
ap
pl

ic
at

io
n

fra
m

ew
or

k

getting started

ve
rs

io
n

5

™

®

zinc software incorporated
405 south 100 east
pleasant grove, utah 84062 usa
tel: 1-801-785-8900

DOC-12677-ZD-00

Getting Started
with Zinc Programming

Zinc® Application Framework™

Version 5

Zinc Software Incorporated
Pleasant Grove, Utah

”).

ponsi-
ge

O

on-
 herein

rate
vided
ere

SE

orpo-
LL.
8-96
NOTICE

This documentation is available in electronic and printed formats. If the electronic documentation is
printable, a single copy may be printed for use by the Developer. Except for the foregoing, no part of
this publication may be reproduced, translated, stored in a retrieval system, or transmitted, in any
form or by any means, without the prior written permission of Zinc Software Incorporated (“Zinc

DISCLAIMER

While every precaution has been taken in the preparation of this manual, Zinc assumes no res
bility for errors or omissions. This publication and features described herein are subject to chan
without notice. ZINC MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT T
THE CONTENTS HEREIN AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

TRADEMARKS

Zinc is a registered trademark and Zinc Application Framework, Zinc Designer and Zinc DataC
nect are trademarks of Zinc Software Incorporated. All other trademarks and tradenames used
are owned by their respective holders.

LICENSE AGREEMENTS

Zinc Application Framework is licensed subject to the terms and conditions of one of two sepa
license agreements found in the “Getting Started” manual. The Personal Version license is pro
to individuals developing non-commercial, non-distributable, personal-use-only applications. Th
is no license fee or royalty required for the Personal Version license. HOWEVER, TO EXERCI
RIGHTS BEYOND THE PERSONAL VERSION LICENSE, THE DEVELOPER MUST PUR-
CHASE A PROFESSIONAL VERSION LICENSE FROM ZINC.

ACKNOWLEDGMENTS

The ChartFolio framework used by ZafChart is licensed software ©1994-97 DPC Technology C
ration. The XPM library used by ZafImage on Motif is licensed software ©1989-95 GROUPE BU
The MetaWINDOW graphics primitives used by ZafDisplay on DOS is licensed software ©198
Metagraphics, Inc.

This manual was generated March 18, 1999.

Copyright © 1990-1999 Zinc Software Incorporated.
All Rights Reserved.
Printed in the United States of America on recycled paper.

Contacting Zinc

Worldwide Sales: info@zinc.com, sales@zinc.com
Technical Support: support@zinc.com
Training and Consulting: services@zinc.com
Web: http://www.zinc.com/
Ftp: ftp://ftp.zinc.com/
CompuServe: GO ZINC

North America Zinc Software Incorporated
405 South 100 East
Pleasant Grove, Utah 84062 USA
Tel: 1-801-785-8900
Sales: 1-800-638-8665
Support: 1-801-785-8998
Fax: 1-801-785-8996

Zinc Software Services, Inc.
42627 Garfield, Suite 214
Clinton Township, Michigan 48038 USA
Tel: 1-810-228-4900
Fax: 1-810-228-6633

Europe Zinc Software (UK) Ltd.
106-108 Powis Street
London, SE18 6LU United Kingdom
Tel: +44 (0)181 855-9918
Fax: +44 (0)181 316-2211
BBS: +44 (0)181 317-2310
Email: europe@zinc.com

Table of Contents v

3
8

 37

41
5

49
Table of Contents
Contacting Zinc iii

Quick Start 7
Getting Started 9
Hello World 1 11
Hello World 2 15

Architecture Basics 21
Architecture Basics—Event Flow 2
Event Window 2
Suggested Study

Appendices 39
Personal Use License - Desktop Applications
Professional Use License - Desktop Applications 4
Professional Use License - Embedded Applications

Index 53

vi Zinc Application Framework 5

Quick Start

Getting Started 9

the

g sys-
Getting Started
Congratulations on your selection of Zinc® Application Framework™ (ZAF),
the most powerful cross-platform internationalized application framework
available.

What Is Zinc
Application
Framework?

ZAF is a collection of C++ class libraries with source code, a visual interface
design tool called Zinc Designer™, example programs and more. ZAF is
easiest and most elegant C++ user interface API ever developed.

Zinc Application Framework allows a single code base to support multiple
platforms, including:

• Microsoft Windows

• X/Motif

• MS-DOS

• Apple Macintosh

• IBM OS/2

Many derivative operating systems are indirectly supported as well. For exam-
ple, Zinc’s MS-DOS support ports easily to embedded and real-time operating
systems such as P-SOS while ZAF’s X/Motif support ports easily to virtually
any Unix or real-time OS supporting X/Motif 1.2 or later. Consult current
ZAF 5 readme files for detailed information on tested and certified operating
systems.

Zinc Software is well-known for sophisticated internationalization (i18n) tech-
nology. Using this technology, ZAF supports virtually any single-, double-, or
mixed-byte language worldwide (subject to operating system limitations).
Zinc supports ISO-8859-1 and Unicode character encoding standards to pro-
vide portable i18n. In addition, ZAF 5 supports any locale (date, time and
number formatting).

Using Zinc’s i18n features, a single code base may support a completely inter-
national application. For example, a single ZAF executable might simulta-
neously support English, European languages, Japanese and Chinese.

How Does it
Work?

Zinc Application Framework defines an abstract user-interface API that is
independent of any operating system. This API is then mapped onto native
functionality of each operating system to provide a portable access method on
each environment. This technique, known as “layering,” allows ZAF to be
small, fast, and true to the visual and interactive nuances of each operatin

10 Zinc Application Framework 5

n-

 and

,
AF

st
,

ts

lity

may
basic

n
e-
ms
tem. Applications developed with ZAF are native, and therefore look and feel
like other applications developed using native tools on each OS.

When ZAF defines functionality that is not native to an operating system, ZAF
provides the functionality directly. In this way a “superset” of native functio
ality is assured without the overhead of thick “emulation” APIs.

How Do I Use
ZAF?

Zinc Application Framework is written entirely in C++. As such, it requires
that programmers be familiar with basic C++ concepts such as inheritance
derivation. While many C type hooks are supplied in ZAF, a knowledge of
C++ is essential.

ZAF is an advanced programming tool. It provides a high level of flexibility
extensibility, and scalability to expert users. At the same time, however, Z
is designed to be easy to use.

Zinc Designer, an interactive visual design tool, is the starting point for mo
ZAF applications. Using Zinc Designer, a developer lays out the windows
dialogs, and user interface objects that make up an application.

Each object may be customized using “property sheet” editors. ZAF objec
contain rich functionality including context-sensitive help, tool tips (pop-up
help), color and font selection, bitmap support and more. All this functiona
may be accessed and specified without code.

Once an application has been “defined” using Zinc Designer, source code
be generated. This source code can be immediately compiled to test the
functionality of an application. More sophisticated functionality, including
application flow control, may be added at the source code level.

The next section of Getting Started will walk you through simple applicatio
scenarios to demonstrate the simplicity and power of Zinc Application Fram
work. For more complex, real-world applications, study the example progra
supplied with ZAF 5.

Hello World 1 11

n
ion

us-
ith
r
ay

itle
im-
tton

fol-
Hello World 1

Building a
Simple
Application

The best way to learn ZAF is to use it. Let’s begin by building the simple
“Hello World” program found in the “example/hello” directory. This program
creates a simple window using straight code (without the use of the visual
design tool, Zinc Designer). An example using Zinc Designer will follow.

In this chapter we'll be referring to Microsoft Windows. Detailed informatio
on building ZAF programs for each environment is included in the Installat
Guide and should be consulted before continuing.

To build the Hello1 application for 32-bit Microsoft Windows, change to the
directory containing the source code and type:

zmake win32

This command invokes “ZMake,” a Zinc-supplied make utility and uses a c
tom make file “zmake.mak.” Any make utility and compiler may be used w
ZAF, but ZMake is recommended since it is completely compiler and linke
independent. If you are using Motif or another platform your make utility m
be different.

Now, run the Hello1 application.

The Hello1 application utilizes the basic elements of a ZAF application.
Hello1 presents a simple window with appropriate decorations such as a t
bar and a border, and a prompt that says “Hello World!” (Note: since this s
ple example has no nice exit functionality, you'll need to use the system bu
or ALT-F4 to close it.)

Here is the source to the example. A detailed description of the code will
low:

// COPYRIGHT © 1997. All Rights Reserved. - HELLO1.CPP
// Zinc Software Incorporated. Pleasant Grove, Utah USA
// May be freely copied, used and distributed.

#include <zaf.hpp>

int ZafApplication::Main(void)
{

// Needed for linkers that don't automatically look for
// unresolved references to main() or WinMain() inside
// of libraries.
// (Either main() or WinMain() is found in a ZAF library.)
LinkMain();

12 Zinc Application Framework 5

n
 All

ns:
c-

e-

// Create a window with generic objects (border, maximize
// button, minimize button, system button, and title).
ZafWindow *helloWindow = new ZafWindow(0, 0, 30, 3);
helloWindow->AddGenericObjects(new ZafStringData("Hello
Window"));

// Attach a prompt with the "hello world" text.
// (The optional ZAF_ITEXT macro guarantees
// Unicode compatibility.)
helloWindow->Add(new ZafPrompt(2, 1, 0, ZAF_ITEXT("Hello
World!")));

// Center the window on the main monitor.
zafWindowManager->Center(helloWindow);

// Attach the window to the window manager
 // (make it appear on the screen).
zafWindowManager->Add(helloWindow);

// Process events.
// (This function passes events from the event manager to the
// window manager until an S_EXIT is received or no more
// windows are attached to the window manager.)
Control();

// Return an exit code to the OS.
return (0);

}

Let’s walk through the ten lines of functional code in detail:

#include <zaf.hpp>

The first “real” line of code includes the header file zaf.hpp. This file in tur
includes all the header files that define the classes you'll need to use ZAF.
ZAF applications should begin with this #include.

int ZafApplication::Main(void)

This example program contains a single method used by all ZAF applicatio
ZafApplication::Main(). Since every C++ application requires a main() fun
tion (or WinMain() in Microsoft Windows), the ZAF libraries automatically
include a main() or WinMain() function for you. In your own code, you'll cr
ate ZafApplication::Main() (or let Zinc Designer generate it for you) and let
ZAF handle the platform specific main() or WinMain().

Hello World 1 13

ell”
a
ow

rder,
e

ate
ion
ro
ll

The ZafApplication class handles many initialization tasks automatically. For
example, the following components are initialized prior to ZafApplica-
tion::Main() being called:

• ZafErrorSystem (an error handler) is instantiated

• ZafHelpTips (a “pop-up” help device) is instantiated

• ZafI18nData (the core internationalization class) is instantiated and initialized

LinkMain();

Our ZafApplication::Main() first calls LinkMain(). LinkMain() is a stub
method defined in the ZAF libraries along with main() or WinMain(). It is
called to assist linkers that don’t look for main() or WinMain() in libraries.
Some linkers don’t require calling LinkMain(), and others will report link
errors without it.

ZafWindow *helloWindow = new ZafWindow(0, 0, 30, 3);

Next we create a new instance of the ZafWindow class. The new window’s top
left corner is placed at the screen position (0, 0), which is at the top left corner
of the screen. The window's width is 30 cells, and its height is 3 cells. A “c
is basically the average width of a dialog font character, and the height of
string field. (Note: some Motif window managers may override exact wind
positioning based on user preferences.)

helloWindow->AddGenericObjects(new ZafStringData("Hello
Window"));

We want all the normal decorations on the window such as title bar and bo
so we call the AddGenericObjects() method. The title “Hello Window” will b
used in the window's title bar.

helloWindow->Add(new ZafPrompt(2, 1, 0, ZAF_ITEXT("Hello
World!")));

The client area of the window will contain a single prompt object, so we cre
a new ZafPrompt instance. The prompt will be placed within the client reg
of the window 2 cells from the left and 1 cell from the top. Passing in a ze
for the width causes the prompt to calculate its own width. The prompt wi
display the text “Hello World!” (Note that the text is passed to the optional
“ZAF_ITEXT()” macro to allow automatic conversion of 8-bit characters to
16-bit Unicode characters if the application is built in Unicode mode.)

zafWindowManager->Center(helloWindow);

14 Zinc Application Framework 5
We’ve decided that the window belongs in the center of the screen, so we call
the window manager’s Center() method to automatically center it for us. To
prevent visible movement on the screen we perform the centering prior to dis-
playing the window.

zafWindowManager->Add(helloWindow);

Next, we add the window to the window manager, which has the effect of dis-
playing it.

Control();

Like most modern user interfaces, Zinc Application Framework is event-
driven. To start the ZAF event system and allow the user to interact with our
application, we must now call the Control() method. Control() gets events and
causes them to flow through the ZAF system where they will ultimately arrive
at the correct object for processing.

Examples of events include a mouse click or a keystroke. These events are
passed to the object under the mouse pointer (click), or the object with focus
(keystroke) for processing. Control() continues processing events until it
receives an S_EXIT event, or until there are no windows on the window man-
ager to which it can pass events.

return (0);

Finally, our code returns a zero meaning that the application had no errors.
(Usually, a C++ application returns -1 if an error occurred.)

Clearly, this is a very simple example, meant to get you started programming
with ZAF quickly. You will also want to try using the Zinc Designer for rapid
visual development of user interface elements. The next chapter shows this
method.

Hello World 2 15

na-
 data

ly

e in

in
t
Hello World 2
In the previous chapter, we built a simple application strictly with source code.
This technique works well for small applications or for maximum customiza-
tion and control. For most applications there is a better way.

ZAF includes Zinc Designer, an interactive visual design tool, to greatly sim-
plify the task of building a user interface. To build the same application we
built in the previous chapter requires no hand-written source code, for exam-
ple. Hello2, found in the “example/hello” directory, demonstrates this alter
tive method in which Zinc Designer is used to generate a persistent object
file, “hello2.znc,” and to generate the source code necessary to access the
object data file at run time.

Using Zinc
Designer

Since this is our first experience using Zinc Designer, we’ll take things slow
and explain everything in detail. Later tutorials will assume much of the
knowledge gained in this chapter.

Start Zinc Designer and
create a new file

1. To recreate this application from scratch, open the Zinc Designer whil
a temporary directory—“work” for example. We don't want to overwrite
the Hello2 application shipped with ZAF.

2. In the “File” menu, select “New.” Use “hello2.znc” for the file name.

When you exit Zinc Designer (later), this file name will be stored on the ma
window’s “File” menu for easy access in the future. The “File” menu will lis
the five most recently used files.

16 Zinc Application Framework 5

ity

e
r.
Examining the file
browser and property
sheet

Now that we have a data file to edit,
the data file browser and property
sheet windows are open. These two
windows are most important when
using Zinc Designer, but both are
empty for now.

The “Browser” window will display
a hierarchy of objects contained in
the data file we’re using. These
objects may be edited by double-
clicking on them in the browser.
(Note: In some cases this is the only
way to edit an object, so keep it in
mind.)

The bottom “Property Sheet” win-
dow will display all of the properties
supported by the current “edit
object.” These properties are orga-
nized both by function and object.
As you change object properties
you’ll make your changes on this
window and click “Apply” to save
the change. If you are not happy with a change, a one-level undo capabil
will let you recover from your last “Apply” operation.

Create a window 3. Now create a window by selecting the ZafWindow button in the main
Designer window. The ZafWindow button is the left-most button on th
“Window” page of the toolbar notebook. A new window will now appea
The window may be resized and moved as desired.

Hello World 2 17

 in

e

ld
”
Note that the window is placed on the screen immediately after clicking the
“Window” button. The first five buttons on the “Window” toolbar page are
offset from the others because they share this behavior. All other controls
Zinc Designer must be selected and then placed in a specific position on a par-
ent control.

Modify window
properties

4. Change the title bar
text on the window by
selecting the “Win-
dow” page of the prop-
erty sheet. Click the
“Window Title” prop-
erty and replace the
default title bar text
with “Hello Win-
dow.” Click the
“Apply” button to
cause the change to
immediately take
effect on the window.

All changes except palette
changes (colors and fonts) take effect immediately so you can evaluate th
change. If you don’t like the change, click the “Undo” button to undo the
change.

5. Since we intend to
directly access this
window at run time (by
loading it by name
from the data file), we
must know its unique
identifier, or StringID.
To check or change the
StringID, select the
“StringID” property in
the “General” page of
the property sheet. To
make the StringID
easy to remember later,
change it to “HelloW-
indow” (no spaces) and select the “Apply” button again. (Note: we cou
have changed both the title and the StringID, then selected the “Apply
button just once.)

18 Zinc Application Framework 5

n-

,
Add a prompt object 6. Now add a prompt to the window by selecting the ZafPrompt but-
ton in the main Designer window. The ZafPrompt button is the
left-most button on the “Additional” page of the notebook.

After selecting the ZafPrompt
button, click the mouse in the
“Hello Window” where the
new prompt is to appear. This
process is called “placing”
the object. After placing the
control the mouse returns to
normal operation and may be
used to select other controls
on our edit window. The prompt may now be moved around on the wi
dow and sized as desired. (Tip: to rapidly place several objects of the
same type you may click the right mouse button to reset the “place”
object.)

Modify object properties 7. Now, using the prop-
erty sheet, change the
text of the prompt by
selecting the “Text”
property on the “Gen-
eral” property sheet
page. Change the text
to “Hello World!” as in
our first application.
Select the “Apply”
button on the property
sheet and watch the
change take effect.

You may wish to experi-
ment with some of the
other properties as well. Try the “Quick tip” property, for example.

Test the user interface
using “Test Mode”

8. Now, let's test the “com-
pleted” application. Select
“Test Open Windows” from
the “Options” menu. All the
Zinc Designer windows dis-
appear and only our edit win-
dow is left. In this mode Zinc
Designer allows the ZAF
libraries to take over—the
controls now appear and behave exactly as they will in the completed

Hello World 2 19

e”
w.

n to
w

t will

 you
compiled application. When finished testing, select the “End Test Mod
button in the lower right of the display, or close your application windo

Generate source code 9. Next, select “Code Generation” from the “Options” menu. During this
process three source files will be generated by Zinc Designer in additio
the main object data file “hello2.znc.” The main code generation windo
(initially showing the main “CPP” template) is displayed.

Notice that the notebook has three tabs. Each tab corresponds to a file tha
be generated by the designer. Each file has a generation “template” that
includes macros that will be used to complete the code. The macros are
defined from the property sheet currently displayed.

Resolve code
generation “macros”

10. Select the “WINDOWS”
property. This property spec-
ifies the windows that will be
loaded and presented on
screen when the application
starts. Enter “HelloWindow”
(no spaces), the StringID we
assigned earlier, and select
the “Apply” button. Note that
other properties were auto-
matically defaulted properly
by Zinc Designer and that the
code window now displays
generated code instead of the
template. You may browse
the generated source code and templates using the main window. As

20 Zinc Application Framework 5

.
in-

cfg”
a-
w

ted
t
an

e

s

to
 is
re
-bit

e

inc
e
de

ol.

res
become more familiar with ZAF you may take this opportunity to verify
the accuracy and completeness of the code generation (which may be
incomplete if the “Application” property sheet is incorrect.)

11. Now select the “Generate code” button on the code generation dialog
Zinc Designer will write the three source files to disk and a message w
dow will appear reporting that the code generation was successful.

12. Finally, select the “Save” item in the “File” menu of the main Designer
window and exit the Designer.

Source Code If you look in the current directory you’ll find that the Designer has created
five files—the three source files generated, plus two others. The “zdesign.
file is used by the Designer to store configuration information for itself (not
bly the “most recently used” files list), so we can ignore it. Let's briefly revie
the others:

“hello2.znc” is the data file that stores the window and other objects we crea
in the Designer. Zinc Designer may be used to modify this data file withou
generating new source code. In this way many changes may be made to
application without the need to recompile!

The “hello2.cpp,” “hello2.hpp,” and “hello2.inc” files contain the source cod
the Designer generated for the application.

Building the application “hello2.cpp” must be compiled and linked with the appropriate ZAF librarie
to build the final application. To do this we first need a makefile. You may
simply copy the example/hello/[makefile] we used in the previous chapter
build our new Hello2 application. Make sure that the “hello2.znc” data file
in the same directory as the application before running it, since that is whe
our window is stored. If you copy the make file, the make command for 32
Microsoft Windows will be:

zmake win32

That’s it! Run the application you’ve just built and check it out. You’ll find
that it runs exactly as it did in the test mode of Zinc Designer. With practic
you’ll soon be able to create simple applications in just a few minutes.

As you can see after using two techniques for creating applications with Z
Application Framework, both have advantages. Zinc Designer provides th
advantages of application prototyping, rapid interface development, and co
generation while “hand coding” provides maximum customization and contr
Most developers will combine these techniques when creating real-world
applications.

In the next section of “Getting Started” we’ll discuss Zinc’s basic architectu
and try some more complex tutorials to get you up and running quickly.

Architecture Basics

Architecture Basics - Event Flow 23

l

h a

th
Architecture Basics—Event
Flow

ZAF 5 General
Model

Zinc Application Framework is an event-driven system. The general architec-
ture diagram above, or “ZAF General Model,” illustrates ZAF’s fundamenta
event-driven architecture. Using this architecture, ZAF obtains events from
the operating system if the OS is itself event-driven, directly from input
devices, and from application code. These events are then passed throug
ZAF application using a well-defined protocol. If you are already familiar
with an event-driven operating system such as Microsoft Windows, Motif,
Macintosh, or OS/2, you will find ZAF to be quickly understandable, and bo
easier to use and more powerful than your native API.

24 Zinc Application Framework 5

.

ive

ized

librar-
 repre-
ers
 to
fer-
s.

ss
ile
An understanding of this architecture is fundamental to programming with
Zinc Application Framework, so let’s look at the architecture in more detail

Event Manager ZAF's event-driven system begins
with the event manager (the Zaf-
EventManager class) and its sup-
porting input devices.

For operating environments that
don't provide an event-driven sys-
tem (e.g. MS-DOS), the event
manager polls all the attached
devices such as the mouse and key-
board, and assembles events for any input information received.

In the more common case, an event-driven operating system provides nat
events that are intercepted by the ZAF event manager.

As events are received, each is encapsulated in an event structure recogn
by ZAF and is placed on ZAF’s internal event queue for later processing.

ZAF's event manager also handles events that are generated by the ZAF
ies themselves or created and posted to the queue by the programmer, as
sented by the “Application” box in the preceding diagram. ZAF programm
may also provide custom input devices (derived from the ZafDevice class)
communicate with non-standard input devices. See the Programmer's Re
ence manual for more information about ZafEventManager and event type

ZafApplication
::Control

Once the event manager has acquired events the main ZAF control proce
regains control of the application. This process is repeated continually wh
your application is running.

Architecture Basics - Event Flow 25

”
 pro-

d

eth-
sys-

eful to
les
notifi-

er.
ner-

is-
This section of the model shows that while the event manager manages event
acquisition into the event queue, ZafApplication::Control() retrieves individual
events from the event manager (via the ZafEventManager::Get() method) and
passes them to the window manager (via the ZafWindowManager::Event()
method). On event-driven operating systems the Control() loop will “sleep
when no events are available at the operating system, thus allowing other
cesses to fully utilize system resources.

Event Routing After an event is passed to the window manager (the ZafWindowManager
class), the window manager determines the event’s ultimate destination an
proper routing, and dispatches it appropriately.

There are two basic types of events processed by ZAF and two different m
ods of routing these events. The two event types are, roughly, “operating
tem events” and “ZAF events.”

OS Events

Operating system events are generated by an OS and are generally not us
the programmer without translating them to a portable equivalent. Examp
of OS events are mouse movement, redisplay (expose) messages, sizing
cations, etc.

ZAF Events

ZAF events are usually generated by the ZAF libraries or by the programm
Keyboard events are also considered “ZAF events.” These events are ge
ally useful to the programmer in their current state.

Direct Event Routing

In order to provide most efficient event routing, the window manager often
allows the native operating system to dispatch native events directly to the
appropriate object. This type of event dispatch, indicated by “OS Event D

26 Zinc Application Framework 5

S
r.

ppro-

ld for
sed
g
.

 the

s’

r
r
F
hat

t
and
ired
g can

k
patch” on the diagram, is called “Direct Event Routing” and is used for all O
events. These events are only rarely useful to the application programme

Top-Down Event Routing

Other events are handled by the window manager and dispatched to the a
priate window—usually the window with focus. The window in turn either
handles the event if appropriate, or passes the event to the appropriate chi
processing—usually the child with focus. ZAF events are commonly acces
by the programmer for application control and response. Top-Down routin
allows them to be handled hierarchically—at any level of the user interface

Exceptions to these event routing rules are made only when requested by
application programmer.

Event
Handling

Ultimately each event is received by a window
object's Event() method where it is processed.
This section of the General Model shows that
whether the OS or ZAF dispatches the event, a
window object eventually receives it—usually
the window object with focus.

The window object handles the event using a
hierarchy of Event() methods. The first Event()
method called belongs to the most-derived class
indicated by “Derived Class(es)” on the diagram. This class may be a ZAF
library object, or a programmer derivation.

If the derived class does not handle the event, it is passed to its base clas
Event() method for handling. This process may continue until the ultimate
base class, ZafWindowObject, receives the event and either processes it o
hands it off to the native operating system object for handling. (Remembe
that ZAF utilizes a “layered” user interface implementation where most ZA
objects have corresponding operating system objects “underneath” them t
can handle many operations natively.)

Derivation

ZAF offers two primary methods for customizing event response. The firs
method (described in the preceding section) is to derive from a ZAF class
overload its Event() method. There the programmer may process any des
events and pass the rest to a base class where the library’s default handlin
take over. The programmer may also directly call another object’s Event()
method if appropriate.

Callbacks

The second custom handling method relies on a less object oriented
technique—the callback function. A ZAF user function is a C type callbac

Architecture Basics - Event Flow 27

ity

e

rta-

on-
ive
t

d rela-

 for
ss-
AF
or
able

to
function that automatically receives a small subset of events if assigned to a
ZAF user interface object. This event handling method is suitable for trivial
operations and does not require derivation.

Using either event handling method, Zinc’s architecture affords both flexibil
and extensibility.

Event Mapping The ZAF General Model processes both native and portable events. To
achieve portability, the programmer must therefore translate or “map” nativ
events to portable equivalents prior to interpreting them in an application.
ZAF provides the LogicalEvent() method for this purpose.

ZAF provides operating system independence by defining a large set of po
ble events. LogicalEvent() returns a context sensitive mapping of native OS
events to portable ZAF events. To accomplish this task, each ZAF class c
tains a unique table of event mappings that allows objects to translate nat
events in a specific way for each class. LogicalEvent() also converts even
data using similar context sensitivity. For example, mouse events contain
pointer coordinates that are converted relative to the top-left corner of the
object, and keyboard events contain character data that must be converte
tive to the current international character mode (ISO or Unicode).

Event mapping may seem complicated at first glance, but is actually trivial
the application programmer. A simple call to LogicalEvent() prior to proce
ing each event will yield a standardized result across all platforms. (The Z
libraries do not automatically call LogicalEvent() since they are optimized f
maximum performance in each operating system environment and are cap
of interpreting native OS events directly.)

The next chapter, Event Window, builds on the concepts discussed in this
chapter. It derives a basic “event window” to handle custom user events.
Study “Event Window” and other event examples in the ZAF 5 distribution
fully understand ZAF event handling.

28 Zinc Application Framework 5

e

w
se
f the

llo

ut

m-

nt

e-
nu.

 to
t

se

de
Event Window
To experience the ZAF Event Flow Architecture in use, let’s create a simpl
application and watch how it works. “Event Window” will be a simple pro-
gram that demonstrates the trapping of events. It will have a single windo
with a pull-down menu that sends user-defined events to the window. The
user-defined events will then be trapped to change the background color o
window.

This tutorial builds on the experience gained in the “Hello World 1” and “He
World 2” tutorials. “Event Window” starts simple with plenty of detail and
becomes more advanced as it progresses.

A completed version of the application can be found in “example/event,” b
we’ll create it from scratch in a temporary directory to gain a better under-
standing of the concepts involved. Before continuing, you may wish to co
pile and run Zinc’s version to get a feel for the end product.

Part One—
Using Zinc
Designer

1. To start, first create a new directory—“work” for example. We don’t wa
to overwrite the example program shipped with ZAF 5. Eventually this
directory will contain source code, header files, a designer data file, a
make file and an executable.

Start Zinc Designer and
create a window

2. Next, launch Zinc Designer from your temporary directory. We’ll be cr
ating a new data file with a simple derived window and a pull-down me

3. Create a new data file called
“event1.znc.” Select “File, New”
from the menu.

4. Create a new ZafWindow and move
and size it as desired. (Click on the
first button in the “Window” page
of the toolbar notebook.)

Customize the window 5. Change the window’s title to “Event Window.” (Use the “Title” property
on the “Window” page of the property sheet and select “Apply.” Refer
the “Hello World 1” example chapter for a description of property shee
usage.)

6. Change the window’s StringID to “EventWindow” (no spaces). We’ll u
this StringID to refer to the window later. (StringID is on the “General”
property sheet page.)

7. Since we’ll be deriving a window to handle custom events, we need to
specify the derived class name. Later, Zinc Designer will generate co

Event Window 29

 to
ta

ll-

s
u”
ect

t
that loads our derived window using this class name and its StringID.
(Class Name is on the “Advanced” property sheet page.)

Add a pull-down menu
and pull-down items

8. Now, place a new ZafPullDownMenu on the window. (The third button
on the toolbar’s “Control” notebook tab.)

9. Once the pull-down menu is in place, we must invoke the menu editor
modify it and add our custom menu structure. To do this, select the da
file browser window and locate the pull-down menu. (You’ll find the pu
down menu in the following location: ZafWindow, EventWindow,
ZAF_NUMID_PULL_DOWN_MENU). Now, double-click the menu
item to invoke the menu editor.

Add pull-down items 10. Select the “Add” button to add a second ZafPullDownItem to the pull-
down menu (the first was automatically added to the menu when it wa
created). Then, select the first pull-down item in the “ZafPullDownMen
edit window and using the property sheet change its text to “File.” Sel
the property sheet “Apply” button to save the change.

11. Next, select the second pull-down item in the “ZafPullDownMenu” edi
window and with the property sheet change its text to “Color.”

30 Zinc Application Framework 5

his

ub-

-

.

t

ange
h of

Add pop-up menu
items to hook our
custom functionality

12. Now select the “File” menu option in the menu editor and click “Add”
again. Notice that a new sub-item was added to the File menu. Edit t
new item’s text (using the property sheet) and change it to “Exit.”

13. Using the same technique we used to add the “Exit” item, add three s
items to the “Color” menu. We want these to read “Red”, “Green”, and
“Blue.” When you finish, the menu editor should look similar to the fol
lowing picture.

Add functionality to the
pop-up items

14. Obviously, the “File, Exit” menu item will be used to exit the application
ZAF includes built-in functionality for adding an “exit” trigger to a menu
item. To set the exit behavior, change its pop-up item type to “Exit.”
Select the property sheet “Apply” button to set the change.

15. Unlike the “Exit” item, the “Red,” “Green,” and “Blue” menu items can’
take advantage of automatic pop-up types to invoke their actions since
they invoke unique application functionality. Instead, we’ll cause these
items to send programmer-defined events that our code can trap to ch
the window color. To do this, set the “Send message” property for eac
the pop-up items to “true”. “Send message” causes the item to put an
event on the ZAF event queue whenever this menu item is selected.

Event Window 31

e’ll
,

 and
te

ner-
 sym-

S”
e

e
 code

isk.
Since ZAF reserves event values above 10,000 for programmer use, w
start with that value. Set “10000” for the “Red” item’s “Value” property
“10001” for the “Green” item’s “Value” property, and “10002” for the
“Blue” item’s “Value” property. Be sure to click “Apply” after each
change! Later we’ll define these event constants in our header file.

16. Select the “OK” button in the “ZafPullDownMenu” edit window to dis-
miss the menu editor and finalize the menu changes.

Generate source code 17. With our user interface defined we are ready to generate source code
continue developing our application outside Zinc Designer. To genera
code select “Code Generation” from the designer’s “Options” menu.
You’ll see the source code window containing the template used to ge
ate code, and a custom property sheet page used to define the macro
bols used by the code generator.

18. Activate the property sheet. In the property sheet, change “INCLUDE
to “eventwn1.hpp”. This is the name of the header file we’ll create onc
we’re finished in Zinc Designer. Change the “WINDOWS” property to
“EventWindow”—the StringID of the derived window we just created.
Finally, select “Apply” to save the macros and apply them to the sourc
code template. You’ll see generated source code appear in the source
window:

19. Finally, select “Generate code” to save our generated source code to d
Save the persistent object data file we’ve created by using the “File”
menu’s “Save” option, and exit Zinc Designer.

32 Zinc Application Framework 5

i-
l”

low-

.

 our

Congratulations! You’re almost done and you’ve performed some sophist
cated tasks in Zinc Designer. Take a break and get ready to do some “rea
programming.

Part Two—
Source Code

In Part One, Zinc Designer created the following four files:

As we continue building “Event Window” we’re going to add to the source
code created by Zinc Designer. The most critical addition is to define our
derived “EventWindow” class.

Let’s create new header and source files using the name we specified for
“INCLUDES” in the data file: “eventwn1.hpp” and “eventwn1.cpp”. Com-
pleted versions of these files are listed below with detailed discussions fol
ing.

Header file // COPYRIGHT (C) 1997. All Rights Reserved. - EVENTWN1.HPP
// Zinc Software Incorporated. Pleasant Grove, Utah USA
// May be freely copied, used and distributed.

#include <zaf.hpp>

const ZafEventType RED_BACKGROUND = 10000;
const ZafEventType GREEN_BACKGROUND = 10001;
const ZafEventType BLUE_BACKGROUND = 10002;

class EventWindow : public ZafWindow
{

File Purpose

event1.cpp Source code to the main process of our application
This code initializes ZAF, loads the window we
designed, starts the main control loop, and shuts
down gracefully when we’re done. “Hello World 1”
discusses this code in detail.

event1.hpp Main header file for our application. This code
defines a derived persistence class used to access
data file.

event1.inc Static tables containing information used when
accessing the Zinc data file. This file is “#include”d
by event1.cpp.

event1.znc The Zinc persistent object data file containing our
actual user interface definition.

Event Window 33

g

ere

s we
tch

In

ot
we
public:
// --- General members ---
virtual ~EventWindow(void) {}
virtual ZafEventType Event(const ZafEventStruct &event);

// --- Persistent members ---
EventWindow(const ZafIChar *name, ZafObjectPersistence
&persist);

};

Header file walk-
through

#include <zaf.hpp>

The header file “zaf.hpp” includes all the header files necessary for definin
classes used in a ZAF application. Every ZAF application must include it.
(Actually, the code generated by Zinc Designer automatically includes this
header, but since we need it earlier in the compile process we’ll include it h
as well.)

const ZafEventType RED_BACKGROUND = 10000;
const ZafEventType GREEN_BACKGROUND = 10001;
const ZafEventType BLUE_BACKGROUND = 10002;

These constants will allow us easy access to the three user-defined event
need to change colors, and make our code more readable. They must ma
the values we specified in Zinc Designer.

class EventWindow : public ZafWindow
{
public:
// --- General members ---
virtual ~EventWindow(void) {}
virtual ZafEventType Event(const ZafEventStruct &event);

// --- Persistent members ---
EventWindow(const ZafIChar *name, ZafObjectPersistence
&persist);

};

Our “EventWindow” class is derived from ZafWindow since that is the base
window type we created in Zinc Designer. ZafWindow will give us all the
functionality of a normal window and we’ll then add a bit more of our own.
our declaration we add three pieces required by our application:

• A virtual destructor is defined. This does nothing—it is even empty—and is n
strictly necessary since the compiler will automatically generate one for us if

34 Zinc Application Framework 5

ur
forget. Still, it is good coding practice to supply a destructor for all objects and we
have done so here.

• An Event() method is defined to intercept the three user-defined events for our
color changes.

• A persistent constructor is defined to load our derived window from the data file.

Source file // COPYRIGHT (C) 1997. All Rights Reserved. - EVENTWN1.CPP
// Zinc Software Incorporated. Pleasant Grove, Utah USA
// May be freely copied, used and distributed.

#include "eventwn1.hpp"

EventWindow::EventWindow(const ZafIChar *name,
ZafObjectPersistence &persist) : ZafWindow(name, persist)

{}

ZafEventType EventWindow::Event(const ZafEventStruct &event)
{
ZafEventType ccode = LogicalEvent(event);
switch (ccode)
{
case RED_BACKGROUND:
SetBackgroundColor(ZAF_CLR_RED);
break;

case GREEN_BACKGROUND:
SetBackgroundColor(ZAF_CLR_GREEN);
break;

case BLUE_BACKGROUND:
SetBackgroundColor(ZAF_CLR_BLUE);
break;

default:
// Pass the event to the base class for processing.
ccode = ZafWindow::Event(event);
break;

}

return (ccode);
}

Source file walk-through #include "eventwn1.hpp"

First, we include our header file “eventwn1.hpp” to provide definitions for o
constants and derived class.

Event Window 35

n’t

ts

nd-
e,
ocess-

ct to
ated

e
en-
EventWindow::EventWindow(const ZafIChar *name,
ZafObjectPersistence &persist) : ZafWindow(name, persist)

{}

Next, our simple persistent constructor simply calls the base class (ZafWin-
dow) persistent constructor to load our window from the data file. We need
do anything else here, since we don’t define any additional data for the
EventWindow class.

ZafEventType EventWindow::Event(const ZafEventStruct &event)
{
ZafEventType ccode = LogicalEvent(event);
switch (ccode)
{
case RED_BACKGROUND:
SetBackgroundColor(ZAF_CLR_RED);
break;

...

default:
// Pass the event to the base class for processing.
ccode = ZafWindow::Event(event);
break;

}

return (ccode);
}

The Event() method first calls LogicalEvent() to translate all incoming even
to their portable equivalents, then we trap each event that interests us:
RED_BACKGROUND, GREEN_BACKGROUND, and BLUE_BACK-
GROUND. When we find a matching event, each case calls SetBackgrou
Color() to change the background color of the window. In the “default” cas
all other events are passed to the base class Event() method for normal pr
ing.

That’s it! We’ve added some simple source code to a Zinc Designer proje
create an interesting, working application. In the process we’ve demonstr
how easy it is to utilize ZAF’s sophisticated event architecture.

We’re now ready to build an executable and test it.

Finishing Up

Create a make file and
build the application

Our final step is to create a make file. To build one on your own look at th
make files included with the ZAF example programs and refer to the docum

36 Zinc Application Framework 5

u

and

!

a-
m-

oard,
 uses

s—
tation for your compiler’s make utility, or Zinc’s recommended “zmake” if yo
prefer.

To speed the process along, just copy the file “zmake.mak” (for Windows)
any support files needed (such as “wtest16.def” for 16-bit Microsoft Win-
dows). This will link together the necessary ZAF libraries, along with
“event1.cpp,” generated by Zinc Designer, and our “eventwn1.cpp.”

Now, build the application using zmake or your own make utility and enjoy
You’re on your way to becoming a Zinc expert.

Additional
Study

For more practice working with events, look at the expansion to this applic
tion, “Event Window 2” found in example/event. This example program de
onstrates the trapping of system events coming from the mouse and keyb
shows derived child objects, sends events using ZafEventManager::Put(),
C type user functions and more.

In the next chapter we’ll look at another of ZAF’s fundamental architecture
Model / View.

Suggested Study 37

 pro-
fer-
F.

con-
l dis-

ns

ssi-

t pro-
 start
Suggested Study

With an understanding of Zinc’s basic architecture, you are ready to begin
gramming with ZAF. For additional information, see the Programmer's Re
ence manual and closely examine the example programs provided with ZA

Zinc’s reference manual is unlike any reference you have used before. It
tains a great deal of example code, and provides architectural and practica
cussions in an interesting format. In short, the ZAF reference manual is
readable!

Before delving deeply into large scale projects using ZAF, you may wish to
study the following information:

• ZafWindowObject—the most important base class in ZAF.

• ZafWindow—a critical base class.

• Appendix: Property Matrices—quick reference to the capabilities and limitatio
of ZAF user interface objects.

• Appendix: Event Definitions—essential information about event types and po
bilities.

• Example programs—carefully selected programs that demonstrate importan
gramming techniques. Careful study of these examples will provide the best
to programming with ZAF.

38 Zinc Application Framework 5

Appendices

Personal Use License Agreement - Desktop Applications 41

s
er
r,
e

he
al

o-
-
-
fi-
er
lely
t to

-
e,

li-

op

le
d
or
ay
ial

es
-
pa-

ify
g

Zinc Application Framework 5.3
Software License Agreement

Personal Use License - Desktop Applications
There are three different ways to license Zinc Application Framework: (1) Personal Use License for Desktop Applications, (2)
Professional Use License for Desktop Applications, and (3) Professional Use License for Embedded Applications. Each license
is governed by a different license agreement. The Personal Use License is provided to individuals developing non-commercial,
non-distributable, personal-use-only applications. There is no license fee or royalty required for the Personal Use License.
However, to exercise rights beyond the Personal Use License, the Developer must purchase a Professional Use License from
Zinc, for either Desktop Applications or Embedded Applications, whichever is applicable.

ZINC SOFTWARE INCORPORATED (“ZINC”) IS WILLING TO GRANT YOU THE FOLLOWING LICENSE ON
THE CONDITION THAT YOU ACCEPT ALL TERMS OF THIS AGREEMENT (THE “AGREEMENT”).

DO NOT INSTALL, DOWNLOAD OR USE THE ZINC APPLICATION FRAMEWORK SOFTWARE UNTIL YOU
HAVE READ AND ACCEPTED THIS LICENSE AGREEMENT. BY INSTALLING, DOWNLOADING OR USING
THE SOFTWARE YOU ACCEPT THIS LICENSE AGREEMENT. IF YOU DO NOT AGREE TO THIS LICENSE
AGREEMENT YOU MUST NOT INSTALL, DOWNLOAD, OR USE THE SOFTWARE.

1. Definitions.

Affiliates . “Affiliates” shall mean Zinc’s parent company,
Zinc’s majority-owned subsidiaries, and its and their respec-
tive majority-owned subsidiaries.

Desktop Applications. “Desktop Applications” shall mean
computer software program applications developed by Lic-
ensee which include Linkable Routines and/or Distributable
Files and which require a Desktop Operating Environment.
Applications which do not require a Desktop Operating
Environment are considered to be “Embedded Applica-
tions.” A different license must be purchased from Zinc or
its authorized reseller for use of the Software to develop
Embedded Applications.

Desktop Operating Environment. “Desktop Operating
Environment” shall mean one or more of the following:
Microsoft Windows; Microsoft Windows NT; IBM OS/2;
Apple MacOS; and UNIX.

Developer. “Developer” shall mean the individual natural
person who accepts and agrees to this Agreement. No corpo-
ration, partnership, limited liability company or other orga-
nization, government or business entity may be a Developer
under this Agreement. They may, however, purchase Profes-
sional Use Licenses from Zinc or its authorized reseller.
Developer is the only person authorized to use the Software
under the terms of this Agreement.

Distributable Files. “Distributable Files” shall mean those
files identified as distributable in the Documentation.

Documentation. “Documentation” shall mean the online
documentation and printed documentation, if any, provided
to Developer in connection with this Agreement.

Licensed Source Code. “Licensed Source Code” shall mean
that portion of the Software’s source code which is provided
to Developer in connection with this Agreement.

Linkable Routines. “Linkable Routines” shall mean the
object code routines in the Software libraries (e.g., *.LIB,
lib*.a).

Non-commercial Desktop Applications. “Non-commercial
Desktop Applications” shall mean Desktop Application
developed by Developer that: (a) are for use by Develop
only, and not for use by, or distribution to, any employe
customer or other third party. A different license must b
purchased from Zinc or its authorized reseller for use of t
Software to develop Desktop Applications for commerci
purposes or use.

Software. “Software” shall mean the Zinc Application
Framework computer programs and Documentation pr
vided with this Agreement. Software includes without limi
tation Linkable Routines, Distributable Files, non
distributable files, and Licensed Source Code. Any modi
cations or additions to the Software created by Develop
pursuant to the license granted hereunder shall belong so
to Zinc, and shall be considered part of Software pursuan
the license granted herein.

2. License. Subject to the other provisions of this Agree
ment, Zinc grants to Developer a restricted, nonexclusiv
nontransferable license (without the right to grant sub
censes) for one person (the Developer):

(a) to use the Software to develop Non-commercial Deskt
Applications (as defined above); and

(b) to incorporate Linkable Routines and/or Distributab
Files into Non-commercial Desktop Applications develope
by Developer, provided that the Linkable Routines and/
Distributable Files have been incorporated in such a w
that they cannot be used apart from the Non-commerc
Desktop Applications; and

(c) to use such Linkable Routines and/or Distributable Fil
as part of or with the Non-commercial Desktop Applica
tions, pursuant to the license granted hereunder but not se
rate from such Non-commercial Desktop Applications; and

(d) to use the Licensed Source Code to maintain and mod
the Software to conform with Developer’s needs in creatin
Non-commercial Desktop Applications.

42 Zinc Application Framework 5

el-

r
s
of

h
s-

e
s

y
 of

or
 is
ted
c-
the
The foregoing license does not include any right to use the
Software to develop any computer programs that are com-
petitive with, or that can be used in lieu of, the Software.
Rights not expressly granted to Developer in this Agreement
are reserved by Zinc. Developer acknowledges that Zinc
(and its licensor(s), if applicable) own the copyrights and
other intellectual property in and to the Software.

3. Copies. Developer may make copies of the Software pro-
vided that each such copy: (a) is created as an essential step
in the utilization of the Software in accordance with this
Agreement, or (b) is only for archival purposes to back-up
the licensed use of the Software. Developer may also make
copies of the Software to the extent reasonably needed to
exercise rights under this Agreement, including without lim-
itation those rights described in Section 4 (“Distribution
Rights”). All Zinc proprietary notices must be faithfully
reproduced and included on copies made by Developer, or as
otherwise directed from time to time by Zinc. Developer
may not make any other copies of the Software. If printable,
the online Documentation may be printed by Developer and
used by Developer, but only in connection with the licensed
use of the Software.

4. Distribution Rights. A copy of the Software in its com-
plete and unmodified form as provided by Zinc may be dis-
tributed or transferred by Developer to any other individual
natural person solely and exclusively pursuant to the terms
of this Agreement as accompany such copy. Except as pro-
vided herein, Linkable Routines and Distributable Files shall
not be distributed or transferred by Developer other than as
part of the Software and shall in no event be distributed or
transferred as part of or with any Non-commercial Desktop
Application. Developer may distribute, transfer, and disclose
Developer’s Source Code in Non-commercial Desktop
Applications, provided that no part of the Licensed Source
Code (including any modifications or derivative works
thereof) is distributed, transferred, or disclosed.

5. Protection Of The Software. Except as expressly autho-
rized in this Agreement, Developer may not: (a) disassem-
ble, decompile or otherwise reverse engineer the Software,
or (b) create derivative works based upon the Software, or
(c) rent, lease, sublicense, distribute, transfer, copy, repro-
duce, or timeshare the Software, or (d) modify the Software
(including any deletion of code from or addition of code to
the Software) or (e) allow any third party to access or use the
Software, or to do any of the foregoing. The Software is the
valuable proprietary information of Zinc (or its licensor(s),
if applicable), and may not be used or disclosed except as
expressly permitted by this Agreement. The Licensed
Source Code (whether modified or unmodified) may not be
disclosed or distributed by Developer to any other person.

6. Disclaimer Regarding Modified Software. Zinc and its
Affiliates accept no responsibility or obligation to maintain
or support any unmodified or modified versions of the Soft-
ware and no warranties are applicable to any modified ver-
sions. There is no warranty that the Software is suitable for
modification and all modifications are undertaken at the risk
and discretion of Developer.

7. Limited Warranty. Zinc warrants that the media on
which Software is delivered will be free from defects in
materials or workmanship for a period of ninety (90) days
from the date on which Developer receives such media. If
during the foregoing ninety (90) day warranty period the
media on which Software is delivered proves to be defective
and if it is returned to Zinc (postage prepaid), Zinc will

repair or replace such media, at Zinc’s option, and as Dev
oper’s sole remedy for any breach of warranty hereunder.

8. Disclaimer And Limited Liability.

(a) Disclaimer Of Warranties. OTHER THAN THE
LIMITED WARRANTY STATED ABOVE, ZINC AND
ITS AFFILIATES MAKE NO WARRANTY OF ANY
KIND AND THE SOFTWARE IS LICENSED AND
PROVIDED TO LICENSEE STRICTLY ON AN “AS
IS” BASIS. ZINC AND ITS AFFILIATES DISCLAIM
AND EXCLUDE ALL WARRANTIES, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING WITHOUT
LIMITATION ANY IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. ZINC
AND ITS AFFILIATES DO NOT WARRANT THAT
THE SOFTWARE WILL SATISFY LICENSEE’S
REQUIREMENTS OR THAT IT IS WITHOUT
DEFECT OR ERROR OR THAT THE OPERATION
THEREOF WILL BE UNINTERRUPTED.

(b) Limitation On Liability. ZINC AND ITS AFFILI-
ATES WILL NOT BE LIABLE FOR ANY LOSS OF
PROFITS, LOSS OF USE, INTERRUPTION OF BUSI-
NESS, NOR FOR INDIRECT, SPECIAL, INCIDEN-
TAL, OR CONSEQUENTIAL DAMAGES OF ANY
KIND, WHETHER UNDER THIS AGREEMENT OR
OTHERWISE, IRRESPECTIVE OF WHETHER ZINC
HAS ADVANCE NOTICE OF THE POSSIBILITY OF
SUCH DAMAGES. IN NO EVENT SHALL THE LIA-
BILITY OF ZINC OR ITS AFFILIATES HEREUNDER
EXCEED FIFTY U.S. DOLLARS.

9. Termination. The Agreement and all licenses granted by
Zinc hereunder shall automatically terminate if Developer
materially breaches this Agreement. Upon termination of the
Agreement, Developer shall cease all use of the Software
and shall destroy all copies of the Software within the pos-
session or control of Developer and shall return the original
Software media and Documentation to Zinc. In the event of
any termination of this Agreement, the provisions of Section
1 (“Definitions”), Section 8 (“Disclaimer and Limited Lia-
bility”), Section 9 (“Termination”), Section 10 (“Export
Laws”), Section 11 (“Severability”), Section 12 (“Governing
Law“) and Section 13 (“Entire Agreement”) shall survive
and continue to bind the parties.

10. Export Laws. Developer shall not export, disclose o
distribute any Software in violation of any applicable law
or regulations, including the export laws and regulations
the United States.

11. Severability. If any provision in this Agreement is
invalid or unenforceable or contrary to applicable law, suc
provision shall be construed, limited, or altered, as nece
sary, to eliminate the invalidity or unenforceability or th
conflict with applicable law, and all other provisions of thi
Agreement shall remain in effect.

12. Governing Law. This Agreement shall be governed b
the laws of the State of California and the United States
America without giving effect to conflict or choice of law
principles. The United Nations Convention on Contracts f
the International Sale of Goods shall not be applicable and
rejected by the parties. The State and Federal Courts loca
in San Francisco County, California, shall have sole jurisdi
tion over any disputes arising under this Agreement and
parties hereby submit to the jurisdiction of such courts.

Personal Use License Agreement - Desktop Applications 43
13. Entire Agreement. This Agreement is the entire agree-
ment between the parties regarding this subject matter and
supersedes all prior discussions, negotiations, agreements,
and the like. This Agreement may be modified only in writ-
ing signed by authorized representatives of both parties. No
vendor, distributor, dealer, reseller, sales person or other per-
son is authorized by Zinc to modify this Agreement or to

make any warranty, representation or promise which is dif-
ferent than, or in addition to, the warranties, representations
or promises of this Agreement. Any purported oral modifi-
cation of this Agreement shall be void.

44 Zinc Application Framework 5

Professional Use License Agreement - Desktop Applications 45

s
s

d

,

nc

inc

o-
e
nd
-
ce
-
der

 of

e-
e
ex-
Zinc Application Framework 5.3
Software License Agreement

Professional Use License - Desktop Applications
There are three different ways to license Zinc Application Framework: (1) Personal Use License for Desktop Applications, (2)
Professional Use License for Desktop Applications, and (3) Professional Use License for Embedded Applications. Each license
is governed by a different license agreement. The Personal Use License is provided to individuals developing non-commercial,
non-distributable, personal-use-only applications. There is no license fee or royalty required for the Personal Use License.
However, to exercise rights beyond the Personal Use License, the Licensee must purchase a Professional Use License from
Zinc, for either Desktop Applications or Embedded Applications, whichever is applicable.

THIS IS A PROFESSIONAL USE LICENSE AGREEMENT FOR DESKTOP APPLICATIONS (“AGREEMENT”)
BETWEEN ZINC SOFTWARE INCORPORATED (“ZINC”) AND THE ENTITY OR INDIVIDUAL (“LICENSEE”
OR “YOU”) WHO HAS RECEIVED THIS AGREEMENT AND THE ACCOMPANYING ZINC APPLICATION
FRAMEWORK SOFTWARE AND DOCUMENTATION, AND PAID THE ASSOCIATED FEES TO ZINC. ZINC IS
WILLING TO GRANT TO LICENSEE THE FOLLOWING LICENSE ON THE CONDITION THAT LICENSEE
ACCEPTS ALL TERMS OF THIS AGREEMENT.

DO NOT INSTALL, DOWNLOAD OR USE THE ZINC APPLICATION FRAMEWORK SOFTWARE UNTIL YOU
HAVE READ AND ACCEPTED THIS LICENSE AGREEMENT. BY INSTALLING, DOWNLOADING OR USING
THE SOFTWARE YOU ACCEPT THIS LICENSE AGREEMENT. IF YOU DO NOT AGREE TO THIS LICENSE
AGREEMENT: (A) YOU MUST NOT INSTALL DOWNLOAD, OR USE THE SOFTWARE, AND (B) YOU MAY
RETURN THE SOFTWARE, INCLUDING ALL PACKAGING, MEDIA, AND DOCUMENTATION, FOR A
REFUND, PROVIDED THAT THE RETURN IS MADE WITHIN TEN DAYS OF THE DATE OF PURCHASING
THIS LICENSE.

1. Definitions.

Affiliates . “Affiliates” shall mean Zinc’s parent company,
Zinc’s majority-owned subsidiaries, and its and their respec-
tive majority-owned subsidiaries.

Desktop Applications. “Desktop Applications” shall mean
computer software program applications developed by Lic-
ensee which include Linkable Routines and/or Distributable
Files and which require a Desktop Operating Environment.
Applications which do not require a Desktop Operating
Environment are considered to be “Embedded Applica-
tions.” A different license must be purchased from Zinc or
its authorized reseller for use of the Software to develop
Embedded Applications.

Desktop Operating Environment. “Desktop Operating
Environment” shall mean one or more of the following:
Microsoft Windows; Microsoft Windows NT; IBM OS/2;
Apple MacOS; and UNIX.

Developer. “Developer” shall mean the individual natural
person who accepts and agrees to this Agreement. If Devel-
oper is an employee of a company and intends to use the
Software within the scope of his/her employment, then
acceptance of this Agreement is also made on behalf of the
company. The Developer is the only person authorized to
use the Software under the terms of this Agreement.

Distributable Files. “Distributable Files” shall mean those
files identified as distributable in the Documentation.

Documentation. “Documentation” shall mean the online
documentation and printed documentation, if any, provided
to Licensee in connection with this Agreement.

Error. “Error” shall mean any failure of the Software a
delivered by Zinc to conform to its published specification
during ordinary use in accordance with this Agreement.

Licensed Source Code. “Licensed Source Code” shall mean
that portion of the Software’s source code which is provide
to Licensee in connection with this Agreement.

Linkable Routines. “Linkable Routines” shall mean the
object code routines in the Software libraries (e.g. *.LIB
lib*.a).

Optional Modules. “Optional Modules” shall mean an
optional component of the Software as designated by Zi
(e.g. platform modules, Unicode support module).

Required Module. “Required Module” shall mean the
required component of the Software as designated by Z
(i.e. “Shared Code”).

Software. “Software” shall mean the Zinc Application
Framework computer programs and Documentation pr
vided with this Agreement. Software consists of th
Required Module and one or more Optional Modules a
these include, without limitation, Linkable Routines, Dis
tributable Files, non-distributable files, and Licensed Sour
Code. Any modifications or additions to the Software cre
ated by Licensee pursuant to the license granted hereun
shall belong solely to Zinc, and shall be considered part
Software pursuant to the license granted herein.

2. Development Rights.

(a) License. Subject to the other provisions of this Agre
ment, including without limitation the payment by License
all license fees, Zinc grants to Licensee a restricted, non

46 Zinc Application Framework 5

ed
of

ex-
nt

u-
p
m
m-
le
not

m-
es
m

y
u-
 of
as
of
ht
c
p
r

s
as
n
t-
all
sis-
c,
c-

rt

le,
 (b)
nt,

 or
d-
ft-
he
he
,
 as
d
e

n-
no
d

 of
clusive, nontransferable license (without the right to grant
sublicenses) for one person (the Developer):

(i) to use the Software to develop Desktop Applications (as
defined above);

(ii) to incorporate Linkable Routines and/or Distributable
Files into Desktop Applications developed by Developer,
provided that the Linkable Routines and/or Distributable
Files have been incorporated in such a way that they cannot
be used apart from the Desktop Applications; and

(iii) to use Linkable Routines and/or Distributable Files as
part of or with Desktop Applications, pursuant to the license
granted hereunder but not separate from such Desktop
Applications;

(iv) to use the Licensed Source Code to maintain and modify
the Software to conform with Licensee’s needs in creating
Desktop Applications.

(b) Restrictions.

(i) Required Module. The Developer must obtain a license
for his or her own Required Module. The Required Module
may be used by the Developer only on any computer on
which at least one of the same Developer’s Optional Mod-
ules is used as permitted herein.

(ii) Optional Modules. The Developer must obtain a license
for at least one Optional Module designed for a particular
operating system platform and computer type. Each
Optional Module may be used by the Developer only on a
single computer running under the operating system desig-
nated on a license certificate or invoice for the Optional
Module. Licensee may not use an Optional Module on more
than one computer at any given time unless an additional
license for each additional computer is purchased. Notwith-
standing anything in this Agreement to the contrary, this
license does not include, and Licensee has no right to install,
use or copy, any Optional Module not designated on a
license certificate or invoice. If Licensee desires to use addi-
tional Optional Modules, a license for such additional
Optional Modules must first be purchased from Zinc or its
authorized reseller. Additional Optional Modules for which
a license is purchased shall be governed by this Agreement
and shall be deemed part of the Software.

(iii) Other Restrictions. The Software is licensed on a per
Developer basis. The Developer may not be changed, with-
out the written consent of Zinc. Licenses for additional
Developers must be purchased from Zinc or its authorized
resellers. The foregoing license does not include any right to
use the Software to develop any computer programs that are
competitive with, or that can be used in lieu of, the Software.
Rights not expressly granted to Licensee in this Agreement
are reserved by Zinc. Licensee acknowledges that Zinc (and
its licensor(s), if applicable) own the copyrights and other
intellectual property in and to the Software.

3. Copies. Licensee may make copies of the Software pro-
vided that each such copy: (a) is created as an essential step
in the utilization of the Software in accordance with this
Agreement, or (b) is only for archival purposes to back-up
the licensed use of the Software. Licensee may also make
copies of the Software to the extent reasonably needed to
exercise those rights described in Section 4 (“Distribution
License”). All Zinc proprietary notices must be faithfully
reproduced and included on copies made by Licensee. Lic-
ensee may not make any other copies of the Software. The

online Documentation may be printed by Licensee and us
by Licensee, but only in connection with the licensed use
the Software.

4. Distribution License. Subject to the other provisions of
this Agreement, Zinc grants to Licensee a restricted, non
clusive, nontransferable license (without the right to gra
sublicenses) which includes the following distribution
rights:

(a) authorization for Licensee to incorporate Linkable Ro
tines into and/or distribute Distributable Files with Deskto
Applications developed by Licensee and to distribute the
as part of such Desktop Applications to Licensee’s custo
ers, provided that the Linkable Routines and/or Distributab
Files have been incorporated in such a way that they can
be used apart from the Desktop Applications,

(b) authorization for Licensee to license Licensee’s custo
ers to use such Linkable Routines and/or Distributable Fil
as part of the Desktop Applications, but not separate fro
such Desktop Applications.

5. Distribution Restrictions. Except for the Linkable Rou-
tines and Distributable Files, no portion of the Software ma
be distributed or transferred by Licensee. The Linkable Ro
tines and Distributable Files may not be distributed as part
any computer program other than a Desktop Application
defined above without the express written permission
Zinc. Licensee must include an appropriate Zinc copyrig
notice, in accordance with guidelines published by Zin
from time to time, on all copies of Licensee’s Deskto
Applications in which Linkable Routines are incorporated o
with which Distributable Files are distributed. Third partie
who receive any Linkable Routines or Distributable Files
part of a Desktop Application under Section 4 (“Distributio
License”) may not use such Linkable Routines or Distribu
able Files for any development purposes. Licensee sh
ensure that its agreements with such third parties are con
tent with this Agreement and are no less protective of Zin
its Affiliates and licensors as the restrictions listed in Se
tions 6 (“Protection of the Software”), 10 (“Disclaimer and
Limited Liability”), 12b (“Distribution of Desktop Applica-
tions to U.S. Government End Users”), and 13 (“Expo
Laws”).

6. Protection Of The Software. Except as expressly autho-
rized in this Agreement, Licensee may not: (a) disassemb
decompile or otherwise reverse engineer the Software, or
create derivative works based upon the Software, or (c) re
lease, sublicense, distribute, transfer, copy, reproduce,
timeshare the Software, or (d) modify the Software (inclu
ing any deletion of code from or addition of code to the So
ware)or (e) allow any third party to access or use t
Software, or to do any of the foregoing. The Software is t
valuable proprietary information of Zinc (or its licensor(s)
if applicable), and may not be used or disclosed except
expressly permitted by this Agreement. The License
Source Code (whether modified or unmodified) may not b
disclosed or distributed by Licensee to any other person.

7. Disclaimer Regarding Modified Software. Zinc and its
Affiliates accept no responsibility or obligation to maintain
or support modified versions of the Software and no warra
ties are applicable to such modified versions. There is
warranty that the Software is suitable for modification an
all modifications are undertaken at the risk and discretion
Licensee.

8. Maintenance.

Professional Use License Agreement - Desktop Applications 47

i-

n-

 of

 is
all

is
-
r
48

R.
ne
re
-
nt
ly

-
p

all
p
d
all
-
s

ith
h
re

(i)
he
(a) Provision of Maintenance. In the event that Licensee has
agreed to receive Maintenance as indicated on a license cer-
tificate or invoice, and has paid all associated fees as
invoiced by Zinc, Licensee shall be entitled to receive Main-
tenance as hereinafter described. For purposes of this Agree-
ment, “Maintenance” shall consist of:

(i) The right of the Developer to contact Zinc by telephone
or e-mail and to consult with Zinc regarding the installation,
functions and operation of the unmodified Software;

(ii) The right of the Developer to contact Zinc by telephone
or e-mail to consult with Zinc regarding Errors in the
unmodified Software which Errors have been brought to
Zinc’s attention by the Developer;

(iii) The right to obtain from Zinc certain updates for the
Software from time to time as such updates are made gener-
ally available by Zinc.

(b) Hours and Facilities. Zinc shall make Maintenance avail-
able only during Zinc’s normal business days and normal
business hours.

(c) Limitations. Licensee must elect to receive Maintenance
on either all or none of the Software, and may not elect to
receive Maintenance on some Software and not on other
Software. Zinc shall have no obligation to provide Mainte-
nance for any modified Software or any Software which is
not the most recent version or release or for which Zinc has
provided updates which have not been applied by Licensee
to the Software for a period of more than one (1) year from
the date said updates were made generally available. Any
failure of Licensee to pay all Maintenance fees as invoiced
by Zinc shall, at Zinc’s sole option, immediately and perma-
nently eliminate any obligation of Zinc to provide Mainte-
nance hereunder.

9. Limited Warranty.

(a) Media And Documentation. Zinc warrants that the media
on which Software is delivered will be free from defects in
materials or workmanship for a period of ninety (90) days
from the date on which Licensee receives such media. If
during the foregoing ninety (90) day warranty period the
media on which Software is delivered proves to be defective
and if it is returned to Zinc (postage prepaid), Zinc will
repair or replace such media, at Zinc’s option, and as Lic-
ensee’s sole remedy for any breach of warranty hereunder.

(b) Software. Zinc warrants the Software substantially con-
forms to the specifications in the Documentation and if the
nonconformity is reported in writing by Licensee to Zinc
within 90 days from the date the license is purchased, then
Zinc shall either remedy the nonconformity or offer to
refund the purchase price to Licensee upon a return of all
copies of the Software (including all packaging, media, and
Documentation) to Zinc. In the event of a refund, the Agree-
ment shall terminate.

10. Disclaimer And Limited Liability.

(a) Disclaimer Of Warranties. OTHER THAN THE
LIMITED WARRANTIES STATED ABOVE, ZINC
AND ITS AFFILIATES MAKE NO WARRANTY OF
ANY KIND AND THE SOFTWARE IS LICENSED
AND PROVIDED TO LICENSEE STRICTLY ON AN
“AS IS” BASIS. ZINC AND ITS AFFILIATES DIS-
CLAIM AND EXCLUDE ALL WARRANTIES,
EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
WITHOUT LIMITATION ANY IMPLIED WARRAN-

TIES OF NONINFRINGEMENT, MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE.
ZINC AND ITS AFFILIATES DO NOT WARRANT
THAT THE SOFTWARE WILL SATISFY LIC-
ENSEE’S REQUIREMENTS OR THAT IT IS WITH-
OUT DEFECT OR ERROR OR THAT THE
OPERATION THEREOF WILL BE UNINTER-
RUPTED.

(b) Limitation On Liability. ZINC AND ITS AFFILI-
ATES WILL NOT BE LIABLE FOR ANY LOSS OF
PROFITS, LOSS OF USE, INTERRUPTION OF BUSI-
NESS, NOR FOR INDIRECT, SPECIAL, INCIDEN-
TAL, OR CONSEQUENTIAL DAMAGES OF ANY
KIND, WHETHER UNDER THIS AGREEMENT OR
OTHERWISE, IRRESPECTIVE OF WHETHER ZINC
HAS ADVANCE NOTICE OF THE POSSIBILITY OF
SUCH DAMAGES. IN NO EVENT SHALL THE LIA-
BILITY OF ZINC OR ITS AFFILIATES HEREUNDER
EXCEED THE TOTAL PAYMENT MADE BY LIC-
ENSEE TO PURCHASE THIS LICENSE.

11. Termination. The Agreement and all licenses granted by
Zinc hereunder shall automatically terminate if Licensee
materially breaches this Agreement. Upon termination of the
Agreement, Licensee shall cease all use of the Software and
shall destroy all copies of the Software within the possession
or control of Licensee and shall return the original Software
media and Documentation to Zinc. In the event of any termi-
nation of this Agreement, the provisions of Section 1 (“Def
nitions”), Section 9 (“Disclaimer and Limited Liability”),
Section 11 (“Termination”), Section 13 (“Export Laws”),
Section 14 (“Severability”), Section 15 (“Governing Law”)
and Section 16 (“Entire Agreement”) shall survive and co
tinue to bind the parties.

12. Government End Users. A “U.S. Government End
User” shall mean any agency or entity of the government
the United States. The following shall apply:

(a) If Licensee is U.S. Government End User. If Licensee
a U.S. Government End User, then this Subsection (a) sh
apply. The Software is a “commercial item,” as that term
defined in 48 C.F.R. 2.101 (Oct. 1995), consisting of “com
mercial computer software” and “commercial compute
software documentation,” as such terms are used in
C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.
12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (Ju
1995), all U.S. Government End Users acquire the Softwa
with only those rights set forth herein. The Software (includ
ing related documentation) is provided to U.S. Governme
End Users: (i) only as a commercial end item; and (ii) on
pursuant to this Agreement.

(b) Distribution of Desktop Applications to U.S. Govern
ment End Users. When distributing or licensing a Deskto
Application to a U.S. Government End User, Licensee sh
identify the Software or modified Software in the Deskto
Application as a “commercial item,” as that term is define
at 48 C.F.R. 2.101 (Oct. 1995), and more specifically sh
be identified as “commercial computer software” and “com
mercial computer software documentation,” as such term
are used in 48 C.F.R. 12.212 (Sept. 1995). Consistent w
48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 throug
227.7202-4 (June 1995), Licensee will provide the Softwa
or modified Software in any Desktop Application (including
related documentation) to U.S. Government End Users:
only as a commercial end item; and (ii) only pursuant to t

48 Zinc Application Framework 5
end user license agreement used by Licensee to license the
Desktop Application to the U.S. Government End User.

13. Export Laws. Licensee shall not export, disclose or dis-
tribute any Software in violation of any applicable laws or
regulations, including the export laws and regulations of the
United States.

14. Severability. If any provision in this Agreement is
invalid or unenforceable or contrary to applicable law, such
provision shall be construed, limited, or altered, as neces-
sary, to eliminate the invalidity or unenforceability or the
conflict with applicable law, and all other provisions of this
Agreement shall remain in effect.

15. Governing Law. This Agreement shall be governed by
the laws of the State of California and the United States of
America without giving effect to conflict or choice of law
principles. The United Nations Convention on Contracts for

the International Sale of Goods shall not be applicable and is
rejected by the parties. The State and Federal Courts located
in San Francisco County, California, shall have sole jurisdic-
tion over any disputes arising under this Agreement and the
parties hereby submit to the jurisdiction of such courts.

16. Entire Agreement. This Agreement is the entire agree-
ment between the parties regarding this subject matter and
supersedes all prior discussions, negotiations, agreements,
and the like. This Agreement may be modified only in writ-
ing signed by authorized representatives of both parties. No
vendor, distributor, dealer, reseller, sales person or other per-
son is authorized by Zinc to modify this Agreement or to
make any warranty, representation or promise which is dif-
ferent than, or in addition to, the warranties, representations
or promises of this Agreement. Any purported oral modifi-
cation of this Agreement shall be void.

Professional Use License Agreement - Embedded Applications 49

s
s

nt

lat-
h
le

i-
e
ed
r-
e

a-

d

,

t
f a
ns
he
a

Zinc Application Framework 5.3
Software License Agreement

Professional Use License - Embedded Applications
There are three different ways to license Zinc Application Framework: (1) Personal Use License for Desktop Applications, (2)
Professional Use License for Desktop Applications, and (3) Professional Use License for Embedded Applications. Each license
is governed by a different license agreement. The Personal Use License is provided to individuals developing non-commercial,
non-distributable, personal-use-only applications. There is no license fee or royalty required for the Personal Use License.
However, to exercise rights beyond the Personal Use License, the Licensee must purchase a Professional Use License from
Zinc, for either Desktop Applications or Embedded Applications, whichever is applicable.

THIS IS A PROFESSIONAL USE LICENSE AGREEMENT FOR EMBEDDED APPLICATIONS (“AGREEMENT”)
BETWEEN ZINC SOFTWARE INCORPORATED (“ZINC”) AND THE ENTITY OR INDIVIDUAL (“LICENSEE”
OR “YOU”) WHO HAS RECEIVED THIS AGREEMENT AND THE ACCOMPANYING ZINC APPLICATION
FRAMEWORK SOFTWARE AND DOCUMENTATION, AND PAID THE ASSOCIATED FEES TO ZINC. ZINC IS
WILLING TO GRANT TO LICENSEE THE FOLLOWING LICENSE ON THE CONDITION THAT LICENSEE
ACCEPTS ALL TERMS OF THIS AGREEMENT.

DO NOT INSTALL, DOWNLOAD OR USE THE ZINC APPLICATION FRAMEWORK SOFTWARE UNTIL YOU
HAVE READ AND ACCEPTED THIS LICENSE AGREEMENT. BY INSTALLING, DOWNLOADING OR USING
THE SOFTWARE YOU ACCEPT THIS LICENSE AGREEMENT. IF YOU DO NOT AGREE TO THIS LICENSE
AGREEMENT: (A) YOU MUST NOT INSTALL, DOWNLOAD, OR USE THE SOFTWARE, AND (B) YOU MAY
RETURN THE SOFTWARE, INCLUDING ALL PACKAGING, MEDIA, AND DOCUMENTATION, FOR A
REFUND, PROVIDED THAT THE RETURN IS MADE WITHIN TEN DAYS OF THE DATE OF PURCHASING
THIS LICENSE.

1. Definitions.

Affiliates . “Affiliates” shall mean Zinc’s parent company,
Zinc’s majority-owned subsidiaries, and its and their respec-
tive majority-owned subsidiaries.

Desktop Operating Environment. “Desktop Operating
Environment” shall mean one or more of the following:
Microsoft Windows; Microsoft Windows NT; IBM OS/2;
Apple MacOS; and UNIX.

Developer. “Developer” shall mean the individual natural
person who accepts and agrees to this Agreement. If Devel-
oper is an employee of a company and intends to use the
Software within the scope of his/her employment, then
acceptance of this Agreement is also made on behalf of the
company. The Developer is the only person authorized to
use the Host Software under the terms of this Agreement.

Distributable Files. “Distributable Files” shall mean those
files identified as distributable in the Documentation.

Documentation. “Documentation” shall mean the online
documentation and printed documentation, if any, provided
to Licensee in connection with this Agreement.

Embedded Application. “Embedded Application” shall
mean computer software program applications developed by
Licensee which include Linkable Routines and/or Distribut-
able Files and which do not require a Desktop Operating
Environment. Applications which require a Desktop Operat-
ing Environment are considered to be “Desktop Applica-
tions.” A different license must be purchased from Zinc or
its authorized reseller for use of the Software to develop
Desktop Applications.

Error. “Error” shall mean any failure of the Software a
delivered by Zinc to conform to its published specification
during ordinary use in accordance with this Agreement.

Host Platform. “Host Platform” shall mean a computer
platform on which the Software is used in the developme
of the Licensed Embedded Application.

Host Software. “Host Software” shall mean (a) all compo-
nents of the Software which are able to execute on any p
form other than the Target Platform; or (b) Software whic
is able to execute on the Target Platform other than Linkab
Routines or Distributable Files.

Licensed Embedded Application. “Licensed Embedded
Application” shall mean the Embedded Application spec
fied on the Project Description Form and is limited to th
Target Platform. This License applies only to one Licens
Embedded Application. Additional licenses must be pu
chased from Zinc or its authorized reseller for use of th
Software in the development of other Embedded Applic
tions.

Licensed Source Code. “Licensed Source Code” shall mean
that portion of the Software’s source code which is provide
to Licensee in connection with this Agreement.

Linkable Routines. “Linkable Routines” shall mean the
object code routines in the Software libraries (e.g., *.LIB
lib*.a).

Project. “Project” shall mean a Licensee developmen
effort, the purpose and result of which are the creation o
Licensed Embedded Application. This Agreement contai
a license for a single Project consisting of the use of t
Software on a Host Platform for the development of

50 Zinc Application Framework 5

to

i-
.

o-
step
s
p

es
de
the
c-
the

le,
 (b)
nt,

 or
d-
ft-
he
he
,
 as
d
e

n-
no
d

 of

as
cer-
as
n-
ree-

e
,

e

to

e
ner-

il-
al

ce
to

her
Licensed Embedded Application which will be used on a
Target Platform.

Project Description Form. “Project Description Form”
shall mean a written or electronic form signed by Zinc and
Licensee, which describes the Target Platform, the Licensed
Embedded Application and the name of the Project.

Runtime License. “Runtime License” shall mean a royalty-
bearing license (to be granted by Zinc to Licensee under a
separate license agreement) to distribute one copy of the
Licensed Embedded Application deployed on a Target Plat-
form. The number of Runtime Licenses purchased by Devel-
oper will be indicated on the license certificate or invoice
issued by Zinc.

Software. “Software” shall mean the Zinc Application
Framework computer programs, the Universal Graphics
Library (“UGL”) computer programs, and Documentation
provided with this Agreement. Software consists of Target
Software and Host Software and these include, without limi-
tation, Linkable Routines, Distributable Files, non-distribut-
able files, and Licensed Source Code. Any modifications or
additions to the Software created by Licensee pursuant to the
license granted hereunder shall belong solely to Zinc, and
shall be considered part of Software pursuant to the license
granted herein.

Target Platform. “Target Platform” shall mean the hard-
ware and software platform on which the Licensed Embed-
ded Application will run. The license is limited to the Target
Platform specified in the Project Description Form.

Target Software. “Target Software” shall mean the Link-
able Routines and the Distributable Files which are utilized
on the Target Platform, and which may be included in the
Licensed Embedded Application.

2. Project Development License. Subject to the other pro-
visions of this Agreement, including without limitation the
payment by Licensee of all license fees, Zinc grants to Lic-
ensee a restricted, nonexclusive, nontransferable license
(without the right to grant sublicenses):

(a) to use the Target Software on the Target Platform and a
Host Platform (without limitation on the number of comput-
ers or workstations) to develop the Licensed Embedded
Application; and

(b) to use the Host Software on a Host Platform to develop
the Licensed Embedded Application; and

(c) to use the Licensed Source Code to modify the Software
to conform with Developer’s needs in creating the Licensed
Embedded Application.

3. Restrictions. Host Software is licensed on a per Devel-
oper, per Project, per Embedded Application basis. Host
Software may not be shared or transferred from one Devel-
oper to another. Target Software is licensed on a per Project
and per Embedded Application basis. The Project or
Licensed Embedded Application description contained on
the Project Description Form may not be changed without
the written consent of Zinc. Licenses for additional Projects,
Developers, or Target Platforms must be purchased from
Zinc or its authorized resellers. The foregoing license does
not include any right to use the Software to develop any
computer programs that are competitive with, or that can be
used in lieu of, the Software. Rights not expressly granted to
Licensee in this Agreement are reserved by Zinc. Licensee
acknowledges that Zinc (and its licensor(s), if applicable)

own the copyrights and other intellectual property in and
the Software. THIS LICENSE DOES NOT INCLUDE
RUNTIME LICENSES OR PROVIDE THE RIGHT TO
DISTRIBUTE ANY PORTION OF THE SOFTWARE IN
LICENSED EMBEDDED APPLICATIONS TO THIRD
PARTIES. Pricing and licenses for Runtime License distr
bution are available from Zinc and its authorized resellers

4. Copies. Licensee may make copies of the Software pr
vided that each such copy: (a) is created as an essential
in the utilization of the Software in accordance with thi
Agreement, or (b) is only for archival purposes to back-u
the licensed use of the Software. All Zinc proprietary notic
must be faithfully reproduced and included on copies ma
by Licensee. Licensee may not make any other copies of
Software. The online Documentation may be printed by Li
ensee and used by Licensee, but only in connection with
licensed use of the Software.

5. Protection Of The Software. Except as expressly autho-
rized in this Agreement, Licensee may not: (a) disassemb
decompile or otherwise reverse engineer the Software, or
create derivative works based upon the Software, or (c) re
lease, sublicense, distribute, transfer, copy, reproduce,
timeshare the Software, or (d) modify the Software (inclu
ing any deletion of code from or addition of code to the So
ware) or (e) allow any third party to access or use t
Software, or to do any of the foregoing. The Software is t
valuable proprietary information of Zinc (or its licensor(s)
if applicable), and may not be used or disclosed except
expressly permitted by this Agreement. The License
Source Code (whether modified or unmodified) may not b
disclosed or distributed by Licensee to any other person.

6. Disclaimer Regarding Modified Software. Zinc and its
Affiliates accept no responsibility or obligation to maintain
or support modified versions of the Software and no warra
ties are applicable to such modified versions. There is
warranty that the Software is suitable for modification an
all modifications are undertaken at the risk and discretion
Licensee.

7. Maintenance.

(a) Provision of Maintenance. In the event that Licensee h
agreed to receive Maintenance as indicated on a license
tificate or invoice, and has paid all associated fees
invoiced by Zinc, Licensee shall be entitled to receive Mai
tenance as hereinafter described. For purposes of this Ag
ment, “Maintenance” shall consist of:

(i) The right of the Developer to contact Zinc by telephon
or e-mail and to consult with Zinc regarding the installation
functions and operation of the unmodified Software;

(ii) The right of the Developer to contact Zinc by telephon
or e-mail to consult with Zinc regarding Errors in the
unmodified Software which Errors have been brought
Zinc’s attention by the Developer;

(iii) The right to obtain from Zinc certain updates for th
Software from time to time as such updates are made ge
ally available by Zinc.

(b) Hours and Facilities. Zinc shall make Maintenance ava
able only during Zinc’s normal business days and norm
business hours.

(c) Limitations. Licensee must elect to receive Maintenan
on either all or none of the Software, and may not elect
receive Maintenance on some Software and not on ot

Professional Use License Agreement - Embedded Applications 51

i-

n-

 of
nd
s a
.
t-
,”
5).
-1
nd
th
is
-

.

-
r

he

h
s-

e
s

 of

or
 is
ted

ic-
the

-
nd

nts,
t-
No
er-
o
if-
ns
i-
Software. Zinc shall have no obligation to provide Mainte-
nance for any modified Software or any Software which is
not the most recent version or release or for which Zinc has
provided updates which have not been applied by Licensee
to the Software for a period of more than one (1) year from
the date said updates were made generally available. Any
failure of Licensee to pay all Maintenance fees as invoiced
by Zinc shall, at Zinc’s sole option, immediately and perma-
nently eliminate any obligation of Zinc to provide Mainte-
nance hereunder.

8. Limited Warranty.

(a) Media And Documentation. Zinc warrants that the media
on which Software is delivered will be free from defects in
materials or workmanship for a period of ninety (90) days
from the date on which Licensee receives such media. If
during the foregoing ninety (90) day warranty period the
media on which Software is delivered proves to be defective
and if it is returned to Zinc (postage prepaid), Zinc will
repair or replace such media, at Zinc’s option, and as Lic-
ensee’s sole remedy for any breach of warranty hereunder.

(b) Software. Zinc warrants the Software substantially con-
forms to the specifications in the Documentation and if the
nonconformity is reported in writing by Licensee to Zinc
within 90 days from the date the license is purchased, then
Zinc shall either remedy the nonconformity or offer to
refund the purchase price to Licensee upon a return of all
copies of the Software (including all packaging, media, and
Documentation) to Zinc. In the event of a refund, the Agree-
ment shall terminate.

9. Disclaimer And Limited Liability.

(a) Disclaimer Of Warranties. OTHER THAN THE
LIMITED WARRANTIES STATED ABOVE, ZINC
AND ITS AFFILIATES MAKE NO WARRANTY OF
ANY KIND AND THE SOFTWARE IS LICENSED
AND PROVIDED TO LICENSEE STRICTLY ON AN
“AS IS” BASIS. ZINC AND ITS AFFILIATES DIS-
CLAIM AND EXCLUDE ALL WARRANTIES,
EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
WITHOUT LIMITATION ANY IMPLIED WARRAN-
TIES OF NONINFRINGEMENT, MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE.
ZINC AND ITS AFFILIATES DO NOT WARRANT
THAT THE SOFTWARE WILL SATISFY LIC-
ENSEE’S REQUIREMENTS OR THAT IT IS WITH-
OUT DEFECT OR ERROR OR THAT THE
OPERATION THEREOF WILL BE UNINTER-
RUPTED.

(b) Limitation On Liability. ZINC AND ITS AFFILI-
ATES WILL NOT BE LIABLE FOR ANY LOSS OF
PROFITS, LOSS OF USE, INTERRUPTION OF BUSI-
NESS, NOR FOR INDIRECT, SPECIAL, INCIDEN-
TAL, OR CONSEQUENTIAL DAMAGES OF ANY
KIND, WHETHER UNDER THIS AGREEMENT OR
OTHERWISE, IRRESPECTIVE OF WHETHER ZINC
HAS ADVANCE NOTICE OF THE POSSIBILITY OF
SUCH DAMAGES. IN NO EVENT SHALL THE LIA-
BILITY OF ZINC OR ITS AFFILIATES HEREUNDER
EXCEED THE TOTAL PAYMENT MADE BY LIC-
ENSEE TO PURCHASE THIS LICENSE.

10. Termination. The Agreement and all licenses granted
by Zinc hereunder shall automatically terminate if Licensee
materially breaches this Agreement. Upon termination of the
Agreement, Licensee shall cease all use of the Software and
shall destroy all copies of the Software within the possession
or control of Licensee and shall return the original Software
media and Documentation to Zinc. In the event of any termi-
nation of this Agreement, the provisions of Section 1 (“Def
nitions”), Section 9 (“Disclaimer and Limited Liability”),
Section 10 (“Termination”), Section 12 (“Export Laws”),
Section 13 (“Severability”), Section 14 (“Governing Law”)
and Section 15 (“Entire Agreement”) shall survive and co
tinue to bind the parties.

11. Government End Users. A “U.S. Government End
User” shall mean any agency or entity of the government
the United States. If Licensee is a U.S. Government E
User, then this Subsection (a) shall apply. The Software i
“commercial item,” as that term is defined in 48 C.F.R
2.101 (Oct. 1995), consisting of “commercial computer sof
ware” and “commercial computer software documentation
as such terms are used in 48 C.F.R. 12.212 (Sept. 199
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202
through 227.7202-4 (June 1995), all U.S. Government E
Users acquire the Software with only those rights set for
herein. The Software (including related documentation)
provided to U.S. Government End Users: (i) only as a com
mercial end item; and (ii) only pursuant to this Agreement

12. Export Laws. Licensee shall not export, disclose or dis
tribute any Software in violation of any applicable laws o
regulations, including the export laws and regulations of t
United States.

13. Severability. If any provision in this Agreement is
invalid or unenforceable or contrary to applicable law, suc
provision shall be construed, limited, or altered, as nece
sary, to eliminate the invalidity or unenforceability or th
conflict with applicable law, and all other provisions of thi
Agreement shall remain in effect.

14. Governing Law. This Agreement shall be governed by
the laws of the State of California and the United States
America without giving effect to conflict or choice of law
principles. The United Nations Convention on Contracts f
the International Sale of Goods shall not be applicable and
rejected by the parties. The State and Federal Courts loca
in San Francisco County, California, shall have sole jurisd
tion over any disputes arising under this Agreement and
parties hereby submit to the jurisdiction of such courts.

15. Entire Agreement. This Agreement is the entire agree
ment between the parties regarding this subject matter a
supersedes all prior discussions, negotiations, agreeme
and the like. This Agreement may be modified only in wri
ing signed by authorized representatives of both parties.
vendor, distributor, dealer, reseller, sales person or other p
son is authorized by Zinc to modify this Agreement or t
make any warranty, representation or promise which is d
ferent than, or in addition to, the warranties, representatio
or promises of this Agreement. Any purported oral modif
cation of this Agreement shall be void.

52 Zinc Application Framework 5

Index

Index 55
A
Add

Hello World 1 13

AddGenericObjects
Hello World 1 13

Apply
Hello World 2 16

B
Browser Window

Hello World 2 16

Building a Simple App . . 11

C
Callbacks

Event Flow 26

Center
Hello World 1 13

Code Generation
Event Window 31
Hello World 2 19

Control
Event Flow 24
Hello World 1 14

D
Derivation

Event Flow 26

Designer Basics 15

destructor
Event Window 33

Direct Event Routing
Event Flow 25

E
Event

Event Flow 25
Event Window 34

Event Flow 23

Event Handling
Event Flow 26

Event Manager
Event Flow 24

Event Mapping
Event Flow 27

Event Routing
Event Flow 25

Event Window 28

Event Window 2
Event Window 36

event1.cpp
Event Window 32

EventWindow
Event Window 33

G
General Model

Event Flow 23

Generate Code
Hello World 2 20

Get

Event Flow 25

Getting Started 9

H
Hello World 1 11

Hello World 2 15

How Do I Use ZAF? 10

How Does ZAF Work? . . . 9

I
#include

Event Window 33

#include <zaf.hpp>
Hello World 1 12

INCLUDES
Event Window 31

K
keyboard events

Event Window 36

L
License Agreement

Professional Version 41, 45,
49

LinkMain
Hello World 1 13

56 Zinc Application Framework 5
LogicalEvent
Event Flow 27
Event Window 35

M
Main

Hello World 1 12

menu editor
Event Window 29

mouse events
Event Window 36

O
OS Events

Event Flow 25

P
persistent constructor

Event Window 34

Platforms supported 9

pop-up menu
Event Window 30

Professional Version 41, 45, 49

Property Sheet
Hello World 2 16

Put
Event Window 36

R
return

Hello World 1 14

S
Send message

Event Window 30

SetBackgroundColor
Event Window 35

StringID
Event Window 28
Hello World 2 17

Suggested Study 37

T
Top-Down Event Routing

Event Flow 26

U
Undo

Hello World 2 16

user functions
Event Window 36

W
What Is ZAF? 9

WINDOWS
Event Window 31

Hello World 2 19

Z
ZAF 5 General Model

Event Flow 23

ZAF Events
Event Flow 25

ZAF General Model
Event Flow 23

ZAF_ITEXT
Hello World 1 13

ZAF_NUMID_PULL_DOW
N_MENU

Event Window 29

ZafApplication::Main
Hello World 1 12

ZafErrorSystem
Hello World 1 13

ZafHelpTips
Hello World 1 13

ZafI18nData
Hello World 1 13

ZafPullDownMenu
Event Window 29

ZafWindow
Event Window 29
Hello World 1 13

zmake
Hello World 1 11
Hello World 2 20

Index 57

	Contacting Zinc
	Quick Start
	Getting Started
	Hello World 1
	Hello World 2

	Architecture Basics
	Architecture Basics—Event Flow
	Event Window
	Suggested Study

	Appendices
	Personal Use License - Desktop Applications
	Professional Use License - Desktop Applications
	Professional Use License - Embedded Applications

	Index
	A
	B
	C
	D
	E
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	W
	Z

