All and more about Sharp PC-1500 at http://www.PC-1500.info

PROBE!

& 1984, F_C. Odds

PROBE is a disassembler program specially written for the
Sharp PC 1500/Tandy PC2 for the purpose of exploring the computer's
operating system. The preoegram reads machine code routimes and
automatically translates them into assembly language. The package
can be operated in two modes: in one a sequential list of assembly
language instructions is printed, in the second the program auto-
matically makes subroutine Jumps when it encountars them, to
produce a flowsheet of assambly language matching the order in
which the subroutines are read by the aperating system in practice.

Do not sell this PDF 1!



All and more about Sharp PC-1500 at http://www PC-1500.info

Background

For the computer to understand and react to the commands that
1ts uszser expects it to abey to requires an eperating system, in the
farm of a RQOM, that rTuns to seme 16000 individually numbered
addressas. Each address contains a number that is interpretable by
the CPU {central processing unit) as part of a machine code
instruction. The organizaticn of the operating system is exceed-
ingly complex, Its design involved creation of commonly used
machine code subroutines, most of which are accessed by “wvector
Jump” rnstructions for speed, and an enormous set of other sub-=
routines, each related to specific computer functions such as
mathematical operations, reading keyboard input. displayving output,
etc. ete.

For people iAnterested in seeing how the manufacturer has
achiewved particular functioms in machine code, 1t 13 necessary to
peek each address 1n the appropriate subroutine (found either by
trial and errar or with help from the Sharp or Tandy Technical
Marnuals} and back 1nterpret the machine code inta comprehensible
assembly language instructions, again by reference to the Technical
HManuals., In practice, this process is tedious and highly
vulnerable te human Brrors. It 18 also complicated by the fact
that simple PEEKs into the ROM give decimal numbers that have to be
converted to hexadecimal (hex) code to match the data inm the
Technmical HManuals. Preliminary explorations of the ocperating
system so0oon reweal that the whole process i1s compounded by Lhe way
subroutines are piled within subroutines within subroutines and so
on. In theory it should be possible to make a Listing of the
assembly code, say, for a CLOAD operation. In practice 1t is
almost 1mpossible to do by hand.,

PROBE was developed to overcome Lhese difficulties. It 1s
useful to have clear assembly language sequences [(with address
numbers and data 1n hex code) that simply follow operating system
addresses in ascending numerical order. It is also useful to he
able to follow the sequences of conditiconal and unconditional
subroutine Jumps, instead of simple ascending numerical order of
commands . The two modes of PROBE make these desirable goals a
reality. The program camtains a short machine code sequence to
retrieve data from memory addresses: everything else is written in
Basic.

Hardware necessary for PROBE

Operation of PROBE requires a PC 1500 or PCZ computer plus
printer, and a memoery extension of 8k or more. The package has
been designed to give a clear printed output on the pocket computer
printer, but the program <an be readily rumn to giwve output on an
alternative printer via the serial interface. Only a single pen
colour is Lused. Access to the computer Technical Manuwal is an
essential adjunct for intelligent operation of the package,

Operation of the PROBE package
Load the program from cassette with the command CLOAD "PROBE™.

The program 15 a long one anmd takes about 11 minutes to load. The
program 15 i1nitiated by the command RUN <ENTER>.

Do not sell this PDF 1!



All and more about Sharp PC-1500 at http://www.PC-1500.info

The computer farst requires a few 1nputs to determine 1ts
operating reguirements. [he first prompt is tor @ cholee of MOUDE 1
OrR 27. An input af 1 or 2 is all that i1s necessary: anything else
will be i1gnored. In Mode 1 the output will be a simple sequential
listing of assembly language from a selected start address. In
Mode 2 the program recognizes unconditional Jjump instructions [JMP,
sJF, YEJ, ¥YHI]) and jumps to the address specified, returning to the
previous address when it meets the RTHN instruction lexcept after a
JHP instruction, of coursel]. PROBE allows for 15 levels of sub-
routine Jumps within subroutline jJumps, whlich should be more than
adequate for operating system code.

If vou have selected Mode 2 operation, you will be asked tTo
choose Conditional Jumps (YSHNYE. If you input ¥ <ENTER>» the
program will make conditional wvector subroutine -Gjumps (VCS, VCR,
VHS , YHR VWE25, ¥YWER and ¥V5) in the same way as 1t makes uncon-
ditional Sumps. Any other input means the conditlional vector Jjumps
will be listed but ignored.

The next prompt 1s for HMEOD or ME1 (O0/f1)7 The memory addresses

im the pocket computers are stored 1n two banks, HEUD and HME1, so
you must first specify which memory bank is to be searched. The
bulk of the operating system and user memory 1s within HMEOD. Inputs
other than 0 or 1 will be ignored,. Flease note that in the unmodi-

fied computer as manufactured, even with all accessories attached,

the HME1 bank appears to be used only in wvery small blocks that are

concerned with input/output constants. There are no machine code

routines as such within ME1, fo the provision te scan it with PROBE
is really only an academic nicety.

The next prompt is for PU SET (0) or RESET [1)7. This prompt
relates anly to probes in the CE-13%8 interface ROM area (&8000 to
59989 1n HMEO). For probes not involving this area simply key
CEMTER>. If vou wish to probe the CE-158 ROM you need Lo specify
which subbank of memory is involved - PU set or reset - consult
page 895 in the Sharp Technical Manual for details.

Hext you will be asked for a Start address?. Here yvou shouwld
key in the number of the first address of your chosen subroutine.
If you hawve chosen Mode 2 gperation the routine will now commence
operation, stopping automatically when it meets the finmal RTH
instruction in the sequence where 1t started.

In Mode 1 cperation you will be asked to input am End
address?. This allows vou to chaoose your own finishing point, by
entering an address number. 1f you enter 0 or 4FFFF in response to
this prompt, the program will <stop operation automatically when 1t
first encounters a RTH instruction.

Detailed points about PROBE

All numbers output during the operation of PROBE are in hex

codo, not decimal. The ampersand (&} 1s omitted im the i1nterests
of brevity and clarity. But «do remember that 1f yvou enter start

and end addresses 1n hex code, you must znclude the ampersand.

Thus &BCD4§ will be accepted as an input, BCD4 will cause an ERROR 1
MESSage .

Do not sell this PDF !



All and more about Sharp PC-1500 at http:/fmww. PC-1500.info

The start address chosen must be the start of a proper machine
code subroutine, The Technical HManuals indacate the start
addresses of many subroutines: others can be found by peeking VEJ
addresses (see Technical Manual for details), and in practice many
new start addresses will be turned up by Jump instructiomns that
appear within a chosen subroutine. If an improper start address 1is
chosen, the machine code will be read with a frame shift error. It
is, perhaps remarkably, possible that an entire but spurigus
routine can be output in PROBE by frameshift reading of the
addresses: wuwsually the program will crash with an error message
after a few apparently normal commands. Because some ROM addresses
appear to contain no data or reference numbers only the machine
code reading frame varies in different areas of the operating
system. It is therefore not possible to use PRUOBE to ocbtain a
continuous readout of the entire operating system.

Unconditional and conditional branch instructions are listed
but net reacted to i1in Mode 2 operation. This 15 because most
branch instructions are associated with program loogps, and the
output wouwld get stuck in a loop of endless repetitions if it
attempted to follow Branches. Some subroutime Jjumps are also
invelved 1i1n loep sequences, so that Mode 2 cperation may still
sometimes become caught in a loop. Judiciocus use of Mode 1 and
Mode 2 operation, with the optional use of conditional vectar
Jjumps, 15 uswally adequate for rapid resolution of the design of
most operating system subrowutines. It is5 adwvisable to keep anm eye
on the ocutput, in Mode 2 pperation, 50 the program can be inter-
rupted with the <8REAK> key 1f it seems to have encountered a loop.

Address numbers, set to the left of the assembly language
ocUutput, are provided intermittently for orientaticn in both
operating mades . In Mode 2, address numbers are also provided at

the start of each subroutine jump or return.

A few Informal points

Calculations with hexadecimal numbers, for example to
determine the point to which a branch i1s5 made within a routine, can
be awhkward. From the keyboard of a computer loaded with PROBE it

is possible to convert decimal numbers to hex by the following

operations: CLEAR, M=[decimal number], GOSUB 6100, GOSUB G210,
PRINT A%,

Although PROBE was designed to interpret machine code routines
inm the operating system, 1t can, of course, be used to interpret
ones own routines, prowviding they are contained 1n spaces noat used
by PROBE itself. The most obvious space 15 the RESERVE MEMORY
area. The value of PROBE in this situation iz that it will provide
a neatly printed assembly language version of a user's machine code
routines for future reference. Just for fun, if PROBE 15 run with
L7750 as start address, it will ocutput ite own short machine code

routine for peeking memory addresses - a rare example of caomputer
self-reference!

Caution

While every care has been taken to ensure the accuracy and
reliability of PROBE, no liability can be assumed for any loss or
damage arising Ffrom its use.

Do not sell this PDF !



All and more about Sharp PC-1500 at http://www.PC-1500.info

..5_
APPENDIX
Explanations and glessary for terms used in these Instructions

Computers do everything by numbers. Imagine B matchboxes,
each individually numbered so that its contents can be examined.
In boxez 1, &, 6 and B there is a bead; the remaining boses are
empty . Suppose now that you handle the boxes according to a small,
unambiguous set of instructions - here are some examples.

I: look at the contents of box 5.

I1: if there is a bead, do nothing, if not, place one in box T.
ITI: look at the contents of box 7.

IV: 1f there is a bead, do nothing, if not, place one in box 5.

Already we have & small but useful instruction set. If the
instructions are acted on in the sequence I, II., III. IV, we end up
with a bead in boxes 1, &, 6, 7 and 8. However, 1f we acted on
them in the sequence II1I, IV, I, II, we end up with beads in boxes
1. &%, 5, B and 8. This may be of no consequence to the beads or
the matchboxes, but i1f the number of boxes were i1ncreased to
several thousand, and the equivalent of a bead or no bead 1is

translated to lighting up or not lighting up a particular dot on a
computer display., or stering a particular number in an electreonic
memory, themn we have Ccreated a system with some power.

In practice, memory addresses in the PC 1500 function as the
equivalent of groups of 8 matchboxes, so that each can represent a
bBinary number from 0 te 255 (400 to AFF in hex code), and sequences
of dinstructions are stored as numbers (machine code) within the
numbered addresses as well as the data on whicn the instructions
cperate. To peek into a memory therefore doesn't tell you whether
the number in the memory is an instruction or a datum. MHMost of the
instructions have been placed in addresses that can be read, but
not altered {(glued-up matchboxes with windows?!), and they comprise
the operating system of the computer. The remainder have been left
free for the user to fill with instructions and data. The sole
complication 1s that because memory addresses are so long they need
numbers of & héx digits, each memory can hold only 2 hex digits, sa
to store the reference address of a memory, for example LAODE&,
within the memary requires two meémory addresses - one for AkAO, one
for Lb&.

Thus, in any small sequence of addresses, it is possible to
pack a few instructions followed by one or two boxes of data, or
unrelated instructions. Any given set of machine code instructions
can contain commands to skip forwards or backwards past a certain
number of memory boxes (BRANCH), to JUMP to a new memory address,
or to jump to a subroutine that begins somewhere else then return
to the original place in the sequence (5JP)}. Sometimes such
instructions are made conditional, that is they are carried out
only if certain conditions - the setting of various flags for
machine code routines - are met. Because a maximum of two hax
digits can be stored in a single memory, the branch instructions
are limited to + 255 addresces, whereas the Jjump instructions
specify a full 4-digit new address number (and therefore take up an
extra memory themselves).

Do not sell this PDF 11!



All and more about Sharp PC-1500 at http://www.PC-1500.info

The PC 1500 operating system uses a lot of clever tricks to
pack the maximum power and flexibility into the minimum number of
memary addresses. One important trick is to sawve the number of
command codes necessary to initiate Jjumps to subroutines that are
used wvery commonly. This is5 known as YECTOR JUMFPing. The memory
addresses from &FF00 to 4FFF6 hawe been filled, in pairs, with the
address numbers of commonly used subroutines, Hermally, a command
to make the system Jjump to a subroutine at address, say, &LBCDE,
would regquire three memory addresses, containing the codes for
<JUHMP to subroutine at® <LBCr <&DE>. respectively. But if &BC and
LDE hawe been stored, let us say in addresses LFFCO and LFFC1, the
vector Jump command makes it possible to say <JUMP to subroutine
indicated by npumbers stored in the pair of memories starting at

LFF>» <LCO>» - i1.e. it takes two commands. This 1s a ¥HMJ) command
format, and wvector Jumps of this type can be conditional or
unconditional. An ewven shorter version of the same idea 1s
embodied in the YEJ command. There are 28 commands, all of which

mean YEJ, but the reference number is also embodied in the command.
Thus CLCO> LS interpreted as <JUMP to subroutine indicated by
numbers stored 1in the pair of memories starting at &FFCO> - the

Jump can now be made in response to a single command. For all
vector Jjumps it 1is the built-in assumption that the reference
address always begins &FF__ that allows for the shortening.

By now, 1t should be clear that the operating system memory
addresses are filled with different numbers, each of which 1% part
of a machine code command - either the command itself or related
arjdress references. If a program like PROBE is to be used to
dirsentangle the command seguence intelligentily, 10 1s essenitial
that each routine - related set of machine code commands - should
be read praperly from the intended start poimt, that i1s, 1n the
correct READING FRAME. Consider this sequence of machine cade
instructions: &&A &H48 EAS ALAT &LBA AOZ ALAE LE62 459 L3A.

If we disassemble this seqguence from the first code (E4A) we
read <LDI xL, &8> <LDA [ATBA)> <ADC XL>» <5TA (8259)> CRTH> .
This 15 a routine that reads a number stored in &ATBA, adds 1t to
L&A and stores the result in address &LG62%59. Suppose, now, we
started to interpret the code from the second number (&&8). This
time we would read <LDI XH AS> <CPA [(BADZ)> <5TA (B239)> SRTH> .
The Ffirst two instructions are valid, but will not achieve the
intended result of the subroutine. Suppose we started ta
disassemble from the LABA command. We would read <JMP (0DZ2aAE)>» <DEC
UL > CANI SA>. Once agaln, each lnstruction makes sense, but
because the reading frame 15 wrong the resultant routine 1is
nonsense, Such frameshift errors usually come to grief wherr a code
1z emcountered that cannot be interpreted as a command, but it is
often possible to misread a long section of machine code before
this happens.

The Ffimal point worth elaborating in this appendix conrcerns
the wse of electronic flip-flops called PU and PV, which the
designers of the PC 1500 have used to help pack gquarts of some
memory sections - related to the printer and the interface units -
into & pint pot of address locatians. The CE 150 operating system
is read properly only when PY 1is set: PROBE can handle this
automatically. But the interface operating system is read slightly
differently when FU i1s set or reset: the PROBE user therefore has
the option to choose the setting of PU.

Do not sell this PDF !



