximation. It’s doing the best that it can
..... HONEST!

For Tangent, RUN this program:
19 INPUT "ENTER AN ANGLE BETWEEN # AND 90 DEGREES"; A

20 T = TAN(A * .0174533)
30 PRINT "THE TAN OF A"; A ;"DEGREE ANGLE IS"; T
40 PRINT : GOTO 19

This next simple program displays all 3 major trig functions at The TAN function is not.

the same time. Note in line 30 we divide our incoming angle even defined for 90°, tho the
by 57.29578 instead of multiplying it by 0.0174533. The TRS-80 will TRY to caleulate
results are the same. it for us.

18 CLS

20 INPUT "ENTER AN ANGLE BETWEEN @ AND 90 DEGREES"; A
36 A=A/ 57.29578

4@ PRINT

56 PRINT "ANGLE", "SIN", "COS", "TAN"

60 PRINT A * 57.29578, SIN(A), COS(A), TAN(A)

252

Chapter

Inverse Trig Functions

The opposite of finding a ratio between two sides of a triangle
when an angle is known, is finding an angle when the ratio of
two sides is known. There are 3 functions commonly used in
trig to do this, but most computers only make provision for
one, called ATN (Arc of the TANgent).

This simple program takes the angle we INPUT, computes and
PRINTS its TANgent, then takes that tangent and computes
its arc (angle) as a proof check. The letter I is used in the
program since the arctangent is also known as the “inverse”
(sort of the “opposite”) of the tangent.

1 CLS
10 REM * ATN DEMO *

20 INPUT "ENTER AN ANGLE BETWEEN @ AND 90 DEGREES"; A

30 T = TAN(A / 57.29576)

40 PRINT "TANGENT = "; T,
50 I = ATN(T) * 57.29578
60 PRINT "ARC OF THE TANGENT = "; I

If you're one of those rare types who are very familiar with
trig you can probably throw numbers around in such a fashion
that the other 2 “inverse” trig functions, ARCSIN and
ARCCOS are not needed. But for those of us who still get
confused when we run out of fingers and toes we can use the
following conversions, all built into one simple program. The
accuracy is close enough for “government” work. Give it a
try:

10 CLS : REM * INVERSE FUNCTION DEMO PROGRAM *

29

20 INPUT "ENTER A NUMBER-THE RATIO OF 2 SIDES OF A TRIANGLE"; R
36 AS = 2 * ATN(R/(1+SQR(ABS(1-R*R)))) * 57.29578

40 AC = 90 - AS : PRINT

50 PRINT " RATIO", " ARCSIN", "™ ARCCOS", " ARCTAN"

60 PRINT " (NUMBER)", "(DEGREES)", " (DEGREES)",

70 IF ABS(R) > 1 THEN 109

80 PRINT R, AS, AC, ATN(R) * 57,29578
90 PRINT : GOTO 240

106 PRINT R, "U", "U", ATN(R) * 57.29578
110 PRINT : GOTO 20

" (DEGREES) "

253

PART IV

Remember, while the TANgent can be any number, when our
ratio moves outside the range —1 to 1, SIN and COS are both
“undefined”. Also, ARCTAN and ARCSIN produce angle
measures between —90 and 90 degrees, but ARCCOS has a
range between 0 and 180 degrees.

Learned in Chapter 29

SIN Degrees
COS Radians
TAN
ATN

254

Part V

Graphics and Display Formatting

255

256

N
HonesT, Miss Hubson. 1 DRew

THE PICTURE USING THE RANDOM NUMBER
GENERATOR. . | DIDNT KNON T WOULD

DRAN A PICTURE THAT WAS oBSENE

The NUMBER ISN'T
THE oNLY THING IT
GENERATED/

T

CHAPTER 30

Video Display Graphics

And It Draws Pictures Too!

Our TRS-80 can draw an endless variety of pictures on the
Video Display screen. We will learn some of the basic
procedures and capabilities in this Chapter. After that, what
you create is limited only by your own imagination. Who
knows ...you may write a graphics program artistically
equivalent to the Mona Lisa.

Now, the 2 most basic of the 4 graphic commands:

SET turns on (or lights up if you will) a particular section,
block or “light” on the screen.

RESET turns off (or blackens) a particular “light”.

For graphics, the screen is divided into a large number of
sections. See the Video Display Worksheet on the next
page. Each “light” is a rectangular block 3 dots wide by 4
dots high; and each has its own “address”.

For example:
SET (55, 32)

means — “turn on the light” at the junction of 55th “X” Street
and 32nd “Y” Avenue.

X is the horizontal address counting across from the left-hand
side of the screen. Y is the vertical address, counting down
from the top of the screen. So everything starts from the
upper left-hand corner.

Type in

50 SET(55,32)

Clear the screen and RUN.

Model II users skip the next
2 Chapters since SET &
RESET are not included in
Model II's BASIC.

257

PART V

-] »n Y [*3 N P =l
g 2 e ~ a > 3 N g ®] [x3
» N ® & -1 N ® & HIR
3 HBHE BEBEEAE 3 HHERHE0BAERRBERABE slolelolaln]-Tolt §
[o] & Jo)
!
- : s
— o
w -
-~
© o
— =
& o1&
E 2=
® =]
— o=
~ 2=~
© {w
e
) 22|
=1 ST
o 10
yaCD I Y
L3I G | =4,
-h | AW BN [ad)
R on] cromiy
wh| N CLOEEN
0] crm
P CImey
Bl i
a[ee CIme
=% So
F=1 50 No Tm
ow crmtd
Yy O Yy
N[Go CrmeY
=150 00 Tm
e S |®,
=l®s CompPy
Do) Crmis
3 o8
=2 ErS
oS SO
TS G -
Y ORI
[7X3 o 1N
Yy CIeIN)
SElw
(I XY
& Crmey
N] ow ou [N
-] S (KN
N [N
o Erme
W o o T
5| Crmey
D o T
o Sv o
I3 e
oo 1 8
So)
=5)
W] N I
= [Ga =t
(W[o0 £
N[5o crmbis
ao G}
<& CEm{A)
1) CEI)
13)
o~ CEM[A)
> el
~ — S C2]
i~ W
o)
~7 i~ [T
= T T e
= NN
& =l
o - i
o) =
=5 S5
))
d I T 1) g
)] CEmry
1 G N
oo CEREY
=5 EEmiA)
L1 D
%5 o
o0 - MY
=5 S
T 3
O] (WO
& 20 LR
) e
o o
N© - (O
13 [0 [&H
o) b i o ()
OO0 = | L 1 (0o~
2o =5
3 mo=lgy
- (50— G5)=
=0 co=lon
=2 crER
Gi[oo= I I~ 55
0[S0 1 NEE
o] o]
= B (00~
Gjo== S==1Gv
EEny 235G
= Toms
=) - Jo=z
s ==y
=3 ooa|N
= ey
== eSS
== CEB)
CER) CEe
S e
T EoE
O 1 SRt
= s s
o anslor
o= crmatdd
e o
Sho =
djel8]2 HE 8 < 13 Bie BiN HE ME sjgjijaja|z]a s ~ el* ~ i
= ® ~ S) [@ & w w) = = o
S 3] <] ~ = = © I
g EEAEEEEEEEEEEEEE R R R

258

ERFENY

HIWWVHOO U

SLNIWWOD
199ys)Io M Aejdsiq 09pIA OB-S i L

40 39Vvd

There it is! The light came on. Check the Video Display
Worksheet carefully to find the address of that light. Did it
show up in about the right place??

Careful now, don't mess up the screen. Type

50 RESET(55,32)

and RUN.
How about that. You found the ON-OFF switch!

Want to really press your luck? Try turning the light back
on. That’s right, type

50 SET(55,32)

and RUN 5 times in a row. Then50 RESET (55, 32) and RUN.

Oh well, can’t win ‘em all. Why didn’t it work? It has to
work. It did work! Then why didn’t the fool lights go
OFF? Answer: The line feed keeps moving it up away from
its original address, and only what’s at a specific address gets
turned ON and OFF. The lights may move, but the screen
addresses never move.

The point of all this obviously is that we can control whether
each block on the screen is white or dark (on or off) by
“talking” to it at its individual address with SET and RESET
statements.

Blinking Lights in the Sky — Flying Saucers or
Lightning Bugs?

If one has an ON-OFF switch, what does one do with it? With
a little imagination one could create blocks that don’t just go
ON and OFF, but do so to attract attention ...by
blinking. This simple program illustrates how to set up a
“blinker”.

19 CLS

20 X = 60

3 Y = 25

49 SET(X,Y)
56 RESET(X,Y)
60 GOTO 40

Chapier

30

Simple FOR-NEXT loops at
45 and 55 could control the

blinking rate.

259

PART ¥

Back For More ...

In the horizontal direction, there are 128 light-block addresses,
numbered from 0 to 127. 0 is at the far left, 64 is near the
middle and 127 is at the far right.

In the vertical direction, there are 48 light-block addresses
numbered from 0 to 47. 0 is at the top and 47 at the bottom.

The statement “SET (X, Y)” whitens the block which is the
Xth block from the left in the horizontal direction and the Yth
one down from the top in the vertical direction. And, you've
figured out that RESET works the same way except that it
“turns the light off”.

Let’s try it out. This program will lighten any one block of
your choosing. Type:
NEW

10 INPUT "HORIZONTAL ADDRESS (@ TO 127) IS"; X
20 INPUT "VERTICAL ADDRESS (@ TO 47) 1Is"; Y

38 CLS

40 SET(X,Y)

and RUN many times using various values of X
and Y.

You may have noticed that if a block is lit in the upper left-hand
corner, the READY and the prompt () destroyit. TryX = 6
and Y = 6. Then X = 5and Y = 5. We can avoid this
problem by not returning control to the prompt — by adding

99 GOTO 99

at the end of the program. After running the program, this
line locks the Computer in an endless loop. To break the loop,
press key. You should put an endless loop at the end
of every graphics program. Do it here,thentry X = 5and Y
=5. NowtryX = QandY = 9. Remember the [[[JII§ key
to stop a properly “locked out” graphics program, before
starting another.

While we have a key that RESETSs every block on the screen to

“OFF” in one operation (the key), we don’t have a
similar key to turn them all “ON”,

260

Chapter 30

However, we can easily write a program that “lights”,
“whitens” or “‘paints” the entire sereen. It uses one CLS (not
really a must, but always a good habit to use in graphics
programs), two FOR-NEXT loops and one endless “locking
loop”. Type this:

16 CLS

20 FOR X = @ TO 127
30 FOR Y = 6 TO 47
40 SET(X,Y)

50 NEXT Y

60 NEXT X

99 GOTO 99
and RUN.

The program fills the screen from left to right. Redesign it so
it starts at the top and fills to the bottom.

Answer:
16 CLS

20 FOR Y = 0 TO 47
30 FOR X = 0 TO 127
40 SET(X,Y)

50 NEXT X

60 NEXT Y

99 GOTO 99

Next, rewrite it so it starts painting at the bottom and fills to
the top.

NOTE: When running
graphics, you may want to
turn up both the Contrast
and brightness slightly.

Don't forget ... first we have
to use the BREAK key to
stop the endless loop.

261

PART V

Answer:
19 CLS

20 FOR Y = 47 TO @ STEP -1
36 FOR X = 0 TO 127

40 SET(X,Y)

50 NEXT X

60 NEXT Y

99 GOTO 99

OK, now rewrite it so it starts painting at the right-hand side
and fills to the left-hand side.

Answer:
10 CLS
20 FOR X = 127 TO 0 STEP -1
30 FOR Y = 0 TO 47
49 SET(X,Y)
50 NEXT Y
60 NEXT X
99 GOTO 99

Fantastic — now we can paint the old barn at least 4 ways!

EXERCISE 30-1: Write a program which will allow painting
only a small part of the screen (you determine which
part). Allow keyboard INPUT of the starting and ending
block numbers in both the horizontal and vertical directions.

262

Forgot you could STEP it
backwards, eh?

Try a few of those and see
how it works. Try different
increments (—2, -8, etc.).

Try some other step
increments too ...

Chapter 30

Getting the hang of it?? Great. Enough playing with blocks

...let’s draw some lines. Erase the resident program. .
Of course you haven't

forgotten how to do that
We'll start with a straight line. This program gives us a have you! Type ERASE
straight horizontal line across the entire screen. Type: -+-no, no, ot Type NEW.

19 INPUT "VERTICAL ADDRESS (@ TO 47)"; Y
20 CLS

380 FOR X = 6 TO 127

40 SET(X,Y)

50 NEXT X

99 GOTO 99

and RUN several times.

We can just as easily create a straight vertical line. Try this.
19 INPUT "HORIZONTAL ADDRESS (@ TO 127)";
20 CLS
30 FOR Y = 8 TO 47
40 SET(X,Y)
50 NEXT Y
99 GOTO 99

and RUN a number of times.

Now, let’s see if we can modify this last program so we can
INPUT both the starting vertical address and the length (in
blocks) of the line.

12 INPUT "THE STARTING VERTICAL ADDRESS #(8 TO 47) IS"; V
14 INPUT "HOW MANY VERTICAL BLOCKS DO YOU WISH TO FILL"; A
16 IF V + A < 48 GOTO 20

18 PRINT "TOO MANY VERTICAL BLOCKS. NOT ENOUGH ROOM!"

19 END

38 FORY =V TOV + A

263

PART V

Now that we can draw straight lines, we can form figures —
like squares and rectangles. This program forms a
rectangle. After NEW, type:

1¢ INPUT "HORIZONTAL STARTING POINT (8 TO 127)";
20 INPUT "VERTICAL STARTING POINT (@ TO 47)"; Y

3¢ INPUT "LENGTH OF EACH SIDE (IN BLOCKS)

40 CLS
50 FORL = X TO X + K
60 SET(L,Y)
78 SET(L,Y+K)
80 NEXT L
99 FOR M = Y TO Y + K
160 SET(X,M)
119 SET(X+K,M)
120 NEXT M
999 GOTO 999
and RUN.
Since our building blocks are not square, but 3 by 4 rectangles,

we always get a rectangle. How can we change the program
to always form a square?

EXERCISE 30-2: Modify the resident program so it always
draws a square (on the inside).

Presson...

A Little Diversion

All our graphics work to this time has been done by drawing
white lines on a darkened screen. We can do just the reverse
by painting the screen white first, then darkening the desired
areas with RESET. This program for example, draws a black
horizontal line on a white background.

264

(6 TO 47)"; K

Remember, we can’t draw
pictures off the screen. If
you get an error message
like ?FC ERROR IN 70, that
means you tried to do it.

Whew! That's not really
very easy, but with some
careful study (remembering
that we have to account for
the width of the blocks) it
falls into line. Try your
own approach a few times
before going back to Section
B to look at our

suggestion. Don’t cheat
now!

You may want to come back
later for some heavier study.

Type:

1¢ INPUT "VERTICAL POSITION (@ TO 47)"; Y
20 CLS
30 FOR X = 0 TO 127
49 FOR J = 0 TO 47
50 SET(X,J)
60 NEXT J
70 NEXT X
86 FOR X = 6 TO 127
99 RESET(X,Y)
100 NEXT X
999 GOTO 999

and RUN.

If you're interested, go back and try similar easy modifications
to other demonstration programs and have some fun with
these reverse (or “negative”) displays.

Learned in Chapter 30

SET

RESET

Chapter

80

265

) '
'SURE THEV'RE NEAT PICTURES,
BUT WHY Do THEY ALL Look

LIKE SOMETHING BY
PIcASSO 2"

)
IS THE
INTERNATIONAL
LooK! !

Ge b

266

CHAPTER 31

Intermediate Graphics

We can draw other straight (more or less) lines by just
changing X and Y addresses of SET in the FOR-NEXT
loop. Try this next program to draw a diagonal line:

10 INPUT "HORIZONTAL STARTING POINT (@ TO 127)"; X
20 INPUT "VERTICAL STARTING POINT (@ TO 47)"; Y

30 INPUT "DIAGONAL LENGTH"; K

40 CLS

50 FOR L = § TO K

60 SET(X+L,Y+L)

70 NEXT L

99 GOTO 99
Once we have the diagonal line, we can form a right triangle by
adding:

76 SET(X,Y+L)

80 SET(X+L,Y+K)

99 NEXT L
or

78 SET(X+K,Y+L)
80 SET(X+L,Y)
98 NEXT L
Try them both. What is the difference in the displays?

S

Answer: They are inverted, mirror-images of each other.

267

PART V

Broken Lines

In every graphics program, we could have made the lines
“broken” by introducing a STEP other than “1” in the FOR-
NEXT loops. For example, try drawing a broken horizontal
line with:

190 INPUT "VERTICAL ADDRESS (1 TO 47)"; Y

20 INPUT "STEP SIZE"; S

30 CLS

49 FOR X = @ TO 127 STEP S
50 SET(X,Y)

60 NEXT X

99 GOTO 99

Run this program with various values of S. Note that as you
increase S, the line is drawn much faster (since the Computer
has less work to do). In fact, for S = 10 or more, we can
hardly see the line being drawn. This is how a TV picture is
created — since it too is drawn one unit at a time (but so fast
we don’t notice the “drawing time”).

Change the program as follows:

11 REM * Y MUST BE LARGER THAN 0 *
55 RESET(X,Y-1)

70 Y =Y +1

80 IF Y < 48 GOTO 40

If S is small, you can see the lines being formed and
cleared. But if S is fairly large (try 10), the line seems to
move in somewhat “old-time movie” fashion. This is the way
the illusion of motion is created on a TV set and in some of the
popular video games.)

Try this NEW program. It paints a dot on the sereen and
moves it down.

268

Remember, you can't draw
pictures off the screen.

Chapier

10
20
30
40
50
60
70
99

INPUT "HORIZONTAL STARTING POINT (8 TO 127)"; X
INPUT "VERTICAL STARTING POINT (1 TO 47)"; Y
CLS

RESET(X,Y-1)

SET(X,Y)

Y=Y+ 1

IF Y < 48 GOTO 460

GOTO 99

The RESET command simply follows along behind and erases
the dot from the last SET. What happens if you omit
RESET? When you try it remember to change line 70 to
GOTO 50.

Details . . . Details

One minor problem ...RESET and SET don’t work with
negative coordinates. Take a look at line 40 —

40 RESET(X,Y-1)

— if you INPUT Y equal to 0, then the Y address really
becomes Y—1... —1. A no-no!

Back to the Good Stuff

We can just as easily move a point to the right with:

19
20
30
40
50
60
70
99

INPUT "HORIZONTAL STARTING POINT (1 TO 127)"; X
INPUT "VERTICAL STARTING POINT (@ TO 47)"; Y
CLS

RESET(X-1,Y)

SET(X,Y)

X=X +1

IF X < 128 GOTO 48

GOTO 99

81

269

PART ¥

EXERCISE 31-1: Change the last two programs so that they
move the dot up and to the left respectively.

Now, let’s have the dot move down until it strikes a

barrier.

10
20
30
40
50
60
70
80
96

The program is:

INPUT "HORIZONTAL STARTING POINT (@ TO 127)"; X
INPUT "VERTICAL STARTING POINT (1 TO 28)"; Y
INPUT "LOWER BARRIER (30 TO 47)"; K
CLS
FOR M = 0 TO 127
SET(M,K)
NEXT M
RESET(X,Y-1)
SET(X,Y)

100 Y =Y + 1
110 IF Y < K THEN 80
999 GOTO 999

The dot appears to strike the barrier and stick to it.

Now let’s have the dot start in the middle and ricochet from
both the top and the bottom:

270

10
20
30
40
50
60
70
80
90
100
110
120
1306
140
150
999

CLS

FOR M = 8 TO 127
SET (M, D)

SET (M, 47)
NEXT M
Y = 14
D=1
RESET(64,Y-D)
SET(64,Y)

Y=Y +D

IF Y = 48 THEN 130
IF Y <> -1 THEN 88
Y=Y-2%*D

D = -D

GOTO 90

GOTO 999

The change in direction of the moving dot is caused by line 140
D= —D. Note that we must be careful not to accidentally
erase part of the boundary. To do this, we not only move the
dot back 2 steps with line 130 (after moving it forward 1 in line
100) but we also return to the SET in 99, rather than to RESET
in 89. Tricky, tricky. You can kill the whole day messing
around with this silly bouncing ball.

eh?

Rather good resilience,

Save this program for use in the next chapter.

Real Moving Pictures

We can draw whatever figures we like.

man. First, his legs:

Let’s try a stick

Chapler

81

271

PART V

16 CLS

20 X = 64

30 FOR K = 8 TO 7
40 SET(X+K,40+K)
50 SET(X-K,40+K)
60 NEXT K

999 GOTO 999
and RUN.

Then add his body and arms:

786 FOR K =0 TO 5
80 SET(X+K,34+K)
90 SET(X,34+K)

100 SET(X-K,34+K)

116 NEXT K
and RUN.

And finally his head:

12¢ SET(X,32)

130 SET(X+1,33)

149 SET(X-1,33)
and RUN.

Now lets try and move him to the right. Add

272

45 RESET(X+K-1,40+K)
55 RESET(X-K-1,40+K)
85 RESET (X+K-1,34+K)
95 RESET(X-1,34+4K)
185 RESET(X-K-1,34+K)
125 RESET(X-1,32)

135 RESET(X,33)

145 RESET(X-2,33)

150 X = X + 1

166 GOTO 38
and RUN.

OK, so I'm no artist .. .!!

Sure moves funny, doesn’t he? Well, I'm no animator either,
but I'm sure you're beginning to get the idea.

This has been one long and active Chapter ... and to think, all
this with only the SET and RESET statements. And by
simply exchanging RESET for SET, in many cases we could
have drawn the same pictures, with dark on a light background
instead of light on dark. You might want to give it a try.

Because the ideas come so fast in the area of graphics, we have
deliberately chosen to show a lot of examples without getting
bogged down in detailed explanations of how each one
works. There is no substitute for lots of experimenting with
graphics, and you now know the basics. Put in your time,
study the examples, and soon you can apply for membership in
the artists’ guild.

Learned in Chapter 31

Diagonal Lines

Broken lines

Animated
graphics

Chapfer

81

273

T THOUGHT IT WAS
SUPPOSED To @0 ‘PING' 2”

\

/‘\

@o\?\@ 7
3 \»
y (\))
] B% |
'lSTN\Tk ‘/\

PESERUED WORD?

274

CHAPTER 32

Display Formatting
With Print@

Remember the bouncing dot? Wouldn't it be nifty if we could
get the screen to say “PING” each time the dot bounced off the
barrier? Well I think it would be nifty, so we’re going to do
it. But first ...

We learned all about SET and RESET earlier. Now we will
learn about PRINT@ (pronounced print at) — a special type of
PRINT statement especially useful in graphies.

I thought you printed ON, not printed AT

Learn something new every day. The PRINT@ statement
allows us to begin printing starting at a location
number. Example, type:

10 CLS

(EXTREME CAUTION: DO

NOT USE THE SHIFT KEY

WITH@ on Models I & IIL
Shift 2 on Model 11

5¢ PRINT@ 200,"HELLO THERE 200, WHEREVER YOU ARE."

...and RUN.

Where is 200? Back to the graphics layout chart (Video
Display Worksheet).

With the aid of an ordinary household electron microscope, the
words “PRINT AT” are clearly seen on the upper left hand
corner of the sheet. Also, an arrow pointing to a set of
numbers. Further scrutiny discloses a tiny “X”, obviously
referring to the address numbers on the “X” Street — and a
tiny “Y” pointing to the “Y” numbers for “Y” Avenue. A
truly astute researcher will also see the “TAB” numbers — all
64 of them (starting with 0).

Model II users see Page 433
or Appendix F in your
Owners Manual.

275

PART V

The PRINT@ numbers start at 0 and go through 63 — in the
first line. They then pick up on the second line with #64 and
continue through #127. The third line starts with #128,
ete. The PRINT@ divisions are really the same as those for
TAB except PRINT@ does not start over again with zero on
the second line. It keeps going right on through PRINT
position #1023.

This perhaps strange sort of numbering is not so strange when
you consider the problems we had very early in the graphics
game with the fool carriage return scrolling our light right off
the screen. The PRINT@ statement does not trigger a scroll
after it has done its printing, EXCEPT IN THE LAST LINE,
between print positions #960 and #1023. Further, PRINT@
can directly address any of the 1023 printing locations (not
light block locations — they are very different). Trailing
semicolons are needed only after statements printed on that
last or bottom line of the video “page”.

We will soon see how valuable all this is.

Oh, It’s That Time Already?

Let’s create a 24-hour clock. (Why not ... sounds like more
fun than digging through all this obscure print statement
logic.) Type:

10 CLS

20 PRINTQ@467, "H M s*

368 FORH =0 TO 23

40 FOR M = 8 TO 59

58 FOR S = 8§ TO 59

60 PRINT@478, H; ":"; M; ":"; S
70 FOR N = 1 TO 466 : NEXT N
880 NEXT S

90 NEXT M

100 NEXT H

116 GOTO 19

and RUN.

276

On Model II
0 through 79 — first line
80 through 159 — second
line
— — — ete.

1919 on Model 11

Remember what scrolling
is? An upward line roll.

1840 — 1919 on Model II

Model II

See Appendix D for a

formula to translate Model
I/III PRINT@ positions to
the Model II.

Chapier

Nothing to it. Ahem!
“Hello? Bureau of Standards?”

Of course the accuracy of this timer depends on how closely we
calibrate it. We know that a Model II will execute
somewhere around 400 simple FOR-NEXT loops per second
when written as shown in line 70 — a multiple statement
line. If you really get carried away with this program, you
will want to calibrate it with a precision-type timepiece
(increasing or decreasing the “400” figure as needed). Over
the short run, this is quite a good timer. Note that we are not
triggering this with the power line frequency, but relying
solely on the amount of time required to execute FOR-NEXT
loops.

Oh, Yes ... The PRINT@

Anyway — let’s not lose sight of the forest for the trees (or
something equally trite). The purpose of this little program
is to demonstrate the PRINT@ statement. We used it
twice. By carefully squinting at the layout chart you can find
address #407, with #470 neatly below it. With blazing speed,
the HMS (no, no, not Her Majesty’s Service — it stands for
Hours, Minutes and Seconds), are printed — and the HM&S
updated each second.

For the real clock nut, see Section C for an operational clock

program. It only needs your closer calibration to be an
acceptable sundial. Most expensive clock in the house!

That’s How the Ball Bounces

Meanwhile, back with the bouncing ball. Let’s reload the
program from the first graphics chapter. It reads:

I 748 and 827 on Model 1T [

92

NOTE: No carriage-return-

suppressing semicolons
follow the PRINT @

statements — since they are
not on the bottom print line.

Model IT — Skip to the

heading Merely for Display

Purposes in the next
chapter.

277

PART Y

18 CLS

20 FOR M = p TO 127
38 SET(M,9)

40 SET(M,47)

580 NEXT M
60 Y = 14
76 D =1

80 RESET(64,Y-D)

98 SET(64,Y)

166 Y =Y + D

116 IF Y = 48 THEN 130
120 IF Y <> -1 THEN 88
13 Y=Y -2 *D

146 D = -D

158 GOTO 99

999 GOTO 999

Since we did not explain in detail how that fairly simple
program worked, take time now to see if you can follow it
through. When you have it figured out, tackle this exercise:

EXERCISE 32-1: Using PRINT@ statement(s), cause the
word “PING” to appear near the ball each time it bounces off
either the top or bottom boundary.

Isn’t it amazing how close we are building towards some of the
actual video games that are all the rage? — and yet it's really
so simple and logical.

278

Learned in Chapter 32

PRINT@

Chapter

92

279

280

"EXCUSE ME, MR JOHNSON, BUT WHEN
SOMEONE 6INES YoU A SINE WAVE

ON THE COMPUTER, HOW DO You
WAE Baek?"

e—

~— |TRb 1S UPTO
— WS o TRieKS !

— |G

CHAPTER 33

Graphing TRIG Functions

It is often helpful to graph mathematical functions so we can
better understand what'’s going on. The TRS-80 graphies are
adequate for a non-precision examination of many
mathematical functions, and the following short demo
programs illustrate that capability.

Just imaging there is a coordinate system drawn on the screen
(or draw your own, either with the Computer or a china
marker). The numbers in these demo programs are not
magic, they just allow the graphs to be drawn large, but not so
large they try to run off the screen.

These programs are included to show how PRINT@ can be
used in a supporting role to TRS-80 graphics. Experiment to
get what you want for your own particular application.

Graphing of Single Sine Wave

1l CLS : PRINT@®,"SINE"

10 FOR X = @ TO 255

20 Y = SIN(X/49)

30 SET(X/2,20-Y*20)

40 PRINTR@50,"X=";INT(X/2);

50 PRINT@58,"Y=";INT(20~-Y*20);
60 NEXT X

78 GOTO 70

281

PART V

Graph of 3 Cosine Waves

1 CLS : PRINT@7,"COSINE"

19
2p
3p
49
50
60
78

FOR X =@ TO 765

Y = COS(X/48)
SET(X/6,28-Y*20)
PRINT@45,"X=";INT(X/6) ;
PRINT@53,"Y=";INT (28-Y*2§) ;
NEXT X

GOTO 78

Graph of the Tangent

1 CLS : PRINTQ@7,"TANGENT"

12
2p
3
49
50
60
19

There is obviously quite an education to be had by careful
Look for such things as relative
thickness of the line at different points, the rate at which
blocks are lit relative to the other variable, etc.
the “early days” when we had to try and imagine these things

study of the graphs.

FOR X = @ TO 126

Y = TAN(X/90)

SET (X,47-Y*8)
PRINT@4M,"X=";INT (X);
PRINT@48,"Y=";INT (47-Y*8);
NEXT X

GOTO 78

on a blackboard.

282

Sure beats

NOTE: Model III and some Model I users are able to combine
lines 40 and 50 of these graphing programs into a single
PRINT line. In the SINE GRAPH PROGRAM, for example,
try replacing line 40 and 50 with

40 PRINTS56, "X="; INT(X/2); @58,

"Y="; INT(20-Y*280);

and RUN it.

Merely for Display Purposes
A good way to get a feel for PRINT @ (or any feature) is to look
at a fairly simple program which illustrates its use. This
program lays out a graph format on the screen. What you do
with it beyond that point depends on your own needs and

interests, but it is worth entering, studying and getting a feel
for its use. Type:

10 CLS
20 PRINTE20, "G RAPH HEADTING"
30 PRINT@84, "= — = = = = = = = = — — "

40 REM * HORIZONTAL MARKERS *
50 FOR X = 1 TO 59

60 PRINT@9DO+X,".";

78 NEXT X

80 REM * HORIZONTAL NUMBERS *
9% FOR X = 8 TO 5

100 PRINT@964+10*X,X;

110 NEXT X

120 REM * VERTICAL MARKERS *
130 FOR Y = 8 TO 13

149 PRINTQY*64+68,"-";

150 NEXT Y

160 REM * VERTICAL NUMBERS *
170 FOR Y = 6 TO 13

180 PRINT@Y*64+64,13-Y;

190 NEXT Y

999 GOTO 999

Chapler 33

One noteworthy procedure in
this program is the use of
trailing semicolons after
PRINT@ statements. The
reason, again, is that the
printing is taking place in
the last line on the screen so
the carriage return would
activate a Line Feed

scroll. We therefore have
to suppress the carriage
return with the semicolon.

25 for Modeﬂ

105

l 1685 I

Y*80 + 84

Y*80 + 80,20 -Y;

283

PART ¥

PRINT@ and Double Width

The use of double width letters adds considerable impact to
visual displays. There are however several rules which must
be followed. Type in this program, then we’ll explore them:

18 REM * ON BASE OF THE STATUE OF LIBERTY *
20 REM * LARGEST STATUE EVER ERECTED *

30 CLS : PRINT CHR$(23)

40 PRINT@456 ,"KEEP, ANCIENT LANDS,"

56 PRINT@522,"YOUR STORIED POMP!*™

60 FOR T = 1 TO 17006 : NEXT

78 CLS : PRINT CHRS(23)

80 PRINTR128,"GIVE ME YOUR TIRED, YOUR POOR,"
99 FOR T =1 TO 1568 : NEXT

100 PRINTE256 ,"YOUR HUDDLED MASSES YEARNING TO"

119 PRINT@324,"BREATHE FREE,"

1260 FOR T =1 TO 1108 : NEXT

130 PRINT@448,"THE WRETCHED REFUSE OF YOUR"
140 PRINT@516,"TEEMING SHORE."

1560 FOR T = 1 TO 1966 : NEXT

160 PRINTQ640,"SEND THESE, THE HOMELESS,"
170 PRINT@708, "TEMPEST-TOST TO ME,"

180 FOR T = 1 TO 2066 : NEXT

190 PRINT@832,"I LIFT MY LAMP BESIDE THE GOLDEN"

200 PRINT@900,"DOOR!"
216 GOTO 219

and RUN.

In line 30 we used ASCII character 23 to convert the video
display to 32 characters per line. Inline 7 we needed a CLS,
but CLS automatically returns the video to 64 characters per
line. This forced us to use another CHR$(23) to get back in
the 32 character mode.

Look at each PRINT @ statement. See anything at all
similar ...something we haven't discussed? How about it,
Sherlock? (Shut up Watson! we know you see
it.) Elementary, when you stop and think about it. Every
video starting address ends in an even number. Ok, yes
... [coughl ... of course.

Every letter and number is printed double-width, and the rules
state that for double width we must start on an even numbered
block. Change line 40 to PRINT@457 instead of 456 and
RUN.

284

810 on Model II
972

240

480
565

800
965

1200
1285

1520
1685

Model II
40 characters
80 characters

40 characters

311 810 ‘

Total wipeout! Can’t get much more dramatic than
that. Add 1 more number to make it PRINT @458.

and RUN.

Notice anything? Look at the display very carefully. Then
change the program line back to PRINT @456.

and RUN.
See it?

Right!We have to move over 2 video print addresses to move

the double-width display over just 1 space. Terribly obvious.

when you think of it. Not very obvious when trying to
trouble-shoot a program and you aren’t aware of it.

This program needs a good
graphics display of The
Statue, complete with
flaming torch. Also, a good
paper printout to hang on
the wall. How about it,
artists?

Learned in Chapter 33

Graphing with
PRINT@

Double Width
Mode

Chapter

812

810

B

285

“WELL, JEFFREY, | quess SOMETIMES
TS okAY To POINT/

2

o

~

4

PP
Z/ = ‘esPeciALy UHMEN YOV
HANE To PANT THE KID ,

b—m <'P A PICTURE]

286

CHAPTER 34

Point

The POINT(X,Y) statement stands pretty much isolated from —
the other 8 graphics statements. It needs them, but they x‘;digl users skip this
don’t need it at all. pter.

POINT(X,Y) interrogates (what a great technical word) that
graphics point on the screen with the address of (X,Y). Ifthat
point is lit, the POINT statement says *“—1”. If it is dark, the
POINT statement says “0”. That's really all there is to

it. Of such simplicity great power is derived. Interrogates — just asks a
question; but it's in logic
form ...true or yes = —1
and false or no gives a 0.

Let’'s give POINT a little exercise before looking
closer. Since it also works in the caleulator mode, type

PRINT POINT (30, 30)

Since we had not lit 30, 30 the answer came back 0.

Let There Be Light

Let’s light up a spot on the screen, then interrogate that point
and see what happens. Type:

16 X =75 : Y = 20

20 INPUT "DO YOU WISH TO LIGHT THE BLOCK (Y/N)"; QS
38 CLS

49 IF Q$ = "N" GOTO 80 Y and N stand for Yes and
58 SET(X,Y) e

68 GOTO 1040

80 RESET(X,Y)
188 IF POINT(X,Y)
200 IF POINT(X,Y)
999 GOTO 999

-1 PRINT@200, X; Y, "IS LIT"
P PRINTQ@208, X; Y, "IS DARK"

287

PART V

And RUN several times. Answer either YES or NO,
following the program action to see what is
happening. Pretty simple isn't it? Really sort of a status-
reporting system. Think what we could do if we set
something like this up in 2 nested FOR-NEXT loops so we
scanned the entire screen and got a status report on each
point. Hmmm. Almost like a radar scan of the
terrain. Hmmm some more.

2001 Here We Come

Snug up your seat belt, type and RUN the following program,
then sit back and wateh POINT in action. Study the display
very carefully as it runs, looking for the many things that
occur. This 2 minute “moving picture” really tells all we need
to know about the POINT statement.

19 REM * DEMONSTRATION OF GRAPHICS 'POINT' STATEMENT *

20 P =15 : L = 119

39 CLS

40 PRINT@5,"THIS IS A DEMONSTRATION OF THE POINT STATEMENT---";
5¢ PRINT@56, "X Y";

166 FOR I = 1 TO P : SET(RND(113) ,RND(45)+2) : NEXT I

116 FOR X = @ TO 111 : FORY = § TO 47

126 IF POINT(X,Y) = @ THEN 160

138 PRINT@L,X; : PRINT@L+4,Y;

148 L =L + 64

156 GOTO 170

160 SET(X,Y) : RESET(X,Y)

178 NEXT Y : NEXT X

180 PRINT@5,"THE COORDINATES OF THE GRAPHICS BLOCKS ARE >>-->>";
198 GOTO 198

288

Vectoring in on Darth Vader’s Death Star Fleet ...

If that one didn’t blow your mind, let’s take the program apart
a line at a time:

Line 10 is just the program identification note

Line 20 P is set at 15, the number of “targets” to be
randomly placed on the screen by the FOR-NEXT loop
and the random number generator in line 109. L is set at
119, the starting point for printing the coordinates and
their headings in line 130 and 149.

Line 30 clears the screen for action.

Line 40 and 50 use PRINT@ to print the heading.

Line 10¢ generates 15 addresses and SETs 15 lights.

Line 110 uses two nested FOR-NEXT loops to establish a
“scanner’’, testing every graphics point on the screen.

Line 120 tests to see if the point being addressed is
off. If so, the address printing and related incrementing
of the next PRINT@ location in lines 130 and 140 are
bypassed.

Line 130 prints the values of X and Y if the POINT test in
line 120 “fell through”, meaning that the point being
tested was not off.

Line 140 increments the PRINT@ address for the next
time line 130 prints the coordinates. By adding 64, the
next printing will directly line up under the current
heading and numbers. (See the layout chart if you can’t
follow it in your head.)

Line 150 is critical, since it jumps over a RESET.

Without this jump, the light blocks would be erased when
they are interrogated. (Try deleting the line and
RUNning to see.)

Line 160 is just a foxy display trick. It causes a blinking
light to “appear” to be scanning all points. Actually, line
160 is just turning blocks ON and OFF as the Computer
interrogates them. Since we don’t want to turn off
blocks that are already supposed to be lit, we hop over
this line when a real live block is hit. In reality then,
this “roving eye” never actually “hits” an “ON” block.

Line 170 merely closes the FOR-NEXT loops started in
line 119

Line 180 replaces the heading that was erased by the
POINT scanning process.

Line 190 is the locking loop used to keep READY and the
prompt from goofing up the display.

Pretty simple when taken a line at a time, isn’t it?

Chapter

84

289

PART ¥

Oh yes, did you notice that the “moving dot” turned off the
original heading? Did you also notice that it took two passes
of the dot to equal the width of one printed character (which of
course fits right in with what the layout sheet shows)?

The reason the heading was erased is that we deliberately
chose not to protect it (like we protected the blocks) from the
RESET in line 160 in order to make the point. You could
write a little protective line if you wanted to (or reduce the
vertical length of the scan to avoid it).

EXERCISE 34-1: Modify the POINT demo program so that

”

the heading is not erased by the “moving dot”.

Alpha or Omega?

There you have it — a good running start into graphies. Go
now to Section C where you will find more ready-to-run
programs. Give them careful study. You will see the four
graphics statements in use, plus most of the rest you have
learned about BASIC progrmming. The possibilities from
here are unlimited.

Learned in Chapter 34

POINT (X,Y)

290

NOTES

291

i\

w ORI THOUGHT You SAD ThE ASSienmenT

WAS TO BRING IN A SAMPLE OF

"

AN INKY STRING/

N
NN
N
X

292

CHAPTER 35

INKEYS$

The INKEY$ (pronounced Inkey-string) Funection is a powerful
one which enables us to INPUT information from the keyboard
without having to use the ENTER key.

Enter this NEW program:

1 CLsS

19 IF INKEYS$ = "T" THEN 30

20 GOTO 10

3¢ PRINT "YOU HIT THE LETTER °'T'"
40 GOTO 10

and RUN

The keyboard seems to be dead, until we hit the ‘T’ key. The
test in line 10 then passes, execution moves to line 3¢ and a
message is printed. Then the process starts over.

The way INKEY$ works is clever if somewhat subtle, so pay
close attention. The TRS-80 keyboard is constantly being
scanned by the computer to find which key is being
pressed. Each time a key is pressed, the character it
represents is automatically stored in the INKEYS$ ‘buffer’
area. This buffer can hold only one character at a time. So,
when a new key is pressed, the new character replaces the old
character in the buffer. When INKEYS$ is used in a program,
it takes on the value of the current character in the buffer.

Since INKEYS$ can only “photograph” one letter or number at
a time, if we want to test for more than one character we must
write the program to test for each one in sequence. In so
doing however, we must be careful, or INKEY$ can trip us up.

293

PART ¥

Add these lines to the program:
15 IF INKEYS = "P" THEN 50
50 PRINT "YOU HIT THE LETTER 'P'"™ : GOTO 10

and RUN

As you see, we are no longer getting a response each time the
keys are pressed. This distressing situation happens because
the INKEY$ buffer is cleared and reset to a null string EACH
time the INKEY$ function is used. Horrors! Just when it
was starting to make sense. Type LIST so we can take a good
look at the program to see how this clearing of the buffer
results in the “loss” of a keystroke.

Let’s suppose that the operator happens to press the T key
just as line 15 begins execution. Where does the T
go? Right into the INKEY$ buffer, of course. There it sits
until another key is pressed or INKEY$ is called.

Now as line 15 continues execution, INKEY$ is called. The
buffer’s current value (“T”) is compared to “P”. Since the two
strings are not equal, control passes to the next line, then back
toline 10. Inline 19, the INKEY$ function is called again, but
when it checks the buffer this time, “T” is not to be
found. What happened to the T?

Let's replay that last sequence and zoom in for a closeup on the
INKEYS$ buffer. As the operator hits the T key, we see the T
stored in the buffer. As the INKEY$ function in line 15 is
executed, the buffer suddenly goes blank. Ahhhhh! Thank
heavens for instant replay. It's now obvious that each time
the INKEYS$ function is called, the buffer is completely
cleared. So if we want to preserve the value of T, we'll need
to store it in a temporary string variable.

Change lines 10 and 15 to get:
1 CLs
10 AS = INKEYS$: IF A$ = "T" THEN 30
15 IF A$ = "P" THEN 50
20 GOTO 10
3¢ PRINT "YOU HIT THE LETTER ‘T'"
40 GOTO 190

50 PRINT "YOU HIT THE LETTER 'P'" : GOTO 10

and RUN
294

Aha! Now we're getting somewhere. By setting INKEY$
equal to a “regular” string variable, we can store its value for
as long as needed and process it much more efficiently and
predictably.

Rapid Scanner

If INKEYS$ scans the buffer and does not find a pressed key
(the usual case), it is said to read a “null string”. INKEY$isa
string function, and null means NOTHING. A null string is
represented by two quote marks with nothing between them,
thus:

W

The ASCII code for null is @.

To see how fast we can scan for input with INKEYS, try this
NEW program:

10 K$ = INKEY$: IF K$ = "% PRINT "NO
20 PRINT ,,, K$: GOTO 18
and RUN

Type in random characters and see them break the scan.

Get the general idea of how to use INKEY$? So simple, yet
the possibilities are enormous. Only a lot of experimenting
will make you comfortable with it, but INKEY$ will keep you
awake nights staring at the ceiling thinking of ways to put it to
work.

Out of the blue of the Western Sky ...

While chasing the solitude needed to write this book, your
author flew a heavily loaded light plane, packed with a
typewriter, a customized TRS-80 with accessories, plus
luggage (and of course, Ham radio) into a medium sized city
airport. Transferring this freight to a car turned out to be a
big deal since security wouldn’t let a car on the apron to offload
the plane. (You're supposed to drop it by parachute?) After
some cajoling (and a gratuity) it was agreed that my car could
be driven up near the apron, and an “officially approved” car
could haul the goodies from the plane to my car. It all seemed
a bit officious, but election time wasn’t close enuf, so . . .

Ghapter

KEYBOARD INPUT"

35

DE RANE |

295

PART Y

Anyway, to get my car thru the security fence it was necessary
to drive to an electrically operated gate and punch a secret
code into a numeric keypad for some sort of computer to
analyze, and automatically open the gate. The secret code
number was 1930.

Needless to say, as soon as the TRS-80 was set up I had to
write a BASIC program to do everything but actually open the
gate. It provides a good example of a real-life application of
INKEYS$, and is offered here for your amusement, amazement

and study.

10
20
30
40
50
60
70
1006
110
120

CLS : PRINT@796,"TYPE THE COMBINATION"
PRINT@854,"FOLLOWED BY A PERIOD"
PRINT@147,"THE ELECTRONIC GATE IS CLOSED"
K$ = INKEY$: IF K$ = "" GOTO 40

READ D§$: IF D$ = ".," GOTO 100

IF D$ = KS GOTO 40

RESTORE : GOTO 40

REM * SEE 'CONTROLLING THE WORLD WITH YOU TRS-80"°
REM * BY YOUR FAVORITE AUTHOR FOR DETAILS ON HOW *

750 on the Model II
830

105

*

REM * TO ACTUALLY OPEN AND CLOSE THE ELECTRIC GATE *

139 CLS : PRINT@133,"YOU MAY ENTER NOW - WAIT FOR THE

ELECTRONIC GATE TO OPEN"
140 FOR T = 1 TO 20068 : NEXT T : RESTORE :
1900 DATA 1,9,3,0,.

The password (1930 followed by a period) is imbedded, a
character at a time, in DATA line #1009. The commas only
separate the characters and should not be typed in to open the
gate. Line 40 holds the magic. It checks the INKEY$ buffer
looking for something besides a null string. If it finds a key
pressed, execution drops to line 50.

Line 50 READs a piece of DATA. If it happens to be a period
(which can only be READ from DATA after each of the other
code characters have been READ), execution moves to line 100
where the gate will be caused to open and line 130 will tell you
to enter the premises.

If, however, the test in line 50 does not find a period, execution
defaults to the next test, in line 60.

296

GOTO 186

170

Line 60 checks to see if the keyboard character matches up
with the character READ from DATA. If so, the first hurdle
has been passed and execution returns back to line 40 for
INKEY$ to await another keyboard character. If the
keyboard and DATA characters don’t match, the test fails and
execution drops to line 7¢.

Line 70 RESTOREs the DATA pointer back to its beginning,
and returns execution to line 40 to start scanning all over

again. The keyboard puncher sees none of this and has no
idea if he is making progress towards cracking the code.

Line 140 merely allows the gate a brief time to open and close
(and you to read the screen), then RESTOREs the DATA and
starts the program over again from the beginning.

The password can be changed to any combination of characters
by changing line 1009.

If you wanted it to be ‘TRS-80’ for example:
1000 DATA T,R,S;~:8:;0,.
Or, ‘OPENSESAME’
10069 pbAaTA O,P,E,N,S,E,S,A,M,E,.
Don’t forget that last piece of DATA, the period. By
changing line 50, of course, you could change that period to

anything you wanted.

Happy gate crashing!

Learned in Chapter 35

INKEY$ INKEY$ Buffer

Chapler

815

297

298

MT5 THE FRST BANK
THATS ENER. HAD
INTEREST IN ME!”

"I THINK. 'VE DISCOVERED WHY WE ARE
SO POPULAR.... MR. WRIGHT, OUR. COMPUTER EXPERT,
NEVER. FULLY MASTERED THE
"PRINT USING' COMMAND...”

FIRST
NATIONAL
BANK.

Mo w Penariry o

Gy =0 -

CHAPTER 36

PRINT USING

Of all the ways we have to PRINT, the most powerful (but
most confusing) is one called PRINT USING. The name
PRINT USING itself implies that we PRINT something
USING something else. That implication is correct.

As originally developed for use on large computers, PRINT
USING consists of two parts — PRINT and USING. PRINT
prints, USING the format (called the “image”) found in another
line. The TRS-80 PRINT USING is similar, but does not
always require a second line for the “image” ... as we will see.

PRINT USING With Numbers

Type:
10 A = 123.456789
40 US = "H#EE.HE"
5¢0 PRINT USING US; A
90 PRINT : LIST

and RUN
The answer is PRINTed as
123.46

It was rounded up and PRINTed to an accuracy of 2 decimal
places.

Add:

20 B = 1.6
60 PRINT USING US$; B

and RUN.

299

PART V

The screen shows
123.46
| .60

The first thing to note is that we have called upon line 40, our
image line, twice — once in line 50 and again in line 69. Next,
note that two answers appeared with their decimal points
lined up. Last, see that a § has been added to the 1.6 to make
it read 1.60. These latter two points are important if you're
printing out business reports.

One more addition:

30 C = 9876.54321
70 PRINT USING US; C

Produces:
123.46
.60
%9876.54
What gives ?2??

Well, the % sign means we have overrun our image lines
capacity to print digits left of the decimal point, but it prints
them anyway. Better to lose our decimal point lineup than
important numbers, but it does call our attention to a
programming problem. Let’s add another # sign to make
room for that extra digit. (We are adding another element to
the field in the image line. Got that?)

40 US = "S#8# . #2"
and RUN.

That’s better — but the overrun message would appear again
if we tried to print a number with more than 4 digits on the
left.

So far, this PRINT USING business looks like it might have
some potential, lining up decimal points like it does. We don't
have any other reasonable, straightforward way to accomplish
that, and it’s essential for printing dollars and cents in
business reports. Wonder how we can print a dollar sign?

300

Chapter 86

Let’s change our image line to:
40 US = "SHE#F.HE" (count 'em carefully)
and RUN.
Nice, eh? The dollar signs all line up in a row:
§ 123.46
$ 1.60
$9876.54

But suppose we want the dollar signs to snug right up against
each dollar amount? Make 40 read:

40 US = "SSHE## #4"
and RUN

and we get:

$123.46
$1.60
$9876.54

not specially attractive in this format, but taken singly, as
when writing checks, it’s almost essential.

The lessons so far are:

1. PRINT USING with # prints the decimal point at
the same place for every size number printed.

2. It rounds off the cents (the numbers to the right of
the decimal point) to the number of # signs
there. It does not round off dollars (left of the
decimal point), but sends up an error flag %, prints
all dollars, and slips the decimal point to the right if
the field isn’t large enough.

3. If a single $ is added to the left, dollar signs will be

printed and lined up in a column like decimal
points. This single $ does not expand the field.

301

PART ¥

4. Iftwo § are placed on the left, one $ will be printed
on each line and will be placed immediately in front
of the first dollar digit. One of these $ can replace
one # in the field, thereby not expanding it.

We've covered a lot with a very little program, but have a long
way to go.

Printing Checks

When using a printer for writing checks, it’s usually wise to
take extra precautions against “alterations”. This is easily
accomplished by changing line 40 to read:

40 US = "**434 44" (count ’em)
The RUN now reads:
**123.46
FEEEL60
*9876.54
That’s swell, it fills up the unused spaces alright, but we lost
the dollar sign. Okay, let's replace the first # sign with a
dollar sign, like so:
40 US = "**S§# #4" (aren’t you glad we have an
Editor for all these changes?)
See it Now:
*$123.46
***31.60
$9876.54
If you want to really impress others with the size numbers you

usually deal with at your lemonade stand, add lots more # signs
to the image line, thus:

40 US = "**SHE444RERE 00088, 82"

302

and your checks read:

**************$‘23.46

x*******x*$|6®

*************$9876.54
...very impressive.

Since we're obviously big time operators, having franchised
our lemonade stands, it’s getting hard to keep track of the big
numbers. How about some commas to break them
apart? (Knock out those extra *'s first. Too hard to count
them.)

49 US = "x*$, 44, 44" (look closely)
and RUN.

**$123.46
****$l‘6®
$9,876.54

Only one of our numbers has more than 3 digits, but a comma
separated its 9 and 8 for easier readability. In the image
field, the comma can be placed anywhere between the $ and the
decimal point, and only one comma is required to automatically
insert commas to the left of every 3rd digit left of the decimal
point. (You really big time operators who deal in the millions
will have to wait till the next chapter to see how to go “double
precision” to avoid losing the loose change.)

Stringing it out

Let’s rework our resident program to show some other PRINT
USING capabilities:

1 CLS : PRINT

10 A = 123.456789

20 B = 1.60

36 C = 9876.54321

40 US = "#HEE. 44 fEihd. 84 RS T

50 PRINT USING US$; A, B, C
99 PRINT : LIST

Chepler

36

303

PART V

Line 40 could be shortened to

40 US = "#####, 44"

with the same effect. The PRINT USING statement will
reuse its image line until all the values are printed.

Anyway, RUN it and see how the same numbers can be
displayed horizontally instead of vertically. All depends on
what we need at a given time.

123.46 1.6 0 9876.54
PRINT USING With Strings

Change the program to read:

1 CLs PRINT

16 AS = "IT'S"
15 B§ = "HOWDY"
26 Cs = "DpoODY"
25 D$ = "TIME"

oo

4 g v s " ® & " Model I use “\” (CTRL9Y)
50 PRINT USING Us; AS {nstead of “%

98 PRINT : LIST
and RUN.

The only thing unique about this program is in line 40. As if
we didn’t already have enough uses for the % sign to worry
about, here is another. % is a symbol in TRS-80 PRINT
USING which is to strings something like what the # is to
numbers.

We used two % %, to reserve two spaces for strings, and only
IT was printed. Unlike # however, to reserve more spaces in
the string field, we add blank spaces between the %
signs. Change line 49 to

40 US = "3 g"

and RUN. 4 spaces are set aside and IT'S is
printed without clipping.

304

Chapier

Let’s make room for printing another string on the same line.

40 US = "% %% $"
50 PRINT USING U$; AS, BS
and RUN.
Ooops! We ran
IT'SHOWDY
together.

To space them apart we must have to put an actual space in the
image field just as we did earlier with printing the numerics.

40 US = "¢ % % "
and RUN.

That's more like it.

Now it's your turn. Complete lines 40 and 50 to print IT'S
HOWDY DOODY TIME all on one line.

ANSWER:

40 US = "% % % $ % 2% %"
5¢ PRINT USING US$; AS, BS$, C$, DS

(If you have trouble with spacing in PRINT USING, add an
adjacent “measuring” line like this to help.)

39 PRINT "123456789012345678961234567890"

It’ time to quit doodling around and get down to business
too! Let’s change out HOWDY DOODY for some typical
report headings.

36

305

PART ¥

1 CLS : PRINT

19 A$ = "PART NUMBER"

15 BS = "DATE PURCHASED"
20 C$ = "DESCRIPTION"
25 D$ = "COST"

40

50 PRINT USING U$; AS$, BS$, CS$, DS
90 PRINT : LIST

ANSWER: 19 spaces) {4 spaces) (12 spaces)

40 U $ = "g x % & % ¥ % (There should be 4 spaces
between the %’s where we
had to split the line.)

P L T o % R8" b ‘
(4 spaces) (9 spaces) (4 spaces)- .(2 spaces)

Bring On the Money Changers

Here is a straightforward user program which uses PRINT
USING in a practical way. One would be hard pressed to get
the same results in so short a program without USING it.

If you're not in the international currency business, just type
in the first half-dozen or so DATA lines, plus line 1500 to get a
feel for what PRINT USING can do. See how % and # can be
mixed with blank spaces on the same image line?

Count spaces in line 460 very carefully! Add a “measuring
line” #459 if necessary.

306

Chapier

1 REM
2 REM

10 CLS
80 RESTORE : PRINT
HOW MANY U.S. DOLLARS DO YOU

1900

110

400

460

479

800

900

1000
10190
1920
1930
1040
1050
10690
1079
1080
1090
1100
1110
1120
1130
11490
1150
1160
1176
11840
1190
1200
1219
1220
1230
1240
1250
1260
1270
1280
1290
1300
13190
1320
1330
1340
1350
1360
1370
1380
1390
1400
1419
1500

INPUT"

PRINT : PRINT TAB(18);"AT TODAYS RATE

READ A
pPs="%

* INTERNATIONAL MONEY CHANGER *
* RATES AS OF FEBRUARY 1982 *

$,A,B$,B : IF AS="END" THEN 80

%

ESEEE S ST N

PRINTUSING P$;A$;D/A;B$;D/B

C=C+1

IF C<11 GOTO

400

FOR T=1 TO 500 : NEXT T : C=0 :

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

ARGENTINE PESO,

.0001

AUSTRALIA DOLLAR, 1.077
AUSTRIA SCHILLING, .0601

BELGIAN FRANC,

.02128

BRAZIL CRUZEIRO, .08733

BRITISH POUND,

1.8365

CANADIAN DOLLAR, .8191

CHINESE YUAN, .
COLOMBIAN PESO,
DANISH KRONER,

5497
.0166
.1259

ECUADORIAN SUCRE, .0404

FINNISH MARKKA,
FRENCH FRANC, .
GREEK DRACHMA,
DUTCH GUILDER,

.2210
1654
.0164
.3840

HONG KONG DOLLAR, .1699

INDIAN RUPEE, .
INDONESIAN RUPI
IRISH POUND, 1.
ISRAELI SHEKEL,
ITALIAN LIRA, .
JAPANESE YEN, .
LEBANESE POUND,
MALAYSIA RINGGI
MEXICAN PESO, .

1082
AH, .00154
4925
.0569
000787
004244
.2041
T, .4336
0267

N ZEALAND DOLLAR, .7880
NORWEGIAN KRONE, .1668
PAKISTANI RUPEE, .0976

PERUVIAN SOL, .

9094388

PHILLIPPINE PESO, .1370
PORTUGUESE ESCUDO, .01445
SAUDI ARAB RIYAL, .2925
SINGAPORE DOLLAR, .4751
S. AFRICAN RAND, 1.0285

SPANISH PESETA,
SWEDISH KRONA,

.00973
.1732

SWISS FRANC, .5318
TAIWANESE DOLLAR, ~0270

THAILAND BAHT,

.0435

URUGUAY NEW PESO, .0847
VENEZUELA BOLIVAR, .2329

W. GERMAN MARK,
END, @, END, 0

.4218

##

PRINT

WISH TO EXCHANGE ";D
YOU WILL GET" : PRINT

% % HEEEEEEEHET

°

: GOTO 400

307

PART ¥

EXERCISE 36-1: Duplicate the following statement. Use
PRINT USING:

for all but the column headings.

CREDITS TAX TOTAL
Astral Computer 18.3 N 19.0
Biofeedback adapter 1.8 .0 1.8
Personality module 7.2 3 7.5
DUE: 28.3

o

S
3 S
ot R

PRINT USING Image Line

PRINT USING
Symbols
#.8*,%

308

NOTES

309

310

CHAPTER 37

PRINT USING
Round 2

In the previous chapter we learned almost everything really
needed to put PRINT USING to work. Here are a few other
“tricks” that some of you might find helpful.

When printing big bucks (over 999,999 dollars) it is necessary
to use double precision or we lose the loose change. Type:

1 CLS : PRINT

10 AS = "SSHfH, HRFHEFHET
20 D = 123456789.01

3@ PRINT USING AS$; D

90 PRINT : LIST

“HAVING OUR. OWN COMPUTER.
HELPS IMPRONE
OUR. CORPORATE IMACE "

;D)

/

\A'@ﬁ’ a/\

TOO BAD 1T CAN'T

G

and RUN.

Sure enough, it rounds to $123,457,000.00. Granted, it’s only a
few minutes interest on the nation debt. For businesses
doing the taxpaying however, the accuracy can be easily
improved by simply switching to double-precision. Change
lines 20 and 30 to

20 D# = 123456789.01
3¢ PRINT USING AS; D#

and RUN.

There it is — $123,456,789.01 — enough change left over to tip
the porter who hides the public baggage carts. Notice that
the image line didn’t have to change. All we did was use a
technique we learned in an earlier Chapter.

311

PART ¥

If the 16-place accuracy of double precision isn’t adequate to
keep track of the Krugerrands in your mattress, you and
Serooge McDuck can probably afford to spring for a bigger
computer.

Profit, or Loss?

Was that healthy number this quarter’s profit from the
lemonade stand, or was it a loss? We can make the image line
print either. Change it to read:

10 AS = "+$SHEH, REFEFE BT

and RUN.

Very nice. Wonder what would happen if D was a negative
number?

20 D# = -123456789.01
and RUN
So far, so good. Suppose we take the + out of the image
line. Wonder if it will print the negative number
anyway? Use the editor and take it out of line 1.
Then RUN.
Oh, Phsaw! It goofed it up. Must be the + sign adds an
element to the image, and the sign takes up that extra
place. Well, now we know.
Let’s put the + sign back in, this time at the end of the image.
10 AS = "SSH##, #HAHHE. FH+"
and RUN.

Mmmmm. That’s nice. Now let’s change D back to a
positive number and see what happens.

20 D# = 123456789.01
and RUN.

Very nice. Looks better to have the signs at the end, not
interfering with the dollar sign, don’t you think?

312

Most printers don’t print deficits in red. How can we tag
them so we don’t allow the project manager to slip them by
us. (We'll just take all + numbers for granted.) - Let’s try
changing the + to a minus and see what happens.

10 AS = "SSH##, HEHERE HE-T
and RUN.

Seems normal. How about when it's hit with a negative
number.

20 D# = -123456789.01
and RUN.

AHA! Sticks out on the printout like a sore thumb. Now
about this little deficit here, Smythe

EXERCISE 37-1: Duplicate this simplified ledger with PRINT
USING:

REVENUES EXPENSES ASSETS
1,203,104.22 0.00 1,203,104.22
0.00 560,143.80 560,143.80

Deviant Forms of PRINT USING

Here’s a full-blown weirdo. Even a contradiction in
terms. Would you believe a double-precision number, clipped
and expressed in double-precision Exponential notation, in
PRINT USING? Even the technical types among us with
mismatched socks and a rope for a belt will cringe at that
one. We aren't going to bore the business types with the gory
details, except for a quick intro for those who like to explore
the morbid (or is it moribund?).

Chapler

87

313

PART V

Change or add these lines:
10 AS = "[[[[##443 4438204800 4444° Ese"’”\’”\# """ " on Model
20 D# = 1234567890987654321

22 D = 1234567890987654321
30 PRINT USING AS; D#
40 PRINT USING AS$; D

and RUN.

What you see is what you get, both in double and single
precision. Using the Editor, move the block of 4 left
brackets to the right, one position at a time, filling in with
#s. Have fun!

More on Strings

There is one more PRINT USING character that has real
value. Like so many exotic “upgrades” of BASIC, it does
nothing that can’t be achieved using other BASIC words, but
does it easier. ENTER this NEW program:
1 CLS ¢ PRINT
20 X$ = "ALEXANDER"
30 Y$ = "GRAHAM"
40 zZ$ = "BELL"
50 A$ = "1 1 g g" “I't \'\ " for Model II
60 PRINT USING AS; X$, Y$, Z$ -
90 PRINT : LIST

and RUN.
Who should appear before our very eyes but:
A G BELL
The ! serves to reserve an element in the field for the first letter
of the string assigned to it. Very handy when you want the

initials and last names of a list of people to line up in a row on a
printout.

314

Chapter 37

Inputting the Image

We move farther and farther into the woods as we seek to make
BASIC's formatting capabilities resemble the superior (and far
more complicated) ones of the FORTRAN language from which it
was derived. We can even INPUT the image line, since it is a
string. An easy way to see this is by using our resident
program, but change line 50 to read:

50 INPUT AS
and RUN.

We now have to respond by typing in the image line. (Seems
like they’re hard enough to create without INPUTting.) The
safest one to use is old line 50, so respond to the question mark
with:

(2 spaces)
L% %
and see
A G BELL

appear again.

RUN again, this time responding with something like:
2) (5) (2 (5) (2)

EE O A 4730 A T
and we should see something like
ALEX GRAH BELL

Try some other inputs and see how fast you get into trouble with
TM errors. The down-to-earth value of this particular capability
is a little elusive.

Another Short Cut

The final area of PRINT USING worthy of examination is the
incorporation of the image line into the PRINT USING line. It
requires some care, and has value primarily when only a few
variables are to be printed, or only printed once. In most
practical applications, the image line is referenced many times
during a run, frequently by different PRINT USING lines.

“U 1N\ " for Model II

315

PART V

Make a few changes in the resident program so it looks like this:

1 CLS : PRINT

20 X$ = "ALEXANDER"
30 Y$ = "GRAHAM"

49 72$ = "BELL"

60 PRINT USING "! ! % %"; XS$, YS$, 2$
99 PRINT : LIST

and RUN.

We simply did away with A$ and incorporated its elements into a
built-in image line, separated from the variables by a
semicolon. It does save space, and for short and
uncomplicated PRINT USING applications, has value. For the
long and complicated ones, it’s better to keep the image and
PRINT USING lines separate.

FINI

As you've seen, PRINT USING is the most complex of our PRINT
statements but by far the most powerful. If you're a serious
programmer you should master PRINT USING completely; take
our many simple learning examples and expand them into large,
useful business routines.

Learned in Chapter 37

PRINT USING
Symbols
+ — 4!

Double Precision
PRINT USING

316

Part VI

Arrays

317

"WARDEN , | THINK IVE FOUND A
COMPUTER PROGRAM THAT CAN HELP US
IN THE LICENSE PLATE SHoP!"

318

CHAPTER 38

Arrays

We know that we can use combinations of the 26 letters of the
alphabet and digits 0-9 to create variable names. We've also
discovered that very few of our programs have required
anywhere near that many variables. There are times,
however, when we need more variables — sometimes hundreds
or even thousands of them, to use as names of many different
pieces of data we are storing and want to “retrieve” easily.

The way out of this little dilemma is with an array. They are
all the same except for their engine size — and each has a
different license plate number. Let's say the license plate
numbers are from 1 to 10, and we want to use the Computer to
quickly spit out the engine size when we identify a car by
license number. This might not seem like a real heavyweight
problem — but, as before, we discover the full potential of
these things by learning them little steps at a time.

Let’s assume the license number and engine sizes are as
follows:

ENGINE
LICENSE# (cubic inches)

300
200
500
300
200
300
400
400
300
500

SO WO -ID U WD

—

Now, we could give each of these cars a different letter name,
using the variables A through J, but what a waste — and what
will we do when we have a thousand cars, not just ten?

Array? ...must be some
kind of new math
weapon . .. ?

319

PRRT VI

TRS-80 BASIC allows any valid variable name to be used as an
array name. Array name “A” is not the same as the alphabet
variable “A”, and it is not the same as the “A” used in the
string variable A$. It is a third and totally separate

“A”. We call it A-sub (something). We will name the cars
A(1) through A(10), pronounced A sub I through A sub

10. Get the idea?

Next, let’s store the car engine sizes in a line or two of DATA
statements.

Type in:

160 DATA 300,200,500,300,200
110 DATA 300,400,400,300,500

Notice how carefully we kept the DATA elements in order,
from 1 to 10, so the first car’s engine size is found in the first
DATA Location, and the 10th one’s in the 10th location.

Now we have to “spin up” an array inside the Computer’s
memory to make these data elements immediately
addressable. Think how difficult it would be to try to address
the 7th engine (or the 7 thousandth!) for example, using only
what we've learned so far. It can be done using only DATA,
READ and RESTORE statements but it’'s very messy and
slow.

The easy way to create the array is as follows ... Type in:

50 FOR L =1 TO 10
55 READ A(L)
60 NEXT L

...and RUN.

Nothing happen? Yes, it did. Something happened because
it took a little time for READY to return. We simply didn’t
display what happened.

We obviously used a FOR-NEXT loop to READ 10 pieces of
DATA, and named the elements (or “cells) in which they're
stored, A(1) through A(10). Let’s see if we can PRINT out
the values in those array elements.

320

What's that — you're not
sure you believe that there
can be three separate and
different storage places for
these “A” items? OK, try it
- type:

A= 12

A% = "(YOUR NAME)"

A(l) = 999
then type:
PRINT A, A$, A(1)

... NOW what do you
think? Did that make you a
believer??

Big words meaning “so we
can find a car fast!”

Chapter 38

Type:
200 FOR N = 1 TO 10
2180 PRINT A(N)
220 NEXT N

...and RUN.

Aha! It works, but how? We READ the DATA elements
into an array called A(L), but printed them out of an array
called A(N). Why the difference? Nothing significant.

The array’s name is “A”. The location of each data element
within that array is identified by the number which we place
inside the parentheses. We can bring that number inside the
parentheses by using any of our numeric variables, and can
even do some simple arithmetic inside the parentheses if we
wish.

Remember, the array we are using is named “A”. Its »
Some pure mathematicians

elements are numbered, and called A-sub (number). might insist on calling A(X)
— A “OF” X. Who needs
that added confusion? Best

’
Let’s work some more on the program. that you know, just i case,

Type:

170 PRINT
18¢ PRINT "LICENSE #", "ENGINE SIZE"
210 PRINT N, A(N)

...and RUN.
Now that’s more like it. We have every license number,
every engine size, and are not “using up” any of the alphabetic

variables. Having demonstrated that point, erase lines 209,
210 and 220, and type:

10 INPUT "WHICH CAR'S ENGINE SIZE DO YOU WANT TO KNOW"; W
210 PRINT W, A(W)
...and RUN.
Get the idea? Can you see the beginning of a simple

inventory system for a small business?

321

PART VI

Let’s go one small step (for mankind) further. Suppose we
know the color of each of the 10 cars, and for simplicity,
suppose the colors are coded 1, 2, 3 and 4. We might then
have a master chart that looks like this:

LICENSE# ENGINE SIZE COLOR CODE
1 300 3
2 200 1
3 500 4
4 300 3
5 200 2
6 300 4
7 400 3
8 400 2
9 300 1

10 500 3

In the language of professional computer types, this is called a
matrix. A matrix is just an array that has more than one
dimension. (Our first array had the dimension of 1 by
10.) This array has a horizontal dimension of 2 and a vertical
dimension of 10. If you wanted to be terribly inefficient about
the matter, you could say that this is a 3 by 10 array, counting
the license number. If so, then our original one would have
been a 2 by 10 array — but who needs it? As long as we keep
our license numbers in a simple 1 to 10 FOR-NEXT loop, and
our DATA in proper sequence, we can keep our arrays simpler
and easier to handle.

How then can we handle this 2 by 10 matrix? We have
already used up our A array elements numbered 1 through
10. Ok, you want to know how many array elements we have
to work with? Very good!

Let’s just arbitrarily assign array locations 101 through 110 to

hold the color code. We also have to put the color code info in
the program using a DATA statement. From the table, type:

322

You might want to think of a
matrix as a chart with a
certain number of columns of
information. First you set
up the chart, then how many
columns of info can you get
in...?

Since we do not store the
license number in the
computer, it is only a
“pointer” or an

“index”. That's why we
don't consider it as another
“DIMension” to our Matrix.

Chapter 38

3 DATA 3'1'4'3'2,4'3,2,1'3

and

80 FOR S = 1¢1 TO 110
85 READ A(S)
90 NEXT S

...to load the color code DATA into the array. The array
element numbers 11 through 100 are not used, nor are those
from 111 to the end of memory, since they have not been
formally assigned any values.

RUN it.

Awwk!! What is this ?BS business? (Subscript out of
range). Well, since arrays take up a lot of memory space, the
TRS-80 automatically allows us to use up to only 11 array
elements without question. (They can be numbered from 0 to
10.) Then our credit runs out. We earlier used elements
numbered from 1 to 10 without any problem.

To use array elements numbered beyond 10 in the array called
“A”, we have to ‘“reDIMension” the array space

available. Our highest number in Array “A” needs to be 110,
so we'll add a program line:

5 DIM A(110)
and RUN again
that’s better.

Now we need to find some way to display all this good
information. Change these lines:

10 INPUT "WHICH CAR'S ENGINE & COLOR DO YOU WANT TO KNOW"; W
18¢ PRINT "LICENSE #", "ENGINE SIZE", "COLOR CODE"
219 PRINT W, A(W), A(W+1l00)

...then RUN.

Check your answers against the earlier 2 dimensional matrix
chart.

323

PART VI

Let your imagination go. Can you envision entire charts and
tables stored in this manner? Entire inventory lists? How
about trying to find a car which has a certain size engine AND
a certain color? Hmmm. We will come back to the Logic
needed for that last one.

EXERCISE 38-1:‘ Assume that your inventory of 10 cars
includes 3 different body styles, coded 10, 20 and 380, as follows:

LICENSE # BODY STYLE
1 20
2 20
3 10
4 20
5 30
6 20
7 30
8 10
9 20

10 20

Modify the resident program to print the body style
information along with the rest when the car is identified by
license number.

A Smith & Wesson Beats 4 Aces

If we want to create a computerized card game (they make
good examples to show so many things), how can we set it up so
we draw the 52 or so (watch the dealer at all times) cards in a
totally random way? Answer: Spin up the deck into a single-
dimension array, pick array elements using a random number
generator, as each card is “drawn”, set its array element value
equal to zero, then test each card drawn to be sure it isn't
zero. Now that is really simple!

324

Chapter 38

We will now, a step at a time, write a program which will draw,
at random, all 52 cards numbered from 1 through 52, and print
the card numbers on the screen as they are drawn. No card
will be drawn more than once. When all cards have been
drawn, it will print “END OF DECK.”

You do a step first, then check against my example. Then
change yours to match mine — otherwise we might not end up
at the same place at the same time.

Step 1: Spin up all 52 cards into an array.

30 FOR C =1 TO 52 : READ A(C) : NEXT C

5¢ DATA 1,2,3,4,5,6,7,8,9,16,11,12,13,14,15,16,17,18,19,20

55 DATA 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35

60 DATA 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52
At this point, all we can tell when RUNning is that it is taking Shhhh! T know there's a

some processing time since the READY doesn’t come back shorter way to program this

right away. general case, but it doesn't
teach what's needed.

Step 2: Draw 52 cards at random, printing their values.

99 FOR N = 1 TO 52
100 V = RND(52)
110 PRINT A(V);
120 NEXT N

and RUN.

325

PART VI

True, 52 card values are printed on the screen, but if you look
carefully, the same number appears more than once. This
means that some “cells” are not being READ and some READ
more than once.

Step 3: When a card is drawn, set its array address equal to
zero. Test each card drawn to be sure it is not . When 52
cards have been drawn and printed, type END OF DECK.

90 P = 52

165 IF A(V) = 6 GOTO 100
120 A(V) =0

136 P=pP -1

146 IF P <> B GOTO 100
156 PRINT "END OF DECK!"

Line 120 sets the value in cell A(V) equal to zero only if line 105
finds it NOT equal to zero already, letting the program pointer
fall through.

When a “fall through” occurs:

1. The card’s value is printed (line 110)

2. The number stored in that cell is set to zero (line
120)

3. Line 130 counts down the number of cards
printed. Line 90 initialized the number of prints at
52.

4. The number of prints is tested (line 140). When
there are no more prints to go, END OF DECK! is
printed (line 150).

Pretty slick — and you don’t have to watch the dealer (just the
programmer).

326

Chapier 36

But how do we really know that every card has been
dealt? Write a quick addition to the program to “interrogate”
each array cell and print its contents.

200 FOR T = 1 TO 52
2106 PRINT A(T):;
220 NEXT T

RUN. ... and every cell comes up zero. If youdon't
really trust all this, change line 99 to read:

99 P = 50
RUN, and see what happens.
AHA! It flushed out those 2 cards in the sleeve, didn’t it.

Change P back to 52, eliminate test program lines 200, 210 and
220 and we end up with a good card-drawing routine. You
might want to clean it up to your satisfaction and save it on
tape for future projects.

Question: Why does the printing of card numbers slow down
to a near halt as those last few cards are being drawn. Isthe
dealer reluctant?

Answer: The random number generator has to keep drawing
numbers until it hits one that is the array address of an
element which has not been set to zero. Near the end of the
deck, almost all elements have been set to zero. The random
number generator has to keep drawing numbers as fast as it
can to find a “live” one.

Look again at the card numbers printed. There will not be

any duplication. No stray aces.

EXERCISE 38-2: Change the program so the original array
can be loaded with the card numbers without having to READ
them in from DATA lines.

327

PART VI

New DIMensions

DIM is to arrays what CLEAR is to strings. We have already
done some DIMensioning with single dimension numeric
arrays. When we have a string array we have to do the same
thing.

Suppose we have a program like this: (Type it in)

1 CLS : PRINT

16 FOR N = 1 TO 16

20 READ AS(N)

30 PRINT AS(N),

49 NEXT N

96 PRINT : LIST

100 DATA ALPHA,BRAVO,CHARLIE,DELTA,ECHO,FOXTROT
116 DATA GOLF,HOTEL,INDIA,JULIETTE,KILO,LIMA,MIKE
120 DATA NOVEMBER,OSCAR,PAPA

and RUN.

Oops. There’s that same problem. Subscript out of range in
0 means ‘“‘not enough space set aside for an array.” You'll
recall that only 11 elements per array (from 0-10) are set aside
onpower-up. We are trying to read in 16 of them, starting with
1. The solution:

>5 DIM AS$(16)
and RUN.

That’s better. DIMensioning a string array is just like
dimensioning a numeric one — just call it by its name. In this
case, its name is A$. You “high speed” types will want to
know that to do “dynamic redimensioning” (that’s doing it
while a program is running), the program must encounter a
CLEAR first. Oh.

328

Ghapter 38

Array Names
A(N)
BC(N)
D3(N)
E4$(N)
XY$(N)

are all legal array names. The last 2 are for “string arrays.”

EXERCISE 38-3: Study the User programs in Section C to
better understand the use of arrays for storage and access
purposes. Time spent studying programs written by others
is wisely invested.

Learned in Chapter 38

DIM Arrays

329

“|F THAT MACHINE OF YOURS IS SO GREAT
LETS SEE [T SEAREH THROUGH THIS

CLEAN LAUNDRY AND SORT ouT
YOUR. Socks!”

A
! How Do Y0U WRITE A “l

SUB ROUTINE TO LOOK-
ONDER. THE BED 7

G)

330

CHAPTER 39

Search and Sort

One of the Computer’s most powerful features is its ability to
SEARCH through a pile of DATA and SORT the findings into
some order. Alphabetical, reverse alphabetical, numerical
from smallest to largest, or the reverse — all are
common. This feature is so important we are going to spend
an entire chapter learning how to use it.

Typical applications of search and sort include:

1. Arranging a list of customers’ or prospects’ names
in alphabetical order.

2. Sorting names in zip-code order for lower-cost
mailing.

3. Sorting the names of clients in phone area code
order.

While not really all that complicated, the sorting process is
sufficiently rigorous that we are going to take it very slowly
and examine each step. Once we get the hang of it, the
Computer can blaze away without our considering the
staggering number of steps it’s going through.

Let’s start with a problem. We have the names of 8
customers (if that doesn’t grab you, make it 8 million — the
process is identical). We need to arrange them in
alphabetical order.

We start by storing their names in a DATA line. Type in:
1900 DATA BRAVO,XRAY,ALPHA,ZULU,FOXTROT,TANGO,HOTEL, SIERRA

Since we are sorting by name rather than by number, we have
to use string variables, string arrays, etc. They work equally
well with numbers such as zip codes, while numeric variables
and arrays work only with numbers.

331

PART VI

The backbone of a sort routine is the array. Each name has to
be READ from DATA into an array. So:

10 REM * ALPHA SORT OF STRINGS FROM DATA *

20 CLS : FORD =1 TO 8 : READ AS (D)
Line 10 is of course just the title.

Line 20 clears the screen, then “loads the array” by
READing the 8 names into storage slots A$(1) to
A$(8). N is simply a counter which will follow
through the rest of the program. In this simple
program we could have made N =8, since we know
how many names we have. In the next sample
program we won't know how many names there are,
so let’s leave N the way it’s usually used.

Important to the sort routine are 2 nested FOR-NEXT loops.
1. The first one, F, controls the First name.

2. 8, the second one, controls the name to be compared
against the first one.

Names and words are compared as we learned in the
Chapter on ASCII set, remember?

Let’s establish our loops first, then fill in the guts later:

N

N

+

l.

NEXT D

FIRST WORD TO BE COMPARED

30 FORF =1 TON - 1 'F =

40 FOR S =F + 1 TO N 'S = SECOND WORD TO BE COMAPRED
90 NEXT S ' MAKES 7 PASSES

108 NEXT F ' MAKES 7 PASSES

It may seem puzzling that F and S only have to make 7 passes
when there are 8 names. Think of it this way. Whatever
word ISN'T smaller (ASCII #) than the rest, just ends up
last. No need to test again to prove that.

The F loop READs array elements 1 through 7
(N—1=17). The S loop READs array elements 2 through
8. This always provides us with different array elements to
compare against each other.

332

Chapter 39

Now let’s jump to the end of our program and prepare it to

PRINT out what we are about to do. Type:

116 FOR D = 1 TO N : PRINT AS$(D), : NEXT D

When the sorting is done, the contents of A$(1) to A$(8) will be
the same as READ from DATA, but will be in alphabetical
order. We'll PRINT the array contents on the screen.

Now for the sort routine itself. Type:

50 IF AS$(F) <= A$(S) THEN 90
60 TS = AS(F)
70 AS(F)
80 AS(S)

And there is the biggie! If you can follow those last 4 lines
the rest is duck soup.

Line 50 says “if the first word is smaller than (or equal
to) the second word, leave well enough alone and
bail out of this routine by going to line 99, which will
end this pass and READ another word to compare
against F. If not, drop to the next line.” ”

Line 60 says, “Oh, they weren't in the right order,
eh? We'll just store the First word in a temporary
storage location called T$ and hold it there for
future use. I'm sure we'll need it again.”

Line 70 copies the name held in the second cell into the
first array cell. If the second one had an earlier
starting letter than the first one, we do want to do
this don’t we?

Line 80 completes the switch by copying the name
temporarily held in T$ into the second array
cell. A$(1) and A$(2) contents have now been
exchanged with the aid of the temporary holding
pen, T$.

If we did everything right, the program should:

RUN.

'TEST FOR SMALLER ASCII#
' TEMPORARY STORAGE FOR FIRST WORD

AS (S) ' COPY SECOND WORD TO FIRST PLACE
TS ' SWITCH FIRST WORD TO SECOND PLACE

Us simple country boys find
this one easy:

There are two brahma bulls
in separate pens, A$(1) &
A$(2), and we want to switch
them around. Ain't no way
we're going to put them in
the same pen at the same
time. (Not with me in there
anyway. Already broken
too many 2 by 4's between
their horns, and have some
scars in the wrong end from
escapes that were a hair too
slow.) That's why we keep
a temporary holding pen
called T$. Got it?

333

PART VI

and in a flash the names appear on the screen in alphabetical
order:

ALPHA BRAVO FOXTROT HOTEL
SIERRA TANGO XRAY ZULU

RUN it to your heart’s delight. It’s one of the most powerful
things your Computer can do, and does it so well. Exactly the
same thing takes place with a very long list of names (or zip
codes, or whatever) but we would of course have to
reDIMension for a larger array and CLEAR more string space.

Aw c¢'mon Horse — Whoa!

To get a really good look at what’s happening, it’s necessary to
slow the beast way down, and insert a few extra PRINT
lines. This lets us examine what’s going on inside by
watching the tube.

Add these temporaries:

45 PRINT F; AS(F),, S; AS(S)

47 FOR Z = 1 TO 1000 : NEXT 2

55 PRINT " <K==<K

85 PRINT F; AS$(F),, S; AS(S)
and RUN.

If that isn’t slow enough, change line 47 so there is time for you
to completely think it through. Pretend you're the Computer
and make the decision that line 50 has to make. Take it from
the top — very slowly! RUN.

Means “in cell #1 is the word BRAVO. In cell #2 is the word
XRAY”. (Just like they came from the DATA line.) Of
those two words, BRAVO is the “smallest” (ASCII#), so let's
leave it in number 1 place. Onto the next pass of S.

Ocops. BRAVO is in #1 and ALPHA is in #3, but ALPHA is

334

Printing will be in standard
16 space tab zone format.

SWITCHEROO"

(Allow four spaces after the
arrow — that way it will
look nice on the sereen when
you run it.)

smaller than BRAVO. We better switch them around. So

SWITCHEROO

Don’t worry too much about what is happening in the second
column. S is scanning through the array and its contents are
always changing, testing against what’s in the first
column. It's what ends up in the first column that counts —
and it should be in increasing alphabetical order.

As the program keeps RUNning, watch the new words appear
in S, the second loop and column, and compare them against
what’s in F, the first one. Try to guess what the Computer’s
going to do. Also keep an eye on the increasing numbers on
the left. It’s the final word with a given number in the first
column which will appear in the final printout.

RUN the program as many times as it takes (and at as many
sessions as it takes) to really follow what’s happening. It's
awfully clever, and awfully important. We can carry this
principle over to many useful programs in the future, but only
if we really understand it.

When you feel it’s under control, let’s add one more little
display to the screen. What is T$ holding while all this
sorting is going on? Add to these lines so they read:

45 PRINT F; AS$(F),, S; AS$(S), "T$="; TS
85 PRINT F; AS(F),, S; AS$(S), "T$="; TS

and RUN.

“T$ =" starts off with nothing since there is nothing in the
holding pen. As F gets replaced in the switching process,
however, T$ holds it. On a clear head it’s not hard to follow
what’s happening. You'll probably want to save this program
and review it several times for a deep understanding of the
process.

Sorting from the Outside

We don’t really have to keep all our names, numbers or other
information in DATA lines. It can be INPUT from the
keyboard, from cassette tape, or from disk. The following

GChapter

8¢

335

PART VI

program is quite similar to the first, and the logic is
identical. Change these resident program lines:

5 D =1 : REM * ALPHA SORT OF NAMES VIA INPUT *
10 INPUT "NEXT NAME"; AS$S(D) : IF AS(D) = "END"™ GOTO 30
20D =D+ 1 : N=N+1 : GOTO 10
Delete line 1000
and RUN.
Enter several random names, and when finished, enter the
word “END”. The process displayed on the screen will be

identical to what we saw before.

Can you see the potential for all this?

Lo e s e

EXERCISE 39-1: Change Line 50 of the sort program to list
the names in reverse alphabetical order.

Learned in Chapter 39

Sorting

336

NOTES

337

“AND TO ATTRACT THE GROWING COMPUTER. INDUSTRY
MD To SHOW THAT WE ARE A PROGRESSIVE CITY
WE WILL Do AWAY NITH STREESTS AND AVENUES
AND cALL THEM ROWS AND CoLLUMNS/,."

a2
DOWNTOWN DEVELOPMENT PLAMS - PHASE one

GREAT 10ER! Now
WHERE'S SKID ROW 7

2P

338

CHAPTER 40

Multi-Dimension Arrays

We have learned that an array is nothing more than a
temporary parking area for lots of numbers, or alphabet
characters, or both. In addition, we are able to compare
string contents outside the matrix (or array) with those inside
it.

An array which only has 1 dimension, that is, just one long line-
up of parking places is sometimes called a vector. We can
take that same 1-dimensional array and cut it into, say, 4 equal
chunks, and position those chunks side by side. We then call
it a 2-dimensional array — since the parking places are lined
up in ROWS and COLUMNS (or STREETS and
AVENUES). Not a single thing has changed about its DATA
holding or processing abilities. Only the addresses of the
parking places (or elements or memory cells) has changed.

Enter this program:

10 DIM M(52)

any array with more than 11 elements
(counting 9) must be DIMensioned.

20 FORV =1 TO 52
30 PRINT V
40 NEXT V

and RUN.

The RUN simply shows us the 52 storage positions and their
numbers (addresses). They are all lined up in a single row, so
can be called a vector. What it didn’t show us was the
contents of those memory cells. Let’s change the program
and find out what’s being stored:

30 PRINT V, M(V)

and RUN.

339

PART VI

Hmmmm. Every cell is storing the number . Why?
Because every value is initialized at zero on power-up; and by
trying RUN, we find this out — just like all the other numeric.
or string variables we have encountered. Now we know both
how to find the address of each memory cell, and how to find its
contents. :

Let’s cut our 52 cell array into 4 equal strips, and line them up
side by side. That would make ...ah...er...13 rows...er
... each containing 4 cells . ..right? Or 4 columns containing
13 cells. A “2-dimensional array” — has rows and
columns. Let’s start over with this NEW program:

16 DIM M(13,4)

that’s 13 rows by 4 columns
20 FOR R =1 TO 13

38 FOR C =1 TO 4
4p PRINT R; C,

580 NEXT C
60 NEXT R
and RUN.

And there we see the addresses of all 52 cells displayed on the
screen at the same time. Again, nothing has changed from
the earlier vector array containing the same 52 cells. We just
rearranged the furniture and gave it different
addresses. They read:

[means “first row, first column”

8 3 means “8th row, 3rd column”

ete.

To find out what each of these cells is holding in the way of
DATA. Change line

49 PRINT M(R,C),
and RUN.

See, the contents remain unchanged. They are still at their
initialized value of zero, since we have made no arrangement to
store information in them. Isn't this easy (... so far)?

340

Model II
Add: 55 PRINT

Memory cells have to be “loaded” with DATA to be of any
value. This can be done by reading the DATA in from DATA
lines, by INPUTting it via the keyboard, or from a previously
recorded DATA tape or disk. We will load our Matrix from
DATA lines imbedded in the program.

Add these DATA lines:

Chepier

40

1¢¢ paTaA 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
110 DATA 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37

120 DATA 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52

and this line to READ the DATA into matrix cells:
35 READ M(R,C)
and RUN.
There we see the DATA nicely arranged in the matrix, and
each matrix position has a specific address. Let’s stay in the
command mode for a minute and “poll” or “interrogate”
several matrix positions and see what they are holding. Ask:

> PRINT M(2,3)

write down 7, the answer. We'll RUN
the program again later and check it.

>PRINT M(11,4)
it says that cell holds the number 44
PRINT M(3,5)
Subscript out of range. Why did we get

that? Oh, there is no column 5. No
wonder.

Let’'s RUN the program again and check the screen, counting
down the Rows and over the Columns to see if our answers
match up.

Mine did — how about yours? ROW 2 COL 3 = 7
ROW 11 COL 4 = 44

341

PART VI

As an aside, type
CLEAR

then, at the command level, check any matrix memory spot
again. '

> PRINT M(2.2)

and we get). CLEAR re-initialized all
cells to zero, along with all other
variables. We can of course reload
them by RUNning again.

> PRINT M(2,2) ROW2COL2 = 6

EXERCISE 40-1: Change line 85 to a LET statement that fills
the array with the same numbers without the use of DATA
lines. (Be sure to restore the program back to its original self
when you're finished).

Okay, Now What Do We Do With It?

Good question. Everything you learned in the earlier
Chapter on Arrays applies. We’'ve only rearranged the deck
chairs on this Titanic — the end result is unaffected.

At this point, what we’ve learned is best utilized for calling up
and loading relatively unchanging DATA. It is placed in a
matrix so it can be accessed and compared, processed or
otherwise put to work. Typical applications are:

1. Technical tables. Instead of having to keep
looking up the same information in tables, store
the tables in DATA lines and let the Computer
look them up, do the calculations and give you the
final answer. Works great in this application, and
the time saved quickly pays for the Computer.

2. T've seen this approach used by a lumber yard to
furnish fast quotes on materials, and by a printing
shop for fast quoting of all sorts of printed
materials. In the latter case, the program is

342

Chapter 40

written so simply that the customer bellys right
up to the counter, answers the computer’s
questions, and gets his quote right there on the
screen. The latest prices on all the paper
products and printing costs are held in DATA
lines and “spun up” into the Matrix at the
beginning of the day. The customer just
responds to a “menu” on the screen, and answers
the questions. The quote is calculated, and
printed on the screen and on a printer.

When DATA is loaded in externally, either via the
keyboard, tape or disk, we obviously don’t want to
have to go through that loading process each time
we want an answer. It's important therefore, to
never let execution END. Always have it come
back to a screen “menu” of choices, or at least a
simple INPUT statement. If an END is hit, the
matrix crashes and the DATA has to be reloaded.

String Matrices

So far we have seen mainly numbers in our arrays. We can
also use them to hold letters or words, using the same rules we
learned earlier in the Chapters on Strings, including
CLEARing enough space for the Strings. We have to give
string matrices String names. Make these subtle changes in
our resident program:

10 DIM M$(13,4)
35 READ M$(R,C)

40 PRINT MS$S(R,C),
and RUN.

Absolutely no difference! We now have a string
matrix. The data was all numeric, but it handled it
beautifully.

Now let’s change our DATA (and cut down the program a bit
so we don’t have to type so much) and try it again. Change:

20 FOR R =1 TO 6

100 DATA ALPHA,BRAVO,CHARLIE,DELTA,ECHO,FOXTROT,GOLF ,HOTEL
116 DATA INDIA,JULIETTE,KILO,LIMA,MIKE,NOVEMBER,OSCAR,PAPA
120 DATA QUEBEC,ROMEO,SIERRA,TANGO,UNIFORM,VICTOR,WHISKEY

136 DATA XRAY,YANKEE,;ZULU

PART VI

Really no difference between the string matrix and the
numeric ones before, except it handles words. Stop for a
moment and contemplate the string-comparing and string-
handling techniques you learned a few Chapters ago. Your
mind should be running flat out at this point, considering the
possibilities.

How about mixing strings and numerics?

(Sounds good — I'll have one on the rocks)

Oh! Funny you should ask. That's why we ran all numbers
in a string matrix, then all words with that same
program. They mix very well, as long as the mixer is a string
matrix and not a numeric one.

We have one final program. It is not meant to be a practical
one, but could be expanded to INPUT the DATA from tape or
disk and be quite usable. It demonstrates a few important
possibilities and is worth entering and studying:

The Objective

The objective of this demo program is to allow a church
treasurer to keep track of who gave what, when. Could do
the same thing with a service club, or any organization that has
a membership and dues. We want to be able to access every
member’s record by name, and get a readout on his status.

Let’s start the program with the DATA. Type this in the
NEW program:

1000 REM * DATA FILE *

1910 DATA 07.0182, JONES, 15
1029 DATA 07.0182, SMITH, 87
1630 DATA 07.0182, BROWN, 24
1040 DATA 07.0182, JOHNSON, 53
1050 DATA ©7.0182, ANDERSON, 42

Analyzing the DATA, we've employed several
techniques. The first number in each DATA line employs
“data compression”, that is, “encoding” several pieces of
information into one number. This number contains the

344

month, date and year in one 6 digit number. (Using string
techniques, we could easily strip them apart again if we
wished, for special reports.) Single precision will hold the 6
digits accurately.

The second thing we've done with this first number is protect
the leading §. Since months below October are represented
by only one number, the leading zero would be lost on these
months and the number changed to only 5 digits. There are
other ways to get around that problem, but we will throw in a
decimal point just to act as an unmovable reference.

The second element in each DATA line is the name. We could
put in the full name, but if we used a comma we’d of course
have to enclose the name in quotes.

The third element of each DATA line holds the amount of
money given on that date.

Obviously, a full DATA set would contain many entries for
each Sunday, and many Sundays in a row. We don’t need to
enter that much DATA to demonstrate the principles involved
so we'll just keep it short and to the point.

We now have to READ this DATA into a string matrix,
displaying it on the sereen as we go. Add:

5 CLS

190 FOR E = 1 TO 5 : PRINT E, YTODAYS ENTRY

20 FOR D =1 TO 3

30 REM ENTRY DATA : DATE, NAME, TITHE

49 READ RS$(E,D)
50 PRINT RS (E,D),
60 NEXT D

70 NEXT E

Chapler

100 PRINT : PRINT "ENTRY #","DATE","NAME","TITHE S$"

and RUN.
Very good. The Matrix is loaded, and confirmed on the
screen. We see the first 5 bookkeeping entries from July 1,
1982.

Now that we know it loads OK, we can remove some of the

40

345

PART VI

software. Change this line:

16 FOR E = 1 TO 5 "TODAYS ENTRY
and Delete line 50
and RUN.

Good. We still get the heading, but the display is
gone. Now, how can we interrogate the Matrix to pull an
individual member’s record? Guess we first have to ask a
question. Type:

98 INPUT "WHOSE RECORD ARE YOU SEEKING"; NS
and RUN.

Seems to work OK. We will just answer the question with
any member’s name as it appears in the DATA lines. Then
we have to scan the matrix and compare N$, the name we
INPUT, with each element, R$(E,D), until we find a
match. This means setting up the FOR-NEXT loops again
and scanning every element. Add:

116 FOR E =1 TO 5

126 1IF R$(E,2) = N$ THEN 150

130 NEXT E

14¢ PRINT "NOT IN THE FILE" : GOTO 90
158 PRINT E, RS$(E,1l), RS(E,2), RS(E,3)
1680 PRINT : GOTO 99

and RUN.
Try names that are in the DATA lines, and those that are
not. Lines 140 and 160 have built-in defaults back to the
question.
The key line is #150. It prints 4 things:
E Obviously the entry number on that date
R$ (E,1) not so obviously, the contents of the memory

cell just preceding the one containing the
member’s name.

346

R$ (E,2) The cell containing the name
R$(E,3) The cell following it

If you have trouble visualizing what line 150 is doing, add this
temporary line. It prints the address of each DATA element
just below it, and is very helpful:

155 PRINT E, E;1, E;2, E;3

and RUN

Implications

Again, the preceding program was not written to be a model of
programming style and effeciency — but to be a good learning
program. You should now sit by the bank of the creek and
think through how you would modify it to load in say, 1000
lines of DATA from cassette tape via an INPUT
statement. Then, add more DATA each Sunday and shoot
that updated DATA back out to tape for reuse the following
Sunday, or inbetween as needed. It is possible, and
marginally practical to use your TRS-80 for this
application. (With disk it is routine.)

EXERCISE 40-2: Write a program that fills a two dimension
string array with:

JONES, C. 10439 100.00
ROTH, J. 10023 87.24
BAKER, H. 12936 398.34
HARMON, D. 10422 23.17

EXERCISE 40-3: Sort the names of the array in exercise 40-2
alphabetically. Don’t forget to keep the rest of the
information on each row with the original name. This
exercise will be a challenge. Think it through carefully.

Chapter

40

347

PART VI

EXERCISE 40-4: If you survived exercise 40-3, try sorting the
array in increasing order by the numbers in column 3.

Learned in Chapter 40

Multi-Dimension
Arrays

String Arrays

348

NOTES

349

350

CHAPTER 41

Advanced Graphics

The uses of PRINT@ go well beyond the simple display
formatting we have seen so far. Used in conjunction with the
CHRS$ function, PRINT@ can speed up our graphic displays by
a factor of six in some applications. That’s right, six times as
fast as SET.

How can that be? Well, we need to recall the set of ASCII
characters discussed in Part 3 Chapter 22. Sure, you
remember (if not, better take a glance to refresh your memory
cells) The codes from 128 to 191 represent graphics
characters. Let’s take a closer look at these characters with
this NEW program:

16 CLS

20 FOR I = 128 TO 191

30 IF I = 8 * INT(I/8) PRINT

40 PRINT I; CHRS(I); " "; (Two spaces)
56 NEXT I

68 GOTO 60
and RUN.

The characters are composed of the very same SET rectangles
we have been using all along. From Figure 1 we can see
that the rectangles are arranged in groups of six: three rows
and two columns. By PRINTing these characters, we can
light as many as six rectangles in one statement. It would
take up to six SET statements to do the same thing. The gain
in speed is considerable.

Skeptical? Nonsense. Bring out your stop watch and we’ll
take these two methods out for a spin. First the SET
approach:

Model II users skip this

Chapter.

351

PART VI

362

Ghapter 41

To emphasize the speed with which we can PRINT characters,
our first task will be to store the following graphics figure in a
BASIC program so that it can be displayed in the blink of an
eye.

Figure 2

Sound impossible? Just pay attention.

To achieve this kind of speed, we must store the entire figure
in a single variable using string concatenation. (Yes, we
covered concatenation earlier. See Part 3, Chapter 24). If
we are successful, we can then print the entire figure
INSTANTANEQOUSLY anywhere on the screen with the
PRINT@ statement. Amazing! I'm sold. Wheredolsign?

Graphic codes

Before we build the string, let’s bog ourselves down for just a
moment in the details of translating the figure from the video
display sheet into a BASIC program. There are a few
noteworthy tricks we should be aware of.

First in line in the trick department is the pattern of the
graphics characters themselves. One way to convert Figure
2 into the appropriate ASCII numbers is to use the chart in
Figure 1. But searching for each character takes time.
Fortunately, there is a simple way to calculate the ASCII
number associated with any of the graphic characters without
a chart.

Suppose that we are looking for the code number for the
following character:

Figure 3

Here’s the way we would proceed. Assign the following
values to each of the six rectangles:

353

PART VI

112
48
16{32
Figure 4

Memorize this pattern! It is easy and VERY useful.

To calculate the code number associated with any graphic
character, we add the numeric values of each of the lit
rectangles to 128. Since the lit rectangles in Figure 38 are
labeled 2 and 4, we get:

19 CLs

20 FOR Y = @ TO 23 : FORX = 0 TO 127
30 SET(X,Y)

40 NEXT X : NEXT Y

56 GOTO 50
and RUN

Okay, we can fill up half the screen in about 22
seconds. Contrast that with the results of using the PRINT
statement and graphic character 191 (all 6 rectangles lit):

10 CLs
20 FOR P = f TO 511
30 PRINT CHRS$(191);
40 NEXT P
50 GOTO 58

and RUN

Ahhh. Just about 4 seconds. The message is
clear: PRINTing graphic characters is a LOT faster than
SETting them.

EXERCISE 41-1: See if you can fill the entire screen using
CHR$(191). Hint: You have 1028 PRINT positions to fill.

354

Dilemma

This puts us on the horns of a real dilemma. We've seen how
convenient the SET statement is for things like plotting math
functions, and yet we now see just how slow SET is when
compared to PRINTing graphic characters. So which method

should we use?

Before we make a hasty decision, let's take a closer look at
printing graphic characters.

1286+ 2+ 4= 134

Check this against the chart in Figure 1. It works!Now try:

.

Figure 5

Well, rectangles 16 and 32 are lit, so 128 + 16 + 32 = 176.
Nothing to it! Once you recognize the pattern, it is easy to
calculate the number for any graphies character.

Now we can practice on our graphics figure. Go ahead. Try
translating a few characters from Figure 2 before you peek.
There is no time like the present to learn.

For those who don’t need the practice, the two rows are
composed of codes:

136 176 168 187 183 (48 176 132
(28 130 179 191 191 {70 129 128

Building The String
Our next task is to use these code numbers to build a string
variable. At first blush, we might be tempted to use a brute

force method like:

X$= CHR$(136) + CHR$(176) + CHR$(168) + . ..

Chapter

41

365

PART VI

But this is supposed to be a classy operation. Why not place
the numbers in DATA statements and READ them into the
program? Ithink we've stumbled on something here. Enter
this NEW program:

10 CLS : CLEAR 30@ : DEFSTR X
3@FORI=1T08:READN:X=X+CHR$(N):NEXTI
70 DATA 136,176,168,187,183,148,176,132

150 PRINT@410,X
and RUN

Line 10 clears the screen, reserves string space and defines X
to be a string variable. In line 30, each code number is read
into N. It is then converted to a graphies character via the
CHRS$ function and added to the end of the string variable
X. (Remember, X is defined to be a string variable in line
10). Line 70 holds the DATA, and X is printed in line 130.

Check your program output against the top row of figure 2.

Cursor Control Codes
Add the second row with:

5%FORI=1T08:READN:X=X+CHR$(N) ¢ NEXT I
80 DATA l28,13ﬂ,l79,191,191,179,129,128
and RUN

Oops! The figure calls for two rows, one on top of the other,
but our string prints everything in one row. How can we
position the second row directly under the first without using
two separate strings? Everyone back to the ASCII chart in
Appendix B. Pay particular attention to codes 24 — 27.
They are the solution to our problem. By adding the
appropriate cursor motion codes into the middle of our string,
we can move the second row of characters exactly where it
belongs.

Let’s see, after the first row is printed, we need to move the
cursor down once, then left 8 times. Add:

40 X = X + CHR$(26) + STRINGS$(8,24)

That ought to do the trick. RUN the program to make sure
we are on the right track. Voila! Our very own creature.

356

Notice how quickly the figure is displayed once the string is
assembled in memory. Try displaying the same figure with
SET statements. There is no comparison. We have just
unlocked the secret of high speed graphics with BASIC.

But Can It Fly?

Some people just don’t know when to quit. I suppose you
want the figure to flap its wings (those ARE wings, aren’t
they?) and zoom around the screen like a looney bird.

Before we start this adventure, you should be aware that we
are working with a SLOW language. BASIC is very easy to
use, but its interpretive nature makes it the sloth of computer
languages. Unfortunately, animation requires speed. Our
alternatives? Use assembly language — — — ARRRGGH,
work only with SET and RESET and a single bouncing dot
(who cares?), or continue with the “string packing” technique
we used above. The latter technique requires extra
programming effort, but it is the only way to generate fast
graphics in BASIC. So much for the rationale.

Our method of achieving the animation will be to create
several packed string variables identical to the first one,
except that the wings will be in slightly different
positions. By displaying these strings in rapid fire
succession, we will create the illusion of motion. This idea is
not new. It is the same process used to create animated
cartoons.

The other two figures (or frames) we will use are shown in
figure 6.

Figure 6

Chepter

41

357

PART VI

Loading An Array

Instead of storing these figures in separate variable names,
let’s turn X into a string array. Change lines 30-50 to:

30 FOR I =1 TO 8 : READ N : X(J) = X(J) + CHR$(N) : NEXT
40 X(J) = X(J) + CHR$(26) + STRINGS(8,24)
56 FOR I =1 TO 8 : READ N : X(J) = X(J) + CHR$(N) : NEXT

Now we can add the looping instructions needed to read in
DATA for all three strings:
20 FOR J =1 TO 3

60 NEXT J : X(4) = X(2)

and the DATA:
90 DATA 128,128,168,187,183,148,128,128
160 pDATA 131,131,179,191,191,179,131,131
110 DATA 128,128,168,187,183,148,128,128

120 DATA 160,142,179,191,191,179,141,144
and finally instructions to display the figure:

156 FOR J = 1 TO 4 : PRINT@410,X(J);
220 FOR I = 1 TO 40 : NEXT I : NEXT J
230 GOTO 150

and RUN

Up, up, and away. Our computer acts like a series of flash
cards. Line 140 adds a delay to control the speed of
animation.

Save this program on tape or disk as we will use it in a later
chapter.

EXERCISE 41-2: List the graphic codes that make up the
following figure, then pretend that it is a snail:

358

And In Conclusion

If you have been paying attention, you should now have no
trouble deciding which graphic techniques are best for
you. We know that SET and RESET are super for plotting
with X, Y coordinates as long as speed is not essential. They
can even be used for the simple animation of small
figures. However, where speed is required to deal with large
figures, the power of PRINT @ used with string packing is the
only way to fly.

For an in-depth look at graphics on the TRS-80, see the TRS-80
Graphics for the Model I and Model III, by D. A. Kater and
S. J. Thomas, Byte Books.

Learned in Chapter 41

Techniques Miscellaneous

String packing Graphics
character code

Animation pattern

Array Loading

Array Loading

Cursor control
codes

Chapter

4

359

360

CHAPTER 42

Graphics INKEYS$

Chapter.

Model II users skip to next

The implications of instantaneous (well, nearly instantaneous)
input are not limited to the applications shown thus far. This
capability adds a new dimension to the area of games and
animation programming. Using INKEY$, we can write game
programs with real time response to keyboard input.

As an example of this use of INKEY$ let’s bring back the wing
flapping monstrocity we created. Here is the listing:

10 CLS : CLEAR 340 : DEFSTR X

20 FOR J 1 TO 3

36 FOR I 1 TO 8 : READ N : X(J) = X(J) + CHRS$(N)
40 X(J) = X(J) + CHRS$(26) + STRINGS(8,24)

50 FOR I =1 TO 8 : READ N : X(J) = X(J) + CHR$(N)
60 NEXT J : X(4) = X(2)

76 DATA 136,176,168,187,183,148,176,132

8¢ DATA 128,136,179,191,191,179,129,128

9¢ DATA 128,128,168,187,183,148,128,128

1¢9 pDATA 131,131,179,191,191,179,131,131

119 DATA 128,128,168,187,183,148,128,128

12¢ DATA 166,142,179,191,191,179,141,144

150 FOR J 1 TO 4 : PRINT@410,X(J):;

220 FOR I 1 TO 40 : NEXT I : NEXT J

239 GOTO 150

We are going to use INKEY$ and the arrow keys to move the
figure around the screen. So our first step will be to change
the PRINT@ position into a variable. Change:

19 CLS : CLEAR 300 : DEFSTR X : P = 410
150 FOR J = 1 TO 4 : PRINT@P,X(J);

il

]

e

NEXT I

NEXT I

361

PART VI

and add:
149 REM

and RUN

Next, we'll speed up the graphics a bit:
220 FOR I = 1 TO 16 : NEXT I : NEXT J
and RUN

Because of the way the PRINT@ locations are layed out,
changes in the position variable P will have to be made
according to:

Left P=P-1
Right P=P+1
Down P=P+64
Up P=-P-64

Horizontal positions on the video screen differ by 1. Vertical
positions differ by 64. Make sure you understand this
concept before proceeding.

Since we want to direct the movement from the keyboard, we
need to associate the above changes in P with the correct
arrow keys. A bit of experimenting shows that the arrow
keys return the following ASCII values:

Left 8
Right 9
Down 10
Up 91

So, the proper matchups are:

Left 8 = P=P-1
Right 9 = P=P+1
Down 10 = P=P+64
Up 91 = P=P-64

We can add this information to the BASIC program as
follows. Add:

136 P = P + K

160 X = INKEYS$: IF X = "™ THEN 210
l7ﬂK=ﬂ:V=ASC(X):IFV=8THENK=K

180 IF V = 9 THEN K = K + 1

362

Chapter 42

190 IF V 19 THEN K
200 IF V 91 THEN K

230 GOTO 1386
but don’t RUN yet.

K + 64
K - 64

In line 160, Keyboard input is stored in the string variable
X. Inline 170, V is set to the ASC value of X. This value is
compared to ASCII numbers returned by each of the four
arrow keys in lines 170 through 209, and K is changed
accordingly. Then back in line 139, the screen position
variable P is adjusted by K.

I'll bet you forgot about testing for our figure floating off the
edge of the screen. Stick with us kid, we wouldn’t steer you
wrong.

Add:
21¢ IF P + K > 888 OR P + K < @ THEN P = P - K : GOTO 1480

It pays to plan ahead. NOW you can RUN it. Press the
arrow keys to move the figure around the screen.

Argggg! Well, we can only plan ahead so far. Forgot one
tiny little detail. Can’t leave a messy trail behind our flying
friend, can we?

Change 140 to:
140 CLS

and RUN

There it is: a flying creature that would give King Kong
fits. All due to the INKEY$ function and our clever
programming.

e e R

EXERCISE 42-1: Write a program using INKEY$ to control
game paddle (STRING$(8,140)) movement back and forth
across the bottom of the screen with the left and right
arrows. Protect the screen borders.

[e e e s e

363

P

BRT VI

Learned in Chapter 42

Real time input

364

Part VII

Miscellaneous

365

366

CHAPTER 43

PEEK and POKE

PEEK and POKE are BASIC words that allow us to do non-
BASIC things. They provide the means whereby we can
PEEK into the innards of the Computer’s memory, and if we
wish, POKE in new information.

It is not our purpose here to become an expert in machine
language programming, or even on how the Computer
works. We have to approach this and related topics a little
gingerly lest we fall over the edge into a computer abyss (or is
it an abysmal computer?).

We do know, however, that computers do their thing entirely
by the manipulation of numbers. Therefore, when we PEEK
at the contents of memory, guess what we’ll
find? Numbers? Very good! (Ummmyass).

Model II users skip this

Chapter.

367

PART VI

Model I and IIT Memory Map

Decimal Hex

Address Address

65535 END “48K” FFFF
SYSTEMS

49151 END “82K” BFFF
SYSTEMS

32767 END “16K” TFFF
SYSTEMS

20479 END “4K” SYSTEMS 4FFF

® ® ®

e ® []

e PROGRAM AND °
17385 USER MEMORY 43E9 (42E9)
(17129M1)

17384 RESERVED FOR 43E8 (42E8)
(17128) SYSTEM USE
16384 4000
16383 3FFF
15360 VIDEO MEMORY 3C00
15359 RESERVED FOR 3BFF
SYSTEM
12288 INPUT/OUTPUT 3000
12287 TRS-80 BASIC 2FFF
READ ONLY
0 MEMORY 0000
(ROM)
FIGURE 1

The Memory Map in Figure 1 shows large chunks of the
Computer’s memory are reserved, or “mapped” for very
specific uses. The BASIC for example, uses byte addresses 0
through 12287. All numbers we talk about here are decimals,

not hex, octal, binary or Sanskrit.

368

Turn the machine off to clear out memory, then type in this
program:

20 N = 0

40 PRINT N, PEEK(N), CHRS$(PEEK(N))
50 N =N+ 1

60 GOTO 40

Let’s analyze the program before RUNning it.

Line 20 sets the beginning address where we want to start
PEEKing. As Figure 1 shows, there are lots of good places
to go spelunking, and we can change line 20 to start
wherever we want.

Line 40 prints three things:

A. The address — that is, the number of the byte, the
contents of which we are PEEKing at.

B. The contents of that byte, expressed as a decimal
number between @ and 255.

C. The contents of that address converted to its ASCII
character. (Many of the ASCII characters are not
printable. Go back to the chapter on ASCIL if your
memory has grown dim.)

OK, now. RUN the program, being ready to stop it with
SHIFT@ if you see something interesting. It can also be
stopped at any time with the BREAK key, and restarted with
CONT without having to start all over again with N at .

Didn’t see anything interesting? What did you find starting
at address 261??? You have to be able to read vertically as
the letters swish by.

When the letters jump to double width, hit BREAK, then
CLEAR, then CONT, as they are too hard to read when so
large. Change N to start at different places in memory and
PEEK to your heart’s delight. You can’t goof up anything by
just PEEKing. It's indiscriminant POKEing that gets you
into trouble.

Chapfer

43

369

PART VI

The command level is very handy for resetting the starting
address. Change the value of N by just typing:

N=5000

for example, then
CONT

instead of RUN

When done PEEKing with this program and having seen far
more information than can possibly be absorbed, rework line
40 to read simply

40 PRINT CHRS$(PEEK(N)):;

and RUN.
It PRINTS only the ASCII characters, horizontally, and is the
ideal program to RUN when friends visit. Just act casual
about the whole display and avoid any direct
questions. Makes a great background piece for a science
fiction movie.

When you find an interesting spot, hit BREAK, then
PRINT N
at the command level to find out where in memory
you are PEEKing. (Don't you wish we could
explore the corners of our mind as easily?)
CONTinue on when ready.
Having degenerated from PEEKing to leering, it's time to see
what else we can do.
Careless POKEing can leave holes . ..
Before POKEing, we’'d better see that we're not POKEing a
stick into a hornets’ nest. It's with the greatest of ease that
we destroy a program in memory by POKEing around where
we shouldn’t.
Obviously there is no use POKEing in the ROM area since

ROM stands for Read Only Memory. It’s not
changeable. The rest of the “Memory mapped” area, from

370

Chapter 43

12288 thru 17384 is reserved for specific things, so best not to (17128 on Model T)
POKE in there while we're just bungling around. Anything

above 17384 should be available memory, unless taken up with

our BASIC program or required for processing. With such a

short program as ours we surely can’t goof anything up? Can

we?

Let’s PEEK around 20000 and see if anything is going on
there. Change two program lines to:

20 N = 20000
40 PRINT N; PEEK(N),

and RUN
Model I's may show slightly

20000 0 20001 255 20002 0 20003 255 different results
20004 0 20005 255 20006 0 20007 255

20008 0 20009 255 20010 0 20011 255

20012 0 20013 255 20014 0 20015 255

20016 0 20017 255 20018 0 20019 255

20020 0 20021 255 20022 0 20023 255

20024 0 20025 255 20026 0 20027 255

20028 0 20029 255 20030 0 20031 255

20032 0 20033 255 20034 0 20035 255

20036 0 20037 255 20038 0 20039 255

20040 0 20041 255 20042 0 20043 255

20044 0 20045 255 20046 0 20047 255

20048 0 20049 255 20050 O 20051 255

20052 0 20058 255 20054 0 20055 255

20056 0 20057 255 20058 0 20059 255

20060 0 20061 255 20062 0 20063 255

What we see are the address numbers and their contents, in
easy-toread parallel rows. Unless you've been messing
around with other programs since power-up (or using disk
BASIC) we should just see nice rows of 255’s and 0’s. The
memory at these locations has not been used.

Great! Let's change our program and POKE in some
information and do something with it. Make it read:

16 REM * POKE PROGRAM *

20 N = 20000
30 READ D (Disk BASIC users change

line 20 to 20 N = 30000)
40 POKE N,D
50 N =N+ 1

371

PART VI

60 IF N = 20011 THEN END (30011 Disk BASIC)
78 GOTO 30
100 DATA 86,69,69,75,45,65,45,66,79,79,33

Before RUNning, let’s analyze it.

Line 20 initializes the starting address at 2000 (or 3000)
Line 30 READs a number from the DATA line

Line 40 POKEs the DATA “D” into address “N”

Line 50 increments the address number by one

Line 60 ENDs execution when we have POKEd in all 11
pieces of Data

Line 79 sends us back for more DATA

Line 100 stores the DATA we are going to POKE into
memory.

Now — RUN

Well, that was sure fast. I wonder what it did? How can we
find out? Should we PEEK atit? Yes, but let’s leave the old
program in and just start a new one at 204.

200 REM * PEEK PROGRAM *

219 FOR N = 200600 TO 20010 (30900 to 30010 Disk BASIC)
220 PRINT N, PEEK(N)
230 NEXT N
and RUN 209

20000 80
20001 69
20002 69
20003 75
20004 45
20005 65
20006 45
200087 66
20008 79
20009 79
20019 33

372

Chapter 43

How about that. We really did change the contents of those
memory locations. We shot the numbers from our DATA line
right into memory. Now if we only knew what those numbers
stood for. Wonder ...if we changed them to ASCII
characters, would they tell us anything?

Add:
205 CLS
220 PRINTQ@470 + N - 20800, CHRS(PEEK(N)); (N — 30p@p Disk BASIC)

to print at a certain location on the screen

and RUN 200

Print The Results Here

And that's how PEEK and POKE work.

373

PART VIl

EXERCISE 43-1:

Display the word POKE centered in the top line of the video
display using the POKE statement instead of
PRINT@. Hint: poking characters to RAM memory
locations 15360 — 16383 has virtually the same effect as
printing to screen locations 0 — 1023. Just add 15360 to the
desired PRINT@ location.

Learned in Chapter 43

POKE PEEK Memory Map

374

NOTES

375

\

THE BINOCULARS? OH, | USE THEM TO EXAMINE
ALL oF THE PEEK STATEMENTS/..

BELIEVE Aoty THING/

Ge P

2
z
%
3
;

376

CHAPTER 44

Model III POKE Features

Changing Cassette Speed

Model III users have the option of selecting either High or Low
cassette speed when powering up. For compatability with
the Model I tape format, use Low speed. Otherwise, use High
speed ... it’s much more reliable.

Restarting BASIC to change the Model III cassette speed will
of course erase any program in memory.

Fortunately, there is another way to change speed. Model III
memory location 16913 is the key. When this location
contains a zero, Low speed is used. When it contains a non-
zero value, the High speed is used.

To select Low speed from BASIC without disturbing a current
program in memory type:

POKE 16913,0
To select the High speed use:
POKE 16913,1

or any other non-zero number.

Special Characters

Now that we are well versed in poking characters to the video
display (see Exercise 43-1), Model III owners are in for another
surprise. There is one more set of foreign characters hidden
away in the Model III character generator. Unlike any of the
other ASCII codes, this set can not be printed in the normal
fashion using the CHR$ function. It can only be assessed by
more devious means as we shall see.

377

PART V0

Just as the Special and KANA character sets are hidden
among the ASCII codes (192 - 255), the Foreign characters
reside in the ASCII domain, in the lower reaches (0 - 31).

How do we display these characters on the screen? Instead of
using codes like PRINT CHR$(21) and PRINT CHR$(22) to
swap character sets in and out, as we did earlier, the Foreign
character set is activated only when the POKE statement is
used. When the codes from 0 to 31 are used with CHRS, we
get action characters such as cursor motion and character
width. When POKEd, we get foreign characters.

Let's POKE these characters onto the screen so they can see
the light of day. We’ll put the computer in double width, and
place the characters in the first row of the screen. Recall
from the memory map that the video display starts at location
15360. We will POKE code 0 in address 15360, 1 in 15362, 2 in
15364, etc. Hang on, here we go. Enter this NEW program:

19 CLS

20 PRINT CHRS$(23)

30 FOR P = @-TO 31

490 POKE 15360 + P * 2, P

50 NEXT P : PRINT
and RUN

There they are! All the foreign symbols we dreamed about
but were afraid to ask. (Kan du suakke Norsk?)

EXERCISE 44-1:

Display the foreign character set across the top row of the
video display in double width format.

378

Learned in Chapter 44

Cassette Speed
Changes

Foreign Character
Set

Video Display
memory

Chapter

a4

379

380

CHAPTER 45

Logical Operators —
AND, OR, & NOT

In classical mathematics (fancy words for simple ideas) there
exist what are known as the “logical AND”, the “logical OR”,
and the “logical NOT”.

So the One Cow Said to the Other Cow ...

In Figure 1, if gate A AND gate B AND gate C are open, the

cow can move from Pasture #1 to Pasture #2. If any gate is
closed, the cow’s path is blocked.

PASTURE #1 PASTURE #2
w e GATE A e GATE B e GATEC
cow

The principle is called “logical AND”.

In Figure 2, if gate X OR gate Y OR gate Z are open, then old
Bess can move from Pasture #3 to #4. That principle is called
“logical OR”. These ideas are both pretty logical. If the cow
can figure them out surely you can!

PASTURE #3 ! PASTURE #4

i/ GATE X

OLD BESS i/ GATE Z

Using these ideas is very simple. Type:

FIGURE 1

By the way, this cow’s name

is Bessie.

FIGURE 2

381

PARYT V0

190 INPUT "IS GATE ‘'A' OPEN"; AS
20 INPUT "IS GATE 'B' OPEN"; BS

3@ INPUT "IS GATE 'C' OPEN"; CS$

40 PRINT

50 IF A$ = "Y" AND B$ = "Y" AND C$ = "Y" THEN 80
60 PRINT "OLD BESSIE CAN'T GET TO PASTURE #2."
70 END

80 PRINT "ALL GATES ARE OPEN. OLD BESSIE IS FREE TO ROAM."

...and RUN. Answer (Y/N) the questions differently during
RUNSs to see how the logical AND works in line 50.

Where is the LOGIC in all this?

You should by now understand every line in the program
except perhaps line 50,
Lines 10, 20 and 30 input the gate positions as open (which
we defined as equal to “Y”), or closed (defined as
“N”). We could have defined them the other way around
and rewritten line 50 to match, if we'd wanted to.

Line 50 is the key. It reads, literally, “If gate A is open,
AND gate B is open, AND gate C is open, then go to line
80. If any one gate is closed, report that fact by
defaulting to line 69.”

Imagine how this simple logic could be used to create a super-
simple “computer” consisting of only an electric switch on each
gate — add a battery and put a light bulb in the farmer’s
house. The bulb could indicate whether the gates are all
open. Such a “gate-checking” computer would have only Hmmm. It would do the job

three memory cells — the switches. a lot cheaper than a TRS-80
... but would be awfully

hard to play Blackjack with.

EXERCISE 45-1: Using the above program as a model, and
the “OR logic” seen in Figure 2, write a program which will
report Bessie’s status as determined by the position of Gates
X,Y and Z.

382

Teacher’s Pet

Here is a simple program which uses instead of the equals
sign in a logical test. The student passes if he or she has a
final grade over 60 OR a midterm grade over 70 AND a
homework grade over 75. Enter the program, RUN it a few
times, and see how efficiently the logical OR and logical AND
tests work in the same program line (40).

10 INPUT "FINAL GRADE"; F

2@ INPUT "MIDTERM GRADE"; M
3¢ INPUT "HOMEWORK GRADE"; H

490 IF F > 60 OR M > 70 AND H > 75 THEN 70

50 PRINT "FAILED"
60 END
70 PRINT "PASSED"

Does this give some idea of the power and convenience of
logical math? The actual grade numbers could, of course, be
set at any level.

Logical Variations

This next program example mixes equal signs, greater-than
and less-than in the same program. It determines and reports
whether the two numbers you input are both positive, both
negative, or have different signs.

Analyze the program. Note the parentheses. Although
they are not necessary, they tell us the shift our thinking to
“logical”. Type it in and RUN.

19 INPUT "FIRST NUMBER IS"; X
20 INPUT "SECOND NUMBER IS"; Y

30 IF (X>=@) AND (Y>=@) THEN 70
40 IF (X<@) AND (Y<@) THEN 90

50 PRINT "OPPOSITE SIGNS"

60 END

78 PRINT "BOTH POSITIVE OR ZERO"
86 END

9¢ PRINT "BOTH NEGATIVE"

Ghapter

4g

383

PART V0

With Graphics Too, Yet

Model II users skip to ‘And !
Yes, the logical symbols also work along with the graphics In Conclusion'. {

statements. See if you can figure out the surprise caused by
the logical AND in line 40. Type this program in, and RUN.

19 CLS

20 FOR X = § TO 127

30 FOR Y = 0 TO 47

40 IF (X>=64) AND (Y>=24) THEN 60
50 SET(X,Y)

60 NEXT Y

70 NEXT X

99 GOTO 99
What happens if we replace the AND in line 40 with an ;Jr?gre:ii?s?:;ff the
I(')eI:'l?ﬂt.After you think you have it figured out, do it and see the

Did you guess right???

There’s More

Oh, yes — the only limit is your imagination. See how easily
the logical notation makes the drawing of lines? Type and
RUN:

10 CLS

20 FOR X = @ TO 127

39 FOR Y = 0@ TO 47

40 IF (X=64) OR (Y=24) THEN 60

50 SET(X,Y)

60 NEXT Y

780 NEXT X

99 GOTO 99

What happens to the program if we replace OR with
AND? Sketch your estimated result, then change line 40 and
try it.

384

Chepter 48

N R e D e
Hope you got it right. If not, it really sneaked up on you,
didn’t it!

Using the INT function we can create an elaborate
checkerboard. The reasoning is:

In the horizontal dimension

The INT(X/16)*16 — X will equal 0 when X equals 0, 16, 32, 48,
64, 80, 96 and 112,

In the vertical dimension

The INT(Y/6)*6 — Y will equal 0 when Y equals 0, 6, 12, 18, 24,

30, 36 and 42. Oh, come on, it's very simple
if you take the time and

Replace the old line 40 with think it theought

46 IF ((INT(X/16)*16-X)=08) OR ((INT(Y/6)*6-Y)=0) THEN 60
and you will create an elaborate eight-by-eight checkerboard.

And on and on it goes ...

And In Conclusion

Logical math is worth the hassle. As one last fun program,
enter and RUN this “Midnight Inspection”. Line 100 checks
each response for a NO answer (instead of a YES). Using
logical OR, it branches to the “no-go” statement (line 120) if
any one of the tests is negative (“N”).

10 CLS

2¢ PRINT "ANSWER THESE QUESTIONS WITH 'Y' OR 'N'."
30 PRINT

49 INPUT "HAS THE CAT BEEN PUT OUT"; AS$

5¢ INPUT “"IS THE PORCH LIGHT TURNED OFF"; BS$

60 INPUT "ARE ALL THE DOORS AND WINDOWS LOCKED"; CS$
760 INPUT "IS THE TELEVISION TURNED OFF"; D$

385

PART VI

80 INPUT "DID YOU TURN THE THERMOSTAT DOWN"; ES

90 PRINT : PRINT

190 IF A$="N" OR B$="N" OR C$="N" OR D$="N" OR ES$="N" THEN 120
116 PRINT " GOODNIGHT": END

120 PRINT "SOMETHING HAS NOT BEEN DONE. DO NOT GO TO BED"

130 PRINT "UNTIL YOU FIND THE PROBLEM!"

140 GOTO 40

In most cases, AND and OR statements are interchangeable if
other parts of a program are rewritten to accommodate the
switch.

EXERCISE 45-2: Rewrite line 40 in the checkerboard
program to produce a black-on-white checkerboard instead of [@

white-on-black.

NOT
In addition to the logical AND and OR functions, we have what
is called logical NOT. Here is how it can be used:
1 CLS : PRINT
10 INPUT "ENTER A NUMBER"; N
20 L = NOT(N>5)
30 IF L = B GOTO 50
40 PRINT "N WAS NOT GREATER THAN 5" : PRINT : LIST
50 PRINT "N WAS GREATER THAN 5" : PRINT : LIST

and RUN.
Line 20 is obviously the key one, containing NOT. If the
statement in line 20 is true (namely, that N is NOT larger than

5) the Computer makes the value of L= —1. The test in line
30 then fails.

386

If, on the other hand, N is larger than 5, the statement is false
and the Computer makes the value of L =0.

True = —1 and False = 0. (Time for the primal scream,
again. All together, now ...)

Order of Operations

When trying to figure out which gets calculated first in the
thick of a “humongous” equation, here’s the pecking order:

Those operations buried deepest inside the parenthesis get
resolved first. The idea is to clear the parenthesis as
quickly as possible. When it all becomes a big tie, here’s
the order:

1. Exponentation — a number raised to a power.
2. Negation, that is, a number having its sign
changed. Typically, a number multiplied times —1.

3. Multiplication and division: from left to right.

4. Addition and subtraction: from left to right.

5. Less than, greater than, equals, less or equal to, greater
or equal to, not equal to: from left to right.

6. The logical NOT

7. The logical AND

8. The logical OR

Learned in Chapter 45

logical AND

logical OR
logical NOT

Order of
Operations

Ghapfer

48

387

388

CHAPTER 46

A Study of Obscurities

TRS-80 BASIC has some features that are not used by most
beginning programmers. Their use requires special
applications and knowledge which are really beyond the scope
of this book. In the interest of completeness, abbreviated
descriptions of what they are and how they are used are
included in this Chapter.

USR

The USR function has a variety of uses, most of them having
little to do with BASIC. It allows us to “call” or “gosub” a
program written in assembly language, and “return” back to
our BASIC program when it’s finished. To make much sense
of USR you'll need assembly language skills — not a part of
this book. Model I users will have a chance to see USR in
action in Appendix C dealing with the REAL TIME CLOCK.
We use it there almost like a simple toggle switch to turn the
clock on and off when we want.

In its simplified form we might think of
X=USR(1)
as meaning “turn it on”
and
X =USR(0)
as meaning “turn it off”

What it actually means of course is determined by the function

LTS

of the machine language program it’s “calling”.

Model II users may want to
skip this Chapter realizing
that your BASIC does not
support PEEK or POKE.

389

PART VI

HEX Most Significant Bytes|Least Significant Bytes

CODE Iv I II I
0 0 0 0 0
1 4096 256 16 1
2 8192 512 32 2
3 12288 768 48 3
4 16384 1024 64 4
5 20480 1280 80 5
6 24576 1536 96 6
7 28672 1792 112 7
8 32768 2048 128 8
9 36864 2304 144 9
A 40960 2560 160 10
B 45056 2816 176 11
C 49152 3072 192 12
D 53248 3328 208 13
E 57344 3584 224 14
F 61440 3840 240 15

390

Decimal Value

Hex-to-Decimal Conversion Chart

=IV 4+ I + II + 1

USR in use

Without getting out too deep in the water, memory addresses
16526 and 16527 are inspected by USR to find out where in
memory we have stored a machine language program.

If it starts at 32000 for example, we have to express 32000 in
Hexadecimal, then split that HEX number into its least and
most significant bytes, convert those bytes separately back to
decimal, and POKE that information into 16526 and
16527. (Are you really sure you want to go through with
this?)

Looking at the HEX-to-Decimal conversion chart, 32000 is
readily seen (by any Ace digital engineer) to equal 7530
HEX. We divide 7530 into 30 and 75, the least and most
significant bytes respectively. By converting them back to
decimal using the same chart, we get:

30 = LSB = 48 decimal
and
75 = MSB = 117 decimal

Ummm-yaas!

Now, we POKE that starting address into our BASIC program,
something like this:

10 POKE 16526 ,48 : POKE 16527 ,117

and we're set to call our non-existent machine language
program at 32000 from BASIC by simply saying:

X=USR(I)

That’s as far as we're going to press our luck on this one right
now. We don't want to leave so terror-stricken that we won't
continue.

Machine and Assembly language programming books are
readily available for that small percentage of readers who
want to pursue the subject. You at least have a sufficient
introduction to nod your head and smile knowingly when
others try to impress you with their knowledge of these things.
(And say Ummm ... Yaas).

Chapler

Disk users must use

a6

DEFUSR. See your

TRSDOS Manual.

391

PART V00

INP

The TRS-80 has 256 “ports” or channels of communication with .
CompuSoft Publishing has an

(13 L4 ”

the “outside world . They are numbered from 0 to excellent book titled

255. Because this subject is worthy of an entire book itself, Controlling The World With

we will only learn enough here to get an elementary “feel” for Your TRS-80 (by your

. favorite author) which takes

it. the beginner all the way
through advanced

Only one of these ports in the TRS-80 will be considered applications of the TRS-80
using digital information

here. Port number 255 controls the cassette recorder. All INPut and OUTput via these

other ports are available to take in information or send it out 256 ports.

via the bus connector at the back of the Computer. (Just look
now — no fiddling please.)

You're not going to “Control The World” with what you learn
about ports in this Chapter, but enter this program and you
may be surprised at what INP can do.

1¢ OUT 255,0 ' RESETS PORT TO ZERO

20 S = INP(255) : PRINT S,

3¢ IF S > 127 GOTO 50

40 PRINT "NO DATA COMING FROM CASSETTE" : GOTO 10
5@ PRINT, "DATA IS FLOWING FROM CASSETTE" : GOTO 10

Now, place a program tape in the recorder (BLACKJACK will
do nicely). Set the volume where you usually do. Remove
the REM motor control plug, and press PLAY. Type RUN.

Haha! Didn’t expect that, did you? Here's how it works:
Line 10 Disregard for right now

Line 20 Looks at port #255 and reads a coded message,
then prints that code.

Line 30 Tests that code number. If it is greater than 127,
execution branches to line 50. If not, it defaults to line
40. Execution returns to Line 10 where we begin the
“polling” of the port again.

Astute observers have probably noted that there is a definite
pattern to the numbers displayed. Why these particular
numbers appear is beyond the scope of this book. The point
is, DATA either IS or ISN'T flowing, and that is what INP
reads, and acts upon.

392

Ghapter

If you want to have a little fun, PLAY the tape again but adjust
the volume control very carefully (down around 2) so that
variations in data flow are sensed and appear as changes in the
message on the screen. Doesn’t take much imagination to go
from this point to different kinds of visual displays.
One more view of INP. Enter this NEW program, and RUN.
19 FOR N = @ TO 255
20 PRINT N; INP(N),

380 NEXT N
This program scans all 256 ports and gives us their status.

ouT

Let's see what OUT does. Remove the cassette from the
recorder, and leave the hatch open so we can see the drive
hub. Press the PLAY key, and type in this program:

1¢ INPUT "2 = ON & @ = OFF"; N 4 = ON for Model I
20 ouT 236,N OUT 255, N for Model I

39 GOTO 190

and RUN, responding to the INPUT? And
watching the drive hub.

We are sending directions OUT to port 236, the recorder port, 255 for Model 1
and telling the motor to be either ON or OFF.

That’s a sample of what OUT does. Nuff said.
Oh yes, the OUT in line 10 of the section on INP? Well, you

see there's this little rubber band inside the Computer that has
to be pulled to reset the ...

VARPTR

While VARPTR (short for VARiable PoinTER) is found in
TRS-80 BASIC, it's about as far from main-line BASIC as
anything we have.

48

393

PART V00

Take A Deep Breath

If a variable is numeric, VARPTR tells us the location of the
first byte of the number stored in that variable.

Ifit’s a string variable, VARPTR tells us where in memory the
INDEX to a given variable is located. Read that last line
carefully. We don’t want anyone getting lost. VARPTR
doesn’t have the common decency to point to the contents of a
string variable in memory. Instead, it points to a three byte
“index” to the variable. The three bytes contain:

1 — The length of the string.

2 — The least significant byte of the starting location of the
string.

3 — The most significant byte of the starting location of the

string.

To actually find the contents of the string variable, we have to
calculate the location using bytes 2 and 3 of the index to that
variable. Sound complicated? Well, it is a bit tricky, but an
example should clarify matters quite nicely.

Enter this NEW program:

18 REM * STRING VARIABLE LOCATER *
20 CLS
30 AS = "123456"

40 X = VARPTR(AS)
45 PRINT "INDEX TO AS$ IS AT"; X

and RUN

Line 40 uses VARPTR to store the location of the index to A$
in X. Then line 45 prints it.

We haven't found the contents of A$ yet, just the
index. Hang in there. Add:

50 L = PEEK(X+l) + 256 * PEEK(X+2)
55 PRINT "AS$ IS HIDING AT LOCATION"; L

and RUN

394

So that's where the little rascal is. Line 50 uses some fancy
footwork to convert bytes two and three of the index into the
actual location of A$, Line 55, of course, prints it's value.

How could we prove that we have found the correct
location? Sure. PEEK at the contents of A$ and compare it
with “123456”. Add:

60 FOR I = L TO L + 5
70 PRINT CHRS$(PEEK(I)):
8¢ NEXT I : PRINT

and RUN

Satisfied?

Now, knowing where a variable is located in memory may not
seem too useful at first blush, but it has some surprising
consequences. Once we have found the location of a string
variable, we can modify its contents. Try this one on for size:

70 READ N : POKE I,N
80 NEXT I : PRINT AS$: PRINT

9¢ DATA 136,181,182,191,185 176
and RUN

Surprise! We have just poked graphic codes into an
unsuspecting “normal” string variable and transformed it into
a pictorial masterpiece (You recognize the snail from an earlier
chapter, don't you?).

Type:

PRINT A$
to be sure you weren't just dreaming. Yes it really
happened. We have actually modified the contents of
A$. These computers can be down right fun once you get to
know them.
Now type:

LIST
Did we do that to line 30? I'm afraid so. A messy listing

doesn't affect the program, and it's a small price to pay for this
capability.

Chapter

48

395

PART V0

Let us leave you with this thought. We packed a “dummy”
string with only six graphic codes. A string variable can hold
up to 255 characters (nearly one fourth of the video
display). Just imagine what we can do with a single string
packed with up to 255 cursor control codes, space compression
codes, graphic codes, and special character sets! If that
doesn’t push your cardiovascular system to overload, you
might as well trade the 80 in for a calculator.

For More Information

See TRS-80 Graphics for the Model I and Model III, by
D. A.Kater and S.J. Thomas for a full account of this string
packing technique.

EXERCISE 46-1: Modify the current program using cursor
motion codes (24—27) and a 13 character dummy string to
store the following two line figures in A$:

Learned in Chapter 46

ouT USR
INP
VARPTR

396

Part VIII

Program Control

397

398

CHAPTER 47

Flowcharting

Most of the programs we wrote so far were simple; but, they
met fairly simple needs. Suppose you want to write a
program to play chess or bridge, evaluate complicated
investment alternatives, keep records for a bowling league or
a small business, or do stress calculations for a new
building? How would you go about writing a complex
program like that?

Answer: Yoy break down the big program into a series of
smaller programs. This is called Modular Programming and
the individual programs are called Modules. But how are the
modules related — and how do you write them anyway?

One way to plan a program is to make a picture displaying its
logic. Remember, a picture is worth a thousand words (or is it
the other way around?). The picture that programmers use is
called a flowchart. Flowcharts are so widely used that
programmers have devised standard symbols. There are
many specialized symbols in use, but we will examine only the
most common ones.

BEGIN or END

PROCESSING BLOCK
(encloses something the
computer does without making
any decisions)

DECISION DIAMOND (it
branches off in different
directions, depending on the
decision it makes.)

Module is just a 75-cent

word for “section” or
“building block”

399

PART V000

Each decision point asks a question such as “IS A LARGER
THAN B?” or “HAVE ALL THE CARDS BEEN
DEALT?” The different branches are marked by YES or NO.

Another useful symbol is:

CONTINUATION

The circle usually has a number inside it which corresponds to
a number on another page if the flowchart is too large for a
single sheet.

A 4

CONNECTOR ARROWS

Flowcharts are most helpful in designing programs when they
are kept simple. A cluttered flowchart is hard to read and
usually isn’t much more helpful than an ordinary written
program list. A good flowchart is also helpful for
“documentation” to give you (or others) a picture of how the
program works — for later on, when you've forgotten.

There are no hard-and-fast rules about what goes into a
flowchart and what doesn’t. A flowchart is supposed to help
you ...not be more work than it’s worth. It helps you plan
the logic of your program. When it stops helping and makes
you feel like you're back in arts and crafts designing mosaics,
then you've gone as far as the flowchart will take you (or more
typically, you've passed its point of usefulness).

Let’s look at some examples. Suppose we want to grade a
5-question test by comparing each of the students’ answers
with the correct answer. We will put the correct answers in a
DATA statement in the program, enter a students’ answers

400

Arrows indicate the
direction in which program
execution proceeds.

Chapter 47

through the keyboard, compare (grade) them, then print the %
of correct answers. This procedure will be repeated until all
the students papers are graded.

The flowchart might look like this:

START

GET READY TO
GRADE PAPERS
LINES 20 TO 60

v

LOOP 5 TIMES
BECAUSE THERE ARE
5 ANSWERS
LINE 70

v

ENTER
P» STUDENT'S ANSWER
LINES 80 & 90

v

FIND CORRECT
ANSWER
LINE 100

ADD 1 TO
NUMBER CORRECT
PRINT “CORRECT"

LINE 120

STUDENT'S
ANSWER CORRECT

120

HAVE WE
LOOPED & TIMES
LINE

NO

This flowchart has three decision diamonds. In the first, the
Computer determines if an answer is correct. In the second,
the Computer determines if all the questions in a single
student’s paper have been graded. The third one terminates
execution when all the tests have been graded.

401

PART VN0

EXERCISE 47-1: Using the flowchart as a guide, write a
program that grades a test having five questions.

For more complicated problems, you may want to subdivide
the flowchart into larger modules. A master flowchart will
then show the relationship between the flowcharts of
individual programs.

For example, let’s say you want to write a program that
calculates the return on various investments. The options
might be:

1 — CERTIFICATE OF DEPOSIT

2 — BANK SAVINGS ACCOUNT

3 — CREDIT UNION

4 — MORTGAGE LOAN
The main (or Control) program will select one of these 4

options using an input question, execute the correct
subprogram, and print the answer. Its flowchart might be:

402

Chapter 47

=D

-

P ENTER OPTION

CALCULATE
— CERTIFICATE
OF DEPOSIT

OPTION 1

CALCULATE
— FOR BANK P>
SAVINGS ACCOUNT

CALCULATE

OPTION 3 FOR CREDIT P
UNION
CALCULATE
b OPTION 4 FOR MORTGAGE -
LOAN
¥
PRINT
RETURN
ON
INVESTMENT

v

END

We could now flowchart each of the individual programs in the
blocks separately. The Certificate Of Deposit program
would, for example, have to contain the rate of return, size of
deposit, and number of years in which the certificate
matures. The order in which that program inputs data and
performs the calculations would be specified in its own
flowchart.

EXERCISE 47-2: Write the master program as flowcharted,
with a branch to a program to calculate the return on a Bank
Savings account paying simple interest.

403

PART V000

EXERCISE 47-3: Choose a program from an early Chapter
and design your own flowchart.

Learned in Chapter 47

Flowcharting

404

NOTES

405

It
...THERE NoW, MR. AMBLER! THAT SHouLD
TAKE CARE OF ALL THOSE BU6S YOUR WIFE
SAYS YOURE ALWAYS COMPLAIN[NG ABouT!”

406

CHAPTER 48

Debugging Programs

Quick — the RAID!

By, now the Computer has given us plenty of nasty
messages. We know something’s wrong, but it isn’t always
obvious exactly where, or why.

How do we find it? The answer is simple — Be Very
Systematic. Even experienced programmers make lots of
silly mistakes ...but the experience teaches how to locate
mistakes quickly.

Hardware, Cockpit or Software?

The first step in the “debugging” process is to isolate the
problem as being either

1) A hardware problem,

2) An operator problem, or

3) A software problem.

Is it Farther to Ft. Worth or By Bus?

Starting with the least likely possibility — is the Computer
itself working properly? Chances are (and our fondest desire
is) that the Computer is working perfectly. There are several
very fast ways to find out.

A. Type
PRINT MEM

If there is no program loaded into memory, the
answer should be

15314

If there is a program loaded, the answer should be
some value LESS than 15314.

Or the correct value for your

system.

407

PART VIl

If the answer is MORE than 15314 (assuming of
course you have not added more memory), there
may be trouble. Or, it’s possible that the answer is
a NEGATIVE number ... same solution.

Possible Solution

In either of the above cases, shut the Computer off
completely. (Or, as they say in the big time, “Take it all the
way down.”) Let it sit for a full minute before turning it on
again.

Turn the machine back on, type NEW and try the PRINT
MEM test again. If the results are the same, there is
probably a chip failure that will require servicing.

B. One Last Try

Before full panic sets in, however, type NEW and
enter this program. It assigns every free memory
location in RAM a specific value, then reads that
value back out onto the screen.

Type (very carefully):
5 DIM A(3765)

16 FOR X =1 TO 3765 : A(X) = X : NEXT X
20 FOR Y = 1 TO 3765 : PRINT A(Y):;

30 IF A(Y) - A(Y-1) <> 1 PRINT "BAD"

40 NEXT Y

Then, RUN

After a short wait for the array to “spin-up”, the
monitor should display

12345678 (ete., through 3765)

If the word “BAD” appears on the screen, you may
have found the problem.

You will probably want to enter this test program
into your computer, try it out before you need it,
then save it on tape and hope that you won't
...(need it, that is).

408

Yes, you will lose any
program in memory, but at
this point it's probably shot
anyway. You could try to
save it before turning off the
machine if it makes you feel
any better.

USE:
8344 for Model IT

3835 for 16K Model I

...or the appropriate
number.

Chapter 48

Video Display Problems?

The Video Display is very similar to a television set. It has
adjustments for brightness, contrast, horizontal and vertical
syne, ete. If these fail to give the desired display, the problem
could be in the Computer.

Horizontal and vertical centering and “jitter” can be controlled
by simple internal computer adjustments, but you have to
know where to adjust. Don’t mess with it, or you could end up
goofing up the voltage regulators instead, and wiping out the
entire lineup of integrated circuits. Very expensive fiddling
around!

Idiot here — What’s your excuse?
Of course you don’t make silly mistakes!

Now that'’s settled,

1. Is everything plugged in? Correctly? Firmly?

2. Are the recorder batteries fresh (if you're using

batteries)?

3. Have you avoided the recorder ground loop problems by
using aux and earphone separately? (CTR-41 recorder
only)

. Is the recorder volume level properly set?
. Is the recorder tone switch on “high”?
. Are you using “legal” commands?

(=232 I

if so

Go walk the dog, then check it all over again.

If ... Then

If the trouble was not found in the cockpit or with the
hardware, there is probably something wrong with your
program. Dump out the troublesome program. Load in one
that is known to work and run it as a final hardware and
operator check.

BESIDES ... AS THE
WARRANTY POINTS OUT
...OPENING THE CASE
VOIDS YOUR WARRANTY.

With the CRT-41 recorders
it's a good idea to plug in
either Aux or Earphone —
but not both. Connecting
both can produce “ground
loop” problems — resulting
in unwanted hum.

409

PART V000

Common Errors

Let's look at some of the common sources of “computer-
detected errors”.

1.

410

Assume the error is in a PRINT, or INPUT statement.
Did you:
a. Forget one of the needed pair of quotation marks?

Example:
190 PRINT "ANSWER IS, X: GOTO 5

ERROR: No ending quotation mark after IS Yes, we know it's ok if the
. Use an illegal variable name? missing quote is the last
Example' character in the line.

19 INPUT 6G

ERROR: Variable names must be recognizable by the
computer.

. Forget a semicolon or comma separating variables or

text, or bury the semicolon or comma inside quotation
marks?
Example:

18 PRINT "THE VALUE IS "V X

ERROR: A semicolon is missing between V and X (so
the variables are not properly separated).

. Forget the line number, accidentally mix a letter in

with the number, or use a line number larger than
65529?
Example:

72B3 PRINT "BAD LINE NUMBER."

ERROR

. Accidentally have a double quotation mark in your

text?
Example:

10 PRINT "HE SAID "HELLO THERE.""

. Type a line more than 255 characters long?
. Misspell PRINT or INPUT (it happens!)?
. Accidentally type a stray character in the line,

especially an extra comma or semicolon?

Chepter

2. 1If the error is in a READ statement, almost all the
previous possibilities apply, plus:

a. Is there really a DATA statement for the computer to
read? Remember, it will only read a piece of DATA
once unless it is RESTOREJ.

Example:

19 READ X,Y,Z

20 DATA 2,5

ERROR: There are only two numbers for the
Computer to read. If you mean for Z to be zero, you
must say so.

20 DATA 2,5,0

3. Ifthe bad areais a FOR-NEXT loop, most of the previous
possibilities also apply, plus:
a. Do you have a NEXT statement to match the FOR?
Example:

190 FOR A =1 TO N

ERROR: Where's the NEXT A?

b. Do you have all the requirements for a loop — a
starting point, an ending point, a variable name, and a
STEP size if it’s not 1?

Example:

19 A=1TON

ERROR: Must have a FOR and a NEXT.

c¢. Did you accidentally nest 2 loops using the same
variable in both loops?
Example:

10 FOR X =1 TO 5
20 FOR X =1 TO 3
30 PRINT X

40 NEXT X

50 NEXT X
ERROR: The nested loops must have different
variables.

d. Does a variable in a loop have the same letter as the
loop counter?
Example:

Some of these FOR-NEXT
loop errors won't cause
actual error messages;
instead your program may
wind up in endless loops,
requiring the use of the
BREAK key.

4y

411

PART V00

412

10 A = 22
20 FORR =1 TO 5
30 R = 18

40 Y =R * A
50 PRINT Y

68 NEXT R

ERROR: The value of R was changed by another R
inside the loop, the NEXT R was overrun, since 18 is
larger than 5.

e. Did you nest loops incorrectly with one not completely
inside the other?
Example:

10 FOR X =1 TO 6
20 FOR Y =1 TO 8
30 SET(X,Y)

40 NEXT X

50 NEXT Y

If the goofed-up statement is an IF-THEN or GOTO

a. Does the line number specified by the THEN or GOTO
really exist? Be especially careful of this error when
you eliminate a line in the process of “improving” or
“cleaning up” a program.

The error comes back as ?0M (out of memory) but the
PRINT MEM indicates there is room left in memory. If
you get an ?0M and are using an array, extra room(up to
hundreds of bytes) has to be left for processing. You have
probably overrun the amount of available memory.

The Error comes back as ?BS (Subscript out of range).

a. Did you exceed the limits of one of the built-in
functions?

b. Did one of the values on the line exceed the maximum
or minimum size for Level II numbers?

c. Did you tell the Computer to divide by zero? (The
Computer isn’t about to let you get away with that
one!)

To find out whether you did any of these things, PRINT
the values for all the variables used in the offending
line. If you still don’t see the error, try carrying out the
operations indicated on the line. For example, the error

PRINT in calculator mode
(no line number).

Chapfer

may occur during a multiplication of two very large
numbers.

These certainly aren’t all the possible errors one can make, but
at least they give you some idea where to look first. Since we
can’t completely avoid silly errors, it’s necessary to be able to
recover from them as quickly as possible.

By the way ... a one-semester course in beginning typing can
do wonders for your programming speed and typing accuracy.

From the Ridiculous to the Sublime:

All the Computer can tell us is that we have (or have not)
followed all of its rules. Assuming we have followed all the
rules, the Computer will not ask questions — even if we're
asking it to do something that’s quite silly and isn’t at all what
we intended. It will dutifully put out garbage all day long if
we feed it garbage — even though we follow its
rules. Remember GIGO? If the program has no obvious
errors, what might be the matter?

Typical “unreported” errors are:

1. Accidentally reinitializing a variable — particularly easy
when using loops.
Example:

10 FOR N =1 TO 3
20 READ A

30 PRINT A

40 RESTORE

50 NEXT N

60 DATA 1,2,3

2. Reversing conditions, i.e. using “ =" when you mean ‘<=,
or “greater than” when you mean *“less than”.

3. Accidentally including “equals”, as in “less than or
equals”, when you really mean only “less than”.

4. Confusing similarly named variables, particularly the
variable A, the string A$, and the array A(X). They are
not at all related.

5. Forgetting the order of program execution — from left to
right on each line, but multiplications and divisions
always having priority before additions and

48

GIGO stands for GARBAGE

IN, GARBAGE OUT

413

PART V01

subtractions. And intrinsic functions (INT, RND, ABS,
etc.) having priority over everything else.

6 . Counting incorrectly in loops. FORI=90 TO 7 causes the
loop to be executed eight, not seven, times.

7. Using the same variable accidentally in two different
places. This is okay if you don’t need the old variable
any more, but disastrous if you do. Be especially careful
when combining programs or using the special
subroutines.

But how do you spot these errors if the Computer doesn’t point
them out? Use common sense and let the TRS-80 help
you. The rules to follow are:

1. Isolate the error. Insert temporary “flags.” Add
STOP, END, and extra PRINT statements until you can
track the error down to one or two lines.

2. Make your “tests” as simple as possible. Don't add
complications until you've found the error.

3. Check simple cases by hand to test your logic, but let the
Computer do the hard work. Don’t try to wade through
complex calculations with pencil and paper. You'll
introduce more new mistakes than you’'ll find. Use the
calculator mode, or a separate hand calculator to do that
work.

4. Remember that you can force the Computer to start
running a program at any line number you choose. Just
type RUN # # # (where # # # represents the desired line
number). This is a useful tool for working your way
back through a program. You give the variables
acceptable values using calculator-mode statements, and
then RUN the program starting from some point midway
through the program flow. If the answers are what you
expect, then the error is before the “test point” you've
created. Otherwise, the error is after the test point.

5. Remember also that it’s not necessary to list the entire
program just to get a look at one section of it. Just type
LIST ### - # # # (where # # # tells the Computer on which
lines you'd like to start and end the LIST).

6. Practice “defensive programming”. Just because a
program ‘‘works okay’, don’t assume it’s
dependable. Programs that accept input data and
process it can be especially deceptive. Make a point of
checking a new program at all the ecritical
places. Examples: A square root program should be
checked for inputs less than or equal to zero. Math
functions you have programmed should be checked at
points where the function is undefined, such as TAN(90°).

414

Examples of useful flags:
299 PRINT Line 299"

399 IF X © THEN PRINT "X OUT
OF RANGE AT £399'": STOP

Line 299 wiH help you check
whether the line immediately
following line 299 is
executed. This helps you
follow program flow.

Line 399 might be used to
locate the point where X goes
out of range.

Although the details would be
different for your program,
these techniques can be
applied easily.

Chapter

Beware of Creeping Elegance

Programs can grow to become more and more elegant with the
ego reinforcement of the programmer as success follows
success. With this “creeping elegance” comes increased
chance of silly errors. It’s fun to let your mind wander and
add on some more program here, and some more there, but it’s
easy to lose sight of the purpose of the program. It is at times
like this when the flow chart is ignored and the trouble
begins. Nuff said.

We'll leave you some space to make notes on your own
debugging and troubleshooting ideas ...

Learned in Chapter 48

Defensive
Programming

Computer-
detected errors

Flags
Hardware

checkout
procedures

Share them with us too

48

... especially if you come up

with some really neat ones.

415

416

CHAPTER 49

Chasing Bugs

We have seen that the EDITOR is a powerful aid in changing
programs once we find out what is wrong. In this and the
next Chapter we will learn how to use the built-in diagnostic
tools to help hunt down the actual errors.

TRON/TROFF

The simplicity but power of TRON/TROFF is awesome.
Enter this program:

19 FOR N =1 TO 5

20 PRINT "SEE TRON RUN"
30 NEXT N

99 END

and RUN, to be sure it’s OK.

Now, type TRON (which stands for TRacer ON), then RUN.
The screen should say:

{ 1101 {20] on Model IL|

<10><20>SEE TRON RUN
<30><20>SEE TRON RUN
<30><20>SEE TRON RUN
<30><20>SEE TRON RUN
<3@><20>SEE TRON RUN
<38><99>

What does it mean?

417

PART V00

The numbers between the < > are the program line
numbers. TRON traces the sequence of program execution

and prints each line number as it is “hit”. How’s that for

powerful?

Now type TROFF (for TRacer OFF) and RUN.
The Tracing has stopped and

SEE TRON RUN

SEE TRON RUN

SEE TRON RUN

SEE TRON RUN

SEE TRON RUN

appears in the usual way. It's the very essence of
simplicity.

Since TRON and TROFF can be used as program statements as well
as commands, the possibilities of troubleshooting program
logic are endless. Our little demonstration program is short
and error-free, but by adding the following lines and RUNning,
you will see another way tracing is used.

5 TRON
35 TROFF

Imagine its value in a program with dozens or hundreds of
program lines all tangled up with IF-THEN’s, ON-GOTO’s, etc.
The errors that will drive you wild are those you can’t
see. Although all characters appear to be upper-case on the
screen, it ain’t necessarily so. If you press the key
when typing a letter, the Computer will store it as a lower-case
letter (just the opposite of a regular typewriter). The
Computer has been trained to respond to both upper and lower
case letters in many cases, as in the word PRINT.

Type NEW.

Enter a 10(line 1) and then hold a [[[ffl key down and type

the rest of this line:

16 PRINT "HELLO THERE LOWER CASE"

418

and continue to hold down while typing
RUN.

Worked just fine, didn’t it. We don’t use those lower case
letters for anything else anyway.

Model I users have a special problem with the @ key. Enter
this program, but hold down the key as you type the @.

1 CLs
10 PRINT@550,"MISTAKE HERE"

and RUN.

Aha! The Model I screen shows a plain old @ but the
Computer doesn’t recognize it, sends us an error message and
throws us to the EDITOR.

An L displays a fine looking program line. Do a
S@ (without the key)

and watch it SEARCH right over the @. Try again but hold
down [I[A#. It snags it, and a simple

C@ (without)

changes it to what we need. The above is a very common
error since we use [l @ so often to freeze listings and runs.

The EDITOR is a great tool to spot such errors, especially in
very long lines where retyping would be tedious or
hazardous. Simply step through the entire line SEARCHing
for each character in turn. If you hit a lower-case character,
the SEARCH will pass right over it, and you've found the
bug. Tryit! It really works.

Another nasty little invisible bug can be caused by hitting the
down arrow ({) key by accident when typing in a program line
or when the EDITOR is in INSERT mode.

The result of either can be that parts of the program are
scattered all over the screen. If severe enough, even a
LISTing won't divulge the exact problem. Often the best
solution is to just retype the offending line.

Chapter 49

Model II users will not
experience this problem
since @ is shift “2” on the
keyboard.

Works fine with some disk

(Basic 1)

CRTL-J is the linefeed on
Model II.

419

PART V00

Clear the memory with NEW, then type

18 PRINT "DOWN ARROWY ¥ ¥ ¥ ¥ ¥DILEMMA" Model II use CTRL-J

and experiment with the down arrow in both AUTO
and EDITOR modes and with and without the
key

As a little aside, the down arrow can be used to frustrate and
slow down “program-peekers” who insist on LISTing your
favorite program to find the secret formula.
Type in this program:
10 REM * SECRET EQUATION HIDER *
20 REM * THE NEXT LINE HAS THE EQUATION *
30 X = 1234567890/987654321 + 1234567898 - 9876543210
(insert 16 down arrows before pressing [IEH)
40 PRINT "THE ANSWER IS";
50 PRINT "MISSED THE SECRET FORMULA, DIDN'T YOU!"
99 END
and RUN
Then LIST. The LISTing at line 30 should whiz by so fast you
can't read it. The only way to really freeze and analyze it is to
first discover the line number which has the hidden arrows,
then go into EDITOR there and step through each character
one at a time. It’s not at all foolproof, but slows the interloper

down. Makes it even harder if you give the “secret” line an
unusual line number that’s harder to guess.

Learned in Chapter 49

TRON

TROFF

420

NOTES

421

422

"BOV WAS THAT DATE EVER A TM!/

SHE SAD | oN SEEING HER BECALSE
| MADE A ue!’

.,A//
Rm, T\M's FUNNY!
—i= € T e

CHAPTER 50

Chasing The Errors

TRS-80 BASIC contains 23 different error messages to assist

us in troubleshooting programming or operating problems.
We'll list them for your reference. There are so many we
need a separate chapter plus an Appendix just to understand
what they mean.

Let’s quietly tiptoe into the hall of errors by typing this little
test program:

1 CLs
16 REM * TESTING ERROR CODES *

66 on the Model II.

Note that #24-49 and 66 are

undefined.) Refer to
Appendix H.

20 INPUT "WHAT ERROR CODE NUMBER SHALL WE CHECK"; N

30 ERROR N

RUN the program a number of times, (entering numbers
between 1 and 23), forcing the Computer to print out the
abbreviation code for various types of errors. Don’t waste
time trying to understand them now. You will find a com-
plete list of them in Appendix H.

The only new word above is in line 3). ERROR has little real
use in life except as above, printing the Error Code from its
number. .

1 and 66 on Model II I

423

PART V00

TRS-80 Codes — Models I and III

1 NF NEXT without FOR
2 SN Syntax error
3 RG Return without GOSUB
4 oD Out of data
5 FC Illegal function call
6 ov Overflow
7 OM Out of memory
8 UL Undefined line
9 BS Subscript out of range
10 DD Redimensioned array
11 0 Division by zero
12 ID Illegal direct
13 ™ Type mismatch
14 0s Out of string space
15 LS String too long
16 ST String formula too complex
17 CN Can’t continue
18 NR NO RESUME
19 RW RESUME without error
20 UE Unprintable error
21 MO Missing operand
22 FD Bad file data
23 L3 Disk BASIC only

424

Chapter B0

Error Trapping

The ON ERROR GOTO statement is of more value, and you
should use it when you think you're on the trail of a specific
type of error, but are not sure.

Suppose you suspect that someplace in the program there is an
accidental division by zero, and it’s goofing up the
results. Type in this test program:

19 ON ERROR GOTO 70

20 PRINT

3¢ INPUT "WHAT NUMBER SHALL WE DIVIDE 1060 BY"; N
40 A = 100 / N

5¢ PRINT "100 DIVIDED BY®; N ;"="; A

60 GOTO 10

70 PRINT "DIVISION BY ZERO IS ILLEGAL - MAYBE EVEN IMPOSSIBLE!"
99 END and RUN. Try positive and negative values, then try .

The ON ERROR GOTO is acting much as our old friend ON X
GOTO did, so there are no big surprises here.

Change line 10to a REM line and try assorted values, ending
with 0. Again, no big surprise. An error message was
delivered pinpointing both the nature and location of the error,
and execution was terminated with a READY.

Change line 10 back to
10 ON ERROR GOTO 70

and also add
80 RESUME 240

and RUN with various values, including 0.

Notice that even tho the Computer was forced to operate with
an error (division by zero), execution did not terminate. The
error message was delivered and the Computer kept on going,
thanks to RESUME. This is the essence of error trapping —
identifying the error without “crashing” the program. There
may be several interrelated errors that can be found easily
only by continuing the RUN.

425

PART VOOl

Change line 80 to
86 RESUME NEXT
and RUN.

Tho the results are similar to those with RESUME 2, there is
a subtle difference. RESUME NEXT causes execution to
resume at the NEXT line immediately following the line which
made the error. Thus line 50 gets printed, even tho (in this
case) it gives a wrong answer. RESUME 20 directed
execution to a very specific line. With a little head-scratching
you can quickly see how both of these features can be used in
difficult debugging situations.

Next, change line 80 to simply
80 RESUME
and RUN.
As you see, RESUME by itself (or RESUME §) sends execution
back to the line in which the error is being made. (If you are
having difficulty visualizing what is taking place in any of

these examples, just turn on TRON and it becomes as easy as
following a road map.)

More variations on the theme

Change line 80 back to
80 RESUME 20

and add line 75
75 PRINT "ERROR IS IN LINE #"; ERL

and RUN

ERL is a “reserved” word that prints the line number in which
the error occurs. For my money, this little jewel in
combination with ON ERROR GOTO to snag ’'em, and
RESUME NEXT (or RESUME lne number) to keep the
program from crashing, makes this whole hassle worthwhile.

426

Chapfer B0

A final esoteric touch may be obtained by adding the ERR (not
ERL) statement. ERR produces a number which when
divided by 2 and increased by 1 (oh, swell) brings us back to the
error code number. We’'ve gone almost full cycle. Add line
77

77 PRINT "AND ERROR CODE IS"; ERR / 2 + 1

and RUN.

Finally, to complete this loop begun several pages ago, add

Model II uses ERR, not,
ERR/2 + 1.

‘ ERR on Model II

78 PRINT "WHICH STANDS FOR" : ERROR ERR / 2 + 1

and RUN.

Which brings us back to DO, a deer, a female deer ... (it must
be time to stop — getting too silly!)

We should note in passing that when using ERR, strange
moonbeams sometimes affect the Computer. The interpreter
temporarily takes on slightly different characteristics at the
command level. We deliberately won't elaborate on them
here as they don’t seem harmful and will probably be ironed
out in future versions of the interpreter. Just tho’t it should
be mentioned tho, lest you suspect the saucers have been
flying again.

A very useful application of the error traps we've learned
allows the program to automatically LIST the program if there
is an error. It requires the addition of 2 temporary program
lines using all 3 ERROR statements.

From Appendix C I (which covers the Error messages)

Here is an example of what happens when there is an error ina
FOR-NEXT loop. Type in:

19 FOR A =1 TO 5
2@ PRINT "THERE IS NO 'NEXT A'"
30 NEXT Z

and RUN.
In this simple program the Computer responds with

&NF ERROR IN 30

ERR on Model II

427

PART V000

There is a FOR-NEXT error in LINE 3. By adding the
following lines we can approximate the same result, plus cause
an automatic program LISTing:

5 ON ERROR GOTO 100

to ‘set’ the error trap

99 END
to END execution if all is well
108 PRINT ERL, ERR / 2 + 1 : LIST ERL, ERR : LIST

on Model II

to print the line # with the error, the error code

(which can be found in Appendix H) and LIST the
program (or LIST # # - # #).

Try this routine. If all is well in the program, nothing will
seem different. If there is an error, it will be trapped as you
can see on the screen.

EXERCISE 50-1: Enter the following program:

28 CLS

30 FOR I=1 TO 10

40 X = RND(21)-1 : F = X-10/X

50 PRINT I, "X=" X, "F(X)="F;

60 IF F<0 THEN PUNT ELSE PRINT

790 NEXT I

80 INPUT "PRESS ENTER TO CONTINUE";Z : GOTO 20

428

Write an error trapping routine that recovers from both errors
and prints ATTEMPTED DIVISION BY ZERO IN LINE # # or

SYNTAX ERROR IN LINE ## as appropriate. HINT -
Syntax error is code 2, and Division by zero is code 11.

Learned in Chapter 50

ERROR ERL Error Codes
ON ERROR ERR

GOTO

RESUME

Chapfer

510

429

430

SECTION B:

Sample Answers For
Exercises

SAMPLE ANSWER FOR EXERCISE 3-1:

EDIT 16 ENTER

SPACE Move one space to right
C CHANGE next character

R new character

28T SEARCH for 2nd T

7D DELETE next 7 characters
SF Search for next F

4D Delete next 4 characters
SN Search for next N

4C CHANGE next 4 characters
MPUT the new characters

SE SEARCH for next E

2C CHANGE next 2 characters
AM the new characters

LL to LIST the edited program for inspection
ENTER to leave the EDITOR mode

R R R]

SAMPLE ANSWER FOR EXERCISE 5-1:
50 PRINT D

SAMPLE RUN FOR EXERCISE 5-1:
6000

431

SECTION

Note: You may have used a different line number in your
answer but the way to get the answer printed on the sereen is
by using the PRINT statement. If you didn’t get it right the
first time don’t be discouraged. Type in line 50 above and
RUN the program. Then return to Chapter 5 and continue.

Lo e s e e

SAMPLE ANSWER FOR EXERCISE 5-2:

10 REM * TIME SOLUTION KNOWING DISTANCE AND RATE *
20 D 6000

30 R = 500

46 T =D / R

50 PRINT "THE TIME REQUIRED IS"; T ;"HOURS,"

NOTE: Remember to each line.
SAMPLE RUN FOR 5-2:
THE TIME REQUIRED IS 12 HOURS,

Note: In order to arrive at the formula in line 40 it is
necessary to transpose D = R * T and express in terms of T.

e R R P

SAMPLE ANSWER FOR EXERCISE 5-3:
10 REM * CIRCUMFERENCE SOLUTION *

20 P = 3.14
30 D = 35
40 C = P * D

580 PRINT "THE CIRCLE'S CIRCUMFERENCE IsS"; C ;"FEET."
SAMPLE RUN FOR 5-3:
THE CIRCLE'S CIRCUMFERENCE IS 109.9 FEET.

Note: Since 7ris not included in TRS-80 BASIC, we have to set
a variable (in this case P was used) equal to the value of pi
(3.14)

432

SECTION

SAMPLE ANSWER FOR EXERCICE 5-4:
19 REM * CIRCULAR AREA SOLUTION *

20 P = 3.14
38 R =5
46 A = P * R * R

5¢ PRINT "THE CIRCLE'S AREA IS"; A ;"SQUARE INCHES."

SAMPLE RUN FOR 5-4:
THE CIRCLE'S AREA IS 78.5 SQUARE INCHES.

Note: Some BASICs do not have a function which means
“raise to the power” to handle R%.. (TRS-80 BASIC does.) In
easy cases like this one, we can simply use R times R
(R*R). You'll learn how to wuse the simple
EXPONENTIATION function as we proceed.

SAMPLE ANSWER FOR EXERCICE 5-5:

A bare-minimum effort might look like this: (C = checks,D =
deposits, B = old balance, N = new balance.)

16 B = 255

20 C = 17 + 35 + 255
30 D = 40 + 200

49 N =B - C + D

5¢ PRINT "YOUR NEW BALANCE IS §$"; N
SAMPLE RUN FOR EXERCISE 5-5:

YOUR NEW BALANCE IS $ 188

SAMPLE ANSWER FOR EXERCISE 6-1:
10 REM * CAR MILES SOLUTION PROGRAM *
20 N = 1000000
30 D = 10000
40 T = N * D
5¢ PRINT "THE TOTAL NUMBER OF MILES DRIVEN IS "; T
433

SECTION

SAMPLE RUN FOR 6-1:

THE TOTAL NUMBER OF MILES DRIVEN IS 1E+10

Note: As discussed earlier, this answer is the number 1
followed by ten zeroes. 10,000,000,000. Ten Billion. The
Computer will not print any numbers over 999,999 without
converting them to exponential notation.

SAMPLE ANSWER FOR EXERCISE 6-2:

20 N 1E+6
30 D 1E+4

SAMPLE RUN FOR 6-2:
THE TOTAL NUMBER OF MILES DRIVEN IS 1E+10
Note: The answer came out exactly the same as before,

meaning we not only receive answers in SSN, but can also use
it in our programs.

SAMPLE ANSWER FOR EXERCISE 7-1:

%2 REM ;’S‘SFAHRENHIET TO CELSIUS CONVERSION *

g F =

36 C = (F - 32) * (5 / 9)

40 PRINT F; "DEGREES FAHRENHEIT ="; C ;"DEGREES CELSIUS.®

SAMPLE RUN FOR 7-1:

65 DEGREES FAHRENHEIT = 18.3333 DEGREES CELSIUS.
Observe carefully how the parentheses were placed. As a
general rule, when in doubt - use parentheses. The worst

they can do is slow down calculating the answer by a few
millionths of a second.

434

SEGTION

SAMPLE ANSWER FOR EXERCISE 7-2:

38 C=F ~-32* (5/9)
SAMPLE RUN FOR 7-2:

65 DEGREES FAHRENHEIT = 47.2222 DEGREES CELSIUS.
Note how silently and dutifully the computer came up with the
WRONG answer. It has done as we directed, and we directed
it wrong.

A common phrase in computer circles is GIGO (pronounced
“gee-goe”). It stands for “Garbage In — Garbage Out”. We
have given the computer garbage and it gave it back to us by
way of a wrong answer.

Phrased another way, “Never in the history of mankind has
there been a machine capable of making so many mistakes so

rapidly and confidently.” A computer is worthless unless it is
programmed correctly.

e R e
SAMPLE ANSWER FOR EXERCISE 7-3:

3 C = (F -32) *5 /9
SAMPLE RUN FOR 7-3:

65 DEGREES FAHRENHEIT = 18.3333 DEGREES CELSIUS.

SAMPLE ANSWER FOR EXERCISE 7-4:

Two possible answers: 30 — (9 — 8)— (7 — 6) = 28
30 - 9-8—-(07—-6))=28

Sample Programs:

10 A = 30 - (9 - (8 - (7 - 6)))
20 PRINT A

435

SECTION

Or line 10 might be
16 A =30 - (9 - 8) - (7 - 6)

Try a few on your own.

SAMPLE ANSWER FOR EXERCISE 8-1:

19 A =5

20 IF A <> 5 THEN 50

30 PRINT "A EQUALS 5"

35 PRINT

40 END

50 PRINT "A DOES NOT EQUAL 5"

SAMPLE RUN FOR 8-1:

A EQUALS 5

SAMPLE ANSWER FOR EXERCISE 8-2:

10 A =6

20 IF A <> 5 THEN 50

30 PRINT "A EQUALS 5"

40 END :

50 PRINT "A DOES NOT EQUAL 5"
60 IF A < 5 THEN 90

70 PRINT "A IS LARGER THAN 5"
80 END

90 PRINT "A IS SMALLER THAN 5"

SAMPLE RUN FOR 8-2:

A DOES NOT EQUAL 5
A IS LARGER THAN 5

Note: We had to put in another END statement (line 80) to
keep the program from running on to line 99 after printing line
79.

436

SAMPLE ANSWER FOR EXERCISE 13-1:

2 INPUT "HOW MANY SECONDS DELAY DO YOU WISH";
3 P = 400

4 D=S *P

5 FORX =1 TO D

6 NEXT X

7

PRINT "DELAY IS OVER. TOOK"; S ;" SECONDS."

Explanation:

Line 2 used the input statement to obtain desired delay,
S, in seconds.

Line 3 defined P, the number of passes required for a one-
second delay.

Line 4 multiplied the delay for one second times number
of seconds desired, and called that product D.

Line 5 began the FOR-NEXT loop from 1 to whatever is
required.

Line 6 is the other half of the loop.

Line 7 reports the delay is over, and prints S, the number
of seconds. Obviously, S is only as accurate as the
program itself since it merely copies the value of S you
entered in line 2.

SAMPLE ANSWER FOR EXERCISE 13-2:

60 PRINT "RATE", "TIME", "DISTANCE"

65 PRINT " (MPH)", "(HOURS)", "(MILES)"

If you honestly had trouble with this one, better go back
and start all over because you've missed the real basics.

S

SEGTION B

437

SECTION B

Lo e S e]

SAMPLE ANSWER FOR EXERCISE 13-3:
5 CLS
10 PRINT ** SALARY RATE CHART *kxn
20 PRINT
38 PRINT "YEAR", "MONTH", "WEEK", "DAY"
40 PRINT
50 FOR Y = 5p@0 TO 25000 STEP 1000
55 REM * CONVERT YEARLY INCOME INTO MONTHLY *
66 M =Y / 12
65 REM * CONVERT YEARLY INCOME INTO WEEKLY *
70 W =Y/ 52
75 REM * CONVERT WEEKLY INCOME INTO DAILY *
80 D=W/ 5

198 PRINT Y, M, W, D
119 NEXT Y

SAMPLE RUN FOR 13-3:

** S ALARY RATE CHATRT #*%%

YEAR MONTH WEEK DAY
5000 416.667 96.1539 19.2308
6000 500 115.385 23.0769
70008 583.333 134.615 26 .9231

R T
SAMPLE ANSWER FOR EXERCISE 13-4:

16 R = .01
20D =1
3gT = .01
35 CLS
40 PRINT "DAY ", "DAILY ", "TOTAL"

50 PRINT "™ #", "RATE ", "EARNED "

60 PRINT
78 PRINT D, R, T
80 IF R > 1E+06 THEN END
99 R = 2 * R
166 D =D + 1
110 T =T + R
128 GOTO 70

438

SECTION

SAMPLE RUN FOR 13-4:

DAY DAILY TOTAL

RATE EARNED
1 .01 .01
2 .02 .83
3 .04 .07
4 .08 .15
5 .16 .31
6 .32 .63

SAMPLE ANSWER FOR EXERCISE 13-5:

1 REM * FIND THE LARGEST AREA *

5 CLS

16 PRINT "WIRE FENCE", "LENGTH ", "WIDTH ", "AREA "
20 PRINT " (FEET)", "(FEET)", "(FEET)", "(SQ. FEET)"
30 F = 1000

490 FOR L = @ TO 500 STEP 50

50 W= (F-2%*1L)/ 2

60 A=L%*W

70 PRINT F, L, W, A

80 NEXT L ‘

96 END

SAMPLE RUN FOR EXERCISE 13-5:

WIRE FENCE LENGTH WIDTH AREA
(FEET) (FEET) (FEET) (SQ. FEET)
1000 0 500)

1000 50 450 22500
1000 100 400 40000
1000 150 350 52500
1000 200 300 60000
1000 250 250 62500
1000 300 200 , 60000

ETC.

ADDENDUM TO EXERCISE 13-5:

Here’s a program that lets the Computer do the comparing:

439

SECTION

5 CLS

9 REM * SET MAXIMUM AREA AT ZERO *

10 M = 0

14 REM * SET DESIRED LENGTH AT ZERO *

15 N =6

19 REM * F IS TOTAL FEET OF FENCE AVAILABLE *
20 F = 1008

24 REM * L IS LENGTH OF ONE SIDE OF RECTANGLE *
25 FOR L = @ TO 500 STEP 58
29 REM * L IS WIDTH OF ONE SIDE OF RECTANGLE *

3 W= (F -2 *1L) /2

35 A=W * L

39 REM * COMPARE A WITH CURRENT MAXIMUM. REPLACE IF NECESSARY *
40 IF A <= M THEN GOTO 55

45 M = A

49 REM * ALSO UPDATE CURRENT DESIRED LENGTH *

50 N =1

55 NEXT L

60 PRINT "FOR LARGEST ARE USE THESE DIMENSIONS:"
65 PRINT N; "FT.BY"; 50@-N; "FT. FOR TOTAL AREA OF" ; M ; "SQ.FT.”

SAMPLE RUN FOR ADDENDUM TO EXERCISE 13-5:

FOR LARGEST ARE USE THESE DIMENSIONS:
250 FT.BY 250 FT. FOR TOTAL AREA OF 62500 SQ.FT,

SAMPLE ANSWER FOR OPTIONAL EXERCISE 13-6:

10 REM * FINDS OPTIMUM LOAD TO SOURCE MATCH *

20 CLS

30 PRINT "LOAD ", "CIRCUIT ", "SOURCE ", "LOAD "

40 PRINT "RESISTANCE ", "POWER ", "POWER ", "POWER "
56 PRINT " (OHMS) ", "(WATTS) ", "(WATTS) ", "(WATTS) "
60 PRINT

79 FOR R =1 TO 20

80 I =128 / (10 + R)

99 C =1 * I * (10 + R)
108 S =1 * I * 10

116 L =TI *1I *R

120 PRINT R, C, S, L
139 NEXT R

SAMPLE RUN FOR EXERCISE 13-6:

440

SEGTION

LOAD CIRCUIT SOURCE LOAD
RESISTANCE POWER POWER POWER
(OHMS) (WATTS) (WATTS) (WATTS)
1 1309.09 1190.08 119.008
2 1200 1000, 200
3 1107 .69 852.071 255.621
ETC.

SAMPLE ANSWER FOR EXERCISE 14-1:

1¢ PRINT "THE ", "TOTAL ", "SPENT "
20 PRINT "BUDGET YEAR'S THIS"
3@ PRINT TAB(@); "CATEGORY"; TAB(16); "BUDGET"; TAB(32); "MONTH"

SAMPLE ANSWER FOR EXERCISE 14-2:

30 PRINT TAB(l); "YEAR " ;TAB(12); "MONTH " ;TAB(25); "WEEK " ;
40 PRINT TAB(38); "DAY "; TAB(51); "HOUR " ’

85 REM * CONVERT WEEKLY INCOME INTO HOURLY *

99 H = W / 49

100¢ PRINT TAB(@); Y;TAB(1l1l); M;TAB(24); W;TAB(37); D;TAB(50); H

SAMPLE RUN FOR 14-2:
k& SALARY RATE CHART ***

YEAR MONTH WEEK DAY HOUR

5000 416.667 96.1539 19.2308 2.40385

6000 500 115.385 23.0769 2.88462
ETC.

SAMPLE ANSWER FOR EXERCISE 14-3:

3¢ PRINT "INTER " ;TAB(10); "LOAD" ;TAB(21); "CIRCUIT " ;
35 PRINT TAB(36); "SOURCE " ;TAB(51); "LOAD "

4@ PRINT "RESIST " ;TAB(10); "RESIST " ;TAB(21); "POWER " ;
45 PRINT TAB(36); "POWER " ;TAB(51); "POWER "

441

SECTION

5@ PRINT " (OHMS)" ;TAB(10);
55 PRINT TAB(36);:; "(WATTS)"

" (OHMS) " ;TAB(21) ;
: TAB(51) ;

" (WATTS) "

" (WATTS)

129 PRINT " 10" ;TAB(11l); R ;TAB(28); C ;TAB(35); S ;TAB(58) ;L

SAMPLE RUN FOR 14-3:

INTER LOAD CIRCUIT SOURCE LOAD
RESIST RESIST POWER POWER POWER
(OHMS) (OHMS) (WATTS) (WATTS) (WATTS)
10 1 1309.89 1190.08 119.008
10 2 1200 1000 200
10 3 1107 .69 852.071 255.621

ETC.

SAMPLE ANSWER FOR EXERCISE 15-1:

10 FOR A =1 TO 3
20 PRINT "A LOOP"
30 FOR B = 1 TO 2

49 PRINT " ", "B LOOP"

42 FOR C = 1 TO 4

44 PRINT " ", " ", " C LOOP"
48 NEXT C

50 NEXT B

60 NEXT A

SAMPLE ANSWER FOR EXERCISE 15-2:

The program will be the same as the answer to Exercise 15-1
with the following additions:

45 FORD =1 TO 5
46 PRINT " ", ™ ", ® %", %D LOOP"
47 NEXT D

Note: To get the full impact of this “4-deep” nesting, stop the
RUN frequently to examine the nesting relationships between
each of the loops.

442

SAMPLE ANSWER FOR EXERCISE 16-1:

Addition of the following single line gives a nice clean printout
with all values “rounded” to their integer value:

55 A = INT(A)

Worth all the effort to learn it, wasn’t it?

SAMPLE ANSWER FOR EXERCISE 16-2:

55 A = INT(1@ * A) / 10

When 3.14159 was multiplied times 10 it became 31.4159. The
INTEGER value of 31.4159 is 31. 31 divided by 10 is
3.1. Ete.

SAMPLE ANSWER FOR EXERCISE 16-3:

This was almost too easy.

55 A = INT(160 * A) / 100

SAMPLE ANSWER FOR EXERCISE 17-1:

10 INPUT "TYPE ANY NUMBER";X

20 T = SGN(X)

30 ON T+2 GOTO 50,60,79

45 END

50 PRINT "THE NUMBER IS NEGATIVE."
55 END

60 PRINT "THE NUMBER IS ZERO."

65 END

70 PRINT "THE NUMBER IS POSITIVE."

SEGTION

443

SEGTION B

SAMPLE ANSWER FOR EXERCISE 21-1:

EDIT 10 ENTER

KF KILL up to next F

X eXtend the line

I*I:NEXTI new characters

SHIFT [leave INSERT mode (optional)

LL check line before leaving EDIT mode (optional)
ENTER leave EDIT mode

SAMPLE ANSWER FOR EXERCISE 22-1:

19 CLS

20 FOR N=§ TO 63

39 PRINT "SPACE"; CHRS(N+192); "COMPRESSION"
40 NEXT N

SAMPLE ANSWER FOR EXERCISE 22-2:
180 PRINT CHR$(84) ;CHRS(82) ;CHRS(83) ; CHRS(45) ; CHRS (56) ;CHRS (48)

SAMPLE ANSWER FOR EXERCISE 22-3:

16 INPUT "ENTER A NUMBER"; AS

20 A = ASC(AS)

30 IF A<47 THEN 186

40 IF A>57 THEN10

50 PRINT "ASCII VALUE OF "; AS$; " IS"A

SAMPLE ANSWER FOR EXERCISE 23-1:

19 CLEAR 106 : CLS

2@ INPUT "FIRST STRING"; AS

30 INPUT "SECOND STRING"; BS

49 PRINT : PRINT "ALPHABETICAL ORDER:"
50 IF AS$S<B$ THEN PRINT AS$,BS$: END

60 PRINT BS$,AS

444

SECTION

SAMPLE ANSWER FOR EXERCISE 24-1:

16 CLS
20 INPUT "INPUT STRING";AS

30 IF LEN(AS$)>1¢ THEN PRINT "THE 16 CHARACTER LIMIT
WAS EXCEEDED."

SAMPLE ANSWER FOR EXERCISE 24-2:

16 CLS

20 INPUT "ENTER PASSWORD"; AS

36 FOR X=1 TO 11

40 READ N

58 P$ = P$ + CHRS$(N)

60 NEXT X

78 IF AS$ = PS THEN 100

80 PRINT "WRONG PASSWORD, GET LOST MAXWELL SMART"
90 END

160 PRINT "CORRECT PASSWORD, YOU MAY ENTER"
116 DATA 79,890,69,78,32,83,69,83,65,77,69

SAMPLE ANSWER FOR EXERCISE 25-1:

16 CLS

20 INPUT "INPUT YOUR STREET ADDRESS"; AS$

38 A = VAL(AS)

40 PRINT : PRINT"YOUR NEIGHBOR'S STREET NUMBER IS "; A+4
56 PRINT : LIST

SAMPLE ANSWER FOR EXERCISE 25-2:

10 CLS

20 FOR X=101 TO 120
30 A$ = STR$(X)

49 PRINT AS+"WT",
50 NEXT X

60 PRINT : LIST

SAMPLE RUN FOR EXERCISE 25-2:

445

SECTION B

101WT 102WT 163WT 104WT
165WT 106WT 107wWT 108WT
109wT 110wWT 111lwT 112wT
113wWT 114wT 115WT 116WT
117WT 118WT 119wWT 120WT

SAMPLE ANSWER FOR EXERCISE 26-1:

10 CLS

2¢ INPUT "ISN'T THIS A SMART COMPUTER";AS
30 BS$ = LEFTS(AS,1)

49 IF BS$="Y" THEN PRINT "AFFIRMATIVE" : END
50 IF B$="N" THEN PRINT "NEGATIVE" : END

60 PRINT "THIS IS A YES OR NO QUESTION"

70 GOTO 20

SAMPLE ANSWER FOR EXERCISE 26-2:

10 CLS : MAXS$=""

20 FOR I=1 TO 3

39 READ AS

49 NS = MIDS(AS,2,3)

50 IF N$>MAXS THEN MAXS$=NS : P$=AS

60 NEXT I

78 PRINT"THE PART NUMBER WITH THE LARGEST NUMERIC PORTION IS
";PS

80 PRINT:LIST

99 DATA N1@6WT,A208FM,Z154DX

SAMPLE ANSWER FOR EXERCISE 26-3:
Choice C: P-

SAMPLE ANSWER FOR EXERCISE 26-4:

1 CLS
10 A$ = STRINGS(30,42)
20 PRINT TAB(32-LEN(AS)/2);AS

446

SECTION

SAMPLE ANSWER FOR EXERCISE 28-1:

16 CLS

20 A=5 : B =12

38 C = SQR(A[2 + B[2)

40 PRINT "THE SQUARE ROOT OF";A;"SQUARED PLUS";B;"SQUARED IS";C
50 PRINT : LIST

SAMPLE ANSWER FOR EXERCISE 28-2:

10 INPUT "ENTER A NUMBER";
20 PRINT "LOG(EXP(";N;"))
30 PRINT "EXP(LOG(";N;"))
40 PRINT

56 GOTO 14

n

LOG(EXP(N))

N
—": EXP(LOG(N))

SAMPLE ANSWER FOR EXERCISE 30-1:

18 INPUT "STARTING HORIZONTAL BLOCK (@ TO 127)"; H
20 INPUT "ENDING HORIZONTAL BLOCK (@ TO 127)"; I
39 INPUT "STARTING VERTICAL BLOCK (@ TO 47)";

49 INPUT "ENDING VERTICAL BLOCK (@ TO 47)"; W

50 CLS

60 FOR X = HTO I

76 FOR Y =V TO W

80 SET(X,Y)

99 NEXT Y

100 NEXT X

999 GOTO 999

SAMPLE ANSWER FOR EXERCISE 30-2:

The following lines are changed. The rest are the same.

50 FORL = X TOX + K * 2 + 1
70 SET (L,Y+K+1)

99 FORM =Y TOY + K + 1
119 SET (X+K*2+1 ,M)

447

SECTION B

SAMPLE ANSWER FOR EXERCISE 31-1:

A. MOVE THE DOT UP

19 INPUT "HORIZONTAL STARTING POINT (8 TO 127)"; X
20 INPUT "VERTICAL STARTING POINT (6 TO 46)"; Y

B.

38 CLS

40 RESET(X,Y+1)

58 SET(X,Y)

60 Y =Y -1
78 IF Y >= 0 GOTO 40
99 GOTO 99

MOVE THE DOT TO THE LEFT

10 INPUT"HORIZONTAL STARTING POINT (1 TO 126)"; X
20 INPUT"VERTICAL STARTING POINT (@ TO 47)"; Y

38 CLS

40 RESET(X+1,Y)

50 SET(X,Y)

60 X =X -1
78 IF X >= @ THEN 40
99 GOTO 99

SAMPLE ANSWER FOR EXERCISE 32-1:

Insert the following lines:

95 P§S = "PING"
46 THEN 160

165 IF Y
115 IF Y
145 P§ =

160 PRINT@928,PS::
1786 PRINT@1l60,PS;:

Note that P$ BOTH prints the “PING” and makes it disappear
by printing blanks in its place.

1 THEN

170

ON D+2 GOTO 166,,170

GOTO 90
GOTO 98

SAMPLE ANSWER FOR EXERCISE 34-1:

Change line 110 to:
116 FOR X=0 TO 111 :

448

FOR Y=3 TO 47

'4 SPACES

SECTION

SAMPLE ANSWER FOR EXERCISE 36-1:

16 CLS : PRINT TAB(24)"CREDITS TAX TOTAL"

20 FOR I =1 TO 3

3¢ READ AS,X,Y,Z2

39 REM 1234567890123456789012345678901234567890123

40 US = "% % #4. 4 o # ##. 8"
56 PRINT USING US$; AS$,X,Y,2
60 NEXT I

70 READ A$,N

79 REM 1234567

80 V§ = "% % $HE.H8"

99 PRINT TAB(35); : PRINT USING V$; AS,N
169 DATA ASTRAL COMPUTER, 18.3, .7, 19.0
116 DATA BIOFEEDBACK ADAPTER, 1.8, 0, 1.8
120 DATA PERSONALITY MODULE, 7.2, .3, 7.5
130 DATA "DUE:", 28.3

SAMPLE ANSWER FOR EXERCISE 37-1:

10 CLS : PRINT
20 AS "REVENUES" : B$ = "EXPENSES" : C$ = "ASSETS"

30 ug = " % % % % % "
49 PRINT USING US$; AS , BS , CS

50 A$# = 1203104.22 : B# = 560143.80 : C

0

60 VS = "#fH4EE, HHEH8 fhE%, 44488 BHdhHd, Hhe. 88"
70 PRINT USING V§$; A# , C , A#

80 PRINT USING V$; C , B# , —-B#

90 PRINT : LIST

SAMPLE ANSWER FOR EXERCISE 38-1:

Add or change the following lines:

5 DIM A(219)

19 INPUT "WHICH CAR'S ENGINE, COLOR, & BODY STYLE DO YOU
WANT TO KNOW" ; W

130 FOR B = 201 TO 210

135 READ A(B)

149 NEXT B

449

SEGTION B

180 PRINT "LICENSE #", "ENGINE SIZE" ,"COLOR CODE" ,"BODY
STYLE"

216 PRINT W , A(W) , A(W+100) , A(W+200)

400 DATA 20,20,10,26,30,20,30,10,20,20

SAMPLE ANSWER FOR EXERCISE 38-2:

DELETE lines 58, 55, and 60, and change Line 30 to
30 DIM A(52) : FOR C=1 TO 52 : A(C) = C : NEXT C

SAMPLE ANSWER FOR EXERCISE 39-1:

Change line 50 to:
50 IF AS(F) <= AS$(S) THEN 90 'TEST FOR LARGER ASCII #
An alternate approach is to reverse the order of printing:

116 FOR D=N TO 1 STEP -1 : PRINT A$(D), : NEXT D

but that’s not really what we had in mind.

SAMPLE ANSWER FOR EXERCISE 40-1:
35 M(R,C) = 4*(R-1) + C

SAMPLE ANSWER FOR EXERCISE 40-2:

16 CLS

20 FOR E=1 TO 4

38 FOR D=1 TO 3

40 REM ENTRY DATA : NAME, NUMBER, $$S$$
50 READ RS$(E,D)

60 PRINT RS(E,D),

70 NEXT D : PRINT

80 NEXT E : PRINT

1066 REM * DATA FILE *

1016 DATA "JONES, C.", 10439, 1006.00

450

SECTION

1920 DATA "ROTH, J.", 10023, 87.24
1930 DATA "BAKER, H.", 12936, 398.34
1040 DATA "HARMON, D.", 10422, 23.17

SAMPLE ANSWER FOR EXERCISE 40-3:

Add:

100 REM **%* GORT ***

116 FOR F=1 TO 3

120 FOR S=F+1 TO 4

136 IF R$(F,1)<=R$(S,1) THEN 190
140 FOR J=1 TO 3

159 T$(J) = RS$(F,J)

160 RS$(F,J) = R$(S,J)
179 R$(S,JT) = TS$(J)
180 NEXT J

190 NEXT S

200 NEXT F

2106 PRINT : PRINT "ALPHA SORT" : PRINT
220 FOR E=1 TO 4

230 FOR D=1 TO 3

240 PRINT RS(E,D),

250 NEXT D : PRINT

260 NEXT E : PRINT

SAMPLE ANSWER FOR EXERCISE 40-4:

Change these lines:

139 IF VAL(RS$(F,3))<=VAL(R$(S,3)) THEN 190
219 PRINT : PRINT "NUMERIC SORT" : PRINT

SAMPLE ANSWER FOR EXERCISE 41-1:

18 CLS

20 FOR P=@ TO 1622
3¢ PRINT CHR$(191):;
40 NEXT P

50 PORE 16383,191

451

SECTION

60 GOTO 60
The only way to eliminate the automatic screen scroll at
PRINT position 1023 is with the POKE statement as

illustrated in line 5. POKE will be covered in detail in Part
7.

Lo s e]
SAMPLE ANSWER FOR EXERCISE 41-2:

The graphic codes are:

136, 181, 182, 191, 185, 176

SAMPLE ANSWER FOR EXERCISE 42-1:

18 CLEAR 300 : P=990

20 X$ = STRINGS$(8,140)

30 P=P + K

40 CLS

50 PRINT@P,XS;

60 IS=INKEYS$: IF IS$="" THEN 90

70 K=0 : V=ASC(IS$) : IF V=8 THEN K=K-1

86 IF V=9 THEN K=K+l

90 IF P+K>1015 OR P+K<968 THEN P=P-K
106 FOR I=1 TO 16 : NEXT I

116 GOTO 38

SAMPLE ANSWER FOR EXERCISE 43-1:

16 CLS

20 FOR P=31 TO 34

30 READ N : POKE 15368 + P, N
490 NEXT P : PRINT

50 DATA 80,79,75,69

SAMPLE ANSWER FOR EXERCISE 44-1:
10 CLS : PRINT CHRS$(23)

452

GOTO 460

SECTION

20 FOR P=0f TO 31
30 POKE 153680 + 2*Pp, P
40 NEXT P : PRINT

SAMPLE ANSWER FOR EXERCISE 45-1:

16 INPUT "IS GATE ‘X' OPEN"; AS

20 INPUT "IS GATE 'Y' OPEN"; BS

3¢ INPUT "IS GATE 'Z' OPEN"; CS$

49 PRINT

5¢ IF A$="Y" OR BS$="Y" OR C$="Y" THEN 80

60 PRINT "OLD BESSIE IS SECURE IN PASTURE #1."

79 END

80 PRINT "A GATE IS OPEN. OLD BESSIE IS FREE TO ROAM."

SAMPLE ANSWER FOR EXERCISE 45-2:

Change line 40 to:
49 IF INT(X/16)*16-X<>@ AND INT(Y/6)*6-Y<>@ THEN 60

Here’s one way to create (nearly) uniform boundaries:

40 IF INT(X/16)*16-X<>@ AND INT(Y/6)*6-Y<>@ THEN 55
55 IF Y=47 OR X=127 SET(X,Y)

SAMPLE ANSWER FOR EXERCISE 46-1:

10 REM * STRING VARIABLE LOCATER *

20 CLS

390 AS = "1234567890123"

40 X = VARPTR(AS)

45 PRINT "INDEX TO A$ IS AT";X

50 L = PEEK(X+1l) + 256*PEEK(X+2)

55 PRINT "A$ IS HIDING AT LOCATION";L
66 FOR I=L TO L+12

76 READ N : POKE I,N

80 NEXT I : PRINT A$: PRINT

99 DATA 158,156,172,173,26,24,24,24,24
100 DATA 141,180,184,142

453

SECTION

SAMPLE ANSWER FOR EXERCISE 47-1:

1¢ REM * TEST GRADER *
20 CLS

3¢ PRINT "THIS IS A TEST GRADING PROGRAM"

40 PRINT "ENTER THE STUDENT'S FIVE ANSWERS AS REQUESTED"
50 RESTORE

60 N = @

70 FOR I=1 TO 5

8¢ PRINT "ANSWER NUMBER":I;

99 INPUT A

100 READ B

110 PRINT A,B;

12¢ IF A=B THEN PRINT "CORRECT"; : N=N+1 ELSE PRINT , "WRONG"
136 PRINT

146 NEXT I

15¢ PRINT N;"RIGHT OUT OF 5";

160 PRINT N/5 * 160;"%"

170 PRINT "ANY MORE TESTS TO GRADE";

18¢ INPUT "--1=YES, 2=NO";Z

196 IF Z=1 GOTO 58

208 DATA 65,23,17,56,39

SAMPLE ANSWER FOR EXERCISE 47-2:

100 CLsS
116 PRINT : PRINT
126 PRINT "ENTER THE NUMBER OF ONE OF THE FOLLOWING

INVESTMENTS"

130 PRINT

14¢ PRINT " 1 - CERTIFICATE OF DEPOSIT"
158 PRINT " 2 - BANK SAVINGS ACCONT"
168 PRINT " 3 - CREDIT UNION"

170 PRINT " 4 - MORTGAGE LOAN"

180 PRINT : INPUT "INVESTMENT" ; F

190 ON F GOTO 1000, 2000, 3000, 4000

200 GOTO 166 : REM USED IF NUMBER NOT BETWEEN 1 AND 4

1000 REM * CERTIFICATE OF DEPOSIT PROGRAM GOES *

1019 PRINT "THE C. D, PROGRAM HAS YET TO BE WRITTEN,"

1020 GOSUB 10000 : GOTO 100

2008 REM * BANK SAVINGS ACCOUNT PROGRAM *

2019 CLS : PRINT : PRINT "THIS ROUTINE CALCULATES SIMPLE
INTEREST ON"

2020 PRINT "DOLLARS HELD IN DEPOSIT FOR A SPECIFIED PERIOD"

2030 PRINT "USING A SPECIFIED PERCENTAGE OF INTEREST." : PRINT

454

SECTION B

2040 PRINT : INPUT "HOW LARGE IS THE DEPOSIT (IN DOLLARS)" ;
P

2050 INPUT "HOW LONG WILL YOU LEAVE IT IN (IN DAYS)" ; D

2060 INPUT "WHAT INTEREST RATE DO YOU EXPECT (IN %)" ; R

2070 CLS : PRINT : PRINT : PRINT "FOR A STARTING PRINCIPAL
OF 8" ; P ; "AT A"

2089 PRINT "RATE OF ™ ; R ; " % FOR " ; D ; " DAYS.
THE INTEREST "

2090 PRINT "AMOUNTS TO S$" ;

2160 REM INTEREST = (% / YR) / (DAYS / YR) * DAYS * PRINCIPAL

2200 I =R / 108 / 365 * D * P

2308 PRINT : PRINT " T T |

2400 END

3000 REM * CREDIT UNION PROGRAM GOES HERE *

3019 PRINT "THE C. U. PROGRAM HAS YET TO BE WRITTEN."

3020 GOSUB 10600 : GOTO 100

4000 REM * MORTGAGE LOAN PROGRAM GOES HERE *

4010 PRINT "THE M. L. PROGRAM HAS YET TO BE WRITTEN."

4020 GOSUB 10060 : GOTO 100

1000606 FOR I = 1 TO 1000 : NEXT I : RETURN

SAMPLE ANSWER FOR EXERCISE 50-1:

19 ON ERROR GOTO 108

20 CLS

30 FOR I=1 TO 10

40 X = RND(21)-1 : F = X-10/X

50 PRINT I, "X=" X,"F(X)=" F;

60 IF F<0 THEN PUNT ELSE PRINT

79 NEXT I

80 INPUT "PRESS ENTER TO CONTINUE":Z : GOTO 20

100 IF ERR/2+1=2 THEN 140 Model II use ERR=2
116 IF ERR/2+1=11 THEN 139 Model II use ERR=11

120 PRINT "ERROR" : END

136 PRINT "ATTEMPTED DIVISION BY ZERO IN LINE ";ERL :
RESUME NEXT

140 PRINT : PRINT "SYNTAX ERROR IN LINE ";ERL : RESUME NEXT

455

456

SECTION C:

Some User’s Programs

12-Hour Clock

1 REM * COPYRIGHT (C) 1982 BY D.A. LIEN. ALL RIGHTS RESERVED.*
3 REM <<<<< 12-HOUR CLOCK >>>>>

16 INPUT "THE HOUR IS"; E

20 F = INT(E/10) : E = E - (F*10)

3¢ INPUT "THE MINUTES ARE"; C

49 D = INT(C/18) : C C - (D*19)

50 INPUT "THE SECONDS ARE"; A

60 CLS : PRINT CHRS$(23) '"MODEL II USE CHRS$(31)
70 B = INT(A/18) : A = A - (B*10)
86 FOR N=1 TO 400 : NEXT N 'Adjust for your system

99 A = A + 1

1606 IF A>9 THEN 120
116 GOTO 314

120 A /]

130 B B+ 1

140 IF B>5 THEN 160
156 GOTO 318

160 0

170 CcC +1

188 IF C>9 THEN 200
196 GOTO 310

200 = 0

210 D + 1

220 IF D>5 THEN 240

230 GOTO 310

240 D = 0

250 E = E + 1

260 IF E>9 THEN 280

278 GOTO 300

280 E=0

290 F = F + 1

300 IF (F=1) AND (E=3) THEN A= : B
310 PRINT@456, F; E; ":"; D; C; "
320 GOTO 840

Ow

vl

i

@ : D=@ : E=1 : F=0

g : C=
B; A '@819 ON MODEL II

. .
’

457

SEGTION 6

Checksum For Business

For those responsible for inventory numbers or check clearing
and balancing in business, a checksum is a most useful testing
“code”. This simple program calculates error-free checksums
almost instantly. It is designed for 6-digit numbers and so
can be used for stock number verification or other applications.

1 REM * COPYRIGHT (C) 1982 BY D.A. LIEN. ALL RIGHTS RESERVED, *
3 REM <<<<< CHECKSUM FOR BUSINESS >>>>>

10 PRINT

20 INPUT "THE FIRST DIGIT IS "
36 INPUT "THE SECOND DIGIT IS "; B
49 INPUT "THE THIRD DIGIT IS "

50 INPUT "THE FOURTH DIGIT IS "; D
60 INPUT "THE FIFTH DIGIT IS "; E

70 INPUT "THE SIXTH DIGIT IS "; F

80 PRINT

90 PRINT "THE NUMBER IS "; A ; B; C ; D ; E ; F
106 S = A + 2 *B+C+2 *D+E+ 2 *F

8 we

A
C

Jwe

116 T = INT(S / 10)
120 U =S - T * 10
136 S=T+ U

140 IF S>9 THEN 110
1560 PRINT " THE CHECKDIGIT IS "; S

Design Program For Cubical Quad Antenna

The cubical quad is an exceptionally fine antenna for use in
receiving and transmitting ham, citizen band, short wave
broadcasting, industrial, public service radio and television
signals. It is rotatable, being well-balanced and lightweight.

Electrically, it consists of two loops of wire, one of which is fed
with coaxial cable or twin lead, the other simply soldered
together at its ends. Figure 1 is an illustration of a quad.

The program inputs only your desired operating frequency.It
then calculates and outputs all the mechanical dimensions
needed so you can construct your own quad. Happy

designing!

1 REM * COPYRIGHT (C) 1982 BY D,A. LIEN. ALL RIGHTS RESERVED. *
3 REM <<<<< DESIGN PROGRAM FOR CUBICAL QUAD ANTENNA >>>>>

10 CLS

20 PRINT "CUSTOM DESIGNING YOUR OWN HIGH GAIN ANTENNA >>-->>"
380 PRINT

40 INPUT "CENTER FREQUENCY (IN MEGAHERTZ) = " ; F

50 CLS

60 PRINT ">--> CUBICAL QUAD ANTENNA {<==<"
70 PRINT

SECTION ©

80 E = .985 * F

9¢ G = 1.033 * F

166 D = 100606 / F

110 R = 10632 / F

i2¢ B = 118 / F

130 X = (2 * (R * R/ 64))

140 S = SQR(X)

150 X = (S * S+ (B * B / 4))

160 P = SQR(X)

1760 X = ((R * R/ 64) + 75 * 75 / (F * F * 4))
180 T = SQR(X)

190 X = ((R * R/ 64) + 125 * 125 / (F * F * 4))
200 U = SQR(X)

210 W = 468 / F

220 PRINT "THE DESIGN CENTER FREQUENCY IS" ; F ; "MHZ., THIS 2

23¢9 PRINT "ELEMENT QUAD SHOULD EXHIBIT A STANDING WAVE RATIO"

240 PRINT "OF 2:1 OR LESS OVER THE FREQUENCY RANGE FROM" ; E ; "To"
250 PRINT G ; "MHZ WHEN USED WITH 5@ TO 75 OHM FEED LINE."

260 PRINT

27@¢ PRINT "THE BOOM LENGTH CAN VARY BETWEEN" ; 75 / F ; "FEET AND"
28¢ PRINT 125 / F ; "FEET WITH LITTLE EFFECT. A LENGTH OF" ; B

299 PRINT "FEET IS OPTIMUM."

300 PRINT

319 PRINT "TOTAL LENGTH OF THE WIRE IN THE DRIVEN ELEMENT IS" ; D
32¢ PRINT "FEET, WHICH COMES TO" ; D / 4 ; "FEET ON EACH SIDE."
340 GOSUB 1000

360 PRINT "TOTAL LENGTH OF WIRE IN THE REFLECTOR ELEMENT IS" ; R
370 PRINT "FEET, WHICH IS";R/4;"FEET ON EACH SIDE."

380 PRINT

39¢ PRINT "THE MINIMUM LENGTH OF BAMBOO, FIBERGLASS OR OTHER"

409 PRINT "STRONG INSULATING MATERIAL USED IN EACH SPREADER"

419 PRINT "WILL BE" ; S ; "FEET, MEASURED FROM THE CENTER OF THE"
42¢ PRINT "BOOM. IF A SPIDER (BOOMLESS) QUAD MOUNT IS USED,"

43¢ PRINT "EACH SPREADER WILL HAVE TO BE AT LEAST" ; P ; "FEET."
440 PRINT

459 PRINT "THE TURNING RADIUS (FOR TREE CLEARANCE, ETC) VILL VARY"
460 PRINT "BETWEEN" ; T ; "FEET AND" ; U ; "FEET, DEPENDING ON THE
LENGTH"

479 PRINT "OF THE BOOM."

508 GOSUB 1660 : CLS

51¢ PRINT "THIS QUAD ANTENNA WILL WORK WELL EVEN AT LOW HEIGHTS"
52¢ PRINT "ABOVE THE GROUND, BUT IT WORKS BEST WHEN UP IN THE AIR"
53¢ PRINT "A HALF-WAVELENGTH ~--- " ; W ; "FEET, OR MORE."

540 PRINT

55¢ PRINT "THE FRONT-TO-BACK RATIO (ABILITY TO REDUCE UNWANTED"
560 PRINT "SIGNALS FROM THE OPPOSITE DIRECTION) SHOULD EXCEED 16"
57¢ PRINT "DECIBELS FROM ABOUT" ; .97 * F ; "TO" ; 1.3 * F ;
"MEGAHERTZ,"

58¢ PRINT "APPROACHING 25 DB AT" ; F ; "MEGAHERTZ."

590 PRINT
600 PRINT " * ok ok ok GOOD D X * Ok kX%

999 GOTO 999

1009 PRINT@970,; : INPUT "PRESS <ENTER> TO CONTINUE";AS
1919 CLS : RETURN

%0

459

SECTION &

Speed Reading

Your Computer is your own personal Tachistoscope, a device
used to practice speed reading. Study this sample program
carefully to see how easy it is to substitute your own reading
material at whatever reading level you want. The variable
time loop lets you input the desired reading speed in words-
per-minute.

1 REM * COPYRIGHT (C) 1982 BY D.A. LIEN. ALL RIGHTS RESERVED., *

3 REM <<<<< SPEED READING PROGRAM >>>>>
10 GOTO 49
20 FOR I=1 TO B : NEXT I : PRINT@448, : RETURN ' 880 FOR MODEL II

30 REM AUDIO PROMPT GOES BEFORE RETURN IN ABOVE LINE.
49 INPUT "HOW MANY WORDS PER MINUTE DO YOU READ";W

50 B = (12 * 60 / W) * 400

60 REM 400 = # OF FOR/NEXT LOOPS IN ONE SECOND

76 REM ADJUST THE 400 IN LINE 26 TO MATCH YOUR SYSTEM
80 CLS : GOSUB 20

90 PRINT@488, ' 850 FOR MODEL II

106 PRINT "FIRST PARAGRAPH FROM 'GONE WITH THE WIND'."
118 PRINT " SCARLETT O'HARA WAS NOT BEAUTIFUL, BUT MEN SELDOM

: GOSUB 20

12p PRINT "REALIZED IT WHEN CAUGHT BY HER OWN CHARM AS THE TARLETON

: GOSUB 28

13¢ PRINT "TWINS WERE. IN HER FACE WERE TOO SHARPLY BLENDED THE

: GOSUB 26

140 PRINT "DELICATE FEATURES OF HER MOTHER, A COAST ARISTOCRAT OF

: GOSUB 20

158 PRINT "FRENCH DESCENT, AND THE HEAVY ONES OF HER FLORID IRISH

¢ GOSUB 20

166 PRINT "FATHER., BUT IT WAS AN ARRESTING FACE, POINTED OF CHIN,

: GOSUB 20

170 PRINT "SQUARE OF JAW. HER EYES WERE PALE GREEN WITHOUT A TOUCH

: GOSUB 20

180 PRINT "OF HAZEL, STARRED WITH BRISTLY BLACK LASHES AND SLIGHTLY

: GOSUB 20

19¢ PRINT "TILTED AT THE ENDS. ABOVE THEM, HER THICK BLACK BROWS

: GOSUB 28 °

200 PRINT "SLANTED UPWARDS, CUTTING A STARTLING OBLIQUE LINE IN HER

: GOSUB 20

210 PRINT "MAGNOLIA-WHITE SKIN--THAT SKIN SO PRIZED BY SOUTHERN

: GOSUB 20

220 PRINT "WOMEN AND SO CAREFULLY GUARDED WITH BONNETS, VEILS, AND

: GOSUB 20

23¢ PRINT "MITTENS AGAINST HOT GEORGIA SUNS." : GOSUB 28

The Wheel Of Fortune
(Or ... Never Give a Sucker an Even Break.)

Modeled after the large wheels of fortune found at carnivals
and other such gatherings, this graphics program accurately
replicates its odds. The numbers are read from a DATA bank
and “rotated” through “windows” as the wheel is “spun”.

460

w

SEGTION &

As commonly played, a $1 bet on any number, 1, 2, 5, 10, 20 or
40 (the joker and TRS-80) returns those amounts — if that
number comes up. If not — it’s a cheap education.

Step right up, stranger. Try your luck at the wheel of
fortune.

1 REM * COPYRIGHT (C) 1982 BY D.A. LIEN. ALL RIGHTS RESERVED. *

3 REM {<<<< THE WHEEL OF FORTUNE >>>>>
4 REM NOT FOR THE MODEL II.

19 DIM A(60)

20 CLS

3@ PRINT "STEP RIGHT UP, STRANGER. TRY YOUR HAND AT THE"™ : PRINT :
PRINT

49 PRINT " WHEEL OF FORTUNE" : PRINT : PRINT
5¢ PRINT "PAYOFFS IN DOLLARS FOR A $1 BET ARE 1, 2, 5, 16, 28."

60 PRINT : PRINT "SPECIALS ARE THE JOKER(13) AND TRS-80(88), EACH
PAYING 40."

7¢ PRINT : PRINT "ENTER YOUR CHOICE AS A 1, 2, 5, 16, 13, 28, OR
80";

88 INPUT G

9¢ IF G=1 OR G=2 OR G=5 OR G=18 OR G=13 OR G=20 OR G=8f¢ THEN 100 ELSE
70

100 CLS : PRINT@24, "WHEEL OF FORTUNE"

1186 T = 65

128 P = RND(54)

13¢ RESTORE : FOR I=1 TO 54 : READ A(I) : NEXT I

14¢ RESTORE : FOR I=55 TO 68 : READ A(I) : NEXT I

150 X =0 : Y =18 : GOSUB 499
160 X = 18 : Y = 12 : GOSUB 490
178 X =36 : Y =9 : GOSUB 490
180 X = 56 : Y = 6 : GOSUB 499
199 X =76 : Y =9 : GOSUB 490
200 X = 94 : Y = 12 : GOSUB 490
210 X = 112 : Y = 18 : GOSUB 494

220 PRINT@92, ">>-——->>" ;

239 PRINT@594, "ROUND & ROUND IT GOES . . ." ;

240 PRINT@729, "JOKER (13) &"

250 PRINT@794, "TRS-88 (88)"

260 PRINT@856, "BOTH PAY 4§ TO 1"

270 FOR S=1 TO 16@ + RND(2)

280 PRINT@A58, A(P) ;: PRINT@331, A(P+l) ;: PRINT@276, A(P+2) ;
290 PRINT@222, A(P+3) ;

389 PRINT@296, A(P+4); : PRINT@369, A(P+5); : PRINT@506, A(P+6) ;
318 IF S<T THEN 368

320 R= (8§ ~-T) * (S-T) * (§s-T) /T

33¢ IF S>98 PRINT@594, " PAYOFFS GO TO THE " : GOTO 350
340 PRINT@594, " ALMOST THERE "o

350 IF S<1@2 FOR Z=1 TO R : NEXT Z

360 P =P - 1 : IF P=@ THEN P = 54

379 NEXT S : PRINT TAB(29); : Q = A(P+4) : GOSUB 460 : X = 0

380 PRINT TAB(22); "YOUR CHOICE WAS "; : Q = G : GOSUB 4690

399 PRINT TAB(23); : IF € = A(P+4) PRINT "YOU WIN AT" ; O ; "TO 1" :
GOTO 410

409 PRINT " YOU LOSE. "

419 PRINT@985,; : INPUT "PRESS <ENTER>";AS$

429 GOTO 20

43¢ DATA 1,2,80,1,5,1,2,1,16,1,2,1,5,1,2,1,5,1,2,1,206,1,2,10

461

SECTION 6

440
450
460
470
480
490
560
510
520
530
540
550
560
570
580

DATA 1,2,1,5,1,2,1,5,1,2,13,1,2,1,10,1,2,1,2

DATA 1,20,1,2,5,1,2,16,1,2,5

0 =0 :IF (Q=13) = (Q =80) PRINT " " ; Q0 : RETURN
O = 40 : AS$ = "JOKER" : IF Q=88 THEN AS$ = "TRS-89"

PRINT A$: RETURN

FOR I=0 TO 7

SET(X,I + Y) : SET(X + 1,I + Y)

SET(X + 14,I + ¥) : SET(X + 15,1 + Y)
GOTO 558

NEXT I

FOR I=0 TO 7

SET(I * 2 + X,Y) : SET(I * 2 + 1 + X,Y)
SET(I * 2 + X,7 +Y) : SET(I * 2 + 1 + X, 7 +Y)
NEXT I

RETURN

Dow-Jones Industrial Average Forecaster

There is no guarantee that this program will make you
instantly wealthy, but it is an example of converting a financial
magazine article into a useable computer program. The
article describing the market premises on which this program
is built appeared in Forbes Magazine.

REM * COPYRIGHT (C) 1982 BY D.A. LIEN. ALL RIGHTS RESERVED. *

1

3 REM <<<<< DOW-JONES INDUSTRIAL AVERAGE FORCASTER >>>>>

20 PRINT "*** PROJECTS TARGET DOW-JONES INDUSTRIAL AVERAGE AS A"
30 PRINT "FUNCTION OF YEARS DJI EARNINGS AND INFLATION RATE **%"
46 PRINT

56 REM * K = COST OF MONEY., ASSUME 3% *

60 K = .03

70 REM * P = RISK PREMIUM OF STOCKS OVER BONDS. ASSUME 1% *

80 P = .01

96 PRINT "DO YOU RNOW YEARS PROJECTED EARNINGS OF 30 DJI (Y/N)" ;

108 INPUT AS
116 IF AS$ = "Y" THEN 300

120 PRINT
138 PRINT "THIS METHOD WILL GIVE AN EARNINGS APPROXIMATION USING"

140 PRINT "THE NEWSPAPER PRICES AND P/E RATIOS. BETTER FORECASTS"
150 PRINT "OF EACH COMPANIES EARNINGS MAY GIVE AN IMPROVED"

160 PRINT "OVERALL FORECAST."

178 PRINT

180 D = @

190 FOR N=1 TO 30

200 READ AS

210 PRINT "WHAT IS THE CURRENT PRICE OF >-—=> " 7 AS ;" K—=<" ;
220 INPUT P

230 PRINT "THE CURRENT P/E RATIO " H

240 INPUT R

250 E =P / R

260 D= E + D

2780 NEXT N

280 PRINT

462

SEETION &

GOTO 349
PRINT "WHAT IS THE TOTAL PROJECTED EARNINGS FOR 1 SHARE OF" ;
PRINT " EACH" ;

INPUT D

REM * I = ESTIMATED INFLATION RATE *

PRINT "WHAT PERCENTAGE IS THE INFLATION RATE";

INPUT I

/ (K + P+ I *

/ D
"INFL. RATE","DJI EARN.","PROJ DJ AVE","AVE/EARN RATIO"

290
300
310
320
330
340
350
366 T = D
376 R = T
380 PRINT
399 PRINT
400 PRINT
419 PRINT I , D, T , R

420 DATA ALLIED CHEM,ALCOA,AMER BRANDS,AMER CAN,A.T. & T
43¢ DATA BETH STEEL,CHRYSLER,DUPONT,E. KODAK,ESMARK,EXXON
440 DATA G.E.,GEN FOODS,GEN MOTORS,GOODYEAR,INCO

450 DATA INT. HARV.,INT. PAPER,JOHNS-MAN,MINN MM,OWENS-ILLS
468 DATA PROCTER & G,SEARS,STD OIL CAL,TEXACO,UNION CARBIDE
478 DATA U.S. STEEL,UNITED TECHNOL.,WESTINGHOUSE,WOOLWORTH

.01)

On a Snowy Evening ...
by Robert Frost

Who says computers only make stuffy mathematical
calculations and are not for folks who appreciate the better
things? If this one doesn’t grab you, nothing will.

1 REM * COPYRIGHT (C) 1982 BY D.A. LIEN. ALL RIGHTS RESERVED. *

3 REM <<<<< ON A SNOWY EVENING . . . >>>>>

4 REM NOT FOR THE MODEL II.

18 CLS

20 PRINT@7, "ON A SNOWY EVENING e o « o o BY ROBERT FROST" ;
3¢ FOR N=1 TO 2000 : NEXT N

40 FOR Z=1 TO 308

5@ SET(RND(127) ,RND(45) +2)

60 NEXT Z

70 1 =0

1000 PRINT@525, "WHOSE WOODS THESE ARE I THINK I KNOW." ;
1001 GOSUB 6000

1190 PRINT@525, "HIS HOUSE IS IN THE VILLAGE, THOUGH; o
11061 GOSUB 6000

1209 PRINT@525, "HE WILL NOT SEE ME STOPPING HERE "o
1201 GOSUB 6000

1300 PRINT@525, "TO WATCH HIS WOODS FILL UP WITH SNOW. " ;
1391 GOSUB 6000

14¢¢ PRINT@525, "MY LITTLE HORSE MUST THINK IT QUEER "o
1401 GOSUB 6000

15¢8 PRINT@525, "TO STOP WITHOUT A FARMHOUSE NEAR "
1561 GOSUB 6000

463

SEGCTION &

l600
l601
1760
1701
1800
1861
1960
1901
2000
2001
2100
2101
2200
2201
2300
2305
2310
2400
2405
2410
2500
2505
2510
5000
5001
6000
6020
6030
6070
6080
6090
6100
6150
6200
6300

PRINT@525,
GOSUB 6000
PRINT@525,
GOSUB 6000
PRINT@525,
GOSUB 6000
PRINTR@525,
GOSUB 6000
PRINT@525,
GOSUB 6000
PRINT@525,
GOSUB 6009
PRINT@525,
GOSUB 6000
PRINT@589,
I =3

GOSUB 6000
PRINT@653,
I =6

GOSUB 6000
PRINT@717,
I =29

GOSUB 6000

"BETWEEN THE WOODS AND FROZEN LAKE"

"THE DARKEST EVENING OF THE YEAR, "

"HE GIVES HIS HARNESS BELL A SHAKE"

"TO ASK IF THERE IS SOME MISTAKE.

"THE ONLY OTHER SOUND'S THE SWEEP"

"OF EASY WIND AND DOWNY FLAKE.

"THE WOODS ARE LOVELY, DARK, AND DEEP,"

"BUT I HAVE PROMISES TO KEEP," ;

"AND MILES TO GO BEFORE I SLEEP,"

"AND MILES TO GO BEFORE I SLEEP,"

SET(RND(127) ,RND(47))

GOTO 5000

FOR N=1 TO
X
Y
IF ¥
IF Y
IF Y
SET(X,Y)

RND (47)

o

20

RND(127)

24 + I GOTO 6020
25 + I GOTO 6020
26 + I GOTO 6020

FOR A=1 TO 20 : NEXT A

NEXT N
RETURN

Termites

A malicious sense of humor helps on this one. Its avowed
purpose is to demonstrate the graphic RESET(X,Y) function,
turning off the “lights” in a random fashion, but it’s not
without other redeeming value. If you don't like to sit by the
fire and watch it snow while reading good poetry, you can
always watch the termites eat your house down.

464

-0

1]

°
14

°
4

~e

<9

-o

o

3
4

SECTION ©

1 REM * COPYRIGHT (C) 1982 BY D.A. LIEN. ALL RIGHTS RESERVED. *
3 REM <<<<< TERMITES >>>>>
4 REM NOT FOR THE MODEL II.

19 CLS : PRINT

20 FOR P=@ TO 958 : PRINT CHR$(191); : NEXT
3¢ POKE 16383,191

A0 N = 5760

50 PRINT@5, "SEE THE TERMITES EAT. ONLY" ;
60 PRINT@45, "BITES LEFT !";

70 X RND(128) -1

80 Y RND(45) + 2

9¢ IF POINT(X,Y)=0 THEN 70

106 RESET(X,Y)

116 N =N -1

120 PRINT@36, N;

136 IF N>@ THEN 70

999 GOTO 999

Sorry

SORRY is a popular board game by Parker Brothers. This
program demonstrates how to load a deck of cards into a
numerical array, draw them out in a random fashion,
“reshuffle” the deck after the last card is drawn, and continue
drawing. The program will pause between each drawing of
the cards, allowing as much time as desired to actually move
the pieces on your own SORRY board. Have fun!

1 REM * COPYRIGHT (C) 1982 BY D.A. LIEN. ALL RIGHTS RESERVED. *
3 REM <<<<< SORRY >>>>>

1¢ CLS : RANDOM : DIM A(45)

20 PRINT "STAND BY FOR THE SHUFFLING OF THE DECK OF CARDS."
30 PRINT : PRINT : PRINT

40 FOR N = 1 TO 45 : READ A(N) : NEXT N

58 PRINT : PRINT : PRINT

680 Y =1

78 PRINT "SHUFFLING COMPLETED GAME BEGINS!" : PRINT
80 R = INT(RND(45))

98 M = A(R)

106 IF M=0 THEN 80

116 A(R) =0 : T =20

120 FOR Z=1 TO 45

130 T = A(Z) + T

149 NEXT Z

150 PRINT TAB(25);"PRESS ENTER"; : INPUT A$

160 1F T=0 THEN 180

1786 GOTO 218

188 PRINT "END OF DECK. THE CARDS ARE BEING RESHUFFLED."
196 RESTORE

206 GOTO 38

465

SECTION &

210 IF Y<@ THEN 240

220 PRINT TAB(10); "RED"
238 GOTO 258

240 PRINT TAB(44); "GREEN"
25¢ IF M=13 THEN 270

260 PRINT TAB(B + 10); M
278 ON M GOTO 290,310,540 ,360,540,540,380,540,540,410,430,540,450
280 GOTO 54¢

290 PRINT TAB(B);"MAY MOVE A NEW PIECE OUT"

3P0 GOTO 548

310 PRINT TAB(B);"MAY MOVE A NEW PIECE OUT"

320 PRINT : PRINT

339 PRINT TAB(B+5) ;"DRAW AGAIN . ., ."

349 PRINT

350 GOTO 588

360 PRINT TAB(B);"MUST BACK UP 4 SPACES"

378 GOTO 548

380 PRINT TAB(B);"MAY SPLIT THE 7 BETWEEN"

390 PRINT TAB(B+3);" 2 PIECES"

400 GOTO 540

410 PRINT TAB(B);"MAY MOVE BACKWARDS 1 SPACE"

420 GOTO 549

430 PRINT TAB(B);"CAN SWAP PIECES WITH OPPONENT"

440 GOTO 548

450 PRINT : PRINT

460 IF B=@ THEN 510

470 PRINT " GOTCHA {LL====<LKK LL====<KK";

480 PRINT TAB(49);"S ORR Y I"

49¢ PRINT : PRINT

506 GOTO 540

516 PRINT "S O R R Y ! >>0>====3>> >>>====>>>" ;

52p PRINT TAB(55);"GOTCHA "

538 PRINT : PRINT

546 FOR T=1 TO 1088 : NEXT T : FOR X=1 TO 4

550 PRINT TAB(3@); "*"

566 NEXT X

576 ¥ = ¥ * (-1)

580 IF Y>@ THEN B=@ ELSE B=35
598 GOTO 88

608 DATA 1,1,1,1,1,2,2,2,2,3,3,3,3
616 DATA 8,8,10,10,10,10,11.11,11,

Ny

Craps

The game is as old as history. A testimonial to the
intelligence and ingenuity of our ancient ancestors. An
excellent way to demonstrate the running of twin Random
Number Generators.

You don’t need to know how to play the game — the computer
will quickly teach you. (... There’s one born every minute . . .)

466

SEGTION ©

1 REM * COPYRIGHT (C) 1982 BY D.A. LIEN. ALL RIGHTS RESERVED, *
3 REM <{<<<< CRAPS >>>>>

16 CLS : RANDOM

20 INPUT "PRESS <ENTER> TO CONTINUE";AS

30 CLLS : GOSUB 150 : P = N

4@ PRINT : PRINT "YOU ROLLED "; P, " ",

50 ON P GOTO 60,99,90,70,70,70,80,70, 70 76,80 ,90

60 REM USED FOR THE ON STATEMENT IF P =1 (WHICH IT CAN'T)
780 PRINT "YOUR POINT IS"; N : GOTO 100

88 PRINT "YOU WINII" PRINT : GOTO 20

9 PRINT "YOU LOSE."™ : PRINT : GOTO 20

100 GOSUB 150 : M = N

119 PRINT : PRINT "YOU ROLLED "; M,

126 IF P=M THEN 80

130 IF M=7 THEN 90

140 GOTO 100

150 A = RND(6) : B = RND(6) : N = A + B : RETURN

1680 RETURN

Fire When Ready, Gridley

1 REM * COPYRIGHT (C) 1982 BY D.A. LIEN, ALL RIGHTS RESERVED. *

3 REM <<<<< FIRE WHEN READY, GRIDLEY >>>>>

4 REM NOT FOR THE MODEL II.

10 CLS

20 INPUT "ENTER YOUR INITIALS"; A$: CLS : Z = 74 : FOR Y = 18 TO 23
30 FOR X=Z TO 125 : SET(X,Y) : NEXT X : 2 = Z + 2

40 NEXT Y : FOR P=554 TO 1004 STEP 64 : PRINT@P, STRING$(21,191); :
NEXT P

5@ FOR P=356 TO 381 STEP 2 : PRINT@P,CHR$(188) ;CHRS$(176); : NEXT P :
PRINT CHRS$(188);

60 0 =0

76 FOR X=91 TO 121 STEP 5 : FOR Y=47 TO 35 STEP -1 : RESET(X,Y)

NEXT Y : NEXT X

80 FOR X=91 TO 121 : RESET(X,34) : NEXT X

9¢ PRINT@687, A$; "'S CASTLE" ;

166 FOR X=74 TO 101 : SET(X,12) : SET(X,13) : NEXT X : SET(100,11)
119 FOR X=86 TO 96 : SET(X,14) : SET(X,15) : NEXT X : RESET(92,13)
RESET(93,13)

120 FOR Z=1 TO 2 : FOR X=2 TO 14 : FOR Y = 40 TO 43 : SET(X,Y) : NEXT
Y : NEXT X

130 FOR X=3 TO 13 STEP 2 : RESET(X,41) : NEXT X : RESET(7,43)
RESET(8,43)

140 S$=STRINGS$(2,143) : R$=STRINGS(2,128)

150 PRINT@293,R$; : RESET(100,11) : PRINT@307,S$; : SET(104,11)

160 N = 190 : GOSUB 290

1790 PRINT@293,SS$; : PRINT@307,R$; : RESET(104,11) : SET(100,11)

18¢ FOR X=71 TO 2 STEP -1 : P=X =~ 73 : Y=P * P / 150 + 12 :
SET(X,Y) : SET(X-1,Y)

467

SECTION ©

198 RESET(X+1,0) : RESET(X,0) : O = Y : NEXT X : PRINT@771, "KAPOW!"

200 RESET(1,45) : RESET(2,45)
210 N = 500 : GOSUB 290

220 PRINT@80O, "% O T"; : PRINT@840, STRINGS(35,176);
230 PRINT@840, ;
240 FOR I=1 TO 35 : PRINT CHRS$(128); : NEXT I

250 FOR I=1 TO 30 : RESET(83+RND(4*Z) ,41+RND(2*Z)~2%*1) : NEXT
260 FOR I=1 TO 30 : RESET(83+RND(6*Z) ,41+RND(4*Z)~-%*2) : NEXT
27¢ N = 1000 : GOSUB 296 : PRINT@771, STRINGS$(35,128);

280 NEXT Z : GOTO 10

290 FOR X=1 TO N : NEXT X : RETURN

Automatic Ticket Number Drawer

Like to make a big splash at the next Rotary Club, County
Fair, or other ticket drawing giveaway? This program uses
the random number generator to pick the lucky number(s) and
eliminate charges of stuffing the ticket box, besides giving the
whole affair some pizzaz. If your own number comes up and
you are charged with rigging the computer, you're on your
own.

1 REM * COPYRIGHT (C) 1982 BY D.A. LIEN. ALL RIGHTS RESERVED.,

3 REM <{<<<< AUTOMATIC TICKET NUMBER DRAWER >>>>>
19 CLS : RANDOM

20 REM * PICKS WINNER(S) BY DRAWING TICKET NUMBER *

30 REM * NO MORE THAT 32767 TICKETS CAN BE SOLD *

490 REM * BUT TICKET NUMBERS CAN RANGE TO 999999 & BEYOND *

5@ INPUT "THE LOWEST TICKET NUMBER IS" ; B

66 PRINT

70 INPUT "THE HIGHEST TICKET NUMBER IS " ; H

80 PRINT

99 E=H - B + 1

106 IF E<32768 GOTO 120

116 PRINT "TOO MANY TICKETS SOLD!"™ : END

12¢ INPUT "HOW MANY WINNERS DO YOU WANT " ; W
1390 CLS

140 IF W>E GOTO 280

150 PRINT : PRINT : PRINT : PRINT

160 PRINT " * AND THE WINNING?";
170 IF wW>1 GOTO 200

180 PRINT " TI CKET I S *"

196 GOTO 210

200 PRINT " TI CKETS ARE *"

216 PRINT

220 FOR N=1 TO W

468

*

SEGTION ©

230 Z = RND(E)

240 PRINT

250 PRINT TAB(12) ; ">————- >>> " ;2 +B-1

260 NEXT N

270 END

280 CLS : PRINT : PRINT : PRINT : PRINT : PRINT : PRINT
299 PRINT TAB(8) ; " YOU CAN'T HAVE MORE WINNERS THAN" ;
399 PRINT " ENTRIES - DUMMY !"

House Security

1 REM * COPYRIGHT (C) 1982 BY D.A. LIEN. ALL RIGHTS RESERVED. *
3 REM <<<<< HOUSE SECURITY >>>>>

19 CLS : DEFSTR A-E

20 PRINT "PLEASE ANSWER 'Y' OR 'N' TO THE FOLLOWING QUESTIONS:"
30 PRINT

4¢ INPUT "IS THE FRONT DOOR LOCKED"; A

50 INPUT "IS THE BACK DOOR LOCKED"; B

60 INPUT "IS THE KITCHEN WINDOW CLOSED"; C

79 INPUT "IS THE BEDROOM WINDOW CLOSED AND LOCKED"; D

80 INPUT "IS THE GARAGE DOOR LOCKED"; E

90 PRINT : PRINT

190 IF A="Y" AND B="Y" AND C="Y" AND D="Y" AND E="Y" THEN 130
119 PRINT "HOUSE NOT LOCKED UP FOR THE NIGHT."

120 PRINT : PRINT "CHECK FOR AN UNLOCKED DOOR OR WINDOW." : END
139 PRINT "HOUSE SECURITY CHECK SHOWS HOUSE LOCKED UP FOR THE NIGHT."
: END

Loan Ameortization

This program provides a fully developed installment plan for
the repayment of small-to-moderate size loans, such as car or
home improvement loans. It includes all instructions
necessary. Use it with common sense; in the last payment
period, amounts may be carried out to a fraction of a cent.

Challenge: modify the program to eliminate fractional-cent
payments, without changing the total amount paid as interest
or principal.

1 REM * COPYRIGHT (C) 1982 BY D.A. LIEN. ALL RIGHTS RESERVED, *
3 REM <<<<< LOAN AMORTIZATION >>>>>

16 C =0 : CLS : INPUT "PRINCIPAL"; P

2@ INPUT "# OF PERIODS"; L

3¢ INPUT "INTEREST RATE"; R

490 I =R/ 12 : I =1/ 109
50 T=1: FOR X=1 TO L
686 T=T™* (1 +I) : NEXTX : T=1/T

469

SECTION &

7 T=1-T
80 M=P*I/T
85 M = INT(M * 166 + .5) / 100

99 GOSUB 200
106 FOR 2=1 TO L
119 IF C<13 GOTO 128

115 INPUT "PRESS ENTER TO CONTINUE"; AS$: C = § : GOSUB 200

120 A = (INT(P * I * 108 + .5)) / 100

13 B=M-A: P=P - B

146 PRINT Z; : PRINT TAB(10); P; : PRINT TAB(20); M;
150 PRINT TAB(30); B; : PRINT TAB(48); A

166 C = C + 1 : NEXT 2

178 END

280 CLS : PRINT "PAYMENT REMAINING MONTHLY PRINCIPAL INTEREST"

210 PRINT "NUMBER PRINCIPAL PAYMENT PAYMENT PAYMENT"
220 RETURN

Slowpoke

The kiddies will enjoy this one. It tests reaction
time. When the computer says “GO”, you press the
key to stop it. Then it’s the next player’s turn to RUN
it. The Player who stops it on the smallest number
wins. Any player who gets a “SLOWPOKE” has to take the
dog for a walk.

With a little easy rework of the PRINT statements it can be
converted into a “drunkometer” reaction time tester.

To change the speed of the printing, you can add a short FOR-
NEXT loop between lines 110 and 120,

1 REM * COPYRIGHT (C) 1982 BY D.,A. LIEN. ALL RIGHTS RESERVED.

3 REM {<<<< SLOWPOKE >>>>>
16 PRINT " GET READY . + v ¢ ¢ o o o o o "
20 FOR B=1 TO 500 : NEXT B

30 PRINT : PRINT : PRINT

40 PRINT TAB(38), "GET SET . &+ o ¢ « o o o "
50 X = RND(1500)

60 FOR N=1 TO X : NEXT N

70 CLS

80 PRINT : PRINT : PRINT : PRINT : PRINT
98 PRINT TAB(380), "G O ! ! [

168 FOR Z=1 TO 18

110 PRINT 2

120 NEXT 2

136 PRINT : PRINT : PRINT

140 PRINT " S L O W P O K E"

150 FOR N=1 TO 1008 : NEXT N

470

*

SECTION 6

Test Grader Program

1 REM * COPYRIGHT (C) 1982 BY D.A. LIEN. ALL RIGHTS RESERVED. *
3 REM {<<<< TEST GRADER PROGRAM >>>>>

10 CLS : N = 10

2¢ PRINT "WOULD YOU LIKE TO INPUT THE ANSWER"

3@ PRINT "ONE AT A TIME OR 5 AT A TIME (ENTER 1 OR 5)":INPUT T
4¢ IF (T=1) OR (T=5) THEN 60

5¢ GOTO 30

60 INPUT "ENTER THE STUDENT'S NAME (LAST NAME, FIRST NAME)";AS$,BS
70 CLS : PRINT "TEST FOR " ; BS ; " " ; AS

8¢ RESTORE

9¢ R = @

166 FOR I=1] TO N STEP T

11¢ PRINT "ENTER ANSWER"; : IF T=5 THEN PRINT "S ";I;"THROUGE ";
120 PRINT I + T - 1 ;

139 IF T=5 INPUT AS(I),AS(I+1),AS(I+2),AS(I+3) ,AS(I+4) : GOTO 158
148 INPUT AS(I)

150 NEXT I

168 CLS

17¢ PRINT "RESULTS ON TEST FROM "; BS ;" "; AS ;":"

180 FOR I = 1 TO N

196 PRINT RAS(I),

209 READ Z$: PRINT 27§,

219 IF AS(I) = Z$ PRINT "CORRECT ";: R =R + 1

220 PRINT

230 NEXT I

24¢ PRINT "PERCENTAGE CORRECT:"; INT(R / N * 100 +.5)

25¢ PRINT : GOTO 68

260 DATA 5,3,A,D,C,E,T,T,F,T

471

‘‘ Appendix”’’

“WELL, YOUR. APPENDIX 1S SoMSWHAT ENLARGED,
BUT WEVE DECIDED TO LEAVE IT IN..”

:Ev ! m -
" SCIENCE Lemssl

472

APPENDIX A

Disk BASIC Systems

Doesn’t Everyone Have Disk?

You are fortunate to have a disk system. So you had to sell
the second car — — — you're really computing in style!

Unfortunately, having a disk system is of only marginal help to
the process of lerning Elementary and Intermediate
BASIC. Sort of like having your own Boeing 747 before
mastering a Cassna 150.

Our non-disk Model I readers must wrestle with slow and
marginally reliable cassette tapes to store their programs and
data. Model III users have a faster and fairly reliable
cassette system. Model II/16 users don’t have a cassette
option — — it's strictly disk. Since you have a highly reliable
disk system you may never experience the agony (and ecstasy?)
of making a cassette system work. Count your blessings!

There is no way we can more than BEGIN to cover your disk
system in this book. The book is long already, and DISK
BASIC, (Advanced BASIC), is covered in another CompuSoft®
book. All we can do here is get you up and running to meet
the rest of the class waiting at Chapter 1. When necessary,
we'll have little side messages or return to this Appendix for
special information.

Skip now to the section in this Appendix which deals with your
specific TRS-80.

Model I Disk BASIC System — Part 1

Hook up all the parts and pieces per the manual which
accompanies the system.

Turn the system ON in this order:

473

SECTION

Disk drives (switches in the back)
Expansion Interface (switch in center front)
The keyboard (switch on right rear)

Place the SYSTEM or DOS diskette (or a copy of it — — — see
the big system manual) in drive @ (the one closest to the
Expansion Interface on the disk drive cable) and close the
door. Then hit the button on the left rear of the
keyboard.

A Real Turn ON

If all the units are plugged into a Line Filter (RS #26-1451 is
highly recommended), use IT to turn on everything at the
same time. The disk drive(s) will whir, and the screen should
read:

TRSDOS — DISK OPERATING SYSTEM — VER 2.3

DOS READY

“DOS READY” tells us that we are at the SYSTEM or
COMMAND level. From here, we can do all sorts of things,
but our mission in this book is LEARNING BASIC. It will

take up the next 500 pages.

The most important thing we can do now at the system level is
load the BASIC language into the computers memory. Non-
disk systems use the BASIC language “interpreter” inside the
keyboard unit (Level II BASIC), but Level II BASIC does not
know how to SAVE and LOAD programs on the disk
drives. In order to use this capability, disk users must load
an expanded version of BASIC (DISK BASIC) into memory
from the TRSDOS diskette.

To do this, type:

BASIC < [LM35>

The computer responds with:

HOW MANY FILES?

474

APPENDIX A

Press:

SENTER B8
The computer asks:
MEMORY SIZE?
Press ENTER again, and the computer says:

RADIO SHACK DISK BASIC VERSION 2.2
READY
>

NOTE: If we had answered the 2 preceding questions in
certain ways we could do certain Advanced
things. We're still crawling, not yet even
walking, so we just avoided the questions by

pressing JULIR .

The screen finally tells us that our Model I is
ready to speak BASIC by saying:

READY
> —

Why Disk BASIC?

DISK BASIC has all the regular TRS-80 BASIC features plus a
few special disk COMMANDS. We will be concerned in this
book only with SAVE and LOAD and will learn about them in
due course.

Just because you have a disk system doesn’t mean you have to
start right off using DISK BASIC. If at this point you would
really rather learn the straight old BASIC like our non-disk
readers, you can shut it all down, disconnect the Expansion
Interface and drives, and chop the system down to minimum
size.

As an alternative, after turning on the system, press the
RESET button (located at the left rear of the keyboard) while
holding down the BREAK key. You will get a simple

MEM SIZE?

on the screen, and pressing will put you in non-disk
Level II BASIC.

Users with an older Model 1
will see MEMORY SIZE?

475

SECTION B

Neither of these options is especially recommended since you
do have the disk system. On the other hand, the next 500
pages are devoted to LEARNING TRS-80 BASIC and the

disks and other hardware are not that much help.
Turning the Disk System OFF
ALWAYS remove the diskette before turning the system
OFF. Punishment for failure to do so might be a “zapped”
disk, one with some of it’s information accidently erased.
If you have line filter #26 — 1451, simply turn the whole works
OFF by flipping its switch. If not, the switches must be
flipped in reverse order:

The keyboard first

Followed by the Interface

Followed by the disk drive(s)

Back To The Book
With the system still on and
READY
-
giving us our cue, let’s all mosey on back to Chapter 1 and meet

the rest of the gang LEARNING TRS-80 BASIC at DISK
FLAG #2.

476

Model I — Part 2

Suppose we want a LISTing of the program on a
diskette. The DOS command is

DIR
In order to use DIR we must leave BASIC and return to DOS
level. Typing DIR in BASIC simply gives us a SYNTAX
ERROR. BASIC doesn’t understand it.
When we leave BASIC for TRSDOS we may lose any program
in memory. The careful programmer will SAVE any program
of value before leaving BASIC. Exit BASIC by typing:

CMD''S"

We know we're back at DOS by

DOS READY

NOTE: A less sophistocated way to get to DOS is by simply
pressing the RESET key.

For a DIRectory listing of what’s stored on DRIVE 0 type:
DIR

If you have more than one drive, use this format:

DIR | (don’t forget the space)

for a directory of what’s stored on drive 1.

Quiz time! How do we get back to BASIC? Right! Just
type:

BASIC

Cycle completed.

APPENDIN A

477

SECTION D

Model II Disk BASIC System
Part 1

Unlike the other TRS-80’s, the Model II is designed soley
around disk storage of programs and data. It doesn’t even
know the meaning of the word cassette. There is no way we
can learn Model II BASIC without using it’s disk.

A Real Turn ON

We must use the diskette which came with the system, called
the DOS or SYSTEM diskette, to teach the computer to
understand BASIC before we can talk to it.

Referring to the reference manual which came with the
computer, plug it in. DO NOT insert a diskette yet. Turnon
the POWER switch.

Note: If you have the expansion bay with additional
drives, disconnect it first and insert the
“terminator” per the big thick reference
manual. We really have no need for more than a
single drive and can do without the extra
noise. If you want to leave the extra drives
connected, be sure to turn them ON before
turning ON the main computer, and OFF after
turning it OFF.

After giving itself a perfunctory check-up, the computer will
tell us to

INSERT DISKETTE

Place the SYSTEM diskette (or a copy of it) in the built in disk
drive. It’s label must be facing to the right. Close the door
by moving the vertical bar to the left, towards the red light.

The factory original DOS diskette should be used ONLY

to make working copies. See the DOS reference Manual
for the FORMAT and BACKUP procedures.

478

The disk drive(s) will whirr, and the screen will say
INITIALIZING

along with a message telling how much memory we
have. Momentarily it will display a title, a graphic insignia
symbolizing Tandy Towers, a copyright notice, and ask us for
the date:

Enter Date (MM/DD/YYYY)

Type in the date using this format:
09/28/19980 followed by the key.

The next question is:
Enter Time (HHMM.SS)........

We can either type the time in the format requested

08.24.35

or, if we want to skip the electric clock feature simply press
. Note that the Model II runs on a 24 hour system so
2:27 PM (for example) must be entered as 14.27.00.

The date and time are stored in memory for future reference,
but have little value to us in our early study of BASIC.

The computer responds with

TRSDOS };EADY

..

“TRSDOS READY” tells us that we are at the SYSTEM or
COMMAND level, not yet in BASIC. From here, we can do all
sorts of things, but our subject in this book is LEARNING
BASIC so that’s what will take up the next 500 + pages.

The Model II computer expects all its COMMANDS from us in
capital letters, so we have to humor it. Press the CAPS key
once and see that the red light in the key is lit.

The instructions which teach the Model II to speak BASIC are
found on the diskette. To send these instructions to the
computer we simply type:

BASIC

APPENDIR A

479

SECTION D

The computer responds with:
TRS-80 Model Il BASIC-80 Rev. |.2a
along with some other information and

READY
>

Ready is our signal that the computer is speaking BASIC and
we can use it like hundreds of thousands of other BASIC
speaking computers around the world.

Turn OFF

ALWAYS remove the diskette before turning the system
OFF. Punishment for failure to do so might be a “zapped”

disk, one with some of it's informmtion accidently erased.

Then, turn the main computer OFF, followed by the expansion
bay (if used), but not right now.

Back To The Book
With the system still ON and

Read
2 Y

giving us our cue, let’s all mosey on back to Chapter 1 and meet
the rest of the gang LEARNING TRS-80 BASIC at DISK
FLAG #2.

480

Model II — Part 2

Suppose we want a LISTing of the programs on a
diskette. The DOS command is

DIR
In order to use DIR we must leave BASIC and return to DOS
level. Typing DIR in BASIC simply gives us a ?SN
Error. BASIC doesn’t understand it.
When we leave BASIC for TRSDOS we may lose any program
in memory. The careful programmer will SAVE any program
of value before leaving BASIC. Exit BASIC by typing:
SYSTEM
We know we're back at DOS by

TRSDOS QEADY

..

For a DIRectory listing of what’s stored on Drive ¢ type:

DIR
If you have more than one drive, use this format:

DR | (don't forget the space)
for a directory of what’s on drive 1.

Quiz time! How do we get back to BASIC? Right! Just
type:

BASIC

Since the computer doesn’t understand the DIR command
while BASIC is in memory, and since going back and forth
between BASIC and TRSDOS is inconvenient, BASIC requires
that we use a slightly different procedure to execute DOS
commands while BASIC is active. Enter:

APPENDIX A&

481

SECTION O

SYSTEM"DIR"

to get a directory of drive @. Ah, yes. It's working like a
charm. If you have more than one drive, use:

SYSTEM"DIR 1" (don’t forget the space)
to get a directory of drive 1, for example.

Cycle completed.

482

Model IIT Disk BASIC
System — Part 1

A Real Turn ON

Turn the computer ON with the power switch located under
it's right side. The disk drive(s) will whir for a few
seconds. Place the SYSTEM diskette (or a COPY of it) with
it's label up, in drive @ (the bottom drive), and close the
door. Press the RESET button (the orange recessed button
on the right side of the keyboard).

The disk drives will whir again, and the screen will display a
title, a graphic insignia symbolizing the Model III computer,
the number of drives connected, a copyright notice, and ask us
for the date:

Enter Date (MM/DD/YY)!
Type in the date using this format:
09/28/90 followed by the key.
The next question is:
Enter Time (HH:MM:SS)?
Type in the time in this format:
P8:43:35

The date and time are stored in memory for future reference,
but have little value to us in our early study of BASIC.

The computer finishes with:

TRSDOS Ready

..

“TRSDOS Ready” tells us that we are at the SYSTEM or
COMMAND level. From here, we can do all sorts of things,
but our mission in this book is LEARNING BASIC. It will
take up the next 500 pages.

APPENDIX

A

483

SECTION D

The instructions which teach the Model III to speak Disk
BASIC are found on the diskette which we inserted. To send
these instructions to the computer we simply type:

BASIC

The computer responds with:
How Many Files?

Press:

The computer then asks:
Memory Size?

Press [{Il{IJ again, and the computer will respond with:
TRS-80 Model Il Disk BASIC Rev 1.3

along with more copyright information and finally:

READY
>

NOTE: If we had answered the 2 preceding questions in
certain ways we could do certain Advanced
things. We're still crawling, not yet even
walking, so we just avoided the questions

typing LY.
Why Disk BASIC

DISK BASIC has all the regular TRS-80 BASIC feature plus a
few special disk commands. We will be concerned in this book
only with SAVE and LOAD and will learn about them in due
course.

Just because you have a disk system doesn’t mean you have to
start right off using DISK BASIC. If at this point you would
really rather learn the straight old BASIC like our non-disk
readers, as an alternative, after turning on the system, press
the RESET button while holding down the BREAK key. This
option isn’t especially recommended since you have the disk
system. On the other hand, the next 500 pages are devoted to
LEARNING BASIC and the disks really aren’t that much help.

484

APPENDIX

If you choose this option, read “Turning The Disk System Off”,
below, exercises the option, then return immediately to
Chapter 1 to pick up the discussion at DISK FLAG #1.

Turning The Disk System OFF

ALWAYS remove the diskette before turning the system
OFF. Punishment for failure to do so might be a “zapped”
disk, one with some of it’s information accidently erased.

Then, turn the computer OFF, but not right now.

Back To The Book

With the system still on and

READY
<

giving us our cue, let’s all mosey on back to Chapter 1 and join
the rest of the group LEARNING TRS-80 BASIC at DISK
FLAG #2.

)

485

SEGTION D

Model III — Part 2

Suppose we want a LISTing of the programs on a diskette.
The TRSDOS command is
DIR
In order to use DIR we leave BASIC and return to TRSDOS
Ready. Typing DIR in BASIC simply gives us a Syntax
Error. BASIC doesn't understand it.
When we leave BASIC for TRSDOS we may lose any program
in memory. The careful programmer will SAVE any program
of value before leaving BASIC. Exit BASIC by typing:
CMD"'s”
We know we're back at DOS by

TRSDOS Ready

..

NOTE: A less sophisticated way to get to DOS is by simply
pressing the RESET key.

For a DIRectory listing of what’s stored on Drive 0 type:
DIR

If you have more than one drive, use this format:

DIR :| (don’t forget the space)

for a directory of what’s on drive 1.
Quiz time! How do we get back to BASIC? Right! Just
type:

BASIC

Since the computer doesn’t understand the DIR command

while BASIC is in memory, and since going back and forth
between BASIC and TRSDOS is inconvenient, there is a

486

BASIC command which allows us to read a diskettes
DIRectory without going to DOS.

CcMDD:0"

gives us a directory of drive 0. If you have more than one
drive, use:

CMD"D:1" (don’t forget the colon)
for a directory of drive 1.

Cycle completed.

APPENDIX A

487

Diskette Diagrams For

Appendix A

MODEL /il

DIAGRAM

LEAVE UNCOVERED TO
ALLOW DISK WRITES

WRITE PROTECT NOTCH

READ/WRITE NOTCH

MODEL i
DIAGRAM

Label LLeave Uncovered

for Write-Protection

Sector Hole Jacket Read/Write
Notch

COPYRIGHT (C) 1981 BY
D. A. Lien 8662 Dent Dr.
San Diego, CA 92119
All Rights Reserved

488

COVER FOR
WRITE-PROTECTION
WRITE PROTECT TAB

Cover to allow
Disk Writes

APPENDIX B:

ASCII Code Tables

ASCII code numbers between ¢ and 31 are used for special

control purposes in the TRS-80:

MODELSI & III

Code Function

0-7 None

8 Backspaces and erases current character

9 None

10-13 Carriage returns

14 Turns on cursor

15 Turns off cursor

16-20 None

21 Swap space compression/special characters
22 Swap special/alternate characters

23 Converts to 32 character mode

24 Backspace<Cursor

25 Advance<==Cursor

26 Downward ¥ linefeed

27 Upward 4 linefeed

28 Home, return cursor to display position (0,9)
29 Move cursor to beginning of line

30 Erases to the end of the line

31 Clear to the end of the frame

489

SECTION D

Appendix B: ASCII Code Table — Model I/ III

Decimal ASCII Decimal ASCII Decimal ASCH
Code Character Code Character Code Character
32 space 64 @ 95 -
33 ! 65 A 96 \
34 ” 66 B 97 a
35 # 67 C 98 b
36 $ 68 D 99 c
37 % 69 E 100 d
38 & 70 F 101 e
39 ’ 71 G 102 f
40 (72 H 103 g
41) 73 I 104 h
42 * 74 J 105 i
43 + 75 K 106 j
44) 76 L 107 k
45 — 77 M 108 1
46 . 78 N 109 m
47 / 79 0 110 n
48 0 80 P 111 0
49 1 81 Q 112 p
50 2 82 R 113 q
51 3 83 S 114 r
52 4 84 T 115 s
53 5 85 U 116 t
54 6 86 \Y 117 u
55 7 87 w 118 v
56 8 88 X 119 w
57 9 89 Y 120 p'e
58 : 90 Z 121 y
59 ; 91 for| 122 zZ
60 < 92 Yor/ 123 {
61 = 93 ==or | 124 \
62 > 94 =or\ 125 }
63 ? 126 -

NOTE: Codes 96 thru 126 for the TRS-80 represent the lower-
case forms of 64-95; however, only upper case characters are
displayable on standard Model I machines.

490

Appendix B: ASCII Code Table — Model I1

Code Character

Dec. Hex.

00 00

01 01 Turns on blinking cursor

02 02 Turns off cursor

03 03

04 04 Turns on steady cursor

05 05

06 06

07 07

08 08 Backspaces cursor and erases
character

09 09 Advances cursor to next 8-character
boundary

10 0A Line feed

11 0B

12 0C

13 0D Carriage return

14 OE

15 OF

16 10

17 11

18 12

19 13

20 14

21 15

22 16

23 17 Erases to end of line

24 18 Erases to end of screen

25 19 Sets white-on-black mode

26 1A Sets black-on-white mode

27 1B Clears screen, homes cursor

APPENDIX

491

Model II (Continued)

Code Character
Dec. Hex.
28 1C Moves cursor back
29 1D Moves cursor forward
30 1E Sets 80-character mode and clears
Display
31 1F Sets 40-character mode and clears
Display
32 20
33 21 !
34 22 ”
35 23 #
36 24 $
37 25 %
38 26 &
39 27 ’
40 28 (
41 29)
42 2A *
43 2B +
44 2C ’
45 2D -
46 2E .
47 2F /
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A :
59 3B ;
60 3C <
61 3D =
62 3E >
63 3F ?
64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
492 71 47 G

Model II (Continued)

Code Character
Dec. Hex.
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N
79 4F 0
80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T
85 55 U
86 56 \Y
87 57 w
88 58 X
89 59 Y
90 5A Z
91 5B [
92 5C \
93 5D |
94 5E A
95 5F —
96 60 \
97 61 a
98 62 b
99 63 c
100 64 d
101 65 e
102 66 f
103 67 g
104 68 h
105 69 i
106 6A j
107 6B k
108 6C 1
109 6D m
110 6E n
111 6F 0
112 70 p
113 71 q
114 72 r
115 73 S
116 74 t

493

494

Model II (Continued)

Code Character
Dec Hex
117 75 u
118 76 v
119 77 w
120 178 x
121 79 y
122 7A z
123 7B {
124 1C !
125 17D }
126 TE ~
127 TF +
128 80 £
129 81 1
130 82 4
131 83 3
132 84 T
133 85 1
134 86
135 87 i
136 88 T
137 89 |
138 8A <
139 8B
140 8C)
141 8D $
142 8E 4
143 8F +
144 90 .
145 91 a
146 92 '
147 93 i
148 94 i
149 95]
150 96 -
151 97 -
152 98 -
153 99 =
154 9A a8
155 9B B
156 9C I
157 9D i
158 9E |
159 9F 4
160 A0
161 A1l !
162 A2 "

Model II (Continued)

Code Character
Dec. Hex
163 A3 #
164 A4 $
165 A5 %
166 A6 &
167 AT ’
168 A8 (
169 A9)
170 AA *
171 AB +
172 AC ’
173 AD —
174 AE .
175 AF /
176 BO 0
177 B1 1
178 B2 2
179 B3 3
180 B4 4
181 B5 5
182 B6 6
183 B7 7
184 B8 8
185 B9 9
186 BA :
187 BB ;
188 BC {
189 BD =
190 BE }
191 BF ?
192 Co @
193 C1 A
194 C2 B
195 C3 C
196 C4 D
197 C5 E
198 Cé F
199 c7 G
200 C8 H
201 C9 I
202 CA J
203 CB K
204 CC L
205 CD M
206 CE N
207 CF 0
208 DO P

495

496

Model II (Continued)

Code Character
Dec Hex
209 D1 Q
210 D2 R
211 D3 S
212 D4 T
213 D5 U
214 D6 \%
215 D7 w
216 D8 X
217 D9 Y
218 DA Z
219 DB [
220 DC \
221 DD]
222 DE A
223 DF —
224 EO !
225 E1 a
226 E2 b
227 E3 c
228 E4 d
229 E5 e
230 E6 f
231 E7 g
232 ES8 h
233 E9 i
234 EA j
235 EB k
236 EC 1
237 ED m
238 EE n
239 EF o
240 Fo
241 Fi
242 F2
243 F3
244 F4
245 F5
246 Fé
247 F7
248 F8
249 F9
250 FA
251 FB
252 FC Moves cursor left
253 FD Moves cursor right
254 FE Moves cursor up
255 FF Moves cursor down

APPENDIX C

The Expansion Interface
(Model I Only)

The TRS-80 can be connected directly to one Cassette
Recorder and one additional device such as the Radio Shack
Screen Printer. To use additional devices it becomes neces-
sary to connect a “Black Box” that provides additional INPUT/
OUTPUT jacks and can “talk” to each device. The TRS-80
Expansion Interface is such a box. It incorporates circuit
cards which generate the necessary control signals, and has
INPUT/OUTPUT jacks to operate up to four mini floppy
drives, one printer, and two cassette recorders.

The Expansion Interface also has a digital clock circuit that
can be read either by a machine language program (available
free from Radio Shack) or the TRS-80 Disk Operating System
(TRSDOS). Space is provided within the unit to install an
additional circuit card to meet other specialized needs such as
interfacing with RS-232 devices. Its most common use
however is as a place to add an additional 16K or 32K bytes of
memory, which adds to the 16K already inside the main
computer case.

Setting It Up

Remove the Expansion Interface from its carton along with
the ribbon cable, power supply, instruction book and other
goodies. Some units are supplied with a buffer (a plastic box
with ribbon cable attached at both ends) which is easily
damaged if not handled carefully, or an extra DIN plug/jack
assembly for connection between the Interface and the
Computer.

Installing The Power Supplies

Remove the power supply compartment cover (located on the
top right hand side of the Interface as you face it) by removing

(See Figure 1 — Power
Supply Cover)

497

SECTION D

the three Phillips-head screws. Connect one Power Supply
cable’s 5-pin DIN plug to the matching 5-pin DIN connector on
the edge of the printed circuit board. Place this power supply
inside the Expansion Interface, closest to the front.

Notice that space is provided in the Interface compartment for
two power supplies. This enables you to place the
Computer’s power supply out of sight along with the one for
the Interface. If you choose to place the Computer’s power
supply in this compartment, route its cables thru the door
cutouts in back. Connect the DIN plug to the power jack on
the Computer as usual. Replace the power supply cover door
on the Expansion Interface, being careful not to damage the
case by over-tightening the screws.

Positioning The Expansion Interface

Place the Expansion Interface behind the TRS-80 Computer
with the identification plate facing the Computer. The
following tasks must be accomplished before plugging in A.C.
power cables from the Computer power supply, Expansion
Interface power supply, and any accessories.

Lift the little door covering the Expansion Port Connector on
the TRS-80’s left rear panel and slide it slightly to the right —
then lift it up and away from the Computer. (Be careful not to
break the little tabs.) Attach one end of the Expansion
Ribbon Cable to this Expansion Port. It isimportant that the
ribbon cable extends downward, out the bottom of each edge
connector.

Units supplied with the buffered cable have arrows on the
Buffer Box indicating which connector to attach to the
Computer and which to the Expansion Interface. With
nonbuffered cables you may use either end. Attach the
curved door onto the Computer case. It should close, allowing
the ribbon cable to feed out between it and the case.

Finally, attach the Expansion Ribbon Cable connector to the
Bus jack located to the left of the push-button power switch on
front of the Expansion Interface.

Turning It On

After all connections have been made and double checked, plug

498

(#1 in Figure 1)

the A.C. power plugs from the two power supplies, plus the
Video Display unit into an A.C. outlet. If you spring for a
3-wire power strip with switch, pilot light and circuit breaker
(about $20), you will find it to be a great convenience and well
worth the money. Turn on the Video Display unit, Expansion
Interface, and, while holding down the BREAK key, turn on
the TRS-80 Computer.

If MEMORY SIZE? is not displayed on the video monitor, turn
off the Interface. Power up the Computer first, then turn on
the Interface. The MEMORY SIZE? question should appear
and you can respond to it as usual.

Another Gimmick

If you are not interested in using dual cassettes because you
have no need for data storage, or you are using the Disk
system, you can still make use of the cassette switching relay
in the Expansion Interface as a noise generator for special
effects. (Most expensive New Year’s Eve noise maker in the
house!)

Each time the Computer switches from casette #1 to cassette
#2 and back again, you'll hear a clicking sound. By increasing
the switching speed, the slight click-sound becomes a buzz
easily heard by all. Using the relay in this manner is not
recommended if you intend to use the dual cassette feature in
the future because you are reducing the life expectancy of the
relay. Think of it as opening and closing your car door
several hundred times each time you get in the car. Before
long, either the door hinges or your arm will fail. (More
probably the smog devices!)

Now that you know the pitfalls, try this program to hear the
“buzzer” in action. Before RUNning, be certain both
Recorders are disconnected from the Interface, to prevent
possible damage to them, or a possible fusing together of the
relay contacts.

1§ REM BUZZER GENERATOR

2@ PRINT "PRESS'B' TO HEAR THE BUZZER"

3¢9 A$=INKEY$: IF A$= "B" GOTO 5§

49 GOTO 3¢

APPENBIX G

(MEM SIZE? for new

ROMS.)

499

SEGTION b

560 FOR X = 1 TO 50

60 POKE 1430¢8,1

70 POKE 14308,0

80 NEXT X

99 FOR X =1 TO 160 : NEXT X

160 GOTO 30

By setting bit @ at address 14308 to 1, and then to § in lines 60
and 70, the relay in the Interface switches back and forth
between Cassette #2 and Cassette #1 respectively. This
sound can be “tuned” somewhat by changing the relay
switching-time in line 50 to generate the special effects used in
game programs like Pong, Submarine, etec. ...

Figure 1 shows the additional hookup points to the Expansion
Interface. Note that connection point #3 is used for hooking
to Radio Shack’s line printers. Smaller printers which can be
hooked directly to the TRS-80 bus, are connected at point #2,
which is a direct extension of the TRS-80 bus.

The DIN jacks in the back will be discussed in more detail in
the chapter dealing with dual cassette operation. Point #8,
front and center, is used to connect to the optional RS-232
interface board.

Figure 1 Expansion Interface

ON/OFF

500 #1

\(Power Supply Cover

Power Supply Cord

APPENDIR

Use the utmost care in hooking up to these ports. Triple
check to see that the right end of the cable is being used and
that the cable always feeds downward from the
connector. I've seen these interfaces and peripherals “buy
the farm” when the user was experimenting with what should
go where, and how — with the power ON. (No, it wasn’t
me . .. this time!)

LLIST and LPRINT

These BASIC Commands/Statements are almost too easy.

LLIST is typed at the command level when you want a
listing on the printer

LPRINT is used in a program when you want the
program to print something on the printer.

Both can be used either as statements or commands. If you
want to print both on the screen and on paper, use duplicate
program lines, with PRINT in the one for the screen, and
LPRINT for the printer.

Enter any program of your choice and convert it to LPRINT
the results on your printer. Make a “hard copy” LLISTing of
it.

If you accidentally precede either PRINT or LIST with the
letter L and don't have a printer connected, there may be
trouble. It’s especially easy to have a simple LIST turn into
LLIST if the L key bounces. If an Expansion Interface is not
connected, a simple RESET will make things OK again.

If an Interface IS connected, it automatically assumes (right or
wrong) that Disk drives are also connected and won’t let you
do a simple RESET. You either have to hook up a printer and
let it accept the information directed its way by the LLIST or
LPRINT, or press RESET (with the BREAK key down), losing
your program in the process.

If you have an Interface, you should do frequent dumps to
cassette tape when developing new programs — just in case.

LPRINT TAB

We can only TAB as far as position 63 using LPRINT. To go

Photo courtesy of Epson
America

G

501

SEGTION D

beyond that point it is necessary to resort to devious means.

We can recall that PRINT STRINGS$ is used to repeat a
number of characters or actions. We can use it to sneak
around the above rule by having it repeat a number of
spaces. For example:

14 LPRINT STRING$(75,32);X

will “print” 75 blank spaces before printing the value of
X. “382” is the ASCII code for a blank space.

Advanced LPRINT Capabilities

5 different ASCII codes are set aside for use with
printers. Since different printers respond differently, we can
only talk here in general terms, and learn how to test our own
printer to see how it responds. The 5 codes are:

10 line feed and carriage return
11 roll paper to top of next sheet
12 roll paper to top of next sheet
13 line feed and carriage return
138 carriage return and line feed

To see what this all means, hook up your printer (assuming you
have one ... if not, guess you can stay with us and read on).
Then enter this program:

1 CLS:PRINT
19 INPUT "ENTER A CODE NUMBER";N
2@ LPRINT CHR$ (N)

98 PRINT : LIST
and RUN

Try each of the codes and see what happens. Some codes may
do nothing. Your printer’s manual may have additional (or
replacement) codes.

There are no universal rules. Keep your test program simple

and be aware that LPRINT with CHR$ is not always
predictable when mixed on the same program line.

502

With the new ROM we can
TAB to 127.

The “top of form” or “top of next sheet” feature is a necessary
one for using the printer to prepare printed statements, or
printing information which must always start at the top of a
page. Users with “continuous roll” printers have little need
for a “top of form.”

When your Computer is turned on, if it’s going to do any
printing, it automatically assumes it will be printing 6 lines per
inch on sheets of paper 11 inches long, 66 lines per page. This
information is stored in memory location 16424. Type:

>PRINT PEEK (16424)
and we should get back the number
67

That's one more than the number of lines to be
printed.

If we use a different size paper, we can change the number of
lines for that page by POKEing in a different number.

Suppose we are printing on paper that is 8 inches long. 8
inches times 6 lines per inch = 48. 48 + 1 = 49. We will:

> POKE 16424,45

In order for the “top of page” feature to work, it is also
necessary for the Computer to keep track of how many lines
have been printed on each page. This information is stored in
memory location 16425. Let’s PEEK:

>PRINT PEEK (16425)

and we'll get a number, the size of which depends on
how many lines have already been printed. That
will vary with how much experimenting we’ve been
doing, and with which code.

The difference between how many lines can be printed on a
page (memory location 16424) and how many have been printed
(memory location 16425) tells the Computer how many have
yet to be printed before starting the top of a new page. It's
all very simple, in principle.

We can even POKE a 1 into location 16425 at the beginning of

APPENDIX G

503

SECTION D

our program to initialize the counter. Each time we use a
“form feed” code (11 or 12), the counter is reset back to 1 for a
new page.

With a little experimenting, you will have your big printer
doing what you paid to have it do.

Photo courtesy of Epson
America

504

Time Out

The Real Time Clock

The Expansion Interface has one additional feature — a Real
Time clock. “Real Time” means “now” time. It contains a
real clock, the time being controlled by an internal quartz
crystal. In addition, that clock can be accessed (gotten to) by
software (programs) and used to serve as an event-timer or
master clock to control events. Up till now we've used simple
FOR-NEXT loops to approximate times — satisfactory only
over a short period.

The Level II ROM does not have the software built in to
activate and control the clock. In order to use it, we must
load in a machine language program from a tape furnished free
by Radio Shack. It’s on the same tape as the keyboard
“debounce” program which we have learned to load in earlier.
Chapter 22.

POKEing The Big Machine

Tighten your belt and put on the helmet. We are going to
RAM the line — with finesse.

To load the REAL TIME CLOCK program we’ll need a
cassette recorder connected to the keyboard. Power up the
Computer and Expansion Interface. Since this entire book is
about Level II, what follows does not apply to the Interface
when used with floppy disks. The disk system has its own
debounce routine which is activated automatically, as well as a
clock routine that can be activated without going thru what we
are about to do.

When the Computer asks

MEMORY SIZE __

Answer with:

APPENDIX G

505

SEGTION O

65400 if you have 48K of RAM
49016 if you have 32K of RAM
32632 if you have 16K of RAM
20344 if you have 4K of RAM
to leave room at the “top” of memory for both the
keybounce and clock routines. (Users with either 4
or 16K of RAM would obviously be using the
Interface box for something other than to hold extra
memory ...there might be some of them,
somewhere.)
The screen will verify we are in Level II BASIC and say
READY
>
We enter the SYSTEM mode by typing
SYSTEM
and following the
*? we type
RELO
the name of the machine language program we want

to read from Radio Shack’s tape.

Set up the recorder to play the KEYBOARD DEBOUNCE/
REAL TIME CLOCK SYSTEM * RELO tape

and press

After a time, the usual asterisks will appear in the upper right
hand corner, followed by another

«? to which we respond

JA ENTER

506

APPENDIX @

The Computer wishes to engage us in rather extensive dia-

logue, saying:

TRS-80 RELOCATING LOADER
BASE = (a hexadecimal number)
+

Ignoring it all, we charge blindly onward, and confidently
press the single letter

S and watch the screen. The recorder rolls, and up
comes

KB DEBOUNCE ROUTINE.
plus another

+ to which we say

L (Doesn’t really matter for now what all this means.
That’s for another time, place, and specialized book.
There are some hints as we go along, but not enough
to divert us from the main thing we're trying to
learn right now.)

Persistent, it is, and it chatters
LOCATING RELOCATION DIRECTORY.

LOADING RELOCATABLE CODE.
RELOCATION COMPLETE, BASE = (another HEX number)

This time we have to write down that HEX number since we
will need to use it very soon. (If you have 32K of RAM you
should get the number BFC8.) Again we see a

+ and with equal persistence we say again

S (meaning Search for the next machine language
program)

It says “I found it, and its name is”

REAL TIME CLOCK
+

Again we say “don’t just sit there using up juice, LOAD it” and

Since we don't need this
routine with the new ROM,
skip to the 4th line of the
next page.

507

SECTION B

type an
L
It repeats itself in a computerlike monotone, saying:

LOADING RELOCATION DIRECTORY.
LOADING RELOCATABLE CODE.
RELOCATION COMPLETE, BASE = (another HEX number)

Yes, we have to write this HEX number down, too. Don’t get
the two mixed up! (32K RAM users should get
BF7A.) Seeing another

+

we decide we've had enough of this chatter, and elect to
Escape to BASIC by typing

E and see the welcome

READY
>

Whew! Another close scrape with machine language!

But there is more work to be done. We first have to activate
the KEYBOARD DEBOUNCE routine. (Yes, this is a lot
more work than just LOADing KBFIX, as we did earlier.)

Turning to our HEX number notes, we look up the BASE of
the DEBOUNCE routine. What do you have? 32K users got
BFC8. Going to the HEX-to-Decimal conversion chart on the
next page, we convert BFC8 to a decimal number. Follow me
through this example:

Working from left to right:

B = 45056

F = 3840

Cc= 192
Add them all together and they spell

8 = 8

49096

508

(BFB1 with new ROM)

New ROM users skip to:
READY
P —

on page 510.

HEX | Most Significant Bytes | Least Significant Bytes
CODE| 1V 11 11 1

0 0 0 0 0

1 4096 256 16 1

2 8192 512 32 2

3 12288 768 48 3

4 16384 1024 64 4

5 20480 1280 80 5

6 24576 1536 96 6

7 28672 1792 112 7

8 32768 2048 128 8

9 36864 2304 144 9

A 40960 2560 160 10

B 45056 2816 176 11

C 49152 3072 192 12

D 53248 3328 208 13

E 57344 3584 224 14

F 61440 3840 240 15

Hex-to-Decimal Conversion Chart

Decimal Value =IV+III+1I1+1

APPENDIX ©

509

SEGTION D

Now, if you don’t see how we got that, STOP right now and
don’t go on until you figure it out. We can’t continue without
knowing how to make these conversions.

OK, the BASE of the KEYBOARD BOUNCE routine is at
memory location 49096. We have to increase that number by
one, then go back into machine language to activate the pro-
gram.

Living with real gusto, we leap at the keyboard and type
SYSTEM
followed by

*? /49097
then flee to the safety of

READY
> —

Closing in on the REAL TIME CLOCK, it’s sweaty palms all
the way. No way to avoid this machine language biz.

Look at the second HEX number you wrote down. It is the
BASE of the CLOCK routine, and we must increase it by one,
then get tricky. What number did you get? 32K users got
BF7A. One number larger than BFTA must be BF7B. Look
at the chart, if necessary.

Having made that startling discovery, we now have to split our
HEX number into 2 parts — the most important, and the least
important. (You know, things like this could easily give
computers a bad reputation as being unnecessarily complex!)

Anyway, since the little numbers are always on the right, we
say

7B represents the least significant bytes
and, by uncanny reasoning, we conclude
BF must represent the most significant bytes

Now we get to convert them separately to decimal. Sticking
with our 32K RAM example (you do your own thing if you have
4K, 16K or 48K of RAM — the example here illustrates the
principle):

510

For new ROM,
BFB1 + 1 = BFB2

APPENDIX @

Isb = 7B = 112 + 11 = 128 decimal
msb = BF = 176 + 15 = 191 decimal

Terrific! What are we supposed to do with that? The
fastest way to the answer is to type in this program, study it
carefully, then RUN it.

14 REM * REAL TIME CLOCK PROGRAM *

2¢ CLS : PRINT "WE HAVE TO START BY
SETTING THE CLOCK" : PRINT

3¢ INPUT"WHAT IS THE HOUR ";H

49 INPUT"WHAT ARE THE MINUTES ";M

5¢ INPUT"WHAT ARE THE SECONDS ";S : CLS

199 POKE 16481,H ‘* POKES IN THE
STARTING HOUR
119 POKE 1648¢,M ' POKES IN THE
STARTING MINUTES
124 POKE 16479,S ' POKES IN THE
STARTING SECONDS
150 POKE 16526,123 ' SETS UP LSB FOR
A CALL FROM USR
168 POKE 16527,191 ' SETS UP MSB FOR
A CALL FROM USR
288 X = USR(1) 'USR(1) STARTS CLOCK,

USR(@) STOPS
3¢9 PRINT@5, "HOURS","MINUTES", "SECONDS"
5¢¢ PRINT@7@,PEEK(16481) ,PEEK(16488),
PEEK(16479)
9999 GOTO 5g¢

See how our LSB and MSB fit in Lines 150 and 160? Memory
locations 16479-81 hold the time, as seen in Lines 100-120.

Pretty slick, eh? It’s a minimum sort of program, but its
expansion is limited only by your own imagination. As a
starter, let’s change line 500 and add 510:

5¢9 H=PEEK(16481) : M=PEEK(1648§)
: S=PEEK(16479)
514 PRINT@78,H,M,S

and RUN.
The modified program assigns variables on the hour, minute

and second, giving us a means to compare them against other
numbers. Add these lines:

511

SECTION D

6f¢ REM * USE OF LOGIC WITH REAL TIME CLOCK *
616 IF H = 12 AND M = 35 AND S = 52 THEN 1§g8
798 GOTOS58@
1g@@ REM * A ROUTINE NEEDED HERE TO
THROW THE BIG SWITCH *
1¢1¢ PRINT "HYDROTURBINE #7 STARTUP
SEQUENCE INITIATED"

and RUN.

Combining real time with program logic presents possibilities
that boggle the mind. (To learn how to actually “throw the
big switch” see Controlling The World With Your TRS-80. It
is an entire book dedicated to designing, constructing and
controlling hardware with BASIC software, and is made to
order for those interested in this sort of thing. Published by
CompuSoft® Same author. Ahem.)

RUN again, with this change:
1914 PRINT@458, "HYDROTURBINE #7 STARTUP SEQUENCE INITIATED"

But there’s more! Add these lines:
2068 REM * LOGS ACTIVITIES ON CASSETTE TAPE *

2010 T =T + 1 ¢ IF T => 2 GOTO 500 ' ONLY ONE WRITE TO TAPE
2020 X = USR(P) ' SHUTS OFF CLOCK

2030 C = 71 ' LET CODE 71 MEAN TURBINE #7 STARTUP
2040 PRINT #-1,C,H,M,S ' LOG EVENT AND TIME ON TAPE

2050 PRINT@648, "EVENT LOGGED ON TAPE"

2060 X = USR(1) ' TURN CLOCK BACK ON

Refer to Appendix G for
more information on
PRINT#—1 and INPUT#—1.

Now insert a blank tape into your recorder, set to record
and RUN.

Wow! Now we can maintain a log on tape of every event that
occurs at the old powerhouse. It will be no problem at all to
write a little program to INPUT that DATA back off tape and
print on the screen or a printer.

You're wondering what lines 2020 and 2060 are all
about? Well, the Real Time Clock, both in Disk and non-Disk
systems, really screws up cassette operation. It’s a technical
problem which will hopefully be solved in future models. The
clock must be turned off in order to do tape INPUTs and

512

APPENDIX ©

SAVEs. Don’t try to CSAVE a program without first
shutting off the clock (otherwise it won’t take). Fortunately,
the clock can be readily turned OFF and ON, both with
program statements and at a command level by using

X =USR(0)

to turn it off
X =USR(I)
to turn it back on

In the process, some time is lost, and the clock will fall behind a
bit. If every second is really that precious in your application,
you could note that we lose about 5 seconds each time we log
an event on tape. Can you think of an easy way to add 5
seconds to the time after such logging? Sure you can.

On the brighter side, if program execution is STOPped with a
STOP statement or the BREAK key, the clock keeps running
even tho the time isn’t displayed on the screen. Typing
CONT will resume program execution and the clock will be
right on time.

Since the clock does not reset to zero at the end of 12 hours,
you might say it’s a 24 hour clock. Since it doesn’t reset at the
end of 24 hours either, maybe it's more of an elapsed time
clock. In any case, if you want these resets, they have to be
accomplished in the program software — not a very difficult
task.

The final Coup de Grace (our French speaking readers like a
little of that sort of thing. Wonder what it means?) for this
Chapter is the automatic logging of events on your printer. If
you don’t have a printer yet, beware of line 1120, since
execution freezes until a printer accepts that line. Just put a
REM there if you don’t have a printer.

1100 REM * LOGS ACTIVITIES ON PRINTER *

111 N =N+ 1 : IF N => 2 GOTO 508 ' PRINT ONLY ONCE
1129 LPRINT "TURBINE #7 STARTUP BEGAN AT ": H; M; S
1130 PRINT@584, "EVENT LOGGED ON PRINTER"

So, cock the recorder, turn on the printer, set the clock at a

little before 12:35:52, and stand aside.

513

SEGTION B

49...50...51...52 KERCHUNK!!! There goes the big
turbine ...it’s winding up! Ratatatatata, the printer is
getting it all down. Hmmmmmm Hmmmmmm Hmmmmmm,
round and round go the tape hubs. Yep...the video screen is
reporting the action.

RUN it again, Sam...RUN it again! (as Wagner’s euphoric

“Ride of the Valkerie” swirls in our head).
®

®
[]
Breathes there a man with soul so dead, who never to himself

has said ...
®

“This must be how good the old sow feels wallowing in wet
mud on a hot day.”

MUSIC: Up and out.

514

Dual Cassette Operation

With the Expansion Interface’s dual cassette feature, it is pos-
sible to Write and Read data to and from tape using two sep-
arate and independent cassette recorders. (A similar feat can
already be performed without an Interface using one recorder
and two cassette tapes, but it can be tedious to the point of
being impractical.) Two recorders, one set to PLAY and the
other to RECORD, provide a practical, reliable and economical
way of using your TRS-80 to perform genuine “Data
Processing.”

Setting Up For Dual Cassettes

Connect the Tape Interconnection Cable (the one with a 5-pin
DIN plug on each end) from the Computer’s TAPE jack to the
Expansion Interface cassette INPUT/OUTPUT connector (the
DIN connector located on the back panel next to the power
cables — Point #7). Connect the DIN plug from a Cassette
Recorder (designated as #1) to the DIN jack on the Interface’s
back panel located next to the Disk port — Point #5. The
other end of this cable should be connected to the Cassette
recorder as normal.

Figure 2

#1

APPENDIX

G

515

SECTION D

Connect the cable from the second Cassette Recorder (desig-
nated #2) to the remaining DIN jack on the Interface back
panel. (The center DIN jack, point #6.)

Now that the dual cassette connectors on the Expansion
Interface have been identified, attach stick-on labels to the
back of the Interface case (above each connector) to save time
trying to identify them again in the future.

Enter this program to verify that the two Recorders are con-
nected properly and are ready for use. Position the recorders
with the access doors open so you can see the drive
spindles. It helps to leave the cassettes out at this
time. Press the PLAY key on each, and RUN.

14 REM * DUAL CASSETTE TEST *

2f CLS : PRINT "TYPE '1' TO RUN CASSETTE #1"

3¢ PRINT "TYPE '2' TO RUN CASSETTE #2"

40 N$ = INKEY$: IF N$ = "" GOTO 48

5¢ IF VAL(N$) 1 THEN PRINT#-1,1

68 IF VAL (N$)

2 THEN PRINT#-2,1

79 GOTO 48

Alternate between pressing the “1” key and “2” key. Watch
the drive spindles on both Recorders to see that each is
operating as we have instructed. If you use CTR-80’s, watch
for the red light as well.

When using the Interface, the recorders can be addressed
individually. Number 1 is identified as #1 and number 2 is
#—2. Any combination of both on PLAY, both on RECORD,
one doing each or both doing neither can be used.

When CLOADing and CSAVEing, if neither recorder is speci-

fied, #1 is automatically assumed. The correct way to specify
each is:

CSAVE#-1,"A" or CSAVE#-2,"A"
and
cLoaD#-1,"A" O CLOAD#-2,"A"

516

Refer to Appendix G for
more information on
PRINT#~1 and INPUT#—1.

#*sNEW ROM NOTEs#

The cassette statements
INPUT#, PRINT# and
CSAVE# work as described
on both recorders. CLOAD
with the new ROM works
only with recorder #1.

APPENDIN

To check for a good load, use either

CLOAD#-1, 7" A" or CLOAD#-2, 1"A"

CLOAD? by itself will automatically default to test for a good
load on the first program encountered on drive #1.

In Appendix G we have a program for logging Temperature

and
our

Humidity. We're going to use it now — first to refresh
memory on how to use a single cassette, then modifying it

to use twin cassettes.

The program is reprinted here for your convenience. If you
already saved it on Tape, CLOAD it in. If not, start typing.

10

20

40

50

60

70

80

100
110
12¢
130
140
160
170
180
19¢
195
200
210
300
310
320
330
340
358
400
410
420
430
440
450
460
47¢
480
490
500
520
530

REM * TEMPERATURE AND HUMIDITY RECORDING PROGRAM *
REM * DATA STORAGE MUST START ON THE 1ST DAY OF MONTH *

CLS : INPUT "WHAT DAY OF THE MONTH IS IT"; D

INPUT "WHAT IS TODAYS TEMPERATURE"; T

INPUT "WHAT IS TODAYS HUMIDITY"; H
PRINT : PRINT

IF D = 1 GOTO 43¢ 'ON FIRST DAY IS NO PRIOR DATA
REM * INPUTTING DATA STORED ON CASSETTE TAPE *

PRINT "WE MUST LOAD PRIOR DAYS TEMP & HUMIDITY FROM"

PRINT "THE DATA TAPE., BE SURE IT'S REWOUND AND THE RECORDER"
PRINT "IS SET TO 'PLAY'.," : PRINT : PRINT

INPUT "PRESS 'ENTER' WHEN EVERYTHING IS READY TO GO."; AS$

CLS : PRINT "DATA IS NOW FLOWING INTO THE COMPUTER FROM TAPE."

PRINT : PRINT : PRINT "DATE", "TEMP", "HUMIDITY" : PRINT
FOR X =1 TOD - 1

INPUT #-1, Y, Z 'BRINGS IT IN FROM TAPE
PRINT X, Y, Z '"PRINTS IT ON THE SCREEN
B=B+Y:C=¢C+ Z "KEEPS RUNNING TOTALS

NEXT X

REM * MONTHS AVERAGES TO-DATE *

B = (B+T)/D : C = (C+H)/D 'COMPUTES THE AVERAGES

PRINT D, T, H

PRINT : PRINT " * THIS MONTHS AVERAGES &0

PRINT TAB(7); "TEMP"; TAB(17); "HUMIDITY"

PRINT TAB(7); B; TAB(19); C

REM * STORING TODAYS TEMP & HUMIDITY ON TAPE *

PRINT:PRINT: INPUT "PRESS 'ENTER' WHEN READY TO CONTINUE";AS$
CLS : PRINT : PRINT

PRINT "TODAYS TEMPERATURE AND HUMIDITY WILL NOW BE PRINTED"
PRINT "ON THE DATA TAPE., BE SURE 'RECORD' & 'PLAY' ARE"
PRINT "PRESSED. DO NOT REWIND THE TAPE, YET." : PRINT
INPUT "WHEN ALL IS READY, PRESS 'ENTER'"; AS$: CLS

PRINT "TODAYS DATA IS NOW FLOWING FROM THE COMPUTER TO THE"
PRINT "TAPE. WE WILL INPUT THIS PLUS THE EARLIER DATA"
PRINT "TOMORROW." : PRINT

PRINT #-1, T, H "PRINTS TODAY'S DATA ON TAPE
PRINT "TODAYS NUMBERS HAVE BEEN ADDED TO THE TAPE."

PRINT "REWIND THE TAPE IN PREPARATION FOR TOMORROW."

G

517

SECTION D

RUN the program through several days of arbitrary tempera-
tures and humidity — enough to make a DATA tape.

Now let’s modify the program and have cassette #1 act as the
source of our historical DATA, and cassette #2 the place we
will record the updated DATA. This means we will INPUT
from #1 and PRINT to #2.

Fire up the Editor and make the program read like this:

10 REM * TEMPERATURE AND HUMIDITY RECORDING PROGRAM USING 2 TAPES *
20 REM * DATA STORAGE MUST START ON THE 1ST DAY OF MONTH

40 CLS : INPUT "WHAT DAY OF THE MONTH IS IT"; D

50 INPUT "WHAT IS TODAYS TEMPERATURE"; T

60 INPUT "WHAT IS TODAYS HUMIDITY"; H

78 PRINT : PRINT

80 IF D = 1 GOTO 43¢0 'ON FIRST DAY IS NO PRIOR DATA
100 REM * INPUTTING DATA STORED ON CASSETTE TAPE *

119 PRINT "WE MUST LOAD PRIOR DAYS TEMP & HUMIDITY FROM"

12¢ PRINT "TAPE DRIVE #1, BE SURE THE LATEST TAPE IS REWOUND"
130 PRINT "AND THE RECORDER IS SET TO 'PLAY'." : PRINT

14¢ PRINT "PUT FRESH A TAPE IN DRIVE #2, AND SET TO RECORD."

158 PRINT : INPUT "PRESS 'ENTER' WHEN BOTH TAPES ARE READY."; AS$
169 CLS : PRINT "DATA IS NOW FLOWING FROM DRIVE #1 INTO THE"

165 PRINT "COMPUTER, AND FROM THERE BEING RE-RECORDED ON #2"

178 PRINT : PRINT : PRINT "DATE", "TEMP", "HUMIDITY" : PRINT
180 FOR X =1 TOD - 1

196 INPUT #-1, Y, Z 'BRINGS IT IN FROM TAPE

195 PRINT X, Y, 2 '"PRINTS IT ON THE SCREEN

197 PRINT #-2, Y, 2 '"PRINTS IT ON DRIVE #2

200 B=B+Y :C=C+ 12 'KEEPS RUNNING TOTALS

210 NEXT X

300 REM * MONTHS AVERAGES TO-DATE *

316 B = (B+T)/D : C = (C+H)/D 'COMPUTES THE AVERAGES

320 PRINT D, T, H

330 PRINT : PRINT " *% THIS MONTHS AVERAGES ol

340 PRINT TAB(7); "TEMP"; TAB(17); "HUMIDITY"

350 PRINT TAB(7); B; TAB(19); C : GOTO 478

438 PRINT "BE SURE THERE IS A FRESH TAPE IN DRIVE #2 AND"

440 INPUT "IT IS SET TO RECORD. PRESS 'ENTER' WHEN READY"; AS$
478 PRINT "TODAYS DATA IS NOW FLOWING FROM THE COMPUTER TO DRIVE #2."
480 PRINT "WE WILL INPUT THIS PLUS THE EARLIER DATA FROM DRIVE"
490 PRINT "#2, TOMARROW," : PRINT

568 PRINT #-2, T, H 'PRINTS TODAY ON TAPE #2

525 PRINT "RECORDING COMPLETE."™ : PRINT

530 PRINT "REWIND & STORE TAPE #2 IN PREPARATION FOR TOMORROW."
540 PRINT "KEEP THE OLD TAPE AS A BACKUP FOR AT LEAST ONE DAY."

RUN the modified program through at least 5 days tempera-
ture and humidity readings to get a good feel for how it works.

Pretty nifty, huh!

518

This learning program is not an ideal model of programming
technique for dual cassette operation. It was written to cause
lots of relay clicking, turning on and off of motors, blinking
lights and screen action, and help us LEARN what’s going on.
It contains far more explanatory verbage than actual program
logie.

Due to the chance of an error everytime a relay is switched, or
motor started or stopped, in actual practice it's best to keep
the mechanical action to a minimum. How can we do this?

Make the data dumps, both to and from the Computer, as large
as possible each time a motor is actuated. Ideally, we might
have only one dump from drive #1 to the Computer at the
beginning of a session; then only one dump from the Computer
to drive #2 at the end. The software and Computer reliability
are exceedingly high. Enhance the software as much as
possible to cut down reliance on hardware. Got any ideas?

How about this one? Could we set up an array that is 31 days
long by 2 pieces of data wide? Yes.

Could we then dump to tape the entire array, with all
addresses initialized to zero? Yes.

Could we then bring in this “null array” in one tape-read,
change the data for only one day, then unload the entire array
in one dump? Yes. Could we even improve on this
data? Yes.

There you have it! Users who are serious about data
processing with cassette tape have their assignment.

Precautions

Those who are serious about using ordinary cassette tape
recorders for computer work should bear in mind that they
were designed for recording talk and music, not digital
data. We are only using them because they are inexpensive
and available.

Only the very highest quality tape should be used. Certified
tape, such as that sold at Radio Shack stores is a bit expensive
— but required if you want high reliability. Quality is even
more critical in DATA applications than for storing
programs. We normally make only one recording of the
DATA instead of multiple dumps, and only one READ, tho that
could be changed in the software.

APPENDIX ©

519

SECTIEN D

Periodic maintenance is a must. Tape heads must be cleaned
after every few hours use, and demagnetized frequently. The
tape drives and tapes must be kept impeccably clean. Data
Processing is not the same as just “fooling around” with com-
puters, and erratic tape systems will drive you to drink faster
than any software bug. (Hic!).

If approached with purposeful diligence and an understanding

of the level of technology we are dealing with, cassette
systems can do the job.

520

Appendix D

Model II Special Features

FUNCTIONS

LOGICAL OPERATORS — In addition to Model I & III

BASIC’s three logical operators AND, OR, and NOT, the
Model 1II supports:

IMP —Result will be true unless first operand is True
and second operand is False.

EQV —Result will be true if both operands are the same.

XOR —Result will be true if only one expression is true.

INPUTS$ — This function is used in two ways:

INPUTS$(length) limits the input of a string to be the
number of characters specified by ‘length.” Example:

ABS = INPUTS$(3)

INPUTS is handy in password entry as the keystrokes do
not show on the screen.

INPUT$(length, buffer-number) is the same as above
except it inputs the string from a disk file. Example:

ABS = INPUTS(10,1)

inputs up to 10 bytes from file buffer 1.

MOD — The module function returns the remainder when one

number is divided into another number. For example:
17 MOD 4

returns a 1 since 17/4 is 4 with a remainder of 1.

521

SECTION D

OCT$ — This function returns a string which represents the
argument expressed in Octal (base 8). For example:

OCT$(49)

returns 61 since 49 = (6«8) + 1. The argument can be in
the range — 32768 to 32767.

SPACE$ — The Model II does not have space compression
codes embedded in its ASCII set like the Model I and
Model IIT computers. Instead, it has a function SPACE$
that allows the user to print from 0 to 255 blank spaces.
For example:
example:

PRINT "A'"'; SPACES$ (20); "B"
will print A and B with 20 spaces between them.

SPC — This is almost the same function as SPACES$, but it
doesn’t use string space. Example:

PRINT “A"; SPC(25); “B"

prints 25 blank spaces between A and B.

TIME$ — Displays the time in 24 hour format. Use the
TRSDOS command TIME to change the time. For
example:

SYSTEM "TIME 22.45"
changes the time to 10:45 p.m. Then
PRINT TIMES$

will display the time.

Statements/Commands

FORMS — used to initialize a line printer e.g. line length, page
length, ete.

PRINT@ — Because of the 24 row / 80 column Model II screen,

the PRINT@ positions are numbered 0 through
1919. To convert Model I/III PRINT@ positions to

522

Model II, try this formula:
INT (INT(P/64)*80 + INT ((P MOD 64)/64"80)
where P is the Model I / III position.

SWAP — This statement allows the exchanging of values of
two variables of the same type. The variables must
have previously assigned values. Example:
previously assigned values. Example:

SWAP AB

SYSTEM — Allows execution of DOS commands from BASIC.
“High Memory Commands” may not be used. The com-
mand must be enclosed in quotes. SYSTEM by itself
returns to DOS, losing the resident BASIC program.

Miscellaneous

EXPONENTIATION — The Model II uses a carat (A) instead
of the right bracket or up arrow for exponentiation.

FLASHING CURSOR — This is similar to the Model III's
cursor except it is slightly lower on screen.

GRAPHICS CHARACTERS — The Model II uses codes
128-158 for graphics characters. These characters bear
no resemblance to Model I / III graphics characters.

REVERSE CHARACTERS — The Model II can print black
characters on a white background. CHR$(26) turns the
reverse character mode on, and CHR$(25) turns it off.

APPENDIX

0]

523

SECTION D

Model II Video Display Worksheet

ilalalalslela alalalz]e 2 [2]3]2 alalalela aala 5 I
7lslslala 7 1 1 78 7

1 1}t 2 3f3falals 4 5 6
1]2|3)4}s 7 78804 7f8]sf 7

524

APPENDIX E

MODEL III
SPECIAL FEATURES

In this appendix, we note some of the unique features of the
Model III computer.

FLASHING CURSOR
The Model III sports a flashing cursor. Users can choose the
desired character by poking its ASCII code into location 16419.

Location 16412 controls the blink status of the cursor:

@ ==sno blink
1 =~»blink

EXPONENTIATION

The up-arrow key on the keyboard is used for exponentiation.
On the screen, this character shows as a left bracket .

TIME$

TIMES is a function that returns the date and time as a string.
See your Model III Reference Manual to set the time.

AUTO-REPEAT FEATURE

Every key has a built in auto repeat feature. Hold down any
of the keys. After a slight delay, the key will automatically
repeat.

CASSETTE SPEEDS

The two cassette speeds supported are 500 Baud (same as

Model I) and 1500 Baud. See Part 2 Chapter 11 for help in
changing speeds.

525

SEGTION D

SCREEN PRINT

The Model ITI allows users to dump the screen to a line printer.
The Manual tells us to use SHIFT DOWN-ARROW with the ‘*’
key, but some Model III versions require that we simultane-
ously press the S and P keys. One of these methods should
work on your system. Of course, graphies will not reproduce
accurately, but this is a fast way to get hard copy of your
screen.

UPPER/LOWER CASE — CAPS ONLY SWITCH

The computer starts out in caps only mode. Press SHIFT 0 to
cause the computer to print upper and lower case like a
typewriter. Use SHIFT @ to switch between these two

modes.

526

Model

@

ABS
AND
APPEND
ASC
ATN
AUTO
CDBL
CHR$
CINT
CLEAR
CLOCK
CLOSE
CLS
CMD
CONT
COos
CSNG
CVD

CVI

CVSs
DATA
DEFDBL
DEFFN
DEFINT
DEFSNG
DEFUSR
DEFSTR
DELETE
DIM
EDIT
ELSE
END
EOF
ERL
ERR
ERROR
EXP
FIELD
FIX

FN

APPENDIX F:

I & III Reserved

Words*™

FOR
FORMAT
FRE
FREE
GET
GOSUB
GOTO
IF
INKEY$
INP
INPUT
INSTR
INT
KILL
LEFT$
LET
LSET
LEN
LINE
LIST
LLIST
LPRINT
LOAD
LOC
LOF
LOG
MEM
MERGE
MID$
MKD$
MKI$
MKS$
NAME
NEW
NEXT
NOT
ON
OPEN
OR
OuT
PEEK

POINT
POKE
POS
POSN
PRINT
PUT

RANDOM

READ
REM

RENAME

RESET

RESTORE

RESUME
RETURN
RIGHT$
RND
RSET
RUN
SAVE
SET

SGN

SIN

SQR
STEP
STOP
STRING$
STR$
SYSTEM
TAB
TAN
THEN
TIME$
TO
TROFF
TRON
USING
USR
VAL
VARPTR
VERIFY

*Many of these words have
no function in LEVEL II
BASIC; they are reserved
for use in DISK

BASIC. None of these
words can be used inside a
variable name. You'll get a
syntax error if you try to

use these words as variables.

527

APPENDIX G

Storing Data Files on
Cassette

The material in this Appendix is optional and yet very
important. The more practical programming you do, the
more you'll appreciate your TRS-80's data file
capabilities. They allow you to go from the world of
programming to the larger world of data processing.

Up to now we've relied on LEVEL II's numeric variables,
string variables, and DATA lines to store the data our
programs need. This leaves us with two limitations:

1. The Computer’s memory may not be large enough to
hold all the data we need (for example, an inventory
list).

2. When we turn off the Computer, the values of all vari-
ables are lost.

Cassette data files solve both of these problems. We can save
huge quantities of information on tape and retrieve them later,
just as we save and reload programs. Only instead of the
commands CSAVE and CLOAD, we use the special statements
PRINT # and INPUT 4.

Press RECORD and PLAY keys on your Recorder at the same
time, then type in the following lines and RUN:

50 A=1:B=2:C=3
100 PRINT #-1, A, B, C

This program causes three things to happen:

1. The Tape Recorder is automatically started
(assuming you have it set in the RECORD mode).

2. The values of A, B and C are written onto the
cassette.

3. The Recorder is automatically stopped. (You should
then press STOP on the Recorder to disengage the
recording head.)

528

Not for Model II.

What we mean is, you'll be
able to do lots more with
larger quantities of
information.

To perform the exercises in
this Appendix, you'll need to
keep your Tape Recorder
connected and set in the
proper mode — RECORD,
PLAY or STOP — as
indicated in the text. Insert
a blank cassette tape and set
the tape counter to zero so
you'll know where you
started the data file.

You now have a permanent record which can easily be read
back into the Computer. Note that the variables A, B and C
are not written onto the tape — just the values of those
variables (in this case, 1, 2 and 3) are stored.

To read back the data from tape, you must first press
REWIND on the Recorder to rewind the tape to the point
where the data file started. (You'll have to disconnect the
REMote plug to gain manual control of the recorder. When
you have rewound the tape to the starting point, reconnect the
REMote plug.)

Type NEW to clear out the old program and enter these lines:

116 INPUT #1, A, B, C

APPENDIX 6

Not necessary with CTR-80

recorder.

120 PRINT "THE DATA HAS BEEN READ FROM THE TAPE."

138 PRINT "A="; A, "B="; B, "C="; C

Now press PLAY on the Recorder and type RUN.

If the data from the earlier program was stored and read
properly, the Computer should display:

THE DATA HAS BEEN READ FROM THE TAPE
A= B=2 C=3
READY

>

Line 119 causes the Recorder to start, loading three numbers
into the variables A, B and C. When the three numbers
have been read, the Recorder motion is stopped.

Line 129 prints a reassuring message. This is important when
the Computer is using an external device such as a Tape
Recorder. Print messages are also valuable as
prompting instructions to the user regarding the control
of the Recorder. For example, before the Computer
executes a PRINT # statement, we can have it print a
message telling the user to put the Recorder in the
Record mode.

Line 130 prints the data that was read from the tape.

529

SECTION D

NOTE: If the Recorder is not in the PLAY mode (with proper
connections made) when it executes an INPUT # statement,
the Computer will keep trying to read the tape until it gets
something. To regain control of the Computer, press
(or press RESET button).

One last word of advice: If you PRINT # a list, of say, 10 values
onto tape, you should INPUT # a list of 10 values also. If you
don’t match up the number of PRINT # items with the number
of INPUT # items, you'll end up either losing data or having to
press LI to regain control of your system.

The following program demonstrates how a data file can be
used to create a list of data items, process and update
it. Study it carefully and think how similar programs might
handle inventories, or any sequential lists.

16 REM * TEMPERATURE AND HUMIDITY RECORDING PROGRAM *

20 REM * DATA STORAGE MUST START ON THE 1ST DAY OF MONTH *

40 CLS : INPUT"WHAT DAY OF THE MONTH IS IT";D

50 INPUT"WHAT IS TODAYS TEMPERATURE®";T

66 INPUT"WHAT IS TODAYS HUMIDITY®;H

76 PRINT:PRINT

86 IF D = 1 GOTO 438 ' ON FIRST DAY IS NO PRIOR DATA
166 REM * INPUTTING DATA STORED ON CASSETTE TAPE *

116 PRINT"WE MUST LOAD PRIOR DAYS TEMP & HUMIDITY FROM®

126 PRINT"THE DATA TAPE. BE SURE IT'S REWOUND AND THE RBECORDER®
130 PRINT"IS SET TO 'PLAY'." : PRINT : PRINT

146 INPUT"PRESS 'ENTER' WHEN EVERYTHING IS READY TO GO.";A$

166 CLS:PRINT"DATA IS NOW FLOWING INTO THE COMPUTER FROM TAPE,"
176 PRINT : PRINT : PRINT"DATE®,"TEMP®, HUMIDITY® : PRINT

186 FOR X = 1 TO D-1

196 INPUT $-1,Y,% ' BRINGS IT IN FROM TAPE
195 PRINT X,Y,2 ' PRINTS IT ON THE SCREEN
286 B = B+Y 3 C = C+2 ' KEEPS RUNNING TOTALS
216 NEXT X

368 REM * MONTHS AVERAGES TO-DATE %

316 B = (B+T)/D ¢ C = (C+H)/D ' COMPUTES THE AVERAGES

3260 PRINT D,T,H

338 PRINT : PRINT © il THIS MONTHS AVERAGES **¥

346 PRINTTAB(7) ; "TEMP®;TAB(17) s "HUMIDITY"

350 PRINTTAB(7) ;B;TAB(19);C

408 REM * STORING TODAYS TEMP & HUMIDITY ON TAPE *

410 PRINT:PRINT:INPUT"PRESS 'ENTER' WHEN READY TO CONTINUE®;AS$
420 CLS : PRINT : PRINT

430 PRINT"TODAYS TEMPERATURE AND HUMIDITY WILL NOW BE PRINTED®
440 PRINT"ON THE DATA TAPE. BE SURE °"RECORD' & 'PLAY' ARE"

450 PRINT"PRESSED., DO NOT REWIND THE TAPE, YET." : PRINT

460 INPUT"WHEN ALL IS READY, PRESS °‘ENTER!®";A$: CLS

470 PRINT"TODAYS DATA IS NOW FLOWING FROM THE COMPUTER TO THE®

530

APPENDIX @

488 PRINT"TAPE. WE WILL INPUT THIS PLUS THE EARLIER DATA *

490 PRINT"TOMORROW." : PRINT

506 PRINT #-1,T,H ! PRINTS TODAY ON TAPE

520 PRINT"TODAYS NUMBERS HAVE BEEN ADDED TO THE TAPE."
538 PRINT"REWIND THE TAPE IN PREPARATION FOR TOMORROW."

Line 199 reads back all the previous days’ numbers, two at a
time. When all the information is read in, the average
temperature and humidity are calculated (using the current
day’s info as well).

Line 509 then writes the current day’s information at the end of
the list.

For a sample run of the program, assume it is the first day of
the month. Enter plausible temperature and humidity
figures. Continue running the program until you've got a
cumulative listing for several days. Getting the feel for data
files?

Suggestions for Further Use of Data Files

1. Teaching/Testing. Write a program that gives a multiple-
choice test, for example, a vocabulary test. Include ten
questions. The program should write the student’s name and
all ten responses onto a cassette data file. Design the
program so that any number of students may take the test in
sequence. Include instructions about when to use the
RECORD, PLAY and STOP keys.

Write a grader program that uses the data file created above
to read each student’s name and responses, grade the test, and
then read the next student’s test. Be sure to leave time for
the teacher to mark down the names and grades in his or her
little black book.

2. Inventory. Write a program that sets up an array in
which you store the following information about a group of
cars;

License No. Engine Size Color Code Body Style
The program should then store the array in a data file.

Write another program which
1. Asks you which car you're interested in (you enter
the license number).
2. Reads the data file until it comes to the correct
license number.
3. Prints out all the information about that particular
car.

531

APPENDIX H

TRS-80 BASIC
Error Messages

Model I and III

532

Code élglzf(fn Explanation
1 NF NEXT without FOR
2 SN Syntax error
3 RG Return without GOSUB
4 oD Out of data
5 FC Illegal function call
6 ov Overflow
7 OM Out of memory
8 UL Undefined line
9 BS Subsecript out of range
10 DD Redimensioned array
11 /0 Division by zero
12 ID Illegal direct
13 ™ Type mismatch

Code f}iggl(;‘: Explanation
14 oS Out of string space
15 LS String too long
16 ST String formula too complex
17 CN Can’t continue
18 NR NO RESUME
19 RW RESUME without error
20 UE Unprintable error
21 MO Missing operand
22 FD Bad file data
23 L3 Disk BASIC only

Explanation of Error Messages

NI"\

SN

RG

1))

FC

NEXT without FOR: NEXT is used without a
matching FOR statement. This error may also occur
if NEXT variable statements are reversed in a nested
loop.

Syntax Error: This usually is the result of incorrect
punctuation, open parenthesis, an illegal character or a
mis-spelled command.

RETURN with GOSUB: A RETURN statement was
encountered before a matching GOSUB was executed.

Out of Data: A READ OR INPUT # statement was
executed with insufficient data available. DATA
statement may have been left out or all data may have
been read from tape or DATA.

Illegal Function Call: An attempt was made to
execute an operation wusing an illegal
parameter. Examples: square root of a negative
argument, negative matrix dimension, negative or zero
LOG arguments, ete. Or USR call without first
POKEing the entry point.

APPENDIN [

533

SECTION D

Explanation of Error Messages

ov

OM

UL

BS

DD

/0

D

™

0Ss

LS

ST

534

Overflow: The magnitude of the number input or
derived is too large for the Computer to
handle. NOTE: There is no wunderflow
error. Numbers smaller than +1.701411E — 38 single
precision or +1.701411834544556E —38 double
precision are rounded to 0. See /0 below.

Out of Memory: All available memory has been used
or reserved. This may occur with very large matrix
dimensions, nested branches such as GOTO, GOSUB,
and FOR-NEXT Loops.

Undefined Line: An attempt was made to refer or
branch to a non-existent line.

Subscript out of Range: An attempt was made to
assign a matrix element with a subseript beyond the
DIMensioned range.

Redimensioned Array: An attempt was made to
DIMension a matrix which had previously been
dimensioned by DIM or by default statements. Itisa
good idea to put all dimension statements at the
beginning of a program.

Division by Zero: An attempt was made to use a value
of zero in the denominator. NOTE: If you can’t find
an obvious division by zero check for division by
numbers smaller than allowable ranges. See OV
above.

Illegal Direct: The use of INPUT as a direct
command.

Type Mismatch: An attempt was made to assign a
non-string variable to a string or vice-versa.

Out of String Space: The amount of string space
allocated was exceeded.

String Too Long: A string variable was assigned a
string value which exceeded 255 characters in length.

String Formula Too Complex: A string operation was
too complex to handle. Break up the operation into
shorter steps.

APPENDIX [

Explanation of Error Messages

CN Can’t Continue: A CONT was issued at a point where
no continuable program exists, e.g., after program was
ENDed or EDITed.

NR No RESUME: End of program reached in error-
trapping mode.

RW RESUME without ERROR: A RESUME was
encountered before ON ERROR GOTO was executed.

UE Unprintable Error: An attempt was made to generate
an error using an ERROR statement with an invalid
code.

MO Missing Operand: An operation was attempted
without providing one of the required operands.

FD Bad File Data: Data input from an external source
(i.e., tape) was not correct or was in improper
sequence, ete.

L3 DISK BASIC only: An attempt was made to use a
statement, function or command which is available
only with the Disk System.

635

SEGTION b

Model II Error Messages

Code

Abbreviation

Explanation

536

NF

SN

RG

0)))

FC

NEXT without FOR. NEXT is
used without a matching FOR
statement. This error may
also occur if NEXT variables
are reversed in a nested loop.

Syntax. This is usually the
result of incorrect punctuation,
an illegal character or a
misspelled command.

RETURN with GOSUB. A
RETURN statement was
encountered before a matching
GOSUB was executed.

QOut of data. A READ state-
ment was executed with
insufficient data available.
The DATA statement may have
been read.

Illegal function call. An
attempt was made to execute
an operation using an illegal
parameter. Examples: square
root of a negative argument,
negative array dimension,
negative or zero LOG
arguments.

Code

Abbreviation

Explanation

10

ov

(0

UL

BS

DD

Overflow. The magnitude of
the number derived or input is
too large for the data storage
type assigned to it. The
integer range is
[—32768,32767]; other
numbers can be in the range
[—1x10+32% —1x107*%] or
[+1x10°28 + 1 X
10 +32%]. Note: There is no
underflow error; numbers

smaller than
+/—1.701411E-38 (single
precision) or

+/—1.70141834544556E — 38
(double precision) are rounded
to 0.

Out of memory. All available
memory has been used or
reserved. This may occur
with large array dimensions
and nested branches such as
GOSUB and FOR/NEXT loops.

Undefined line. An attempt
was made to reference a
nonexistent line.

Bad subsecript. An attempt
was made to assign an array
element with a subsecript
beyond the dimensioned range.

Double-dimensioned array. An
attempt was made to
Dimension an array which had
previously been created with
DIM or by default state-
ments. ERASE must be used
first.

APPENDIX

H

537

SECTION D

Code

Abbreviation

Explanation

11

12

13

14

15

16

17

538

/0

ID

™

0S

LS

ST

CN

Division by zero. An attempt
was made to use a value of zero
in the denominator. Note: If
you can’t find an obvious
division by zero, check for
division by numbers smaller
than allowable ranges (see OV
above).

Illegal direct. An attempt was
made to use a program-only
statement like INPUT in an
immediate (non-program) line.

Type mismatch.An attempt was
made to assign a number to a
string variable or a string to a
numeric variable.

Out of string space. The
amount of string space
allocated was exceeded. Use
CLEAR to allocate more string
space. 100 bytes is the
default string space allocation.

Long String. A string
variable was assigned a string
which exceeded 255 characters
in length.

String too complex. A string
operation was too complex to
handle. The operation must
be broken into shorter steps.

Can’t continue. A CONT
command was given at a point
where the command can’t be
carried out, e.g. directly after
the program has been edited.

Code

Abbreviation

Explanation

18

19

20

21

22

23

24—49

50

51

UF

NR

RW

UE

MO

BO

UE

FO

IE

Undefined user function. An
attempt has been made to call a
USR function without first
defining its entry point via a
DEFUSER statement.

No RESUME. During an
error-trapping routine, BASIC
has reached the end of the

program without encountering
a RESUME.

RESUME without errer. A
RESUME was encounterd
when no error was
present. You need to insert
END or GOTO in front of the
error-handling routine.

Undefined error. Reserved for
future use.

Missing operand. An
operation was attempted
without providing one of the
required operands.

Buffer overflow. An attempt
was made to input a data line
which has too many characters
to be held in the line buffer.

Undefined error. Reserved for
future use.

Field overflow. An attempt
was made to Field more
characters than the direct-
access file record length
allows. The record length is
assigned when the file is first
Opened. The default length is
256.

Internal error. Also indicates
an attempt to use EOF on a file
which is not Open.

APPENDIX [

539

SECTION O

Code

Abbreviation

Explanation

52

53

54

55

56

57

58

59

60

61

540

BN

FF

BM

AO

I0

FE

UE

DF

EF

RN

Bad file number. An attempt
was made to use a file number
which specifies a file that is not
Open or that is greater than
the number of files specified
when BASIC was started up.

File not found. Reference was
made in a LOAD, KILL or
OPEN statement to a file
which did not exist on the
diskette specified.

Bad file mode. Program
attempted to perform direct
access on a file Opened for
sequential access or vice-versa.

File already Open. An
attempt was made to Open a
file that was already
open. This error is also
output if a KILL statement is
given for an Open file.

Disk 1/O error. An error has
been detected during a disk
read.

Undefined in Model 1I BASIC.

Undefined error. Reserved for
future use.

Disk full. All storage space on
the disk has been used. Kill
un-needed files or use a
formatted, non-full diskette.

End of file. An attempt was
made to read past the end of
file.

Bad record number. In a PUT
or GET statement, the record
number is either greater than
the allowable maximum or
equal to zero.

Code

Abbreviation

Explanation

62

63

64

65

66

NM
MM

UE

DS

FL

Undefined in Model II BASIC.

Mode mismatch. A sequential
OPEN was executed for a file
that already existed on the
disk as a direct access file, or
visa versa.

Undefined error. Reserved for
future use.

Direct statement. A direct
statement was encountered
during a load of a program in
ASCII format. The load is
terminated.

Undefined in Model IT BASIC.

APPENIDIN

541

(l

Abbreviations 167
ABS 245
AND 381
Arithmetic Functions 75
Arrays 317, 331, 339
ASCII (see Codes) 183,195
ASC ($) 190
Assembly Language Call 389
ATN 253
AUTO 37
BASIC 10,14
Baud Rate 525
Processing 89,123
Cass? 13
Cassette
connection 81
operation 81
interface 81, 497
speed 377,525
Capital and Lower
case 15, 526
CDBL 237
Characters
ASCII 183
codes 489
declaration 234
graphics 183, 351
Japanese Kana 192
repeat 525
reverse 523
size 284
special 191, 377
CHRS$ 183,188, 351
CINT 237
CLEAR 203, 342
CLOAD (see Loading) 82
CLS 96, 259
Clock (Real Time) 505
setting 483,511
display 511

542

Index of Learning TRS-80

TIMES$ 522, 525
Codes
ASCII 185, 186, 439
baud 525
control 185
error 426
graphics 353
HEX 390, 391
space compression 187
TAB 113
Commands 17
Concatenate (+) 205
Conditional Tests
(IF, THEN) 63,171
CONT 105, 123
COS 251, 282
CSAVE 81
CSNG 237
DATA 155
Data
conversion 237
numeric 155
strings 158
storing 528
Debugging 407, 417
Define Statements
DEFDBL 233
DEFINT 236
DEFSNG 235
DEFSTR 202
Delete 105
DIM 323
DIR 477, 481, 486
Disk 85,473
Double-Precision 233, 235
EDIT 27,175
ELSE 171
END 22
ENTER 13
ERL 426

ERR 427
ERROR 410, 423
Error Codes

and Messages 19, 424, 532
EXP 247
Expansion Interface 497
Exponentiation 53, 523

(see Operators)
Expressions

logical 381

numeric 75

relational 63

string 158
Field Specifiers,

PRINT USING 299
FIX 243
Flowchart 399
Forms 522
FOR-NEXT 89,121
FRE 203
Functions

arithmetic 75

intrinsic 243

string 217

trigonometric 251
GOSUB 143
GOTO 63
Graphics

2h7, 267, 275, 351, 523

codes 353

statements 259
HEX 390, 391
IF-THEN 63, 171
INKEY$ 293, 361
INP 392
INPUT 69
Input/Output

initialization 293

interpretation 70

statements 69

to cassette 528

INPUT #-1 528
INPUT$ 521
Instring 222
INT 127, 243, 385
Integer Precision 236
Keyboard 15, 169
LEFT$ 217
LEN 201, 223
LET 45
Line
display 275
length 172
Immediate 75
program 14,20
Line Numbers 15, 20
Line Printer 117
LIST 23
LLIST 118, 501
LOG 245
Logical Operators 381
LPRINT 117,501
Matrix 322, 343
MEM 14,208
Memory Map 368
MID$ 217,228
MOD 521
Modes
Calculator 75
EDIT Mode 27
Immediate Mode 75
System Mode 508
Muitiple Statement Lines 163
NEW 14, 48
NEXT, optional 170
NOT 381, 386
OCT$ 522
ON ERROR GOTO 425
ON GOSUB 143
ON GOTO 140
Operators
Arithmetic 75
Logical 381, 521
Relational 63
String 201, 331
OR 381
Order of Operations 387
ouT 393

Parentheses 57
PEEK 367
POINT 287
POKE 367, 377

Port (see INP and OUT)

POS 171
Precision 233, 311
PRINT 14,21
PRINT@

275, 281, 351, 353
PRINT TAB 113
PRINT USING 299, 310
PRINT #-1 528
Print Zones 47
RANDOM 147
READ 155
REM 21
Real Time Clock 505
Reserved Words 166, 527
RESET 257, 269
RESTORE 157
RESUME 424,425
RETURN 143
RIGHT$ 217
RND 147
ROM 370
RUN 15,104
Saving on Cassette
(CSAVE) 81
Sequence of Execution 20
SET 257
SGN 142
SHIFT 15
SIN 251
Single-Precision 233

Space Compression
Codes (see also Codes) 191

SPACE$ 522
SPC 522
Special Keys 169
SQR 244
Statement
assignment 45
conditional 67

define 202, 234
graphics 259
program 17
unconditional 67
STEP 90, 268
STOP 105
String 195
arrays 331
comparisons 195, 335
data 196, 322
functions 201
inputzoutput 195
operators 202
storage space 203
variables 158,167, 211
STRING$ 225
STR$ 213
Subroutine 142
SWAP 523
Syntax Error 19, 532
SYSTEM 506, 523
TAB 113
TAN 251, 282
THEN 63
TIME$ 522, 525
TO 90
TROFF 417
TRON 417
USING 299
USR 389
VAL 211
Variables
classifying 158, 322
define 202, 234
names 164
reserved words 527
simple 44
subscript 323
VARPTR 205, 393
Video Display 257
brightness adjustment
259, 409
clearing 96

contrast adjustment 259

memory

378

543

544

For Additional Copies
of
Learning TRS-80 BASIC

Contact your local Computer, Electronics or Book Store
or

Send $19.95 each + $2.00 Postage & Handling
(California addresses add 6% sales tax)

Foreign Orders
Payable in U.S. funds on a U.S. bank
Surface: Send $19.95 + $2.50
Allow 6 to 8 weeks for delivery
Air: Send $19.95 + $10.00

To
COMPUSOFT® PUBLISHING

P.0. Box 19669-T
San Diego, CA 92119
Dealer inquires welcomed
Educational Discounts available for quantity purchases.
Write for details.

ISBN #0-932760-08-2
Library of Congress #81-70768

e

$19.95

FROM AMERICA’S MOST IMITATED COMPUTER AUTHOR . ..

THE ULTIMATE TRS-80 BASIC BOOK!

COMPLETE COVERAGE OF MODEL |, II, il AND 16 BASIC’s.

ABOUT THE BOOK

In 1977 David Lien wrote the ORIGINAL
Level | TRS-80 Learner’'s Manual
furnished with all Model | computers. It
received universal acclaim. Translated
into numerous foreign languages, it soon
became the world’s best-selling tutorial-
style computer book. A revised version
is still sold by Radio Shack. Though
obsolete, it remains THE computer book
by which all others are measured.

Level || BASIC was introduced in 1978
and Dr. Lien wrote LEARNING LEVEL
I, released by CompuSoft Publishing.
In addition to teaching the power of Level
|| BASIC, it bridged the gap between
Level | and Level Il.

In his own unique style, Dr. Lien created
this comprehensive NEW book which

teaches TRS-80 BASIC with disarming
clarity. Completely reorganized and
updated, LEARNING TRS-80 BASIC
includes Model |, II, Il and 16 BASICs
in a smooth flowing, easy-to-understand
tutorial that doesn’t know (or care) which
TRS-80 you are using. It's the NEW
CLASSIC!

Whether studying alone at home, or
learning BASIC in a class with a teacher,
LEARNING TRS-80 BASIC is like a
correspondence course, without the
correspondence. Questions at the end
of most Chapters (with answers) check
you on the most important ideas before
moving on.

You hold in your hands the last word on
TRS-80 BASIC.

ABOUT THE AUTHOR

A master teacher and
“teacher’s teacher” for
many years, Dr. Lien’s
relaxed but firm style leads
you confidently to success.
He never leaves you
hanging, wondering what
to do next!

Quality Technical Books —
Written So You -
Can Understand Them.

COMPUSOFT®

PUBLISHING

A Division of CompuSoft®, Inc.
San Diego, California 92119, USA

ISBN#0-932760-08-2
Library of Congress Catalog Number 81-70768

| Printed in USA

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	310.pdf
	311.pdf
	312.pdf
	313.pdf
	314.pdf
	315.pdf
	316.pdf
	317.pdf
	318.pdf
	319.pdf
	320.pdf
	321.pdf
	322.pdf
	323.pdf
	324.pdf
	325.pdf
	326.pdf
	327.pdf
	328.pdf
	329.pdf
	330.pdf
	331.pdf
	332.pdf
	333.pdf
	334.pdf
	335.pdf
	336.pdf
	337.pdf
	338.pdf
	339.pdf
	340.pdf
	341.pdf
	342.pdf
	343.pdf
	344.pdf
	345.pdf
	346.pdf
	347.pdf
	348.pdf
	349.pdf
	350.pdf
	351.pdf
	352.pdf
	353.pdf
	354.pdf
	355.pdf
	356.pdf
	357.pdf
	358.pdf
	359.pdf
	360.pdf
	361.pdf
	362.pdf
	363.pdf
	364.pdf
	365.pdf
	366.pdf
	367.pdf
	368.pdf
	369.pdf
	370.pdf
	371.pdf
	372.pdf
	373.pdf
	374.pdf
	375.pdf
	376.pdf
	377.pdf
	378.pdf
	379.pdf
	380.pdf
	381.pdf
	382.pdf
	383.pdf
	384.pdf
	385.pdf
	386.pdf
	387.pdf
	388.pdf
	389.pdf
	390.pdf
	391.pdf
	392.pdf
	393.pdf
	394.pdf
	395.pdf
	396.pdf
	397.pdf
	398.pdf
	399.pdf
	400.pdf
	401.pdf
	402.pdf
	403.pdf
	404.pdf
	405.pdf
	406.pdf
	407.pdf
	408.pdf
	409.pdf
	410.pdf
	411.pdf
	412.pdf
	413.pdf
	414.pdf
	415.pdf
	416.pdf
	417.pdf
	418.pdf
	419.pdf
	420.pdf
	421.pdf
	422.pdf
	423.pdf
	424.pdf
	425.pdf
	426.pdf
	427.pdf
	428.pdf
	429.pdf
	430.pdf
	431.pdf
	432.pdf
	433.pdf
	434.pdf
	435.pdf
	436.pdf
	437.pdf
	438.pdf
	439.pdf
	440.pdf
	441.pdf
	442.pdf
	443.pdf
	444.pdf
	445.pdf
	446.pdf
	447.pdf
	448.pdf
	449.pdf
	450.pdf
	451.pdf
	452.pdf
	453.pdf
	454.pdf
	455.pdf
	456.pdf
	457.pdf
	458.pdf
	459.pdf
	460.pdf
	461.pdf
	462.pdf
	463.pdf
	464.pdf
	465.pdf
	466.pdf
	467.pdf
	468.pdf
	469.pdf
	470.pdf
	471.pdf
	472.pdf
	473.pdf
	474.pdf
	475.pdf
	476.pdf
	477.pdf
	478.pdf
	479.pdf
	480.pdf
	481.pdf
	482.pdf
	483.pdf
	484.pdf
	485.pdf
	486.pdf
	487.pdf
	488.pdf
	489.pdf
	490.pdf
	491.pdf
	492.pdf
	493.pdf
	494.pdf
	495.pdf
	496.pdf
	497.pdf
	498.pdf
	499.pdf
	500.pdf
	501.pdf
	502.pdf
	503.pdf
	504.pdf
	505.pdf
	506.pdf
	507.pdf
	508.pdf
	509.pdf
	510.pdf
	511.pdf
	512.pdf
	513.pdf
	514.pdf
	515.pdf
	516.pdf
	517.pdf
	518.pdf
	519.pdf
	520.pdf
	521.pdf
	522.pdf
	523.pdf
	524.pdf
	525.pdf
	526.pdf
	527.pdf
	528.pdf
	529.pdf
	530.pdf
	531.pdf
	532.pdf
	533.pdf
	534.pdf
	535.pdf
	536.pdf
	537.pdf
	538.pdf
	539.pdf
	540.pdf
	541.pdf
	542.pdf
	543.pdf
	544.pdf

