$8.95

POCKET

COVIPUTER
PROGRAMMING

MADE EASY

latest up-to-the-minute info for using
TRS-80 PC-2 and PC-1
Sharp PC-1500 and PC-1211

Casio FX-702P
and other
pocket computers

BY JIM COLE

“‘x‘“‘
““
/ ““‘I‘ “‘\“

\ll \\§ ;“:‘.3:“‘

ARCsoft pocket-computer books by Jim Cole:

|
Il
in
v

\'%
Vi

Murder in the Mansion and Other Computer
Adventures

50 Programs in BASIC for the Home, School &
Office

50 MORE Programs in BASIC for the Home,
School & Office

101 Pocket Computer Programming Tips & Tricks

Pocket Computer Programming Made Easy

35 Practical Programs for the Casio Pocket
Computer

POCKET
COVIPUTER
PROGRANMING

MADE EASY

POCKET

COVIPUTER
PROGRAIMMING

MADE EASY

BY JIM COLE

ARCsoft Publishers

OOOOOOOOOOOOOOOOOOOOO

FIRST EDITION
FIRST PRINTING

©1982 by ARCsoft Publishers, Woodsboro, MD 21798 USA

Printed in the United States of America

Reproduction or publication of the contents of this book, in any manner,
without express permission of the publisher, is prohibited. No liability is
assumed with respect to the use of the information herein.

Library of Congress cataloging-in-publication data:
Cole, Jim 1940—
Pocket Computer Programming Made Easy

Includes index
Summary: Advice for beginning computer programmers using the BASIC

program language.
1. TRS-80 (Computer)—Programming.
2. BASIC (Computer program language).
3. Computers.
4. Programming (Electronic computers).

I. Title
QA76.8.T18C66 001.64'2 81-14882

ISBN 0-86668-009-8 AACR2

Trademark credits:
TRS-80 is a trademark of Tandy Corporation/Radio Shack.

PC-1211 is a trademark of Sharp Electronics Corp.
FX-702P is a trademark of Casio Computer Company.

ISBN 0-86668-009-8

Preface

Today you can hold in the palm of your hand what just
one generation ago required a room full of hot, chugging
computer behemoths. A half-dozen electronics manufac-
turers are selling hand-held battery-powered pocket-sized
computers as fast as they can make them. And a dozen or
more are feverishly researching, developing, designing
and testing even more powerful versions of these tiny
wonders.

True pocket computers are here. They have computa-
tion power almost beyond imagination and can com-
municate in near-English. These micromachines are at
the forefront of the new wave of computers for the 1990s.

With such sophisticated tools at your finger-
tips—Iiterally—we won’t need the desktop dinosaurs.
Stick one of those boat anchors in your attic. It'll make a
great antique for a turn-of-the-century museum.

Meantime, keep your eyes peeled for ever-greater ac-
complishments in handheld pocket computers.

—Jim Cole

Table of Contents

Introduction 13

What’s Inside Your Computer 19
Writing and Running Programs 37

Input and Output 49

The Real Computer Power! 61
Superpower In Your Pocket 79
Especially Useful For Math 95

Storing Information 105

Pocket Computer BASIC Instructions 115

Error Messages 123

Introduction

Introduction

Computers are practical, useful, fun, even exciting. But
writing programs can be a drag unless you know BASIC,
the most popular program language. In this book we will
introduce you to BASIC in an easy-to-understand explana-
tion of the most-used words.

This will be a straight-forward introduction to program-
ming. We assume you have tried to read the owner’s
manual which came with your computer. You know how
to turn it on. You know that pushing its buttons can't
break it. Don’t be afraid to experiment. We’'ll show you
how to make it work for you.

This book is especially written for owners of the ex-
citing new Radio Shack TRS-80 PC-2, the new Sharp
PC-1500, the Radio Shack TRS-80 PC-1, Sharp PC-1211,
Casio FX-702P Pocket Computer, Panasonic Link Hand
Held, Quasar Hand Held Computer (HHC) and others.

However, the knowledge of BASIC which you will gain
from this book will be applicable to any microcomputer,

13

minicomputer, or main-frame computer using the BASIC
language. And all of today’s popular microcomputers use
BASIC.

Our simple down-to-earth instruction will help you
quickly understand how to talk to your computer and
make it do what you want.

The name of the language is BASIC. That stands for
Beginner’s All-purpose Symbolic Instruction Code. What
does that mean? Well, you know beginner. That's you. All-
purpose means it’'s generally useful for lots of different
things. Symbolic reflects the fact that the comupter uses
symbols to receive instructions from you. That is, sym-
bols like the word PRINT or IF or THEN or FOR or NEXT.
The symbols mostly are words you already know. Code is
a buzz-word used by programmers to mean instructions to
a computer.

So, you can translate Beginner’s All-purpose Symbolic
Instruction Code to mean “You use familiar words to tell
your computer how to do just about anything.”

BASIC was invented at Dartmouth College in the 1960s
to be used by students, beginners, novices, newcomers,
to computers and programming. It’s very much like every-
day English, as you’ll see as we go through this book.
We’ll point out the familiar look-alike words which have
meanings you already know and understand. Words like
end, for, go, to, if, then, list, new, next, step, print, return,
run, stop, and others.

Building on what you already know, we’ll show you how
the computer receives your instructions and uses them to
do what you want.

Universal BASIC

We will use what we consider the most-universal form
of BASIC, simplified so it is applicable to just about any
contemporary computer—large or small. These words,
when used to instruct a computer, would be understood
by just about any hardware. If you have a computer, other
than the pocket computers mentioned here, be sure to

14

check your owners’ manual to see how its BASIC words
differ (if they do) from those we use here.

There are many complete programs in this book. Each
has been tested on the TRS-80 Pocket Computer, the
Sharp PC-1211 Pocket Computer or the Casio FX-702P
Pocket Computer. Keep your owners’ manual handy as
you type in and run these programs. You may need it to
make sure you are properly turning on your equipment.

Please remember, no two programmers write identical
programs from scratch. Even when working toward the
same goal, different writers will create different logic pat-
terns. If your program doesn’t exactly match a suggestion
in this book, yours still may be correct.

Assuming your program runs and gets the required
result, judgment of writing quality should be made on
brevity, quickness of running time, and organizational
clarity. It's always best to write as few lines as possible.
The faster a computer completes its work, the better. And
instructions should appear to flow in a logical order so
they can be followed by others who might read your
writing.

Comparison table

The Appendix to this book includes a large table com-
paring approximately 175 BASIC words used in the most
popular pocket computers. You may find the table useful
in looking up information about whether or not your par-
ticular computer offers use of a particular BASIC word.
The chart also will permit comparison of features if you
plan to buy a new pocket computer. This is the first time
such a chart has been published. We hope you find it
useful.

15

What’s Inside
Your Computer?

What’s Inside Your Computer?

Suppose you shrink to the size of an electronic mouse,
hiding in a corner inside your computer, watching the ac-
tion. There are four main areas which grab your attention:
the input keyboard, the tiny microprocessor, a great hulk-
ing memory, and the output display.

Processor, input, output and memory are the important
parts of any computer. There are many accessory parts
and sections but those four are where the most-
interesting activity occurs.

Input and output, often abbreviated as 1/O, allow a com-
puter to receive work orders from its operator, to receive
information or data for use during a work period, and to
send out messages and work results to the operator. See
figure 1.

input most often is a typewriter keyboard although it
could be a microphone to pick up sounds, an electric eye
to read printed matter, or other inventions. In today’s
pocket computers, it is a keyboard.

19

QUTPUT DISPLAY

T

MICROPROCESSOR

READ T \L WRITE

MEMORY STORAGE

T WRITE

INPUT KEYBOARD

20

FIGURE 1: COMPUTER

Through the keyboard, an operator gives the computer
a list of instructions for carrying out one or more jobs.
That list, or program of action, is followed by the com-
puter whenever told to do so. It does not have to be acted
upon immediately. The program can be remembered for
later action.

To achieve some of its work goals, the computer must
have additional information or data. That information also
is typed in through the keyboard.

So, the keyboard has two functions: sending in pro-
grams of instructions and sending in additional data.

The output display in pocket computers is a tiny elec-
tronic typewriter and an LCD (liquid-crystal display) panel.
In other computers it might be a television set or a TV-like
monitor or a larger electric typewriter. The output display
has one main duty: showing messages and work results
to you.

Memory

The convenience of a computer would be lost if we had
to send in instructions, one at a time, and await action
after each instruction. The beauty of the beast lies in its
ability to memorize a long list of instructions and then,
upon later command, execute those orders. The computer
has a memory to store its various lists of instructions. It is
called program memory and it can hold more than one
complete program at a time.

At the same time, things would be slowed considerably
if each extra piece of information has to be keyed in
repeatedly every time the computer needed it. The com-
puter can accept data one time and then store it away for
repeated use later. To keep such extra information on
hand, the computer has data memory.

Shrunk to an electronic mouse as you are, you see that
great hulking memory, stuffed with program lists and bits
and pieces of miscellaneous data. Let’s take a closer look
at data memory.

Our microinspection tour reveals what can be imagined
as a large quantity of storage boxes. See figure 2.

21

EEEEEEEEEEEEEEEEEE

Imagine 26 boxes labeled A through Z. The contents of
the boxes can be changed. Some contain something.
Some contain nothing. All are variable in that their con-
tents can be changed.

Among the boxes containing something, you see some
with numbers and some with letters and words.

Consider each box to be a single memory location,
identified by its label A or B or C on through Z. Let’s look
more closely at memory locations A, B and C. See figure
3.

Notice that box A is empty. On the other hand, box B
has a word stored in it and box C has a number stored in-
side. Variable memory location A is empty for the moment
while variables B and C are holding information.

Strings

The boxes can contain either numerical information or
words composed of combinations of letters, symbols and
even numbers. Such a word is thought of as a string of
data. Whenever one of our memory location boxes is stor-
ing a word, it is a string variable. If it holds only numbers,
with no letters or other keyboard symbols, it is a
numerical variable.

The quantity of letters, symbols and numbers which
can be tied together in a string and stored in one memory
location is limited. In larger desktop computers, one
string in one memory location can hold hundreds of
characters. But in our pocket computers, one string is
limited to seven characters.

This limitation applies only to string variables, not to
numerical variables. Here are some examples of what
variables contents might look like:

String Numerical
Variables Variables
JiM 86
@#$%ABC 1234567890
1/12/83 22.66
BIRTHDY 1

23

EMPTY

N ‘

A NUMBER

24

FIGURE 3: A, B, & C

The program writer must keep track of which kind of
variable is being used in a particular memory location. For
example, if you store a word in location B and then try to
use that data in a math problem, an error will occur and
you’ll get a message from your computer.

Only when you have numerical information stored in a
memory location can you use that data for math.

One way programmers keep such things straight is by
labeling string variables with a dollar sign ($). The dollar
sign means string and should be read as “string.”

Empty boxes

Let’s change what we saw in figure 3 to use this new
idea. See figure 4.

Memory location B now is correctly labeled B$, since it
contains a word, while memory location C has no dollar
sign since it contains numerical information.

If we were to put a number in A we would label it A. If
we were to put a word in A we would label it A$. A and A$
are the same storage box but you can only keep one kind
of data inside at one time.

By the way, you can change the contents of the various
boxes during the running of a program. A location can go
from empty to full or from full to empty. Or a full location
can have its value changed. A program can be written so
the computer will continually check memory locations to
see what has been stored there.

Obviously, when we say a memory location is empty we
mean it has nothing in it. In effect, it has a big fat zero in-
side. As a matter of fact, if you were to look at the con-
tents of an empty variable, you would see that it contains
a zero. If you ask the computer to show you the contents
of an empty memory location, the output display will
show @ if it is a numerical variable. If it is a string variable
with nothing stored inside, the display will show nothing.
Not even a zero. It will be blank.

You write in data memory by setting the data location

25

LA |
A IS EMPTY ’.

RS HAS A WORD

C HAS A NUMBER

26

FIGURE 4: B LABELED $

letter equal to the value you want to write in it. For in-
stance:

A=1234
The value on the right is transferred into the storage loca-
tion on the left.

Testing

Here’s a handy test of memory locations. Turn your
pocket computer on. If you are using the TRS-80/Sharp
computer, press the MODE button repeatedly until the
display says RUN. Type in this line:

AS$ = “WORD”
Press the ENTER key and the red CLEAR key. The main
display will be blank.

Note: EXE on the Casio keyboard means EXEcute and
is the same as ENTER on the TRS-80/Sharp computer.
Casio owners should press EXE when we call for ENTER.

Similarly, Casio owners will want to press MODE and
the zero key to get into the RUN mode. Pressing the
MODE key and the number one will put the Casio in the
program-writing mode, the same as PRO on the TRS-
80/Sharp computer.

The orange AC key, which stands for All Clear, on the
Casio is the same as the red CLEAR key on the TRS-
80/Sharp computer.

Okay, at this point you have typed in:

AS$ = “WORD”
and pressed the ENTER and CLEAR keys. The main
display is blank.

What has been accomplished? You have actually
stored the letters WORD in memory location A$ inside
your computer. How do you know for sure? In the RUN
mode press A$ and ENTER. The string of letters forming
WORD magically reappear on the display!

You can CLEAR the display and recall WORD as often
as you like. You have successfully stored string data in
variable A and recalled it from memory for display.

27

Now try writing something else overtop of WORD in

memory location A$. In the RUN mode, type in:

A$ = “NAME”
Press ENTER to complete the storage action and CLEAR
to blank the screen. Now type in A$ and key ENTER. The
new word, NAME, reappears. The old string, WORD, has
been lost forever.

Now, let’s put something in location B. Make it
numerical data this time (not string data). Try 1234.56789
which is a nice long entry. Type this in the RUN mode:

B =1234.56789
Press the ENTER key to complete the storage and CLEAR
to remove it from the display.

You have stored the number 1234.56789 in memory
location B. Now key in B and press ENTER. The number
stored in B will reappear instantly on the display. You
have successfully stored numerical data in variable B and
recalled it.

What’s an A$(20)?

In the TRS-80/PC-1211, memory locations can be
specified as A-plus-number. The number can be from 1
through 26. For instance, memory location A(01) is the
first A location or, just plain old memory location A.

Count down the alphabet from A. What is the thirteenth
letter? It is M. Thus, A(13) is the same memory location as
M. What is the twentieth letter of the alphabet? It’s T. That
means A(20) is the same memory location as T.

If you wish to store string data in one of these, insert
the dollar sign between the A and the first parenthesis.
For example, A$(02) is the same as B$ or A$(26) is the
same as Z$.

Your ability to specify a memory location by number
like this will come in handy later. Watch for it.

By the way, more powerful pocket computers such as
the TRS-80 PC-2 and Sharp PC-1500 have additional
memory storage boxes. These are labeled by combina-
tions of two letters. Desktop computers have even more
storage boxes available in data memory.

28

Flexible memories

So far we have been talking mostly about data memory
and ignoring program memory. We’ll get to program
memory in a moment. First there’s one more thing you
should know about data memory locations.

Among data memory locations, some are fixed and
some are flexible. The fixed memory locations are those
we have discussed and known as A through Z. They are
always there for your use. They cannot be removed.

But what if those 26 storage boxes aren’t enough? You
can borrow some memory locations from program
memory!

Borrowed memory locations are known as flexible
memory. Flexible memory in the TRS-80/Sharp computer
are labeled by the A-plus-number method. Since A(01)
through A(26) are the same as A to Z fixed memories, what
numbers do you use for flexible memories? They start at
A(27) and move up through A(28), A(29), etc., up to A(204).
Storing string data in these locations makes them A$(27),
A$(28), A$(29), etc.

Each flexible memory used removes some storage
capacity from program memory. The more flexible
memories used, the shorter the programs which can be
stored in program memory.

You have to remember that you are using some pro-
gram storage space so you don’t try to write more pro-
grams and erase important data. The computer will
always take back flexible memories to use as program
memory when you ask it to. So, data in flexible memories

could be lost.

Program memory

Now you know how to write information in data
memory, and recall it. How about writing in program
memory?

To write into program memory you must put the com-
puter into the program-writing mode. That’s PRO on the
TRS-80/Sharp and MODE 1 on the Casio pocket computer.

29

When in that mode, anything you key in and ENTER will
be stored in the program section of memory.

Your computer is built to use the BASIC program
language. BASIC requires each line of a program to start
with a line number. Here's a typical three-line program.
Notice the numbers at the beginning of each line:

10 CLEAR

20 A$=“WORD”

30 PRINT A$
The computer needs those line numbers to be able to
follow your instructions in sequence. It knows that line 20
comes after line 10 and line 30 comes after line 20. Here’s
the same program with different line numbers:

5 CLEAR
21 A$=“WORD”

189 PRINT A$
This program will run just the same as the first one. The
line numbers are in the same sequence and the com-
mands within each line are the same.

To write this program into program memory, type in one
line at a time. When you are satisfied that the line is typed
on the display correctly, press ENTER to complete the
storage in program memory. You can’t enter more than
one line at a time so press ENTER at the end of each line.
Try it:

10 CLEAR
Now press ENTER. Type in the next line:
20 A$=“WORD”
Press ENTER and type in the next line:
30 PRINT A$
Press ENTER. Now you have stored the complete three-
line program in memory.

Now press the CLEAR key to blank the display. The pro-
gram is sitting in memory but you can’t see it. To look at
it, use the LIST command.

Type in LIST and press ENTER. The computer will show
you line 10. Use the down-pointing arrow key to go down
through the line numbers. Press the arrow key once and

30

you’ll see line 20. Press it again and you’ll see line 30.
Press the up arrow and you go up through the program
lines.

In the Casio computer, you don’t have the ability to
scan up like this. Pressing the EXE key during a LIST will
cause the next line in sequence to be displayed.

LIST doesn’t work in the RUN mode on the TRS-
80/Sharp computer but it does work in the running mode
on the Casio.

How much is left?

Anything you store in program memory takes up space
and space is limited. You can tell how much space re-
mains open for storage by using the MEM function on the
TRS-80/Sharp computer. Type in MEM and press ENTER.
With our simple three-line program typed in, the TRS-80
PC-1/Sharp PC-1211 display shows 1402 program steps or
175 memories available for programming.

Suppose you wanted to get rid of the simple three-line
program. In the run mode, type in NEW and press ENTER.
The NEW command clears al/l program memory at one
time. Try it. Type in NEW. Now press ENTER.

Try LIST. You should get nothing since program
memory has been completely cleared.

Try MEM. You now should get a message from the com-
puter that it has 1424 program steps, or 178 memories,
available for use. Remembering that with the program in
memory there were only 1402 steps left, you can see the
program used up 22 steps of program capacity.

It is possible to write a program which uses every
single step of program memory!

CLEAR vs. NEW

The command NEW erases everything stored in pro-
gram memory, no matter how many different programs
you have there.

To erase all data memories, use the CLEAR command.
It will get rid of all information in all data memories.

31

Casio note: VAC in the FX-702P is the same as CLEAR
in the TRS-80/Sharp computer. CLR is the same as NEW
in the program-writing mode. CLR will clear the particular
program you are working in. CLR ALL will empty all pro-
grams from program memory. Similarly, LIST displays
only the program you are working on while LIST ALL
shows all programs in program memory.

The processor

Be an electronic mouse inside the computer again.
Notice the master-controller in charge of everything.
That’s the microprocessor. Micro means small. Processor
means it follows instructions in manipulating data to do
work. It’s not very big but it sure is powerful!

The processor is a very logical worker, dutifully going
about its business in a proper order, carrying out instruc-
tions, doing work.

Built into the processor are instructions for how to
handle its chores. As it follows that internal set of instruc-
tions, it knows how to follow your external set of instruc-
tions and do the work you want done.

To make a long story short, the processor takes inform-
ation from memory, does something with it, and then
either returns data to memory or displays it as output for
you to read. It is able to do this many, many times each se-
cond and that’s why we love the microprocessor!

Suppose you tell the microprocessor to fetch the con-
tents of memory location B. It looks in there and finds
WORD there. It reads that word, leaves the original behind
in memory location B, and takes the information about
what is in B away to work with it. The processor actually
has a tiny memory inside itself so it can remember what it
read in B.

If we instruct the processor to store something in
memory location C, it writes data to that memory location.
When it writes in that memory location, it destroys
whatever was there before. For example, suppose we
have the number 1234 stored in memory location C. As a
result of an operation, we instruct the microprocessor to

32

store the number 6789 in memory location C. It will put
6789 into C and we will lose the original number, 1234,
forever.

Remember: reading destroys nothing but writing
replaces old information with new.

In carrying out activities, the processor follows exactly
the set of instructions you gave it as a program. It can’t do
anything else. If you make a mistake, it makes a mistake.
If your work was perfect, its work will be perfect.

Program language

A program is composed of sets of alphabet letters
which the processor understands as words. A complete
set of such words makes up a language. BASIC is a
language composed of words such as GO, TO, FOR,
NEXT, IF, THEN, STEP, PRINT, RETURN, INPUT, PAUSE,
WAIT, SET, STOP, END, SAVE, LOAD, GET, PUT, RUN,
LIST, NEW and many others.

Since our pocket computers are so very small, they
have been given only the very best, most useful, of these
words. The TRS-80/Sharp computer has all the most im-
portant words. The Casio has a few more. Larger desktop
computers have even more. The Radio Shack TRS-80 PC-2
Pocket Computer and Sharp PC-1500 Pocket Computer
each have an extensive vocabulary, similar to the largest
desktop computers. There are very few words not in their
vocabularies.

The more extensive the BASIC vocabulary, the more
flexible the writer can be in creating programs. The total
number of BASIC words invented to date is well over 500.
You have the best three dozen of these in your pocket
computer.

It's easy to see why BASIC is the most popular com-
puter language today. It's most like everyday English and,
therefore, most readily used.

33

Writing and
Running Programs

Writing and Running Programs

Writing programs means creating line lists of instruc-
tions and storing them, one at a time, in program memory.

Running means having the computer recall those sets
of instructions, one line at a time, and do them.

Here’s a simple one-line program. Put your computer in
the program-writing mode (as explained earlier) and type
in this line:

10 PRINT “WORD”
When you are satisfied that you have the line correct on
the display, press ENTER. That completes the act of stor-
ing it in program memory. Now you can press the CLEAR
key to remove the line from the display and use the LIST
command to recall it.

Switch to the RUN mode and type in RUN and press
ENTER. What is on the display?

WORD
Your one line program instructed the computer to print
the word, WORD, and it did just that. Now return to PRO

37

mode, type in NEW and ENTER to get rid of the one-line
program, and type in this new program:

10 CLEAR

20 PRINT “WORD”
Go back to the RUN mode and run it. What did you get as
a result?

WORD

The same result. Go back to the PRO mode and type in
this three line program:

10 CLEAR
20 A$=‘“WORD”
30 PRINT A$

In the RUN mode, what is the result of a run?
WORD
Again the same result. Each of these programs looks dif-
ferent but each has the same final result: printing the let-
ters WORD on the computer’s display.
Here’s a more-elaborate program with six lines. These
lines will enhance the work result by making a sentence:

10 CLEAR

20 A$=“WORD”
30 B$=“THE”
40 C$=“IS”

50 D$=“THIS”

60 PRINT B$;A$;C$;D$

Here’s the result of running this program:
THEWORDISTHIS
If you had typed in a blank space at the end of each
English word the sentence would have been properly
spaced. For instance, if you had typed line 20 like this:
20 A$=“WORD"”
the result would have looked better.
THE WORD IS THIS
Now you know what a BASIC-language computer program
looks like. Such programs range from one-liners to lists of
hundreds of lines. The pocket computer easily can store a
100-line program.

38

ENTER

Whether you are trying to put program lines into pro-
gram memory or general information into data memory,
the computer won’t memorize typed-in info until the
ENTER key is pressed. The computer’s display will echo
what you keyed in, showing what you have typed, but the
act of storing in memory isn’t complete until you press
ENTER. Try this test. Type:

WORD

Press the CLEAR key. The letters WORD disappear. How
can you get them back? You can’t since you didn’t tell the
computer where to store them.

in fact, the TRS-80/Sharp pocket computer thinks you
want it to multiply W times O times R times D when you
type in WORD and press ENTER. If you had stored
numbers in those locations, the result of multiplication
would have been displayed.

Remember, you have two places to store information.
Program memory for program lines with line numbers.
And data memory for information labeled for one of the
memory locations. To write in program memory, put the
computer in the PRO mode, key in a line number, and type
in WORD. Here’s an outline of the action.

Your Computer
Action Displays
type 10 WORD 10WORD
press ENTER 10: WORD
press CL blank display
type LIST LIST

press ENTER 10: WORD

What's happened? You have entered an instruction into
program memory, erased the display, and recalled the
program line to the display. Now press the RUN key
repeatedly to get to the RUN mode:

39

Your Computer

Action Displays
type WORD WORD
press ENTER o

What's happended? The letters WORD have not been
stored anywhere and when you tried to recall them you
got a zero. Now, we know WORD is a string. Let’s turn
memory location A into a string location and put WORD in
it. Follow this action:

Your Computer
Action Displays

type A$ = “WORD” A$ =“WORD”
press ENTER WORD

press CL key blank display
type A$ A$

press ENTER WORD

press CL key blank display
type A$ A$

press ENTER WORD

You have stored WORD as a string in data memory, in
location A to be exact, and erased and recalled it

repeatedly.

RUN

Let’s put an instruction in program memory and then
switch to the RUN mode and run it. First, press the MODE
key repeatedly to get to the PRO mode. Type in NEW and
press ENTER to get rid of all old programs from program
memory. Then do this:

40

Your Computer

Action Displays

type 10PRINT“WORD” 10PRINT“WORD”
press ENTER 10: PRINT “WORD”
press MODE key

3 times to RUN blank display

type RUN RUN

press ENTER WORD

press CL blank display

type RUN RUN

press ENTER WORD

You have successfully stored the string WORD in pro-
gram memory in a command to print it when called for.
Then, in the RUN mode, you called upon the computer to
run the program. It did and the result was correct. The let-
ters WORD were printed on the computer display.

RUN is an instruction to the computer to start at the
lowest program line number and begin executing com-
mands it finds there.

You can make the computer start its run at a different
line number by typing that line number immediately after
the word RUN, before ENTER. For instance, to start at line
100, type:

RUN 100
and then press ENTER. The computer will skip over any
program lines with numbers less than 100.

Similarly, in the TRS-80/Sharp computer, you can tell
the computer to start at a particular line number by put-
ting a special label at the head of that line and asking the
computer to RUN starting at that label. Suppose you had
this three-line program in your computer.

10 CLEAR
20 PRINT “NAME”
30 “X” PRINT “WORD”

To make the computer skip over lines 10 and 20 and start

its run at line 30, type in
RUN “x”

41

and press ENTER. The computer will search for a line star-
ting with “X” such as line 30 in our program here. When it
finds such a line it will start its run.

REMarks

Suppose you were to write a very long, 50-line program
of instructions for your computer. You might forget what
each line was to accomplish. You need some way to put
information in program memory which won’t be acted
upon by the computer during a run. Information such as
notes to yourself so that when you list your program you
can recall what the various parts of the program were sup-
posed to do. These notes to yourself, and for other pro-
grammers to read, are called remarks. The REM command
is used. Anything in a program line after REM will be ig-
nored by the computer during a run. For example:

10 REM PRINT “NAME”
20 PRINT “WORD”

Type in this program and run it. You’ll see that the com-
puter has ignored, or skipped over line 10 and done line
20. Anything on a line after REM is ignored. Here's
something different. Try this one:

10 PRINT “WORD”: REM PRINT “NAME”

Here the program did the first part of line 10 but ignored
the last half of the line following REM.

By the way, you can put multiple statements in one pro-
gram line by using the colon ().

The colon indicates to the computer that a new state-
ment is coming. Thus, you can place several statements
in one line if you wish. Separate them with colons. Here’s
an example of a one-line program including several
statements:

42

10 PRINT “WORD”:PRINT “NAME”: PRINT “DOG”
:PRINT “CAT”

The computer will follow these statements of command
in sequence as it reads through line 10. It will print WORD
first, then NAME, then DOG, then CAT.

REMarks are good for notes but very wasteful of
memory. And we don’t have much memory to spare in the
pocket computer. Use REM infrequentiy!

BREAK
What to do when your computer goes blitzo!
In the PRO mode, type in this sample program:

10 PAUSE “WORD”
20 GOTO 10

PAUSE means display momentarily and then go on.
GOTO means go to somewhere, in this case line 10. This
small program creates a /loop. First the computer does as
it is asked in line 10. It momentarily prints on the display
the letters WORD. Then it goes on to line 20. At line 20 it
finds a command to go back to line 10. At line 10 it
momentarily prints WORD and goes on to line 20. This
will cycle and recycle forever until you break the loop. Use
the BREAK key.

Note that BREAK is also the ON key in the TRS-
80/Sharp keyboard and the STOP key on the Casio
keyboard.

Let’s run our two-line loop program. Put your computer
in PRO mode and type it in. ENTER each line. Then switch
to RUN mode and run it.

Notice that the computer is continually displaying,
erasing, displaying, erasing, displaying, etc., as it loops
through its instructions. Now press BREAK. The display
says:

BREAK AT 10
or
BREAK AT 20

43

depending upon which line it was doing when you press-
ed BREAK.

BREAK is used whenever you need to stop a RUN dead
in its tracks. It’s your panic button.

STOP

But suppose you want the program to STOP
automatically at some point in a run? Use the STOP com-
mand. Write it into your program as one line.

How to continue after STOP? Use CONT. Try this sam-
ple program:

10 PAUSE “WORD”
20 STOP
30 GOTO 10

Run it. The computer prints the letters WORD and then
stops, displaying the message BREAK AT 20. To make the
computer go on to line 30, type in CONT and press
ENTER. The computer will proceed from where it left off.
In this example, it will go on to line 30. At line 30 it finds
an instruction to go back to line 10. At line 10 it momen-
tarily prints WORD and then goes on to line 20. At line 20
it finds a STOP command so it quits and displays the
message BREAK AT 20. And so on. STOP stops it. CONT
makes it continue.

END

You can, at your option, tell the computer a program
has ended. Use the END command. Try this sample pro-
gram:

10 PAUSE “WORD”

20 END
30 PAUSE “NAME”
40 GOTO 10

44

Upon running this program, the computer will do line 10,
printing WORD on its display. When it moves on to line 20
it will find an END statement so it will think it is at the end
of the program. It ceases operations and goes to a blank
display.

If you were to start at line 30 with a RUN 30 command, it
would first print NAME, then print WORD and then stop.

The CONT function won’t work after an END command.

45

Input and Output

Input and Output

Input means giving the computer something to store in
memory, whether data or program.

Output means displaying messages and work results
for you to see.

INPUT

Information can be permanently placed in memory
when you write a program. That is, data will actually be
part of the program as written. This fixed information
could look like this:

10 A$=“WORD”

Whenever you run the program the computer will always
start with the memory that WORD is the data in memory
location AS.

But, suppose you want the computer to pick up
changeable data during a run? Use the INPUT function.
Try this program:

49

10 A$=“ITIS”
20 INPUT “WHAT IS THE WORD”,B$
30 PRINT A$;B$

When you run this program, the computer starts at line 10
and stores the string IT IS in memory location A. At line
20, the computer displays the question, WHAT IS THE
WORD, and waits for a reply. You type in any string of up
to seven characters in reply. Press ENTER to give your
answer to the computer. The computer stores your
answer in B$. Then, the computer moves on to line 30
where it recalls the contents of memory locations A$ and
B$ and prints them on the display.

Let’'s see how INPUT works when you want to collect
numerical data. It works the same. Try this short program:

10 Q=111
20 INPUT “PICK A NUMBER”,N
30 R=Q+N

40 PRINT N;“PLUS @;” = R

Here, line 10 puts the value 111 into memory location Q.
Line 20 displays the message, PICK A NUMBER, and
awaits your response. Whatever number you select, key it
in and press ENTER. The computer will store your number
in memory location N.

Line 30 does the math work for you by adding. It recalls
that 111 was stored in Q and your number was stored in N.
It adds those two values to get a new total. The total is
stored in memory location R. The program moves on to
line 40.

At line 40 the computer prints the results in sentence
form. Try it with several different numbers. It’s fun!

Suppose your number were 59. The program result,
after printing line 40, would look like this:

59 PLUS 111 = 170
You don’t have to use the message part of the INPUT
function if you don’t want to. For instance:

50

10 INPUT N
20 INPUTP
30 PRINTN
40 PRINTP

This program allows the computer to take in your
numerical data and store it in memory locations N and P
and then print the values on the display. The computer
will start at the lowest line number, as usual, line 10.
Since no message has been supplied, the computer will
display only a question mark (?). The ? tells you the com-
puter wants some information. Try it on your pocket com-
puter.

Casio users note: use the INP key for INPUT and PRT
for PRINT. Your program would look like this:

10 INP N
20 INPP
30 PRTN
40 PRTP

Casio users also have available the powerful KEY func-
tion which we’ll discuss later in a special section devoted
to the FX-702P.

PRINT

You already have used the PRINT output command but
here’s some further information.

PRINT and PAUSE are output functions of the TRS-
80/Sharp computer. Similar Casio commands are PRT and
WAIT.

PRINT in the TRS-80/Sharp is the same as PRT in the
Casio. PAUSE in the TRS-80/Sharp is the same as the
combination of WAIT and PRT in the Casio. Here’s how
they work:

PRINT causes a message to be displayed on the pocket
computer's display. The printed message consists of
whatever is contained within the quotation marks follow-

51

ing the PRINT command. For instance:
10 PRINT “I LIKE ICE CREAM”

The computer reproduces exactly what you place bet-
ween the quotes, including blank spaces. Try it in your
pocket computer. Now, type in this program:

10 PRINT “I LIKE ICE CREAM”
20 PRINT “DO YOU?”

Run it. Notice that the computer stops after printing the
message, | LIKE ICE CREAM. Why? Because the PRINT
command in effect contains a built-in STOP command.

How can you make the computer show its message and
then go on to the following program lines? Use PAUSE in
place of PRINT. Make this change:

10 PAUSE “I LIKE ICE CREAM”
20 PRINT “DO YOU?”

Now when you run the program, the computer shows the
message, | LIKE ICE CREAM, for about a second and then
replaces it with the line 20 message, DO YOU?

If you are a Casio user, you'll note that the TRS-
80/Sharp computer’s PAUSE combines two of your com-
mands, WAIT and PRT. Your version of the same program
would look like this:

10 WAIT 20
20 PRT “I LIKE ICE CREAM”

30 PRT “DO YOU?”

Line 10 tells the Casio to display all upcoming PRT
messages for about one second. Line 20 contains the
message, | LIKE ICE CREAM. The combination of instruc-
tions in line 10 and line 20 is the same as the single-line
command PAUSE in the TRS-80/Sharp computer. And line
10 in the Casio will effect line 30 in the same way.
These PRINT messages need not be in the same line as
the PRINT command, by the way. Rather, you can store a

52

message in data memory and recall it for PRINTing. For
example:

10 N =1234.56789
20 PRINTN

The computer, at line 10, stores the number 1234.56789 in
memory location N. At line 20, the computer recalls the
value of N and prints it on its display. Here’s another
example:

10 G$=“WORD”
20 PRINT G$

Here the computer stores the string of characters, WORD,
in memory location G. At line 20 it recalls G$ and prints it.
Here’s an even more complex program:

10 A=6

20 B=7

30 C=2

40 D=A+B+C
50 PRINTD

The computer stores the number 6 in memory location A,
the number 7 in location B; and 2 in C. At line 40 it recalls
the values in A, B and C and adds them together. The
result of that addition is stored in D. Line 50 recalls the
contents of D and prints the number on the display. Try it.

Remember the /oop we created earlier? Here’s a dif-
ferent one to try on your pocket computer:

10 N=N+1
20 PAUSE N
30 GOTO 10

What results? Your computer can count! It starts at one
and counts upward endlessly, one at a time, until you
press the BREAK key. Here’s how it works.

53

Line 10 recalls the value stored in memory location N
and adds one to it. Since we are just starting our run,
there is nothing, or zero, stored in N. Thus, one added to
zero equals one. The result of the addition is stored in N.

Line 20 recalls the current value stored in N which, for
now, is a one. Line 20 causes that number one to be
displayed for you to see. The computer advances to line
30 where it finds a command to go back to line 10.

When it gets to line 10 this time it finds a one stored in
N and adds one to that. The new total, two, is stored in N,
erasing the old total. The program goes on to line 20. At
line 20, the computer displays the two now stored in
memory location N.

Line 30 pushes action back to line 10 again. At line 10
the computer finds a two in N and adds one to it. The new
total, three, is stored in N, erasing the old total. And so on.
The output result is a continuing upward count on the
computer display. Try it.

This looping action will continue until you tell it to stop
by pressing BREAK. Your computer can count. Lots of
fun!

CLEAR

Make your computer count up to 50 and then, quickly,
press the BREAK key so it stops at 50. The operation will
stop. Now type in RUN and press ENTER. Where does the
count start? It picks up at 51!

Why? Because the data memory held 50 in location N
even though the computer stopped running. When you
started a new run, N still held 50 so line 10 added a one to
that 50 and got a new total of 51. Line 20 printed that
value, 51.

How can you make a count automatically restart at
zero? Try this program:

10 CLEAR

20 N=N+1
30 PAUSEN
40 GOTO 20

54

It's the same program except we’ve added a CLEAR com-
mand at the beginning. And the GOTO statement in line
40 makes action jump back to line 20.

When the program starts running at line 20, the CLEAR
command erases all data memories. So, when you let it
count up to 50, BREAK to stop it, and then restart the run,
it will pass through line 10 at restart. Line 10 will CLEAR
data memory N and, in effect, put a zero in it, erasing the
50 which had been in N. When the computer looks in an
empty or CLEARed memory location it sees zero. CLEAR
in this program causes all new starts to be from zero. Why
is line 40 set to make the program jump to line 20 rather
than line 10? Try this change:

40 GOTO 10

You see a continual display of ones. That’s because jump-
ing to 10 puts CLEAR in the loop everytime with N always
being reset to zero. The value in N doesn’t get a chance to
increase beyond one.

Casio users note: use VAC rather than CLEAR in your
pro grams. Yours should look like this:

10 VAC

20 N=N+1
30 WAIT 20
40 PRTN
50 GOTO 20

Let’s make a novelty ‘“‘alphabet counter.” Write a pro-
gram so the computer will “count down” through the
alphabet by displaying A, then B, then C, then D, then E,
etc. Try this:

10 PAUSE “A”
20 PAUSE “B”
30 PAUSE “C”

55

40 PAUSE “D”
50 PAUSE “E”
60 PAUSE “F”
70 PAUSE “G”
80 PAUSE “H”
90 PAUSE “I”
100 PAUSE “J”
110 PAUSE “K”
120 PAUSE “L”
130 PAUSE “M”
140 PAUSE “N”
150 PAUSE “0O”
160 PAUSE “P”
170 PAUSE “Q”
180 PAUSE “R”
190 PAUSE “S”
200 PAUSE “T”
210 PAUSE “VU”
220 PAUSE “v”
230 PAUSE “wW”
240 PAUSE “X”
250 PAUSE “Y”
260 PAUSE “Z”
270 GOTO 10

Fun, isn't it? A long program with 27 lines, it causes the
computer to print momentarily each letter of the alphabet.
When the computer reaches line 270, it finds a command
to go back to line 10 and start the whole thing over. For
more fun, change line 270 like this:

270 BEEP 5
280 GOTO 10

The BEEP command is a very special form of pocket com-
puter output that very, very few other computers have.
Sound cues can be especially helpful in long program
runs. If you program your computer to make a sound, you
will be alerted when the program has reached an impor-
tant stage or when a run is complete. You won’t have to

56

sit and look at your computer to make sure you miss
nothing.

The BEEP command is followed by a number telling the
computer how many times to repeat its sound. For exam-
ple, BEEP 5 causes the computer to make the same
sound five times before going on. BEEP 100 would cause
the computer to make its sound 100 times before going
on. There are lots of uses you can imagine for the BEEP
function.

57

The Real
Computer Power!

The Real Computer Power

When folks talk about a computer having power, they
often are referring to its ability to make decisions. And its
looping ability. And its jumping ability. These capacities,
when combined, make for some very powerful computing
ability.

FOR/NEXT/STEP
You already know /oops are fun but we need a way to

control them to put them to a useful purpose. Here’s one
way:

10 FORL=1TO 100

20 PAUSEL

30 NEXTL

40 PRINT “END OF COUNT”

50 BEEPS
Lines 10 and 30 create a FOR/NEXT loop. A FOR/NEXT
loop probably is the most frequently used of the super-
power BASIC commands.

61

In this program, line 10 actually contains a built-in
counter which advances the value storec in L by one every
time the program reaches line 30. In fact, until the count
reaches 100, line 30 causes the program to jump back to
line 10. When the value in L reaches 100, then and only
then will the FOR/NEXT loop let the action drop on down
to line 40. Here’s a variation:

10 FORA=10TO 100
20 PAUSE A
30 NEXTA

The memory location used in the loop can be any of those
available to you in your computer. The count can start
anywhere and go up to 999 in the TRS-80/Sharp pocket
computer. In this program, the value in A will start coun-
ting at 10 and loop up to 100.
Unless you tell it otherwise, the count will step up by

ones. Try this change:

10 FOR X=2TO 40 STEP 2

20 PAUSE X

30 NEXT X
Here the count goes up by twos. Try this program to make
the computer count down by ones:

10 FOR J=100 TO 1 STEP -1
20 PAUSEJ
30 NEXTJ

The computer starts at 100 and counts down to 1, and
then stops. Very convenient. Very powerful!

The STEP statement is not used unless you want in-
crements other than + 1. Minus numbers after STEP will
cause the computer to count down in numbers while
positive numbers will cause it to count up. Now make the
computer take some giant steps:

10 FOR R=999 TO 1 STEP -100

20 PAUSER

30 NEXTR
The computer counts down by hundreds. At that rate, it
doesn’t take very long to run out of numbers.

62

Sometimes you need a time delay in the middle of a
program as it is running. The loop can be used to create
such a time delay. Type in this program:

10 FOR N=1 TO 999:NEXT N
20 BEEP 1
Get a stopwatch and keep an eye on the running time
for the program. Line 10 is a FOR/NEXT loop all on one
line, without any output during the loop. The computer
merely counts internally up to 999 and then moves on to
line 20 where it BEEPs. How long does it take such a loop
to run its course? Use a stopwatch to time it from
RUN/ENTER to BEEP.
How long did it take to get to 9997 Over four minutes? A
nice long delay! Now try counting to 100:
10 FOR N=1TO 100:NEXT N
20 BEEP 1
How long is the delay before the BEEP? Just over 25
seconds is average. If yours took less time, your com-
puter runs faster than ours. If it took a longer time, it runs
slower. Except to purists, it doesn’t matter much in the
pocket computer. We trade speed for handheld portabili-
ty!
10 FOR N=1TO 10:NEXT N
20 BEEP 1
Counting only to 10 reduces the delay to about 2.5
seconds in our pocket computer. How about yours?
10 FORN=1TO 5:NEXT N
20 BEEP 1
Counting only to 5 makes things happen even more quick-
ly. It reduces delay to about 1.5 seconds in our computer.
Now, for the one-second deiay:
10 FORN=1TO 3:NEXTN
20 BEEP 1
In our computer, counting to three and beeping takes ex-
actly one second. Experiment with yours. It may take a
longer or shorter count to make the loop last one second.
Why is a one-second loop useful? Well, maybe you
would like to turn your pocket computer into a clock!

63

Here’s a simple timer, for starts:

10 CLEAR

20 T=T+1

30 FORN=1TO 3:NEXT N
40 PAUSET ;“SECONDS”
50 GOTO 20

This is a crude clock. You can adjust its speed by
changing the number 3 in line 30. It will count seconds un-
til you stop it with the BREAK key.

Can you figure out why it takes a bit longer for the first
display, 1 SECONDS, to appear? Because the computer
uses up time as it works it way through lines 10, 20 and 30.
You planned on it using up time at line 30 but you may
have overlooked the amount of time it takes to carry out
the instructions at line 10 and line 20.

IFITHEN

Did we say earlier the computer has the ability to make
decisions? Yes! The IF/THEN statement is an important
part of the decision-making process.

IF something happens or is true, THEN and only then
will something else happen. IF nothing happens or
something is not true, THEN nothing will happen. The
IF/THEN test is one of the superpowers of the pocket
computer.

Here are examples of typical IF/THEN program lines:

IF A=222 THEN PRINT A

IF B$=“DOG” THEN 200

IF J=A/2 THEN PRINT J

IF Q$ = “WORD” THEN INPUT X$
IF T=2*4 THEN 900

IF A$ PRINT B$

IF something is true, THEN some action is taken. That ac-
tion can be a GOTO jump to a new program line. Or a
PRINT command. Or an INPUT or any of the many BASIC

statements.

64

Try this simple program in your pocket computer:

10 A$=“DOG”

20 B$=“BONE”

30 IF AS PRINT B$
The computer first stores string data DOG in memory
location A and then BONE in B. Line 30 then causes the
computer to examine location A and make a decision. The
phrase IF A$ means “if there is anything in A$” then do
whatever comes next in the same line.

In this case, we place DOG in A$ so we know the com-
puter will find something there. Finding something there,
it goes on to the last part of line 30 and carries out the
specified action. It prints BONE on its display. If it would
have found nothing there, it would have ignored the last
half of line 30.

That was a simple test, merely to see if there happened
to be anything in location A. Now let’s change the pro-
gram to make a harder test for the computer:

10 A$=“DOG”

20 B$=“BONE”

30 IF A$=“BONE” PRINT A$
40 IF B$=“BONE” PRINT B$

As before, line 10 stores DOG in memory location A$ and
BONE in B$. Having done that, the computer moves on to
do line 30.

At line 30, it finds an instruction from you to do a test
and make a decision. The test is to look at the contents of
A$ and see if they are BONE. If, and only if they are BONE,
then go on to the last half of line 30. The last half of line 30
calls for the computer to recall the contents of A$ and
print them on the display.

We know we stored DOG in A$. When the computer
checks A$ it finds DOG, not BONE. Therefore, it uses its
decision-making ability to proceed to line 40 rather than
do the last half of line 30. It found that the IF
A$ = “BONE” was not true so it could not go on to the last
half of that line.

65

Since the line 30 test failed, the computer moved on to
line 40. At line 40 it finds another test. It follows orders
and checks the contents of B$. At B$ it finds BONE so the
idea that B$ = “BONE" is true. With that found to be true,
the computer decides to go ahead with the action called
for in the last half of line 40. It recalls BONE from B$ and
prints it on the display.

To recap, we stored DOG in A$ and BONE in B$. We
asked the computer to print the word DOG if it found the
word BONE in A$. It looked and did not find BONE so it
did not print DOG. Then we asked it to print BONE if it
found the word BONE in BS$. It looked at B$, found BONE,
and printed BONE on the display.

GOTO
You know that the computer does your list of BASIC in-
structions by following line numbers. First it does line 10,
then line 20, etc. But, suppose you want the computer to
do things in a different order. Maybe you would like it to
jump over a group of lines. Or skip down to a different part
of the program. This ability to branch out and around
some lines to do other lines is an important power in the
computer. It involves the GOTO and GOSUB statements.
GOTO means ‘““go to aline.” The GOTO statement must
include the destination where you wish the program to
go. For example:
GOTO 100

When the computer finds a GOTO statement, it im-
mediately leaves the list, searches for and finds the
destination line, and reenters operations at that point.
Here’s a small example:

10 GOTO 30

20 PRINT “NAME”

30 PRINT “WORD”
In this program, the computer starts at line 10 where it im-
mediately finds a command to GOTO line 30. It skips
down the list until it finds line 30. At line 30 it resumes do-
ing what you asked. It prints WORD. In this case, the in-
struction in line 20 never gets done.

66

You can jump backward and forward within the pro-
gram. Here’s an example:

10 INPUT “ENTER A NUMBER”,A
20 INPUT “ENTER ANOTHER NUMBER”,B
30 GOTO 100
40 PRINT“THE TOTAL IS ;T
50 GOTO 10
100 T=A+B
110 GOTO 40

Again the program starts running at the lowest line
number, line 10. At line 10 it asks you for a number which
it stores in memory location A. At line 20 it asks for
another number which it puts in B.

At line 30 it finds an order to branch down to line 100
which it does. When it finds line 100 it does the instruc-
tion in line 100. It recalls the contents of A and B and adds
them together, storing the total in T. Having completed
line 100, it moves on down to line 110.

At line 110 the computer finds your instruction to jump
back up to line 40. Doing that, it finds at line 40 an instruc-
tion to print THE TOTAL IS and the value in T. Putting that
message on the display, it goes on to line 50.

At line 50 it comes upon your command to go up to line
10. It does that, thereby starting the entire process over
again. The computer will go through this elaborate loop
as long as you are willing to keep giving it numbers.

GOTO is, in fact, one of the most-used words in the
BASIC language. Our programs are strewn with such
jumps. Here’s an eight-line program which includes five
jumps!

10 INPUT “ENTER A NUMBER”,N

20 IF N >100 THEN 200

30 IF N<50 THEN 100

40 GOTO 10
100 PAUSE “NUMBER LESS THAN 50”
110 GOTO 10
200 PAUSE “NUMBER MORE THAN 100"
210 GOTO 10

67

Lines 20, 30, 40, 110 and 210 contain GOTO jumps. The
program is a mini-sorting operation. It sorts out numbers
greater than 100 or less than 50 and rejects all others.
Here’s how:

You give the computer a number at line 10 and it stores
the number in N. At line 20 it recalls the value stored in N
and tests to see if it is greater than 100. If it is greater than
100, the computer does the last half of line 20 which calls
for a jump to line 200. The GOTO word does not actually
have to be present in an IF/THEN statement. GOTO is
understood between THEN and the destination line
number.

If line 20 finds your number not to be more than 100, the
computer goes on to line 30 where it tests your number
again. This time it tests to see whether or not your
number is less than 50. If it is less than 50, the program
does the last half of line 30. It jumps to line 100. If your
number is not less than 50, the program drops down one
notch to line 40.

Line 40 is a trap to catch all numbers which fail the
tests in line 20 and 30. If a number fails line 20 and line 30,
program action drops to line 40 where it is sent via the
GOTO statement to line 10 for a new start. In effect, the
computer is accepting numbers from you which are
greater than 100 or less than 50 but doing nothing if your
number is in the range of 50 to 100.

But what happended when your number passed the test
in line 20?7 The computer then did the last half of line 20
and jumped to line 200.

At line 200 it found an instruction to display briefly the
message, NUMBER MORE THAN 100. Having completed
that display, the next instruction in line 210 was a jump
back up to line 10 for a new start.

And what if the number failed the line 20 test but pass-
ed the line 30 test? The last half of line 30 caused the
operation to jump down to line 100 where the computer
briefly displayed the message, NUMBER LESS THAN 50.

68

Atline 110it found a GOTO causing a jump back up to line
10.

GOSUB/RETURN

Often you will need to repeat the exact same set of in-
structions at different points in a program. You could type
the required program lines into the program each time
they are needed. Or you can type them once and make the
program jump to them when needed.

Typing of repeating sequences wastes your program-
writing time, and, more importantly, wastes program
memory space. It’s easier for you and uses less memory
when you create one subroutine to be repeatedly used by
the computer.

Why not use a GOTO statement to get to a subroutine?
The answer lies in the RETURN from the subroutine. If
you were to use GOTO to get to a subroutine from several
different places in a program, the designation of where to
return to after completion of the subroutine would be long
and ciumsy. GOSUB was invented to take care of just that
problem.

A subroutine is a small program which you can imagine
as being set aside from the main program. A subroutine
can be used as often as you like while running the main
program. Each time a subroutine is completed, the com-
puter automatically returns to the line in the main pro-
gram immediately following the line from which it earlier
had left the main program. Here’s a small example:

10 A =555
20 GOSUB 100
30 PRINTT
40 END
100 T=A+1
110 RETURN
The main program is contained in lines 10, 20, 30 and 40.
The subroutine is lines 100 and 110. The jump to the
subroutine is the instruction in line 20. Note that it con-
tains the destination line number. The return from the
subroutine is from line 110 to line 30.

69

At line 10, we assign the value 555 to memory location
A. At line 20, we ask the computer to branch to the
subroutine at line 100.

At line 100 the computer finds an instruction to recall
the value of A and add one to that value. The new total is
stored in memory location T.

The program moves on to line 110 where it finds
RETURN. That instruction, which must always be at the
end of a subroutine, tells the program to jump back to the
line immediately following the line where it left the main
program. In this case, the program left the main routine at
line 20 so RETURN will kick it back to line 30.

At line 30 the computer finds a command to recall the
contents of T and to display it. It does that and moves on
to line 40. At line 40 it finds the END command and
ceases operations.

Why an END in line 407 Because you need to make sure
the subroutine is entered only from the GOSUB instruc-
tion. After line 30, without an END in line 40, the program
would automatically move from line 30 to the next
available higher line number which is 100. At line 100 it
would enter the subroutine. At line 110 it would find a
RETURN which did not come from a GOSUB and an error
message would occur.

Just as a GOSUB must have a RETURN, the RETURN
statement must come after a GOSUB.

The computer has a tiny private “scratchpad” bit of
memory within itself where it writes temporary notes to
itself. When it executes a GOSUB command, it makes
note of the line number from which it left the main pro-
gram. Later, when it finds a RETURN, it refers to its
scratchpad to see where it left the main program. It deter-
mines the next available program line after that exit point
and re-enters the main body of the program at that point.

If the computer encounters a RETURN without having
left the main program via GOSUB, it won’t be able to find a
“where to” note on its scratchpad and will send you an er-
ror message. You don’t want error messages so you pre-

70

vent the computer from getting into subroutines by
means other than GOSUB jump commands.
Here’s another example of a program with a subroutine:

10 INPUT “ENTER A NUMBER”, N
20 GOSUB 100

30 PAUSE “SQUARE ROOT IS ;T
40 GOTO 10

100 T=/ N

110 RETURN

This program computes the square root of a number you
give it. The main body of the program is in lines 10, 20, 30
and 40. The subroutine is lines 100 and 110.

At line 10, the computer asks for a number and stores
what you give it in memory location N. At line 20 it en-
counters a GOSUB instruction.

The computer immediately makes note of the fact that
it is leaving the main body of the program at line 20. When
it returns later, it will return to line 30.

The GOSUB is to line 100. The computer does that and
finds an instruction at line 100 to recall the value of N,
compute the square root of it, and store the answer in
location T. Completing that the computer moves on to
line 110.

At line 110, the RETURN statement makes the com-
puter jump back to line 30 as predicted. At line 30 it
recalls the contents of T and prints the specified
message.

Line 40 is a different way to keep the program from go-
ing into the subroutine in lines 100 and 110. A jump is a
way around a subroutine. Or, in this case, since the jump
is back up to line 10 the program never sees line 100 ex-
cept when properly sent there by GOSUB.

Two entries, one exit
A subroutine can have more than one entry point while
having only one exit:

71

10 CLEAR
20 INPUT “ENTER A NUMBER”, A
30 IF A>100 GOSUB 220
40 IF X=2THEN 10
50 GOSUB 200
60 GOTO 10

200 X=1

210 GOTO 230

220 X=2

230 PAUSEX

240 RETURN

The main routine is in lines 10, 20, 30, 40, 50 and 60. The
subroutine is lines 200, 210, 220, 230, and 240.

Note that line 50 contains a GOSUB branch to
subroutine line 200 while line 30 has a GOSUB to line 220.
Depending upon the IF/THEN decision in line 30, the com-
puter will leave the main routine either at 30 or 50 and will
enter the subroutine either at 220 or 200.

In either case, the subroutine ends at line 240 with a
RETURN. It will return to the proper line in the main body
of the program because its scratchpad note will tell it
where it last left via GOSUB.

Line 10 CLEARs all of data memory. Line 20 asks for a
number from you and stores that number in memory loca-
tion A.

Line 30 is a test. If your number, as stored in A, is
greater than 100, the program will complete the end of
line 30 and GOSUB to line 220. If your number was not
greater than 100, the test will fail and the program will go
on to line 40.

Since we cleared all data memories back at line 10, X
will be equal to zero so the test in line 40 will fail. It will
not be true that X=2. The program will go on to line 50.

Line 50 forces the computer to GOSUB to line 200. But
what does this subroutine do?

The subroutine assigns a value of 1 to memory location
X if the number you selected to enter was 100 or less. It

72

assigns a 2 to location X if your number was greater than
100.

If the subroutine is entered at line 200, a 1 is stored in X.
Line 210 jumps around line 220 to line 230. Line 230
displays briefly the contents of X. Line 240 RETURNS ac-
tion to the appropriate place in the main body of the pro-
gram.

If, on the other hand, the subroutine is entered at line
220, the computer will store the value 2 in memory loca-
tion X. At line 230 it will display briefly the contents of X.
At line 240 it will RETURN. Lines 200 and 210 will not be
used.

What’s the practical result? The computer asks you for
a number. You give one. It decides whether or not the
number is greater than 100. If so, it shows a 2 on its
display. If your number was not greater than 100, the com-
puter will display a 1.

Try this one for fun:

10 CLEAR
20 INPUT “DO YOU LIKE ICE CREAM?”,A$
30 GOSUB 200
40 INPUT “DO YOU LIKE HOT DOGS?”,A$
50 GOSUB 200
60 INPUT “DO YOU LIKE CAKE”,A$
70 GOSUB 200
100 PAUSE “YOU LIKE “;Y;” THINGS”
110 PAUSE “YOU DISLIKED “;N;” THINGS”
120 PAUSE “YOU GAVE “;I;” INVALID ANSWERS”
130 GOTO 10
200 IF A$=“YES” Y=Y+ 1:GOTO 230
210 IF A$=“NO” N=N+1:GOTO 230
220 I=1 +1
230 RETURN

The main program is in lines 10 through 130. The
subroutine is lines 200 through 230.

The computer starts the program run at line 10, clearing
all data memory. At line 20 it asks a YES-or-NO question.
Your reply is stored in memory location AS$.

73

Line 30 causes action to jump to the subroutine at line
200. The subroutine is a score keeper. If you answer no, it
counts by adding one to N. If you answer YES, it counts
that answer by adding one to the value stored in Y. If you
offer any other answer, it counts that an invalid answer
and adds one to memory location |.

We use Y to symbolize YES so we can remember it. For
the same reason we use N to represent NO and | to mean
invalid answer.

The computer completes the subroutine at line 230
where RETURN sends it back to line 40 in the main pro-
gram.

The same thing happens after it asks its line 40 ques-
tion. Line 50 sends operations to the subroutine where
your answer is tallied and RETURN sends it back to line
60. The same for lines 60 and 70.

However, when the computer returns from the
subroutine to the line following 70, it finds itself at line
100 with a different instruction.

Lines 100, 110, and 120 cause the computer to display
the results of its question session. Line 100 reports to you
how many YES answers you gave. Line 110 displays how
many NO answers you entered. And line 120 tells how
many times you typed in some answer other than YES or
NO.

When the displays are complete, line 130 makes the
computer jump back up to line 10 where data memory is
erased and the entire process starts over.

Beeper

Earlier, we said the BEEP sound output was an unusual,
very important function built into the pocket computer.
It’s available in the TRS-80 PC-2, TRS-80 PC-1, Sharp
PC-1500 and Sharp PC-1211.

Here’s how to put BEEP to use. Suppose you want your
computer to make its sound five times at two-second in-
tervals:

74

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
200
210
220

GOSUB 200
PAUSE “BEEP”
BEEP 1
GOSUB 200
PAUSE “BEEP”
BEEP 1

GOSUB 200
PAUSE “BEEP”
BEEP 1

GOSUB 200
PAUSE “BEEP”
BEEP 1

GOSUB 200
PAUSE “BEEP”
BEEP 1

END
FORL=1TOS5
NEXT L
RETURN

The subroutine contains a time-delay loop set for approx-
imately two seconds. Each time the computer returns
from the loop, it displays the message BEEP and makes
the beeping sound. When it has completed five message/
sound cycles, it reaches the END in line 160 and quits.

75

Superpower
In Your Pocket

Superpower In Your Pocket

The Casio FX-702P, Radio Shack TRS-80 PC-2 and
Sharp PC-1500 pocket computers have BASIC words
available which give them extra computing power not
found in the TRS-80 PC-1 or Sharp PC-1211. Here’s a look
at what you’ll need to know to get started using these ad-
ded capabilities:

FX-702P

The Casio pocket computer finds extra power in its
ability to count and report the total number of characters
in a string. And its ability to find portions of a string. it
also can set up its data memory in arrays.

LEN is the instruction to count the number of
characters stored as a string in data memory. The LENgth
of the data then can be known. Here’s an example:

10 A$=“DOG”
20 L=LEN(AS)
30 PRTL

79

Line 10 stores the string DOG in memory location A. Line
20 examines the contents of A$, finds the total number of
characters stored there, and puts that total number in
memory location L.

We have chosen L. You can use any unused data
memory location.

Line 30 causes the computer to recall the contents of L
and show the number on its display. Here’s an even more
interesting set of instructions:

10 INP “GIVE ME A WORD”,A$

20 L=LEN(AS)

30 WAIT 50

40 PRTL

50 GOTO 10
Here the computer asks you for a word to be stored in AS.
Line 20 finds the length of the word. Lines 30 and 40
cause the length to be displayed for a couple of seconds
and line 50 makes the computer go back to line 10 for a
new word.

Do you remember a limitation on string size in the
pocket computer? The limitation has a bearing on this
program. Strings are limited to a total of seven characters.

Run the program. Give the computer the word DOG. It
will flash a 3 to indicate there are three letters in DOG.
Now give it BONE. it will report 4 letters in BONE. Next
give it DOGBONE and it will display 7.

However, give it DOGBONES, which has eight
characters, and you will get an error message telling you
you have tried to sneak in a string longer than seven
characters.

Only string data can be measured by the LEN function.
Numerical data can’t be measured. If you need to know
how long a number is, store it as characters in a string.
Like this:

10 N$=“1234567"
20 L =LEN(NS)
30 PRTL
Even though you see 1234567 as a number, if you label its

80

memory location with the dollar sign, meaning string, the
computer will treat it as a string. Then this program can
be used to find there are seven characters in the string
1234567.

The only problem: it’s easy to get a number into a string
but you can’t get it back out (in the FX-702P). And you
might want it out as numerical data to do math with it. Try
this:

10 INP “GIVE ME A NUMBER”,A$

20 INP “GIVE ME ANOTHER NUMBER”,B$

30 C$=A$+B$

40 PRTCS
At line 10 you give the computer a number. It stores the
number in A$, rather than in A. That is, it puts it in a
memory location with a string label so it is not stored as
numerical data.

At line 20 the computer takes your number and stores it
in BS. '

Line 30 asks the computer to recall the contents of A$
and B$ and add them together. And here’s the rub: adding
strings means tying them together to make a longer
string.

Suppose you gave the computer the numbers 11 and
22. Mathematically, they would add up to 33. But, when
stored as strings and the strings are added, they result in
1122. Storing numbers in strings makes them the same as
letters or other keyboard symbols. You lose the ability to
do math with them.

Make this minor change to the program:

10 INP “GIVE ME A WORD”,A$

20 INP “GIVE ME ANOTHER WORD”,B$

30 C$=A%$+BS

40 PRTCS
Run the program. Give it the words DOG and BONE. What
do you get? DOGBONE. The two separate word strings
are tied together by line 30 and printed as the combina-
tion at line 40.

When playing with this program, remember that A$, B$

81

and C$ can’t store more than seven characters each, at
one time.

Later we’ll see how the TRS-80 PC-2 and the Sharp
PC-1500 pocket computers can use the extraordinarily
powerful BASIC instruction VAL to convert string data to
numerical data!

Now you know about the special power in the FX-702P
to find the LENgth of a string and to tie strings together
by “adding” them. Combine these with the MID instruc-
tion and you have some unusual string-handling ability.

First, you must know the FX-702P has a special string-
data storage place labeled only by the dollar sign. It
doesn’t have a letter coupled to the dollar sign. You
designate this special storage box as in this example:

$=“DOGBONES”

Letter-labeled memory locations are limited to seven
characters per string. But $ can have up to 30 characters.
Very interesting!

10 $=“ABCDEFGHIJKLMNOPQRSTUVWXYZ1234”

Now that’s a long string for a pocket computer. Suppose
you want to extract a few of the letters from the middle of
that string? Use the MID instruction.

10 $=“ABCDEFGHIJKLMNOPQRSTUVWXYZ1234”
20 A$=MID(5,6)
30 PRTAS

Run the program. It displays EFGHIJ. What happened?

Line 10 caused the 30-character string to be stored in
“exclusive character variable” known as $. Then line 20
used the MID function to extract six characters starting
at the fifth character in $.

MID always must be followed by numbers in paren-
thesis. Those numbers tell the computer where in the
string to look for desired characters. For instance,
MID(5,6) means extract six characters starting at thefifth
character. MID(3,4) means get four characters starting at
the third character into the string.

82

Let’s look at input first.

When the program starts running, line 10 clears all data
storage locations in memory. Line 20 asks for a letter from
you and stores that letter in A$.

You can indicate to the computer that you have com-
pleted entering a word by entering the number zero in
response to the GIVE ME A LETTER QUESTION. Line 30
tests your responses each time to see if you have keyed
in a zero. If you have, line 30 will cause action to jump to
line 100, ending the input routine. If you haven’t typed in a
zero, line 30 will allow action to drop to line 40.

At line 40, your letter is added to the special string loca-
tion labeled $ and the program goes on to line 50. Line 50
makes the input routine skip back up to line 20 where the
computer asks you for another letter. You can spell words
of up to 30 characters total in this way. When you are
done putting in letters, type in zero and action will move
on to the string-manipulation section of the program.

At line 100, the computer determines the length of the
string data stored in $. In other words, it counts how
many letters there are in your word. The count total is
stored in L.

Line 110 does some arithmetic to find how many letters
are in half of your word.The value, which is half of L, is
stored in H.

Line 120 then uses H to extract the letters which com-
pose the first half of your word. Those letters are stored in
B$.

Remember that H is half of the length of your word.
MID(1,H) makes the computer start at the first character
and get the first several characters equal to the number H.
Suppose you had a four-letter word. L would equal 4 and H
would equal 2. MID(1,H) would get two letters starting
with the first letter in your word.

With MID(5,6) the computer started counting into $ at
the letter A. The fifth letter in the string is E. Starting with
E, it collects six letters. They are EFGHIJ. Those letters
are stored as a new string in memory location A$.

83

Then line 30 causes the contents of A$ to be recalled
and displayed.

MID is the same as MID$ in the TRS-80 PC-2, Sharp
PC-1500 and other larger computers.

Try this bit of fun which includes all of the special FX-
702P string-manipulation power:

10 VAC
20 INP “GIVE ME A LETTER”,A$
30 IF A$=“Q” THEN 100
40 $=$S+AS$
50 GOTO 20
100 L=LEN($)
110 H=INT(L/2)
120 B$=MID(1,H)
130 C$=MID(L-H + 1,H)
200 PRT “THE WORD IS:",$
210 PRT “IT HAS “;L;” LETTERS”
220 PRT “FIRST HALF:”,B$
230 PRT “SECOND HALF:",C$
240 PRT “WHOLE WORD:”,$
250 GOTO 10

This program allows you to make up words on the com-
puter. In effect, it seems the computer can spell!

The program is divided into three main blocks of lines:
lines 10 to 50 are input. Lines 100 to 130 are string
manipulation. Lines 200 to 250 are output.

Similarly, line 130 causes the computer to get the last
half of your word and store it in C$.

In our four-letter word, L equals 4 and H equals 2.
L-H+1 would be 4-2+1 which would equal 3. Thus
MID(L-H + 1,H) is the same as MID(3,2). And MID(3,2) tells
the computer to get two characters starting at the third
character into the string.

Suppose our four-letter word is WORD. The first two let-
ters are WO and the last two are RD. MID(1,H) would ex-
tract WO and store it in B$. MID(L-H + 1, Hywouldget RD
and store it in C$. The word is broken into its two halves.

The output part of the program is lines 200 to 250. Line
200 displays the entire word you entered.

84

Line 210 reports how many letters are in your word. Line
220 prints the letters in the first half of the word. Line 230
prints the letters in the second half of the word. Line 240
prints the entire word again. And line 250 finds the job is
completed and sends action back to line 10 where your
word is removed from memory and the game can start
over.

By the way, what if you have a word with an odd number
of letters? The middle letter is ignored by this program!

Try DOGBONE which has seven characters. Line 200
shows the entire word to be DOGBONE. Line 210 reports
it has 7 characters.

Line 220 says the first half is DOG. Line 230 recalls the
second half has ONE. The middile letter, B, has been lost.
Why? Because half of an odd number of letters is half of a
letter and we can’t display half of a letter. So, we allow it
to be lost. You can change that if you like.

Note: you will need to use the CONT key after each
display when running this program.

TRS-80 PC-2 and PC-1500

The pocket computer model PC-2 from Radio Shack
and the Sharp PC-1500 have many additional BASIC
words which give them a superpowerful advantage over
the TRS-80 PC-1, Sharp PC-1211, or the Casio FX-702P. In
fact, they have more than 100 instructions in their
vocabulary. Except for minor differences in keyboard ar-
rangement, the PC-2 and the PC-1500 are identical pieces
of hardware.

String Manipulation

The PC-2/PC-1500 have the important MID$ and LEN
functions discussed earlier in the FX-702P section. And
they have the ability to add strings together to make
longer strings. And they have LEFT$ and RIGHT$ to get
those halves of a string.

But, in addition, they take a major step forward by
allowing you to convert strings to numbers and numbers
to strings.

85

VAL is the BASIC word which converts strings to
numbers. Suppose you had stored the number 555 in A$:

10 AS$ = “555”
20 N=VAL(AS)
30 PRINT N

VAL actually looks inside the quotation marks to see what
the string is composed of and converts that information
into a number. That numerical data can be used for math.

Similarly, STR$ converts a number to a string. Like this:

10 N=555
20 A$=VAL(N)
30 PRINT A$

Type both of these programs into your PC-2 or PC-1500
and see how they run.

Try this program as a test of converting strings to
numbers so arithmetic can be done:

10 INPUT “GIVE ME A NUMBER”,A$

20 INPUT “GIVE ME ANOTHER NUMBER”,B$
30 C=VAL(AS)+ VAL(BS)

40 PRINTC

C actually contains the mathematical total of the
numbers which had been stored as strings in A$ and BS.
Suppose you had used the numbers 11 and 22. if the pro-
gram line 30 were :
30 C=A$+B$

the result would have been stored in C$ as 1122. But if the
program line 30 were

30 C$=VAL(AS$)+ VAL(BS)
then the result will be the arithmetic addition of 11 and 22
which gives a total of 33.

INKEY$S
The computer can be made to watch constantly for any
press of a key on its keyboard. The instruction is INKEY$.
It's the same as the instruction KEY on the FX-702P.
INKEY$ gets, as a string, whatever keyboard key you

86

have pressed. Therefore, INKEY$ must be used with a
storage location at all times. For instance:

A$ = INKEY$
The computer notes which key you have pressed and
stores that information in memory location A$. Try this
simple program:

10 CLEAR

20 AS=INKEYS$

30 IF A$="" THEN 20
40 PAUSE A$

50 GOTO 10

As the computer enters its run at line 10, all data memory
locations are cleared. At line 20, the computer scans the
entire keyboard one time. If it finds you are pressing a
key, it takes that data and stores it in A$. If you are not
pressing any key, it does not store anything in A$.

Either way, after one scan the computer goes on to line
30. Line 30 is a test of whether or not the computer found
you had pressed any key. If you had pressed a key,
something would be stored in A$. If you had not pressed
any key, nothing would be stored in A$. A pair of quota-
tion marks together with no space between, like this*”,
indicates ‘“nothing ” is inside the string.

If A$ contains nothing then the computer will complete
the action called for in the last half of line 30. It will jump
back to line 20.

If A$ contains something, the computer will go on to
line 40. At line 40 it displays briefly for you to see the con-
tents of memory location A$. Afterwards, it goes to line 50
which causes it to jump back to line 10. At line 10 A$ and
all other memory locations are cleared and the process
starts over.

The net result of all this program action is a blank
display until you press a key. The key you pressed is
displayed momentarily and then a blank display resumes
until you press another key. And so on. Pretty neat!

Just imagine how you can couple the use of INKEY$
with the PC-2 Printer/Plotter or CE-150 Printer to turn your

87

pocket computer into an electric typewriter. Or even a
micro-wordprocessor.

DATA/READ/RESTORE

The ability to store large amounts of data in program
lines can be valuable. Here’s a program line with informa-
tion stored in it:

10 DATA ALABAMA,FLORIDA,GEORGIA,TEXAS

Use the READ instruction to make the computer read
these one at a time, left to right. Like this:

10 DATA ALABAMA,FLORIDA,GEORGIA,TEXAS
20 READ A$

30 PAUSE AS

40 GOTO 20

The computer will start at line 10 where we have placed
the names of four states in a DATA line. Line 20 causes it
to read the first state name. Line 30 makes it display the
name briefly. Then line 40 jumps action back to line 20
where the computer reads the next piece of DATA found
in line 10. DATA lines can be located anywhere in your
program. The computer will search for them and read the
items contained in them one at a time.

We placed four pieces of data in the DATA line. After
the fourth pass through this READ/PAUSE/GOTO loop the
computer will run out of DATA. It will give you a message
that it is out of data. Use the RESTORE instruction to
force the computer to go back to the first DATA item.

Here's a program:

10 DATA ALABAMA,FLORIDA,GEORGIA,TEXAS
20 FORL=1T04

30 READ A$

40 PAUSE A$

50 NEXTL

60 RESTORE

70 GOTO 20

88

Again, as in the previous example, line 10 contains the
DATA. Lines 20 and 50 create a FOR/NEXT loop to make
the computer READ and display data four times.

After the fourth pass through the loop the computer
will have exhausted the data in line 10 and will have com-
pleted the FOR/NEXT loop. The program will drop to line
60 where the computer finds a RESTORE instruction.

RESTORE tells the computer to start over at the begin-
ning of all DATA lines. The computer reads through DATA
lines one item at a time, one line at a time, until all items
in all lines are used up. A RESTORE instruction at any
time resets the READ to thé first item in the first DATA
line.

Having RESTOREd via line 60, our program at line 70
jumps action back to line 20 where the FOR/NEXT loop
starts again. And so on.

Two-Letter Memory Locations
So far, we have treated memory locations as only A
through Z. We have done this for simplicity as well as the
fact that those 26 storage boxes are what we have
available in the TRS-80 PC-1 and Sharp PC-1211. However,
the TRS-80 PC-2 and Sharp PC-1500 have two-letter
variables available for storage. As you can imagine, this
vastly increases the number of storage boxes in data
memory. Here are some examples of two-letter memory
locations:
AA =555
MX$ = “WORD”
Z22=789.123
Use these two-letter variables the same as the familiar
one-letter variables. Just imagine you have lots more
storage boxes available. See figure 5.
Here’s a brief sample program so you can test two-
letter memory locations:
10 INPUT “GIVE ME A NUMBER”,AA
20 INPUT “GIVE ME ANOTHER NUMBER”,BB
30 CC=AA*BB
40 PRINT CC

89

ﬁ//

Line 10 takes your number and stores it in memory loca-
tion AA. Line 20 puts your second number in location BB.
Line 30 causes the computer to multiply AA times BB and
store the result in memory location CC. Line 40 recalls the
contents of memory location CC and prints them on the
display.

91

Especially Useful
for Math

Especially Useful For Math

We’'ve seen how to “manipulate” string data. Now let’s
look at some exciting ways to manipulate numbers.

INT
Suppose you have a long number, including several
digits after a decimal point. You want to get rid of all
places after the decimal point. Try this:
10 A =1234.56789
20 B=INTA
30 PRINT B
Run the program. The result, printed on the display, will
be 1234. The 56789 after the decimal point have been
hacked off and dropped. If you recall A, you'll see it still
contains 1234.56789 but if you recall B, it contains only
1234. Here’s another:
10 A=22/7
20 INPUT “GIVE ME A NUMBER”,B
30 C=A"B
40 D=INTC
50 PRINTD

95

Run this program, give the computer the number 123
which it stores in B, and the final result will be a display of
386.

Checking various memory locations after the run, you’ll
find A contains 3.142857143 and B holds 123. C contains
386.5714286 and D holds 386. The contents of D were the
result printed by program line 50.

INT is short for integer, meaning the whole number
without its fractional part after the decimal point.

Dump integer, keep fraction
You can use the INT instruction to get rid of the integer
and keep the fractional part of the number after the
decimal point.
10 A=22/7
20 B=A-INTA
30 PRINTB
Here the program results in a display of 0.142857143. Line
10 divides 22 by 7 to get the number 3.142857143 which is
stored in memory location A. Line 20 then takes the entire
number stored in A and subtracts its integer from it. Tak-
ing away its integer leaves only its fractional part after the
decimal point!
Casio users have a BASIC word to do this: FRAC. Try
this program in your FX-702P:
10 A=1234.56789
20 B=FRACA
30 PRINTB
The run result will be a display of 0.56789 with the 1234
missing.
Here’s another neat Casio trick:
10 A =1234.56789
20 B=INTA
30 C=FRACA
40 WAIT 50
50 PRT “INT = ;B
60 PRT “FRAC = ”;C
70 IF A=B+ C;PRT “NUMBER = ;A
80 PRT “GOOD WORK!”

96

The display shows you the integer portion of the number,
the fractional part of the number, and the entire number.

Random numbers

The TRS-80 PC-1 and Sharp PC-1211 do not have aBASIC
word which directly instructs the computer to make up a
number at random. The TRS-80 PC-2, Sharp PC-1500 and
Casio FX-702P do have such BASIC words. So, random
number generation in the PC-2, PC-1500, and FX-702P are
easy. It takes a bit more work to get a random number out
of the PC-1/PC-1211:

10 CLEAR

20 INPUT “ENTER A NUMBER”’;R
30 R=((m+R)AS5)-INT(T™+R)AS
40 PAUSER

50 GOTO 30

This program will generate and display a series of random
numbers between zero and one. It will continue the series
until you press the BREAK key.

The program requires what is called a “seed.” You
must give it the first number, any number, and it will
follow with the series of random numbers.

Suppose you gave it the seed number 55.99. Here’s part
of the series of pseudorandom (‘“‘seemingly random”)
numbers you might get from the computer:

0.486
0.19224183
0.832078773
0.740159494
0.33092583
etc.

You can use the following program to instruct the com-
puter to output a series of 25 pseudorandom numbers
from zero to 10:

97

10 CLEAR
20 FORN=1TO 25

30 A=NN:Y=(947*X+ A)/199:X = Y-INT Y:X=10X:W = INT X

40 PAUSE “RANDOM NUMBER = ;W
50 NEXTN

Try it. You’ll find the seed number is located in line 20!

FX uses RAN#

To make life easier, Casio built a random number
generator into their FX-702P pocket computer. It uses a
special BASIC word RAN# which is different from the
more typical word, RND, used on many computers. Casio
chose to use RND for an instruction to round-off numbers
which we’ll see in a moment.

Here's a Casio random-number generator program:

10 N =RAN#
20 PRTN
If you run this small program repeatedly, you will get a
series of numbers like ours:
0.803072212
0.023027387
0.511945457
0.064941969
0.468156276
etc.
How can you put these long decimal numbers to use?
Convert them into practical forms of numbers. For exam-
ple, suppose you wanted 10 whole numbers in the range
of zero to nine:
10 N =INT(10*RAN#)
20 WAIT 20
30 PRTN
40 GOTO 10
Running this program resulted in a series of random
numbers including:
9
2

98

NDbD =W

Your numbers will be different since the series is much
more random in the Casio than in the PC-1/PC-1211 pro-
grams shown earlier.

Imagine a game requiring the use of a pair of dice. Dice
give a total of up to 12 when thrown as a pair. Here’s a pro-
gram generating a series of random numbers in the range
of one to twelve to simulate dice:

10 N=INT(13*RAN#)

20 IF N<1THEN 10

30 WAIT 20

40 PRTN

50 GOTO 10
Line 20 is in there because the result of line 10 is a series
of numbers in the range of zero to twelve. We don’t want
the zero. We want our series to be from one through
twelve. So, we use line 20 to trap out any zeros which
show up after line 10. Running this program, we got the
series:

— —t -
TONNOENOD 2 © -0

Try it. You’ll soon be able to put together a quickie dice
game for hours of fun!

99

Rounding off

There are two views on how to round off a number. One
holds that if the number is more than five, you round up.
Which means that exactly 0.5 rounds down. The other opi-
nion is that any number less than five rounds down. In
that case, exactly 0.5 rounds up.

Here’s a set of program lines for the more than five
rounds up idea:

10
20
30
40
50
60
70
80
90
100
110
120

CLEAR

INPUT “NUMBER TO BE ROUNDED”,N
IF N>INT N THEN 50
R=N: GOTO 100

D=N-INT N

IF D>.5 THEN 90
R=INTN

GOTO 100

R=INTN +1

PAUSE N;*“ ROUNDS TO...”
PRINT R

GOTO 10

The next set of program lines, below, rounds off on the
less than five rounds down theory.

10
20
30
40
50
60
70
80
90
100
110
120

CLEAR

INPUT “NUMBER TO BE ROUNDED”,N
IF N >INT N THEN 50
R=N:GOTO 100
D=N-INTN

IFD<.5 THEN 90
R=INTN +1

GOTO 100

R=INT N

PAUSE N;“ ROUNDS TO...”
PRINT R

GOTO 10

Making life easier, Casio built in a rounding-off BASIC

word: RND.

100

10 A =1234.56789

20 B=RND(A,3)

30 PRTB
Running this program results in a display of 1234.57. The
number has been rounded off to two decimal places. The
amount of rounding off is controlled by the -3 in line 20. It
rounds off the third number from the decimal, down to the
second number from the decimal.

Here’s a list of other possible line 20’s for this program

and the results on the display after running:

program line result

B = RND(1234.56789, + 3) o

B = RND(1234.56789, + 2) 1000

B = RND(1234.56789, + 1) 1200

B = RND(1234.56789,0) 1230

B = RND(1234.56789,-1) 1235

B = RND(1234.56789,-2) 1234.6

B = RND(1234.56789,-3) 1234.57

B = RND(1234.56789,-4) 1234.568
B = RND(1234.56789,-5) 1234.5679
B = RND(1234.56789,-6) 1234.56789
B = RND(1234.56789,-7) same

The list can help you visualize how changing the place
number changes the result.

101

Storing Information

Storing Information

You've just spent an hour typing a 65-line program into
your pocket computer. You appreciate the amount of
work involved in entering such a list and you would like to
not have to do it all again the next time you want to run
the same program. Use the CSAVE command and store it
on magnetic recording tape.

That’s right! The exact same kind of magnetic recor-
ding tape you might use to store your favorite musical
selection or the sound of your kid’s birthday party.

Just about any cassette or reel tape recorder will work.
It must have three jacks to connect to the pocket com-
puter’s cassette interface:

First, it must have a microphone-input jack, often label-
ed MIC on the recorder. This will be used to take sound
coming out of the computer into the recorder.

Second, it must have an earphone-ouput or external-
speaker output jack, often labeled EAR on the recorder.
This will be used to take sound out of the recorder and in-
to the computer.

105

Third, it must have a remote-control jack, often labeled
REM. This will be used by the computer to start and stop
the recorder motor.

Is it plugged in?

Refer to your owner’s manual to make sure you have
the correct plug in the correct jack. Generally, these are
color-coded and size-coded so you cannot get the wrong
plug in the wrong jack. But make sure you have them firm-
ly plugged in and in the right holes.

You may use an A.C. wall outlet-powered recorder or a
battery-powered recorder. If outlet-powered, make sure it
is plugged into the house A.C. If battery-powered, make
sure you have a good set of batteries in the recorder.

What kind of tape?

Any magnetic recording tape will work as long as it fits
your recorder. Can you use a 79¢ dime-store cassette?
Yes.

The computer will be sending a continuous warbling
high-pitched tone into your tape recorder. The presence
or absence of that tone, when returned to the computer in
the future, will have a bearing on the ability of the com-
puter to run the program you have stored. You must take
care that nothing happens to cause any part of that recor-
ding to be erased or garbled or destroyed.

First, don’t allow anything magnetic to be near the
tape. A magnetic tape recording is erased by magnets.
Electric motors, TV sets, and other appliances generate
magnetism. Don’t permit an accidental erasure by putting
your tape atop an electric motor or TV set!

Second, the tone must be continuous on the tape
without breaks in the sound, called ‘“dropouts.” Onceina
while, a cassette tape will have a splice in it. The splice
will provide a minute length of tape with no magnetic
recording ability. That splice, then, causes a drop out.
Better quality audio tape is less likely to have dropouts.

Data tape is an audio tape which has been manufac-

106

tured with no splices and without a paper or plastic non-
recording leader at the beginning of the tape. A data tape
is supposed to be nothing but magnetic recording tape.
No dropouts!

However, data tapes cost more than plain-jane audio
tape. An acceptable compromise is to use a better audio
tape but one cheaper than data tape.

Here’s a trick to ensure a good recording: send the pro-
gram to tape twice. That’s right. Use the CSAVE instruc-
tion once. Advance the tape slightly after recording is
complete and use CSAVE again. You will have two com-
plete recordings of your program. The odds favor at least
one of them being good.

Storing programs

Make sure you have the tape recorder and computer
properly plugged together and a tape positioned in the
recorder. Press PLAY and RECORD on the recorder. Put
the computer in the PRO, RUN or DEF modes if it’s a
TRS-80 or Sharp. Casio owners use MODE 1.

To tape record the contents of program memory on
tape type in:

CSAVE “FILENAME”

and press ENTER. The computer will start the tape
recorder, send sound to the recorder, and stop the
recorder motor when done.

You may pick any file name you wish, up to seven
characters in length.

Casio owners substitute SAVE for CSAVE.

Storing data

To tape record the contents of data memory, set your
computer to the DEF or RUN modes and type in:

PRINT#“FILENAME”

and press ENTER. Again the computer will operate the
recorder and stop it when recording is complete. The
filename may be any set of up to seven characters.

All of data memory will be recorded on tape. If you wish

107

to record on tape only the contents of one data memory
location, follow this example:

PRINT#“FILENAME’’;A$
Use the semicolon as shown and follow it with the
specific data memory location. Remember that data
memory locations are labeled A through Z or A$ through
Z$ or A(1) through A(204) or A$(1) through A$(204).

Reloading program

Loading is a computer buzzword meaning putting a pro-
gram into a computer. You speak of ‘‘loading from tape”
when you want to get a program stored on tape and enter
it into the computer. The sound on tape goes from the
recorder through the wires into the computer where the
computer stores it in program memory, erasing whatever
might have been there before.

Sometimes you also hear computer hobbyists speak of
“loading to tape,” meaning the computer sending its pro-
gram to the recorder for storage. You know how to do that
using the CSAVE instruction. Now let's /oad the stored
program from tape back into the computer using CLOAD.
Here’s the instruction:

CLOAD “FILENAME”
followed by ENTER. Use it in the DEF, RUN and PRO
modes.

To use CLOAD, you must rewind the tape to a point im-
mediately before where the computer-sound starts on the
tape. Then type in CLOAD “FILENAME” and ENTER. The
computer will start the recorder motor, receive sound
from the recorder, store the incoming program in program
memory, and, when done, stop the recorder motor.

File names are limited to seven characters. Casio users
use LOAD#n“FILENAME” since you have to specify
which of the 10 available program storage areas you wish
the program to be placed in. Substitute the appropriate
number for the “n” in LOAD#n“FILENAME”.

Casio file names for SAVE and LOAD may be eight
characters in length.

108

Checking your load

You can instruct the computer to verify its new program
by using the CLOAD? command. The question mark must
be there.

Set up recorder, tape, and computer as if you were go-
ing to load into the computer a new program from tape.
Then use:

CLOAD?*“FILENAME”
and press ENTER. The computer runs through its program
memory as it listens to the tape, verifying that the pro-
gram did in fact load properly the first time. If it did not,
and the computer finds a mistake, it will send you Error
Message 5.

Casio owners use VER“FILENAME” rather than
CLOAD? to verify a program from tape.

Reloading DATA
To recall data from tape, use this instruction:
INPUT# “FILENAME”
and ENTER. The file name can be any set of up to seven
characters, in the TRS-80 PC/Sharp PC. Up to eight
characters in the Casio.

INPUT# gets alldata stored on tape and puts it into data
memory in the computer, erasing whatever was there
before. To get data for only one memory location, use:

INPUT# “FILENAME”;AS$
and ENTER. You may substitute for the A$ we use in the
example any of the proper memory location names.
Remember they are A through Z or A$ through Z$ or A(1)
through A(204) or A$(1) through A$(204).

Casio data storage
The FX-702P uses PUT and GET instructions to store
data on tape and retrieve it.
Data is sent to tape and recorded with this instruction:
PUT “FILENAME” variable
and EXE. The variables are $, A and B to T9. To store the

109

contents of memory locations A through Z, for example,
use:

PUT “FILENAME” A,Z
and the EXE key.

To reload data from tape into the FX-702P, use the GET
instruction like this:
GET “FILENAME” variable

and EXE. For example, to recall from tape the contents of
data memories A, Z use this instruction:

GET “FILENAME” A2
The computer will control the recorder and take in the in-
formation stored on tape, storing it in locations A through
Z.

Loading while running
The computer can be made to go to tape, during a pro-
gram run, to get new instructions. Here’s the format:
CHAIN “FILENAME”
The computer, when it comes to a CHAIN instruction, im-
mediately goes to the tape to look for new program lines
stored there. You can even have the computer start at a
particular program line. Suppose you wanted the program
to start at line 100 from tape:
CHAIN “FILENAME”,100
Or if you have labeled a line “A’” use this:
CHAIN “FILENAME”,“A”
The computer will automatically search the tape for the
specified file name and transfer the program it finds to
program memory.

110

Appendix

Pocket Computer
BASIC Instructions

Pocket Computer Instructions

This table compares 175 BASIC instructions available
on the various Radio Shack, Sharp and Casio pocket com-
puter models. The X in a column indicates that feature is
available on that particular computer.

The column headed | includes TRS-80 PC-1 Pocket
Computer and Sharp PC-1211.

The column headed Il includes TRS-80 PC-2 Pocket
Computer and Sharp PC-1500.

The column headed FX includes Casio FX-702P.

The notes column is a very brief key to what the par-
ticular command, statement, function or operator does in
the computer.

Instruction I I FX Notes
ABS X X x absolute value
ACS X X X arccosine

AHC X arc hyperbolic cosine

115

Instruction

AHS
AHT
AREAD
ARUN
ASC
ASN
ASTAT
ATN
BEEP
BEEP ON
BEEP OFF
CHAIN
CHR$
CLEAR
CLOAD
CLOAD?
CLR
CLR ALL
CLS
CNT
COLOR
CONT
COR
COs
CSAVE
CSIZE
CSR
CURSOR
DATA
DEBUG
DEFM
DEG
DEGREE
DEL

DiM
DMS
END

116

x

x

XX X X X X X X X

X X X X

FX

x

Notes

arc hyperbolic sine

arc hyperbolic tangent
read display

start

string first character number
arc sine

display statistics

arc tangent

make beep sound

sound on

no sound

load from tape & run
convert number to graphics
empty data memory

load from tape

verify tape

erase one program

erase all program memory
clear the display

count entries

control printer color

go on after STOP
correlation coefficient
cosine

save to tape

printer size control

cursor control

cursor control

stored in program line
one-step checking run
specify number of memories
degrees to decimal

set DEG mode

delete

dimension the memory
decimal to degrees

end of run

Instruction

EOX
EOY
EXP
FOR
FRAC
GCURSOR
GET
GLCURSOR
GOSuUB
GOTO
GPRINT
GRAD
GRAPH
GSB
HCS
HSN
HTN

IF
INKEY $
INP
INPUT
INPUT#
INT

KEY
LEFT$
LEN
LET

LF

LINE
LIST
LIST ALL
LIST V
LLIST
LN
LOAD
LOAD ALL
LOCK

x

X X X X X X

xX X

X X X X X X

FX Notes

X X X X X

X X X X X

x

x

estimate X

estimate Y

exponent

FOR/NEXT loop
fractional part of number
control graphics cursor
get data from tape
printer graphics control
jump to subroutine
jump to line

graphics display

set GRAD mode

printer control

GOSsuB

hyperbolic cosine
hyperbolic sine
hyperbolic tangent
decision maker

watches keyboard input
INPUT

take in data

data from tape

integer part of number
same as INKEY$

gets left part of string
finds length of string
make

printer control

printer draw line

display program memory
see LIST

LIST variables

LIST on printer

natural logarithm

get one program from tape
get all programs from tape
stay in RUN mode

117

Instruction

LOG
LPRINT
LRA
LRB
MEM
MERGE
MID
MID$
MODE
MX

MY
NEW
NEXT

ON ERROR GOTO

ON GOsuB
ON GOTO
PASS
PAUSE

P

POINT
PRC
PRINT
PRINT#
PRT

PUT
RADIAN
RANDOM
RAN#
READ
REM
RESTORE
RET
RETURN
RIGHTS
RLINE
RMT ON
RMT OFF

118

X
X

x

X X x X X

xX X

xX X

X X X X X

FX Notes

X

common logarithm

print on printer

linear regression constant
linear regression coefficent
memory available

tape command

see MID$

get middle part of string
write vs. run program

X mean

Y mean

erase all programs
FOR/NEXT loop

if error jump to line
controls sub jump
controls line jump
password

display briefly

math function

graphics function

polar to rectangular
display info

send data to tape
PRINT

send data to tape

set RAD mode
randomize

create random number
get info from DATA line
remarks

reset READ start DATA
RETURN

jump back from subroutine
get right part of string
printer control

turn it on

turn it off

Instruction

RND
RND
ROTATE
RPC
RUN
SAC
SAVE
SAVE ALL
SDX
SDXN
SDY
SDYN
SET
SGN
SIN
SORGN
SQR
STAT
STATUS
STEP
STOP
STR$
SX

SX2
SXY

SY

SY2
TAB
TAN
TEST
TEXT
THEN
TIME
TO
TRACE ON

TRACE OFF

UNLOCK

X X X X

xX X X X

X X X X X X X X X X

FX Notes

random number
x rounding off number
printer control
rectangular to polar
start program execution
clear statistics memory
CSAVE one prog. to tape
CSAVE all progs. to tape
standard deviation of X

standard deviation of Y

control display digits
sign of number
sine
printer control
square root
X accumulate X & Y
command query
x FOR/NEXT loop increment
halt program run
convert number to string
sum of X
sum of X2
sum of X*Y
sum of Y
sum of Y2
printer print location
x tangent
printer check
printer control
X use with IF
displays clock
x FOR/NEXT loop
turn on DEBUG
x turn off DEBUG
remove LOCK

x X X X X X X X X X X X X

x

X X X X X

x

normal standard deviation x

normal standard deviation Y

Instruction

USING
VAC
VAL
VER
WAIT
S

A3
A\

*1 + 1 =\

— ~
~— >

v ANV

NOT

120

xX X

X X X X X X X X X X X

X X X X

X X X X X X X X X X X X X X X

FX Notes

X X X X X X X X X X X

control display format
same as CLEAR
convert string to number
verify data tape

cause momentary display
square root

pi

not equal to

not equal to

AND

equals

plus

minus

multiply by

divide by

power

parenthesis

greater than

less than

equal to or greater than
less than or equal to
and

or

not

Japanese Yen

Error Messages

TRS-80 PC-1/Sharp PC-1211

Error
Number

1

Error Messages

Problem

You wrote the program line wrong; or you
have the computer trying to divide by zero
which it won’t do; or the computer is
reaching a math result higher than
1x101%which it can’t handle; or you are try-
ing to use string data in numerical data
memory locations; or you are trying to use
numerical data in string memory loca-
tions.

You have tried to send the computer to a
line which doesn’t exist. Check your
GOTO, GOSuUB, RUN, DEBUG or LIST
statement.

123

You have tried to get the computer to give
more than four stages of GOSUB/RETURN
or FOR/NEXT loops, which it can’t handle;
or you have tried to use RETURN without a
preceeding GOSUB so the computer
doesn’t know where to go; or you have
tried to do a NEXT with a FOR so the com-
puter doesn’t know what to do.

You have tried to write a program longer
than available program memory; or you
have tried to write more reserve program
steps than are available in reserve
memory; or you don’t have enough flexible
memory available for what you are trying
to do.

An error has occurred while loading from
or saving to tape.

You are using PRINT or PAUSE and the for-
mat of your numerical data is wrong.

Casio FX-702P Error Messages

Error
Number

124

Problem

You have tried to write a program longer
than available program-memory. Reduce
the number of lines in the program or clear
other programs out of program memory.

You wrote the program line, using BASIC
improperly. Rewrite the program line cor-
rectly.

You are doing math and the computer
can’t handle what you have asked; the
number may be larger than 10190 which the
computer can’t handle or some other im-
possible result is at hand.

You have tried to send the computer to a
line which doesn’t exist. Check GOTO and
GOSUB.

You haven’t dimensioned an array proper-
ly.

Use DEFM to increase data memory.

You have the computer trying a RETURN
without a preceeding GOSUB; it doesn’t
know where to go. Or it has found a NEXT
without a preceeding FOR so it doesn’t
know what loop it is in; or you are trying to
exceed 10 levels of subroutines; or you are
trying for more than eight levels of nested
FOR/NEXT loops.

You don’t know the password. You are try-
ing to LIST or CLR without giving the cor-
rect password. Or you are trying to give the
password and not getting it right.

You are trying to SAVE to tape or LOAD
from tape and you don’t have a tape
recorder hooked up; or you are trying to
PRINT on a paper printer and you don’t
have the printer hooked up.

126

126

Index

instructions

BASIC

BEEP
BREAK
CHAIN
CLEAR
CLOAD
CLR
colon
CONT
CSAVE
data
DATA
END
ENTER

error message

FOR
FRAC
GET
GOsSuUB
GOTO
IF
INKEYS
INP
input
INPUT
INPUT#
INT
KEY
keyboard
language
LEFTS
LEN
line number
LIST
loading
loop
MEM
memory
data

14
115
56,74
43
110
31,54
108
32

42

4y
105
21

88

by

39
25,70,123
61

96
110
69

66

64

86

51
19,49
49
109
95

86

19

33

85
79,85
30

30
108
53, 61
31

19

21

fixed
flexible
program

microprocessor

MID

NEW

NEXT

output

PAUSE

PRINT

PRINT#

program
running
writing

PRT

PUT

random numbers

RAN#

read

READ

REMarks

RESTORE

RETURN

RIGHTS

RND

rounding off

RUN

STEP

STOP

strings

STRS

subroutine

tape recorder

THEN

VAC

VAL

variable
numerical
string

WAIT

words

write

29
29
21

19,32

31
61
19,49

51
107
21,33
37

37

51
109
97

98

32

88

)

88

69

85
101
100
37,40
61

by
23,81
86

69
105
64
32,55
86

23

23

23

51

33
25,32

127

Other books from ARCsoft Publishers

For the TRS-80 PC-2, PC-1, Sharp PC-1500, PC-1211, Casio FX-702P:
101 Pocket Computer Programming Tips & Tricks

ISBN 0-86668-004-7 128 pages $7.95
50 Programs in BASIC for Home, School & Office

ISBN 0-86668-502-2 96 pages $9.95
50 MORE Programs in BASIC for Home, School & Office

ISBN 0-86668-003-9 96 pages $9.95
Murder In The Mansion and Other Computer Adventures

ISBN 0-86668-501-4 96 pages $6.95
35 Practical Programs for the Casio Pocket Computer

ISBN 0-86668-014-4 96 pages $8.95
Pocket Computer BASIC Coding Form

programming worksheets 40-sheet pad $2.95

For the TRS-80 Color Computer
101 Color Computer Programming Tips & Tricks

ISBN 0-86668-007-1 128 pages $7.95
Color Computer Graphics

ISBN-086668-012-8 128 pages $9.95
The Color Computer Songbook

ISBN 0-86668-011-X 96 pages $7.95
55 Color Computer Programs for the Home, School & Office

ISBN 0-86668-005-5 128 pages $9.95
55 MORE Color Computer Programs for the Home, School & Office

ISBN 0-86668-008-X 112 pages $9.95

My Buttons Are Blue and Other Love Poems From
The Digital Heart of An Electronic Computer

ISBN 0-86668-013-6 96 pages $4.95
Color Computer BASIC Coding Form
programming worksheets 40-sheet pad $2.95

For the APPLE Computer
101 APPLE Computer Programming Tips & Tricks

ISBN 0-86668-015-2 128 pages $8.95
33 New APPLE Computer Programs for Home, School & Office

ISBN 0-86668-016-0 96 pages $8.95
APPLE Computer BASIC Coding Form

programming worksheets 40-sheet pad $2.95
Computer Programming Worksheets 40-sheet pads:
IBM Personal Computer BASIC Coding Form $2.95
APPLE Computer BASIC Coding Form $2.95
TRS-80 Color Computer BASIC Coding Form $2.95
Pocket Computer BASIC Coding Form $2.95
Universal BASIC Coding Form $2.95

For electronics hobbyists
25 Electronics Projects for Beginners

ISBN 0-86668-017-9 96 pages $4.95
25 Easy-To-Build One-Night & Weekend Electronics Projects
ISBN 0-86668-010-1 96 pages $4.95

ISBN: International Standard Book Number

128

Pocket-BASIC Book V

Pocket Computer Programming Made Easy 1

by Jim Cole
This book is the ideal companion for all of the exciting new
handheld pocket computers. You don’t have to know anything
about computers or programming to use this handy beginner’'s
guide to BASIC, the most popular program language.

Written especially for the immensely-popular pocket
computers—TRS-80 PC-2 and PC-1, Sharp PC-1500 and
PC-1211, Casio FX-702P—the BASIC instruction in this book
is applicable to any computer, whether pocket-size or desktop.
It’s the perfect introduction to using BASIC in any computer.

The simple down-to-earth language will help you quickly
understand how to talk to your computer and get it to do what
you want.

Jim Cole takes you step-by-step through the most frequently
used words in BASIC. The language is a lot like English and
author Cole points out the familiar look-alikes which have
meanings you already know and understand.

Building on what you already know, even before you start, he
uses familiar English to show how your computer receives in-
structions and information from you and how it follows those
instructions. Sections in this book explain clearly What’s In-
side Your Computer; Writing and Running Programs; Input and
Output; The Real Computer Power!; Superpower In Your
Pocket; Especially Useful for Math; Storing Information;
Pocket Computer BASIC Instructions; and Error Messages.

For the first time anywhere, this book presents a complete
list of all BASIC words—commands, statements, functions,
operators, instructions—used in all of the popular pocket com-
puters. Displayed side-by-side in a handy look-up table, this ex-
haustive source list makes using BASIC in a pocket computer
a breeze!

. No scientist-talk, no engineering jargon, no Ph.D. lingo here.
No computerese over the heads of beginners. This book has
been tailored for the layman who wants to get started using a
microcomputer. There never has been a learner’'s guide to
L BASIC this easy to read and understand and put to use.

ARCsoft Publishers

WOODSBORO, MARYLAND 21798

ISBN 0-86668-009-8

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf

