

cb

Updates to the Portable
Document Format
Reference Manual

Technical Note #5156

08 December 1994

Adobe Developer Support

PN LPS5156

Adobe Systems Incorporated

Corporate Headquarters

1585 Charleston Road PO Box 7900

Mountain View, CA 94039-7900

(415) 961-4400 Main Number

(415) 961-4111 Developer Support

Fax: (415) 969-4138

Adobe Systems Europe B.V.

Europlaza

Hoogoorddreef 54a

1101 BE Amsterdam Z-O, Netherlands

+31-20-6511 355

Fax: +31-20-6511 313

Adobe Systems Eastern Region

24 New England

Executive Park

Burlington, MA 01803

(617) 273-2120

Fax: (617) 273-2336

Adobe Systems Japan

Swiss Bank House 7F

4-1-8 Toranomon, Minato-ku

Tokyo 105, Japan

+81-3-3437-8950

Fax: +81-3-3437-8968

This document was created with FrameMaker 4 0 2

Copyright



 1994 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript is a trademark of Adobe Systems Incorporated. All instances of the name PostScript in the
text are references to the PostScript language as defined by Adobe Systems Incorporated unless other-
wise stated. The name PostScript also is used as a product trademark for Adobe Systems’ implemen-
tation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers,
files, and driver programs (respectively) which are written in or support the PostScript language. The
sentences in this book that use “PostScript language” as an adjective phrase are so constructed to rein-
force that the name refers to the standard language definition as set forth by Adobe Systems Incorpo-
rated.

Adobe, the Adobe logo, Acrobat, Catalog, Distiller, and PostScript are trademarks of Adobe Systems
Incorporated or its subsidiaries and may be registered in certain jurisdictions. Apple and Macintosh are
registered trademarks and TrueType is a trademark of Apple Computer, Inc. Microsoft and MS-DOS
are registered trademarks and Windows is a trademark of Microsoft Corporation. UNIX is a trademark
registered in the United States and other countries and licensed exclusively to X/Open Company, Ltd.
Other brand or product names are the trademarks or registered trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo-
rated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any
kind (express, implied or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes and noninfringement of third party
rights.

iii

Contents

 Updates to the Portable Document Format Reference Manual

 5

 2 Overview (updated)

 6
Portability 6

4 Objects (updated)

 7
4.4 Strings 7
4.8 Streams 9

4.11 Object references 9

5 File Structure (updated)

 9
5.1 Introduction 9
5.2 Header 10
5.5 Trailer 10

5.7Encryption 11

6 Document Structure (updated)

 11
6.2 Catalog 11
6.4 Page objects 12
6.6 Annotations 12

Link annotations 14
Destinations and actions 14
File specifications 18
Named destinations 19

6.7 Outline tree 20
6.8 Resources 20

Font resources 20
Font descriptors 21
Font files 21
Color space resources 22
Device color space resources 23
Device-independent color space resources 23
Indexed color space resources 25
Default color space resources 25
XObject resources 26
Image resources 26
Pass-through PostScript language resources 27

6.9 Info dictionary 28
6.10 Articles 29
6.11 File ID 31

This document was created with FrameMaker 4 0 2

iv Contents (08 Dec 94)

6.12 Encrypt dictionary 32

7 Page description (updated)

 33
7.2 Graphics state 33

Fill color space 33
Stroke color space 34
Rendering intent 34

7.4 Color operators 34
Text string operators 35

7.9 In-line image operators 35
7.11 In-line pass-through PostScript fragments 35
7.12 Compatibility operators 36

Appendix F PDF name registry

 36

Appendix G Compatibility

 37
G.1 Version numbers 38
G.2 Viewer compatibility behavior 39

Dictionary keys 40
Annotations 40
Destinations and actions 40
XObjects 41
Color spaces 41
Filters 42
Page description operators 43
Procedure sets 43

Copyrights and permissions to use PDF

 43

Bibliography

 44

 Errata for the Portable Document Format Reference Manual

 45

This document was created with FrameMaker 4 0 2

5

Updates to the Portable
Document Format
Reference Manual

This document is an addendum to the

Portable Document Format Reference
Manual

. It describes version 1.1 of the Portable Document Format. It does
not specify the format in its entirety but only the changes from version 1.0 as
described in the original specification. PDF 1.1 is the native file format of the
Adobe



 Acrobat



 2.0 family of products.

The PDF specification is defined independently of any particular
implementation of a PDF generator or consumer. To provide guidance to
implementors, however, the behavior of Acrobat viewers (both 1.0 and 2.0)
when they encounter the changes documented herein is described in

Implementation Notes

that accompany the specification and in Appendix G,
“Compatibility.”

The PDF 1.1 specification, like the PDF 1.0 specification, defines a minimum
interchange level of functionality. The Portable Document Format is an
extensible format which means that PDF files may contain objects not
defined by this specification. Consumers, applications that read PDF files and
interpret their contents, are expected to correctly implement the semantics of
objects that are specified by PDF 1.1 and, as gracefully as possible, to ignore
any objects not understood by the consumer. Appendix G, “Compatibility,”
provides guidance on how a consumer should handle objects it does not
understand

Implementation note Some Acrobat 2.0 products provide an interface that allows plug-in
extensions. These extensions can use and/or put private data objects within a
PDF file.

Appendix G, “Compatibility

,” indicates the kinds of private data
that can be used and

Appendix F, “PDF name registry

,” defines a registry for
this data. The registry can be used to avoid conflicts in indentifying data from
independent extensions.

The new features introduced in PDF 1.1 and Acrobat 2.0 include the
following:

• the ability to protect documents with a password and to restrict
operations on documents,

This document was created with FrameMaker 4 0 2

6 Overview (updated) (08 Dec 94)

• the ability to tie blocks of text together into “articles,” making reading
easier,

• the generalization of link and bookmark destinations to “actions,” which
include links to other PDF files and foreign files,

• the ability to define new annotation types and to provide additional
attributes for existing types,

• the ability to specify default settings and actions when a document is
opened,

• device-independent color,

• an ID included in all files to make it easier to find a file on a network,
given a name,

• a binary option that allows files to be smaller

• a new date format that allows progammatic comparison of dates,

• the ability to provide additional document information.

This document is organized in the same way as the original PDF
specification. Changes are described as additions to the appropriate sections
of that specification. Section 2 contains updates to Chapter 2 of the

 PDF
Reference Manual

, including provision for binary PDF files. Section 4
contains updates to Chapter 4 of the

 PDF Reference Manual

, including the
date format, and changes and clarifications to the representation of streams.
Section 5 contains updates to Chapter 5 of the

 PDF Reference Manual

,
including a new version number, and new trailer keys for encryption and file
identification. Section 5 contains updates to Chapter 6 of the

 PDF Reference
Manual

, including article threads, named destinations, annotation actions,
device independent color resources and the Encrypt dictionary. Section 7
contains updates to Chapter 7 of the

 PDF Reference Manual

, including
operators to use device independent color spaces. Finally, the appendices
describe the PDF name registry, the behavior of Acrobat viewers when
presented with PDF 1.1 or greater files, and references to other documents.

Note In PDF 1.1, dictionary key names are often one or two letters in order to
conserve space in files. When these keys are described below, they are
followed in parentheses by their full name. However, only the actual one- or
two-letter name may be used in a PDF file.

 2 Overview (updated)

This section includes the changes required to update Chapter 2 of the

 PDF
Reference Manual

 to version 1.1.

2.3.2 Portability

Replace the text in this section with the following text:

Strings 7

A PDF file is either a 7-bit ASCII file or a binary file. If it is a 7-bit ASCII file
only the printable subset of the 7-bit ASCI code plus space, tab and newline
(return or linefeed) is used. If it is a binary file, the entire 8-bit range of
characters may be used.

ASCII is the most portable form, since it is the only form that will fit through
channels that are not 8-bit clean or are subject to end-of-line translation, etc.
A binary file simply cannot be transported in such cases.

Unfortunately, some agents, when presented with information labelled as
"text", take unreasonable liberties with the contents. For example mail
transmission systems may not preserve certain 7-bit characters and may
change line endings. This can cause damage to PDF files.

Therefore, in situations where it is possible to label PDF files as "binary", we
recommend that this be done. One method for encouraging such treatment is
to include some binary characters (codes greater than 127) in a comment near
the beginning of the file, as described in section 5.1, even if the rest of the file
is ASCII.

This ensures that a PDF file will be treated as binary when this is possible,
while still allowing it to be transferred through a non-binary channel without
damage.

Use of PDF files actually containing binary information shouldbe restricted
to closed environments which are known to transport and store binary files
safely or where some external means is used to convert the file into and out of
a transport independent form, such as the UNIX uuencode.

Implementation note The Acrobat 1.0 viewer for UNIX will directly read uuencoded PDF files.

4 Objects (updated)

This section includes the changes required to update Chapter 4 of the

 PDF
Reference Manual

 to version 1.1. These changes include adding a new date
format for strings and some changes to the way streams are represented.

4.4 Strings

Add the following text to the end of the section:

In versions 1.1 and later, it is not necessary to represent strings using only the
printable 7-bit ASCII character set. PDF 1.1 strings may contain non-
printable ASCII codes—in fact, any 8-bit value. In particular, when a
document is encrypted (see section 5 on page 9), all its strings are encrypted.
In PDF 1.0, PDF strings are mostly or entirely printable ASCII. Encrypted
strings are not.

8 Objects (updated) (08 Dec 94)

Implementation note The Acrobat 1.0 viewers can read strings which include non-printable ASCII.

Strings can be used for many purposes and can be formatted in different
ways. When a string is used for a specific purpose, to represent a date, for
example, it is useful to have a standard format for that purpose. This would
let a user find all documents with a creation date later than a certain date.

Such formats are conventions for interpreting strings and are not types
themselves. The use of a particular format is indicated with the definition of
the string object that uses the format

PDF 1.1 defines a standard date format. The PDF date format closely follows
the format defined by the international standard ASN.1 (Abstract Syntax
Notation One, defined in CCITT X.208 or ISO/IEC 8824). A date is a string
of the form

(D:YYYYMMDDHHmmSSOHH’mm’)

where

•

YYYY

 is the year

•

MM

 is the month (01–12)

•

DD

 is the day (01–31)

•

HH

 is the hour (00–23)

•

mm

 are the minutes (00-59)

•

SS

 are the seconds (00-59)

•

O

 is the relation of local time to GMT where

+

 indicates that local time is
later than GMT,

−

indicates that local time is earlier than GMT, and Z
indicates that local time is GMT

•

HH’

 is the absolute value of the offset from GMT in hours

•

MM’

 is the absolute value of the offset from GMT in minutes

The “D:” prefix permits arbitrary keys to be recognized as dates. However, it
is not required. Trailing fields other than the year are also optional. The
default value for day is 1; all other numerical fields default to 0. If no GMT
information is specified, the relation of the specified time to GMT is
considered unknown. Whether the time zone is known or not, the rest of the
date should be specified in local time.

Implementation note The Acrobat 1.0 viewers report date strings as ordinary strings. The Acrobat
2.0 viewers report date strings as dates when used as the value of the

CreationDate

 or

ModDate

 in the Info dictionary or as the value of the Date
key in annotations. The 2.0 viewers ignore the GMT information.

Streams 9

4.8 Streams

Add the following clarifying text after the syntax for a <stream> and before
the reference to Table 4.2:

PDF 1.1 is more restrictive than PDF 1.0 with respect to the specification of
stream objects. All streams must be indirect objects (see Section 4.10 of the

PDF Reference Manual

). The stream dictionary must be a direct object. The
keyword

stream

 that follows the stream dictionary should be followed by a
carriage return and linefeed or just a linefeed.

Implementation note Otherwise, it is not possible to differentiate a stream that uses carriage return
as end of line and whose first byte of data is a linefeed from a stream that
uses carriage return-linefeed pairs as end of line.

4.11 Object references

Add the following text at the end of this section:

PDF 1.1defines links to external files but does not define directly reference
objects in other PDF files. It is planned that a future version of PDF will
define

foreign reference

s. In PDF 1.1 only a format for such references is
reserved. A foreign reference is an indirect reference to an indirect object in
another file, and consists of the foreign

file number

, the indirect object’s
object number, its generation number and the

F

 keyword:

<foreign reference> ::=
<file number>
<object number>
generation number>

F

A file number is a non-negative integer, but PDF 1.1 does not define its
interpretation. To be compatible with future versions of PDF, PDF 1.1
consumers should treat all foreign references as null objects.

5 File Structure (updated)

This section includes the changes required to update Chapter 5 of the

 PDF
Reference Manual

 to version 1.1. These include relaxing the requirement for
7-bit ASCII, adding a new option for the version number in the header, and
adding file identifier and encryption keys in the trailer dictionary.

5.1 Introduction

Add the following text at the end of this section:

10 File Structure (updated) (08 Dec 94)

Because the requirement to use 7-bit ASCII does not guarantee file
transmission transparency and because requiring use of 7-bit ASCII can
cause a 20% expansion in the size of objects such as images that are naturally
binary data, PDF 1.1 relaxes the requirement for 7-bit ASCII.

PDF 1.1 allows files to contain binary data in strings and streams. In fact,
experiments have found that PDF files are less likely to be corrupted by
system utilities if they do contain binary data. It is. therefore, recommended
that the second line of a PDF file be a comment that contains at least four
binary characters.

To accommodate binary data the restriction on line lengths is also relaxed in
PDF 1.1. PDF 1.1 files with binary data may have arbitrarily long lines.
However, to increase compatibility with other applications that process PDF
files, all lines that are not part of stream object data shall be no longer than
255 characters.

Implementation note The Acrobat 1.0 viewers successfully read files that contain binary data. In
addition, the PDF 1.0 specification states that lines in a PDF file may not be
longer than 255 characters. This restriction is not enforced by any Acrobat
viewer.

Implementation note The Acrobat 1.0 products on the Apple



 Macintosh



 computer create files
with type

‘TEXT’

. Since PDF 1.1 may not necessarily be all ASCII, Acrobat
2.0 products create files with type

‘PDF ’

. A user can open these documents
from a 1.0 viewer but not from the Finder.

5.2 Header

Replace the sentence that begins “The current version is 1.0, ...” with

The current version is 1.1; the first line of a 1.1-conforming PDF file

should
be

%PDF-1.1

. However, a 1.0-conforming file is also a 1.1-conforming file
and may begin with either

%PDF-1.1

 or

%PDF-1.0

.

5.5 Trailer

Add the following dictionary keys to Table 5.1:

Table 5.1

 Trailer attributes (extended)

Key Type Semantics

ID

array

(Optional)

 An array of two strings, each of which is an ID. The first ID is
established when the file is created and the second ID is changed each time
the file is updated. IDs are describe in Section 6.11, “File ID.”

Encrypt

dictionary

(Required if document is encrypted)

 Information used to decrypt a document,
described in Section 6.12, “Encrypt dictionary.”

Catalog 11

5.7 Encryption

Add this new section to Chapter 5:

PDF 1.1 allows documents to be encrypted to protect their content from un-
authorized access. Access to the document content is controlled by the
security handler identified by the Encrypt dictionary. The encryption
dictionary is the value of the new

Encrypt

 key in the trailer dictionary and is
described in Section 6.12, “Encrypt dictionary.” The name of this handler is
specified by the Encrypt dictionary’s

Filter

 key

The standard security handler permits users to protect documents with a
password and to limit operations on documents, for example, preventing
documents from being printed or modified. All strings and streams, except
those in the Encrypt dictionary, are encrypted using the RC4 encryption
algorithm. This prevents unauthorized users from simply removing the
password or access rights information from a PDF file to gain full access. The
security handler must encrypt strings in the Encrypt dictionary itself.

Implementation note While the Acrobat 2.0 viewers provide standard user authorization, a plug-in
may provide an alternative method for authorizing users. On opening a
protected document, a 1.0 viewer will report that an error was found while
processing a page. An Acrobat 2.0 viewer will report that a plug-in is
required to open the document if the handler for the document is not
available.

6 Document Structure (updated)

This section includes the changes required to update Chapter 6 of the

 PDF
Reference Manual

 to version 1.1. These changes include article threads,
named destinations, link actions, device independent color resources, and the
Encrypt dictionary.

6.2 Catalog

Add the following to the list of allowed values of the PageMode key:

FullScreen

 —Open document in full-screen mode; in full-screen mode, there
is no menu bar, window controls, nor any other window present.

12 Document Structure (updated) (08 Dec 94)

Add the following keys to the Catalog dictionary Table 6.1:

Implementation note If FullScreen is specified as the

PageMode

 to an Acrobat 1.0 viewer, it is
ignored.

OpenAction, Threads

and

 Dests

are also ignored.

6.4 Page objects

Add the following keys to Table 6.3:

Implementation note The Acrobat 2.0 viewers will rebuild the Beads array for all pages of a
document containing beads if the first page with a bead does not have a
Beads array.

6.6 Annotations

Immediately before Section 6.6.1 add:

Table

6.1 Catalog attributes (extended)

Key Type Semantics

OpenAction

array or
dictionary

(Optional)

Any legal action as described in Section 6.6.3, “Destinations
and actions.” If the value of this key is an array, it must be a destination. If
it is a dictionary, it must be an action. If no action is specified, the top of
the first page will appear at default zoom.

Threads

array

(Optional)

 An array of thread dictionaries as described in Section 6.10,
“Articles.”

Dests

dictionary

(Optional)

 A dictionary in which the keys are the names of destinations and
the values are destinations as specified in Section 6.6.5, “Named
destinations.”

Table 6.3

 Page attributes (extended)

Key Type Semantics

B

(Beads) array

(Recommended if page contains article beads)

 An array whose elements are
composed of indirect references to each article bead on the page, in drawing
order (the same order as the Annots array). Articles are described in Section
6.10, “Articles.”

Annotations 13

PDF 1.1 supports several new annotation properties for text annotations and
links. These keys apply to Link and Text annotations, as noted in Table 6.4a.
Other annotation types may choose to honor these keys as appropriate.

Implementation note The Acrobat 2.0 viewers only update the ModDate string for text annotations.

The

Border

 key, as in PDF 1.0, describes the border of link annotations. In
PDF 1.0, the border is an array of three numbers. In PDF 1.1, a border is an
array of three or four elements. The first two elements should be zero. The
third element specifies the border width in points (as in PDF 1.0). The
optional fourth element is a dash array that allows specification of solid and
dashed borders. The dash array contains on and off stroke lengths for drawing
dashes in the same format as the setdash marking operator, d. An example of
a dashed border is [0 0 1 [3]].

Implementation note Although PDF 1.1 does not limit the dash array length, Acrobat 2.0 viewers
support a maximum of 10 entries

Implementation note The PDF 1.0 Reference Manual states that the first two numbers describe the
horizontal and vertical corner radii, but 1.0 viewers ignore this information.
This information will also be ignored by 2.0 and future viewers.

Table 6.4a

 Annotation attributes (extended)

Key Type Semantics

C

 (Color) array

(Optional)

The annotation color. For links, this is the border color. For text
annotations, it is the background color of a closed annotation’s icon, the
title bar color of an active open annotation’s window, and the window
frame color of an inactive open annotation. A color is specified as an array
of three numbers between 0 and 1, inclusive, representing a color in
DeviceRGB space.

T

 (Title) string

(Optional)

 An arbitrary text label associated with the annotation. It is
displayed in an active open text annotation’s title bar and can be edited
from the annotation’s properties dialog.

M

 (ModDate) string

(Optional)

The last time an annotation was modified A text annotation’s
modification date is updated each time the text is changed. The preferred
string value is the date format described in Section 4.4, “Strings” but
viewers should accept and display any string.

F (Flags) integer (Optional) Collection of flags defining various characteristics of the
annotation. The least significant is the invisible flag. If this flag’s value is 1,
and the viewer does not provide a handler for the annotation’s Subtype, the
annotation will not be displayed. Otherwise, the annotation will appear as
an unknown annotation. (See below.) All other bits are reserved and must
be set to 0. The default value for this key is 0.

14 Document Structure (updated) (08 Dec 94)

Implementation note If an Acrobat 2.0 viewer encounters an annotation of a type it does not
understand, the viewer will display it as an unknown annotation unless the
annotation’s F (Flags) keys specifies that the invisible flag is set. The C, T, M,
and F keys are ignored by Acrobat 1.0 viewers.

6.6.2 Link annotations

Add the following key to Table 6.5:

On the Dest key, change “(Required)” to “(Required unless the A key is
present).” Following the Table add:

Goto actions should be specified using the Dest key for compatibility with
viewers implementing the PDF 1.0 specification.

6.6.3 Destinations and actions

Retitle Section 6.6.3 as “Destinations and actions.” After the first paragraph
add:

The notion of a destination is expanded in PDF 1.1. In addition to specifying
a destination it is possible to specify an action to be performed when a link or
bookmark entry is activated or a document is opened. PDF 1.1 supports four
types of actions:

• GoTo. — Changes the current page view to a specified page and zoom
factor. This is based on the PDF 1.0 notion of destination.

• GoToR — Opens a remote PDF file at a specified page and zoom factor.

• Launch — Launch an application, usually to open a file.

• Thread — Begins reading an article thread, possibly in another PDF file.
Section 6.10, “Articles” further describes article threads.

The latter three actions are new in PDF 1.1. In the future, PDF may define
additional action types.

Implementation note It is intended that plug-in extension may add new actions and described in
Appendix G, “Compatibility.”

Table 6.5 Link annotation attributes (extended)

Key Type Semantics

A (Action) dictionary (Required unless Dest key is present) The action to be performed on activating
this link annotation; see Section 6.6.3, “Destinations and actions.”

Annotations 15

An action is represented as a dictionary. All actions must contain a Subtype
key. Other keys may be present, depending on the action type. The tables
below list the attributes of the four specified action types.

As an accelerator for the GoTo action type, it is possible to omit the action
dictionary and specify only a destination array as described in section 6.6.3
of the PDF Reference Manual. This is the preferred form for this action type.
It is more compact and (most importantly) is the only form specified in PDF
1.0, and thus can be acted on by 1.0 viewers.

Add the following keys to Table 6.6:

Add the following text after Table 6.6:

The GoToR action behaves similarly to the GoTo action. However, it includes
an additional parameter, the File key that specifies the PDF file that contains
the action’s destination.

Table 6.6a GoTo action attributes

Key Type Semantics

Type name (Optional) Object type. Always Action.

S (Subtype) name (Required) Action type. Always GoTo.

D (Dest) array or
name

(Required) The view destination, as described in Table 6.6. The destination
page may be specified by an indirect reference to the page object or by a page
number (the first page in a document is page 0). Destinations with page
numbers are ignored by 1.0 viewers. Destinations that are names are described
in Section 6.11, “Named destinations.”

Table 6.6 Annotation destination specification (extended)

Value of /Dest key Semantics

 [page /FitB] Fit the bounding box of all the objects on the page and within the crop box to
the window.

 [page /FitBH top] Fit the width of the bounding box of all the objects on the page and within the
crop box to the window. top specifies the y-coordinate of the top edge of the
window.

 [page /FitBV left] Fit the height of the bounding box of all the objects on the page and within the
crop box to the window. left specifies the x-coordinate of the left edge of the
window.

Table 6.6b GoToR action attributes

Key Type Semantics

Type name (Optional) Object type. Always Action.

16 Document Structure (updated) (08 Dec 94)

The Launch action specifies an application to launch or document to open.
The action must specify the application or document as a file, using the F key.

The PDF 1.1 specification also allows platform-specific information to be
included in the Launch dictionary where that information is needed for
specific platform. The key Win is used for information related to Microsoft
Windows launches; the key Unix is used for information related to UNIX
system launches. If there is no platform specific key, then the F key is used

Implementation note Some implementations of Acrobat 2.0 viewers may check for alternative keys
whose values provide platform-specific parameters for the Launch action.
For example, the Acrobat 2.0 viewer for Windows will use the dictionary
corresponding to the Win key to determine its launch parameters.

S (Subtype) name (Required) Action type. Always GoToR.

D (Dest) array or
name

(Required) The desired view destination, as described in Table 6.6. The
destination page must be specified by a page number, with 0 the first page.
Destinations that are names are described in Section 6.6.5, “Named
destinations.”

F (File) string or
dictionary

(Required) The file containing the destination view. See Section 6.6.4, “File
specifications,” for the interpretation of the File key.

Table 6.6c Launch action attributes

Key Type Semantics

Type name (Optional) Object type. Always Action.

S (Subtype) name (Required) Action type. Always Launch.

F (File) string or
dictionary

(Required if there is no alternative key) The file to use in performing the
specified action. See Section 6.6.4, “File specifications” for the
interpretation of the F key. A viewer that encounters an action with no F
key and for which it does not understand any of the alternative keys will
do nothing.

Win dictionary (Optional) Windows-specific launch parameters as described in Table
6.6d.

Unix string (Optional) Not yet defined.

Table 6.6b GoToR action attributes (Continued)

Key Type Semantics

Annotations 17

Implementation note The Acrobat 2.0 viewers for Windows use the Windows function
ShellExecute() to launch an application. The Win dictionary entries
correspond to the parameters of ShellExecute().

When a viewer performs a Thread action, it goes to the specified thread and
enters thread mode. The thread need not be in the current PDF file.

Implementation note Acrobat 1.0 viewers do not report an error when a user activates a link or
bookmark that has an unknown destination type or is missing a destination.
Links and bookmarks with an Action key will appear to have no destination.
The Acrobat 2.0 viewers will report an error when the destination or action
type is unknown.

Table 6.6d Windows-specific launch attributes

Key Type Semantics

F (File) string (Required) The document or application to launch, specified as a DOS file
name using standard DOS syntax. If the string includes a backslash (‘\’),
the backslash must be preceded by a backslash according to the usual
rules for specifying PDF strings.

O (Operation) string (Optional) The operation to perform: “open” or “print.” Open is the
default. If the F key specifies an application, this key is ignored and the
application is launched.

P (Parameters) string (Optional) The parameters passed to the application specified by the F
key. If the F key specifies a document, this key should not be provided.

D (Directory) string (Optional) The default directory, specified using standard DOS syntax.

Table 6.6e Thread action attributes

Key Type Semantics

Type name (Optional) Object type. Always Action.

S (Subtype) name (Required) Action type. Always Thread.

D (Dest) dictionary,
number, or
string

(Required) The desired thread destination. The destination may be an
indirect reference to a thread dictionary, a number that specifies the thread’s
index in the document (the index of the first thread in a document is 0), or a
string that is the thread’s title. If more than one thread has the same title, the
first thread in the document’s list of threads with that title will be chosen.
Threads in external files must be specified by index or title.

F (File) string or
dictionary

(Optional) The file containing the destination thread. See Section 6.6.4, “File
specifications” for the interpretation of the F key.

B (Bead) dictionary
or number

(Optional) The desired bead destination. The value of B may be an indirect
reference to a bead dictionary or a number that specifies the bead’s index in
the thread (the index of the first bead in a thread is 0).

18 Document Structure (updated) (08 Dec 94)

6.6.4 File specifications

Add this new subsection to Section 6.6:

A file specification describes the location of a file. It is usually a string.
Components of the specification should be separated by slash characters (the
Unix file separator). When a viewer processes a file specification, it will
replace separators with the appropriate system-dependent separator. Slashes
that are part of a component should be preceded by a backslash. (In a PDF
file, the backslash itself needs to be escaped by preceding it with another
backslash.)

If a file specification should be considered relative to the current file, the first
part of the specification should be a component. If the specification is
absolute, the first part should be a slash. It is possible to specify an absolute
DOS path without a drive by making the first component empty. (Empty
components are ignored by other platforms.)

A DOS path can include a logical drive or a network resource name as
returned by the Windows function WNetGetConnection(). A resource name
includes both a drive and volume. The drive and volume, like all path
components, should be preceded by a slash.

The component “..” refers to the parent of the current directory, where current
is defined as the directory specified by the part of the file specification
preceding the “..”. Table 6.6f provides examples of file specifications on
various platforms.

A file specification can also be a dictionary. This dictionary contains one or
more keys that specify alternative ways of locating a file. The key specifies
how to interpret the value. A viewer should look for keys in some order until
it finds one it understands.The alternative keys need not specify the same file.
This allows a single file specification to describe appropriate but different
files for different platforms.

Table 6.6f Examples of file specifications

System System-dependent path PDF path

Mac Macintosh HD:PDFDocs:spec.pdf /Macintosh HD/PDFDocs/spec.pdf

DOS \pdfdocs\spec.pdf (no drive) //pdfdocs/spec.pdf

DOS r:\pdfdocs\spec.pdf /r/pdfdocs/spec.pdf

DOS pcadobe/eng:\pdfdocs\spec.pdf /pcadobe/eng/pdfdocs/spec.pdf

Unix /user/fred/pdfdocs/spec.pdf /user/fred/pdfdocs/spec.pdf

Unix pdfdocs/spec.pdf (relative) pdfdocs/spec.pdf

Annotations 19

Implementation note For example, the Acrobat 2.0 viewer for Macintosh first looks for the Mac key
and if it does not find it, looks for F (File). Note that the Acrobat 2.0 viewer
for Windows looks for the DOS key, not the Win key.

Table 6.6g describes the dictionary attributes.

6.6.5 Named destinations

Add this new subsection to Section 6.6:

The destination key of an action may be a name as well as an array. This
allows destinations to be specified indirectly even if the destination is in
another file. For example, one file may contain links to the first page of
chapters in another file. If the links use named destinations, then the second
file’s pages can change without invalidating the links in the source file.
Named destinations can also be used for thread actions and for destinations
within a single file.

The Catalog of any document may contain a Dests key whose value is a
dictionary. The keys in this dictionary are destination names, and the values
are destinations. The destinations may either be arrays or dictionaries. If the
value is an array, it must be an ordinary destination. If it is a dictionary, it in
turn must have a D key that must be an array that is an ordinary destination.
This enables named destinations to have additional attributes.

Table 6.6g File specification attributes

Key Type Semantics

FS
(FileSystem)

name (Optional) The name of the “file system” to be used to interpret this file
specification. A viewer or extension can register a file system. A file system
interprets file specifications, opens files, and provides the usual input and output
operations. If a file specification includes a file system, all other keys are
interpreted by the file system.

F (File) string (Required if no other keys are present) A file specification using the string format
described above. A viewer that encounters an action with no F key and that does
not understand any of the alternative keys need not do anything.

Mac string (Optional) A string that specifies a Macintosh file name using the string format
describe above.

DOS string (Optional) A string that specifies a DOS file name using the string format
describe above.

Unix string (Optional) A string that specifies a Unix file name using the string format
describe above.

ID array (Optional) An array of two strings. The ID is a file ID as described in Section
6.12, “File ID.” This allows a viewer to find the exact match more often, and it
allows viewers to warn a user when the file has changed since the link was made.

20 Document Structure (updated) (08 Dec 94)

If an action does not contains a file specification, then a named destination
refers to a name in the current document’s Dests dictionary. If an action
contains a file specification, then the named destination refers to a name in
the document specified by the file specification.

6.7 Outline tree

Add the following key to Table 6.8:

On the Dest key, change “(Required)” to “(Required unless the A key is
present)” and following the Table add:

Goto actions should be specified using the Dest key for compatibility with
veiwers implementing the PDF 1.0 specification.

6.8 Resources

PDF 1.1 adds no new resource types but enhances font resources and font
descriptors and adds new subtypes of ColorSpace and XObject resources.

6.8.2 Font resources

Add the following at the end of the section labelled “Type 1 fonts”:

PDF 1.1 permits documents to include subsets of Type 1 fonts. The font
resource and font descriptor that describe a font subset are slightly different
than those for ordinary fonts. These changes allow a viewer to merge
documents containing subsets of the same font.

The value of the font resource’s BaseFont key and the font descriptor’s
FontName key must use the following format:

pseudo-unique-tag+PostScript-name

The pseudo-unique tag must consist of exactly six uppercase alphabetic
characters. The PostScript language name must be the name of the complete
Type 1 font. A plus sign separates the tag and the PostScript language name.

Implementation note These restrictions make font subsets compatible with 1.0 viewers, enable the
Distiller application to recognize font subsets in its input stream, and
enable Acrobat 2.0 viewers to merge documents containing subsets.

Table 6.8 Outline entry attributes (extended)

Key Type Semantics

A (Action) dictionary (Required unless Dest key is present) The action to be performed on activating
this link annotation; see Section Destinations and actions..

Resources 21

6.8.4 Font descriptors

Add the following keys Table 6.17 (to support font subsets and embedded
TrueType fonts):

In addition change the semantics of FontFile to be “A stream which defines a
Type 1 font.

Font files

Replace the first two sentences of the second paragraph, “Currently, only
Type 1 fonts may be embedded in a PDF file. The are embedded using the
FontFile mechanism,” with:

Type 1 fonts may be embedded in a PDF 1.1 file using the FontFile
mechanism.

Delete the second to the last sentence of the second paragraph, “Because the
stream containing Type 1 font data contains binary data, the stream must be
converted to ASCII using either ASCII hesadecimal or ASCII base-85
encoding.”

Add a new paragraph following the second paragraph:

TrueType fonts are embedded using the FontFile2 mechanism. The font
descriptor for an embedded TrueType font should contain a FontFile2 key
whose value is a stream that contains the TrueType font definition as decribed
in TrueType 1.0 Font Files. The stream itself should include a Length1 key as
specified in Table 6.18; that key specifies the length in bytes of the font file
after it has been decoded using the filters specified by the stream’s Filter key.
The other keys in Table 6.18 should not to be used for TrueType fonts.

Because the stream containing Type 1 or TrueType font data may include
binary data, the stream it may be desirable convert this data to ASCII using
either the ASCII hexadecimal or ASCII base-85 encoding.

Implementation note Embedded TrueType fonts are ignored by Acrobat 1.0 viewers.

Table 6.17 Font descriptor attributes (extended)

Key Type Semantics

CharSet string (Optional) A string which lists the glyph names corresponding to the
entries in the CharStrings dictionary if the font described is a subset font.
Each name must be preceded by a slash. The names may appear in any
order. The name “.notdef” should be omitted; it is assumed to exist in the
font subset.

FontFile2 stream (Optional) A stream which defines a TrueType font.

22 Document Structure (updated) (08 Dec 94)

6.8.5 Color space resources

PDF 1.1 extends the PDF color model to include device-independent color
for both images and spot color (text and paths). There are three new color
spaces: CalGray, CalRGB, and Lab. These correspond to calibrated gray,
calibrated RGB, and CIE 1976 (L*a*b*)-space. The following changes
should be made to this section:

Replace the third sentence of paragraph 1, “PDF supports four types of color
spaces: DeviceGray, DeviceRGB, DeviceCMYK and indexed” with the
following sentence:

PDF supports seven types of color spaces: DeviceGray, DeviceRGB,
DeviceCMYK, CalGray, CalRGB, Lab and indexed. In addition, provisions
have been made for CalCMYK, although the attributes of this type of space
have not yet been defined.

Replace the first sentence of paragraph 2, “All the color spaces support by
PDF are device color spaces” with:

PDF 1.1 supports both device and device-independent color spaces. In a
device color space, the color values are interpreted as specifying the fraction
of device color intensity acheivable on the device being used for imaging.

Add the following after paragraph 2:

In a device-independent color space, color values are defined by a mapping
from the device-independent color space into a standard color space, the CIE
(Commision Internationale de l’Eclairage) 1931 XYZ color space. Since the
values in the XYZ space can be colormetrically measured, this establishes a
device-independent specification of the desired color. When a device-
independent color value is rendered on a device, the rendered color should
have the same colorimetric value as the specified color. It is the responsibility
of the device rendering system to achieve the colorimetric match.

Physical devices have a limited range of colors that they can reproduce. This
is called their gamut. Therefore, some trade-offs may need to be made in
rendering the desired color. See the discussion of “intents” in the "Image
resources" subsection of Section 6.8.6, “XObject resources.”

See the PostScript Language Reference Manual, Second Edition for futher
explanation of device-independent color.

Implementation note The Acrobat 2.0 viewers allow a user to approximate device-independent
colors with device-dependent colors with no transformation. I.e., CalGray
colors are treated as DeviceGray, and CalRGB are treated as DeviceRGB.

Immediately following the above addition add the following heading:

Resources 23

Device color space resources

Immediately following the paragraph describing DeviceCMYK, add the
following heading and text:

Device-independent color space resources

Colors in the CalGray color space are represented by a single value. Input
CalGray values are in the range [0, 1] where 0 is black, 1 is white and
intermediate values are gray.

A CalGray color space is specified by a two component array of the form

[/CalGray dict]

where the contents of dict are described in Table 6.19a.

Colors in the CalRGB color space are represented by three values: the red,
green and blue components of the color. Each of the three CalRGB input
values is in the range [0, 1].

A CalRGB color space is specified by a two component array of the form:

[/CalRGB dict]

where the contents of dict are described in Table 6.19b.

Table 6.19a CalGray attributes

Key Type Semantics

WhitePoint array (Required) Three numbers [Xw Yw Zw] that specify the CIE 1931 (XYZ)-space
tristimulus value of the diffuse white point. The numbers Xw and Zw must be
positive and Yw must be equal to 1. See discussion in 4.8.3 in the PostScript
Language Reference Manual, Second Edition for further details.

BlackPoint array (Optional) Three numbers [Xb Yb Zb] that specify the CIE 1931 (XYZ)-space
tristimulus value of the diffuse black point. The numbers must be non-
negative. Default value: [0 0 0]. See discussion in 4.8.3 in the PostScript
Language Reference Manual, Second Edition for further details.

Gamma number (Optional) Defines the exponential relationship between the gray component
and Y. The governing equation is Y = gray Gamma. Gamma must be positive and
will generally be greater than or equal to 1. Default value: 1.

Table 6.19b CalRGB attributes

Key Type Semantics

WhitePoint array (Required) Same as for CalGray.

BlackPoint array (Optional) Same as for CalGray.

24 Document Structure (updated) (08 Dec 94)

Colors in the Lab color space are represented by three values: the L*, a* and
b* components of the color. The ranges of each of the three Lab input values
are specified under the Range key in Table 6.19c.

A Lab color space is specified by a two component array of the form:

[/Lab dict]

where the contents of dict are described in Table 6.19c Lab attributes.

A CalCMYK color space is specified by a two component array of the form:

[/CalCMYK dict]

where the contents of dict are not defined. These contents will be defined in a
future version of PDF.

Gamma array (Optional) Three numbers [Gr Gg Gb] that specify the gamma for the
red, green, and blue components respectively. The governing equations
are R′ = RGr, G′ = GGg, and B′ = BGb, where R, G, and B are the input
calibrated RGB values, and R′, G′, and B′ are the gamma-modified
values. Default value: [1 1 1].

Matrix array (Optional) Nine numbers [Xr Yr Zr Xg Yg Zg Xb Yb Zb] that specify the
linear interpretation of the gamma-modified R, G, and B components,
R′, G′, and B′. Default value: the identity matrix [1 0 0 0 1 0 0 0 1]. The
transformation from R′G′B′ to XYZ is given by:

X = R′ × Xr + G′ × Xg + B′ × Xb
Y = R′ × Yr + G′ × Yg + B′ × Yb
Z = R′ × Zr + G′ × Zg + B′ × Zb

Table 6.19c Lab attributes

Key Type Semantics

WhitePoint array (Required) Same as for CalGray.

BlackPoint array (Optional) Same as for CalGray.

Range array (Optional) Four numbers [amin amax bmin bmax] specifying the range of the
a* and b* components. That is, a* and b* are limited by amin ≤ a* ≤ amax,
bmin ≤ b* ≤ bmax. Default value: [−100 100 −100 100]. The range of L*
is always [0, 100].

Table 6.19b CalRGB attributes

Key Type Semantics

Resources 25

Implementation note The CalCMYK color space resource type has been partially defined with the
expectation that its definition will be completed in a future version of PDF.
PDF 1.1 viewers should ignore CalCMYK color space attributes and render
colors specified in this color space as if they had been specified using
DeviceCMYK.

An example CalRGB color space resource is shown here for D65 white point,
1.8 gammas, and Trinitron phosphor chromaticities.

12 0 obj
[/CalRGB
<<
/WhitePoint [0.9505 1 1.0890]
/Gamma [1.8 1.8 1.8]
/Matrix [0.4497 0.2446 0.0252 0.3163 0.6720 0.1412 0.1845 0.0833 0.9227]
>>]
endobj

Add the following heading immediately following the above text:

Indexed color space resources

In this subsection, replace the second sentence of the third paragraph, “If a
name is used it must be DeviceGray, DeviceRGB or DeviceCMYK” with the
following sentence:

If a name is used it must be one of the allowed device (DeviceGray,
DeviceRGB or DeviceCMYK) or device-independent (CalGray, CalRGB,
Lab, or CalCMYK) color spaces.

Add the following heading and text at the end of section 6.8.5

Default color space resources

PDF 1.1 adds device-independent color spaces to the color spaces defined in
PDF 1.0. Because viewers for PDF 1.0 may not expect these new color
spaces and default gracefully when they are used, a second method for
specifying the use of a device independent color space is provided in PDF
1.1. This second method allows an appropriate color space to be substituted
for either the DeviceGray or DeviceRGB color spaces. The substitution is
controlled by two special keys, DefaultGray and DefaultRGB, that can be
used in the ColorSpace dictionary of the Resources dictionary of the current
page.1 They are used as follows.

1. A page’s resources are specified by the Resources key. The Resources may be inherited from a
Pages object that is an ancestor of the page.

26 Document Structure (updated) (08 Dec 94)

When a viewer is performing an operation that results in rendering to a
medium, there is always a current color space which is established using the
operators of Section 7.4 of the Portable Document Format Reference Manual
or using the ColorSpace key of an image resource or an in-line image. When
the current color space is DeviceGray, the ColorSpace dictionary of the
Resources dictionary of the current page is checked for the presence of the
DefaultGray key. If this key is present, then the color space that is the value
of that key is used as the color space for the operation currently being
performed. The value of the DefaultGray key may be either a DeviceGray or
a CalGray color space specification.

Similarly, when the current color space is DeviceRGB, the ColorSpace
dictionary of the Resources dictionary of the current page is checked for the
presence of the DefaultRGB key. If this key is present, then the color space
that is the value of that key is used as the color space for the operation
currently being performed. The value of the DefaultRGB key may be either a
DeviceRGB or a CalRGB color space specification.

Implementation note The Acrobat 1.0 viewer ignores DefaultRGB and DefaultGray.

6.8.6 XObject resources

Image resources

Add the following dictionary key to Table 6.20:

Implementation note The Acrobat 1.0 viewers display an error if an image specifies an Intent.

Add the following immediately after Table 6.20:

The ColorSpace key in an image resource may reference any color space
defined in PDF 1.1, including, a device-independent color space. However,
for compatibility with 1.0 viewers, the DefaultRGB or DefaultGray key
should be used to reference a device-independent color space, as described in
the Section “Default color space resources” on page 25.

Table 6.20 Image attributes (extended)

Key Type Semantics

Intent name (Optional) A name which is a color rendering intent indicating the style of
color rendering that should occur. For example, one might want to render
images in a perceptual or pleasing manner while rendering spot colors
with exact color matches. Intents are meaningful only for the device-
independent color spaces

Resources 27

The supported color rendering intents and their meanings are given below in
Table 6.20a. Other intents are permitted, but a viewer based on the PDF 1.1
specification will most likely ignore its value. Default behavior in the absence
of the Intent key or when it is not one of the three standard intents, is
RelativeColorimetric.:

Images contain optional Decode arrays that define the mapping from image
data values to colors in the image color space. Add the following key to Table
6.21:

Pass-through PostScript language resources

Add this new subsection at the end of Section 6.8.6, “XObject resources”:

PDF 1.1 enables a document to include PostScript language fragments in a
page description. These fragments are printer-dependent and only take effect
when printing on a PostScript printer. They have no effect either when
viewing the file or when printing to a non-PostScript printer. In addition, any

Table 6.20a Color rendering intents

Intent name Semantics

 AbsoluteColorimetric Provides for exact color reproductions. Example usage would be for spot
colors. Reproductions are made with respect to the reference illuminant.

 RelativeColorimetric Provides for relative color reproductions. Example usage would be for spot
colors. Reproductions are made with respect to the unmarked media, for
example the white of paper.

Perceptual Provides a perceptual or pleasing rendering for both in- and out-of-gamut
colors. Example use is scanned images.

Saturation Provides a rendering in which saturation is emphasized. Example use is
business graphics.

Table 6.21 Default Decode arrays for various color spaces (extended)

Color space Default decode array

 CalGray [0 1]

 CalRGB [0 1 0 1 0 1]

 Lab [0 100 aMin aMax bMin bMax] where aMin, aMax,
bMin, and bMax correspond to the entries in
the Range array of the image dictionary
ColorSpace entry. 0 and 100 are the first
two entries since the range on L* is always
[0, 100].

28 Document Structure (updated) (08 Dec 94)

other applications which understand PDF are unlikely to be able to interpret
the PostScript language fragments. Hence, this capability should only be
used if there is no other way to achieve the same result.

A PostScript resource is an XObject whose Subtype is PS. When a
document is printed to a PostScript printer, the contents of the resource
stream replace the Do command that references the resource. This stream is
copied without interpretation and may include PostScript comments. In any
other case, the resource is ignored. When printing to a PostScript Level 1
printer, if the XObject contains a Level1 key, the value of that key, which
must be a stream, will be used instead of the resource stream contents.

The PostScript fragment may use Type 1 and TrueType fonts listed in the
resources of the page containing the fragment. It may not use Type 3 fonts.

The list of PostScript operators that will be allowed in pass-through
PostScript resources is currently being defined and will be published shortly.

The PostScript XObject is not compatible with 1.0 viewers. The following
method can be used instead to create PostScript pass-through data when
compatibility with 1.0 viewers is necessary. A form should be defined with an
empty stream content. It should include a BBox of all zeros, a FormType of
1, and a Matrix that is the identity matrix. It should include a Subtype2 key
whose value is PS and a PS key whose value is a stream that contains the
PostScript language pass-through data. It may also contain a Level1 key as
described previously in this section.

6.9 Info dictionary

Replace the first paragraph of this section with the following:

A document’s trailer may contain a reference to an Info dictionary that
provides information about the document. This optional dictionary may
contain one or more keys whose values should be strings. These strings may
be displayed in an Acrobat viewer’s Document Info dialog. The characters in
these strings are encoded using the predefined encoding PDFDocEncoding,
described in Appendix C.

Add the following keys to Table 6.23:.

Table 6.23 PDF Info dictionary attributes (extended)

Key Type Semantics

Title string (Optional) The title of the document.

Subject string (Optional) The subject of the document.

Keywords string (Optional) Keywords associated with the document.

Articles 29

Add the following text after Table 6.23:

If any Info string follows the date format described in Section 4.4, “Strings,”
that string should be displayed as a human-readable date. In particular, the
1.0 key CreationDate and the 1.1 key ModDate should use this format.
However, the “D:” prefix is not optional for Info strings. Info strings are
otherwise uninterpreted.

Info keys and strings may be added to or changed by users or extensions, and
some extensions may choose to permit searches on these keys. PDF 1.1 does
not define short names for the keys in Table 6.23, to make it easier to browse
and edit Info dictionary entries. New names should be chosen with care so
that they make sense to users.

While private data can be stored in the Info dictionary, it is more appropriate
to store it in the Catalog. This allows a user or program to alter entries in the
Info dictionary with less chance of unforeseen side effects.

6.10 Articles

Add this new section to Chapter 6:

Article threads allow associating related document elements in a way that
enables the user to more easily read through a flow of text or other
information that may span multiple columns or pages.

A PDF document may include one or more article threads. Each thread has a
title and a list of thread elements, which are referred to as beads. A viewer
may allow the user to select a particular thread and then navigate through the
thread with the viewer automatically maintaining a comfortable reading
zoom level while moving from one bead to the next rather than from one
page to the next.

ModDate string (Optional) The date the document was last modified. It should be in the format
described in Section Strings

Table 6.23 PDF Info dictionary attributes (extended)

Key Type Semantics

30 Document Structure (updated) (08 Dec 94)

If a document includes any threads, they are stored in an array as the value of
the Threads key in the Catalog object. Each thread and its beads are
dictionaries. Table 6.24 lists the attributes of athread dictionary, and Table
6.25 lists the attributes of a bead dictionary.

Here is an example of a thread with three beads:

22 0 obj
<< /F 23 0 R /I << /Title (Man Bites Dog) >> >>
endobj
23 0 obj
<< /T 22 0 R /V 25 0 R /N 24 0 R /P 8 0 R /R [158 247 318 905] >>
endobj
24 0 obj
<< /V 23 0 R /N 25 0 R /P 8 0 R /R [322 246 486 904] >>
endobj
25 0 obj
<< /V 25 0 obj /N 23 0 obj /P 10 0 obj /R [157 254 319 903] >>
endobj

The Page object for each page on which beads appear should contain a B key,
as described in Section 6.4, “Page objects.” The value of this key is an array
of indirect references to each bead on the page, in drawing order.

Table 6.24 Thread attributes

Key Type Semantics

F (First) dict (Required; must be indirect reference) Specifies the bead that is the first
element of this thread.

I (Info) dict (Optional) Information about the thread, similar to the document’s Info
dictionary. Entries in this dictionary should be strings encoded using the
predefined encoding PDFDocEncoding, described in Appendix C of the
PDF Reference Manual.

Table 6.25 Bead attributes

Key Type Semantics

T (Thread) dict (Required for the first bead of a thread; must be indirect reference) Specifies
the thread of which this bead is the first element.

V (Prev) dict (Required; must be indirect) Specifies the previous bead of this thread; for the
first bead in a thread, V specifies the last bead in the thread.

N (Next) dict (Required; must be indirect) Specifies the next bead of this thread; for the last
bead in a thread, N specifies the first bead in the thread.

P (Page) dict (Required; must be indirect) Specifies the page on which this bead appears.

R (Rect) array (Required) Rectangle specifying the location of this bead.

File ID 31

Implementation note The thread array and dictionary objects are invisible to 1.0 viewers on all
platforms. Consequently, insert and delete pages operations will not carry
along any threads.

6.11 File ID

A PDF file may contain a reference to another PDF file. Storing a filename,
even in a platform-independent format, does not guarantee that the file can be
found, even if it exists and its name has not been changed. Different server
software applications often present different names for the same file. For
example, servers running on DOS platforms must convert all file names to
eight letters and a three-letter extension. Different servers use different
strategies for converting long names to this format.

References to PDF files can be made more reliable by making the PDF file
reference consist of two parts: (1) a normal operating system-based file
reference and (2) a file ID. The file ID is a short value that characterizes the
file and is stored with the file. Placing a file ID with the file reference and in
the file itself increases the chances that a file reference can be resolved
correctly. Matching the file ID in the reference with the file ID in the file
indicates whether the desired file was found.

Implementation note The indexes created by Adobe Catalog also contain references to PDF files.

PDF 1.1 recommends that files have an ID key in their trailer. The value of
this key is an array of two strings. The first element is a permanent ID based
on the contents of the file at the time the file was created. This ID does not
change when the file is incrementally updated. The second element is a
changing ID based on the contents of the file at the time the file is
incrementally updated. When a file is first written, both IDs are set to the
same value. When resolving a file reference, if both IDs match, it is very
likely that the correct file has been found. If only the first ID matches, then an
different version of the correct file has been found.

Implementation note Although this key is not required, all Adobe producers will include this key.
Acrobat Exchange will add this key when saving a file if it is not present

To help insure the uniqueness of the file ID, it is recommend that file ID be
computed using a message digest algorithm such as MD5, as described in
RFC 1321: The MD5 Message-Digest Algorithm. It is recommend that the
following information be fed to the message digest algorithm:

• the current time

• a string representation of the location of the file, usually a path name

• the document size in bytes

• the values of all the entries in the document’s Info dictionary.

32 Document Structure (updated) (08 Dec 94)

Implementation note Adobe applications use the above information and the MD5 message digest
algorithm to calculate fileIDs. Note that the calculation of the fileIDs need
not be reproducible. All that matters is that the file IDs are likely to be
unique. For example, two implementations of this algorithm might use
different formats for the current time. This will cause them to produce
different file IDs for the same file created at the same time, but this does not
affect the uniqueness of the ID.

6.12 Encrypt dictionary

PDF 1.1 allows strings and streams in documents to be encrypted to protect
their content from unauthorized access. A protected document contains an
additional entry in the trailer dictionary, the Encrypt key, whose value is the
Encrypt dictionary. Access to the document content is controlled by the
security handler that is identified by the Encrypt dictionary. The name of this
handler is specified by the Encrypt dictionary’s Filter key The security
handler permits users to protect documents with a password and to limit
operations on documents, for example, preventing documents from being
printed or modified

The Encrypt dictionary may contain additional information required by the
security handler to determine if a user should be allowed to access the
document. For example, the security handler may use a dialog to obtain a
password that allows access to the document. Table 6.26 describes the
required keys in the Encrypt dictionary defined by the security handler built
into the Acrobat 2.0 viewers. However, the dictionary may include additional
keys not specified here.

All strings and streams in a protected document, except those in the Encrypt
dictionary, are encrypted using the RC4 encryption algorithm. Streams are
encrypted after all stream encoding filters have been applied (and are
decrypted before the stream decoding filters are applied). Decryption of

Table 6.26 Standard security handler attributes

Key Type Semantics

Filter name (Required by all security handlers) Name of security handler. The name of the
handler built into Acrobat 2.0 is Standard.

R (Revision) number (Required) Revision number of algorithm used to encode data in this
dictionary. The revision number for the Standard security handler in Acrobat
2.0 is 2.

O (Owner) string (Required) Data describing password needed to gain full access to file.

U (User) string (Required) Data describing password needed to open file.

P (Permissions) string (Required) Data describing permissions granted to user who opens a file with
the U password.

Graphics state 33

strings, other than those in the Encrypt dictionary, is done after escape
sequence processing and hex decoding as appropriate to the string
representation form as described in Section 4.4, “Strings.” Strings in the
Encrypt dictionary are encrypted and decrypted by the security handler itself.

Implementation note The Acrobat 2.0 viewer provides a Standard security handler that requires a
password to access a protected document and allows control over which
operation that viewer will allow to be performed on the content of the
document. Other security handlers may be used, but such usage is dependent
on having a plug-in extension to process the information in the Encrypt
dictionary.

The Standard security handler will be described in a separate note that will
appear in the near future.

7 Page description (updated)

This section includes the changes required to update Chapter 7 of the

 PDF
Reference Manual

 to version 1.1. These include the addition of operators to
specify device independent colors and to pass through PostScript in-line.

7.2 Graphics state

Remove the “fill color” and “stroke color” entries in the original Table 7.1
and add the following entries:

Add the following three new sections:

7.2.12 Fill color space

The color space in which the fill color is specified. See Section 7.4, “Color
operators.”

Table 7.1

 General graphics state parameters (extended)

Parameter Operator Operator may not appear...

fill color space

g

,

rg

,

k

,

cs

within a path

fill color

g

,

rg

,

k

,

sc

within a path

stroke color space

G

,

RG

,

K

,

CS

within a path

stroke color

G

,

RG

,

K

,

SC

within a path

rendering intent

ri

within a path

This document was created with FrameMaker 4 0 2

34 Page description (updated) (08 Dec 94)

7.2.13 Stroke color space

The color space in which the stroke color is specified. See Section 7.4, “Color
operators.”

7.2.14 Rendering intent

A name which is a color rendering intent indicating the style of color
rendering that should occur. See Section 6.8.6, “XObject resources,” and
especially Table 6.20a, “Color rendering intents,” for further detail.

7.4 Color operators

Device-independent color spaces can be used within page descriptions as
well as in image resources.

Replace the first paragraph with the following three paragraphs:

Colors may be specified in any device or device-independent color space, but
not in an indexed color space. The operators that set a device color also set
the color space that is used. The default color space is DeviceGray and the
default fill and stroke colors are both black.

Implementation note For compatibility with PDF 1.0 viewers, it is strongly recommended that
device-dependent colors be specified using the 1.0 operators and that device-
independent colors be specified using the color space substitution method
defined in Section 6.8.5, “Color space resources.”

Add the following operator descriptions to the end of the list in Section 7.4.

c0 c1 c2 c3 sc setcolor (fill)

Sets the color to use for filling paths. The number of operands required and their
interpretation is based on the current fill color space. For DeviceGray and
CalGray, one operand is required. For DeviceRGB, CalRGB, and Lab, three
operands are required. For DeviceCMYK and CalCMYK, four operands are
required.

c0 c1 c2 c3 SC setcolor (stroke)

Same as sc, but for stroking paths.

colorspace cs setcolorspace (fill)

Sets the fill color space in the graphics state. colorspace is a name of a
ColorSpace resource defined in the Resources dictionary of the current page.
In-line specification of the color space is not permitted. The ColorSpace
resource may be any of the device or device independent color spaces, but it may
not be an indexed space.

In-line image operators 35

colorspace

CS setcolorspace

(stroke)

Same as

cs

, but for strokes.

intent

ri

Sets the color rendering intent in the graphics state.

intent

 is a name of a color
rendering intent which indicates the style of color rendering that should
occur, as described in Section 6.8.6, “XObject resources.” The default
rendering intent is

RelativeColormetric

.

Implementation note If an Acrobat 1.0 viewer reads a page containing any of the setcolor,
setcolorspace, or intent operators, it will report an error. Errors can be
ignored by the user and objects will be displayed, but colors will most likely
be black (the default).

7.7.4 Text string operators

Replace the note in the third paragraph that begins, “If a current point has
not been established..,” with the following clarification:

Note The default current point is at the page origin. Therefore, unless some prior
operation in the same text object changes the current point, the text will
appear at the origin. It is suggested that a

Tm

 operation be used to establish
the initial current point in a text object at the position in text space where
intial text is to appear. Subsequent text operations may change the current
point.

7.9 In-line image operators

In-line images can also specify device-independent color spaces using the
same keys as image resources. Add the following entries to Table 7.3:

7.11 In-line pass-through PostScript fragments

Add this new section to Chapter 7:

Table 7.3

 Abbreviations for in-line image names(extended)

Name Abbreviated name

CalGray CG

CalRGB CR

CalCMYK CC

Intent

no abbreviation

Lab

no abbreviation

This document was created with FrameMaker 4 0 2

36 Page description (updated) (08 Dec 94)

PDF 1.1 enables a document to include PostScript language fragments in a
page description. These fragements are printer-dependent and only take
effect when printing on a PostScript printer. They have no effect when
viewing the file or when printing to a non-PostScript printer. In addition, any
other applications which understand PDF are unlikely to be able to interpret
PostScript language fragments. Hence, this capability should only be used if
there is no other way to acheive the same result. See the “Pass-through
PostScript language resources” subsection of Section 6.8.6 for additional
information.

Implementation note If an Acrobat 1.0 viewer reads a page containing this operator, it will report
an error. The operator is otherwise ignored.

string

PS

The pass-through PostScript operator

PS

 provides an in-line equivalent to a
PostScript language resource. The

PS

 operator has one argument, a string.
When a

PS

 operator is encountered while a document is being printed to a
PostScript printer, the contents of the string are placed into the PostScript
output as the argument of an instance of the PostScript operator

exec

. This
string is copied without interpretation and may include PostScript comments.
In any other case, the

PS

operator consumes its argument and has no other
effect.

7.12 Compatibility operators

Add this new section to Chapter 7:

PDF does not specify a viewer’s behavior when it encounters an undefined
page description operator. However, Appendix G.2.7 does describe the
behavior of the Adobe Acrobat 1.0 and 2.0 viewers. An Acrobat viewer
usually alerts the user when it encounters an undefined page description
operator. The operators below modify this behavior.

Implementation note If an Acrobat 1.0 viewer reads a page containing these operators, it will
report an error. The operators are otherwise ignored.

— BX

This operator directs a viewer to not report any undefined operators until a
matching

EX

 is encountered. (

BX

–

EX

 pairs may nest.)

— EX

This operator ends a section of page description in which undefined operators
should not be reported.

Appendix F PDF name registry

This new appendix is not part of the PDF specification:

This document was created with FrameMaker 4 0 2

Compatibility operators 37

With the introduction of Adobe Acrobat 2.0, it has become easy for third
parties to add private data to PDF documents and to change viewer behavior
based on this data. This capability greatly increases the potential
functionality of extensions. However, Acrobat users have certain expectations
when opening a PDF document, no matter what extensions are available.
PDF enforces certain restrictions on private data in order to meet these
expectations.

A PDF producer or Acrobat plug-in may define new action, destination,
annotation, and encryption types. If a user opens a PDF document and the
extension that implements the new type of object is unavailable, the viewers
will behave as described in Appendix G.2.

A PDF producer or Acrobat plug-in may also add keys to any PDF object that
is implemented as a dictionary except the trailer dictionary.

To avoid conflicts with third-party names and with future versions of PDF,
Adobe maintains a registry of names, similar to the registry it maintains for
Document Structuring Conventions. Third-party developers should only add
private data that conforms to the registry rules.

The registry includes three classes of names:

• First-class names have widespread applicability. All the names defined in
PDF 1.0 and 1.1 are first-class names. Plug-ins that are publicly available
should use first-class names for all private data.

• Second-class names are applicable to a limited set of users. If a developer
writes a plug-in for an in-house application, second-class names are
usually appropriate. Developers can either register a prefix or an entire
name. Registering a prefix allows a developer to define as many names as
necessary without individually registering each one. Registering second-
class names guarantees that no conforming PDF file will ever have
names that conflict with the registered names.

• Third-class names begin with a special prefix reserved by Adobe for
private plug-ins. These names are intended for use in files that will never
be seen by other third parties since these names may conflict with third
class names defined by others. Names beginning with “XX” are third-
class names.

New keys for the Info dictionary in the Catalog and in Threads need not be
registered.

Appendix G Compatibility
This new appendix is not part of the PDF specification:

38 Page description (updated) (08 Dec 94)

The goal of the Adobe Acrobat family of products is to enable people to
easily and reliably exchange and view electronic documents. Ideally, “easily
and reliably” means that any Acrobat viewer should be able to display the
contents of any PDF file even if the PDF file was created long before or long
after the viewer. Of course, new versions of viewers are introduced to provide
additional capabilities not present before. Furthermore, beginning with
Acrobat 2.0, viewers may accept plug-in extensions, making some Acrobat
2.0 viewers more capable than others depending on what extensions are
present. Both the viewers and PDF itself have been designed to enable users
to view everything in the document that the viewer understands and to ignore
or inform the user about objects not understood. The decision whether to
ignore or inform the user is made on a feature-by-feature basis.

The original PDF specification did not specify how a viewer should behave
when it reads a file that does not conform to the specification. This addendum
provides this information. The PDF version number associated with a file
determines how it should be treated when a viewer encounters a problem.

G.1 Version numbers

The PDF version number consists of a major and minor version. The version
number is part of the PDF header, the first line of the file. This header takes
the form:

%PDF-M.m

where M is the major number and m is the minor number.

If PDF changes in a way that current viewers will be unlikely to read a
document without a serious error, the major version number will be
incremented. A serious error is an error that prevents pages from being
viewed. Adding a new filter type for page contents would require a change in
the major version number. Adding a new page description operator would
not.

If PDF changes in a way that a viewer will display an error message but
continue its work, the minor version number will change. Adding new page
description operators would require a change in the minor version number.

If PDF changes in a way that current viewers are unlikely to detect, the
version number need not change.This includes the addition of private data
that can be gracefully ignored by consumers that do not understand that data.
An example is adding a key to a dictionary object such as the Catalog.

An Acrobat viewer will try to read any file with a valid PDF header, even if
the version number is newer than the viewer itself. It will read without errors
any file that does not require a plug-in, even if the version number is older
than the viewer. Some documents may require a plug-in to display an

Compatibility operators 39

annotation or execute a link or bookmark action. Viewer behavior in this
situation is described below. However, a plug-in is never required to display
the contents of a page.

If a viewer opens a document with a newer major version number than it
expects, it warns the user that it is unlikely to be able to successfully read the
document and that the user will not be able to change or save the document.
At the first error related to document processing, the viewer will notify the
user that an error has occurred but that no further errors will be reported.1
Processing will continue if possible. Acrobat Exchange will not permit a
document with a newer major version number to be inserted into another
document.

If a viewer opens a document with a newer minor version number than it
expects, it silently remembers the version number. Only if it encounters an
error does it alert the user. At this point it notifies the user that the document
is newer than expected, that an error has occurred, and that no further errors
will be reported. The document may not be incrementally saved but can be
saved to a new file. The saved file will continue to have the new version
number. A user may insert a document with a newer minor version into
another document. The resulting document can be saved. Its version number
will be the maximum of the version number of the original document and the
documents inserted into the original.

When opening a file, the Acrobat viewers are very liberal in their check for a
valid PDF header. All viewers allow the header to appear anywhere in the
first 1,000 bytes of the file. The 1.0 viewers require only that ‘PDF-’ appear
in the header, but ignore the rest of the header. The 2.0 viewers search for a
header of the form described above. However, they also accept a header of
the form:

%!PS-Adobe-N.n PDF-M.m

where N.n is an Adobe Document Structuring Conventions version number
and M.m is a PDF version number. (The PostScript Language Reference
Manual describes the Document Structuring Conventions).

G.2 Viewer compatibility behavior

This section describes how the Acrobat 1.0 and 2.0 viewers behave when
encountering items that do not conform to the PDF 1.0 specification. It is
planned that future Acrobat viewers will behave the same as Acrobat 2.0
viewers.

1. Some errors will always be reported, including file I/O errors, extension loading errors, out-of-memory
errors, and notification that a command failed.

40 Page description (updated) (08 Dec 94)

G.2.1 Dictionary keys

Adding key-value pairs not described in the PDF specification to dictionary
objects usually does not affect the behavior of 1.0 viewers and never affects
the behavior of Acrobat 2.0 viewers. These keys are ignored. If a dictionary
object such as an annotation is copied into another document during a page
insertion (or in Acrobat 2.0 viewers during a page extraction), all key-value
pairs are copied. If a value is an indirect reference to another object, that
object may be copied as well, depending on the key.

In some cases a 1.0 viewer will display an error if it finds an unknown key in
a dictionary. These cases are keys in image dictionaries (both XObjects and
in-line images) and keys in DecodeParms dictionaries for filters.

See Appendix F for information on how to choose key names that are
compatible with future versions of PDF.

G.2.2 Annotations

An annotation is a dictionary element of a page’s

Annots

 array. Its

Subtype

specifies the kind of annotation it is. Only

Text

 and

Link

 are defined by PDF
1.0. If a 1.0 viewer reads a page with an annotation whose

Subtype

 is not

Text

 or

Link

, it displays an error. It displays one error per page no matter how
many annotations are present.

An Acrobat 2.0 viewer displays unknown annotations in a closed form
similar to text annotations, with an icon containing a question mark. If the
user opens the annotation, an alert appears with a message giving the
annotation type and explaining that an unavailable plug-in is required to open
it. An unknown annotation can be selected, moved, and deleted. Every
annotation type must specify its position and size using the Rect key.

G.2.3 Destinations and actions

A link or a bookmark in PDF 1.0 is a dictionary that contains a

Dest

 key that
specifies a new view of the document that should be displayed when the link
or bookmark is activated. A destination is an array whose first element is a
name that serves as destination type. It determines the interpretation of
subsequent array elements. If a 1.0 viewer encounters an unknown
destination type, no action is performed and no error is reported when the
user activates the link or bookmark. An Acrobat 2.0 viewer will display a
message when it finds an unknown destination type.

PDF 1.1 adds several new destination types described in Section 6.6.3,
“Destinations and actions.” This section also describes actions, which have
superseded destinations in PDF 1.1. A 1.0 viewer ignores actions. It does
nothing if it does not find a

Dest

 key in a link or bookmark.

This document was created with FrameMaker 4 0 2

Compatibility operators 41

G.2.4 XObjects

An XObject is a stream or dictionary that is referred to by name from a page
description by the Do operator. The effect of the operator is determined by
the type of the XObject. PDF 1.0 supports Image and Form XObjects. A 1.0
viewer displays an error for each XObject of a different type, no matter how
many are on a page.

Plug-ins may not add XObject types since they are considered part of the
page, and a viewer without plug-ins should be able to display a page. If an
Acrobat 2.0 viewer encounters an unknown XObject type, it will be in a
document with a PDF version number greater than 1.1. The viewer will
display an error specifying the type of XObject but not report any further
errors.

To avoid the 1.0 viewers’ error behavior, new XObject types in PDF 1.1 can
be specified as Forms, providing the required Form keys but having no
content. The required keys are Name, BBox, FormType, and Matrix.
Subtype2 can specify the actual type, and additional keys can specify
additional information. See Section 6.8.6, “XObject resources,” for a
description of the one new XObject type added in PDF 1.1.

A 1.0 viewer checks the FormType and displays an error once per form if the
FormType is not 1. It also displays an error that it cannot find the form each
the time a page references the form. An Acrobat 2.0 viewer checks that the
FormType is 1 and puts up an error once per document and then ignores the
form if its FormType is not 1.

G.2.5 Color spaces

An image has a ColorSpace key. A 1.0 viewer displays an error each time it
finds an image with a color space that is not one of the PDF 1.0 color spaces.
Like XObjects, color spaces may not be added by plug-ins. If an Acrobat 2.0
viewer encounters an unknown ColorSpace type, it will be in a document
with a PDF version number greater than 1.1. The viewer will display an error
specifying the type of ColorSpace but not report any further errors.

PDF 1.1 defines three additional color spaces: CalGray, CalRGB, and Lab.
To be more compatible with 1.0 viewers, PDF 1.1 allows an image color
space to be specified indirectly through the page resources. When an Acrobat
2.0 viewer processes an image and the image’s ColorSpace key specifies
DeviceRGB, the viewer looks in the page’s resources for a ColorSpace
called DefaultRGB. If this key is present, the color space associated with it is
used instead of DeviceRGB. Similarly, if an image’s ColorSpace key
specifies DeviceGray, the viewer looks for DefaultGray. The 1.0 viewer
ignores DefaultRGB and DefaultGray.1

1. A page’s resources are specified by the Resources key. The Resources may be inherited from a
Pages object that is an ancestor of the page.

42 Page description (updated) (08 Dec 94)

See Section 7.4, “Color operators,” for an explanation of the use of color
spaces in page descriptions. The presence of DefaultRGB or DefaultGray
change the interpretation of some color operators.

G.2.6 Filters

PDF uses stream objects to encapsulate image, indexed color space,
thumbnail, and embedded font data and page, form, and Type 3 character
descriptions. These streams usually use filters to compress their data. The
legal PDF 1.0 filters are the same as those available in PostScript Level 2.
The 1.0 viewer behavior when encountering an unknown filter depends on its
context:

• Image resource. The image does not appear but no error is reported.

• In-line image. (An in-line image is specified directly in a page
description, while an image resource is specified outside of a page and
referenced from the page.) An error is reported, and page processing
stops.

• Indexed color space. An error is reported, but page processing continues.

• Thumbnail. An error is reported, no more thumbnails are displayed, but
the thumbnails can be deleted and created again.

• Embedded font. An error is reported, and the viewer behaves as if the
font is not embedded.

• Page description. An error is reported, and page processing stops.

• Form description. An error is reported, and page processing stops.

• Type 3 character description. An error is reported, and page processing
stops.

The Acrobat 2.0 viewers do not allow plug-ins to provide additional filters. If
an unrecognized filter is encountered, an Acrobat 2.0 viewer will specify the
context in which the filter was found. If an error occurs while displaying a
page, only the first error is reported. Subsequent behavior depends on the
context:

• Image resource. The image does not appear but page processing
continues.

• In-line image. Page processing stops.

• Indexed color space. The image does not appear but page processing
continues.

• Thumbnail. An error is reported, no more thumbnails are displayed, but
the thumbnails can be deleted and created again.

• Embedded font. The viewer behaves as if the font had not been
embedded.

Compatibility operators 43

• Page description. Page processing stops.

• Form description. The form does not appear but page processing
continues.

• Type 3 character description. The character does not appear but page
processing continues. The current point is adjusted based on the
character’s width.

Operations that process pages, such as Find and Create Thumbnails, stop as
soon as an error occurs.

G.2.7 Page description operators

A 1.0 viewer reports an error the first time it finds an unknown operator or an
operator with too few operands, but it continues processing the page. If it
finds ten errors on a page, it reports back to the user and asks whether to
continue processing. No further errors are reported. Each time an error
occurs, the operand stack is cleared. Acrobat 2.0 viewers behave the same,
although there is no additional warning if ten errors are encountered.

PDF 1.1 provides new page description operators for specifying device-
independent color and pass-through PostScript fragments. Since these
operators are incompatible with 1.0 viewers, PDF 1.1 provides alternative
compatible methods as well.

G.2.8 Procedure sets

Each page includes a ProcSet resource that describe the PostScript procedure
sets required to print the page. A 1.0 viewer ignores requests for unknown
procedure sets. An Acrobat 2.0 viewer warns the user that a procedure set is
unavailable and cancels printing.

Copyrights and permissions to use PDF

The general idea of utilizing an interchange format for final-form documents
is in the public domain. Anyone is free to devise his or her own set of unique
commands and data structures that define an interchange format for final-
form documents. Adobe owns the copyright in the data structures, operators
and the written specification for the particular interchange format called the
Portable Document Format. These elements may not be copied without
Adobe's permission.

Adobe will enforce its copyright. Adobe's intention is to maintain the
integrity of the Portable Document Formas a standard. This enables the
public to distinguish between the Portable Document Format and other
interchange formats for final-form documents.

This document was created with FrameMaker 4 0 2

44 Page description (updated) (08 Dec 94)

However, Adobe desires to promote the use of the Portable Document Format
for information interchange among diverse products and applications.
Accordingly, Adobe gives permission to anyone to:

• Prepare files in which the file content conforms to the Portable
Document Format.

• Write drivers and applications that produce output represented in the
Portable Document Format.

• Write software that accepts input in the form of the Portable Document
Format and displays the results, prints the results or otherwise interprets
a file represented in the Portable Document Format.

• Copy Adobe's copyrighted list of operators and data structures to the
extent necessary to use the Portable Document Format for the above
purposes.

The only condition on such permission is that anyone who uses the
copyrighted list of operators and data structures in this way must include an
appropriate copyright notice.

This limited right to use the copyright list of operators and data structures
does not include the right to copy the Portable Document Format Reference
Manual, other copyrighted material from Adobe, or the software in any of
Adobe's products which use the Portable Document Format, in whole or in
part.

Bibliography
Adobe Systems Incorporated, Portable Document Format Reference Manual,
Addison-Wesley, 1993, ISBN 0–201–62628–4.

Adobe Systems Incorporated, PostScript Language Reference Manual,
Addison-Wesley, 1990, ISBN 0-201-18127-4.

CCITT, Recommendation X.208: Specification of Abstract Syntax Notation
One (ASN.1), 1988.

Microsoft Corp., TrueType 1.0 Font Files, Revision 1.00, May 1992.

R. Rivest, RFC 1321: The MD5 Message-Digest Algorithm, April 1992.

45

Errata for the Portable
Document Format
Reference Manual

• Table 6.10, p.62 — The value of the

Name

 key must be a name, not a
string.

• Section 4.5, p. 27 — Names may not contain whitespace characters,

e.g.

space or tab, in addition to the characters listed.

• Example 6.10, p. 65 — Object 21 begins

 /Widths [

. The object
should not contain

/Widths

, but should simply begin with

[.

• Example 6.11, p. 66 — Object 19 begins

 /Widths [

. The object
should not contain

/Widths

, but should simply begin with

[.

• Chapter 11 — An additional image optinmization suggestion: don’t use
images that have already been halftoned.

• Section 6.8, p.61 — Correction to the wording of the last sentence in the
second paragraph (the substantive portion of the change is the addition of
several words, which are shown in italics here):
Only

 the list of

ProcSet resources is represented as an array…; all other
resource

lists

 are represented as dictionaries…

• Section 7.4, p.95 — Color operators are also graphics state operators, but
this is not mentioned in the text.

This document was created with FrameMaker 4 0 2

46 Errata for the Portable Document Format Reference Manual (08 Dec 94)

	Contents
	Updates to the PDF Ref. Manual
	2. Overview
	2.3.2 Portability

	4. Objects
	4.4 Strings
	4.8 Streams
	4.11 Object References

	5. File Structure
	5.1 Introduction
	5.2 Header
	5.5 Trailer
	5.7 Encryption

	6. Doc. Structure
	6.2 Catalog
	6.4 Page objects
	6.6 Annotations
	6.6.2 Link annotations
	6.6.3 Destinations and Actions
	6.6.4 File specifications
	6.6.5 Named destinations

	6.7 Outline tree
	6.8 Resources
	6.8.2 Font
	6.8.4 Font descriptors
	Font files

	6.8.5 Color spaces
	Device-dependent
	Device-independent
	Indexed
	Default

	6.8.6 XObject
	Image
	Pass-through PostScript

	6.9 Info dictionary
	6.10 Articles
	6.11 File ID
	6.12 Encrypt dictionary

	7. Page Description
	7.2 Graphics state
	7.2.12 Fill color space
	7.2.13 Stroke color space
	7.2.14 Rendering intent

	7.4 Color operators
	7.7.4 Text string operators
	7.9 In-line image operators
	7.11 In-line pass-through PostScript
	7.12 Compatibility operators

	App. F: PDF name registry
	App. G: Compatibility
	G.1 Version numbers
	G.2 Viewer behavior
	G.2.1 Dictionary keys
	G.2.2 Annotations
	G.2.3 Destinations and actions
	G.2.4 XObjects
	G.2.5 Color spaces
	G.2.6 Filters
	G.2.7 Page description operators
	G.2.8 Procesure sets

	Copyright and permission to use PDF
	Bibliography
	Errata for the PDF Ref. Manual

