version 5

getting started

Getting Sarted

with Zinc Programming

Zinc® Application Framework™
Version 5

Zinc Software Incorporated
Pleasant Grove, Utah

NOTICE

This documentation is available in electronic and printed formats. If the electronic documentation is
printable, a single copy may be printed for use by the Devel oper. Except for the foregoing, no part of

this publication may be reproduced, translated, stored in aretrieval system, or transmitted, in any

form or by any means, without the prior written permission of Zinc Software Incorporated (“Zinc”).

DISCLAIMER

While every precaution has been taken in the preparation of this manual, Zinc assumes no responsi-
bility for errors or omissions. This publication and features described herein are subject to change
without notice. ZINC MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE CONTENTS HEREIN AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

TRADEMARKS

Zinc is a registered trademark and Zinc Application Framework, Zinc Designer and Zinc DataCon-
nect are trademarks of Zinc Software Incorporated. All other trademarks and tradenames used herein
are owned by their respective holders.

LICENSE AGREEMENTS

Zinc Application Framework is licensed subject to the terms and conditions of one of two separate
license agreements found in the “Getting Started” manual. The Personal Version license is provided
to individuals developing non-commercial, non-distributable, personal-use-only applications. There
is no license fee or royalty required for the Personal Version license. HOWEVER, TO EXERCISE
RIGHTS BEYOND THE PERSONAL VERSION LICENSE, THE DEVELOPER MUST PUR-
CHASE A PROFESSIONAL VERSION LICENSE FROM ZINC.

ACKNOWLEDGMENTS

The ChartFolio framework used by ZafChart is licensed software ©1994-97 DPC Technology Corpo-
ration. The XPM library used by Zaflmage on Moaitif is licensed software ©1989-95 GROUPE BULL.
The MetaWINDOW graphics primitives used by ZafDisplay on DOS is licensed software ©1988-96
Metagraphics, Inc.

This manual was generated March 18, 1999.

Copyright © 1990-1999 Zinc Software Incorporated.
All Rights Reserved.
Printed in the United States of America on recycled paper.

Contacting Zinc

Worldwide

North America

Europe

Sales: info@zinc.com, sales@zinc.com
Technical Support: support@zinc.com
Training and Consulting: services@zinc.com
Web: http://www.zinc.com/

Ftp: ftp://ftp.zinc.com/

CompuServe: GO ZINC

Zinc Software Incorporated

405 South 100 East

Pleasant Grove, Utah 84062 USA
Tel: 1-801-785-8900

Sales: 1-800-638-8665

Support: 1-801-785-8998

Fax: 1-801-785-8996

Zinc Software Services, Inc.

42627 Garfield, Suite 214

Clinton Township, Michigan 48038 USA
Tel: 1-810-228-4900

Fax: 1-810-228-6633

Zinc Software (UK) Ltd.

106-108 Powis Street

London, SE18 6L U United Kingdom
Tel: +44 (0)181 855-9918

Fax: +44 (0)181 316-2211

BBS: +44 (0)181 317-2310

Email: europe@zinc.com

Table of Contents

\Y

Table of Contents

Contacting Zinc

Quick Start

Getting Started
Hello World 1
Hello World 2

Architecture Basics.

Architecture Basics—Event Flow .
Event Window .
Suggested Study .

Appendices
Personal Use License - Desktop Applications
Professional Use License - Desktop Applications .

39

. 23
. 28

.37

.41

. 45

Professional Use License - Embedded Applications .

Index.

53

.49

Vi Zinc Application Framework 5

Quick Sart

Getting Started 9

Getting Started

Congratul ations on your selection of Zinc® Application Framework™ (ZAF),
the most powerful cross-platform internationalized application framework

available.
What Is Zinc ZAF isacollection of C++ class libraries with source code, avisual interface
Application design tool called Zinc Designer™, example programs and more. ZAF is the
Framework? easiest and most elegant C++ user interface AP| ever developed.

Zinc Application Framework allows a single code base to support multiple
platforms, including:

* Microsoft Windows
* X/Motif

* MSDOS

* Apple Macintosh

* IBM 0S2

Many derivative operating systems are indirectly supported aswell. For exam-
ple, Zinc's MS-DOS support ports easily to embedded and real-time operating
systems such as P-SOS while ZAF's X/Matif support ports easily to virtually
any Unix or real-time OS supporting X/Motif 1.2 or later. Consult current
ZAF 5 readmefiles for detailed information on tested and certified operating
systems.

Zinc Software is well-known for sophisticated internationalization (i18n) tech-
nology. Using thistechnology, ZAF supports virtually any single-, double-, or
mixed-byte language worldwide (subject to operating system limitations).
Zinc supports 1SO-8859-1 and Unicode character encoding standards to pro-
vide portable i18n. In addition, ZAF 5 supports any locale (date, time and
number formatting).

Using Zinc's i18n features, a single code base may support a completely inter-
national application. For example, asingle ZAF executable might simulta-
neously support English, European languages, Japanese and Chinese.

How Does it Zinc Application Framework defines an abstract user-interface APl that is

Work? independent of any operating system. This APl is then mapped onto native
functionality of each operating system to provide a portable access method on
each environment. This technique, known as “layering,” allows ZAF to be
small, fast, and true to the visual and interactive nuances of each operating sys-

10 Zinc Application Framework 5

How Do | Use
ZAF?

tem. Applications developed with ZAF are native, and therefore look and feel
like other applications devel oped using native tools on each OS.

When ZAF definesfunctionality that is not native to an operating system, ZAF
provides the functionality directly. In this way a “superset” of native function-
ality is assured without the overhead of thick “emulation” APIs.

Zinc Application Framework is written entirely in C++. As such, it requires
that programmers be familiar with basic C++ concepts such as inheritance and
derivation. While many C type hooks are supplied in ZAF, a knowledge of
C++ is essential.

ZAF is an advanced programming tool. It provides a high level of flexibility,
extensibility, and scalability to expert users. At the same time, however, ZAF
is designed to be easy to use.

Zinc Designer, an interactive visual design tool, is the starting point for most
ZAF applications. Using Zinc Designer, a developer lays out the windows,
dialogs, and user interface objects that make up an application.

Each object may be customized using “property sheet” editors. ZAF objects
contain rich functionality including context-sensitive help, tool tips (pop-up
help), color and font selection, bitmap support and more. All this functionality
may be accessed and specified without code.

Once an application has been “defined” using Zinc Designer, source code may
be generated. This source code can be immediately compiled to test the basic
functionality of an application. More sophisticated functionality, including
application flow control, may be added at the source code level.

The next section of Getting Started will walk you through simple application
scenarios to demonstrate the simplicity and power of Zinc Application Frame-
work. For more complex, real-world applications, study the example programs
supplied with ZAF 5.

Hello World 1 11

Hello World 1

Building a
Simple
Application

The best way to learn ZAF isto useit. Let'sbegin by building the smple

“Hello World” program found in the “example/hello” directory. This program
creates a simple window using straight code (without the use of the visual
design tool, Zinc Designer). An example using Zinc Designer will follow.

In this chapter we'll be referring to Microsoft Windows. Detailed information
on building ZAF programs for each environment is included in the Installation
Guide and should be consulted before continuing.

To build the Hello1 application for 32-bit Microsoft Windows, change to the
directory containing the source code and type:

zmake wi n32

This command invokes “ZMake,” a Zinc-supplied make utility and uses a cus-
tom make file “zmake.mak.” Any make utility and compiler may be used with
ZAF, but ZMake is recommended since it is completely compiler and linker
independent. If you are using Motif or another platform your make utility may
be different.

Now, run the Hello1 application.

The Hellol application utilizes the basic elements of a ZAF application.
Hellol presents a simple window with appropriate decorations such as a title
bar and a border, and a prompt that says “Hello World!” (Note: since this sim-
ple example has no nice exit functionality, you'll need to use the system button
or ALT-F4 to close it.)

Here is the source to the example. A detailed description of the code will fol-
low:

/Il COPYRIGHT © 1997. All Rights Reserved. - HELLO1.CPP
I Zinc Software Incorporated. Pleasant Grove, Utah USA
/I May be freely copied, used and distributed.

#include <zaf.hpp>

int ZafApplication::Main(void)

{
/I Needed for linkers that don't automatically look for
Il unresolved references to main() or WinMain() inside
I/ of libraries.
/I (Either main() or WinMain() is found in a ZAF library.)
LinkMain();

12 Zinc Application Framework 5

/1 Create a window w th generic objects (border, nmaxi mze

// button, mnimze button, systembutton, and title).

Zaf Wndow *hel | oW ndow = new Zaf Wndow(0, 0, 30, 3);

hel | oW ndow >AddGeneri cChj ect s(hew Zaf StringData("Hel | o
Wndow')) ;

/1 Attach a pronpt with the "hello world" text.

/1 (The optional ZAF_| TEXT nmacro guarant ees

/1 Uni code compatibility.)

hel | oW ndow >Add(new Zaf Pronpt (2, 1, 0, ZAF I TEXT("Hell o
VWrlid")));

/] Center the window on the nmain nonitor.
zaf W ndowManager - >Cent er (hel | oW ndow) ;

/1 Attach the w ndow to the w ndow nanager
/1 (make it appear on the screen).
zaf W ndowManager - >Add(hel | oW ndow) ;

/1 Process events.

/1 (This function passes events fromthe event nanager to the
/1 window manager until an S EXIT is received or no nore

/1 windows are attached to the w ndow manager.)

Control ();

/] Return an exit code to the Cs.
return (0);

Let'swalk through the ten lines of functional code in detail:

#i ncl ude <zaf . hpp>

The first “real” line of code includes the header file zaf.hpp. This file in turn
includes all the header files that define the classes you'll need to use ZAF. All
ZAF applications should begin with this #include.

int Zaf Appli cation:: Min(void)

This example program contains a single method used by all ZAF applications:
ZafApplication::Main(). Since every C++ application requires a main() func-
tion (or WinMain() in Microsoft Windows), the ZAF libraries automatically
include a main() or WinMain() function for you. In your own code, you'll cre-
ate ZafApplication::Main() (or let Zinc Designer generate it for you) and let
ZAF handle the platform specific main() or WinMain().

Hello World 1 13

The Zaf Application class handles many initialization tasks automatically. For
example, the following components are initialized prior to ZafApplica-
tion::Main() being called:

» ZafErrorSystem (an error handler) isinstantiated
» ZafHelpTips (a “pop-up” help device) is instantiated
*» Za&fl18nData (the core internationalization class) isinstantiated and initidized

Li nkMai n() ;

Our ZafApplication::Main() first callsLinkMain(). LinkMain() isastub
method defined in the ZAF libraries dong with main() or WinMain(). Itis
called to assist linkers that don't look for main() or WinMain() in libraries.
Some linkers don't require calling LinkMain(), and others will report link
errors without it.

Zaf Wndow *hel | oW ndow = new Zaf Wndow(0, 0, 30, 3);

Next we create anew instance of the ZafWindow class. The new window’stop

|eft corner is placed at the screen position (0, 0), which is at the top left corner

of the screen. The window's width is 30 cells, and its height is 3 cells. A “cell”
is basically the average width of a dialog font character, and the height of a
string field. (Note: some Motif window managers may override exact window
positioning based on user preferences.)

hel | oW ndow >AddGeneri cChj ect s(hew Zaf StringData("Hel | o
Wndow")) ;

We want all the normal decorations on the window such as title bar and border,
so we call the AddGenericObjects() method. The title “Hello Window” will be
used in the window's title bar.

hel | oW ndow >Add(new Zaf Pronpt (2, 1, 0, ZAF I TEXT("Hell o
Wrld")));

The client area of the window will contain a single prompt object, so we create
a new ZafPrompt instance. The prompt will be placed within the client region
of the window 2 cells from the left and 1 cell from the top. Passing in a zero
for the width causes the prompt to calculate its own width. The prompt will
display the text “Hello World!” (Note that the text is passed to the optional
“ZAF_ITEXT()” macro to allow automatic conversion of 8-bit characters to
16-bit Unicode characters if the application is built in Unicode mode.)

zaf W ndowManager - >Cent er (hel | oW ndow) ;

14

Zinc Application Framework 5

We've decided that the window belongsin the center of the screen, so we call
the window manager’s Center() method to automatically center it for us. To
prevent visible movement on the screen we perform the centering prior to dis-
playing the window.

zaf W ndowvanager - >Add(hel | oW ndow) ;

Next, we add the window to the window manager, which has the effect of dis-
playing it.

Gontrol ();

Like most modern user interfaces, Zinc Application Framework is event-
driven. To start the ZAF event system and alow the user to interact with our
application, we must now call the Control() method. Control() gets events and
causes them to flow through the ZAF system where they will ultimately arrive
at the correct object for processing.

Examples of eventsinclude a mouse click or a keystroke. These events are
passed to the object under the mouse pointer (click), or the object with focus
(keystroke) for processing. Control() continues processing events until it
receivesan S_EXIT event, or until there are no windows on the window man-
ager to which it can pass events.

return (0);

Finally, our code returns a zero meaning that the application had no errors.
(Usually, a C++ application returns -1 if an error occurred.)

Clearly, thisisavery simple example, meant to get you started programming
with ZAF quickly. You will also want to try using the Zinc Designer for rapid
visual development of user interface elements. The next chapter shows this
method.

Hello World 2 15

Hello World 2

In the previous chapter, we built a simple application strictly with source code.
This technique works well for small applications or for maximum customiza-
tion and control. For most applications there is a better way.

ZAF includes Zinc Designer, an interactive visual design tool, to greatly sim-

plify the task of building auser interface. To build the same application we

built in the previous chapter requires no hand-written source code, for exam-

ple. Hello2, found in the “example/hello” directory, demonstrates this alterna-
tive method in which Zinc Designer is used to generate a persistent object data
file, “hello2.znc,” and to generate the source code necessary to access the
object data file at run time.

Using Zinc Since this is our first experience using Zinc Designer, we'll take things slowly
Designer and explain everything in detail. Later tutorials will assume much of the
knowledge gained in this chapter.

Start Zinc Designer and 1. To recreate this application from scratch, open the Zinc Designer while in
create a new file a temporary directory—"“work” for example. We don't want to overwrite
the Hello2 application shipped with ZAF.

2. Inthe “File” menu, select “New.” Use “hello2.znc” for the file name.

v Zinc Designer - <no file>» O] x|
File Edit Optionz ‘Window Help
E e ™ Window | Inputl Cnnlrnll Selectionl Additionall
Hoo pr—] | p— | p— | | I
I
File name: Folders:
|helln2.znc{ | c:hzalkbin
_ Cancel |
i18n.znc - e -
zdeszign.znc £ zal Network. |
Z3 bin =
List files of type: Drives:
I’.znc j I = c: oxpgen j

When you exit Zinc Designer (later), this file name will be stored on the main
window’s “File” menu for easy access in the future. The “File” menu will list
the five most recently used files.

16 Zinc Application Framework 5

Examining the file Now that we have a datafile to edit,

browser and property the data file browser and property

sheet sheet windows are open. Thesetwo
windows are most important when
using Zinc Designer, but both are
empty for now.

+ ZAF DataFile Browser M=l 3
Es

The “Browser” window will display
a hierarchy of objects contained in
the data file we're using. These
objects may be edited by double- [EHEEETRUEEE =10 x|
clicking on them in the browser. o object |

(Note: In some cases this is the on

way to edit an object, so keep it in

mind.)

The bottom “Property Sheet” win-
dow will display all of the properties
supported by the current “edit
object.” These properties are orga
nized both by function and object.
As you change object properties Eeer|
you'll make your changes on this
window and click “Apply” to save
the change. If you are not happy with a change, a one-level undo capability
will let you recover from your last “Apply” operation.

Create awindow 3. Now create a window by selecting the ZafWindow button in the main
Designer window. The ZafWindow button is the left-most button on the
“Window” page of the toolbar notebook. A new window will now appear.
The window may be resized and moved as desired.

v Zinc Designer - C:\ZAFABINAHELLDZ ZNC | =] 3
File Edit Optionz ‘Window Help
"?'—:' ™ Window | Inputl Cnnlrnll Selectionl Additionall

&%EDQDEHHEE

! Edit Window [_ O]

Hello World 2 17

Modify window
properties

Note that the window is placed on the screen immediately after clicking the
“Window” button. The first five buttons on the “Window” toolbar page are
offset from the others because they share this behavior. All other controls in
Zinc Designer must be selected and thkaeed in a specific position on a par-

ent control.

4. Change the title bar
text on the window by
selecting the “Win-
dow” page of the prop-
erty sheet. Click the
“Window Title” prop-
erty and replace the
default title bar text
with “Hello Win-
dow.” Click the
“Apply” button to
cause the change to
immediately take
effect on the window.

All changes except palette

Window | General | Presentation | Advanced | Riegion |
Window Title | il windod il
Destropable True
Has border True
Haz maxirmize buttan True
Has minimize: buttorn True
Haz zystem menu True

=
Apply 1l |
Thiz zets the ‘Window Title attribute. i

changes (colors and fonts) take effect immediately so you can evaluate the
change. If you don't like the change, click the “Undo” button to undo the

change.

5. Since we intend to
directly access this
window at run time (by
loading it by name
from the data file), we
must know its unique
identifier, or StringID.
To check or change the
StringID, select the
“StringID” property in
the “General” page of
the property sheet. To
make the StringID
easy to remember later,
change it to “HelloW-

YWindow General | Presentation | Advanced | Region |
StringlD | Hellowindow ﬂ
Help context <nohe>
Help object tip <nonex
Quick tip <nohe>
User function SHEHES:

Uzer object <nohe>
=l
Apply Unda |
Thiz zetz the StringlD attribute. i

indow” (no spaces) and select the “Apply” button again. (Note: we could
have changed both the title and the StringID, then selected the “Apply”

button just once.)

18 Zinc Application Framework 5

Add a prompt object

Modify object properties

Test the user interface
using “Test Mode”

7.

Now add a prompt to the window by selecting the Zaf Prompt but- ﬂ
ton in the main Designer window. The ZafPrompt button is the
left-most button on the “Additional” page of the notebook.

After selecting the ZafPrompt | purmmerwr-r- = B3
button, click the mouse in the

“Hello Window” where the

new prompt is to appear. This

process is called “placing” pompt .
the object. After placingthe =~ "7 7 Tttt TToooC
control the mouse returns to
normal operation and may be
used to select other controls
on our edit window. The prompt may now be moved around on the win-
dow and sized as desired. (Tip: to rapidly place several objects of the
same type you may click the right mouse button to reset the “place”
object.)

Now, using the prop- i ZafPrompt530121444680 - <ZafPrompt> M=l B3

erty sheet, change the - -
Prompt ~ Gereral | Presentation | Advanced | Region |
text of the prompt by

selecting the “Text” StinglD ZafPrompthal 21444620 H
property on the “Gen- Text Hedlo Wword]
eral” property sheet Help context CHIEHEs
page. Change the 'FeXt Help ohject tip <nohes
to “Hello World!” as in .
. . . Quick tip <nones
our first application. :
Select the “Apply” Lzer function SHIOHES,
button on the property -
sheet and watch the Apply irEe|
Change take effect. This zetz the Text attribute.
You may wish to experi-
ment with some of the
other properties as well. Try the “Quick tip” property, for example.
8. Now, let's test the “com- Hello Window Tl

pleted” application. Select

“Test Open Windows” from

the “Options” menu. All the

Zinc Designer windows dis- Hedlo torld!
appear and only our edit win-
dow is left. In this mode Zinc
Designer allows the ZAF
libraries to take over—the
controls now appear and behave exactly as they will in the completed,

Hello World 2 19

Generate source code

Resolve code
generation “macros”

compiled application. When finished testing, select the “End Test Mode”
button in the lower right of the display, or close your application window.

9. Next, select “Code Generation” from the “Options” menu. During this
process three source files will be generated by Zinc Designer in addition to
the main object data file “hello2.znc.” The main code generation window
(initially showing the main “CPP” template) is displayed.

i Source Code M= E3
CPP | Hee | InC |

i+ Template i~ Generated
// Main program file generated by Z2inc Designer. fj

$repeat INCLUDES

ftinclude "${INCLUDES)"
$endrepeat

ftinclude "${BASEMAME)}.inc"

int ZafApplication::Main({void)

{
// Ensure main{) is linked properly.
4| | _"I_I

Cancel |

Notice that the notebook has three tabs. Each tab corresponds to a file that will
be generated by the designer. Each file has a generation “template” that
includes macros that will be used to complete the code. The macros are
defined from the property sheet currently displayed.

10. Select the “WINDOWS”
property. This property spec- Application |
ifies the windows that will be
loaded and presented on DATAFILES HELLDZ2ZNC B
screen when the application DIRECTORY C\ZAFLBIN
starts. Enter “HelloWindow” HELFORJECT P
(no spaces), the StringlD we T rones
assigned earlier, and select PEFSIST NAME UeoPardc
the “Apply” button. Note that = :
other properties were auto- WINDOWS Heldindon :I
matically defaulted properly -
by Zinc Designer and that the Apply Wgiele |
code window now displays i cets the WINDOWS atrbute.
generated code instead of the i

template. You may browse

the generated source code and templates using the main window. As you

20 Zinc Application Framework 5

Source Code

Building the application

become more familiar with ZAF you may take this opportunity to verify
the accuracy and completeness of the code generation (which may be
incomplete if the “Application” property sheet is incorrect.)

11. Now select the “Generate code” button on the code generation dialog.
Zinc Designer will write the three source files to disk and a message win-
dow will appear reporting that the code generation was successful.

12. Finally, select the “Save” item in the “File” menu of the main Designer
window and exit the Designer.

If you look in the current directory you'll find that the Designer has created
five files—the three source files generated, plus two others. The “zdesign.cfg”
file is used by the Designer to store configuration information for itself (nota-
bly the “most recently used” files list), so we can ignore it. Let's briefly review
the others:

“hello2.znc” is the data file that stores the window and other objects we created
in the Designer. Zinc Designer may be used to modify this data file without
generating new source code. In this way many changes may be made to an
application without the need to recompile!

The “hello2.cpp,” “hello2.hpp,” and “hello2.inc” files contain the source code
the Designer generated for the application.

“hello2.cpp” must be compiled and linked with the appropriate ZAF libraries
to build the final application. To do this we first need a makefile. You may
simply copy the example/hello/[makefile] we used in the previous chapter to
build our new Hello2 application. Make sure that the “hello2.znc” data file is
in the same directory as the application before running it, since that is where
our window is stored. If you copy the make file, the make command for 32-bit
Microsoft Windows will be:

zmake wi n32

That's it! Run the application you've just built and check it out. You'll find
that it runs exactly as it did in the test mode of Zinc Designer. With practice
you'll soon be able to create simple applications in just a few minutes.

As you can see after using two techniques for creating applications with Zinc
Application Framework, both have advantages. Zinc Designer provides the
advantages of application prototyping, rapid interface development, and code
generation while “hand coding” provides maximum customization and control.
Most developers will combine these techniques when creating real-world
applications.

In the next section of “Getting Started” we'll discuss Zinc's basic architectures
and try some more complex tutorials to get you up and running quickly.

Architecture Basics

Architecture Basics - Event Flow 23

Architecture Basics—Event
Flow

Ihgiil Develas
O Qs Talwicn appdicanoa
Ewent Manager
el W g
Comiral Loap

Salippdea o Lo el

Winciow' Manages

W
e (R

08 Eviil :'l'lr.lcﬂﬁl
Dispatch [Eahiicicn]

Windas Obgrct
TRt

Dol Clagades]
T rackoe b Pt

s Digpsci

ZAF 5 General Zinc Application Framework is an event-driven system. The general architec-

Model ture diagram above, or “ZAF General Model,” illustrates ZAF's fundamental
event-driven architecture. Using this architecture, ZAF obtains events from
the operating system if the OS is itself event-driven, directly from input
devices, and from application code. These events are then passed through a
ZAF application using a well-defined protocol. If you are already familiar
with an event-driven operating system such as Microsoft Windows, Motif,
Macintosh, or OS/2, you will find ZAF to be quickly understandable, and both
easier to use and more powerful than your native API.

24 Zinc Application Framework 5

Event Manager

ZafApplication
::Control

An understanding of this architecture is fundamental to programming with
Zinc Application Framework, so let’s look at the architecture in more detail.

ZAF's event-driven system begins

with the event manager (the Zaf- 0 Qusue | IMUTDENOES || poo o
EventManager class) and its sup- S
porting input devices.
X . Ewerd Manager
For operating environments that s Mg

don't provide an event-driven sys-

tem (e.g. MS-DOS), the event -

manager polls all the attached

devices such as the mouse and key-

board, and assembles events for any input information received.

In the more common case, an event-driven operating system provides native
events that are intercepted by the ZAF event manager.

As events are received, each is encapsulated in an event structure recognized
by ZAF and is placed on ZAF’s internal event queue for later processing.

ZAF's event manager also handles events that are generated by the ZAF librar-
ies themselves or created and posted to the queue by the programmer, as repre-
sented by the “Application” box in the preceding diagram. ZAF programmers
may also provide custom input devices (derived from the ZafDevice class) to
communicate with non-standard input devices. See the Programmer's Refer-
ence manual for more information about ZafEventManager and event types.

Once the event manager has acquired events the main ZAF control process
regains control of the application. This process is repeated continually while
your application is running.

Ewerd Manager

18 B el M e
Cortial Loap

i Mot al e 2l

Window Managsr
Lol e

Architecture Basics - Event Flow 25

Event Routing

This section of the model shows that while the event manager manages event
acquisition into the event queue, Zaf Application::Control () retrievesindividual

events from the event manager (viathe ZafEventManager::Get() method) and

passes them to the window manager (viathe Zaf\WindowM anager::Event()

method). On event-driven operating systems the Control() loop will “sleep”
when no events are available at the operating system, thus allowing other pro-
cesses to fully utilize system resources.

After an event is passed to the window manager (the ZafwindowManager
class), the window manager determines the event’s ultimate destination and
proper routing, and dispatches it appropriately.

Window Manager

v Dot

Tifeiremlin i
05 Evant Wirslow
Cespatch i B

‘Wireloray Disjes
[ra oy]

There are two basic types of events processed by ZAF and two different meth-
ods of routing these events. The two event types are, roughly, “operating sys-
tem events” and “ZAF events.”

OS Events

Operating system events are generated by an OS and are generally not useful to
the programmer without translating them to a portable equivalent. Examples

of OS events are mouse movement, redisplay (expose) messages, sizing notifi-
cations, etc.

ZAF Events

ZAF events are usually generated by the ZAF libraries or by the programmer.
Keyboard events are also considered “ZAF events.” These events are gener-
ally useful to the programmer in their current state.

Direct Event Routing

In order to provide most efficient event routing, the window manager often
allows the native operating system to dispatch native events directly to the
appropriate object. This type of event dispatch, indicated by “OS Event Dis-

26 Zinc Application Framework 5

Event
Handling

patch” on the diagram, is called “Direct Event Routing” and is used for all OS
events. These events are only rarely useful to the application programmer.

Top-Down Event Routing

Other events are handled by the window manager and dispatched to the appro-
priate window—usually the window with focus. The window in turn either
handles the event if appropriate, or passes the event to the appropriate child for
processing—usually the child with focus. ZAF events are commonly accessed
by the programmer for application control and response. Top-Down routing
allows them to be handled hierarchically—at any level of the user interface.

Exceptions to these event routing rules are made only when requested by the
application programmer.

Ultimately each event is received by a window
object's Event() method where it is processed.

This section of the General Model shows that it
whether the OS or ZAF dispatches the event, €
window object eventually receives it—usually
the window object with focus.

Dvail Clagaass)
AN ke et
: . : i g
The window object handles the event using a
hierarchy of Event() methods. The first Event()
method called belongs to the most-derived class
indicated by “Derived Class(es)” on the diagram. This class may be a ZAF
library object, or a programmer derivation.

If the derived class does not handle the event, it is passed to its base class’
Event() method for handling. This process may continue until the ultimate
base class, ZafWindowObject, receives the event and either processes it or
hands it off to the native operating system object for handling. (Remember
that ZAF utilizes a “layered” user interface implementation where most ZAF
objects have corresponding operating system objects “underneath” them that
can handle many operations natively.)

Derivation

ZAF offers two primary methods for customizing event response. The first
method (described in the preceding section) is to derive from a ZAF class and
overload its Event() method. There the programmer may process any desired
events and pass the rest to a base class where the library’s default handling can
take over. The programmer may also directly call another object’s Event()
method if appropriate.

Callbacks

The second custom handling method relies on a less object oriented
techniqgue—the callback function. A ZAF user function is a C type callback

Architecture Basics - Event Flow 27

Event Mapping

function that automatically receives a small subset of eventsif assigned to a
ZAF user interface object. This event handling method is suitable for trivial
operations and does not require derivation.

Using either event handling method, Zinc’s architecture affords both flexibility
and extensibility.

The ZAF General Model processes both native and portable events. To
achieve portability, the programmer must therefore translate or “map” native
events to portable equivalents prior to interpreting them in an application.
ZAF provides the LogicalEvent() method for this purpose.

ZAF provides operating system independence by defining a large set of porta-
ble events. LogicalEvent() returng@ntext sensitive mapping of native OS

events to portable ZAF events. To accomplish this task, each ZAF class con-
tains a unique table of event mappings that allows objects to translate native
events in a specific way for each class. LogicalEvent() also converts event
data using similar context sensitivity. For example, mouse events contain
pointer coordinates that are converted relative to the top-left corner of the
object, and keyboard events contain character data that must be converted rela-
tive to the current international character mode (ISO or Unicode).

Event mapping may seem complicated at first glance, but is actually trivial for
the application programmer. A simple call to LogicalEvent() prior to process-
ing each event will yield a standardized result across all platforms. (The ZAF
libraries do not automatically call LogicalEvent() since they are optimized for
maximum performance in each operating system environment and are capable
of interpreting native OS events directly.)

The next chapteEvent Window builds on the concepts discussed in this
chapter. It derives a basic “event window” to handle custom user events.
Study “Event Window” and other event examples in the ZAF 5 distribution to
fully understand ZAF event handling.

28 Zinc Application Framework 5

Event Window

To experience the ZAF Event Flow Architecture in use, let’s create a simple
application and watch how it works. “Event Window” will be a simple pro-
gram that demonstrates the trapping of events. It will have a single window
with a pull-down menu that sends user-defined events to the window. These
user-defined events will then be trapped to change the background color of the
window.

This tutorial builds on the experience gained in the “Hello World 1” and “Hello
World 2" tutorials. “Event Window” starts simple with plenty of detail and
becomes more advanced as it progresses.

A completed version of the application can be found in “example/event,” but
we'll create it from scratch in a temporary directory to gain a better under-
standing of the concepts involved. Before continuing, you may wish to com-
pile and run Zinc's version to get a feel for the end product.

Part One— 1. To start, first create a new directory—"“work” for example. We don’t want
Using Zinc to overwrite the example program shipped with ZAF 5. Eventually this
Designer directory will contain source code, header files, a designer data file, a

make file and an executable.

Start Zinc Designer and 2. Next, launch Zinc Designer from your temporary directory. We'll be cre-
create a window ating a new data file with a simple derived window and a pull-down menu.

3. Create a new data file called .
“eventl.znc.” Select “File, New”

from the menu.

4. Create a new ZafWindow and moy\
and size it as desired. (Click on tt
first button in the “Window” page
of the toolbar notebook.)

Customize the window 5. Change the window’s title to “Event Window.” (Use the “Title” property
on the “Window” page of the property sheet and select “Apply.” Refer to
the “Hello World 1" example chapter for a description of property sheet
usage.)

6. Change the window’s StringID to “EventWindow” (no spaces). We'll use
this StringlID to refer to the window later. (StringlD is on the “General”
property sheet page.)

7. Since we’ll be deriving a window to handle custom events, we need to
specify the derived class nhame. Later, Zinc Designer will generate code

Event Window 29

Add a pull-down menu
and pull-down items

Add pull-down items

8.

10.

11.

that loads our derived window using this class name and its Stringl D.
(Class Name is on the “Advanced” property sheet page.)

Now, place a new ZafPullDownMenu on the window. (The third button
on the toolbar’s “Control” notebook tab.)

Once the pull-down menu is in place, we must invoke the menu editor to
modify it and add our custom menu structure. To do this, select the data
file browser window and locate the pull-down menu. (You'll find the pull-
down menu in the following location: ZafWindow, EventWindow,
ZAF_NUMID_PULL_DOWN_MENU). Now, double-click the menu

item to invoke the menu editor.

i ZafPullD ownMenu [_ O] x|

= S Z4F_MUMID_PULL_DOWN_MEMU
= File

=

Add

Delete

Maove Up

1

towve Down

ak | Cahicel |

Select the “Add” button to add a second ZafPullDownltem to the pull-
down menu (the first was automatically added to the menu when it was
created). Then, select the first pull-down item in the “ZafPullDownMenu”
edit window and using the property sheet change its text to “File.” Select
the property sheet “Apply” button to save the change.

Next, select the second pull-down item in the “ZafPullDownMenu” edit
window and with the property sheet change its text to “Color.”

30 Zinc Application Framework 5

Add pop-up menu
items to hook our
custom functionality

13.

Add functionality to the
pop-up items

15.

12. Now select the “File” menu option in the menu editor and click “Add”

again. Notice that a new sub-item was added to the File menu. Edit this
new item’s text (using the property sheet) and change it to “Exit.”

Using the same technique we used to add the “Exit” item, add three sub-
items to the “Color” menu. We want these to read “Red”, “Green”, and
“Blue.” When you finish, the menu editor should look similar to the fol-

lowing picture.

i ZafPullD ownMenu

=] E;ZAF_NUMID_F'ULL_DDWN_MENU
= = Fie
I—% Exit
B ™ Color
& Red
% Green
&, e

ok |

3

ISi[=] E3

Add

Delete

Maove Up

towve Down

1

14. Obviously, the “File, Exit” menu item will be used to exit the application.

ZAF includes built-in functionality for adding an “exit” trigger to a menu
item. To set the exit behavior, change its pop-up item type to “Exit.”
Select the property sheet “Apply” button to set the change.

Unlike the “Exit” item, the “Red,” “Green,” and “Blue” menu items can’t
take advantage of automatic pop-up types to invoke their actions since
they invoke unique application functionality. Instead, we’ll cause these
items to send programmer-defined events that our code can trap to change
the window color. To do this, set the “Send message” property for each of
the pop-up items to “true”. “Send message” causes the item to put an
event on the ZAF event queue whenever this menu item is selected.

Event Window 31

Generate source code

16.

17.

18.

Since ZAF reserves event values above 10,000 for programmer use, we’ll
start with that value. Set “10000” for the “Red” item’s “Value” property,
“10001" for the “Green” item'’s “Value” property, and “10002” for the

“Blue” item’s “Value” property. Be sure to click “Apply” after each

change! Later we’ll define these event constants in our header file.

Select the “OK” button in the “ZafPullDownMenu” edit window to dis-
miss the menu editor and finalize the menu changes.

With our user interface defined we are ready to generate source code and
continue developing our application outside Zinc Designer. To generate
code select “Code Generation” from the designer’s “Options” menu.

You'll see the source code window containing the template used to gener-
ate code, and a custom property sheet page used to define the macro sym-
bols used by the code generator.

Activate the property sheet. In the property sheet, change “INCLUDES”

to “eventwnl.hpp”. This is the name of the header file we’ll create once
we’re finished in Zinc Designer. Change the “WINDOWS” property to
“EventWindow"—the StringID of the derived window we just created.
Finally, select “Apply” to save the macros and apply them to the source
code template. You'll see generated source code appear in the source code
window:

i Source Code [_ (O] x|
crp | Hee | inc |

" Template (* Generatec
// Main program file generated by Z2inc Designer. fj

ttinclude "eventwni.hpp"
ttinclude "event1.inc"

int ZafApplication::Main{void)

{
// Ensure main{) is linked properly.
LinkMain();

=
4| | 3

Generate code | Cancel |

19.

Finally, select “Generate code” to save our generated source code to disk.
Save the persistent object data file we've created by using the “File”
menu’s “Save” option, and exit Zinc Designer.

32 Zinc Application Framework 5

Part Two—
Source Code

Header file

Congratulations! You’re almost done and you've performed some sophisti-
cated tasks in Zinc Designer. Take a break and get ready to do some “real”
programming.

In Part One, Zinc Designer created the following four files:

File Purpose

event 1. cpp Source code to the main process of our application.
This code initializes ZAF, loads the window we
designed, starts the main control loop, and shuts
down gracefully when we're done. “Hello World 1”
discusses this code in detail.

event 1. hpp Main header file for our application. This code
defines a derived persistence class used to access our
data file.

event 1.inc Static tables containing information used when

accessing the Zinc data file. This file is “#include”d
by eventl.cpp.

event 1. znc The Zinc persistent object data file containing our
actual user interface definition.

As we continue building “Event Window” we're going to add to the source
code created by Zinc Designer. The most critical addition is to define our
derived “EventWindow” class.

Let's create new header and source files using the name we specified for
“INCLUDES” in the data file: “eventwnl.hpp” and “eventwnl.cpp”. Com-
pleted versions of these files are listed below with detailed discussions follow-

ing.

/1 COPYRIGHT (C 1997. Al R ghts Reserved. - EVENTWAL. HPP
/1l Zinc Software Incorporated. P easant Gove, Wah USA
/1 May be freely copied, used and distributed.

#i ncl ude <zaf . hpp>

const Zaf Event Type RED BACKGROUND = 10000;
const Zaf Event Type GREEN BACKGROUND = 10001;
const Zaf Event Type BLUE BACKGROUND = 10002;

cl ass EventWndow : public Zaf Wndow
{

Event Window 33

Header file walk-
through

public:
/1l --- Ceneral nenbers ---
virtual ~EventWndow(void) {}
virtual ZafEvent Type Event (const ZafEventStruct &event);

/1l --- Persistent menbers ---
Event Wndow(const Zafl| Char *nane, Zaf (bj ect Persi st ence

&persi st);
b

#incl ude <zaf. hpp>

The header file “zaf.hpp” includes all the header files necessary for defining
classes used in a ZAF application. Every ZAF application must include it.
(Actually, the code generated by Zinc Designer automatically includes this
header, but since we need it earlier in the compile process we’ll include it here
as well.)

const Zaf Event Type RED BACKGROUMND 10000;
const Zaf Event Type GREEN BACKGROUND = 10001;
const Zaf Event Type BLUE_BACKGROUND = 10002;

These constants will allow us easy access to the three user-defined events we
need to change colors, and make our code more readable. They must match
the values we specified in Zinc Designer.

class Event Wndow : public Zaf Wndow

{
public:
[l --- Ceneral nenbers ---
virtual ~Event Wndow(void) {}
virtual ZafEvent Type Event (const ZafEventStruct &event);

/]l --- Persistent nenbers ---
Event Wndow(const Zaf| Char *nane, Zaf (bj ect Persi st ence
&persi st);

b
Our “EventWindow” class is derived from ZafWindow since that is the base
window type we created in Zinc Designer. ZafWindow will give us all the
functionality of a normal window and we’ll then add a bit more of our own. In
our declaration we add three pieces required by our application:

* Avirtua destructor is defined. This does nothing—it is even empty—and is not
strictly necessary since the compiler will automatically generate one for us if we

34 Zinc Application Framework 5

forget. Still, itisgood coding practice to supply adestructor for al objects and we
have done so here.

* An Event() method is defined to intercept the three user-defined events for our
color changes.
* A persstent constructor is defined to load our derived window from the datafile.

Source file /1 CGOPYRIGHT (C 1997. Al R ghts Reserved. - EVENTWAL. CPP
/1l Zinc Software Incorporated. P easant Gove, Wah USA
/1 May be freely copied, used and distributed.

#i ncl ude "eventwnl. hpp"

Event Wndow. : Event W ndow(const Zaf | Char *nane,
Zaf (bj ect Per si stence &persist) : Zaf Wndow nane, persi st)

{}

Zaf Event Type Event W ndow. : Event (const Zaf Event Struct &event)
{

Zaf Event Type ccode = Logi cal Event (event);
swi tch (ccode)

{
case RED BACKGROUND.

Set Backgr oundCol or (ZAF_CLR RED);
br eak;

case GREEN BACKGROUND:
Set Backgr oundCol or (ZAF_CLR GREEN) ;
br eak;

case BLUE BACKGROUND
Set Backgr oundCol or (ZAF_CLR BLUE) ;
br eak;

defaul t:
/1 Pass the event to the base class for processing.
ccode = Zaf Wndow: : Event (event);
br eak;

}

return (ccode);

Source file walk-through #i ncl ude "eventwnl. hpp"

First, we include our header file “eventwnl1.hpp” to provide definitions for our
constants and derived class.

Event Window 35

Finishing Up

Create a make file and
build the application

Event Wndow: : Event Wndow(const Zaf | Char *nane,
Zaf (nj ect Persi st ence &persist) : Zaf Wndow(nane, persi st)

{}

Next, our simple persistent constructor simply calls the base class (ZafWin-

dow) persistent constructor to load our window from the data file. We needn't
do anything else here, since we don't define any additional data for the
EventWindow class.

Zaf Event Type Event Wndow: : Event (const Zaf Event Struct &event)
{

Zaf Event Type ccode = Logi cal Event (event);
swi tch (ccode)

{
case RED BACKGROUND.

Set Backgr oundCol or (ZAF_CLR RED) ;
br eak;

defaul t:
/1 Pass the event to the base class for processing.
ccode = Zaf Wndow: : Event (event);
br eak;

}

return (ccode);

}

The Event() method first calls LogicalEvent() to translate all incoming events

to their portable equivalents, then we trap each event that interests us:
RED_BACKGROUND, GREEN_BACKGROUND, and BLUE_BACK-
GROUND. When we find a matching event, each case calls SetBackground-
Color() to change the background color of the window. In the “default” case,

all other events are passed to the base class Event() method for normal process

ing.

That's it! We've added some simple source code to a Zinc Designer project to
create an interesting, working application. In the process we've demonstrated
how easy it is to utilize ZAF’s sophisticated event architecture.

We're now ready to build an executable and test it.

Our final step is to create a make file. To build one on your own look at the
make files included with the ZAF example programs and refer to the documen-

36 Zinc Application Framework 5

tation for your compiler’s make utility, or Zinc's recommended “zmake” if you
prefer.

To speed the process along, just copy the file “zmake.mak” (for Windows) and
any support files needed (such as “wtest16.def” for 16-bit Microsoft Win-
dows). This will link together the necessary ZAF libraries, along with
“eventl.cpp,” generated by Zinc Designer, and our “eventwnl.cpp.”

Now, build the application using zmake or your own make utility and enjoy!
You're on your way to becoming a Zinc expert.

+ Event Window [_ (O] x|
File Colar
Additional For more practice working with events, look at the expansion to this applica-
Study tion, “Event Window 2” found in example/event. This example program dem-

onstrates the trapping of system events coming from the mouse and keyboard,
shows derived child objects, sends events using ZafEventManager::Put(), uses
C type user functions and more.

In the next chapter we’ll look at another of ZAF’s fundamental architectures—
Model / View.

Suggested Study 37

Suggested Study

With an understanding of Zinc’s basic architecture, you are ready to begin pro-
gramming with ZAF. For additional information, see the Programmer's Refer-
ence manual and closely examine the example programs provided with ZAF.

Zinc's reference manual is unlike any reference you have used before. It con-
tains a great deal of example code, and provides architectural and practical dis-
cussions in an interesting format. In short, the ZAF reference manual is
readable!

Before delving deeply into large scale projects using ZAF, you may wish to
study the following information:

ZafWindowObject—the most important base class in ZAF.
ZafWindow—a critical base class.

Appendix: Property Matrices—quick reference to the capabilities and limitations
of ZAF user interface objects.

Appendix: Event Definitions—essential information about event types and possi-
bilities.
Example programs—carefully selected programs that demonstrate important pro-

gramming techniques. Careful study of these examples will provide the best start
to programming with ZAF.

38 Zinc Application Framework 5

Appendices

Personal Use License Agreement - Desktop Applications 41

Zinc Application Framework 5.3
Software License Agreement

Personal Use License - Desktop Applications

There are three different waysto license Zinc Application Framework: (1) Personal Use License for Desktop Applications, (2)
Professional Use License for Desktop Applications, and (3) Professional Use License for Embedded Applications. Each license
isgoverned by adifferent license agreement. The Personal Use Licenseis provided to individuals developing non-commercial,
non-distributable, personal-use-only applications. There is no license fee or royalty required for the Personal Use License.
However, to exercise rights beyond the Personal Use License, the Developer must purchase a Professional Use License from
Zinc, for either Desktop Applications or Embedded Applications, whichever is applicable.

ZINC SOFTWARE INCORPORATED (“ZINC”) IS WILLING TO GRANT YOU THE FOLLOWING LICENSE ON
THE CONDITION THAT YOU ACCEPT ALL TERMS OF THIS AGREEMENT (THE “AGREEMENT").

DO NOT INSTALL, DOWNLOAD OR USE THE ZINC APPLICATION FRAMEWORK SOFTWARE UNTIL YOU

HAVE READ AND ACCEPTED THIS LICENSE AGREEMENT. BY INSTALLING, DOWNLOADING OR USING
THE SOFTWARE YOU ACCEPT THIS LICENSE AGREEMENT. IF YOU DO NOT AGREE TO THIS LICENSE
AGREEMENT YOU MUST NOT INSTALL, DOWNLOAD, OR USE THE SOFTWARE.

1. Definitions. Non-commercial Desktop Applications. “Non-commercial

- B . - Desktop Applications” shall mean Desktop Applications
Affiliates. “Affiliates” shall mean Zinc's parent company, geyeloped by Developer that: (a) are for use by Developer
Zinc's majority-owned subsidiaries, and its and their respec-qn)y“and not for use by, or distribution to, any employer,
tive majority-owned subsidiaries. customer or other third party. A different license must be

Desktop Applications. “Desktop Applications” shall mean Purchased from Zinc or its authorized reseller for use of the
computer software program applications developed by Lic- Software to develop Desktop Applications for commercial
ensee which include Linkable Routines and/or Distributable PUTPOSES Or use.

Files and which require a Desktop Operating Environment. gytt\vare, “Software” shall mean the Zinc Application
Applications which do not require a Deskiop Operating gramework computer programs and Documentation pro-
Environment are considered to be “Embedded Applica-;deq with this Agreement. Software includes without limi-
tions.” A different license must be purchased from Zinc or yaion * Linkable Routines, Distributable Files, non-
its %uahc?ndzed rlt_esel_ler for use of the Software to developyiiripytable files, and Licensed Source Code. Any modifi-
Embedded Applications. cations or additions to the Software created by Developer
Desktop Operating Environment. “Desktop Operating Pursuant to the license granted hereunder shall belong solely
Environment” shall mean one or more of the following: t0 Zinc, and shall be considered part of Software pursuant to
Microsoft Windows; Microsoft Windows NT; IBM 0S/2; the license granted herein.

Apple MacOS; and UNIX. 2. License. Subject to the other provisions of this Agree-
Developer. “Developer” shall mean the individual natural ment, Zinc grants to Developer a restricted, nonexclusive,
person who accepts and agrees to this Agreement_ No Corpdlontransferable license (Wlthout the rlght to grant subli-
ration, partnership, limited liability company or other orga- censes) for one person (the Developer):

nization, government or business entity may be a Develope{a) to use the Software to develop Non-commercial Desktop
under this Agreement. They may, however, purchase PrOfesAppIications (as defined above); and

sional Use Licenses from Zinc or its authorized reseller. ’

Developer is the only person authorized to use the Softwaréb) to incorporate Linkable Routines and/or Distributable
under the terms of this Agreement. Files into Non-commercial Desktop Applications developed
Dbt i, Dtutal s shal mean ose 3,05t provied et he il uines anor
iles identified as distributable in the Documentation. that they cannot be used apart from the Non-commercial
Documentation. “Documentation” shall mean the online Desktop Applications; and

documelntatlon and printed d_or?urr;r)entatlon, if any, provided) {5 use such Linkable Routines and/or Distributable Files
to Developer in connection with this Agreement. as part of or with the Non-commercial Desktop Applica-
Licensed Source Code. “Licensed Source Code” shall mean tions, pursuant to the license granted hereunder but not sepa-
that portion of the Software’s source code which is providedrate from such Non-commercial Desktop Applications; and

to Developer in connection with this Agreement. (d) to use the Licensed Source Code to maintain and modify
Linkable Routines. “Linkable Routines” shall mean the the Software to conform with Developer’s needs in creating

object code routines in the Software libraries (e.g., *.LIB, Non-commercial Desktop Applications.
lib*a).

42 Zinc Application Framework 5

The foregoing license does not include any right to use the
Software to develop any computer programs that are com-
petitive with, or that can be used in lieu of, the Software.
Rights not expressly granted to Devel oper in this Agreement
are reserved by Zinc. Developer acknowledges that Zinc
(and its licensor(s), if applicable) own the copyrights and
other intellectual property in and to the Software.

3. Copies. Developer may make copies of the Software pro-
vided that each such copy: (a) is created as an essential step
in the utilization of the Software in accordance with this
Agreement, or (b) is only for archival purposes to back-up
the licensed use of the Software. Devel oper may also make
copies of the Software to the extent reasonably needed to
exercise rights under this Agreement, including without lim-

repair or replace such media, at Zinc's option, and as Devel-

oper’s sole remedy for any breach of warranty hereunder.
8. Disclaimer And Limited Liability.

(a) Disclaimer Of Warranties. OTHER THAN THE
LIMITED WARRANTY STATED ABOVE, ZINC AND
ITS AFFILIATES MAKE NO WARRANTY OF ANY
KIND AND THE SOFTWARE IS LICENSED AND
PROVIDED TO LICENSEE STRICTLY ON AN “AS
IS" BASIS. ZINC AND ITS AFFILIATES DISCLAIM
AND EXCLUDE ALL WARRANTIES, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING WITHOUT
LIMITATION ANY IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY AND

itation those rights described in Section 4 (“Distribution FITNESS FOR A _PARTICULAR PURPOSE. ZINC
Rights”). All Zinc proprietary notices must be faithfully AND ITS AFFILIATES DO NOT WARRANT THAT

reproduced and included on copies made by Developer, or HE SOFTWARE WILL SATISFY LICENSEE'S

otherwise directed from time to time by Zinc. Developer EQUIREMENTS OR THAT IT IS WITHOUT
may not make any other copies of the Software. prrintable,DEFECT OR ERROR OR THAT THE OPERATION

the online Documentation may be printed by Developer and! HEREOF WILL BE UNINTERRUPTED.

used by Developer, but only in connection with the licensed(p) |imitation On Liability. ZINC AND ITS AFFILI-

use of the Software. ATES WILL NOT BE LIABLE FOR ANY LOSS OF

4. Digtribution Rights. A copy of the Software in its com- PROFITS, LOSS OF USE, INTERRUPTION OF BUSI-
5 ; ; :«.NESS, NOR FOR INDIRECT, SPECIAL, INCIDEN-

plete and unmodified form as provided by Zinc may be dis

tributed or transferred by Developer to any other individual TAL, OR CONSEQUENTIAL DAMAGES OF ANY

natural person solely and exclusively pursuant to the termd$IND, WHETHER UNDER THIS AGREEMENT OR
of this Agreement as accompany such copy. Except as prooTHERWlSE' IRRESPECTIVE OF WHETHER ZINC
vided herein, Linkable Routines and Distributable Files shall HAS ADVANCE NOTICE OF THE POSSIBILITY OF
not be distributed or transferred by Developer other than a UCH DAMAGES. IN NO EVENT SHALL THE LIA-
part of the Software and shall in no event be distributed or, ILITY OF ZINC OR ITS AFFILIATES HEREUNDER

transferred as part of or with any Non-commercial Desktop EXCEED FIFTY U.S. DOLLARS.

Application. Developer may distribute, transfer, and discloseg, Termination. The Agreement and al licenses granted by
Developer's Source Code in Non-commercial Desktop zinc hereunder shall aitomatically terminate if Developer
Applications, provided that no part of the Licensed Sourcemgterially breaches this Agreement. Upon termination of the
Code (including any modifications or derivative works agreement, Developer shall cease all use of the Software
thereof) is distributed, transferred, or disclosed. and shall destroy all copies of the Software within the pos-

5. Protection Of The Software. Except as expressly autho- SeSSion or control of Developer and shall return the original

rized in this Agreement, Developer may not: (a) disassem-S0ftware media and Documentation to Zinc. In the event of

ble, decompile or otherwise reverse engineer the Software, termination of this Agreement, the provisions of Section
or (b) create derivative works based upon the Software, ort. (‘Definitions”), Section 8 (“Disclaimer and Limited Lia-
() rent, lease, sublicense, distribute, transfer, copy, reproPility’), Section 9 (“Termination”), Section 10 (*Export
duce, or timeshare the Software, or (d) modify the SoftwareL@Ws'), Section 11 ("Severability”), Section 12 (“Governing
(including any deletion of code from or addition of code to -@W*) and Section 13 (*Entire Agreement”) shall survive
the Software) or (e) allow any third party to access or use thénd continue to bind the parties.

Software, or to do any of the foregoing. The Software is the1o, Export Laws. Developer shall not export, disclose or
valuable proprietary information of Zinc (or its licensor(s), distribute any Software in violation of any applicable laws

if applicable), and may not be used or disclosed except agr regulations, including the export laws and regulations of
expressly permitted by this Agreement. The Licensedthe United States.

Source Code (whether modified or unmodified) may not be
disclosed or distributed by Developer to any other person. 11. Severability. If any provision in this Agreement is
N invalid or unenforceable or contrary to applicable law, such
6. Disclaimer Regarding Modified Software. Zinc and its provision shall be construed, limited, or altered, as neces-
Affiliates accept no responsibility or obligation to maintain sary, to eliminate the invalidity or unenforceability or the

or support any unmodified or modified versions of the Soft- conflict with applicable law, and all other provisions of this

ware and no warranties are applicable to any modified ver-ogreement shall remain in effect.

sions. There is no warranty that the Software is suitable for))

modification and all modifications are undertaken at the risk 12. Governing Law. This Agreement shall be governed by

and discretion of Developer. the laws of the State of California and the United States of
.)) America without giving effect to conflict or choice of law

7. Limited Warranty. Zinc warrants that the media on principles. The United Nations Convention on Contracts for

which Software is delivered will be free from defects in the |nternational Sale of Goods shall not be applicable and is

materials or workmanship for a period of ninety (90) days rejected by the parties. The State and Federal Courts located

from the date on which Developer receives such media. Ifin’San Francisco County, California, shall have sole jurisdic-

during the foregoing ninety (90) day warranty period the tion over any disputes arising under this Agreement and the

media on which Software is delivered proves to be defectiveparties hereby submit to the jurisdiction of such courts.

and if it is returned to Zinc (postage prepaid), Zinc will

Personal Use License Agreement - Desktop Applications 43

13. Entire Agreement. This Agreement is the entire agree-
ment between the parties regarding this subject matter and
supersedes all prior discussions, negotiations, agreements,
and the like. This Agreement may be modified only in writ-
ing signed by authorized representatives of both parties. No
vendor, distributor, dealer, reseller, sales person or other per-
son is authorized by Zinc to modify this Agreement or to

make any warranty, representation or promise which is dif-
ferent than, or in addition to, the warranties, representations
or promises of this Agreement. Any purported oral modifi-
cation of this Agreement shall be void.

44 Zinc Application Framework 5

Professional Use License Agreement - Desktop Applications 45

Zinc Application Framework 5.3
Software License Agreement

Professional Use License - Desktop Applications

There are three different waysto license Zinc Application Framework: (1) Personal Use License for Desktop Applications, (2)
Professional Use License for Desktop Applications, and (3) Professional Use License for Embedded Applications. Each license
isgoverned by adifferent license agreement. The Personal Use Licenseis provided to individuals developing non-commercial,
non-distributable, personal-use-only applications. There is no license fee or royalty required for the Personal Use License.
However, to exercise rights beyond the Personal Use License, the Licensee must purchase a Professional Use License from
Zinc, for either Desktop Applications or Embedded Applications, whichever is applicable.

THIS IS A PROFESSIONAL USE LICENSE AGREEMENT FOR DESKTOP APPLICATIONS (“AGREEMENT")
BETWEEN ZINC SOFTWARE INCORPORATED (“ZINC”) AND THE ENTITY OR INDIVIDUAL (“LICENSEE”
OR “YOU”) WHO HAS RECEIVED THIS AGREEMENT AND THE ACCOMPANYING ZINC APPLICATION
FRAMEWORK SOFTWARE AND DOCUMENTATION, AND PAID THE ASSOCIATED FEES TO ZINC. ZINC IS
WILLING TO GRANT TO LICENSEE THE FOLLOWING LICENSE ON THE CONDITION THAT LICENSEE
ACCEPTS ALL TERMS OF THIS AGREEMENT.

DO NOT INSTALL, DOWNLOAD OR USE THE ZINC APPLICATION FRAMEWORK SOFTWARE UNTIL YOU

HAVE READ AND ACCEPTED THIS LICENSE AGREEMENT. BY INSTALLING, DOWNLOADING OR USING

THE SOFTWARE YOU ACCEPT THIS LICENSE AGREEMENT. IF YOU DO NOT AGREE TO THIS LICENSE
AGREEMENT: (A) YOU MUST NOT INSTALL DOWNLOAD, OR USE THE SOFTWARE, AND (B) YOU MAY
RETURN THE SOFTWARE, INCLUDING ALL PACKAGING, MEDIA, AND DOCUMENTATION, FOR A

REFUND, PROVIDED THAT THE RETURN IS MADE WITHIN TEN DAYS OF THE DATE OF PURCHASING
THIS LICENSE.

1. Definitions. Error. “Error” shall mean any failure of the Software as
delivered by Zinc to conform to its published specifications

Affiliates. “Affiliates” shall mean Zinc's parent company, gyring ordinary use in accordance with this Agreement.

Zinc's majority-owned subsidiaries, and its and their respec-

tive majority-owned subsidiaries. Licensed Source Code. “Licensed Source Code” shall mean
L W s that portion of the Software’s source code which is provided

Desktop Applications. “Desktop Applications” shall mean | jcensee in connection with this Agreement.

computer software program applications developed by Lic-

ensee which include Linkable Routines and/or DistributableLinkable Routines. “Linkable Routines” shall mean the

Files and which require a Desktop Operating Environment.object code routines in the Software libraries (e.g. *.LIB,

Applications which do not require a Desktop Operating lib*.a).

Environment are considered to be “Embedded Applica-

tions.” A different license must be purchased from Zinc or

its authorized reseller for use of the Software to develop

Embedded Applications.

Optional Modules. “Optional Modules” shall mean an
optional component of the Software as designated by Zinc
(e.g. platform modules, Unicode support module).

Desktop Operating Environment. “Desktop Operating Required Module. “Required Module” shall mean the
EnvirorF\)mer?t" shalglJ mean one or more ofpthepfollowi%g: required component of the Software as designated by Zinc

Microsoft Windows; Microsoft Windows NT; IBM 0Os/2; (€. “Shared Code”).
Apple MacOS; and UNIX. Software. “Software” shall mean the Zinc Application

Developer. “Developer” shall mean the individual natural Framework computer programs and Documentation pro-
person who accepts and agrees to this Agreement. If DevelYided. with this Agreement. Software consists of the
equired Module and one or more Optional Modules and

oper is an employee of a company and intends to use th ; ‘ L= . - c
ngtware withi?] t¥1e scope ofphisyher employment, then iese include, without limitation, Linkable Routines, Dis-

acceptance of this Agreement is also made on behalf of thdiPutable Files, non-distributable files, and Licensed Source

company. The Developer is the only person authorized to ode. Any modifications or additions to the Software cre-

use the Software under the terms of this Agreement. ated by Licensee pursuant to the license granted hereunder
shall belong solely to Zinc, and shall be considered part of

Distributable Files. “Distributable Files” shall mean those Software pursuant to the license granted herein.

files identified as distributable in the Documentation. 2. Development Rights.

Documentation. “Documentation” shall mean the online
documentation and printed documentation, if any, provided
to Licensee in connection with this Agreement.

(a) License. Subject to the other provisions of this Agree-
ment, including without limitation the payment by Licensee
all license fees, Zinc grants to Licensee a restricted, nonex-

46 Zinc Application Framework 5

clusive, nontransferable license (without the right to grant
sublicenses) for one person (the Developer):

(i) to use the Software to develop Desktop Applications (as
defined above);

(ii) to incorporate Linkable Routines and/or Distributable
Files into Desktop Applications developed by Developer,
provided that the Linkable Routines and/or Distributable
Files have been incorporated in such a way that they cannot
be used apart from the Desktop Applications; and

(iii) to use Linkable Routines and/or Distributable Files as
part of or with Desktop Applications, pursuant to the license
granted hereunder but not separate from such Desktop
Applications;

(iv) to use the Licensed Source Code to maintain and modify
the Software to conform with Licensee’s needs in creating
Desktop Applications.

(b) Restrictions.

online Documentation may be printed by Licensee and used
by Licensee, but only in connection with the licensed use of
the Software.

4. Distribution License. Subject to the other provisions of
this Agreement, Zinc grants to Licensee a restricted, nonex-
clusive, nontransferable license (without the right to grant
sublicenses) which includes the following distribution
rights:

(a) authorization for Licensee to incorporate Linkable Rou-
tines into and/or distribute Distributable Files with Desktop
Applications developed by Licensee and to distribute them
as part of such Desktop Applications to Licensee’s custom-
ers, provided that the Linkable Routines and/or Distributable
Files have been incorporated in such a way that they cannot
be used apart from the Desktop Applications,

(b) authorization for Licensee to license Licensee’s custom-
ers to use such Linkable Routines and/or Distributable Files
as part of the Desktop Applications, but not separate from

]))) such Desktop Applications.
(i) Required Module. The Developer must obtain a license o L .
for his or her own Required Module. The Required Module 5- Distribution Restrictions. Except for the Linkable Rou-

may be used by the Developer only on any computer ontines and Distributable Files, no portion of the Software may
which at least one of the same Deve|0per’s Optiona| Mod_be distributed or transferred by Licensee. The Linkable Rou-

ules is used as permitted herein. tines and Distributable Files may not be distributed as part of
-)) . any computer program other than a Desktop Application as
(ii) Optional Modules. The Developer must obtain a license defined above without the express written permission of
for at least one Optional Module designed for a particularzinc. Licensee must include an appropriate Zinc copyright
operating system platform and computer type. Eachnotice, in accordance with guidelines published by Zinc
Optional Module may be used by the Developer only on afrom time to time, on all copies of Licensee's Desktop
single computer running under the operating system desigApplications in which Linkable Routines are incorporated or
nated on a license certificate or invoice for the Optional with which Distributable Files are distributed. Third parties
Module. Licensee may not use an Optional Module on morewho receive any Linkable Routines or Distributable Files as
than one computer at any given time unless an additionapart of a Desktop Application under Section 4 (“Distribution
license for each additional computer is purchased. Notwith-License”) may not use such Linkable Routines or Distribut-
standing anything in this Agreement to the contrary, thisable Files for any development purposes. Licensee shall
license does not include, and Licensee has no right to installensure that its agreements with such third parties are consis-
use or copy, any Optional Module not designated on atent with this Agreement and are no less protective of Zinc,
license certificate or invoice. If Licensee desires to use addidts Affiliates and licensors as the restrictions listed in Sec-
tional Optional Modules, a license for such additional tions 6 (“Protection of the Software”), 10 (“Disclaimer and
Optional Modules must first be purchased from Zinc or its Limited Liability”), 12b (“Distribution of Desktop Applica-
authorized reseller. Additional Optional Modules for which tions to U.S. Government End Users”), and 13 (“Export
a license is purchased shall be governed by this Agreementaws”).

and shall be deemed part of the Software.)
6. Protection Of The Software. Except as expressly autho-

(iii) Other Restrictions. The Software is licensed on a perrized in this Agreement, Licensee may not: (a) disassemble,
Developer basis. The Developer may not be changed, withdecompile or otherwise reverse engineer the Software, or (b)
out the written consent of Zinc. Licenses for additional create derivative works based upon the Software, or (c) rent,
Developers must be purchased from Zinc or its authorizedease, sublicense, distribute, transfer, copy, reproduce, or
resellers. The foregoing license does not include any right tatimeshare the Software, or (d) modify the Software (includ-
use the Software to develop any computer programs that arfag any deletion of code from or addition of code to the Soft-
competitive with, or that can be used in lieu of, the Software.ware)or (e) allow any third party to access or use the
Rights not expressly granted to Licensee in this AgreemenSoftware, or to do any of the foregoing. The Software is the
are reserved by Zinc. Licensee acknowledges that Zinc (andaluable proprietary information of Zinc (or its licensor(s),
its licensor(s), if applicable) own the copyrights and other if applicable), and may not be used or disclosed except as
intellectual property in and to the Software. expressly permitted by this Agreement. The Licensed
Source Code (whether modified or unmodified) may not be

3. Copies. Licensee may make copies of the Software pro'éiﬁsclosed or distributed by Licensee to any other person.

vided that each such copy: (a) is created as an essential st
in the utilization of the Software iaccordance with this 7. Disclaimer Regarding M odified Software. Zinc and its
Agreement, or (b) is only for archival purposes to back-up Affiliates accept no responsibility or obligation to maintain
the licensed use of the Software. Licensee may also maker support modified versions of the Software and no warran-
copies of the Software to the extent reasonably needed t@es are applicable to such modified versions. There is no
exercise those rights described in Section 4 (“Distributionwarranty that the Software is suitable for modification and
License”). All Zinc proprietary notices must be faithfully all modifications are undertaken at the risk and discretion of
reproduced and included on copies made by Licensee. Licticensee.

ensee may not make any other copies of the Software. The)
8. Maintenance.

Professional Use License Agreement - Desktop Applications 47

(a) Provision of Maintenance. In the event that Licensee has
agreed to receive Maintenance as indicated on a license cer-
tificate or invoice, and has paid al associated fees as
invoiced by Zinc, Licensee shall be entitled to receive Main-
tenance as hereinafter described. For purposes of this Agree-
ment, “Maintenance” shall consist of:

TIES OF NONINFRINGEMENT, MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE.
ZINC AND ITS AFFILIATES DO NOT WARRANT
THAT THE SOFTWARE WILL SATISFY LIC-
ENSEE'S REQUIREMENTS OR THAT IT IS WITH-
OUT DEFECT OR ERROR OR THAT THE

(i) The right of the Developer to contact Zinc by telephone CR)BE!?EAEION THEREOF WILL BE UNINTER-

or e-mail and to consult with Zinc regarding the installation,
functions and operation of the unmodified Software; (b) Limitation On Liability. ZINC AND ITS AFFILI-
" . . ATES WILL NOT BE LIABLE FOR ANY LOSS OF
(ll) The rlght of the DeVeIOper to contact Zinc by telephone PROFITS. LOSS OF USE. INTERRUPTION OF BUSI-
or e-mail to consult with Zinc regarding Errors in the NESS NbR FOR |ND|R’ECT SPECIAL. INCIDEN-
uandIfled SOﬂWafe which Errors have been brought tOTAL bR CONSEQUENTIAL ,DAMAGES’ OF ANY
Zinc's attention by the Developer; KIND, WHETHER UNDER THIS AGREEMENT OR
(iiiy The right to obtain from Zinc certain updates for the OTHERWISE, IRRESPECTIVE OF WHETHER ZINC
Software from time to time as such updates are made genetdAS ADVANCE NOTICE OF THE POSSIBILITY OF
ally available by Zinc. SUCH DAMAGES. IN NO EVENT SHALL THE LIA-
y y
o) . _ BILITY OF ZINC OR ITS AFFILIATES HEREUNDER

(b) Hours and Facilities. Zinc shall make Maintenance avail-EXCEED THE TOTAL PAYMENT MADE BY LIC-
able only during Zinc’'s normal business days and normalENSEE TO PURCHASE THIS LICENSE.
business hours. o .

11. Termination. The Agreement and al licenses granted by

(c) Limitations. Licensee must elect to receive Maintenancezinc hereunder shall automaticaly terminate if Licensee

on either all or none of the Software, and may not elect tomaterially breaches this Agreement. Upon termination of the
receive Maintenance on some Software and not on othepgreement, Licensee shall cease all use of the Software and
Software. Zinc shall have no obligation to provide Mainte- shall destroy all copies of the Software within the possession
nance for any modified Software or any Software which is or control of Licensee and shall return the original Software
not the most recent version or release or for which Zinc hasnedia and Documentation to Zinc. In the event of any termi-
provided updates which have not been applied by Licensegation of this Agreement, the provisions of Section 1 (“Defi-
to the Software for a period of more than one (1) year fromnitions”), Section 9 (“Disclaimer and Limited Liability”),
the date said updates were made generally available. AnBection 11 (“Termination”), Section 13 (“Export Laws”),
failure of Licensee to pay all Maintenance fees as invoicedSection 14 (“Severability”), Section 15 (“Governing Law”)
by Zinc shall, at Zinc’s sole option, immediately and perma- and Section 16 (“Entire Agreement”) shall survive and con-
nently eliminate any obligation of Zinc to provide Mainte- tinue to bind the parties.

nance hereunder.
12. Government End Users. A “U.S. Government End

9. Limited Warranty. User” shall mean any agency or entity of the government of

(a) Media And Documentation. Zinc warrants that the mediathe United States. The following shall apply:

on which Software is delivered will be free from defects in (a) If Licensee is U.S. Government End User. If Licensee is
materials or workmanship for a period of ninety (90) days a U.S. Government End User, then this Subsection (a) shall
from the date on which Licensee receives such media. Ifapply. The Software is a “commercial item,” as that term is
during the foregoing ninety (90) day warranty period the defined in 48 C.F.R. 2.101 (Oct. 1995), consisting of “com-
media on which Software is delivered proves to be defectivemercial computer software” and “commercial computer
and if it is returned to Zinc (postage prepaid), Zinc will software documentation,” as such terms are used in 48
repair or replace such media, at Zinc's option, and as Lic-C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R.
ensee’s sole remedy for any breach of warranty hereunder. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June

(b) Software. Zinc warrants the Software substantially con-1995)' all U.S. Government End Users acquire the Software
forms to the specifications in the Documentation and if theWIth only those rights set forth herein. The Software (includ-
ing related documentation) is provided to U.S. Government

nonconformity is reported in writing by Licensee to Zinc i : vt -
St : : nd Users: (i) only as a commercial end item; and (ii) only
within 90 days from the date the license is purchased, thergursuant o this Agreement.

Zinc shall either remedy the nonconformity or offer to
refund the purchase price to Licensee upon a return of al(b) Distribution of Desktop Applications to U.S. Govern-

copies of the Software (including all packaging, media, andment End Users. When distributing or licensing a Desktop
Documentation) to Zinc. In the event of a refund, the Agree- Application to a U.S. Government End User, Licensee shall
ment shall terminate. identify the Software or modified Software in the Desktop
10. Disdlaimer And Limited Liability. Application as a “commercial item,” as that term is defined

at 48 C.F.R. 2.101 (Oct. 1995), and more specifically shall
(a) Disclaimer Of Warranties. OTHER THAN THE

be identified as “commercial computer software” and “com-
LIMITED WARRANTIES STATED ABOVE, ZINC mercial computer software documentation,” as such terms
AND ITS AFFILIATES MAKE NO WARRANTY OF are used in 48 C.F.R. 12.212 (Sept. 1995). Consistent with
ANY KIND AND THE SOFTWARE IS LICENSED 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through
AND PROVIDED TO LICENSEE STRICTLY ON AN 227.7202-4 (June 1995), Licensee will provide the Software
“AS IS” BASIS. ZINC AND ITS AFFILIATES DIS-

or modified Software in any Desktop Application (including
CLAIM AND EXCLUDE ALL WARRANTIES,

related documentation) to U.S. Government End Users: (i)
EXPRESS, IMPLIED, OR STATUTORY, INCLUDING only as a commercial end item; and (ii) only pursuant to the
WITHOUT LIMITATION ANY IMPLIED WARRAN-

48 Zinc Application Framework 5

end user license agreement used by Licensee to license the
Desktop Application to the U.S. Government End User.

13. Export Laws. Licensee shall not export, disclose or dis-
tribute any Software in violation of any applicable laws or
regulations, including the export laws and regulations of the
United States.

14. Severability. If any provision in this Agreement is
invalid or unenforceable or contrary to applicable law, such
provision shall be construed, limited, or altered, as neces-
sary, to eliminate the invalidity or unenforcesbility or the
conflict with applicable law, and all other provisions of this
Agreement shall remain in effect.

15. Governing Law. This Agreement shall be governed by
the laws of the State of California and the United States of
America without giving effect to conflict or choice of law
principles. The United Nations Convention on Contracts for

the International Sale of Goods shall not be applicable and is
rejected by the parties. The State and Federal Courts located
in San Francisco County, California, shall have solejurisdic-
tion over any disputes arising under this Agreement and the
parties hereby submit to the jurisdiction of such courts.

16. Entire Agreement. This Agreement is the entire agree-
ment between the parties regarding this subject matter and
supersedes all prior discussions, negotiations, agreements,
and the like. This Agreement may be modified only in writ-
ing signed by authorized representatives of both parties. No
vendor, distributor, dealer, reseller, sales person or other per-
son is authorized by Zinc to modify this Agreement or to
make any warranty, representation or promise which is dif-
ferent than, or in addition to, the warranties, representations
or promises of this Agreement. Any purported oral modifi-
cation of this Agreement shall be void.

Professional Use License Agreement - Embedded Applications 49

Zinc Application Framework 5.3
Software License Agreement

Professional Use License - Embedded Applications

There are three different waysto license Zinc Application Framework: (1) Personal Use License for Desktop Applications, (2)
Professional Use License for Desktop Applications, and (3) Professional Use License for Embedded Applications. Each license
isgoverned by adifferent license agreement. The Personal Use Licenseis provided to individuals developing non-commercial,
non-distributable, personal-use-only applications. There is no license fee or royalty required for the Personal Use License.
However, to exercise rights beyond the Personal Use License, the Licensee must purchase a Professional Use License from
Zinc, for either Desktop Applications or Embedded Applications, whichever is applicable.

THIS IS A PROFESSIONAL USE LICENSE AGREEMENT FOR EMBEDDED APPLICATIONS (“AGREEMENT")
BETWEEN ZINC SOFTWARE INCORPORATED (“ZINC”) AND THE ENTITY OR INDIVIDUAL (“LICENSEE”
OR “YOU”) WHO HAS RECEIVED THIS AGREEMENT AND THE ACCOMPANYING ZINC APPLICATION
FRAMEWORK SOFTWARE AND DOCUMENTATION, AND PAID THE ASSOCIATED FEES TO ZINC. ZINC IS
WILLING TO GRANT TO LICENSEE THE FOLLOWING LICENSE ON THE CONDITION THAT LICENSEE
ACCEPTS ALL TERMS OF THIS AGREEMENT.

DO NOT INSTALL, DOWNLOAD OR USE THE ZINC APPLICATION FRAMEWORK SOFTWARE UNTIL YOU

HAVE READ AND ACCEPTED THIS LICENSE AGREEMENT. BY INSTALLING, DOWNLOADING OR USING

THE SOFTWARE YOU ACCEPT THIS LICENSE AGREEMENT. IF YOU DO NOT AGREE TO THIS LICENSE
AGREEMENT: (A) YOU MUST NOT INSTALL, DOWNLOAD, OR USE THE SOFTWARE, AND (B) YOU MAY
RETURN THE SOFTWARE, INCLUDING ALL PACKAGING, MEDIA, AND DOCUMENTATION, FOR A

REFUND, PROVIDED THAT THE RETURN IS MADE WITHIN TEN DAYS OF THE DATE OF PURCHASING
THIS LICENSE.

1. Definitions. Error. “Error” shall mean any failure of the Software as
delivered by Zinc to conform to its published specifications

Affiliates. “Affiliates” shall mean Zinc's parent company, gyring ordinary use in accordance with this Agreement.

Zinc's majority-owned subsidiaries, and its and their respec-
tive majority-owned subsidiaries. Host Platform. “Host Platform” shall mean a computer

Desktop Operating Environment. “Desktop Operating platform on which the Software is used in the development

) - Y of the Licensed Embedded Application.
Environment” shall mean one or more of the following:
Microsoft Windows; Microsoft Windows NT; IBM OS/2; Host Software. “Host Software” shall mean (a) all compo-
Apple MacOS; and UNIX. nents of the Software which are able to execute on any plat-
form other than the Target Platform; or (b) Software which

Developer. “Developer” shall mean the individual natural isapie to execute on the Target Platform other than Linkable
person who accepts and agrees to this Agreement. If Develpq tines or Distributable Files.

oper is an employee of a company and intends to use the

Software within the scope of his/lher employment, thenLicensed Embedded Application. “Licensed Embedded

acceptance of this Agreement is also made on behalf of thépplication” shall mean the Embedded Application speci-

company. The Developer is the only person authorized tofied on the Project Description Form and is limited to the

use the Host Software under the terms of this Agreement. Target Platform. This License applies only to one Licensed
N) P - Embedded Application. Additional licenses must be pur-

Distributable Files. “Distributable Files” shall mean those chased from Zinc or its authorized reseller for use of the

files identified as distributable in the Documentation. Software in the development of other Embedded Applica-

Documentation. “Documentation” shall mean the online tions.

documentation and printed _dﬁc}t:mentatlon, if any, provided, jcensed Source Code. “Licensed Source Code” shall mean

to Licensee in connection with this Agreement. that portion of the Software’s source code which is provided

Embedded Application. “Embedded Application” shall to Licensee in connection with this Agreement.

mean computer software program applications developed by jnkaple Routines. “Linkable Routines” shall mean the

Licensee which include Linkable Routines and/or Distribut- object code routines in the Software libraries (e.g., *.LIB,

able Files and which do not require a Desktop Operatingjjpx a)

Environment. Applications which require a Desktop Operat- —~ "

ing Environment are considered to be “Desktop Applica- Project. “Project” shall mean a Licensee development

tions.” A different license must be purchased from Zinc or effort, the purpose and result of which are the creation of a

its authorized reseller for use of the Software to developLicensed Embedded Application. This Agreement contains

Desktop Applications. a license for a single Project consisting of the use of the

Software on a Host Platform for the development of a

50 Zinc Application Framework 5

Licensed Embedded Application which will be used on a own the copyrights and other intellectual property in and to
Target Platform. the Software. THIS LICENSE DOES NOT INCLUDE

; o Mo - , RUNTIME LICENSES OR PROVIDE THE RIGHT TO
Project Description Form. “Project Description Form” — p|STRIBUTE ANY PORTION OF THE SOFTWARE IN
shall mean a written or electronic form S|gned by Zinc and ICENSED EMBEDDED APPLICATIONS TO THIRD
Licensee, which describes the Target Platform, the LicenseaRTIES. Pricing and licenses for Runtime License distri-

Embedded Application and the name of the Project. bution are available from Zinc and its authorized resellers.

Runtime License. “Runtime License” shall mean a royalty- 4 copjes. Licensee may make copies of the Software pro-
bearing license (to be granted by Zinc to Licensee under iqeq that each such copy: (a) is created as an essential step
separate license agreement) to distribute one copy of the, 1he ytilization of the Software in accordance with this
Licensed Embedded Application deployed on a Target Plat-agreement, or (b) is only for archival purposes to back-up
form. The number of Runtime Licenses purchased by Develyyg |icensed use of the Software. All Zinc proprietary notices
oper will be indicated on the license certificate or invoice st he faithfully reproduced and included on copies made
issued by Zinc. by Licensee. Licensee may not make any other copies of the
Software. “Software” shall mean the Zinc Application Software. The online Documentation may be printed by Lic-
Framework Computer programs, the Universal Graphicse.nsee and used by Licensee, but Only in connection with the
Library (“UGL") computer programs, and Documentation licensed use of the Software.

provided with this Agreement. Software consists of Targets pyqtection Of The Software. Except as expressly autho-
Software and Host Software and these include, without limi- ;e i this Agreement, Licensee may not: (a) disassemble,
tation, Linkable Routines, Distributable Files, non-distribut- gecompile or otherwise reverse engineer the Software, or (b)
able files, and Licensed Source Code. Any modifications or¢reate derivative works based upon the Software, or (c) rent,
additions to the Software created by Licensee pursuant to thg,sse sublicense. distribute. transfer copy, reproduce, or
license granted hereunder shall belong solely to Zinc, andjmeshare the Software, or (d) modify the Software (includ-

shall be considered part of Software pursuant to the licensg,q any deletion of code from or addition of code to the Soft-
granted herein. ware) or (e) allow any third party to access or use the

Target Platform. “Target Platform” shall mean the hard- Software, or to do any of the foregoing. The Software is the
ware and software platform on which the Licensed Embed-Valuable proprietary information of Zinc (or its licensor(s),
ded Application will run. The license is limited to the Target if applicable), and may not be used or disclosed except as

Platform specified in the Project Description Form. expressly permitted by this Agreement. The Licensed
Source Code (whether modified or unmodified) may not be

Target Software. “Target Software” shall mean the Link- disclosed or distributed by Licensee to any other person.
able Routines and the Distributable Files which are utilized

on the Target Platform, and which may be included in the6. Disclaimer Regarding Modified Software. Zinc and its
Licensed Embedded Application. Affiliates accept no responsibility or obligation to maintain

])) or support modified versions of the Software and no warran-
2. Project Development License. Subject to the other pro- ties are applicable to such modified versions. There is no
visions of this Agreement, including without limitation the warranty that the Software is suitable for modification and
payment by Licensee of all license fees, Zinc grants to Lic-all modifications are undertaken at the risk and discretion of
ensee a restricted, nonexclusive, nontransferable licenseicensee.

(without the right to grant sublicenses):)
7. Maintenance.

(a) to use the Target Software on the Target Platform and a .) .

Host Platform (without limitation on the number of comput- (&) Provision of Maintenance. In the event that Licensee has

ers or workstations) to develop the Licensed EmbeddecBgreed to receive Maintenance as indicated on a license cer-

Application; and tificate or invoice, and has paid all associated fees as
invoiced by Zinc, Licensee shall be entitled to receive Main-

(b) to use the Host Software on a Host Platform to developtenance as hereinafter described. For purposes of this Agree-

the Licensed Embedded Application; and ment, “Maintenance” shall consist of:

(c) to use the Licensed Source Code to modify the Softwarg(i) The right of the Developer to contact Zinc by telephone
to conform with Developer’s needs in creating the Licensedor e-mail and to consult with Zinc regarding the installation,
Embedded Application. functions and operation of the unmodified Software;

3. Restrictions. Host Software is licensed on a per Devel- (i) The right of the Developer to contact Zinc by telephone
oper, per Project, per Embedded Application basis. Hostor e-mail to consult with Zinc regarding Errors in the
Software may not be shared or transferred from one Develunmodified Software which Errors have been brought to
oper to another. Target Software is licensed on a per Projectinc’s attention by the Developer;

and per Embedded Application basis. The Project or

Licensed Embedded Application description contained on(iii) The right to obtain from Zinc certain updates for the
the Project Description Form may not be changed withoutSoftware from time to time as such updates are made gener-
the written consent of Zinc. Licenses for additional Projects, ally available by Zinc.

Developers, or Target Platforms must be purchased fromp) poyrs and Facilities. Zinc shall make Maintenance avail-

Zinc or its authorized resellers. The foregoing license doesyjjq only during Zinc's normal business days and normal
not include any right to use the Software to develop anyy siness hours.

computer programs that are competitive with, or that can be

used in lieu of, the Software. Rights not expressly granted ta(c) Limitations. Licensee must elect to receive Maintenance
Licensee in this Agreement are reserved by Zinc. Licenseen either all or none of the Software, and may not elect to
acknowledges that Zinc (and its licensor(s), if applicable) receive Maintenance on some Software and not on other

Professional Use License Agreement - Embedded Applications 51

Software. Zinc shall have no obligation to provide Mainte-
nance for any modified Software or any Software which is
not the most recent version or release or for which Zinc has
provided updates which have not been applied by Licensee
to the Software for a period of more than one (1) year from
the date said updates were made generaly avalable. Any
failure of Licensee to pay al Maintenance fees as invoiced

10. Termination. The Agreement and all licenses granted
by Zinc hereunder shall automatically terminate if Licensee
materially breaches this Agreement. Upon termination of the
Agreement, Licensee shall cease all use of the Software and
shall destroy all copies of the Software within the possession
or control of Licensee and shal return the original Software
media and Documentation to Zinc. In the event of any termi-

by Zinc shall, at Zinc's sole option, immediately and perma- nation of this Agreement, the provisions of Section 1 (“Defi-
nently eliminate any obligation of Zinc to provide Mainte- nitions”), Section 9 (“Disclaimer and Limited Liability”),
nance hereunder. Section 10 (“Termination”), Section 12 (“Export Laws”),
o Section 13 (“Severability”), Section 14 (“Governing Law")
8. Limited Warranty. and Section 15 (“Entire Agreement”) shall survive and con-

(a) Media And Documentation. Zinc warrants that the mediatinue to bind the parties.
on which Software is delivered will be free from defects in 11 Government End Users. A “U.S. Government End
;pc?rtr?rtlﬁ:es é’;té"oglémar?gﬂ'pL.‘gnge%e"r'ggepfeg'nSEtgh(%Jéggysl‘ster" shall mean any agency or entity of the government of

! which LI Ives such media. lhhe ynited States. If Licensee is a U.S. Government End
during the foregoing ninety (90) day warranty period the ger then this Subsection (a) shall apply. The Software is a
media on which Software is delivered proves to be defective:commercial item,” as that term is defined in 48 C.F.R.
e 1 e o 2nc postaoe prpas, Zine i 3511051053 conn fcommarca compue

, y y “ware” and “commercial computer software documentation,”

ensee’s sole remedy for any breach of warranty hereunder. 55 s ch terms are used in 48 C.F.R. 12.212 (Sept. 1995).

(b) Software. Zinc warrants the Software substantially con-Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1
forms to the specifications in the Documentation and if the through 227.7202-4 (June 1995), all U.S. Government End
nonconformity is reported in writing by Licensee to Zinc Users acquire the Software with only those rights set forth
within 90 days from the date the license is purchased, thedierein. The Software (including related documentation) is
Zinc shall either remedy the nonconformity or offer to Provided to U.S. Government End Users: (i) only as a com-
refund the purchase price to Licensee upon a return of alfmercial end item; and (ii) only pursuant to this Agreement.

copies of the Software (including all packaging, media, and ; ; .
Documentation) to Zinc. In the event of a refund, the Agree—lz' Export L aws. Licensee shall not export, disclose or dis

ment shall terminate.
9. Disclaimer And Limited Liability.

(a) Disclaimer Of Warranties. OTHER THAN THE
LIMITED WARRANTIES STATED ABOVE, ZINC
AND ITS AFFILIATES MAKE NO WARRANTY OF
ANY KIND AND THE SOFTWARE IS LICENSED
AND PROVIDED TO LICENSEE STRICTLY ON AN
“AS 1S" BASIS. ZINC AND ITS AFFILIATES DIS-
CLAIM AND EXCLUDE ALL WARRANTIES,
EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
WITHOUT LIMITATION ANY IMPLIED WARRAN-
TIES OF NONINFRINGEMENT, MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE.
ZINC AND ITS AFFILIATES DO NOT WARRANT
THAT THE SOFTWARE WILL SATISFY LIC-
ENSEE’'S REQUIREMENTS OR THAT IT IS WITH-
OUT DEFECT OR ERROR OR THAT THE
OPERATION THEREOF WILL BE UNINTER-
RUPTED.

(b) Limitation On Liability. ZINC AND ITS AFFILI-
ATES WILL NOT BE LIABLE FOR ANY LOSS OF
PROFITS, LOSS OF USE, INTERRUPTION OF BUSI-
NESS, NOR FOR INDIRECT, SPECIAL, INCIDEN-
TAL, OR CONSEQUENTIAL DAMAGES OF ANY
KIND, WHETHER UNDER THIS AGREEMENT OR
OTHERWISE, IRRESPECTIVE OF WHETHER ZINC
HAS ADVANCE NOTICE OF THE POSSIBILITY OF
SUCH DAMAGES. IN NO EVENT SHALL THE LIA-
BILITY OF ZINC OR ITS AFFILIATES HEREUNDER
EXCEED THE TOTAL PAYMENT MADE BY LIC-
ENSEE TO PURCHASE THIS LICENSE.

tribute any Software in violation of any applicable laws or
regulations, including the export laws and regulations of the
United States.

13. Severability. If any provision in this Agreement is
invalid or unenforceable or contrary to applicable law, such
provision shall be construed, limited, or altered, as neces-
sary, to eliminate the invalidity or unenforceability or the
conflict with applicable law, and all other provisions of this
Agreement shall remain in effect.

14. Governing Law. This Agreement shall be governed by
the laws of the State of California and the United States of
America without giving effect to conflict or choice of law
principles. The United Nations Convention on Contracts for
the International Sale of Goods shall not be applicable and is
rejected by the parties. The State and Federal Courts located
in San Francisco County, California, shall have sole jurisdic-
tion over any disputes arising under this Agreement and the
parties hereby submit to the jurisdiction of such courts.

15. Entire Agreement. This Agreement is the entire agree-
ment between the parties regarding this subject matter and
supersedes all prior discussions, negotiations, agreements,
and the like. This Agreement may be modified only in writ-
ing signed by authorized representatives of both parties. No
vendor, distributor, dealer, reseller, sales person or other per-
son is authorized by Zinc to modify this Agreement or to
make any warranty, representation or promise which is dif-
ferent than, or in addition to, the warranties, representations
or promises of this Agreement. Any purported oral modifi-
cation of this Agreement shall be void.

52 Zinc Application Framework 5

| ndex

Index 55

A

Add

HelloWorld1

AddGenericObjects

HelloWorld1

Apply

HelloWorld2

B

Browser Window

HelloWorld2
Building a Simple App ..

C

Callbacks

EventFlow

Center

HelloWorld1

Code Generation

Event Window
HelloWorld2

Control

EventFlow
HelloWorld1

D

Derivation

EventFlow

Designer Basics....

destructor
Event Window 33

Direct Event Routing
EventFlow 25

E

Event

EventFlow 25

Event Window 34
EventFlow 23
Event Handling

EventFlow 26

Event Manager

EventFlow 24
Event Mapping
EventFlow 27

Event Routing

EventFlow 25
Event Window 28
Event Window 2

Event Window 36
eventl.cpp

Event Window 32
EventWindow

Event Window 33

G

Genera Modédl
EventFlow 23
Generate Code
HelloWorld2 20

Get

EventFlow 25

Getting Started 9

H

HelloWorld1l 11
HelloWorld2 15
How Dol UseZAF?..... 10

How Does ZAF Work? ...9

#include

Event Window 33
#include <zaf.hpp>

HelloWorld1 12
INCLUDES

Event Window 31

K

keyboard events

Event Window 36

L

License Agreement
Professional Version 41,45,

49
LinkMain
HelloWorld1 13

56 Zinc Application Framework 5

Logica Event
EventFlow 27
Event Window 35

M

Main

HelloWorld1 12
menu editor

Event Window 29
mouse events

Event Window 36

O

OS Events
EventFlow 25

P

persistent constructor

Event Window 34
Platforms supported 9
pop-up menu

Event Window 30

Professional Version 41, 45, 49

Property Sheet
HelloWorld2 16
Put
Event Window 36

R

return
HelloWorld1....... 14

S

Send message

Event Window 30
SetBackgroundColor

Event Window 35
StringlD

Event Window 28

HelloWorld2....... 17
Suggested Study 37

T

Top-Down Event Routing
EventFlow 26

U

Undo
HelloWorld2........ 16

user functions
Event Window 36

W

What ISZAF? 9

WINDOWS
Event Window 31

HelloWorld2 19

Z

ZAF 5 General Model

EventFlow 23
ZAF Events
EventFlow 25

ZAF Genera Modél

EventFlow 23
ZAF ITEXT

HelloWorld1 13
ZAF NUMID PULL_DOW

N_MENU

Event Window 29
ZafApplication::Main

HelloWorld1 12
ZafErrorSystem

HelloWorld1 13
ZafHelpTips

HelloWorld1 13
Zafl18nData

HelloWorld1 13
ZafPullDownMenu

Event Window 29
ZafWindow

Event Window 29

HelloWorld1 13
zmake

HelloWorld1 11

HelloWorld2 20

Index 57

	Contacting Zinc
	Quick Start
	Getting Started
	Hello World 1
	Hello World 2

	Architecture Basics
	Architecture Basics—Event Flow
	Event Window
	Suggested Study

	Appendices
	Personal Use License - Desktop Applications
	Professional Use License - Desktop Applications
	Professional Use License - Embedded Applications

	Index
	A
	B
	C
	D
	E
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	W
	Z

